Thermal Analysis and Design of an Advanced Space Suit
NASA Technical Reports Server (NTRS)
Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.
2000-01-01
The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.
Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.
2007-01-01
The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.
53rd Annual Fuze Conference - Next Generation Fuzing - Maximum Advantage for the Warfighter
2009-05-21
Time Engineering AB 3:00 pm BREAK 3:20 pm Advances In Thermal Batteries For Fuzing David E. Harney, Advanced Thermal Batteries , Inc...Currently teaming and collaborating with Advanced Thermal Batteries • and Omnitek Partners to develop an improved thermal battery. • Current
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1995-01-01
This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.
The development of an advanced generic solar dynamic heat receiver thermal model
NASA Technical Reports Server (NTRS)
Wu, Y. C.; Roschke, E. J.; Kohout, L.
1988-01-01
An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.
Development of Advanced Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.
JPL Advanced Thermal Control Technology Roadmap - 2012
NASA Technical Reports Server (NTRS)
Birur, Gaj; Rodriguez, Jose I.
2012-01-01
NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.
NASA Technical Reports Server (NTRS)
Swenson, Charles
2016-01-01
The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.
NASA Technical Reports Server (NTRS)
Hogenson, P. A.; Lu, Tina
1995-01-01
The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.
Advanced high-temperature thermal energy storage media for industrial applications
NASA Astrophysics Data System (ADS)
Claar, T. D.; Waibel, R. T.
1982-02-01
An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.
Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2002-01-01
Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
NASA Technical Reports Server (NTRS)
Bienert, W. B.
1974-01-01
The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.
Thermal barrier coatings for gas turbine and diesel engines
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Brindley, William J.; Bailey, M. Murray
1989-01-01
The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.
Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2015-01-01
Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop optimized operational schema.
Advanced Active Thermal Control Systems Architecture Study
NASA Technical Reports Server (NTRS)
Hanford, Anthony J.; Ewert, Michael K.
1996-01-01
The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.
Ground truth spectrometry and imagery of eruption clouds to maximize utility of satellite imagery
NASA Technical Reports Server (NTRS)
Rose, William I.
1993-01-01
Field experiments with thermal imaging infrared radiometers were performed and a laboratory system was designed for controlled study of simulated ash clouds. Using AVHRR (Advanced Very High Resolution Radiometer) thermal infrared bands 4 and 5, a radiative transfer method was developed to retrieve particle sizes, optical depth and particle mass involcanic clouds. A model was developed for measuring the same parameters using TIMS (Thermal Infrared Multispectral Scanner), MODIS (Moderate Resolution Imaging Spectrometer), and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). Related publications are attached.
Advanced Fuel Cell System Thermal Management for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2009-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.
Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Robinson, Craig
2017-01-01
This presentation summarizes NASA's advanced thermal barrier and environmental barrier coating systems, and the coating performance improvements that has recently been achieved and documented in laboratory simulated rig test conditions. One of the emphases has been placed on the toughness and impact resistance enhancements of the low conductivity, defect cluster thermal barrier coating systems. The advances in the next generation environmental barrier coatings for SiCSiC ceramic matrix composites have also been highlighted, particularly in the design of a new series of oxide-silicate composition systems to be integrated with next generation SiC-SiC turbine engine components for 2700F coating applications. Major technical barriers in developing the thermal and environmental barrier coating systems are also described. The performance and model validations in the rig simulated turbine combustion, heat flux, steam and calcium-magnesium-aluminosilicate (CMAS) environments have helped the current progress in improved temperature capability, environmental stability, and long-term fatigue-environment system durability of the advanced thermal and environmental barrier coating systems.
Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.
2004-01-01
Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.
Micro-scale thermal imaging of advanced organic and polymeric materials
NASA Astrophysics Data System (ADS)
Morikawa, Junko
2012-10-01
Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.
Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming
2005-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.
Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review
NASA Astrophysics Data System (ADS)
Hardwicke, Canan U.; Lau, Yuk-Chiu
2013-06-01
Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.
Advances in Electrically Driven Thermal Management
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2017-01-01
Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.
2014-01-01
In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.
Development of Advanced Spacecraft Thermal Subsystems
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2016-01-01
This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates and embedded thermal management systems. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit/receive modules that are severely limited by thermal concerns.
Thermal Skin fabrication technology
NASA Technical Reports Server (NTRS)
Milam, T. B.
1972-01-01
Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.
Bioinspired engineering of thermal materials.
Tao, Peng; Shang, Wen; Song, Chengyi; Shen, Qingchen; Zhang, Fangyu; Luo, Zhen; Yi, Nan; Zhang, Di; Deng, Tao
2015-01-21
In the development of next-generation materials with enhanced thermal properties, biological systems in nature provide many examples that have exceptional structural designs and unparalleled performance in their thermal or nonthermal functions. Bioinspired engineering thus offers great promise in the synthesis and fabrication of thermal materials that are difficult to engineer through conventional approaches. In this review, recent progress in the emerging area of bioinspired advanced materials for thermal science and technology is summarized. State-of-the-art developments of bioinspired thermal-management materials, including materials for efficient thermal insulation and heat transfer, and bioinspired materials for thermal/infrared detection, are highlighted. The dynamic balance of bioinspiration and practical engineering, the correlation of inspiration approaches with the targeted applications, and the coexistence of molecule-based inspiration and structure-based inspiration are discussed in the overview of the development. The long-term outlook and short-term focus of this critical area of advanced materials engineering are also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.
2004-01-01
Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.
Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1999-01-01
Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2003-01-01
The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.
Recent advances in spacecraft thermal-control materials research.
NASA Technical Reports Server (NTRS)
Zerlaut, G. A.; Gilligan, J. E.; Gates, D. W.
1972-01-01
The state-of-the-art of spacecraft thermal-control materials technology has been significantly advanced during the past 4 years. Selective black coatings are discussed together with black paints, dielectric films on metal surfaces, and white radiator coatings. Criteria for the selection of thermal-control surfaces are considered, giving attention to prelaunch protection, the capability of being measured, reproducibility, simulator response, and aspects of a nonindigenous space environment. Progress in space simulation is related to vacuum technology, ultraviolet sources, solar wind simulation, and the production of protons. Advances have been made in the protection against space environmental effects, and in the development of thermal-control surfaces and pigments.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan James
2014-01-01
Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.
The thermal and mechanical stability of composite materials for space structures
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Sykes, G. F.; Bowles, D. E.
1985-01-01
A continuing research objective of the National Aeronautical and Space Administration (NASA) is to develop advanced composite materials for space structures. The thrust of this research is to gain fundamental understanding of the performance of advanced composites in the space environment. The emphasis has been to identify and model changes in the thermal-physical properties due to induced damage and develop improved materials.
Advanced high-temperature thermal energy storage media for industrial applications
NASA Astrophysics Data System (ADS)
Clear, T. D.; Weibel, R. T.
An advanced thermal energy storage (TES) media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. This paper describes the composite latent/sensible media concept and its potential advantages over state-of-the-art latent heat systems. Media stability requirements, on-going materials development efforts and planned TES performance evaluation tests are discussed.
Nuclear Thermal Propulsion for Advanced Space Exploration
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong
2014-09-01
This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less
Analytical investigation of thermal barrier coatings on advanced power generation gas turbines
NASA Technical Reports Server (NTRS)
Amos, D. J.
1977-01-01
An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.
Micro Machining Enhances Precision Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2008-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.
Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2008-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2012-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability
NASA Astrophysics Data System (ADS)
Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055
Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.
2008-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, R.C.; Feiner, F.
This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.
Brayton advanced heat receiver development program
NASA Technical Reports Server (NTRS)
Heidenreich, G. R.; Downing, R. S.; Lacey, Dovie E.
1989-01-01
NASA Lewis Research Center is managing an advanced solar dynamic (ASD) space power program. The objective of the ASD program is to develop small and lightweight solar dynamic systems which show significant improvement in efficiency and specific mass over the baseline design derived from the Space Station Freedom technology. The advanced heat receiver development program is a phased program to design, fabricate and test elements of a 7-kWe heat-receiver/thermal-energy-storage subsystem. Receivers for both Brayton and Stirling heat engines are being developed under separate contracts. Phase I, described here, is the current eighteen month effort to design and perform critical technology experiments on innovative concepts designed to reduce mass without compromising thermal efficiency and reliability.
Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.
2012-01-01
With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M.; Soppet, W.K.; Rink, D.L.
This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensilemore » properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and associated mechanical properties during long-term aging at elevated temperatures. Thermal aging experiments at different temperatures and periods of time have been completed: 550 C for up to 5000 h, 600 C for up to 7500 h, and 650 C for more than 10,000 h. Tensile properties were measured on thermally aged specimens and aging effect on tensile behavior was assessed. Effects of thermal aging on deformation and failure mechanisms were investigated by using in-situ straining technique with simultaneous synchrotron XRD measurements.« less
Sharp Refractory Composite Leading Edges on Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Walker, Sandra P.; Sullivan, Brian J.
2003-01-01
On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can lastmore » up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.« less
Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugerwa, Michael
2015-11-18
Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).
Safe, Affordable, Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.;
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.
Intelligent fault management for the Space Station active thermal control system
NASA Technical Reports Server (NTRS)
Hill, Tim; Faltisco, Robert M.
1992-01-01
The Thermal Advanced Automation Project (TAAP) approach and architecture is described for automating the Space Station Freedom (SSF) Active Thermal Control System (ATCS). The baseline functionally and advanced automation techniques for Fault Detection, Isolation, and Recovery (FDIR) will be compared and contrasted. Advanced automation techniques such as rule-based systems and model-based reasoning should be utilized to efficiently control, monitor, and diagnose this extremely complex physical system. TAAP is developing advanced FDIR software for use on the SSF thermal control system. The goal of TAAP is to join Knowledge-Based System (KBS) technology, using a combination of rules and model-based reasoning, with conventional monitoring and control software in order to maximize autonomy of the ATCS. TAAP's predecessor was NASA's Thermal Expert System (TEXSYS) project which was the first large real-time expert system to use both extensive rules and model-based reasoning to control and perform FDIR on a large, complex physical system. TEXSYS showed that a method is needed for safely and inexpensively testing all possible faults of the ATCS, particularly those potentially damaging to the hardware, in order to develop a fully capable FDIR system. TAAP therefore includes the development of a high-fidelity simulation of the thermal control system. The simulation provides realistic, dynamic ATCS behavior and fault insertion capability for software testing without hardware related risks or expense. In addition, thermal engineers will gain greater confidence in the KBS FDIR software than was possible prior to this kind of simulation testing. The TAAP KBS will initially be a ground-based extension of the baseline ATCS monitoring and control software and could be migrated on-board as additional computation resources are made available.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2002-01-01
Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests (in air), to investigate the water vapor effect. All cyclic tests were conducted using a 60-min hot-time temperature.
Overview of Glenn Mechanical Components Branch Research
NASA Astrophysics Data System (ADS)
Zakrajsek, James
2002-09-01
Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.
The Design and Testing of the LSSIF Advanced Thermal Control System
NASA Technical Reports Server (NTRS)
Henson, Robert A.; Keller, John R.
1995-01-01
The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Ellis, David; Singh, Jogender
2014-01-01
Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion chamber liner. Properties of optimized NARloy-Z-D composite material will also be presented.
Comparison of advanced engines for parabolic dish solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Bowyer, J. M.; Gajanana, B. C.
1980-01-01
A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.
Vehicle Thermal Management Facilities | Transportation Research | NREL
Management Facilities Vehicle Thermal Management Facilities Image of a building with two semi truck evaluation facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and apparatus. Combined fluid loops bench research apparatus in the Vehicle Thermal Management Laboratory. Photo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi
2013-11-29
This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less
Advanced automation of a prototypic thermal control system for Space Station
NASA Technical Reports Server (NTRS)
Dominick, Jeff
1990-01-01
Viewgraphs on an advanced automation of a prototypic thermal control system for space station are presented. The Thermal Expert System (TEXSYS) was initiated in 1986 as a cooperative project between ARC and JCS as a way to leverage on-going work at both centers. JSC contributed Thermal Control System (TCS) hardware and control software, TCS operational expertise, and integration expertise. ARC contributed expert system and display expertise. The first years of the project were dedicated to parallel development of expert system tools, displays, interface software, and TCS technology and procedures by a total of four organizations.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1997-01-01
The development of aeropropulsion components that incorporate "smart" composite laminates with embedded piezoelectric actuators and sensors is expected to ameliorate critical problems in advanced aircraft engines related to vibration, noise emission, and thermal stability. To facilitate the analytical needs of this effort, the NASA Lewis Research Center has developed mechanics and multidisciplinary computational models to analyze the complicated electromechanical behavior of realistic smart-structure configurations operating in combined mechanical, thermal, and acoustic environments. The models have been developed to accommodate the particular geometries, environments, and technical challenges encountered in advanced aircraft engines, yet their unique analytical features are expected to facilitate application of this new technology in a variety of commercial applications.
Cryogenic Thermal Management Advances during the CRYOTOOL Program
NASA Astrophysics Data System (ADS)
Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.; Roberts, T.; Davis, T.
2006-04-01
This paper describes the cryogenic thermal management advances made during the AFRL-sponsored CRYOTOOL program. Advances occurred as a result of conducting four technology development tasks: (1) development of a differential thermal expansion cryogenic thermal switch (DTE-CTSW) made with high purity Al end-pieces and an Ultem support rod; (2) carrying out of a dual DTE-CTSW/dual cryocooler performance test to quantify CTSW benefits in a redundant cryocooler system; (3) development of a miniaturized cryogenic loop heat pipe (mini-CLHP) that combines flex link, conduction bar, and CTSW functionalities; and (4) development of an across-gimbal cryogenic thermal transport system (GCTTS) with large diameter transport line coils for optics cooling. The results are as follows. The DTE-CTSW achieved an ON conductance of 2-3.6 W/K (from 35-90 K) and an OFF resistance of 1100-2300 K/W (300-230 K warm end). The redundant cryocooler test showed modest parasitic heat leak savings when dual DTE-CTSWs were used versus when they were not used. The mini-CLHP, using neon as the working fluid, transported 2.5 W at 35 K, achieved an OFF resistance of 1555 K/W, and had cross/axial flexibilities of 100-450 N/m. Lastly, GCTTS, using nitrogen as the working fluid, transported 20 W at 100 K in a flat configuration. Additional work is needed to verify GCTTS operation in an elevated orientation.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2010-01-01
Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.
Advanced ceramic matrix composites for TPS
NASA Technical Reports Server (NTRS)
Rasky, Daniel J.
1992-01-01
Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.
Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2005-01-01
Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.
Recent advances in photonics packaging materials
NASA Astrophysics Data System (ADS)
Zweben, Carl
2006-02-01
There are now over a dozen low-CTE materials with thermal conductivities between that of copper (400 w/m-K) and over 4X copper (1700 W/m-K). Most have low densities. For comparison, traditional low-CTE packaging materials like copper/tungsten have thermal conductivities that are little or no better than that of aluminum (200 W/m-K) and high densities. There are also low-density thermal insulators with low CTEs. Some advanced materials are low cost. Most do not outgas. They have a wide range of electrical properties that can be used to minimize electromagnetic emissions or provide EMI shielding. Several are now in commercial and aerospace applications, including laser diode packages; light-emitting diode (LED) packages; thermoelectric cooler bases, plasma displays; power modules; servers; laptops; heat sinks; thermally conductive, low-CTE printed circuit boards; and printed circuit board cold plates. Advanced material payoffs include: improved thermal performance, reliability, alignment and manufacturing yield; reduced thermal stresses and heating power requirements; simplified thermal design; enablement of hard solder direct attach; weight savings up to 85%; size reductions up to 65%; and lower cost. This paper discusses the large and increasing number of advanced packaging materials, including properties, development status, applications, increasing manufacturing yield, cost, lessons learned and future directions, including nanocomposites.
The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS
Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...
2015-04-22
The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less
Advanced Thermal Control Technologies for "CEV" (New Name: ORION)
NASA Technical Reports Server (NTRS)
Golliher, Eric; Westheimer, David; Ewert, Michael; Hasan, Mojib; Anderson, Molly; Tuan, George; Beach, Duane
2007-01-01
NASA is currently investigating several technology options for advanced human spaceflight. This presentation covers some recent developments that relate to NASA's Orion spacecraft and future Lunar missions.
Thermal Technology Development Activities at the Goddard Space Flight Center - 2001
NASA Technical Reports Server (NTRS)
Butler, Dan
2002-01-01
This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.
Developments in advanced and energy saving thermal isolations for cryogenic applications
NASA Astrophysics Data System (ADS)
Shu, Q. S.; Demko, J. A.; Fesmire, J. E.
2015-12-01
The cooling power consumption in large scale superconducting systems is huge and cryogenic devices used in space applications often require an extremely long cryogen holding time. To economically maintain the device at its operating temperature and minimize the refrigeration losses, high performance of thermal isolation is essential. The radiation from warm surrounding surfaces and conducting heat leaks through supports and penetrations are the dominant heat loads to the cold mass under vacuum condition. The advanced developments in various cryogenic applications to successfully reduce the heat loads through radiation and conduction are briefly and systematically discussed and evaluated in this review paper. These include: (1) thermal Insulation for different applications (foams, perlites, glass bubbles, aerogel and MLI), (2) sophisticated low-heat-leak support (cryogenic tension straps, trolley bars and posts with dedicated thermal intercepts), and (3) novel cryogenic heat switches.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.
2002-01-01
Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.
Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking
NASA Technical Reports Server (NTRS)
Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1982-01-01
The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.
Projected techno-economic improvements for advanced solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.
1979-01-01
The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.
Thermally Stabilized Transmit/Receive Modules
NASA Technical Reports Server (NTRS)
Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj
2011-01-01
RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, R.C.; Feiner, F.
1995-09-01
Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers dealmore » with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately.« less
Monitoring non-thermal plasma processes for nanoparticle synthesis
NASA Astrophysics Data System (ADS)
Mangolini, Lorenzo
2017-09-01
Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.
Development of an Advanced Flameless Combustion Heat Source Utilizing Heavy Fuels
2010-07-01
Flow Uniformity Test Cell .............................................................................51 Figure 37. Relationship Between Thermal...equations that influence both transient and steady state thermal behavior. Equation 1 describes the relationship between thermal diffusivity and the...intrinsic properties of any material. Equation 2 describes the Wiedemann-Franz law. P. Grootenhuis, et al reported on the relationship between
Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya
2008-01-01
This paper presents the development of the Thermal Loop experiment under NASA's New Millennium Program Space Technology 8 (ST8) Project. The Thermal Loop experiment was originally planned for validating in space an advanced heat transport system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers. Details of the thermal loop concept, technical advances and benefits, Level 1 requirements and the technology validation approach are described. An MLHP breadboard has been built and tested in the laboratory and thermal vacuum environments, and has demonstrated excellent performance that met or exceeded the design requirements. The MLHP retains all features of state-of-the-art loop heat pipes and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. In addition, an analytical model has been developed to simulate the steady state and transient operation of the MHLP, and the model predictions agreed very well with experimental results. A protoflight MLHP has been built and is being tested in a thermal vacuum chamber to validate its performance and technical readiness for a flight experiment.
Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2000-01-01
Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.
Advanced Mirror Technology Development (AMTD) Thermal Trade Studies
NASA Technical Reports Server (NTRS)
Brooks, Thomas
2015-01-01
Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.
NASA Technical Reports Server (NTRS)
Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a specified electrical power output for a given net heat input. While electrical power output can be precisely quantified, thermal power input to the Stirling cycle cannot be directly measured. In an effort to improve net heat input predictions, the Mock Heater Head was developed with the same relative thermal paths as a convertor using a conducting rod to represent the Stirling cycle and tested to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. The Mock Heater Head also served as the pathfinder for a higher fidelity version of validation test hardware, known as the Thermal Standard. This paper describes how the Mock Heater Head was tested and utilized to validate a process for the Thermal Standard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, D.
1997-07-01
This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items tomore » be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.« less
Storage systems for solar thermal power
NASA Technical Reports Server (NTRS)
Calogeras, J. E.; Gordon, L. H.
1978-01-01
The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-05-01
An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less
Characterization of Land Surfaces with Satellite-borne Sensor
NASA Astrophysics Data System (ADS)
Qiao, Y.
Hot groundwater is a kind of valuable natural resources to be explored utilized. Shanxi Province, located in the eastern Loess Plateau of China, is rich in geothermal resources, most of which was found in irrigation well drilling or geological survey. Basic study is weak. Now new developed Remote Sensing technique provides geothermal study with an advanced way. Air-RS information of thermal infrared and dada from thermal channel of Meteorological Landset AVHRR has been used widely. A thermal infrared channel (TM6) was installed in the U.S. second Landset, Its resolving power of space is as high as 120m, 10 times more than one of AVHRR. A Landset earth recourses launched by China and Brazil (CBERS-1) in 1999, including a spectrum of thermal infrared. It is paid a great interested and attention to survey geothermal resources using thermal infrared. This article is a brief introduction of finding hot groundwater with on the bases of differences of thermal radiation of objects reflected by thermal infrared in the Landset, and treated with HIS colors changes. This study provides an advanced way widely used to exploit hot groundwater and to promote the development of tourism and geothermal medical in China.
A primary study on finding hot groundwater using infrared remote sensing
NASA Astrophysics Data System (ADS)
Qiao, Y.; Wu, Q.
Hot groundwater is a kind of valuable natural resources to be explored utilized. Shanxi Province, located in the eastern Loess Plateau of China, is rich in geothermal resources, most of which was found in irrigation well drilling or geological survey. Basic study is weak. Now new developed Remote Sensing technique provides geothermal study with an advanced way. Air-RS information of thermal infrared and dada from thermal channel of Meteorological Landset AVHRR has been used widely. A thermal infrared channel (TM6) was installed in the U. S. second Landset, Its resolving power of space is as high as 120 m, 10 times more t an one ofh AVHRR. A Landset earth recourses launched by China and Brazil (CBERS-1) in 1999, including a spectrum of thermal infrared. It is paid a great interested and attention to survey geothermal resources using thermal infrared. This article is a brief introduction of finding hot groundwater with on the bases of differences of thermal radiation of objects reflected by thermal infrared in the Landset, and treated with HIS colors changes. This study provides an advanced way widely used to exploit hot groundwater and to promote the development of tourism and geothermal medical in China.
Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC
NASA Technical Reports Server (NTRS)
2005-01-01
This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.
High temperature solar thermal technology
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.
1980-01-01
Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.
Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampath, Sanjay
2015-04-02
The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is beingmore » taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property sensors. Addressing the challenges pertaining to the integration of the two materials YSZ and GDZ led to one of most the critical outcomes of this program, the development of durable multimaterial, multifunctional TBC systems.« less
Advanced solar box and flat plate collector cookers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grupp, M.; Bergler, H.
Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
1981-06-01
ADVANCED THERMAL BATTERIES NATIONAL UNION ELECTRIC CORPORATION ADVANCE SCIENCE DIVISION 1201 E. BELL STREET BLXXMINGTON, ILLINOIS 61701 JUNE 1981...December 1978 in: " Advanced Thermal Batteries " AFAPL-TR-78-114 Air Force Aero Propulsion Laboratory Air Force Wright Aeronautical Laboratories Air Force...March 1980 in: " Advanced Thermal Batteries " AFAPL-TR-80-2017 Air Force Aero Propulsion Laboratory Air Force Wright Aeronautical Laboratories Air Force
NASA Technical Reports Server (NTRS)
Dube, W. P.; Sparks, L. L.; Slifka, A. J.; Bitsy, R. M.
1990-01-01
Advanced aerospace designs require thermal insulation systems which are consistent with cryogenic fluids, high thermal loads, and design restrictions such as weight and volume. To evaluate the thermal performance of these insulating systems, an apparatus capable of measuring thermal conductivity using extreme temperature differences (27 to 1100 K) is being developed. This system is described along with estimates of precision and accuracy in selected operating conditions. Preliminary data are presented.
NASA Astrophysics Data System (ADS)
Dube, W. P.; Sparks, L. L.; Slifka, A. J.; Bitsy, R. M.
Advanced aerospace designs require thermal insulation systems which are consistent with cryogenic fluids, high thermal loads, and design restrictions such as weight and volume. To evaluate the thermal performance of these insulating systems, an apparatus capable of measuring thermal conductivity using extreme temperature differences (27 to 1100 K) is being developed. This system is described along with estimates of precision and accuracy in selected operating conditions. Preliminary data are presented.
Development of a finite element based thermal cracking performance prediction model.
DOT National Transportation Integrated Search
2009-09-15
Low-temperature cracking of hot-mix asphalt (HMA) pavements continues to be a leading cause of : premature pavement deterioration in regions of cold climate and/or where significant thermal cycling : occurs. Recent advances in fracture testing and mo...
Development and validation of nonthermal and advanced thermal food safety intervention technologies
USDA-ARS?s Scientific Manuscript database
Alternative nonthermal and thermal food safety interventions are gaining acceptance by the food processing industry and consumers. These technologies include high pressure processing, ultraviolet and pulsed light, ionizing radiation, pulsed and radiofrequency electric fields, cold atmospheric plasm...
Development of Advanced Tools for Cryogenic Integration
NASA Astrophysics Data System (ADS)
Bugby, D. C.; Marland, B. C.; Stouffer, C. J.; Kroliczek, E. J.
2004-06-01
This paper describes four advanced devices (or tools) that were developed to help solve problems in cryogenic integration. The four devices are: (1) an across-gimbal nitrogen cryogenic loop heat pipe (CLHP); (2) a miniaturized neon CLHP; (3) a differential thermal expansion (DTE) cryogenic thermal switch (CTSW); and (4) a dual-volume nitrogen cryogenic thermal storage unit (CTSU). The across-gimbal CLHP provides a low torque, high conductance solution for gimbaled cryogenic systems wishing to position their cryocoolers off-gimbal. The miniaturized CLHP combines thermal transport, flexibility, and thermal switching (at 35 K) into one device that can be directly mounted to both the cooler cold head and the cooled component. The DTE-CTSW, designed and successfully tested in a previous program using a stainless steel tube and beryllium (Be) end-pieces, was redesigned with a polymer rod and high-purity aluminum (Al) end-pieces to improve performance and manufacturability while still providing a miniaturized design. Lastly, the CTSU was designed with a 6063 Al heat exchanger and integrally welded, segmented, high purity Al thermal straps for direct attachment to both a cooler cold head and a Be component whose peak heat load exceeds its average load by 2.5 times. For each device, the paper will describe its development objective, operating principles, heritage, requirements, design, test data and lessons learned.
Advanced Devices for Cryogenic Thermal Management
NASA Astrophysics Data System (ADS)
Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.
2006-04-01
This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) (b) a quad-redundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM) (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO) and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.
NASA Technical Reports Server (NTRS)
1979-01-01
The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.
Affordable Development of a Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. The foundation provided by development and utilization of a NCPS could enable development of extremely high performance systems. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Advances in Scientific Balloon Thermal Modeling
NASA Technical Reports Server (NTRS)
Bohaboj, T.; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender
2016-01-01
This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.
Heat pipes for wing leading edges of hypersonic vehicles
NASA Technical Reports Server (NTRS)
Boman, B. L.; Citrin, K. M.; Garner, E. C.; Stone, J. E.
1990-01-01
Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is internally instrumented with thermocouples and pressure transducers to measure sodium vapor qualities. Large thermal gradients and consequently large thermal stresses, which have the potential of limiting heat pipe life, were predicted to occur during startup. A test stand and test plan were developed for subsequent testing of this heat pipe. Heat pipe manufacturing technology was advanced during this program, including the development of an innovative technique for wick installation.
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
Hu, Rui
2016-11-19
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
Non-flammable polyphosphonate electrolytes
NASA Astrophysics Data System (ADS)
Dixon, Brian G.; Morris, R. Scott; Dallek, Steven
This research is directed towards the development of safe, and thermally stable polymeric electrolytes. Advanced electrolytes are described, including thermal test data, which are ionically highly conductive, and non-flammable. These novel multi-heteropolymer electrolytes represent a significant advance in the design of high-performance rechargeable lithium systems that possess superior safety and handling characteristics. Representative results are shown by the figures contained in this text. These DSC/TGA results compare a typical liquid carbonate-based electrolyte system, ethylene carbonate and ethyl methyl carbonate, with novel polyphosphonates as synthesized in this program. These tests were performed with the electrolytes in combination with lithium metal, and the impressive relative thermal stability of the phosphonates is apparent.
NASA Technical Reports Server (NTRS)
Salerno, L. J.; White, S. M.; Helvensteijn, B. P. M.
2000-01-01
NASA's planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceiving and investigated by NASA's Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material.
Investigation of the Mechanical Performance of Compliant Thermal Barriers
NASA Technical Reports Server (NTRS)
DeMange, Jeffrey J.; Bott, Robert J.; Dunlap, Patrick H.
2011-01-01
Compliant thermal barriers play a pivotal role in the thermal protection systems of advanced aerospace vehicles. Both the thermal properties and mechanical performance of these barriers are critical in determining their successful implementation. Due to the custom nature of many thermal barriers, designers of advanced spacecraft have little guidance as to the design, selection, and implementation of these elements. As part of an effort to develop a more fundamental understanding of the interrelationship between thermal barrier design and performance, mechanical testing of thermal barriers was conducted. Two different types of thermal barriers with several core insulation density levels ranging from 62 to 141 kg/cu m were investigated. Room-temperature compression tests were conducted on samples to determine load performance and assess thermal barrier resiliency. Results showed that the loading behavior of these thermal barriers was similar to other porous, low-density, compliant materials, such as elastomeric foams. Additionally, the insulation density level had a significant non-linear impact on the stiffness and peak loads of the thermal barriers. In contrast, neither the thermal barrier type nor the level of insulation density significantly influenced the room-temperature resiliency of the samples.
Rapid Thermal Processing (RTP) of semiconductors in space
NASA Technical Reports Server (NTRS)
Anderson, T. J.; Jones, K. S.
1993-01-01
The progress achieved on the project entitled 'Rapid Thermal Processing of Semiconductors in Space' for a 12 month period of activity ending March 31, 1993 is summarized. The activity of this group is being performed under the direct auspices of the ROMPS program. The main objective of this program is to develop and demonstrate the use of advanced robotics in space with rapid thermal process (RTP) of semiconductors providing the test technology. Rapid thermal processing is an ideal processing step for demonstration purposes since it encompasses many of the characteristics of other processes used in solid state device manufacturing. Furthermore, a low thermal budget is becoming more important in existing manufacturing practice, while a low thermal budget is critical to successful processing in space. A secondary objective of this project is to determine the influence of microgravity on the rapid thermal process for a variety of operating modes. In many instances, this involves one or more fluid phases. The advancement of microgravity processing science is an important ancillary objective.
Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.
Validation Database Based Thermal Analysis of an Advanced RPS Concept
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Emis, Nickolas D.
2006-01-01
Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2002-01-01
A study was performed to develop an understanding of the key factors that govern the performance of metallic thermal protection systems for reusable launch vehicles. A current advanced metallic thermal protection system (TPS) concept was systematically analyzed to discover the most important factors governing the thermal performance of metallic TPS. A large number of relevant factors that influence the thermal analysis and thermal performance of metallic TPS were identified and quantified. Detailed finite element models were developed for predicting the thermal performance of design variations of the advanced metallic TPS concept mounted on a simple, unstiffened structure. The computational models were also used, in an automated iterative procedure, for sizing the metallic TPS to maintain the structure below a specified temperature limit. A statistical sensitivity analysis method, based on orthogonal matrix techniques used in robust design, was used to quantify and rank the relative importance of the various modeling and design factors considered in this study. Results of the study indicate that radiation, even in small gaps between panels, can reduce significantly the thermal performance of metallic TPS, so that gaps should be eliminated by design if possible. Thermal performance was also shown to be sensitive to several analytical assumptions that should be chosen carefully. One of the factors that was found to have the greatest effect on thermal performance is the heat capacity of the underlying structure. Therefore the structure and TPS should be designed concurrently.
Advanced thermal control technology for commercial applications
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1991-01-01
A number of the technologies previously developed for the thermal control of spacecraft have found their way into commercial application. Specialized coatings and heat pipes are but two examples. The thermal control of current and future spacecraft is becoming increasingly more demanding, and a variety of new technologies are being developed to meet these needs. Closed two-phase loops are perceived to be the answer to many of the new requirements. All of these technologies are discussed, and their spacecraft and current terrestrial applications are summarized.
Sikder, A K; Sikder, Nirmala
2004-08-09
Energetic materials used extensively both for civil and military applications. There are continuous research programmes worldwide to develop new materials with higher performance and enhanced insensitivity to thermal or shock insults than the existing ones in order to meet the requirements of future military and space applications. This review concentrates on recent advances in syntheses, potential formulations and space applications of potential compounds with respect to safety, performance and stability.
Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process
Xiao, Xin; Sessions, Henry T.; Heung, L. Kit
2015-02-01
The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.
NASA Technical Reports Server (NTRS)
Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)
1995-01-01
NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.;
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).
Development of An Advanced JP-8 Fuel
1993-12-01
included the Microthermal Precipitation Test (MTP), Fuel Reactor Test, Hot Liquid Process Simulator (HLPS), and Isothermal Corrosion Oxidation Test (ICOT... Microthermal Precipitation Test The impetus for this development effort was the need for a screening test that could discriminate between fuels of...varying propensity to produce thermally induced insoluble particulate material in the bulk fuel. The Microthermal Precipitation (MTP) test thermally
[Prevention of gastrointestinal bleeding in patients with advanced burns].
Vagner, D O; Krylov, K M; Verbitsky, V G; Shlyk, I V
2018-01-01
To reduce the incidence of gastrointestinal bleeding in patients with advanced burns by developing a prophylactic algorithm. The study consisted of retrospective group of 488 patients with thermal burns grade II-III over 20% of body surface area and prospective group of 135 patients with a similar thermal trauma. Standard clinical and laboratory examination was applied. Instrumental survey included fibrogastroduodenoscopy, endoscopic pH-metry and invasive volumetric monitoring (PICCO plus). Statistical processing was carried out with Microsoft Office Excel 2007 and IBM SPSS 20.0. New algorithm significantly decreased incidence of gastrointestinal bleeding (p<0.001) and mortality rate (p=0.006) in patients with advanced burns.
Advanced Power Technology Development Activities for Small Satellite Applications
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew;
2017-01-01
NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.
NASA Technical Reports Server (NTRS)
Singh, M.; Asthana, R.
2008-01-01
Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.
TEXSYS. [a knowledge based system for the Space Station Freedom thermal control system test-bed
NASA Technical Reports Server (NTRS)
Bull, John
1990-01-01
The Systems Autonomy Demonstration Project has recently completed a major test and evaluation of TEXSYS, a knowledge-based system (KBS) which demonstrates real-time control and FDIR for the Space Station Freedom thermal control system test-bed. TEXSYS is the largest KBS ever developed by NASA and offers a unique opportunity for the study of technical issues associated with the use of advanced KBS concepts including: model-based reasoning and diagnosis, quantitative and qualitative reasoning, integrated use of model-based and rule-based representations, temporal reasoning, and scale-up performance issues. TEXSYS represents a major achievement in advanced automation that has the potential to significantly influence Space Station Freedom's design for the thermal control system. An overview of the Systems Autonomy Demonstration Project, the thermal control system test-bed, the TEXSYS architecture, preliminary test results, and thermal domain expert feedback are presented.
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.
1979-01-01
Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.
NASA Technical Reports Server (NTRS)
Clayton, Joseph P.; Tinker, Michael L.
1991-01-01
This paper describes experimental and analytical characterization of a new flexible thermal protection material known as Tailorable Advanced Blanket Insulation (TABI). This material utilizes a three-dimensional ceramic fabric core structure and an insulation filler. TABI is the leading candidate for use in deployable aeroassisted vehicle designs. Such designs require extensive structural modeling, and the most significant in-plane material properties necessary for model development are measured and analytically verified in this study. Unique test methods are developed for damping measurements. Mathematical models are developed for verification of the experimental modulus and damping data, and finally, transverse properties are described in terms of the inplane properties through use of a 12-dof finite difference model of a simple TABI configuration.
Development of Processing Techniques for Advanced Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Selvaduray, Guna; Lacson, Jamie; Collazo, Julian
1997-01-01
During the period June 1, 1996 through May 31, 1997, the main effort has been in the development of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested and evaluated for thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out by using many different instruments and methods, ranging from intensive elemental analysis to testing the physical attributes of a material. The material development concentrated on two key areas: (1) development of coatings for carbon/carbon composites, and (2) development of ultra-high temperature ceramics (UHTC). This report describes the progress made in these two areas of research during this contract period.
Advanced subsystems development
NASA Technical Reports Server (NTRS)
Livingston, F. R.
1978-01-01
The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.
NASA Astrophysics Data System (ADS)
Garel, F.; Kaminski, E.; Tait, S.; Limare, A.
2014-06-01
The prediction of lava flow advance and velocity is crucial during an effusive volcanic crisis. The effusion rate is a key control of lava dynamics, and proxies have been developed to estimate it in near real-time. The thermal proxy in predominant use links the satellite-measured thermal radiated power to the effusion rate. It lacks however a robust physical basis to allow time-dependent modeling. We investigate here through analogue experiments the coupling between the spreading of a solidifying flow and its surface thermal signal. We extract a first order behavior from experimental results obtained using polyethylene glycol (PEG) wax, that solidifies abruptly during cooling. We find that the flow advance is discontinuous, with relatively low supply rates yielding long stagnation phases and compound flows. Flows with higher supply rates are less sensitive to solidification and display a spreading behavior closer to that of purely viscous currents. The total power radiated from the upper surface also grows by stages, but the signal radiated by the hottest and liquid part of the flow reaches a quasi-steady state after some time. This plateau value scales around half of the theoretical prediction of a model developed previously for the spreading and cooling of isoviscous gravity currents. The corrected scaling yields satisfying estimates of the effusion rate from the total radiated power measured on a range of basaltic lava flows. We conclude that a gross estimate of the supply rate of solidifying flows can be retrieved from thermal remote-sensing, but the predictions of lava advance as a function of effusion rate appears a more difficult task due to chaotic emplacement of solidifying flows.
Reusable Metallic Thermal Protection Systems Development
NASA Technical Reports Server (NTRS)
Blosser, Max L.; Martin, Carl J.; Daryabeigi, Kamran; Poteet, Carl C.
1998-01-01
Metallic thermal protection systems (TPS) are being developed to help meet the ambitious goals of future reusable launch vehicles. Recent metallic TPS development efforts at NASA Langley Research Center are described. Foil-gage metallic honeycomb coupons, representative of the outer surface of metallic TPS were subjected to low speed impact, hypervelocity impact, rain erosion, and subsequent arcjet exposure. TPS panels were subjected to thermal vacuum, acoustic, and hot gas flow testing. Results of the coupon and panel tests are presented. Experimental and analytical tools are being developed to characterize and improve internal insulations. Masses of metallic TPS and advanced ceramic tile and blanket TPS concepts are compared for a wide range of parameters.
Advanced Wireless Sensor Nodes - MSFC
NASA Technical Reports Server (NTRS)
Varnavas, Kosta; Richeson, Jeff
2017-01-01
NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.
In-Space Propulsion: Connectivity to In-Space Fabrication and Repair
NASA Technical Reports Server (NTRS)
Johnson, L.; Harris, D.; Trausch, A.; Matloff, G. L.; Taylor, T.; Cutting, K.
2005-01-01
The connectivity between new in-space propulsion technologies and the ultimate development of an in-space fabrication and repair infrastructure are described in this Technical Memorandum. A number of advanced in-space propulsion technologies are being developed by NASA, many of which are directly relevant to the establishment of such an in-space infrastructure. These include aerocapture, advanced solar-electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers, and solar photon sails. Other, further-term technologies have also been studied to assess their utility to the development of such an infrastructure.
Carbide fuels for nuclear thermal propulsion
NASA Astrophysics Data System (ADS)
Matthews, R. B.; Blair, H. T.; Chidester, K. M.; Davidson, K. V.; Stark, W. E.; Storms, E. K.
1991-09-01
A renewed interest in manned exploration of space has revitalized interest in the potential for advancing nuclear rocket technology developed during the 1960's. Carbide fuel performance, melting point, stability, fabricability and compatibility are key technology issues for advanced Nuclear Thermal Propulsion reactors. The Rover fuels development ended with proven carbide fuel forms with demonstrated operating temperatures up to 2700 K for over 100 minutes. The next generation of nuclear rockets will start where the Rover technology ended, but with a more rigorous set of operating requirements including operating lifetime to 10 hours, operating temperatures greater that 3000 K, low fission product release, and compatibility. A brief overview of Rover/NERVA carbide fuel development is presented. A new fuel form with the highest potential combination of operating temperature and lifetime is proposed that consists of a coated uranium carbide fuel sphere with built-in porosity to contain fission products. The particles are dispersed in a fiber reinforced ZrC matrix to increase thermal shock resistance.
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2005-01-01
United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.
Near Zero Emissions at 50 Percent Thermal Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2012-12-31
Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reductionmore » of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have been tougher to realize. Development of a neural network control system progressed to the point that the system was fully functional and showing significant fuel economy gains in transient engine testing. Development of the QuantLogic injector with the capability of both a hollow cone spray during early injection and conventional diesel injection at later injection timings was undertaken and proved to be problematic. This injector was designed to be a key component in a PCCI combustion system, but this innovative fuel injector required significantly more development effort than this programâ's resources or timing would allow.« less
Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)
NASA Technical Reports Server (NTRS)
Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.
2018-01-01
The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.
Advances in the Development of a WCl6 CVD System for Coating UO2 Powders with Tungsten
NASA Technical Reports Server (NTRS)
Mireles, Omar R.; Tieman, Alyssa; Broadway, Jeramie; Hickman, Robert
2013-01-01
W-UO2 CERMET fuels are under development to enable Nuclear Thermal Propulsion (NTP) for deep space exploration. Research efforts with an emphasis on fuel fabrication, testing, and identification of potential risks is underway. One primary risk is fuel loss due to CTE mismatch between W and UO2 and the grain boundary structure of W particles resulting in higher thermal stresses. Mechanical failure can result in significant reduction of the UO2 by hot hydrogen. Fuel loss can be mitigated if the UO2 particles are coated with a layer of high density tungsten before the consolidation process. This paper discusses the work to date, results, and advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process. Keywords: Space, Nuclear, Thermal, Propulsion, Fuel, CERMET, CVD, Tungsten, Uranium
JPL Advanced Thermal Control Technology Roadmap - 2008
NASA Technical Reports Server (NTRS)
Birur, Gaj
2008-01-01
This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.
Thermal evaluation of advanced solar dynamic heat receiver performance
NASA Technical Reports Server (NTRS)
Crane, Roger A.
1989-01-01
The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.
Kumar, Vinod; Afrin, Samia; Ortega, Jesus; ...
2013-09-01
A prototype of a concentrating solar collector (CSC) receiver was designed, built, and evaluated on-sun at the University of Texas at El Paso in El Paso, TX. This prototype receiver consists of two parabolic trough-reflectors but, in principle, the design can be efficiently extended to multiple units for achieving a higher temperature throughput. Each reflector has a vacuum tube collector at the focal point of the trough. The solar collector system was combined with a single-tank thermocline thermal energy storage (TES) for off-solar thermal usage. The main goal of this study is to develop an advanced solar hot water systemmore » for most residential applications. The focus of this study is to investigate the feasibility and performance of the solar thermal system by employing the recent advancement in the TES—a thermocline based TES—system for the concentrating solar power technologies developed by the Sandia National Laboratories and National Renewable Energy Laboratories for electricity production. A CSC when combined with TES has potential to provide uninterrupted thermal energy for most residential usages. This paper presents a detailed description of prototype design and materials required. The thermal energy storage tank utilizes an insulated 170 l (45 gal) galvanized steel tank. In order to maintain thermocline in the TES tank, with hot water on top and cold water at the bottom, two plate distributors are installed in the tank. The data showed a significant enhancement in thermal energy generation. This thermocline based single tank presented a thermal energy storage potential for at least three days (with diminishing storage capacity) that test were performed. The whole prototype was made for approximately USD 355 (excludes any labor costs) and hence also has strong potential for supplying clean thermal energy in most developing countries. As a result, tests of the prototype were conducted in November 2011.« less
NASA Technical Reports Server (NTRS)
Sepka, Steven Andrew; Zarchi, Kerry Agnes; Maddock, Robert W.; Samareh, Jamshid A.
2011-01-01
Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.
NASA Technical Reports Server (NTRS)
Sepka, Steven; Trumble, Kerry A.; Maddock, Robert W.; Samareh, Jamshid
2012-01-01
Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.
Sound and heat revolutions in phononics
NASA Astrophysics Data System (ADS)
Maldovan, Martin
2013-11-01
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.
Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.
2014-08-05
Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalablemore » manufacture of said subwavelength coatings.« less
Advanced Mirror Technology Development (AMTD) Thermal Trade Studies
NASA Technical Reports Server (NTRS)
Brooks, Thomas; Stahl, Phil; Arnold, Bill
2015-01-01
Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next Ultraviolet, Optical, Infrared (UVOIR) space observatory. A likely science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet that is 10-10 times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront. This paper investigates two topics: 1) parametric relationships between a primary mirror's thermal parameters and wavefront stability, and 2) optimal temperature profiles in the telescope's shroud and heater plate that minimize static wavefront error (WFE) in the primary mirror.
Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)
2002-01-01
Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2004-01-01
Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.
Embedded Thermal Control for Spacecraft Subsystems Miniaturization
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2014-01-01
Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.
