The role of analytical chemistry in Niger Delta petroleum exploration: a review.
Akinlua, Akinsehinwa
2012-06-12
Petroleum and organic matter from which the petroleum is derived are composed of organic compounds with some trace elements. These compounds give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum, which are essential elements in petroleum exploration. The main tool to acquire the geochemical data is analytical techniques. Due to progress in the development of new analytical techniques, many hitherto petroleum exploration problems have been resolved. Analytical chemistry has played a significant role in the development of petroleum resources of Niger Delta. Various analytical techniques that have aided the success of petroleum exploration in the Niger Delta are discussed. The analytical techniques that have helped to understand the petroleum system of the basin are also described. Recent and emerging analytical methodologies including green analytical methods as applicable to petroleum exploration particularly Niger Delta petroleum province are discussed in this paper. Analytical chemistry is an invaluable tool in finding the Niger Delta oils. Copyright © 2011 Elsevier B.V. All rights reserved.
Analytical Electrochemistry: Methodology and Applications of Dynamic Techniques.
ERIC Educational Resources Information Center
Heineman, William R.; Kissinger, Peter T.
1980-01-01
Reports developments involving the experimental aspects of finite and current analytical electrochemistry including electrode materials (97 cited references), hydrodynamic techniques (56), spectroelectrochemistry (62), stripping voltammetry (70), voltammetric techniques (27), polarographic techniques (59), and miscellany (12). (CS)
Suvarapu, Lakshmi Narayana; Baek, Sung-Ok
2015-01-01
This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539
Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages.
Zhu, R; Zacharias, L; Wooding, K M; Peng, W; Mechref, Y
2017-01-01
Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. © 2017 Elsevier Inc. All rights reserved.
CHAPTER 7: Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages
Zhu, Rui; Zacharias, Lauren; Wooding, Kerry M.; Peng, Wenjing; Mechref, Yehia
2017-01-01
Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins while automated software tools started replacing manual processing to improve the reliability and throughout of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. PMID:28109440
Green analytical chemistry--theory and practice.
Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek
2010-08-01
This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.
Analytical Techniques and Pharmacokinetics of Gastrodia elata Blume and Its Constituents.
Wu, Jinyi; Wu, Bingchu; Tang, Chunlan; Zhao, Jinshun
2017-07-08
Gastrodia elata Blume ( G. elata ), commonly called Tianma in Chinese, is an important and notable traditional Chinese medicine (TCM), which has been used in China as an anticonvulsant, analgesic, sedative, anti-asthma, anti-immune drug since ancient times. The aim of this review is to provide an overview of the abundant efforts of scientists in developing analytical techniques and performing pharmacokinetic studies of G. elata and its constituents, including sample pretreatment methods, analytical techniques, absorption, distribution, metabolism, excretion (ADME) and influence factors to its pharmacokinetics. Based on the reported pharmacokinetic property data of G. elata and its constituents, it is hoped that more studies will focus on the development of rapid and sensitive analytical techniques, discovering new therapeutic uses and understanding the specific in vivo mechanisms of action of G. elata and its constituents from the pharmacokinetic viewpoint in the near future. The present review discusses analytical techniques and pharmacokinetics of G. elata and its constituents reported from 1985 onwards.
Light aircraft crash safety program
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.
1974-01-01
NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions. The analytical techniques being developed both in-house and under contract are described, and a comparison of some analytical predictions with experimental results is shown.
Selecting a software development methodology. [of digital flight control systems
NASA Technical Reports Server (NTRS)
Jones, R. E.
1981-01-01
The state of the art analytical techniques for the development and verification of digital flight control software is studied and a practical designer oriented development and verification methodology is produced. The effectiveness of the analytic techniques chosen for the development and verification methodology are assessed both technically and financially. Technical assessments analyze the error preventing and detecting capabilities of the chosen technique in all of the pertinent software development phases. Financial assessments describe the cost impact of using the techniques, specifically, the cost of implementing and applying the techniques as well as the relizable cost savings. Both the technical and financial assessment are quantitative where possible. In the case of techniques which cannot be quantitatively assessed, qualitative judgements are expressed about the effectiveness and cost of the techniques. The reasons why quantitative assessments are not possible will be documented.
An Analytical Solution for Transient Thermal Response of an Insulated Structure
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2012-01-01
An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2013-12-20
Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.
Automated Predictive Big Data Analytics Using Ontology Based Semantics.
Nural, Mustafa V; Cotterell, Michael E; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A
2015-10-01
Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.
Automated Predictive Big Data Analytics Using Ontology Based Semantics
Nural, Mustafa V.; Cotterell, Michael E.; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A.