Progressive Failure Analysis of Advanced Composites
2008-07-25
Fracture angle. αii Coefficients of thermal expansion . βii Coefficients of hygroscopic expansion . β Shear response factor. ηL Coefficient of... thermal expansion in the longitudinal and transverse direc- tions. To enable the calculation of the thermal stresses, the user should define in the...development of this second VUMAT subroutine was planned for the second year of this project). 4.2 Input into Abaqus explicit 4.2.1 Shell elements
Fuel Reforming Technologies (BRIEFING SLIDES)
2009-09-01
Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy
Thermal structures: Four decades of progress
NASA Technical Reports Server (NTRS)
Thornton, Earl A.
1990-01-01
Since the first supersonic flight in October 1947, the United States has designed, developed and flown flight vehicles within increasingly severe aerothermal environments. Over this period, major advances in engineering capabilities have occurred that will enable the design of thermal structures for high speed flight vehicles in the twenty-first century. Progress in thermal-structures is surveyed for the last four decades to provide a historical perspective for future efforts.
Design and development of a very high resolution thermal imager
NASA Astrophysics Data System (ADS)
Kuerbitz, Gunther; Duchateau, Ruediger
1998-10-01
The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 micrometer spectral region. The detector for that system has to have 576 X n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimized in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced second generation thermal imager the system has an internal thermal reference. The electronics is fully digitized and comprises circuits for Non Uniformity Correction (NUC), scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.
Thermal abuse performance of high-power 18650 Li-ion cells
NASA Astrophysics Data System (ADS)
Roth, E. P.; Doughty, D. H.
High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.
HIAD Advancements and Extension of Mission Applications
NASA Technical Reports Server (NTRS)
Johnson, R. Keith; Cheatwood, F. McNeil; Calomino, Anthony M.; Hughes, Stephen J.; Korzun, Ashley M.; DiNonno, John M.; Lindell, Mike C.; Swanson, Greg T.
2016-01-01
The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology has made significant advancements over the last decade with flight test demonstrations and ground development campaigns. The first generation (Gen-1) design and materials were flight tested with the successful third Inflatable Reentry Vehicle Experiment flight test of a 3-m HIAD (IRVE-3). Ground development efforts incorporated materials with higher thermal capabilities for the inflatable structure (IS) and flexible thermal protection system (F-TPS) as a second generation (Gen-2) system. Current efforts and plans are focused on extending capabilities to improve overall system performance and reduce areal weight, as well as expand mission applicability. F-TPS materials that offer greater thermal resistance, and ability to be packed to greater density, for a given thickness are being tested to demonstrated thermal performance benefits and manufacturability at flight-relevant scale. IS materials and construction methods are being investigated to reduce mass, increase load capacities, and improve durability for packing. Previous HIAD systems focused on symmetric geometries using stacked torus construction. Flight simulations and trajectory analysis show that symmetrical HIADs may provide L/D up to 0.25 via movable center of gravity (CG) offsets. HIAD capabilities can be greatly expanded to suit a broader range of mission applications with asymmetric shapes and/or modulating L/D. Various HIAD concepts are being developed to provide greater control to improve landing accuracy and reduce dependency upon propulsion systems during descent and landing. Concepts being studied include a canted stack torus design, control surfaces, and morphing configurations that allow the shape to be actively manipulated for flight control. This paper provides a summary of recent HIAD development activities, and plans for future HIAD developments including advanced materials, improved construction techniques, and alternate geometry concepts that will greatly expand HIAD mission applications.
The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2007-01-01
Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.
Temperature-gated thermal rectifier for active heat flow control.
Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang
2014-08-13
Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel
2011-01-01
An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.
Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-01-01
An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)
NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task
NASA Astrophysics Data System (ADS)
Kennedy, Cheryl
2010-03-01
Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.
NASA Technical Reports Server (NTRS)
Cornelison, C. J.; Watts, Eric T.
1998-01-01
Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori
2013-01-01
Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less
1980-03-01
A-AOB 13 EREAC BLONTOdLEUEAAVNESENEDV F 1/ ADVANCED THERMAL BATTERIES .(U) MAR 80 D M RYAN F33615-77-C-317 UNCLASSIFIED AFWAL-TR-80-2017...iii - -.... This report is for the second year of work. The first year of work was reported December 1978 in: " Advanced Thermal Batteries " AFAPL-TR-78...work. The first year of work was reported December 1978 in: " Advanced Thermal Batteries " AFAPL-TR-78-114 Air Force Aero Propulsion Laboratory Air
Nanoscale thermal transport. II. 2003-2012
NASA Astrophysics Data System (ADS)
Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li
2014-03-01
A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10 nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.
Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.
1997-01-01
Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post-processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the delectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples will be presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results will be compared with these models to demonstrate the utility of such an approach.
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings
NASA Technical Reports Server (NTRS)
Holbeck, H. J.
1981-01-01
The development and testing of concentrators, receivers, and power conversion units are reported. System design and development for engineering experiments are described. Economic analysis and market assessments for advanced development activities are discussed. Technology development issues and application/user needs are highlighted.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem
2010-01-01
Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.
Thermal control/oxidation resistant coatings for titanium-based alloys
NASA Technical Reports Server (NTRS)
Clark, Ronald K.; Wallace, Terryl A.; Cunnington, George R.; Wiedemann, Karl E.
1992-01-01
Extensive research and development efforts have been expended toward development of thermal control and environmental protection coatings for NASP and generic hypersonic vehicle applications. The objective of the coatings development activities summarized here was to develop light-weight coatings for protecting advanced titanium alloys from oxidation in hypersonic vehicle applications. A number of new coating concepts have been evaluated. Coated samples were exposed to static oxidation tests at temperatures up to 1000 C using a thermogravimetric apparatus. Samples were also exposed to simulated hypersonic flight conditions for up to 10 hr to determine their thermal and chemical stability and catalytic efficiency. The emittance of samples was determined before and after exposure to simulated hypersonic flight conditions.
Thermal comfort: research and practice.
van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M
2010-01-01
Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.
NASA Technical Reports Server (NTRS)
Stearns, M.; Wilbers, L.
1982-01-01
Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.
Overview of NASA's Thermal Control System Development for Exploration Project
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.
2010-01-01
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.
Note: thermal imaging enhancement algorithm for gas turbine aerothermal characterization.
Beer, S K; Lawson, S A
2013-08-01
An algorithm was developed to convert radiation intensity images acquired using a black and white CCD camera to thermal images without requiring knowledge of incident background radiation. This unique infrared (IR) thermography method was developed to determine aerothermal characteristics of advanced cooling concepts for gas turbine cooling application. Compared to IR imaging systems traditionally used for gas turbine temperature monitoring, the system developed for the current study is relatively inexpensive and does not require calibration with surface mounted thermocouples.
Thermal Performance Data Services (TPDS)
NASA Technical Reports Server (NTRS)
French, Richard T.; Wright, Michael J.
2013-01-01
Initiated as a NASA Engineering and Safety Center (NESC) assessment in 2009, the Thermal Performance Database (TPDB) was a response to the need for a centralized thermal performance data archive. The assessment was renamed Thermal Performance Data Services (TPDS) in 2012; the undertaking has had two fronts of activity: the development of a repository software application and the collection of historical thermal performance data sets from dispersed sources within the thermal performance community. This assessment has delivered a foundational tool on which additional features should be built to increase efficiency, expand the protection of critical Agency investments, and provide new discipline-advancing work opportunities. This report contains the information from the assessment.
Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.
2007-01-01
Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.
2010-03-01
AFRL-RB-WP-TR-2010-3028 DESIGN AND ANALYSIS OF ADVANCED MATERIALS IN A THERMAL /ACOUSTIC ENVIRONMENT Delivery Order 0007: Volume 1‒Structural...Final 15 July 2005 – 30 March 2010 4. TITLE AND SUBTITLE DESIGN AND ANALYSIS OF ADVANCED MATERIALS IN A THERMAL /ACOUSTIC ENVIRONMENT Delivery...color. 14. ABSTRACT Air vehicles flying at hypersonic speeds encounter extreme thermal , aerodynamic and acoustic loads, utilizing thermal protection
Advanced thermal control for spacecraft applications
NASA Astrophysics Data System (ADS)
Hardesty, Robert; Parker, Kelsey
2015-09-01
In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.
Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.
Advanced Stirling Convertor Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Blaze, Gina M.
2007-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.
Thermal Remote Sensing and the Thermodynamics of Ecosystem Development
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Kay, James J.; Fraser, Roydon F.
2000-01-01
Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale.
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Taguchi, Dai
2018-03-01
Thermally stimulated current (TSC) measurement is widely used in a variety of research fields, i.e., physics, electronics, electrical engineering, chemistry, ceramics, and biology. TSC is short-circuit current that flows owing to the displacement of charges in samples during heating. TSC measurement is very simple, but TSC curves give very important information on charge behaviors. In the 1970s, TSC measurement contributed greatly to the development of electrical insulation engineering, semiconductor device technology, and so forth. Accordingly, the TSC experimental technique and its analytical method advanced. Over the past decades, many new molecules and advanced functional materials have been discovered and developed. Along with this, TSC measurement has attracted much attention in industries and academic laboratories as a way of characterizing newly discovered materials and devices. In this review, we report the latest research trend in the TSC method for the development of materials and devices in Japan.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem
2010-01-01
Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.
Advances in photonics thermal management and packaging materials
NASA Astrophysics Data System (ADS)
Zweben, Carl
2008-02-01
Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.
LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory
NASA Astrophysics Data System (ADS)
Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.
2017-08-01
MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.
Advances in Hot-Structure Development
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin; Glass, David E.
2006-01-01
The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic airframe concepts, including structural arrangement, load paths, thermal-structural wall design, thermal accommodation features, and integration of major components, optimize thermalstructural configurations, and validate concepts through a building block test program and generate data to improve and validate analytical and design tools.
Advanced integrated life support system update
NASA Technical Reports Server (NTRS)
Whitley, Phillip E.
1994-01-01
The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.
Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Markocsan, Nicolaie; Gupta, Mohit; Joshi, Shrikant; Nylén, Per; Li, Xin-Hai; Wigren, Jan
2017-08-01
Liquid feedstock plasma spraying (LFPS) involves deposition of ultrafine droplets of suspensions or solution precursors (typically ranging from nano- to submicron size) and permits production of coatings with unique microstructures that are promising for advanced thermal barrier coating (TBC) applications. This paper reviews the recent progress arising from efforts devoted to development of high-performance TBCs using the LFPS approach. Advancements in both suspension plasma spraying and solution precursor plasma spraying, which constitute the two main variants of LFPS, are presented. Results illustrating the different types of the microstructures that can be realized in LFPS through appropriate process parameter control, model-assisted assessment of influence of coating defects on thermo-mechanical properties and the complex interplay between pore coarsening, sintering and crystallite growth in governing thermal conductivity are summarized. The enhancement in functional performances/lifetime possible in LFPS TBCs with multilayered architectures and by incorporating new pyrochlore chemistries such as gadolinium zirconate, besides the conventional single 8 wt.% yttria-stabilized zirconia insulating ceramic layer, is specifically highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard
2016-12-29
The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less
Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raade, Justin; Roark, Thomas; Vaughn, John
2013-07-22
Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when usedmore » with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.« less
Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.
Metal fires and their implications for advanced reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean
This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in thesemore » areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety analysis capabilities of the advanced-reactor community for directly relevant scenarios. Beyond the focus on the thermally-interacting and smoldering sodium pool fires, experimental and analysis capabilities for sodium spray fires have also been developed in this project.« less
Limiting factors to advancing thermal battery technology for naval applications
NASA Astrophysics Data System (ADS)
Davis, Patrick B.; Winchester, Clinton S.
1991-10-01
Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.
1978-01-01
A preliminary comparative evaluation of dispersed solar thermal power plants utilizing advanced technologies available in 1985-2000 time frame is under way at JPL. The solar power plants of 50 KWe to 10 MWe size are equipped with two axis tracking parabolic dish concentrator systems operating at temperatures in excess of 1000 F. The energy conversion schemes under consideration include advanced steam, open and closed cycle gas turbines, stirling, and combined cycle. The energy storage systems include advanced batteries, liquid metal, and chemical. This paper outlines a simple methodology for a probabilistic assessment of such systems. Sources of uncertainty in the development of advanced systems are identified, and a computer Monte Carlo simulation is exercised to permit an analysis of the tradeoffs of the risk of failure versus the potential for large gains. Frequency distribution of energy cost for several alternatives are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Piyush Sabharwall; SuJong Yoon
2001-11-01
Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less
The Structural Ceramics Database: Technical Foundations
Munro, R. G.; Hwang, F. Y.; Hubbard, C. R.
1989-01-01
The development of a computerized database on advanced structural ceramics can play a critical role in fostering the widespread use of ceramics in industry and in advanced technologies. A computerized database may be the most effective means of accelerating technology development by enabling new materials to be incorporated into designs far more rapidly than would have been possible with traditional information transfer processes. Faster, more efficient access to critical data is the basis for creating this technological advantage. Further, a computerized database provides the means for a more consistent treatment of data, greater quality control and product reliability, and improved continuity of research and development programs. A preliminary system has been completed as phase one of an ongoing program to establish the Structural Ceramics Database system. The system is designed to be used on personal computers. Developed in a modular design, the preliminary system is focused on the thermal properties of monolithic ceramics. The initial modules consist of materials specification, thermal expansion, thermal conductivity, thermal diffusivity, specific heat, thermal shock resistance, and a bibliography of data references. Query and output programs also have been developed for use with these modules. The latter program elements, along with the database modules, will be subjected to several stages of testing and refinement in the second phase of this effort. The goal of the refinement process will be the establishment of this system as a user-friendly prototype. Three primary considerations provide the guidelines to the system’s development: (1) The user’s needs; (2) The nature of materials properties; and (3) The requirements of the programming language. The present report discusses the manner and rationale by which each of these considerations leads to specific features in the design of the system. PMID:28053397
Design and fabrication of metallic thermal protection systems for aerospace vehicles
NASA Technical Reports Server (NTRS)
Varisco, A.; Bell, P.; Wolter, W.
1978-01-01
A program was conducted to develop a lightweight, efficient metallic thermal protection system (TPS) for application to future shuttle-type reentry vehicles, advanced space transports, and hypersonic cruise vehicles. Technical requirements were generally derived from the space shuttle. A corrugation-stiffened beaded-skin TPS design was used as a baseline. The system was updated and modified to incorporate the latest technology developments and design criteria. The primary objective was to minimize mass for the total system.
Analogue experiments as benchmarks for models of lava flow emplacement
NASA Astrophysics Data System (ADS)
Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.
2013-12-01
During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide experimental observations of the effect of wind the surface thermal structure of a viscous flow, that could be used to benchmark a thermal heat loss model. We will also briefly present more complex analogue experiments using wax material. These experiments present discontinuous advance behavior, and a dual surface thermal structure with low (solidified) vs. high (hot liquid exposed at the surface) surface temperatures regions. Emplacement models should tend to reproduce these two features, also observed on lava flows, to better predict the hazard of lava inundation.
GeoVision Study | Geothermal Technologies | NREL
and technical issues of advanced technologies and potential future impacts and calculating geothermal : Exploration Reservoir development and management Social and environmental impacts Hybrid systems Thermal
Overview of thermal barrier coatings in diesel engines
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.
1995-01-01
An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.
Thermal protection systems manned spacecraft flight experience
NASA Technical Reports Server (NTRS)
Curry, Donald M.
1992-01-01
Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.
Test techniques for model development of repetitive service energy storage capacitors
NASA Astrophysics Data System (ADS)
Thompson, M. C.; Mauldin, G. H.
1984-03-01
The performance of the Sandia perfluorocarbon family of energy storage capacitors was evaluated. The capacitors have a much lower charge noise signature creating new instrumentation performance goals. Thermal response to power loading and the importance of average and spot heating in the bulk regions require technical advancements in real time temperature measurements. Reduction and interpretation of thermal data are crucial to the accurate development of an intelligent thermal transport model. The thermal model is of prime interest in the high repetition rate, high average power applications of power conditioning capacitors. The accurate identification of device parasitic parameters has ramifications in both the average power loss mechanisms and peak current delivery. Methods to determine the parasitic characteristics and their nonlinearities and terminal effects are considered. Meaningful interpretations for model development, performance history, facility development, instrumentation, plans for the future, and present data are discussed.
Parylene-based active micro space radiator with thermal contact switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Ai; Suzuki, Yuji
2014-03-03
Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% hasmore » been achieved.« less
Thermal Vacuum Testing of a Multi-Evaporator Miniature Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Nagano, Hosei
2008-01-01
Under NASA's New Millennium Program Space Technology 8 Project, four experiments are being developed for future small system applications requiring low mass, low power, and compactness. GSFC is responsible for developing the Thermal Loop experiment, which is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and condensers. The objective is to validate the operation of an MLHP, including reliable start-ups, steady operation, heat load sharing, and tight temperature control over the range of 273K to 308K. An MLHP Breadboard has been built and tested for 1200 hours under the laboratory environment and 500 hours in a thermal vacuum chamber. Results of the TV tests are presented here.
Advanced Aerospace Materials by Design
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu
2004-01-01
The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.
Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragusa, Jean; Vierow, Karen
2011-09-01
The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less
Industrial storage applications overview
NASA Technical Reports Server (NTRS)
Duscha, R. A.
1980-01-01
The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.
Verification tests of durable TPS concepts
NASA Technical Reports Server (NTRS)
Shideler, J. L.; Webb, G. L.; Pittman, C. M.
1984-01-01
Titanium multiwall, superalloy honeycomb, and Advanced Carbon-carbon (ACC) multipost Thermal Protection System (TPS) concepts are being developed to provide durable protection for surfaces of future space transportation systems. Verification tests including thermal, vibration, acoustic, water absorption, lightning strike, and aerothermal tests are described. Preliminary results indicate that the three TPS concepts are viable up to a surface temperature in excess of 2300 F.
NASA Technical Reports Server (NTRS)
Dominick, Jeffrey; Bull, John; Healey, Kathleen J.
1990-01-01
The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Schifer, Nicholas A.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.
Advanced uncooled sensor product development
NASA Astrophysics Data System (ADS)
Kennedy, A.; Masini, P.; Lamb, M.; Hamers, J.; Kocian, T.; Gordon, E.; Parrish, W.; Williams, R.; LeBeau, T.
2015-06-01
The partnership between RVS, Seek Thermal and Freescale Semiconductor continues on the path to bring the latest technology and innovation to both military and commercial customers. The partnership has matured the 17μm pixel for volume production on the Thermal Weapon Sight (TWS) program in efforts to bring advanced production capability to produce a low cost, high performance product. The partnership has developed the 12μm pixel and has demonstrated performance across a family of detector sizes ranging from formats as small as 206 x 156 to full high definition formats. Detector pixel sensitivities have been achieved using the RVS double level advanced pixel structure. Transition of the packaging of microbolometers from a traditional die level package to a wafer level package (WLP) in a high volume commercial environment is complete. Innovations in wafer fabrication techniques have been incorporated into this product line to assist in the high yield required for volume production. The WLP seal yield is currently > 95%. Simulated package vacuum lives >> 20 years have been demonstrated through accelerated life testing where the package has been shown to have no degradation after 2,500 hours at 150°C. Additionally the rugged assembly has shown no degradation after mechanical shock and vibration and thermal shock testing. The transition to production effort was successfully completed in 2014 and the WLP design has been integrated into multiple new production products including the TWS and the innovative Seek Thermal commercial product that interfaces directly to an iPhone or android device.
Advances in LED packaging and thermal management materials
NASA Astrophysics Data System (ADS)
Zweben, Carl
2008-02-01
Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.
Designing a Low-Cost Multifunctional Infant Incubator.
Tran, Kevin; Gibson, Aaron; Wong, Don; Tilahun, Dagmawi; Selock, Nicholas; Good, Theresa; Ram, Geetha; Tolosa, Leah; Tolosa, Michael; Kostov, Yordan; Woo, Hyung Chul; Frizzell, Michael; Fulda, Victor; Gopinath, Ramya; Prasad, J Shashidhara; Sudarshan, Hanumappa; Venkatesan, Arunkumar; Kumar, V Sashi; Shylaja, N; Rao, Govind
2014-06-01
Every year, an unacceptably large number of infant deaths occur in developing nations, with premature birth and asphyxia being two of the leading causes. A well-regulated thermal environment is critical for neonatal survival. Advanced incubators currently exist, but they are far too expensive to meet the needs of developing nations. We are developing a thermodynamically advanced low-cost incubator suitable for operation in a low-resource environment. Our design features three innovations: (1) a disposable baby chamber to reduce infant mortality due to nosocomial infections, (2) a passive cooling mechanism using low-cost heat pipes and evaporative cooling from locally found clay pots, and (3) insulated panels and a thermal bank consisting of water that effectively preserve and store heat. We developed a prototype incubator and visited and presented our design to our partnership hospital site in Mysore, India. After obtaining feedback, we have determined realistic, nontrivial design requirements and constraints in order to develop a new prototype incubator for clinical trials in hospitals in India. © 2014 Society for Laboratory Automation and Screening.
Analysis of thermal mechanical fatigue in titanium matrix composites
NASA Technical Reports Server (NTRS)
Johnson, W. Steven; Mirdamadi, Massoud
1993-01-01
Titanium metal matrix composites are being evaluated for structural applications on advanced hypersonic vehicles. These composites are reinforced with ceramic fibers such as silicon carbide, SCS-6. This combination of matrix and fiber results in a high stiffness, high strength composite that has good retention of properties even at elevated temperatures. However, significant thermal stresses are developed within the composite between the fiber and the matrix due to the difference in their respective coefficients of thermal expansion. In addition to the internal stresses that are generated due to thermal cycling, the overall laminate will be subjected to considerable mechanical loads during the thermal cycling. In order to develop life prediction methodology, one must be able to predict the stresses and strains that occur in the composite's constituents during the complex loading. Thus the purpose is to describe such an analytical tool, VISCOPLY.
The Use of Thermal Remote Sensing to Study Thermodynamics of Ecosystem Development
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)
2000-01-01
Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale. A series of airborne thermal infrared multispectral scanner data were collected from several forested ecosystems ranging from a western US douglas-fir forest to a tropical rain forest in Costa Rica. These data were used to develop measures of ecosystem development and integrity based on surface temperature.
Thermal Remote Sensing and the Thermodynamics of Ecosystems Development
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Kay, James J.; Fraser, Roydon F.; Goodman, H. Michael (Technical Monitor)
2001-01-01
Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale. A series of airborne thermal infrared multispectral scanner data were collected from several forested ecosystems ranging from a western US douglas-fir forest to a tropical rain forest in Costa Rica. Also measured were agriculture systems. These data were used to develop measures of ecosystem development and integrity based on surface temperature.
Design, analysis and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Garcia, A., III; Kallis, J. M.; Trucker, D. C.
1983-01-01
Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. From these analyses several candidate encapsulation systems were selected for qualification testing.
Applicability of advanced automotive heat engines to solar thermal power
NASA Technical Reports Server (NTRS)
Beremand, D. G.; Evans, D. G.; Alger, D. L.
1981-01-01
The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.
Applicability of advanced automotive heat engines to solar thermal power
NASA Astrophysics Data System (ADS)
Beremand, D. G.; Evans, D. G.; Alger, D. L.
The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.
Thermal energy storage flight experiments
NASA Technical Reports Server (NTRS)
Namkoong, D.
1989-01-01
Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Mike; Mitchell, Sonny; Kim, Tony; Borowski, Stan; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steve
2015-01-01
HEOMD's (Human Exploration and Operations Mission Directorate) AES (Advanced Exploration Systems) Nuclear Thermal Propulsion (NTP) project is making significant progress. First of four FY 2015 milestones achieved this month. Safety is the highest priority for NTP (as with other space systems). After safety comes affordability. No centralized capability for developing, qualifying, and utilizing an NTP system. Will require a strong, closely integrated team. Tremendous potential benefits from NTP and other space fission systems. No fundamental reason these systems cannot be developed and utilized in a safe, affordable fashion.
NASA Microclimate Cooling Challenges
NASA Technical Reports Server (NTRS)
Trevino, Luis A.
2004-01-01
The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.
Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-01-01
Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
MINIVER upgrade for the AVID system. Volume 3: EXITS user's and input guide
NASA Technical Reports Server (NTRS)
Pond, J. E.; Schmitz, C. P.
1983-01-01
The successful design of thermal protection systems for vehicles operating in atmosphere and near-space environments requires accurate analyses of heating rate and temperature histories encountered along a trajectory. For preliminary design calculations, however, the requirement for accuracy must be tempered by the need for speed and versatility in computational tools used to determine thermal environments and structural thermal response. The MINIVER program was found to provide the proper balance between versatility, speed and accuracy for an aerothermal prediction tool. The advancement in computer aided design concepts at Langley Research Center (LaRC) in the past few years has made it desirable to incorporate the MINIVER program into the LaRC Advanced Vehicle Integrated Design, AVID, system. In order to effectively incorporate MINIVER into the AVID system, several changes to MINIVER were made. The thermal conduction options in MINIVER were removed and a new Explicit Interactive Thermal Structures (EXITS) code was developed. Many upgrades to the MINIVER code were made and a new Langley version of MINIVER called LANMIN was created.
MINIVER upgrade for the AVID system. Volume 1: LANMIN user's manual
NASA Technical Reports Server (NTRS)
Engel, C. D.; Praharaj, S. C.
1983-01-01
The successful design of thermal protection systems for vehicles operating in atmosphere and near space environments requires accurate analyses of heating rate and temperature histories encountered along a trajectory. For preliminary design calculations, however, the requirement for accuracy must be tempered by the need for speed and versatility in computational tools used to determine thermal environments and structural thermal response. The MINIVER program has been found to provide the proper balance between versatility, speed and accuracy for an aerothermal prediction tool. The advancement in computer aided design concepts at Langley Research Center (LaRC) in the past few years has made it desirable to incorporate the MINIVER program into the LaRC Advanced Vehicle Integrated Design, AVID, system. In order to effectively incorporate MINIVER into the AVID system, several changes to MINIVER were made. The thermal conduction options in MINIVER were removed and a new Explicit Interactive Thermal Structures (EXITS) code was developed. Many upgrades to the MINIVER code were made and a new Langley version of MINIVER called LANMIN was created. The theoretical methods and subroutine functions used in LANMIN are described.
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker James Reuther, ARC, leader of the Advanced Development Thermal rotection Systems (heat shield) project for the Orion Crew Exploration Vehicle
Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.
2010-09-01
The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lechman, Jeremy B.; Battaile, Corbett Chandler.; Bolintineanu, Dan
This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity ofmore » pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In both cases much more remains to be accomplished.« less
Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process
NASA Technical Reports Server (NTRS)
Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)
2001-01-01
Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with no apparent wear. Material physical properties and the hot firing tests are reviewed.
Advanced Thermal Simulator Testing: Thermal Analysis and Test Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe
2008-01-01
Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.
Overview of NASA's Thermal Control System Development for Exploration Project
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.
2011-01-01
The now-cancelled Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much more diverse and included several sub-elements. Among other things, these sub-elements were Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles thermal control system. NASA s Exploration Technology Development Program (ETDP) consisted of various technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although the technologies being developed were originally aimed towards mitigating specific Constellation risks, the technology development process is being continued within a new program. This continued effort is justified by the fact that many of the technologies are generically applicable to future spacecraft thermal control systems. The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.
In-Space Propulsion for Science and Exploration
NASA Technical Reports Server (NTRS)
Bishop-Behel, Karen; Johnson, Les
2004-01-01
This paper presents viewgraphs on the development of In-Space Propulsion Technologies for Science and Exploration. The topics include: 1) In-Space Propulsion Technology Program Overview; 2) In-Space Propulsion Technology Project Status; 3) Solar Electric Propulsion; 4) Next Generation Electric Propulsion; 5) Aerocapture Technology Alternatives; 6) Aerocapture; 7) Advanced Thermal Protection Systems Developed and Being Tested; 8) Solar Sails; 9) Advanced Chemical Propulsion; 10) Momentum Exchange Tethers; and 11) Momentum-exchange/electrodynamic reboost (MXER) Tether Basic Operation.
Design, analysis and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Garcia, A.; Minning, C.
1982-01-01
Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. Qualification testing, specimens of various types, and a finalized optimum design are projected.
Design, analysis, and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Mardesich, N.; Minning, C.
1982-01-01
Design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. The program consists of three phases. In Phase I, analytical models were developed to perform optical, thermal, electrical, and structural analyses on candidate encapsulation systems. From these analyses several candidate systems will be selected for qualification testing during Phase II. Additionally, during Phase II, test specimens of various types will be constructed and tested to determine the validity of the analysis methodology developed in Phase I. In Phse III, a finalized optimum design based on knowledge gained in Phase I and II will be developed. All verification testing was completed during this period. Preliminary results and observations are discussed. Descriptions of the thermal, thermal structural, and structural deflection test setups are included.
Multispectral image analysis for object recognition and classification
NASA Astrophysics Data System (ADS)
Viau, C. R.; Payeur, P.; Cretu, A.-M.
2016-05-01
Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.
Study of Thermal Control Systems for orbiting power systems
NASA Technical Reports Server (NTRS)
Howell, H. R.
1981-01-01
Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Nuclear Cryogenic Propulsion Stage for Mars Exploration
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Development of processing techniques for advanced thermal protection materials
NASA Technical Reports Server (NTRS)
Selvaduray, Guna S.
1995-01-01
The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
| Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced Thermal Laboratory Structural Testing Laboratory Surface Analysis Laboratory Systems Performance Laboratory T Thermal Storage Materials Laboratory Thermal Storage Process and Components Laboratory Thin-Film Deposition
Implementing a real time reasoning system for robust diagnosis
NASA Technical Reports Server (NTRS)
Hill, Tim; Morris, William; Robertson, Charlie
1993-01-01
The objective of the Thermal Control System Automation Project (TCSAP) is to develop an advanced fault detection, isolation, and recovery (FDIR) capability for use on the Space Station Freedom (SSF) External Active Thermal Control System (EATCS). Real-time monitoring, control, and diagnosis of the EATCS will be performed with a knowledge based system (KBS). Implementation issues for the current version of the KBS are discussed.
NASA Technical Reports Server (NTRS)
Pronchick, Stephen W.
1998-01-01
Materials that pyrolyze at elevated temperature have been commonly used as thermal protection materials in hypersonic flight, and advanced pyrolyzing materials for this purpose continue to be developed. Because of the large temperature gradients that can arise in thermal protection materials, significant thermal stresses can develop. Advanced applications of pyrolytic materials are calling for more complex heatshield configurations, making accurate thermal stress analysis more important, and more challenging. For non-pyrolyzing materials, many finite element codes are available and capable of performing coupled thermal-mechanical analyses. These codes do not, however, have a built-in capability to perform analyses that include pyrolysis effects. When a pyrolyzing material is heated, one or more components of the original virgin material pyrolyze and create a gas. This gas flows away from the pyrolysis zone to the surface, resulting in a reduction in surface heating. A porous residue, referred to as char, remains in place of the virgin material. While the processes involved can be complex, it has been found that a simple physical model in which virgin material reacts to form char and pyrolysis gas, will yield satisfactory analytical results. Specifically, the effects that must be modeled include: (1) Variation of thermal properties (density, specific heat, thermal conductivity) as the material composition changes; (2) Energy released or absorbed by the pyrolysis reactions; (3) Energy convected by the flow of pyrolysis gas from the interior to the surface; (4) The reduction in surface heating due to surface blowing; and (5) Chemical and mass diffusion effects at the surface between the pyrolysis gas and edge gas Computational tools for the one-dimensional thermal analysis these materials exist and have proven to be reliable design tools. The objective of the present work is to extend the analysis capabilities of pyrolyzing materials to axisymmetric configurations, and to couple thermal and mechanical analyses so that thermal stresses may be efficiently and accurately calculated.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.
2007-01-01
Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.
Materials and structures technology insertion into spacecraft systems: Successes and challenges
NASA Astrophysics Data System (ADS)
Rawal, Suraj
2018-05-01
Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1994-01-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Astrophysics Data System (ADS)
Steinetz, Bruce M.
1994-07-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
Microcombustor-thermoelectric power generator for 10-50 watt applications
NASA Astrophysics Data System (ADS)
Marshall, Daniel S.; Cho, Steve T.
2010-04-01
Fuel-based portable power systems, including combustion and fuel cell systems, take advantage of the 80x higher energy density of fuel over lithium battery technologies and offer the potential for much higher energy density power sources - especially for long-duration applications, such as unattended sensors. Miniaturization of fuel-based systems poses significant challenges, including processing of fuel in small channels, catalyst poisoning, and coke and soot formation. Recent advances in micro-miniature combustors in the 200Watt thermal range have enabled the development of small power sources that use the chemical energy of heavy fuel to drive thermal-to-electric converters for portable applications. CUBE Technology has developed compact Micro-Furnace combustors that efficiently deliver high-quality heat to optimized thermal-to-electric power converters, such as advanced thermoelectric power modules and Stirling motors, for portable power generation at the 10-50Watt scale. Key innovations include a compact gas-gas recuperator, innovative heavy fuel processing, coke- & soot-free operation, and combustor optimization for low balance-of-plant power use while operating at full throttle. This combustor enables the development of robust, high energy density, miniature power sources for portable applications.
No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy
NASA Astrophysics Data System (ADS)
Branz, Howard M.
2015-04-01
Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less
Advanced Seal Sessions I and II
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick H.; Sarawate, Neelesh
2013-01-01
As aircraft operators continue to seek higher fuel efficiency, lower emissions, and longer on-wing performance, turbine engine designers are scrutinizing all components for areas of improvement. To achieve overall goals, turbine pressure ratios and by-pass ratios continue to climb. Also, designers are seeking to minimize parasitic and cooling flows to extract the most useful work out of the flow stream, placing a renewed interest on seal technology and secondary flow path management. In the area of future manned spacecraft, advancements are being examined for both habitat seals and re-entry thermal protection system thermal barrierseals. For long duration space craft, designers are continuing to look for savings in parasitic losses to reduce the amount of cabin re-supply air that needs to be brought along. This is placing greater demands on seal designs and materials to exhibit low leakage and be resistant to space environments. For future missions to and from distant planets, the re-entry heating will be higher than for low-earth orbit or lunar return motivating advanced thermal barrier development. This presentation will provide an overview of the seal challenges and opportunities in these diverse areas.
Lightweight Radiator for in Space Nuclear Electric Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul; Tomboulian, Briana; SanSoucie, Michael
2014-01-01
Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the resultsmore » to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
2013-12-31
This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understandmore » of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
Advanced thermal control technologies for space science missions at JPL
NASA Technical Reports Server (NTRS)
Birur, G. C.; O'Donnell, T.
2000-01-01
A wide range of deep space science missions are planned by NASA for the future. Many of these missions are being planned under strict cost caps and advanced technologies are needed in order to enable these challenging mssions. Because of the wide range of thermal environments the spacecraft experience during the mission, advanced thermal control technologies are the key to enabling many of these missions.
The Inclusion of Thermal Emissions Within the SASKTRAN Framework
NASA Astrophysics Data System (ADS)
Jensen, K. L.; Bourassa, A. E.; Lloyd, N. D.; Degenstein, D. A.
2013-12-01
The SASKTRAN radiative transfer model developed at the University of Saskatchewan has a long heritage associated with simulations of spectrally dispersed limb scattered sunlight. Recent advancements in the SASKTRAN model have allowed for the inclusion of thermal emissions, as a new source of light, originating within the atmosphere and from the ground. Within the model these thermal emissions are then subsequently propagated through the atmosphere while being scattered and absorbed in the exact same fashion as if sunlight were the source of photons. This development allows for the use of the existing and elaborate SASKTRAN infrastructure in the near infrared where scattering of sunlight and thermal emissions contribute with similar fractions to the total intensity of any atmospheric radiance measurement. This paper details the changes to the SASKTRAN model required to accurately simulate scattered thermal emissions and presents results related to the remote sensing of atmospheric constituents such as carbon dioxide, carbon monoxide and methane from satellite platforms.
Space station thermal control surfaces. Volume 1: Interim report
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.
1978-01-01
The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.
Development and Testing of Ceramic Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Miller, Robert A.
2004-01-01
Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating behavior and temperature limits, in order to potentially take full advantage of the current coating capability, and also accurately assess the benefit gained from advanced coating development. In this study, thermal conductivity behavior and cyclic durability of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under laser heat-flux simulated high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack propagation driving forces and resulting failure modes will be discussed in light of high temperature mechanical fatigue and fracture testing results.
Detection of long wavelength infrared at moderate temperatures
NASA Technical Reports Server (NTRS)
Tredwell, T. J.
1977-01-01
Technical approaches for the advanced development of 8-12 micrometer detectors operating at elevated temperatures were defined. The theoretical limits to performance of 8-12 micrometer quantum detectors (photoconductive and photovoltaic) and thermal detectors (pyroelectrics, bolometers etc). An analytic model of signal and noise in both quantum detectors and pyroelectric detectors was developed and candidate materials for both detector types were identified and examined. The present status of both quantum and thermal detectors was assessed as well as the parameters limiting operating temperature and detectivity. The areas of research and development likely to lead to detector performance near the theoretical limit are identified.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.
1979-01-01
A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.
Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajo, Juan J; Qualls, A L
2016-01-01
INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a smallmore » version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.« less
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Sefcik, Robert J.; Qualls, A. L.; Schnitzler, B.G.; Joyner, C. R.
2014-01-01
Formulation of Affordable and Sustainable NTP Development Strategy is Underway Involving NASA, DOE and Industry. In FY11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program.
Micro-Scale Avionics Thermal Management
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2001-01-01
Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.
Toward improved durability in advanced aircraft engine hot sections
NASA Technical Reports Server (NTRS)
Sokolowski, Daniel E. (Editor)
1989-01-01
The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Phil; Feinberg, Lee
2006-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Advanced Ablative Insulators and Methods of Making Them
NASA Technical Reports Server (NTRS)
Congdon, William M.
2005-01-01
Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Feinberg, Lee
2007-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Advanced heat receiver conceptual design study
NASA Technical Reports Server (NTRS)
Kesseli, James; Saunders, Roger; Batchelder, Gary
1988-01-01
Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.
Cermet-fueled reactors for advanced space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, C.L.; Palmer, R.S.; Taylor, I.N.
Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less
Applications and challenges for thermal energy storage
NASA Astrophysics Data System (ADS)
Kannberg, L. D.; Tomlinson, J. T.
1991-04-01
New thermal energy storage (TES) technologies are being developed and applied as society strives to relieve increasing energy and environmental stresses. Applications for these new technologies range from residential and district heating and cooling using waste and solar energy, to high-temperature energy storage for power production and industrial processes. In the last two decades there has been great interest and development of heat storage systems, primarily for residential and commercial buildings. While development has continued, the rate of advancement has slowed with current technology considered adequate for electrically charged heat storage furnaces. Use of chill storage for building diurnal cooling has received substantial development.
Solar Stirling system development
NASA Technical Reports Server (NTRS)
Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.
1979-01-01
A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.
Advanced Testing Method for Ground Thermal Conductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Clemenzi, Rick; Liu, Su
A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce themore » cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2001-08-08
The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less
NASA Astrophysics Data System (ADS)
Dehne, Hans J.
1991-05-01
NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.
NASA Technical Reports Server (NTRS)
Dehne, Hans J.
1991-01-01
NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.
Cryogenic Technology Development for Exploration Missions
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2007-03-31
The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibilitymore » problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.« less
NASA Astrophysics Data System (ADS)
Fauchais, P.; Montavon, G.; Lima, R. S.; Marple, B. R.
2011-03-01
From the pioneering works of McPherson in 1973 who identified nanometre-sized features in thermal spray conventional alumina coatings (using sprayed particles in the tens of micrometres size range) to the most recent and most advanced work aimed at manufacturing nanostructured coatings from nanometre-sized feedstock particles, the thermal spray community has been involved with nanometre-sized features and feedstock for more than 30 years. Both the development of feedstock (especially through cryo-milling, and processes able to manufacture coatings structured at the sub-micrometre or nanometre sizes, such as micrometre-sized agglomerates made of nanometre-sized particles for feedstock) and the emergence of thermal spray processes such as suspension and liquid precursor thermal spray techniques have been driven by the need to manufacture coatings with enhanced properties. These techniques result in two different types of coatings: on the one hand, those with a so-called bimodal structure having nanometre-sized zones embedded within micrometre ones, for which the spray process is similar to that of conventional coatings and on the other hand, sub-micrometre or nanostructured coatings achieved by suspension or solution spraying. Compared with suspension spraying, solution precursor spraying uses molecularly mixed precursors as liquids, avoiding a separate processing route for the preparation of powders and enabling the synthesis of a wide range of oxide powders and coatings. Such coatings are intended for use in various applications ranging from improved thermal barrier layers and wear-resistant surfaces to thin solid electrolytes for solid oxide fuel cell systems, among other numerous applications. Meanwhile these processes are more complex to operate since they are more sensitive to parameter variations compared with conventional thermal spray processes. Progress in this area has resulted from the unique combination of modelling activities, the evolution of diagnostic tools and strategies, and experimental advances that have enabled the development of a wide range of coating structures exhibiting in numerous cases unique properties. Several examples are detailed. In this paper the following aspects are presented successively (i) the two spray techniques used for manufacturing such coatings: thermal plasma and HVOF, (ii) sensors developed for in-flight diagnostics of micrometre-sized particles and the interaction of a liquid and hot gas flow, (iii) three spray processes: conventional spraying using micrometre-sized agglomerates of nanometre-sized particles, suspension spraying and solution spraying and (iv) the emerging issues resulting from the specific structures of these materials, particularly the characterization of these coatings and (v) the potential industrial applications. Further advances require the scientific and industrial communities to undertake new research and development activities to address, understand and control the complex mechanisms occurring, in particular, thermal flow—liquid drops or stream interactions when considering suspension and liquid precursor thermal spray techniques. Work is still needed to develop new measurement devices to diagnose in-flight droplets or particles below 2 µm average diameter and to validate that the assumptions made for liquid-hot gas interactions. Efforts are also required to further develop some of the characterization protocols suitable to address the specificities of such nanostructured coatings, as some existing 'conventional' protocols usually implemented on thermal spray coatings are not suitable anymore, in particular to address the void network architectures from which numerous coatings properties are derived.
Status of Technology Development to enable Large Stable UVOIR Space Telescopes
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; MSFC AMTD Team
2017-01-01
NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay
2018-01-01
The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1982-01-01
Topics covered include the AGT 101 engine test; compressor design modification; cold air turbine testing; Mod 1 alloy turbine rotor fabrication; combustion aspects; regenerator development; and thermal screening tests for ceramic materials. The foil gas bearings, rotor dynamics, and AGT controls and accessories are also considered.
JP-8+100: The development of high-thermal-stability jet fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heneghan, S.P.; Zabarnick, S.; Ballal, D.R.
1996-09-01
Jet fuel requirements have evolved over the years as a balance of the demands placed by advanced aircraft performance (technological need), fuel cost (economic factors), and fuel availability (strategic factors). In a modern aircraft, the jet fuel not only provides the propulsive energy for flight, but also is the primary coolant for aircraft and engine subsystems. To meet the evolving challenge of improving the cooling potential of jet fuel while maintaining the current availability at a minimal price increase, the US Air Force, industry, and academia have teamed to develop an additive package for JP-8 fuels. This paper describes themore » development of an additive package for JP-8, to produce JP-8+100. This new fuel offers a 55 C increase in the bulk maximum temperature (from 325 F to 425 F) and improves the heat sink capability by 50%. Major advances made during the development JP-8 + 100 fuel include the development of several new quantitative fuel analysis tests, a free radical theory of autooxidation, adaptation of new chemistry models to computational fluid dynamics programs, and a nonparametric statistical analysis to evaluate thermal stability. Hundreds of additives were tested for effectiveness, and a package of additives was then formulated for JP-8 fuel. This package has been tested for fuel system materials compatibility and general fuel applicability. To date, the flight testing ha shown an improvement in thermal stability of JP-8 fuel. This improvement has resulted in a significant reduction in fuel-related maintenance costs and a threefold increase in mean time between fuel-related failures. In this manner, a novel high-thermal-stability jet fuel for the 21st century has been successfully developed.« less
Performance analysis of advanced spacecraft TPS
NASA Technical Reports Server (NTRS)
Pitts, William C.
1991-01-01
Spacecraft entering a planetary atmosphere require a very sophisticated thermal protection system. The materials used must be tailored to each specific vehicle based on its planned mission profiles. Starting with the Space Shuttle, many types of ceramic insulation with various combinations of thermal properties have been developed by others. The development of two new materials is described: A Composite Flexible Blanket Insulation which has a significantly lower effective thermal conductivity than other ceramic blankets; and a Silicon Matrix Composite which has applications at high temperature locations such as wing leading edges. Also, a systematic study is described that considers the application of these materials for a proposed Personnel Launch System. The study shows how most of these available ceramic materials would perform during atmospheric entry of this vehicle. Other specific applications of these thermal protection materials are discussed.
Non-thermal plasma technologies: new tools for bio-decontamination.
Moreau, M; Orange, N; Feuilloley, M G J
2008-01-01
Bacterial control and decontamination are crucial to industrial safety assessments. However, most recently developed materials are not compatible with standard heat sterilization treatments. Advanced oxidation processes, and particularly non-thermal plasmas, are emerging and promising technologies for sanitation because they are both efficient and cheap. The applications of non-thermal plasma to bacterial control remain poorly known for several reasons: this technique was not developed for biological applications and most of the literature is in the fields of physics and chemistry. Moreover, the diversity of the devices and complexity of the plasmas made any general evaluation of the potential of the technique difficult. Finally, no experimental equipment for non-thermal plasma sterilization is commercially available and reference articles for microbiologists are rare. The present review aims to give an overview of the principles of action and applications of plasma technologies in biodecontamination.