2017-01-01
Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology. PMID:29657954
Multi-Intelligence Analytics for Next Generation Analysts (MIAGA)
NASA Astrophysics Data System (ADS)
Blasch, Erik; Waltz, Ed
2016-05-01
Current analysts are inundated with large volumes of data from which extraction, exploitation, and indexing are required. A future need for next-generation analysts is an appropriate balance between machine analytics from raw data and the ability of the user to interact with information through automation. Many quantitative intelligence tools and techniques have been developed which are examined towards matching analyst opportunities with recent technical trends such as big data, access to information, and visualization. The concepts and techniques summarized are derived from discussions with real analysts, documented trends of technical developments, and methods to engage future analysts with multiintelligence services. For example, qualitative techniques should be matched against physical, cognitive, and contextual quantitative analytics for intelligence reporting. Future trends include enabling knowledge search, collaborative situational sharing, and agile support for empirical decision-making and analytical reasoning.
Surface-Enhanced Raman Spectroscopy.
ERIC Educational Resources Information Center
Garrell, Robin L.
1989-01-01
Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)
Multidisciplinary design optimization using multiobjective formulation techniques
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Pagaldipti, Narayanan S.
1995-01-01
This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.
[Recent Development of Atomic Spectrometry in China].
Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei
2015-09-01
As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.
Khan, Wahid; Kumar, Neeraj
2011-06-01
Paromomycin (PM) is an aminoglycoside antibiotic, first isolated in the 1950s, and approved in 2006 for treatment of visceral leishmaniasis. Although isolated six decades back, sufficient information essential for development of pharmaceutical formulation is not available for PM. The purpose of this paper was to determine thermal stability and development of new analytical method for formulation development of PM. PM was characterized by thermoanalytical (DSC, TGA, and HSM) and by spectroscopic (FTIR) techniques and these techniques were used to establish thermal stability of PM after heating PM at 100, 110, 120, and 130 °C for 24 h. Biological activity of these heated samples was also determined by microbiological assay. Subsequently, a simple, rapid and sensitive RP-HPLC method for quantitative determination of PM was developed using pre-column derivatization with 9-fluorenylmethyl chloroformate. The developed method was applied to estimate PM quantitatively in two parenteral dosage forms. PM was successfully characterized by various stated techniques. These techniques indicated stability of PM for heating up to 120 °C for 24 h, but when heated at 130 °C, PM is liable to degradation. This degradation is also observed in microbiological assay where PM lost ∼30% of its biological activity when heated at 130 °C for 24 h. New analytical method was developed for PM in the concentration range of 25-200 ng/ml with intra-day and inter-day variability of < 2%RSD. Characterization techniques were established and stability of PM was determined successfully. Developed analytical method was found sensitive, accurate, and precise for quantification of PM. Copyright © 2010 John Wiley & Sons, Ltd. Copyright © 2010 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Toh, Chee-Seng
2007-01-01
A project is described which incorporates nonlaboratory research skills in a graduate level course on analytical chemistry. This project will help students to grasp the basic principles and concepts of modern analytical techniques and also help them develop relevant research skills in analytical chemistry.
MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER: PART 1. PROTOCOLS
A Master Analytical Scheme (MAS) has been developed for the analysis of volatile (gas chromatographable) organic compounds in water. In developing the MAS, it was necessary to evaluate and modify existing analysis procedures and develop new techniques to produce protocols that pr...
NASA Astrophysics Data System (ADS)
Rappleye, Devin Spencer
The development of electroanalytical techniques in multianalyte molten salt mixtures, such as those found in used nuclear fuel electrorefiners, would enable in situ, real-time concentration measurements. Such measurements are beneficial for process monitoring, optimization and control, as well as for international safeguards and nuclear material accountancy. Electroanalytical work in molten salts has been limited to single-analyte mixtures with a few exceptions. This work builds upon the knowledge of molten salt electrochemistry by performing electrochemical measurements on molten eutectic LiCl-KCl salt mixture containing two analytes, developing techniques for quantitatively analyzing the measured signals even with an additional signal from another analyte, correlating signals to concentration and identifying improvements in experimental and analytical methodologies. (Abstract shortened by ProQuest.).
Analytical methods for gelatin differentiation from bovine and porcine origins and food products.