Bartel, N.; Chen, M.; Utgikar, V. P.; ...
2015-04-04
A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartel, N.; Chen, M.; Utgikar, V. P.
A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less
The Earth Observing System AM Spacecraft - Thermal Control Subsystem
NASA Technical Reports Server (NTRS)
Chalmers, D.; Fredley, J.; Scott, C.
1993-01-01
Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.
Advanced Controller for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.
2004-01-01
The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.
Fishbone Oscillations in the Experimental Advanced Superconductivity Tokamak
NASA Astrophysics Data System (ADS)
Xu, Li-Qing; Hu, Li-Qun; Yuan, Yi; Li, Ying-Ying; Zhong, Guo-Qiang; Liu, Hai-Qing; Chen, Kai-Yun; Shi, Tong-Hui; Duan, Yan-Min
2018-03-01
A fishbone oscillation was observed in the neutral beam injection plasma at Experimental Advanced Superconductivity Tokamak (EAST). This m = 1/n = 1 ( m, n: poloidal, toroidal mode numbers, respectively) typical internal kink mode travels in the ion-diamagnetism direction in the poloidal section with a rotation speed close to the ion diamagnetic drift frequency. A high thermal plasma beta and high amounts of energetic ions are necessary for the mode to develop. Fishbone oscillations can expel heavy impurities in the core, which favors sustaining a high-performance plasma. The born frequency of the fishbone oscillation is the ion diamagnetic drift frequency and the chirping down of the frequency during the initial growth phase is the result of a drop in iondiamagnetic drift frequency. The excitation energy is thought to be due to the thermal plasma pressure gradient; however, the development of a fishbone oscillation is related to energetic ions.
Advanced space solar dynamic receivers
NASA Technical Reports Server (NTRS)
Strumpf, Hal J.; Coombs, Murray G.; Lacy, Dovie E.
1988-01-01
A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability (to enable power production during the substantial eclipse period which accompanies typical orbits) and are lighter and smaller than state-of-the-art systems, such as the Brayton solar receiver being designed and developed by AiResearch for the NASA Space Station. Two receiver concepts have been developed in detail: a packed bed receiver and a heat pipe receiver. The packed bed receiver is appropriate for a Brayton engine; the heat pipe receiver is applicable for either a Brayton or Stirling engine. The thermal storage for both concepts is provided by the melting and freezing of a salt. Both receiver concepts offer substantial improvements in size and weight compared to baseline receivers.
FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
Series II AMTEC cell development issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, R.K.; Rasmussen, J.R.; Giglio, J.C.
1998-07-01
The Series II alkali metal thermal to electric converter (AMTEC) cell, developed over the last two year, represents a significant engineering advance in AMTEC technology, and major step toward spacecraft power systems. The PX-5 cell design was developed as an early prototype in stainless steel alloys. This design will evolve into the PX-6 engineering cell and finally into the EPX-1 to be used in the Advanced Radioisotope Power System (ARPS) program. The EPX-1 cell will be all-refractory metal. Late work on the PX-5 and early work on the PX-6 will be described.
Thick thermal barrier coatings for diesel engines
NASA Technical Reports Server (NTRS)
Beardsley, M. Brad
1995-01-01
Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.
Thick thermal barrier coatings for diesel engines
NASA Technical Reports Server (NTRS)
Beardsley, M. B.
1995-01-01
Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.
Solar thermoelectricity via advanced latent heat storage
NASA Astrophysics Data System (ADS)
Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.
2016-05-01
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.
ESRDC - Designing and Powering the Future Fleet
2018-02-22
Awards Management 301 Main Street University of South Carolina Columbia, SC 29208 1600 Hampton St, Suite 414 Phone: 803-777-7890 Columbia, SC 29208... managing short circuit faults in MVDC Systems, and 5) modeling of SiC-based electronic power converters to support accurate scalable models in S3D...Research in advanced thermal management followed three tracks. We developed models of thermal system components that are suitable for use in early stage
Component and Technology Development for Advanced Liquid Metal Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark
2017-01-30
The following report details the significant developments to Sodium Fast Reactor (SFR) technologies made throughout the course of this funding. This report will begin with an overview of the sodium loop and the improvements made over the course of this research to make it a more advanced and capable facility. These improvements have much to do with oxygen control and diagnostics. Thus a detailed report of advancements with respect to the cold trap, plugging meter, vanadium equilibration loop, and electrochemical oxygen sensor is included. Further analysis of the university’s moving magnet pump was performed and included in a section ofmore » this report. A continuous electrical resistance based level sensor was built and tested in the sodium with favorable results. Materials testing was done on diffusion bonded samples of metal and the results are presented here as well. A significant portion of this work went into the development of optical fiber temperature sensors which could be deployed in an SFR environment. Thus, a section of this report presents the work done to develop an encapsulation method for these fibers inside of a stainless steel capillary tube. High temperature testing was then done on the optical fiber ex situ in a furnace. Thermal response time was also explored with the optical fiber temperature sensors. Finally these optical fibers were deployed successfully in a sodium environment for data acquisition. As a test of the sodium deployable optical fiber temperature sensors they were installed in a sub-loop of the sodium facility which was constructed to promote the thermal striping effect in sodium. The optical fibers performed exceptionally well, yielding unprecedented 2 dimensional temperature profiles with good temporal resolution. Finally, this thermal striping loop was used to perform cross correlation velocimetry successfully over a wide range of flow rates.« less
Raucher, Drazen; Massodi, Iqbal; Bidwell, Gene L
2008-03-01
Current chemotherapy treatment of solid tumors is limited due to a lack of specific delivery of the drugs to the tumor, leading to systemic toxicity. Therefore, it is necessary to develop targeted cancer therapies and tumor-targeted drug carriers. The authors review the development of elastin-like polypeptide (ELP) as a potential carrier for thermally targeted delivery of therapeutics. The authors searched Medline for articles concerning the application of ELP as a drug delivery vector for small molecule drugs and therapeutic peptides. ELP has been demonstrated to be a promising thermally targeted carrier. Further examination of the in vivo biodistribution and efficacy will provide the necessary data to advance ELP technology toward the ultimate goal of human therapeutics.
Large-area sheet task advanced dendritic web growth development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.
1984-01-01
The thermal models used for analyzing dendritic web growth and calculating the thermal stress were reexamined to establish the validity limits imposed by the assumptions of the models. Also, the effects of thermal conduction through the gas phase were evaluated and found to be small. New growth designs, both static and dynamic, were generated using the modeling results. Residual stress effects in dendritic web were examined. In the laboratory, new techniques for the control of temperature distributions in three dimensions were developed. A new maximum undeformed web width of 5.8 cm was achieved. A 58% increase in growth velocity of 150 micrometers thickness was achieved with dynamic hardware. The area throughput goals for transient growth of 30 and 35 sq cm/min were exceeded.
Recent advances in convectively cooled engine and airframe structures for hypersonic flight
NASA Technical Reports Server (NTRS)
Kelly, H. N.; Wieting, A. R.; Shore, C. P.; Nowak, R. J.
1978-01-01
A hydrogen-cooled structure for a fixed-geometry, airframe-integrated scramjet is described. The thermal/structural problems, concepts, design features, and technological advances are applicable to a broad range of engines. Convectively cooled airframe structural concepts that have evolved from an extensive series of investigations, the technology developments that have led to these concepts, and the benefits that accrue from their use are discussed.
2017-08-01
of metallic additive manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics...manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics methods will accelerate that...geometries, we develop a methodology that couples experimental data and modelling to convert the scan paths into spatially resolved local thermal histories
Infrared Imaging Sharpens View in Critical Situations
NASA Technical Reports Server (NTRS)
2007-01-01
Innovative Engineering and Consulting (IEC) Infrared Systems, a leading developer of thermal imaging systems and night vision equipment, received a Glenn Alliance for Technology Exchange (GATE) award, half of which was in the form of additional NASA assistance for new product development. IEC Infrared Systems worked with electrical and optical engineers from Glenn's Diagnostics and Data Systems Branch to develop a commercial infrared imaging system that could differentiate the intensity of heat sources better than other commercial systems. The research resulted in two major thermal imaging solutions: NightStalkIR and IntrudIR Alert. These systems are being used in the United States and abroad to help locate personnel stranded in emergency situations, defend soldiers on the battlefield abroad, and protect high-value facilities and operations. The company is also applying its advanced thermal imaging techniques to medical and pharmaceutical product development with a Cleveland-based pharmaceutical company.
Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers
NASA Technical Reports Server (NTRS)
Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary
2006-01-01
Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender
2016-01-01
NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.
Development of Passive Fuel Cell Thermal Management Heat Exchanger
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.
2010-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.
Development of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony
2011-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.
Aerogel Insulation Systems for Space Launch Applications
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2005-01-01
New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.
Thermal control requirements for large space structures
NASA Technical Reports Server (NTRS)
Manoff, M.
1978-01-01
Performance capabilities and weight requirements of large space structure systems will be significantly influenced by thermal response characteristics. Analyses have been performed to determine temperature levels and gradients for structural configurations and elemental concepts proposed for advanced system applications ranging from relatively small, low-power communication antennas to extremely large, high-power Satellite Power Systems (SPS). Results are presented for selected platform configurations, candidate strut elements, and potential mission environments. The analyses also incorporate material and surface optical property variation. The results illustrate many of the thermal problems which may be encountered in the development of three systems.
NASA Technical Reports Server (NTRS)
Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.
2010-01-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.
Creep behavior for advanced polycrystalline SiC fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, G.E.; Jones, R.H.; Kohyama, Akira
1997-04-01
A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalonmore » CG (1110{degrees}C).« less
Gas-turbine critical research and advanced technology support project
NASA Technical Reports Server (NTRS)
Clark, J. S.; Hodge, P. E.; Lowell, C. E.; Anderson, D. N.; Schultz, D. F.
1981-01-01
A technology data base for utility gas turbine systems capable of burning coal derived fuels was developed. The following areas are investigated: combustion; materials; and system studies. A two stage test rig is designed to study the conversion of fuel bound nitrogen to NOx. The feasibility of using heavy fuels in catalytic combustors is evaluated. A statistically designed series of hot corrosion burner rig tests was conducted to measure the corrosion rates of typical gas turbine alloys with several fuel contaminants. Fuel additives and several advanced thermal barrier coatings are tested. Thermal barrier coatings used in conjunction with low critical alloys and those used in a combined cycle system in which the stack temperature was maintained above the acid corrosion temperature are also studied.
SiC/SiC Composites for 1200 C and Above
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, H.-M.; Morscher, G. N.; Bhatt, R. T.
2004-01-01
The successful replacement of metal alloys by ceramic matrix composites (CMC) in high-temperature engine components will require the development of constituent materials and processes that can provide CMC systems with enhanced thermal capability along with the key thermostructural properties required for long-term component service. This chapter presents information concerning processes and properties for five silicon carbide (SiC) fiber-reinforced SiC matrix composite systems recently developed by NASA that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 1204, 1315, and 1427 C, temperatures well above current metal capability. This advanced capability stems in large part from specific NASA-developed processes that significantly improve the creep-rupture and environmental resistance of the SiC fiber as well as the thermal conductivity, creep resistance, and intrinsic thermal stability of the SiC matrices.
Large-area sheet task advanced dendritic web growth development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D. L.; Schruben, J.
1982-01-01
Thermal models were developed that accurately predict the thermally generated stresses in the web crystal which, if too high, cause the crystal to degenerate. The application of the modeling results to the design of low-stress experimental growth configurations will allow the growth of wider web crystals at higher growth velocities. A new experimental web growth machine was constructed. This facility includes all the features necessary for carrying out growth experiments under steady thermal conditions. Programmed growth initiation was developed to give reproducible crystal starts. Width control permits the growth of long ribbons at constant width. Melt level is controlled to 0.1 mm or better. Thus, the capability exists to grow long web crystals of constant width and thickness with little operator intervention, and web growth experiments can now be performed with growth variables controlled to a degree not previously possible.
SiC lightweight telescopes for advanced space applications. II - Structures technology
NASA Technical Reports Server (NTRS)
Anapol, Michael I.; Hadfield, Peter; Tucker, Theodore
1992-01-01
A critical technology area for lightweight SiC-based telescope systems is the structural integrity and thermal stability over spaceborne environmental launch and thermal operating conditions. Note, it is highly desirable to have an inherently athermal design of both SiC mirrors and structure. SSG has developed an 8 inch diameter SiC telescope system for brassboard level optical and thermal testing. The brassboard telescope has demonstrated less than 0.2 waves P-V in the visible wavefront change over +50 C to -200 C temperature range. SSG has also fabricated a SiC truss structural assembly and successfully qualified this hardware at environmental levels greater than 3 times higher than normal Delta, Titan, and ARIES launch loads. SSG is currently developing two SiC telescopes; an 20 cm diameter off-axis 3 mirror re-imaging and a 60 cm aperture on-axis 3 mirror re-imager. Both hardware developments will be tested to flight level environmental, optical, and thermal specifications.
NASA's New Thermal Management Systems Roadmap; Whats in it, What it Means
NASA Technical Reports Server (NTRS)
Swanson, Ted
2016-01-01
In July of 2015 NASA publically released a new set of Technology Area Roadmaps that will be used to help guide future NASA-funded technology development efforts. One of these was the Thermal Management Systems Roadmap, often identified as TA14. This Roadmap identifies the time sequencing and interdependencies of high priority, advanced thermal control technology for the next 5 to 20 years. Available funding limits the development of new technology. The Roadmaps are the first step in the process of prioritizing HQ-supported technology funding. The 2015 Roadmaps are focused on planned mission architectures and needs, as identified in the NRC-led science Decadals and HEOMD's Design Reference Missions. Additionally, the 2015 Roadmaps focus on "applied " R&D as opposed to more basic research. The NASA Mission Directorates were all closely involved in development of 2015 Roadmaps, and an extensive external review was also conducted. This talk will discuss the Technology Roadmaps in general, and then focus on the specific technologies identified for TA 14, Thermal Management Systems.
CSTI high capacity power. [Civil Space Technology Initiative
NASA Technical Reports Server (NTRS)
Winter, Jerry M.
1989-01-01
In FY-88, the Advanced Technology Program was incorporated into NASA's Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Converrsion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.
Metal hydride hydrogen compression: recent advances and future prospects
NASA Astrophysics Data System (ADS)
Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.
2016-04-01
Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.
Metal hydride hydrogen compression: Recent advances and future prospects
Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; ...
2016-03-17
Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less
Ceramic breeder research and development: progress and focus
NASA Astrophysics Data System (ADS)
van der Laan, J. G.; Kawamura, H.; Roux, N.; Yamaki, D.
2000-12-01
The world-wide efforts on ceramic breeder materials in the last two years concerned Li2O, Li4SiO4, Li2TiO3 and Li2ZrO3, with a clear emphasis on the development of Li2TiO3. Pebble-manufacturing processes have been developed up to a 10 kg scale. Characterisation of materials has advanced. A jump-wise progress is observed in the characterisation of pebble-beds, in particular of their thermo-mechanical behaviour. Thermal property data are still limited. A number of breeder materials have been or are being irradiated in material test reactors like HFR and JMTR. The EXOTIC-8 series of in-pile experiments is a major source of tritium release data. This paper discusses the technical advancements and proposes a focus for further research and development (R&D) : pebble-bed mechanical and thermal behaviour and its interactions with the blanket structure as a function of temperature, burn-up, irradiation dose and time; tritium release and retention properties; determination of the key factors limiting blanket life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumm, Daniel
2013-08-31
The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leadingmore » to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive/thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit formation; and facilitating combustion rig testing of materials test coupons.« less
Thermal Design, Tvac Testing, and Lessons Learned for Critical GSE of ATLAS and the ICESat-2 Mission
NASA Technical Reports Server (NTRS)
Bradshaw, Heather
2016-01-01
This presentation describes the thermal design of the three main of optical components which comprise the Bench Checkout Equipment (BCE) for the Advanced Topographic Laser Altimeter System (ATLAS) instrument, which is flying on the ICESat-2 mission. Thermal vacuum testing of these components is also described in this presentation, as well as a few lessons learned. These BCE components serve as critical GSE for the mission; their purpose is to verify ATLAS is performing well. It has been said that, in one light, the BCE is the most important part of ATLAS, since, without it, ATLAS cannot be aligned properly or its performance verified before flight. Therefore, careful attention was paid to the BCEs thermal design, development, and component-level Tvac testing prior to its use in instrument-level and spacecraft-level Tvac tests with ATLAS. This presentation describes that thermal design, development, and testing, as well as a few lessons learned.
A Knowledge Database on Thermal Control in Manufacturing Processes
NASA Astrophysics Data System (ADS)
Hirasawa, Shigeki; Satoh, Isao
A prototype version of a knowledge database on thermal control in manufacturing processes, specifically, molding, semiconductor manufacturing, and micro-scale manufacturing has been developed. The knowledge database has search functions for technical data, evaluated benchmark data, academic papers, and patents. The database also displays trends and future roadmaps for research topics. It has quick-calculation functions for basic design. This paper summarizes present research topics and future research on thermal control in manufacturing engineering to collate the information to the knowledge database. In the molding process, the initial mold and melt temperatures are very important parameters. In addition, thermal control is related to many semiconductor processes, and the main parameter is temperature variation in wafers. Accurate in-situ temperature measurment of wafers is important. And many technologies are being developed to manufacture micro-structures. Accordingly, the knowledge database will help further advance these technologies.
Non-flammable polyimide materials for aircraft and spacecraft applications
NASA Technical Reports Server (NTRS)
Gagliani, J.; Supkis, D. E.
1979-01-01
Recent developments in polyimide chemistry show promise for producing materials with very low flammability and a wide range of mechanical properties. Polyimide foams can be synthesized to provide fire safety without detectable formation of smoke or toxic byproducts below 204 C (400 F), thus avoiding an environment which is lethal to human habitation. This work has been and is currently being performed under development programs, the objective of which is to provide cost effective processes for producing thermally stable, polyimide flexible resilient foams, thermal-acoustical insulating materials, rigid low density foam panels, and high strength foam structures. The chemical and physical properties demonstrated by these materials represent a technological advancement in the art of thermally stable polyimide polymers which are expected to insure fire protection of structures and components used in air transportation and space exploration. Data compiled to date on thermal, physical and functional properties of these materials are presented.
Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana
2005-01-01
This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.
Crack growth induced by thermal-mechanical loading
NASA Astrophysics Data System (ADS)
John, R.; Hartman, G. A.; Gallagher, J. P.
1992-06-01
Advanced aerospace structures are often subjected to combined thermal and mechanical loads. The fracture-mechanics behavior of the structures may be altered by the thermal state existing around the crack. Hence, design of critical structural elements requires the knowledge of stress-intensity factors under both thermal and mechanical loads. This paper describes the development of an experimental technique to verify the thermal-stress-intensity factor generated by a temperature gradient around the crack. Thin plate specimens of a model material (AISI-SAE 1095 steel) were used for the heat transfer and thermal-mechanical fracture tests. Rapid thermal loading was achieved using high-intensity focused infrared spot heaters. These heaters were also used to generate controlled temperature rates for heat-transfer verification tests. The experimental results indicate that thermal loads can generate stress-intensity factors large enough to induce crack growth. The proposed thermal-stress-intensity factors appear to have the same effect as the conventional mechanical-stress-intensity factors with respect to fracture.
Recent Advances in the Analysis of Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1997-01-01
A review of recent progress for the analysis of spiral bevel gears will be described. The foundation of this work relies on the description of the gear geometry of face-milled spiral bevel gears via the approach developed by Litvin. This methodology was extended by combining the basic gear design data with the manufactured surfaces using a differential geometry approach, and provides the data necessary for assembling three-dimensional finite element models. The finite element models have been utilized to conduct thermal and structural analysis of the gear system. Examples of the methods developed for thermal and structural/contact analysis are presented.
Concurrent design of an RTP chamber and advanced control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, P.; Schaper, C.; Kermani, A.
1995-12-31
A concurrent-engineering approach is applied to the development of an axisymmetric rapid-thermal-processing (RTP) reactor and its associated temperature controller. Using a detailed finite-element thermal model as a surrogate for actual hardware, the authors have developed and tested a multi-input multi-output (MIMO) controller. Closed-loop simulations are performed by linking the control algorithm with the finite-element code. Simulations show that good temperature uniformity is maintained on the wafer during both steady and transient conditions. A numerical study shows the effect of ramp rate, feedback gain, sensor placement, and wafer-emissivity patterns on system performance.
On a computational model of building thermal dynamic response
NASA Astrophysics Data System (ADS)
Jarošová, Petra; Vala, Jiří
2016-07-01
Development and exploitation of advanced materials, structures and technologies in civil engineering, both for buildings with carefully controlled interior temperature and for common residential houses, together with new European and national directives and technical standards, stimulate the development of rather complex and robust, but sufficiently simple and inexpensive computational tools, supporting their design and optimization of energy consumption. This paper demonstrates the possibility of consideration of such seemingly contradictory requirements, using the simplified non-stationary thermal model of a building, motivated by the analogy with the analysis of electric circuits; certain semi-analytical forms of solutions come from the method of lines.
High temperature braided rope seals for static sealing applications
NASA Technical Reports Server (NTRS)
Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.
1996-01-01
Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.
Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed
NASA Technical Reports Server (NTRS)
Flynn, Howard; Lusby, Brian; Villemarette, Mark
2011-01-01
In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.
Carbon Nanotubes for Human Space Flight
NASA Technical Reports Server (NTRS)
Scott, Carl D.; Files, Brad; Yowell, Leonard
2003-01-01
Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.
Thermal barrier coatings issues in advanced land-based gas turbines
NASA Technical Reports Server (NTRS)
Parks, W. P.; Lee, W. Y.; Wright, I. G.
1995-01-01
The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.
Cunningham, George D; Fitzpatrick, Luisa J; While, Geoffrey M; Wapstra, Erik
2018-05-23
Populations at the climatic margins of a species' distribution can be exposed to conditions that cause developmental stress, resulting in developmental abnormalities. Even within the thermal range of normal development, phenotypes often vary with developmental temperature (i.e., thermal phenotypic plasticity). These effects can have significant consequences for organismal fitness and, thus, population persistence. Reptiles, as ectotherms, are particularly vulnerable to thermal effects on development and are, therefore, considered to be at comparatively high risk from changing climates. Understanding the extent and direction of thermal effects on phenotypes and their fitness consequences is crucial if we are to make meaningful predictions of how populations and species will respond as climates warm. Here, we experimentally manipulated the thermal conditions experienced by females from a high-altitude, cold-adapted population of the viviparous skink, Niveoscincus ocellatus, to examine the consequences of thermal conditions at the margins of this population's normal temperature range. We found strong effects of thermal conditions on the development of key phenotypic traits that have implications for fitness. Specifically, we found that offspring born earlier as a result of high temperatures during gestation had increased growth over the first winter of life, but there was no effect on offspring survival, nor was there an effect of developmental temperature on the incidence of developmental abnormalities. Combined, our results suggest that advancing birth dates that result from warming climates may have positive effects in this population via increased growth. © 2018 Wiley Periodicals, Inc.
A Roadmap for Thermal Metrology
NASA Astrophysics Data System (ADS)
Bojkovski, J.; Fischer, J.; Machin, G.; Pavese, F.; Peruzzi, A.; Renaot, E.; Tegeler, E.
2009-02-01
A provisional roadmap for thermal metrology was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. This consisted of two parts: one addressing the influence of thermal metrology on society, industry, and science, and the other specifying the requirements of enabling thermal metrology to serve future needs. The roadmap represents the shared vision of the EUROMET TC Therm committee as to how thermal metrology should develop to meet future requirements over the next 15 years. It is important to stress that these documents are a first attempt to roadmap the whole of thermal metrology and will certainly need regular review and revision to remain relevant and useful to the community they seek to serve. The first part of the roadmap, “Thermal metrology for society, industry, and science,” identifies the main social and economic triggers driving developments in thermal metrology—notably citizen safety and security, new production technologies, environment and global climate change, energy, and health. Stemming from these triggers, key targets are identified that require improved thermal measurements. The second part of the roadmap, “Enabling thermal metrology to serve future needs” identifies another set of triggers, like global trade and interoperability, future needs in transport, and the earth radiation budget. Stemming from these triggers, key targets are identified, such as improved realizations and dissemination of the SI unit the kelvin, anchoring the kelvin to the Boltzmann constant, k B, and calculating thermal properties from first principles. To facilitate these outcomes, the roadmap identifies the technical advances required in thermal measurement standards.
Modified ACES Portable Life Support Integration, Design, and Testing for Exploration Missions
NASA Technical Reports Server (NTRS)
Kelly, Cody
2014-01-01
NASA's next generation of exploration missions provide a unique challenge to designers of EVA life support equipment, especially in a fiscally-constrained environment. In order to take the next steps of manned space exploration, NASA is currently evaluating the use of the Modified ACES (MACES) suit in conjunction with the Advanced Portable Life Support System (PLSS) currently under development. This paper will detail the analysis and integration of the PLSS thermal and ventilation subsystems into the MACES pressure garment, design of prototype hardware, and hardware-in-the-loop testing during the spring 2014 timeframe. Prototype hardware was designed with a minimal impact philosophy in order to mitigate design constraints becoming levied on either the advanced PLSS or MACES subsystems. Among challenges faced by engineers were incorporation of life support thermal water systems into the pressure garment cavity, operational concept definition between vehicle/portable life support system hardware, and structural attachment mechanisms while still enabling maximum EVA efficiency from a crew member's perspective. Analysis was completed in late summer 2013 to 'bound' hardware development, with iterative analysis cycles throughout the hardware development process. The design effort will cumulate in the first ever manned integration of NASA's advanced PLSS system with a pressure garment originally intended primarily for use in a contingency survival scenario.
Thermal induced flow oscillations in heat exchangers for supercritical fluids
NASA Technical Reports Server (NTRS)
Friedly, J. C.; Manganaro, J. L.; Krueger, P. G.
1972-01-01
Analytical model has been developed to predict possible unstable behavior in supercritical heat exchangers. From complete model, greatly simplified stability criterion is derived. As result of this criterion, stability of heat exchanger system can be predicted in advance.
Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion
NASA Astrophysics Data System (ADS)
1984-06-01
Research on electric motor vehicles is reported in the areas of active material utilization and active material integrity; design and fabrication of components, advanced cells, and modules; cell testing; and battery thermal management and electrolyte circulation subsystems.
High-Reflection Coatings for Gravitational-Wave Detectors: State of The Art and Future Developments
NASA Astrophysics Data System (ADS)
Amato, Alex; Cagnoli, Gianpietro; Canepa, Maurizio; Coillet, Elodie; Degallaix, Jerome; Dolique, Vincent; Forest, Daniele; Granata, Massimo; Martinez, Valérie; Michel, Christophe; Pinard, Laurent; Sassolas, Benoit; Teillon, Julien
2018-02-01
We report on the optical, mechanical and structural characterization of the sputtered coating materials of Advanced LIGO, Advanced Virgo and KAGRA gravitational- waves detectors. We present the latest results of our research program aiming at decreasing coating thermal noise through doping, optimization of deposition parameters and post- deposition annealing. Finally, we propose sputtered Si3N4 as a candidate material for the mirrors of future detectors.
Investigation of transient thermal dissipation in thinned LSI for advanced packaging
NASA Astrophysics Data System (ADS)
Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro
2018-04-01
Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.
Processing and Preparation of Advanced Stirling Convertors for Extended Operation
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Cornell, Paggy A.
2008-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Cornell, Peggy A.
2008-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.
Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaodong; Zhang, Xiaoqin; Christensen, Richard
The goal of the proposed research is to demonstrate the thermal hydraulic performance of innovative surface geometries in compact heat exchangers used as intermediate heat exchangers (IHXs) and recuperators for the supercritical carbon dioxide (s-CO 2) Brayton cycle. Printed-circuit heat exchangers (PCHEs) are the primary compact heat exchangers of interest. The overall objectives are: To develop optimized PCHE designs for different working fluid combinations including helium to s-CO 2, liquid salt to s-CO 2, sodium to s-CO 2, and liquid salt to helium; To experimentally and numerically investigate thermal performance, thermal stress and failure mechanism of PCHEs under various transients;more » and To study diffusion bonding techniques for elevated-temperature alloys and examine post-test material integrity of the PCHEs. The project objectives were accomplished by defining and executing five different tasks corresponding to these specific objectives. The first task involved a thorough literature review and a selection of IHX candidates with different surface geometries as well as a summary of prototypic operational conditions. The second task involved optimization of PCHE design with numerical analyses of thermal-hydraulic performances and mechanical integrity. The subsequent task dealt with the development of testing facilities and engineering design of PCHE to be tested in s-CO 2 fluid conditions. The next task involved experimental investigation and validation of the thermal-hydraulic performances and thermal stress distribution of prototype PCHEs manufactured with particular surface geometries. The last task involved an investigation of diffusion bonding process and posttest destructive testing to validate mechanical design methods adopted in the design process. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed s-CO 2 test loop (STL) facility and s-CO 2 test facility at University of Wisconsin – Madison (UW).« less
Advanced extravehicular protective systems study, volume 1
NASA Technical Reports Server (NTRS)
Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.
1972-01-01
An appraisal was made of advanced portable and emergency life support systems concepts for space station, space shuttle, lunar base, and Mars EVA missions. Specifications are given, and the methodology is described. Subsystem studies and systems integration efforts are summarized. Among the conclusions are the following: (1) For long duration missions, a configuration incorporating a regenerable CO2 control subsystem and a thermal control subsystem utilizing a minimum of expendables decreases the vehicle penalty of present configurations. (2) For shorter duration missions, a configuration incorporating an expendable water thermal control subsystem is the most competitive subsystem; regenerable CO2 control subsystems if properly developed are competitive with nonregenerable counterparts. (3) The CO2 reduction and oxygen reclamation withing the parent vehicle is only competitive when there are three or more parent vehicle resupply periods. (4) For long duration emergency systems of one hour or more, inherent redundancy within the primary configuration to provide emergency thermal control is the most competitive approach.
Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank
NASA Astrophysics Data System (ADS)
Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.
2012-12-01
In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2002-01-01
Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.
NASA Technical Reports Server (NTRS)
Kull, F. R.
1975-01-01
The results of a program to develop a lightweight high temperature reusable fastening system for aerospace vehicle thermal protection system applications are documented. This feasibility program resulted in several fastener innovations which will meet the specific needs of the heat shield application. Three systems were designed from Hayes 188 alloy and tested by environmental exposure and residual mechanical properties. The designs include a clinch stud with a collar retainer, a weld stud with a split ring retainer, and a caged stud with a collar retainer. The results indicated that a lightweight, reusable, high temperature fastening system can be developed for aerospace vehicle application.
Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.
1991-01-01
The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.
Advanced spacecraft thermal control techniques
NASA Technical Reports Server (NTRS)
Fritz, C. H.
1977-01-01
The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.
FY 2017 – Thermal Aging Effects on Advanced Structural Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Natesan, K; Chen, Wei-Ying
This report provides an update on the evaluation of the effect of thermal aging on tensile properties of existing laboratory-sized heats of Alloy 709 austenitic stainless steel and the completion of effort on the thermal aging effect on the tensile properties of optimized G92 ferritic-martensitic steel. The report is a Level 3 deliverable in FY17 (M3AT-17AN1602081), under the Work Package AT-17AN160208, “Advanced Alloy Testing - ANL” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.
Sensor for performance monitoring of advanced gas turbines
NASA Astrophysics Data System (ADS)
Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.
1999-01-01
Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.
Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors
NASA Astrophysics Data System (ADS)
Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration
2017-01-01
In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.
2016-01-01
Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2000-01-01
A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.
NASA Technical Reports Server (NTRS)
Carruth, Ralph
2008-01-01
There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.
NASA Astrophysics Data System (ADS)
Manero, Albert; Sofronsky, Stephen; Knipe, Kevin; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Raghavan, Seetha; Bartsch, Marion
2015-07-01
Advances in aircraft and land-based turbine engines have been increasing the extreme loading conditions on traditional engine components and have incited the need for improved performance with the use of protective coatings. These protective coatings shield the load-bearing super alloy blades from the high-temperature combustion gases by creating a thermal gradient over their thickness. This addition extends the life and performance of blades. A more complete understanding of the behavior, failure mechanics, and life expectancy for turbine blades and their coatings is needed to enhance and validate simulation models. As new thermal-barrier-coated materials and deposition methods are developed, strides to effectively test, evaluate, and prepare the technology for industry deployment are of paramount interest. Coupling the experience and expertise of researchers at the University of Central Florida, The German Aerospace Center, and Cleveland State University with the world-class synchrotron x-ray beam at the Advanced Photon Source in Argonne National Laboratory, the synergistic collaboration has yielded previously unseen measurements to look inside the coating layer system for in situ strain measurements during representative service loading. These findings quantify the in situ strain response on multilayer thermal barrier coatings and shed light on the elastic and nonelastic properties of the layers and the role of mechanical load and internal cooling variations on the response. The article discusses the experimental configuration and development of equipment to perform in situ strain measurements on multilayer thin coatings and provides an overview of the achievements thus far.
Characterization of the thermal conductivity for Advanced Toughened Uni-piece Fibrous Insulations
NASA Technical Reports Server (NTRS)
Stewart, David A.; Leiser, Daniel B.
1993-01-01
Advanced Toughened Uni-piece Fibrous Insulations (TUFI) is discussed in terms of their thermal response to an arc-jet air stream. A modification of the existing Ames thermal conductivity program to predict the thermal response of these functionally gradient materials is described in the paper. The modified program was used to evaluate the effect of density, surface porosity, and density gradient through the TUFI materials on the thermal response of these insulations. Predictions using a finite-difference code and calculated thermal conductivity values from the modified program were compared with in-depth temperature measurements taken from TUFI insulations during short exposures to arc-jet hypersonic air streams.
Development of heat flux sensors for turbine airfoils
NASA Astrophysics Data System (ADS)
Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.
1985-10-01
The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.
Development of heat flux sensors for turbine airfoils
NASA Technical Reports Server (NTRS)
Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.
1985-01-01
The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.
Insulating Material for Next-Generation Spacecraft
NASA Technical Reports Server (NTRS)
White, Susan; Johnson, Sylvia; Salerno, Louis; Kittel, Peter; Roach, Pat; Helvensteijn, Ben; Kashani, Ali
2006-01-01
A report discusses the development of a flexible thermal-insulation material for cryogenic tanks in next-generation spacecraft. This material is denoted Advanced Reusable All-temperature Multimode Insulation System (ARAMIS). The report begins by describing the need for ARAMIS and the technological challenges of developing a single material that is useable throughout the temperature range from storage of liquid hydrogen (20 K) to atmospheric-reentry heating (>2,000 K), has the requisite low thermal conductivity, resists condensation of moisture without need for a gas purge, and withstands reentry heating for a 400-mission lifetime. The report then discusses laboratory apparatuses for testing materials that have been and will be considered as candidates for the development of ARAMIS.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.
2002-01-01
Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.
Advanced solar receivers for space power
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Coombs, M. G.; Lacy, D. E.
1988-01-01
A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability and, when implemented, will be lighter, smaller, and/or more efficient than baseline systems such as the configuration used for the Brayton solar receiver under development by Garrett AiResearch for the NASA Space Station. In addition to the baseline designs, four other receiver concepts were designed and evaluated with respect to Brayton and Stirling engines. These concepts include a higher temperature version of the baseline receiver, a packed bed receiver, a plate-fin receiver, and a heat pipe receiver. The thermal storage for all designs is provided by the melting and freezing of a salt.
Hypersonic airframe structures: Technology needs and flight test requirements
NASA Technical Reports Server (NTRS)
Stone, J. E.; Koch, L. C.
1979-01-01
Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities.
Semiconductor neutron detectors
NASA Astrophysics Data System (ADS)
Gueorguiev, Andrey; Hong, Huicong; Tower, Joshua; Kim, Hadong; Cirignano, Leonard; Burger, Arnold; Shah, Kanai
2016-09-01
Lithium Indium Selenide (LiInSe2) has been under development in RMD Inc. and Fisk University for room temperature thermal neutron detection due to a number of promising properties. The recent advances of the crystal growth, material processing, and detector fabrication technologies allowed us to fabricate large detectors with 100 mm2 active area. The thermal neutron detection sensitivity and gamma rejection ratio (GRR) were comparable to 3He tube with 10 atm gas pressure at comparable dimensions. The synthesis, crystal growth, detector fabrication, and characterization are reported in this paper.
Mechanics and thermal management of stretchable inorganic electronics.
Song, Jizhou; Feng, Xue; Huang, Yonggang
2016-03-01
Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics.
Mechanics and thermal management of stretchable inorganic electronics
Song, Jizhou; Feng, Xue; Huang, Yonggang
2016-01-01
Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics. PMID:27547485
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2013-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2011-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.
2007-01-01
Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.
Thermal Performance Benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xuhui; Moreno, Gilbert; Bennion, Kevin
2016-06-07
The goal for this project is to thoroughly characterize the thermal performance of state-of-the-art (SOA) in-production automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The thermal performance results combined with component efficiency and heat generation information obtained by Oak Ridge Nationalmore » Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY16, the 2012 Nissan LEAF power electronics and 2014 Honda Accord Hybrid power electronics thermal management system were characterized. Comparison of the two power electronics thermal management systems was also conducted to provide insight into the various cooling strategies to understand the current SOA in thermal management for automotive power electronics and electric motors.« less
Development and Testing of a New Family of Supersonic Decelerators
NASA Technical Reports Server (NTRS)
Clark, Ian G.; Adler, Mark; Rivellini, Tommaso P.
2013-01-01
The state of the art in Entry, Descent, and Landing systems for Mars applications is largely based on technologies developed in the late 1960's and early 1970's for the Viking Lander program. Although the 2011 Mars Science Laboratory has made advances in EDL technology, these are predominantly in the areas of entry (new thermal protection systems and guided hypersonic flight) and landing (the sky crane architecture). Increases in entry mass, landed mass, and landed altitude beyond MSL capabilities will require advances predominantly in the field of supersonic decelerators. With this in mind, a multi-year program has been initiated to advance three new types of supersonic decelerators that would enable future large-robotic and human-precursor class missions to Mars.
External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Geng, Steven M.
2013-01-01
Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.
Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce
2012-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines
NASA Technical Reports Server (NTRS)
Radil, Kevin C.
1997-01-01
Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.
Nanoencapsulation of phase change materials for advanced thermal energy storage systems
Shchukina, E. M.; Graham, M.; Zheng, Z.
2018-01-01
Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes <1 μm). We also provide insight on future research, which should focus on (i) the development of multifunctional shell materials to improve lifespan and thermal properties and (ii) advanced mass manufacturing techniques for the economically viable production of PCM capsules, making it possible to utilize waste heat in intelligent passive thermal regulation systems, employing controlled, “on demand” energy release/uptake. PMID:29658558
Nanoencapsulation of phase change materials for advanced thermal energy storage systems.
Shchukina, E M; Graham, M; Zheng, Z; Shchukin, D G
2018-06-05
Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes <1 μm). We also provide insight on future research, which should focus on (i) the development of multifunctional shell materials to improve lifespan and thermal properties and (ii) advanced mass manufacturing techniques for the economically viable production of PCM capsules, making it possible to utilize waste heat in intelligent passive thermal regulation systems, employing controlled, "on demand" energy release/uptake.
Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Oeftering, Richard; Soeder, James F.; Beach, Ray
2014-01-01
The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1979-01-01
A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. Themore » occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.« less
Advanced In-Space Propulsion: "Exploring the Solar System"
NASA Technical Reports Server (NTRS)
Johnson, Les
2003-01-01
This viewgraph presentation reviews a number of advanced propulsion technologies for interplanetary spacecraft. The objective of the In Space Propulsion Technology Projects Office is to develop in-space propulsion technologies that can enable and/or benefit near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. The technologies profiled are divided into several categories: High Priority (aerocapture, next generation ion propulsion, solar sails); Medium Priority (advanced chemical propulsion, solar electric propulsion, Hall thrusters); Low Priority (solar thermal propulsion); and High Payoff/High Risk (1 g/sq m solar sails, momentum exchange tethers, and plasma sails).
NASA capabilities roadmap: advanced telescopes and observatories
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.
2005-01-01
The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
International collaboration on used fuel disposition crystalline rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yifeng; Gardner, Payton; Kim, Geon-Young
Active participation in international R&D is crucial for achieving the UFD long-term goals of conducting “experiments to fill data needs and confirm advanced modeling approaches” (by 2015) and of having a “robust modeling and experimental basis for evaluation of multiple disposal system options” (by 2020). DOE’s Office of Nuclear Energy (NE) and its Office of Used Fuel Disposition Research and Development (UFD) have developed a strategic plan to advance cooperation with international partners. The international collaboration on the evaluation of crystalline disposal media at Sandia National Laboratories (SNL) in FY16 focused on the following four activities: (1) thermal-hydrologic-mechanical-chemical modeling singlemore » fracture evolution; (2) simulations of flow and transport in Bedrichov Tunnel, Czech Republic, (3) completion of streaming potential testing at Korean Atomic Energy Research Institute (KAERI), and (4) technical data exchange with KAERI on thermal-hydrologic-mechanical (THM) properties and specifications of bentonite buffer materials. The first two activities are part of the Development of Coupled Models and their Validation against Experiments (DECOVALEX-2015) project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, Ch.; Mailhe, P.; Sontheimer, F.
2007-07-01
Fuel performance is a key factor for minimizing operating costs in nuclear plants. One of the important aspects of fuel performance is fuel rod design, based upon reliable tools able to verify the safety of current fuel solutions, prevent potential issues in new core managements and guide the invention of tomorrow's fuels. AREVA is developing its future global fuel rod code COPERNIC3, which is able to calculate the thermal-mechanical behavior of advanced fuel rods in nuclear plants. Some of the best practices to achieve this goal are described, by reviewing the three pillars of a fuel rod code: the database,more » the modelling and the computer and numerical aspects. At first, the COPERNIC3 database content is described, accompanied by the tools developed to effectively exploit the data. Then is given an overview of the main modelling aspects, by emphasizing the thermal, fission gas release and mechanical sub-models. In the last part, numerical solutions are detailed in order to increase the computational performance of the code, with a presentation of software configuration management solutions. (authors)« less
Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2013-09-01
Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.
Thermal batteries: A technology review and future directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guidotti, R.A.
Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couplesmore » that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.« less
Refractive Secondary Concentrators for Solar Thermal Applications
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Macosko, Robert P.
1999-01-01
The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.
Gas Analysis and Control Methods for Thermal Batteries
2013-09-01
THERMAL BATTERIES (PDFS) INC DOUG BRISCOE JEFFREY REINIG 3 ENERSYS ADVANCED SYSTEMS (PDFS) PAUL SCHISSELBAUER ANDREW SEIDEL TIM...MGMT ATTN RDRL CIO LL TECHL LIB 3 SANDIA NATIONAL LABORATORIES (PDFS) DANIEL WESOLOWSKI EDWARD PIEKOS ANNE GRILLET 2 ADVANCED
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.
Real-time simulation of thermal shadows with EMIT
NASA Astrophysics Data System (ADS)
Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul
2016-05-01
Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.
An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes
Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...
2017-07-10
Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less
NASA Technical Reports Server (NTRS)
Jones, Steven
2013-01-01
The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal transport, silica aerogel can be used in conjunction with a transparent polymeric material that blocks infrared radiation. The transparency of silica aerogel is typically greater than 90% for visible wavelengths from 500 nm to 900 nm for a 5 mm long path length.
Airframe Research and Technology for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.; Merski, N. Ronald; Glass, Christopher E.
2002-01-01
The Hypersonics Investment Area (HIA) within NASA's Advanced Space Transportation Program (ASTP) has the responsibility to develop hypersonic airbreathing vehicles for access to space. The Airframe Research and Technology (AR and T) Project, as one of six projects in the HIA, will push the state-of-the-art in airframe and vehicle systems for low-cost, reliable, and safe space transportation. The individual technologies within the project are focused on advanced, breakthrough technologies in airframe and vehicle systems and cross-cutting activities that are the basis for improvements in these disciplines. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas that will be addressed by the project include analysis and design tools, integrated vehicle health management (IVHM), composite (polymer, metal, and ceramic matrix) materials development, thermal/structural wall concepts, thermal protection systems, seals, leading edges, aerothermodynamics, and airframe/propulsion flowpath technology. Each of the technical areas or sub-projects within the Airframe R and T Project is described in this paper.
Nano-Particle Enhanced Polymer Materials for Space Flight Applications
NASA Technical Reports Server (NTRS)
Criss, Jim M., Jr.; Powell, William D.; Connell, John W.; Stallworth-Bordain, Yemaya; Brown, Tracy R.; Mintz, Eric A.; Schlea, Michelle R.; Shofne, Meisha L.
2009-01-01
Recent advances in materials technology both in polymer chemistry and nano-materials warrant development of enhanced structures for space flight applications. This work aims to develop spacecraft structures based on polymer matrix composites (PMCs) that utilize these advancements.. Multi-wall carbon nano-tubes (MWCNTs) are expected ·to increase mechanical performance, lower coefficient of thermal expansion (CTE), increase electrical conductivity (mitigate electrostatic charge), increase thermal conductivity, and reduce moisture absorption of the resultant space structures. In this work, blends of MWCNTs with PETI-330 were prepared and characterized. The nano-reinforced resins were then resin transfer molded (RTM) into composite panels using M55J carbon fabric and compared to baseline panels fabricated from a cyanate ester (RS-3) or a polyimide (PETI-330) resin containing no MWCNTs. In addition, methods of pre-loading the fabric with the MWCNTs were also investigated. The effects of the MWCNTs on the resin processing properties and on the composite end-use properties were also determined.