Nhari, Raja Mohd Hafidz Raja; Ismail, Amin; Che Man, Yaakob B
2012-01-01
Usage of gelatin in food products has been widely debated for several years, which is about the source of gelatin that has been used, religion, and health. As an impact, various analytical methods have been introduced and developed to differentiate gelatin whether it is made from porcine or bovine sources. The analytical methods comprise a diverse range of equipment and techniques including spectroscopy, chemical precipitation, chromatography, and immunochemical. Each technique can differentiate gelatins for certain extent with advantages and limitations. This review is focused on overview of the analytical methods available for differentiation of bovine and porcine gelatin and gelatin in food products so that new method development can be established. © 2011 Institute of Food Technologists®
MICROORGANISMS IN BIOSOLIDS: ANALYTICAL METHODS DEVELOPMENT, STANDARDIZATION, AND VALIDATION
The objective of this presentation is to discuss pathogens of concern in biosolids, the analytical techniques used to evaluate microorganisms in biosolids, and to discuss standardization and validation of analytical protocols for microbes within such a complex matrix. Implicatio...
MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER. PART 2. APPENDICES TO PROTOCOLS
A Master Analytical Scheme (MAS) has been developed for the analysis of volatile (gas chromatographable) organic compounds in water. In developing the MAS, it was necessary to evaluate and modify existing analysis procedures and develop new techniques to produce protocols that pr...
Turbine blade tip durability analysis
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Laflen, J. H.; Spamer, G. T.
1981-01-01
An air-cooled turbine blade from an aircraft gas turbine engine chosen for its history of cracking was subjected to advanced analytical and life-prediction techniques. The utility of advanced structural analysis techniques and advanced life-prediction techniques in the life assessment of hot section components are verified. Three dimensional heat transfer and stress analyses were applied to the turbine blade mission cycle and the results were input into advanced life-prediction theories. Shortcut analytical techniques were developed. The proposed life-prediction theories are evaluated.
NASA Astrophysics Data System (ADS)
Yazdchi, K.; Salehi, M.; Shokrieh, M. M.
2009-03-01
By introducing a new simplified 3D representative volume element for wavy carbon nanotubes, an analytical model is developed to study the stress transfer in single-walled carbon nanotube-reinforced polymer composites. Based on the pull-out modeling technique, the effects of waviness, aspect ratio, and Poisson ratio on the axial and interfacial shear stresses are analyzed in detail. The results of the present analytical model are in a good agreement with corresponding results for straight nanotubes.
Independent Research and Independent Exploratory Development Annual Report Fiscal Year 1975
1975-09-01
and Coding Study.(Z?80) ................................... ......... .................... 40 Optical Cover CMMUnicallor’s Using Laser Transceiverst...Using Auger Spectroscopy and PUBLICATIONS Additional Advanced Analytical Techniques," Wagner, N. K., "Auger Electron Spectroscopy NELC Technical Note 2904...K.. "Analysis of Microelectronic Materials Using Auger Spectroscopy and Additional Advanced Analytical Techniques," Contact: Proceedings of the
Development of airframe design technology for crashworthiness.
NASA Technical Reports Server (NTRS)
Kruszewski, E. T.; Thomson, R. G.
1973-01-01
This paper describes the NASA portion of a joint FAA-NASA General Aviation Crashworthiness Program leading to the development of improved crashworthiness design technology. The objectives of the program are to develop analytical technology for predicting crashworthiness of structures, provide design improvements, and perform full-scale crash tests. The analytical techniques which are being developed both in-house and under contract are described, and typical results from these analytical programs are shown. In addition, the full-scale testing facility and test program are discussed.
NASA Astrophysics Data System (ADS)
Chandramouli, Rajarathnam; Li, Grace; Memon, Nasir D.
2002-04-01
Steganalysis techniques attempt to differentiate between stego-objects and cover-objects. In recent work we developed an explicit analytic upper bound for the steganographic capacity of LSB based steganographic techniques for a given false probability of detection. In this paper we look at adaptive steganographic techniques. Adaptive steganographic techniques take explicit steps to escape detection. We explore different techniques that can be used to adapt message embedding to the image content or to a known steganalysis technique. We investigate the advantages of adaptive steganography within an analytical framework. We also give experimental results with a state-of-the-art steganalysis technique demonstrating that adaptive embedding results in a significant number of bits embedded without detection.
Olivieri, Alejandro C
2005-08-01
Sensitivity and selectivity are important figures of merit in multiway analysis, regularly employed for comparison of the analytical performance of methods and for experimental design and planning. They are especially interesting in the second-order advantage scenario, where the latter property allows for the analysis of samples with a complex background, permitting analyte determination even in the presence of unsuspected interferences. Since no general theory exists for estimating the multiway sensitivity, Monte Carlo numerical calculations have been developed for estimating variance inflation factors, as a convenient way of assessing both sensitivity and selectivity parameters for the popular parallel factor (PARAFAC) analysis and also for related multiway techniques. When the second-order advantage is achieved, the existing expressions derived from net analyte signal theory are only able to adequately cover cases where a single analyte is calibrated using second-order instrumental data. However, they fail for certain multianalyte cases, or when third-order data are employed, calling for an extension of net analyte theory. The results have strong implications in the planning of multiway analytical experiments.