NASA Astrophysics Data System (ADS)
Dvonch, Curt; Smith, Christopher; Bourne, Stefanie; Blandino, Joseph R.; Miles, Jonathan J.
2006-04-01
The Infrared Development and Thermal Structures Laboratory (IDTSL) is an undergraduate research laboratory in the College of Integrated Science and Technology (CISAT) at James Madison University (JMU) in Harrisonburg, Virginia. During the 1997-98 academic year, Dr. Jonathan Miles established the IDTSL at JMU with the support of a collaborative research grant from the NASA Langley Research Center and with additional support from the College of Integrated Science and Technology at JMU. The IDTSL supports research and development efforts that feature non-contact thermal and mechanical measurements and advance the state of the art. These efforts all entail undergraduate participation intended to significantly enrich their technical education. The IDTSL is funded by major government organizations and the private sector and provides a unique opportunity to undergraduates who wish to participate in projects that push the boundaries of non-contact measurement technologies, and provides a model for effective hands-on, project oriented, student-centered learning that reinforces concepts and skills introduced within the Integrated Science and Technology (ISAT) curriculum. The lab also provides access to advanced topics and emerging measurement technologies; fosters development of teaming and communication skills in an interdisciplinary environment; and avails undergraduates of professional activities including writing papers, presentation at conferences, and participation in summer internships. This paper provides an overview of the Infrared Development and Thermal Structures Laboratory, its functionality, its record of achievements, and the important contribution it has made to the field of non-contact measurement and undergraduate education.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opalka, K.O.
1989-08-01
The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.
Battery Thermal Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew A
The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developedmore » unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.« less
Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.
2006-01-01
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration
High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2001-01-01
Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.
NASA Astrophysics Data System (ADS)
Ward, Brian
Solid oxide fuel cells (SOFCs) are energy conversion devices that use ceramic powders as a precursor material for their electrodes. Presently, powder manufacturers are encountering complications producing consistent precursor powders. Through various thermal, chemical and physical tests, such as DSC and XRD, a preliminary production standard will be developed.
New developments in photoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosencwaig, A.
1981-07-01
There have been several important new developments in the fields of photoacoustics and photoacoustic spectroscopy. Photoactoustic techniques are now being used in ferromagnetic and electron spin resonance experiments, and there have been rapid advances in Fourier-transform infrared photoacoustic spectroscopy. In addition, the calorimetric aspects of photoacoustics are now being extensively exploited for phase transition studies, and to perform thermal-wave imaging and microscopy.
Critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Hodge, P. E.; Lowell, C. E.; Nainiger, J. J.; Schultz, D. F.
1983-01-01
A critical technology base for utility and industrial gas turbines by planning the use of coal-derived fuels was studied. Development tasks were included in the following areas: (1) Combustion - investigate the combustion of coal-derived fuels and methods to minimize the conversion of fuel-bound nitrogen to NOx; (2) materials - understand and minimize hot corrosion; (3) system studies - integrate and focus the technological efforts. A literature survey of coal-derived fuels was completed and a NOx emissions model was developed. Flametube tests of a two-stage (rich-lean) combustor defined optimum equivalence ratios for minimizing NOx emissions. Sector combustor tests demonstrated variable air control to optimize equivalence ratios over a wide load range and steam cooling of the primary zone liner. The catalytic combustion of coal-derived fuels was demonstrated. The combustion of coal-derived gases is very promising. A hot-corrosion life prediction model was formulated and verified with laboratory testing of doped fuels. Fuel additives to control sulfur corrosion were studied. The intermittent application of barium proved effective. Advanced thermal barrier coatings were developed and tested. Coating failure modes were identified and new material formulations and fabrication parameters were specified. System studies in support of the thermal barrier coating development were accomplished.
NASA Technical Reports Server (NTRS)
Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.
2005-01-01
Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.
Higher Order Thermal Lattice Boltzmann Model
NASA Astrophysics Data System (ADS)
Sorathiya, Shahajhan; Ansumali, Santosh
2013-03-01
Lattice Boltzmann method (LBM) modelling of thermal flows, compressible and micro flows requires an accurate velocity space discretization. The sub optimality of Gauss-Hermite quadrature in this regard is well known. Most of the thermal LBM in the past have suffered from instability due to lack of proper H-theorem and accuracy. Motivated from these issues, the present work develops along the two works and and imposes an eighth higher order moment to get correct thermal physics. We show that this can be done by adding just 6 more velocities to D3Q27 model and obtain a ``multi-speed on lattice thermal LBM'' with 33 velocities in 3D and calO (u4) and calO (T4) accurate fieq with a consistent H-theorem and inherent numerical stability. Simulations for Rayleigh-Bernard as well as velocity and temperature slip in micro flows matches with analytical results. Lid driven cavity set up for grid convergence is studied. Finally, a novel data structure is developed for HPC. The authors express their gratitude for computational resources and financial support provide by Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India.
Silicon carbide optics for space and ground based astronomical telescopes
NASA Astrophysics Data System (ADS)
Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court
2012-09-01
Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).
NASA Technical Reports Server (NTRS)
Pons, R. L.; Grigsby, C. E.
1980-01-01
Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Van, Luong
1992-01-01
The objective of this paper are to develop a multidisciplinary computational methodology to predict the hot-gas-side and coolant-side heat transfer and to use it in parametric studies to recommend optimized design of the coolant channels for a regeneratively cooled liquid rocket engine combustor. An integrated numerical model which incorporates CFD for the hot-gas thermal environment, and thermal analysis for the liner and coolant channels, was developed. This integrated CFD/thermal model was validated by comparing predicted heat fluxes with those of hot-firing test and industrial design methods for a 40 k calorimeter thrust chamber and the Space Shuttle Main Engine Main Combustion Chamber. Parametric studies were performed for the Advanced Main Combustion Chamber to find a strategy for a proposed combustion chamber coolant channel design.
A Thermal Management Systems Model for the NASA GTX RBCC Concept
NASA Technical Reports Server (NTRS)
Traci, Richard M.; Farr, John L., Jr.; Laganelli, Tony; Walker, James (Technical Monitor)
2002-01-01
The Vehicle Integrated Thermal Management Analysis Code (VITMAC) was further developed to aid the analysis, design, and optimization of propellant and thermal management concepts for advanced propulsion systems. The computational tool is based on engineering level principles and models. A graphical user interface (GUI) provides a simple and straightforward method to assess and evaluate multiple concepts before undertaking more rigorous analysis of candidate systems. The tool incorporates the Chemical Equilibrium and Applications (CEA) program and the RJPA code to permit heat transfer analysis of both rocket and air breathing propulsion systems. Key parts of the code have been validated with experimental data. The tool was specifically tailored to analyze rocket-based combined-cycle (RBCC) propulsion systems being considered for space transportation applications. This report describes the computational tool and its development and verification for NASA GTX RBCC propulsion system applications.
NASA Astrophysics Data System (ADS)
Shi, Wenwu; Pinto, Brian
2017-12-01
Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.
Advanced Carbon Fabric/Phenolics for Thermal Protection Applications.
1982-02-01
structural properties are lower than rayon-based carbon fabriL analogues, they appear to be adequate for most ablative heat- shielding applications...34Development of Ablative Nozzles. Part II Ablative Nozzle Concept, Scaling Law , and Test Results," IAS Mtg. on Large Rockets, Sacramento, CA., Oct. 30
Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie; Mireles, Omar
2012-01-01
A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).
Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules
NASA Astrophysics Data System (ADS)
O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon
2016-01-01
Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.
Lightweight thermal energy recovery system based on shape memory alloys: a DOE ARPA-E initiative
NASA Astrophysics Data System (ADS)
Browne, Alan L.; Keefe, Andrew C.; Alexander, Paul W.; Mankame, Nilesh; Usoro, Patrick; Johnson, Nancy L.; Aase, Jan; Sarosi, Peter; McKnight, Geoffrey P.; Herrera, Guillermo; Churchill, Christopher; Shaw, John; Brown, Jeff
2012-04-01
Over 60% of energy that is generated is lost as waste heat with close to 90% of this waste heat being classified as low grade being at temperatures less than 200°C. Many technologies such as thermoelectrics have been proposed as means for harvesting this lost thermal energy. Among them, that of SMA (shape memory alloy) heat engines appears to be a strong candidate for converting this low grade thermal output to useful mechanical work. Unfortunately, though proposed initially in the late 60's and the subject of significant development work in the 70's, significant technical roadblocks have existed preventing this technology from moving from a scientific curiosity to a practical reality. This paper/presentation provides an overview of the work performed on SMA heat engines under the US DOE (Department of Energy) ARPA-E (Advanced Research Projects Agency - Energy) initiative. It begins with a review of the previous art, covers the identified technical roadblocks to past advancement, presents the solution path taken to remove these roadblocks, and describes significant breakthroughs during the project. The presentation concludes with details of the functioning prototypes developed, which, being able to operate in air as well as fluids, dramatically expand the operational envelop and make significant strides towards the ultimate goal of commercial viability.
Design and implementation of a system for laser assisted milling of advanced materials
NASA Astrophysics Data System (ADS)
Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli
2016-09-01
Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.
NASA Technical Reports Server (NTRS)
Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.
2015-01-01
The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.
An historical collection of papers on nuclear thermal propulsion
NASA Astrophysics Data System (ADS)
The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.
Research opportunities to advance solar energy utilization.
Lewis, Nathan S
2016-01-22
Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.
Nanocomposites in Multifuntional Structures for Spacecraft Platforms
NASA Astrophysics Data System (ADS)
Marcos, J.; Mendizabal, M.; Elizetxea, C.; Florez, S.; Atxaga, G.; Del Olmo, E.
2012-07-01
The integration of functionalities as electrical, thermal, power or radiation shielding inside carrier electronic boxes, solar panels or platform structures allows reducing weight, volume, and harness for spacecraft. The multifunctional structures represent an advanced design approach for space components and subsystems. The development of such multifunctional structures aims the re-engineering traditional metallic structures by composites in space, which request to provide specific solutions for thermal conductivity, EMI-EMC, radiation shielding and integration. The use of nanomaterials as CNF and nano-adds to reinforce composite structures allows obtaining local solutions for improving electrical conductivity, thermal conductivity and radiation shielding. The paper summarises the results obtained in of three investigations conducted by Tecnalia based on carbon nanofillers for improving electro-thermal characteristics of spacecraft platform, electronic substrates and electronics boxes respectively.
Power Electronics Thermal Management R&D (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, S.
2014-11-01
This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined withmore » higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.« less
Comparison of electrochemical and thermal storage for hybrid parabolic dish solar power plants
NASA Technical Reports Server (NTRS)
Steele, H. L.; Wen, L.
1981-01-01
The economic and operating performance of a parabolic point focus array of solar electricity generators combined with either battery or thermal energy storage are examined. Noting that low-cost, mass-producible power generating units are under development for the point focus of distributed dishes, that Zn-Cl battery tests will begin in 1981 and a 100 kWh Na-S battery in 1983, the state of thermal storage requires acceleration to reach the prototype status of the batteries. Under the assumptions of 10,000 units/yr with an expected 30 yr lifetime, cost comparisons are developed for 10 types of advanced batteries. A 5 MWe plant with full thermal or 80% battery storage discharge when demand occurs in conditions of no insolation is considered, specifically for Fe-Cr redox batteries. A necessity for the doubling of fuel prices from 1980 levels by 1990 is found in order to make the systems with batteries economically competitive.
Advanced Gas Turbine (AGT) technology development
NASA Technical Reports Server (NTRS)
1983-01-01
A 74.5 kW (100 hp) automotive gas turbine was evaluated. The engine structure, bearings, oil system, and electronics were demonstrated and no shaft dynamics or other vibration problem were encountered. Areas identified during the five tests are the scroll retention features, and transient thermal deflection of turbine backplates. Modifications were designed. Seroll retention is addressed by modifying the seal arrangement in front of the gasifier turbine assembly, which will increase the pressure load on the scroll in the forward direction and thereby increase the retention forces. the backplate thermal deflection is addressed by geometric changes and thermal insulation to reduce heat input. Combustor rig proof testing of two ceramic combustor assemblies was completed. The combustor was modified to incorporate slots and reduce sharp edges, which should reduce thermal stresses. The development work focused on techniques to sinter these barrier materials onto the ceramic rotors with successes for both material systems. Silicon carbide structural parts, including engine configuration gasifier rotors (ECRs), preliminary gasifier scroll parts, and gasifier and power turbine vanes are fabricated.
NASA Astrophysics Data System (ADS)
Shrestha, K.; Gofryk, K.
2018-04-01
We have designed and developed a new experimental setup, based on the 3ω method, to measure thermal conductivity, heat capacity, and electrical resistivity of a variety of samples in a broad temperature range (2-550 K) and under magnetic fields up to 9 T. The validity of this method is tested by measuring various types of metallic (copper, platinum, and constantan) and insulating (SiO2) materials, which have a wide range of thermal conductivity values (1-400 W m-1 K-1). We have successfully employed this technique for measuring the thermal conductivity of two actinide single crystals: uranium dioxide and uranium nitride. This new experimental approach for studying nuclear materials will help us to advance reactor fuel development and understanding. We have also shown that this experimental setup can be adapted to the Physical Property Measurement System (Quantum Design) environment and/or other cryocooler systems.
Fabrication of near-net shape graphite/magnesium composites for large mirrors
NASA Astrophysics Data System (ADS)
Wendt, Robert; Misra, Mohan
1990-10-01
Successful development of space-based surveillance and laser systems will require large precision mirrors which are dimensionally stable under thermal, static, and dynamic (i.e., structural vibrations and retargeting) loading conditions. Among the advanced composites under consideration for large space mirrors, graphite fiber reinforced magnesium (Gr/Mg) is an ideal candidate material that can be tailored to obtain an optimum combination of properties, including a high modulus of elasticity, zero coefficient of thermal expansion, low density, and high thermal conductivity. In addition, an innovative technique, combining conventional filament winding and vacuum casting has been developed to produce near-net shape Gr/Mg composites. This approach can significantly reduce the cost of fabricating large mirrors by decreasing required machining. However, since Gr/Mg cannot be polished to a reflective surface, plating is required. This paper will review research at Martin Marietta Astronautics Group on Gr/Mg mirror blank fabrication and measured mechanical and thermal properties. Also, copper plating and polishing methods, and optical surface characteristics will be presented.
Novel Hybrid Ablative/Ceramic Heatshield for Earth Atmospheric Re-Entry
NASA Astrophysics Data System (ADS)
Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.; de Montburn, A.; Descomps, M.; Zuber, C.; Rotaermel, W.; Hald, H.; Pereira, C.; Mergia, K.; Triantou, K.; Marinou, A.; Vekinis, G.; Ionescu, G.; Ban, C.; Stefan, A.; Leroy, V.; Bernard, D.; Massuti, B.; Herdrich, G.
2014-06-01
Original approaches based on ablative materials and novel TPS solutions are required for space applications, where resistance to extreme oxidative environments and high temperatures are required. For future space exploration the demands for the thermal shield go beyond the current state-of-the-art. Therefore, the development of new thermal protection materials and systems at a reasonable mass budget is absolutely essential to ensure European non-dependence on corresponding restricted technologies. The three year long FP7 project HYDRA aims at the development of a novel thermal protection system through the integration of a low density ablative outer-shield on top of an advanced thermo-structural ceramic composite layer and will provide an innovative technology solution consistent with the capabilities of European technologies and material providers. This paper summarizes the current status of the scientific activities carried out after two years of progress in terms of design, integration and verification of a robust and lightweight thermal shield solution for atmospheric earth re-entry.
Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging
Cherukula, Kondareddy; Manickavasagam Lekshmi, Kamali; Uthaman, Saji; Cho, Kihyun; Cho, Chong-Su; Park, In-Kyu
2016-01-01
Nanotechnology has enabled the development of many alternative anti-cancer approaches, such as thermal therapies, which cause minimal damage to healthy cells. Current challenges in cancer treatment are the identification of the diseased area and its efficient treatment without generating many side effects. Image-guided therapies can be a useful tool to diagnose and treat the diseased tissue and they offer therapy and imaging using a single nanostructure. The present review mainly focuses on recent advances in the field of thermal therapy and imaging integrated with multifunctional inorganic nanoparticles. The main heating sources for heat-induced therapies are the surface plasmon resonance (SPR) in the near infrared region and alternating magnetic fields (AMFs). The different families of inorganic nanoparticles employed for SPR- and AMF-based thermal therapies and imaging are described. Furthermore, inorganic nanomaterials developed for multimodal therapies with different and multi-imaging modalities are presented in detail. Finally, relevant clinical perspectives and the future scope of inorganic nanoparticles in image-guided therapies are discussed. PMID:28335204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Jeffrey
Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed tomore » achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70, Taurus 65, Titan 130, Titan 250 and Mercury 50). This TBC coating system significantly outperformed all other TBC systems evaluated under the program. The initial field unit, with the 40 mil advanced TBC developed under this program, has far exceeded the 4,000-hour requirement of the program, accumulating over 20,000 hours of commercial operation at Qualcomm Inc. in San Diego, CA. The 40 mil advanced TBC remains in excellent condition, with no evidence of chipping or spalling. The engine will continue operation until the unit is due for overhaul at approximately 30,000 hours. The Oxide Dispersion Strengthened (ODS) alloy injector tip testing and evaluation was also successful, however, the ODS injector tip development on this program was terminated, primarily due to the fact that the Mercury 50 injector tip was redesigned (Generation 3) by Combustion Engineering.« less
Experimental Investigation on Thermal Physical Properties of an Advanced Polyester Material
NASA Astrophysics Data System (ADS)
Guangfa, Gao; Shujie, Yuan; Ruiyuan, Huang; Yongchi, Li
Polyester materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced polyester material, a series of experiments for thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt
1999-07-31
This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.
Overview of liquid lubricants for advanced aircraft
NASA Technical Reports Server (NTRS)
Loomis, W. R.
1982-01-01
An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed.
NASA Technical Reports Server (NTRS)
Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This
Development and fabrication of an advanced liquid cooling garment
NASA Technical Reports Server (NTRS)
Hixon, C. W.
1978-01-01
A tube/fin concept liquid cooling garment head cooler was developed, fabricated and delivered to NASA-ARC. The head cooler was fabricated from polyurethane film which sandwiches the transport fluid tubing and a thermally conductive fin material. The head cooler garment is sewn to form a skull cap and covered with a comfort liner. In addition, two Neonate heating garments were fabricated and supplied to NASA for further finishing and use in medical tests. The resulting garment is flexible, elastic and conforms to the head comfortably. Tests on a tube/fin element of identical construction as the head cooler demonstrated good thermal effectiveness. Use of commercially available materials and development of relatively simple fabrication techniques give the potential for a low garment cost.
Three dimensional calculation of thermonuclear ignition conditions for magnetized targets
NASA Astrophysics Data System (ADS)
Cortez, Ross; Cassibry, Jason; Lapointe, Michael; Adams, Robert
2017-10-01
Fusion power balance calculations, often performed using analytic methods, are used to estimate the design space for ignition conditions. In this paper, fusion power balance is calculated utilizing a 3-D smoothed particle hydrodynamics code (SPFMax) incorporating recent stopping power routines. Effects of thermal conduction, multigroup radiation emission and nonlocal absorption, ion/electron thermal equilibration, and compressional work are studied as a function of target and liner parameters and geometry for D-T, D-D, and 6LI-D fuels to identify the potential ignition design space. Here, ignition is defined as the condition when fusion particle deposition equals or exceeds the losses from heat conduction and radiation. The simulations are in support of ongoing research with NASA to develop advanced propulsion systems for rapid interplanetary space travel. Supported by NASA Innovative Advanced Concepts and NASA Marshall Space Flight Center.
NASA Advanced Life Support Technology Testing and Development
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2012-01-01
Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.
Thermal Properties Measurement Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, Jon; Braase, Lori; Papesch, Cynthia
2015-08-01
The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U 3Si 2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling andmore » simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).« less
Overview of Experimental Capabilities - Supersonics
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2007-01-01
This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.
Advanced Image Processing for Defect Visualization in Infrared Thermography
NASA Technical Reports Server (NTRS)
Plotnikov, Yuri A.; Winfree, William P.
1997-01-01
Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.
Effect of NASA advanced designs on thermal behavior of Ni-H2 cells
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, Olga D.
1987-01-01
As part of an overall effort to advance the technology of nickel-hydrogen batteries for low Earth orbit (LEO) applications, advanced designs for individual pressure vessel (IPV) nickel-hydrogen cells have been conceived. These designs incorporate alternative methods of oxygen recombination which affect the thermal behavior of the cells. The effect of these oxygen recombination methods on the cell temperature profiles is examined.
Effect of NASA advanced designs on thermal behavior of Ni-H2 cells
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, Olga D.
1988-01-01
As part of an overall effort to advance the technology of nickel-hydrogen batteries for low earth orbit (LEO) applications, advanced designs for individual pressure vessel (IPV) nickel-hydrogen cells have been conceived. These designs incorporate alternative methods of oxygen recombination which affect the thermal behavior of the cells. The effect of these oxygen recombination methods on the cell temperature profiles will be examined.
2013-08-22
charging system for increased power density. Compact two-stage turbocharger systems. UNCLASSIFIED: Distribution Statement A. Approved for public...advanced waste heat recovery, solid state cooling, turbocharging /turbocompounding UNCLASSIFIED: Distribution Statement A. Approved for public release... Turbocharging For Official Use Only For Official Use Only 77 •System – develop components capable of handling multiple roles within thermal
The reports describe an exploratory development program to identify, evaluate, and demonstrate dry techniques for significantly reducing NOx from thermal and fuel-bound sources in stationary gas turbine engines. Volume 1 covers Phase I of the four-phase effort. In Phase I, duty c...
Advanced materials for energy storage.
Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming
2010-02-23
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-08-01
Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less
Recent advances and issues in development of silicon carbide composites for fusion applications
NASA Astrophysics Data System (ADS)
Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.
2009-04-01
Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.
NASA Technical Reports Server (NTRS)
2005-01-01
The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.
Conceptual design study: Forest Fire Advanced System Technology (FFAST)
NASA Technical Reports Server (NTRS)
Nichols, J. D.; Warren, J. R.
1986-01-01
An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Zhu, Dongming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-03-01
Ceramic thermal barrier coatings (TBCs) will play an increasingly important role in advanced gas turbine engines due to their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency, and improved reliability goals. Advanced multicomponent zirconia (ZrO2)-based TBCs are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high-temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed ZrO2-based defect cluster TBCs was investigated at 1163°C using 45 min hot-time cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with x-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
NASA Technical Reports Server (NTRS)
Tran, Huy Kim; Sawko, Paul M.
1992-01-01
Silicon carbide (SiC) fiber is a material that may be used in advanced thermal protection systems (TPS) for future aerospace vehicles. SiC fiber's mechanical properties depend greatly on the presence or absence of sizing and its microstructure. In this research, silicon dioxide is found to be present on the surface of the fiber. Electron Spectroscopy for Chemical Analysis (ESCA) and Scanning Electron Microscopy (SEM) show that a thin oxide layer (SiO2) exists on the as-received fibers, and the oxide thickness increases when the fibers are exposed to high temperature. ESCA also reveals no evidence of Si-C bonding on the fiber surface on both as-received and heat treated fibers. The silicon oxide layer is thought to signal the decomposition of SiC bonds and may be partially responsible for the degradation in the breaking strength observed at temperatures above 400 C. The variation in electrical resistivity of the fibers with increasing temperature indicates a transition to a higher band gap material at 350 to 600 C. This is consistent with a decomposition of SiC involving silicon oxide formation.
Solar Thermoelectricity via Advanced Latent Heat Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.
2016-05-31
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steyerl, A.
1993-09-01
Within the past two and one half years of the project ``Surface Physics With Cold and Thermal Neutron Reflectometry`` a new thermal neutron reflectometer was constructed at the Rhode Island Nuclear Science Center (RINSC). It was used to study various liquid and solid surfaces. Furthermore, neutron reflection experiments were be un at different laboratories in collaboration with Dr. G.P. Fetcher (at Argonne National Laboratory), Dr. T. Russell (IBM Almaden) and Drs. S.K. Satija and A. Karim (at the National Institute for Standards and Technology). The available resources allowed partial construction of an imaging system for ultracold neutrons. It is expectedmore » to provide an extremely high resolution in momentum and energy transfer in surface studies using neutron reflectometry. Much of the work reported here was motivated by the possibility of later implementation at the planned Advanced Neutron Source at Oak Ridge. In a separate project the first concrete plans for an intense source of ultracold neutrons for the Advanced Neutron Source were developed.« less
Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements
NASA Technical Reports Server (NTRS)
Wilson, Dcott D.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.
On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis H. LeMieux
2004-10-01
Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.« less
Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements
NASA Technical Reports Server (NTRS)
Wilson, Scott D.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.
Development of improved coating for advanced carbon-carbon components
NASA Technical Reports Server (NTRS)
Yamaki, Y. R.; Brown, J. J.
1984-01-01
Reaction sintered silicon nitride (RSSN) was studied as a substitute coating material on the carbon-carbon material (RCC) presently used as a heat shield on the space shuttle, and on advanced carbon-carbon (ACC), a later development. On RCC, RSSN showed potential in a 538 C (1000 F) screening test in which silicon carbide coated material exhibits its highest oxidation rate; RSSN afforded less protection to ACC because of a larger thermal expansion mismatch. Organosilicon densification and metallic silicon sealing methods were studied as means of further increasing the oxidation resistance of the coating, and some improvement was noted when these methods were employed.
The instrument development status of hyper-spectral imager suite (HISUI)
NASA Astrophysics Data System (ADS)
Itoh, Yoshiyuki; Kawashima, Takahiro; Inada, Hitomi; Tanii, Jun; Iwasaki, Akira
2012-11-01
The hyper-multi spectral mission named HISUI (Hyper-spectral Imager SUIte) is the next Japanese earth observation project. This project is the follow up mission of the Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) and Advanced Land Imager (ALDS). HISUI is composed of hyperspectral radiometer with higher spectral resolution and multi-spectral radiometer with higher spatial resolution. The development of functional evaluation model was carried out to confirm the spectral and radiometric performance prior to the flight model manufacture phase. This model contains the VNIR and SWIR spectrograph, the VNIR and SWIR detector assemblies with a mechanical cooler for SWIR, signal processing circuit and on-board calibration source.
New Developments in Nickel-Hydrogen Dependent Pressure Vessel (DPV) Cell and Battery Design
NASA Technical Reports Server (NTRS)
Caldwell, Dwight B.; Fox, Chris L.; Miller, Lee E.
1997-01-01
THe Dependent Pressure Vessel (DPV) Nickel-Hydrogen (NiH2) design is being developed as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced part count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risk.
Comparison of the Fatigue Behavior of Copper Alloys
NASA Technical Reports Server (NTRS)
Lerch, Brad; Ellis, David
2006-01-01
This presentation is about the development of advanced copper alloys with high thermal conductivity, good creep strength, and adequate fatigue strength for rocket engine applications. It also focuses on the commercial availability of the advanced alloy-GRCop-84 developed at NASA-GRC. The presentation's conclusions are that GRCop-84 has equivalent or better isothermal fatigue lives compared to other commercially available copper alloys, that GRCop-84 can be fabricated in various forms with minimal change in the fatigue lives, that it is equivalent in sothermal, fatigue to AMZIRC at moderate temperatures, and that Narloy-Z is equivalent in fatigue capabilities to GRCop-84 at 400C and below.
Metal- and intermetallic-matrix composites for aerospace propulsion and power systems
NASA Astrophysics Data System (ADS)
Doychak, J.
1992-06-01
Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.
Thermal Protection System of the Space Shuttle
NASA Technical Reports Server (NTRS)
Cleland, John; Iannetti, Francesco
1989-01-01
The Thermal Protection System (TPS), introduced by NASA, continues to incorporate many of the advances in materials over the past two decades. A comprehensive, single-volume summary of the TPS, including system design rationales, key design features, and broad descriptions of the subsystems of TPS (E.g., reusable surface insulation, leading edge structural, and penetration subsystems) is provided. Details of all elements of TPS development and application are covered (materials properties, manufacturing, modeling, testing, installation, and inspection). Disclosures and inventions are listed and potential commercial application of TPS-related technology is discussed.
Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines
NASA Technical Reports Server (NTRS)
Stephens, G. E.
1980-01-01
The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.
Nanomaterials for Space Exploration Applications
NASA Technical Reports Server (NTRS)
Moloney, Padraig G.
2006-01-01
Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.
Electrical Resistivity Measurements: a Review
NASA Astrophysics Data System (ADS)
Singh, Yadunath
World-wide interest on the use of ceramic materials for aerospace and other advanced engineering applications, has led to the need for inspection techniques capable of detecting unusually electrical and thermal anomalies in these compounds. Modern ceramic materials offer many attractive physical, electrical and mechanical properties for a wide and rapidly growing range of industrial applications; moreover specific use may be made of their electrical resistance, chemical resistance, and thermal barrier properties. In this review, we report the development and various techniques for the resistivity measurement of solid kind of samples.
Multiscale Pores in TBCs for Lower Thermal Conductivity
NASA Astrophysics Data System (ADS)
Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun
2017-08-01
The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.
Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria
2008-01-01
The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.
Testing in Support of Space Fission System Development and Qualification
NASA Technical Reports Server (NTRS)
Houts, Mike; Bragg-Sitton, Shannon; Garber, Anne; Godfrey, Tom; Martin, Jim; Pearson, Boise; Webster, Kenny
2007-01-01
Extensive data would be required for the qualification of a fission surface power (FSP) system. The strategy for qualifying a FSP system could have a significant programmatic impact. This paper explores potential options that could be used for qualifying FSP systems, including cost-effective means for obtaining required data. three methods for obtaining qualification data are analysis, non-nuclear testing, and nuclear testing. It has been over 40 years since the US qualified a space reactor for launch. During that time, advances have been made related to all three methods. Perhaps the greatest advancement has occurred in the area of computational tools for design and analysis. Tools that have been developed, coupled with modem computers, would have a significant impact on a FSP qualification. This would be especially true for systems with materials and fuels operating well within temperature, irradiation damage, and burnup limits. The ability to perform highly realistic non-nuclear testing has also advanced throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modem FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.} and extensive data to be taken from the core region. Both steady-state and transient operation can be tested. For transient testing, reactivity feedback is calculated (or measured in cold/warm criticals) based on reactor temperature and/or dimensional changes. Pin power during a transient is then calculated based on the reactivity feedback that would occur given measured values of temperature and/or dimensional change. In this way nonnuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. Realistic non-nuclear testing is most useful for systems operating within known temperature, irradiation damage, and burnup capabilities.
Thermal design of composite materials high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
The thermal aspects of using filamentary composite materials as primary airframe structures on advanced atmospheric entry spacecraft such as the space shuttle vehicle were investigated to identify and evaluate potential design approaches for maintaining composite structures within allowable temperature limits at thermal protection system (TPS) attachments and/or penetrations. The investigation included: (1) definition of thermophysical data for composite material structures; (2) parametric characterization and identification of the influence of the aerodynamic heating and attachment design parameters on composite material temperatures; (3) conceptual design, evaluation, and detailed thermal analyses of temperature limiting design concepts; and (4) the development of experimental data for assessment of the thermal design methodologies and data used for evaluation of the temperature-limiting design concepts. Temperature suppression attachment concepts were examined for relative merit. The simple isolator was identified as the most weight-effective concept and was selected for detail design, thermal analysis, and testing. Tests were performed on TPS standoff attachments to boron/aluminum, boron/polyimide and graphite/epoxy composite structures.
Low-Thermal-Conductivity Pyrochlore Oxide Materials Developed for Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Zhu, Dong-Ming
2005-01-01
When turbine engines operate at higher temperatures, they consume less fuel, have higher efficiencies, and have lower emissions. The upper-use temperatures of the base materials (superalloys, silicon-based ceramics, etc.) used for the hot-section components of turbine engines are limited by the physical, mechanical, and corrosion characteristics of these materials. Thermal barrier coatings (TBCs) are applied as thin layers on the surfaces of these materials to further increase the operating temperatures. The current state-of-the-art TBC material in commercial use is partially yttria-stabilized zirconia (YSZ), which is applied on engine components by plasma spraying or by electron-beam physical vapor deposition. At temperatures higher than 1000 C, YSZ layers are prone to sintering, which increases thermal conductivity and makes them less effective. The sintered and densified coatings can also reduce thermal stress and strain tolerance, which can reduce the coating s durability significantly. Alternate TBC materials with lower thermal conductivity and better sintering resistance are needed to further increase the operating temperature of turbine engines.
Psikuta, Agnes; Kuklane, Kalev; Bogdan, Anna; Havenith, George; Annaheim, Simon; Rossi, René M
2016-03-01
Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbee, T. W.; Yee, W.
The objective of this project was to develop engineered nanostructure laminate materials for applications in gas turbine engines. Although the focus of this effort was on developing improved · thermal barrier coatings, the data and experience gained through such project tasks as basic theoretical work and modeling of composition/structure property relationships can be applied. to the development of microscructure laminates for other·applications.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Fabanich, William A.; Schmitz, Paul C.
2012-01-01
This paper presents a three-dimensional Advanced Stirling Radioisotope Generator (ASRG) thermal power model that was built using the Thermal Desktop SINDA/FLUINT thermal analyzer. The model was correlated with ASRG engineering unit (EU) test data and ASRG flight unit predictions from Lockheed Martin's Ideas TMG thermal model. ASRG performance under (1) ASC hot-end temperatures, (2) ambient temperatures, and (3) years of mission for the general purpose heat source fuel decay was predicted using this model for the flight unit. The results were compared with those reported by Lockheed Martin and showed good agreement. In addition, the model was used to study the performance of the ASRG flight unit for operations on the ground and on the surface of Titan, and the concept of using gold film to reduce thermal loss through insulation was investigated.
OTEC to hydrogen fuel cells - A solar energy breakthrough
NASA Astrophysics Data System (ADS)
Roney, J. R.
Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.
Operational forecasting of human-biometeorological conditions
NASA Astrophysics Data System (ADS)
Giannaros, T. M.; Lagouvardos, K.; Kotroni, V.; Matzarakis, A.
2018-03-01
This paper presents the development of an operational forecasting service focusing on human-biometeorological conditions. The service is based on the coupling of numerical weather prediction models with an advanced human-biometeorological model. Human thermal perception and stress forecasts are issued on a daily basis for Greece, in both point and gridded format. A user-friendly presentation approach is adopted for communicating the forecasts to the public via the worldwide web. The development of the presented service highlights the feasibility of replacing standard meteorological parameters and/or indices used in operational weather forecasting activities for assessing the thermal environment. This is of particular significance for providing effective, human-biometeorology-oriented, warnings for both heat waves and cold outbreaks.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2003-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
1990-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
Chen, Jin; Huang, Xingyi; Sun, Bin; Wang, Yuxin; Zhu, Yingke; Jiang, Pingkai
2017-09-13
The continuous evolution toward semiconductor technology in the "more-than-Moore" era and rapidly increasing power density of modern electronic devices call for advanced thermal interface materials (TIMs). Here, we report a novel strategy to construct flexible polymer nanocomposite TIMs for advanced thermal management applications. First, aligned polyvinyl alcohol (PVA) supported and interconnected 2D boron nitride nanosheets (BNNSs) composite fiber membranes were fabricated by electrospinning. Then, the nanocomposite TIMs were constructed by rolling the PVA/BNNS composite fiber membranes to form cylinders and subsequently vacuum-assisted impregnation of polydimethylsiloxane (PDMS) into the porous cylinders. The nanocomposite TIMs not only exhibit a superhigh through-plane thermal conductivity enhancement of about 10 times at a low BNNS loading of 15.6 vol % in comparison with the pristine PDMS but also show excellent electrical insulating property (i.e., high volume electrical resistivity). The outstanding thermal management capability of the nanocomposite TIMs was practically confirmed by capturing the surface temperature variations of a working LED chip integrated with the nanocomposite TIMs.
NASA Astrophysics Data System (ADS)
Guangfa, Gao; Yongchi, Li; Zheng, Jing; Shujie, Yuan
Fiber reinforced composite materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced glass fiber reinforced composite material, a series of experiments for measuring thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.
Large-area sheet task: Advanced dendritic-web-growth development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Schruben, J.
1983-01-01
Thermally generated stresses in the growing web crystal were reduced. These stresses, which if too high cause the ribbon to degenerate, were reduced by a factor of three, resulting in the demonstrated growth of high-quality web crystals to widths of 5.4 cm. This progress was brought about chiefly by the application of thermal models to the development of low-stress growth configurations. A new temperature model was developed which can analyze the thermal effects of much more complex lid and top shield configurations than was possible with the old lumped shield model. Growth experiments which supplied input data such as actual shield temperature and melt levels were used to verify the modeling results. Desirable modifications in the melt level-sensing circuitry were made in the new experimental web growth furnace, and this furnace has been used to carry out growth experiments under steady-state conditions. New growth configurations were tested in long growth runs at Westinghouse AESD which produced wider, lower stress and higher quality web crystals than designs previously used.
NASA Astrophysics Data System (ADS)
Meybodi, M. K.; Dobrev, I.; Klausmeyer, P.; Harrington, E. J.; Furlong, C.
Quantitative techniques to characterize thermomechanical effects of light on canvas paintings are necessary in order to better understand the deleterious effects that light has on precious art collections in museum exhibitions. In this paper, we present advances in the development of a customized laser shearography system for temporal characterization of inplane displacements of canvas paintings when subjected to specific lighting conditions. The shearography system is synchronized with a thermal IR camera and concomitant measurements of derivatives of displacements along two orthogonal shearing directions as well as thermal fields are performed. Due to the nature of the measurements, we have developed real-time temporal phase unwrapping algorithms and high-resolution Fast Fourier Transform (FFT) methods to calibrate applied shearing levels. In addition, we are developing methods to isolate thermally-induced components from randomly-induced mechanical vibrations that occur in museum environments by application of IR imaging data. Representative examples are shown, which illustrate capabilities to measure, detect, and map crack propagation as a function of lighting conditions and time.
NASA Technical Reports Server (NTRS)
Gurtler, R. W.; Baghdadi, A.; Wise, J.; Ellis, R. J.
1977-01-01
The Ribbon-to-Ribbon (RTR) approach to silicon ribbon growth was investigated. An existing RTR apparatus, RTR#1, was upgraded to allow for 5 cm wide ribbon growth with a finite stroke length of at least 15 cm. A second RTR apparatus, RTR#2, was designed, built, and operated which utilizes continuous feed mechanisms and allows continuous growth of 7.5 cm wide ribbons. RTR#2 includes development and utilization of advanced beam scanning (or shaping), high power lasers, and thermal profile modification elements to attain maximum growth velocities (with a design goal of 18 cm/min). Materials studies, process development, and thermal analyses are also described. Residual stresses and dislocation densities were minimized through theoretical and experimental efforts towards optimization of thermal profiles. Growth runs were performed on RTR#2 and solar cells were fabricated which demonstrated efficiencies greater than 10%.
Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion
NASA Technical Reports Server (NTRS)
Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur
2017-01-01
Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.
IMAPS Device Packaging Conference 2017 - Engineered Micro Systems & Devices Track
NASA Technical Reports Server (NTRS)
Varnavas, Kosta
2017-01-01
NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anh Bui; Nam Dinh; Brian Williams
In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Suchmore » sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.« less
Advances in photo-thermal infrared imaging microspectroscopy
NASA Astrophysics Data System (ADS)
Furstenberg, Robert; Kendziora, Chris; Papantonakis, Michael; Nguyen, Viet; McGill, Andrew
2013-05-01
There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-situ study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
ZERODUR thermo-mechanical modelling and advanced dilatometry for the ELT generation
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas
2016-07-01
Large amounts of low thermal expansion material are required for the upcoming ELT projects. The main mirror is designed using several hundreds of hexagonal 1.4 m sized mirror blanks. The M2 and M3 are monolithic 4 m class mirror blanks. The mirror blank material needs to fulfill tight requirements regarding CTE specification and homogeneity. Additionally the mirror blanks need to be dimensionally stable for more than 30 years. In particular, stress effects due to the changes in the environment shall not entail shape variation of more than 0.5 μm PV within 30 years. In 2010 SCHOTT developed a physically based model to describe the thermal and mechanical long time behavior of ZERODUR. The model enables simulation of the long time behavior of ZERODUR mirror blanks under realistic mechanical and thermal constraints. This presentation shows FEM simulation results on the long time behavior of the ELT M1, M2 and M3 mirror blanks under different loading conditions. Additionally the model results will be compared to an already 15 years lasting long time measurement of a ZERODUR sample at the German federal physical standardization institute (PTB). In recent years SCHOTT pushed the push rod dilatometer measurement technology to its limit. With the new Advanced Dilatometer CTE measurement accuracies of +- 3 ppb/K and reproducibilities of better 1 ppb/K have been achieved. The new Advanced Dilatometer exhibits excellent long time stability.
NASA Astrophysics Data System (ADS)
Kim, Yong-Deog
The intermetallic compound, B2 NiAl, is a promising material for high temperature structural applications such as in aviation jet engines or gas turbines, provided that its high temperature mechanical properties can be improved. Although extensive efforts over the last several decades have been devoted toward enhancing ductility through alloying design and reducing impurities, as well as improving high temperature creep strength through precipitation and dispersion strengthening, these efforts have relied on traditional approaches, a combination of large grain size to limit diffusional creep and precipitation/dispersion (50 ˜ 100 nm size) strengthening to limit dislocation creep, for high temperature strengthening. While traditional approaches have shown a good improvement from a relatively high temperature strengthening point of view, the size and number density of dispersoids were not able to provide sufficient strength in the high temperature creep regime. Furthermore, details of the interaction mechanism between dislocations and dispersoids are not yet well understood. This study focuses on designing and developing advanced oxide dispersion strengthened (ODS) NiAl intermetallics with improved high temperature creep strength by incorporating a high number density (˜1024 m-3) of very thermally stable Y-Ti-O nano-clusters, akin to those recently observed to improve creep strength and radiation resistance in nano-structured ferritic alloys. Advanced ODS NiAl alloys have been produced by mechanical alloying of pre-alloyed Ni-50at%Al with Y2O3 and Ti elemental powders. The milled powders were subsequently consolidated by spark plasma sintering, with the objective of producing very high number densities of nano-sized Y-Ti-O precipitates, along with fine grain size. Advanced experimental characterization techniques, combined with microhardness strength measurement, were used to investigate the material microstructure and strength following processing and to evaluate the thermal stability during an extensive matrix of long-term thermal annealing. In particular, the size, number density and composition of nano-clusters were assessed. While improvements in strength were obtained in the advanced NiAl ODS alloys, and the higher strength persisted through thermal annealing for 100 hrs at 1723K, characterization revealed the presence of Al in the oxide precipitate phases. The Al incorporation is believed detrimental to the formation of a high density of thermally stable Y-Ti-O nanoscale precipitates.
Chang, J; Kim, Y; Kwon, H J
2016-05-04
Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.
Airframe Icing Research Gaps: NASA Perspective
NASA Technical Reports Server (NTRS)
Potapczuk, Mark
2009-01-01
qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.
High Technology Engineering Services, Inc. fiscal year 1993 and 1994 research and development report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document has been prepared by the Professional Staff of High Technology Engineering Services, Inc. (HTES) for fiscal year (FY) 1993. Work was performed for various aspects of mechanical design and analysis, materials development and properties quantification, nuclear environment performance, and engineering program prioritization. The tasks enumerated in the subcontract, attachment B are: 1. Assist in preparation of final R&D report for SDC detector development. 2. Subcontractor shall make contributions to the development of innovative processes for the manufacture of quasi- isotropic, enhanced thermal conductivity compression molded advanced composite materials. 3. Perform finite element analysis as it relates to themore » Superconducting Super Collider Silicon Tracking System, both mechanical and thermal, of very thin section advanced composite materials. 4. Subcontractor shall perform technical studies, reviews, and assessments of the current program for advanced composites materials processing and testing. 5. Subcontractor shall attend meetings and discussions as directed by MEE-12 technical representative. Unfortunately during the course of FY93, technical and financial challenges prevailed against the aggressive goals set for the program. In point of fact, less than 25% of the contract value was able to be expended due to technical delays and programmatic funding cuts. Also, contracting difficulties with the SSC Lab and financial burdens at Los Alamos totally stopped progress on the subject subcontract during the whole of FY94. This was a great blow to me and the HTES, Inc. technical staff. Despite the negative influences over the years, significant progress was made in materials properties quantification and development of essential research and development documentation. The following brief report and attendant appendices will address these achievements.« less
NASA Astrophysics Data System (ADS)
Peckham, Robert F.
1987-04-01
The creating of intelligent marks on a substrate by means of thermal energy has been in use for thousands of years, e.g., branding of livestock and burning images onto wood. During the past 30 years, this type of imaging has been significantly refined. Recent advances allow the creation of color images, 16 shades of gray and letter quality printing on white substrates. Permanent images are now being written with direct thermal processes. The foregoing make thermal writing very attractive for numerous applications. The general technology of how thermal writing is accomplished today, its applications, and why society should use thermal writing are the topics of this paper. To attempt to cover in great technical detail all of the current advancements in thermal writing is beyond our scope here. What is intended is the proposition that THERMAL WRITING is a superior form of creating images on paper substrates for Society's on demand hard copy requirements. First let's look at how thermal writing is being accomplished with today's technologies.