Preliminary numerical analysis of improved gas chromatograph model
NASA Technical Reports Server (NTRS)
Woodrow, P. T.
1973-01-01
A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.
Discourse-Centric Learning Analytics: Mapping the Terrain
ERIC Educational Resources Information Center
Knight, Simon; Littleton, Karen
2015-01-01
There is an increasing interest in developing learning analytic techniques for the analysis, and support of, high-quality learning discourse. This paper maps the terrain of discourse-centric learning analytics (DCLA), outlining the distinctive contribution of DCLA and outlining a definition for the field moving forwards. It is our claim that DCLA…
DOT National Transportation Integrated Search
2016-12-25
The key objectives of this study were to: 1. Develop advanced analytical techniques that make use of a dynamically configurable connected vehicle message protocol to predict traffic flow regimes in near-real time in a virtual environment and examine ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.W.; Heinrich, R.R.; Graczyk, D.G.
The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routinemore » standard analyses to unique problems that require significant development of methods and techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.W.; Heinrich, R.R.; Graczyk, D.G.
The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standardmore » analyses to unique problems that require significant development of methods and techniques.« less
Pavement Performance : Approaches Using Predictive Analytics
DOT National Transportation Integrated Search
2018-03-23
Acceptable pavement condition is paramount to road safety. Using predictive analytics techniques, this project attempted to develop models that provide an assessment of pavement condition based on an array of indictors that include pavement distress,...
[Developments in preparation and experimental method of solid phase microextraction fibers].
Yi, Xu; Fu, Yujie
2004-09-01
Solid phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which concentrates volatile or nonvolatile compounds from liquid samples or headspace of samples. SPME is compatible with analyte separation and detection by gas chromatography, high performance liquid chromatography, and other instrumental methods. It can provide many advantages, such as wide linear scale, low solvent and sample consumption, short analytical times, low detection limits, simple apparatus, and so on. The theory of SPME is introduced, which includes equilibrium theory and non-equilibrium theory. The novel development of fiber preparation methods and relative experimental techniques are discussed. In addition to commercial fiber preparation, different newly developed fabrication techniques, such as sol-gel, electronic deposition, carbon-base adsorption, high-temperature epoxy immobilization, are presented. Effects of extraction modes, selection of fiber coating, optimization of operating conditions, method sensitivity and precision, and systematical automation, are taken into considerations in the analytical process of SPME. A simple perspective of SPME is proposed at last.
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.;
2007-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.
Accuracy of selected techniques for estimating ice-affected streamflow
Walker, John F.
1991-01-01
This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.
NASA Technical Reports Server (NTRS)
Coleman, R. A.; Cofer, W. R., III; Edahl, R. A., Jr.
1985-01-01
An analytical technique for the determination of trace (sub-ppbv) quantities of volatile organic compounds in air was developed. A liquid nitrogen-cooled trap operated at reduced pressures in series with a Dupont Nafion-based drying tube and a gas chromatograph was utilized. The technique is capable of analyzing a variety of organic compounds, from simple alkanes to alcohols, while offering a high level of precision, peak sharpness, and sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prentice, H. J.; Proud, W. G.
2006-07-28
A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical andmore » numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses.« less
Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit
2017-10-13
The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.
Analytical Electrochemistry: Theory and Instrumentation of Dynamic Techniques.
ERIC Educational Resources Information Center
Johnson, Dennis C.
1980-01-01
Emphasizes trends in the development of six topics concerning analytical electrochemistry, including books and reviews (34 references cited), mass transfer (59), charge transfer (25), surface effects (33), homogeneous reactions (21), and instrumentation (31). (CS)
ULTRASONIC STUDIES OF THE FUNDAMENTAL MECHANISMS OF RECRYSTALLIZATION AND SINTERING OF METALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
TURNER, JOSEPH A.
2005-11-30
The purpose of this project was to develop a fundamental understanding of the interaction of an ultrasonic wave with complex media, with specific emphases on recrystallization and sintering of metals. A combined analytical, numerical, and experimental research program was implemented. Theoretical models of elastic wave propagation through these complex materials were developed using stochastic wave field techniques. The numerical simulations focused on finite element wave propagation solutions through complex media. The experimental efforts were focused on corroboration of the models developed and on the development of new experimental techniques. The analytical and numerical research allows the experimental results to bemore » interpreted quantitatively.« less
NASA Technical Reports Server (NTRS)
Bekey, G. A.
1971-01-01
Studies are summarized on the application of advanced analytical and computational methods to the development of mathematical models of human controllers in multiaxis manual control systems. Specific accomplishments include the following: (1) The development of analytical and computer methods for the measurement of random parameters in linear models of human operators. (2) Discrete models of human operator behavior in a multiple display situation were developed. (3) Sensitivity techniques were developed which make possible the identification of unknown sampling intervals in linear systems. (4) The adaptive behavior of human operators following particular classes of vehicle failures was studied and a model structure proposed.
Chemical Detection and Identification Techniques for Exobiology Flight Experiments
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.
2002-01-01
Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).
Byliński, Hubert; Gębicki, Jacek; Dymerski, Tomasz; Namieśnik, Jacek
2017-07-04
One of the major sources of error that occur during chemical analysis utilizing the more conventional and established analytical techniques is the possibility of losing part of the analytes during the sample preparation stage. Unfortunately, this sample preparation stage is required to improve analytical sensitivity and precision. Direct techniques have helped to shorten or even bypass the sample preparation stage; and in this review, we comment of some of the new direct techniques that are mass-spectrometry based. The study presents information about the measurement techniques using mass spectrometry, which allow direct sample analysis, without sample preparation or limiting some pre-concentration steps. MALDI - MS, PTR - MS, SIFT - MS, DESI - MS techniques are discussed. These solutions have numerous applications in different fields of human activity due to their interesting properties. The advantages and disadvantages of these techniques are presented. The trends in development of direct analysis using the aforementioned techniques are also presented.
Development of Impurity Profiling Methods Using Modern Analytical Techniques.
Ramachandra, Bondigalla
2017-01-02
This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.
Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
Zheng, Qiuling; Chen, Hao
2016-06-01
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.
Approximate analytical relationships for linear optimal aeroelastic flight control laws
NASA Astrophysics Data System (ADS)
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
Foster, Katherine T; Beltz, Adriene M
2018-08-01
Ambulatory assessment (AA) methodologies have the potential to increase understanding and treatment of addictive behavior in seemingly unprecedented ways, due in part, to their emphasis on intensive repeated assessments of an individual's addictive behavior in context. But, many analytic techniques traditionally applied to AA data - techniques that average across people and time - do not fully leverage this potential. In an effort to take advantage of the individualized, temporal nature of AA data on addictive behavior, the current paper considers three underutilized person-oriented analytic techniques: multilevel modeling, p-technique, and group iterative multiple model estimation. After reviewing prevailing analytic techniques, each person-oriented technique is presented, AA data specifications are mentioned, an example analysis using generated data is provided, and advantages and limitations are discussed; the paper closes with a brief comparison across techniques. Increasing use of person-oriented techniques will substantially enhance inferences that can be drawn from AA data on addictive behavior and has implications for the development of individualized interventions. Copyright © 2017. Published by Elsevier Ltd.
Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T; Jiménez, María S; Pérez-Arantegui, Josefina; Castillo, Juan R
2016-01-21
The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for dealing with complex samples. Single- and multi-method approaches applied to solve the nanometrological challenges posed by a variety of stakeholders are also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Big Data Analytics with Datalog Queries on Spark.
Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo
2016-01-01
There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.
Big Data Analytics with Datalog Queries on Spark
Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo
2017-01-01
There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics. PMID:28626296
Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C
2016-01-28
Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Ramsey-Klee, Diane M.; Richman, Vivian
The purpose of this research is to develop content analytic techniques capable of extracting the differentiating information in narrative performance evaluations for enlisted personnel in order to aid in the process of selecting personnel for advancement, duty assignment, training, or quality retention. Four tasks were performed. The first task…
Cost and schedule analytical techniques development
NASA Technical Reports Server (NTRS)
1994-01-01
This contract provided technical services and products to the Marshall Space Flight Center's Engineering Cost Office (PP03) and the Program Plans and Requirements Office (PP02) for the period of 3 Aug. 1991 - 30 Nov. 1994. Accomplishments summarized cover the REDSTAR data base, NASCOM hard copy data base, NASCOM automated data base, NASCOM cost model, complexity generators, program planning, schedules, NASA computer connectivity, other analytical techniques, and special project support.
Hyphenated analytical techniques for materials characterisation
NASA Astrophysics Data System (ADS)
Armstrong, Gordon; Kailas, Lekshmi
2017-09-01
This topical review will provide a survey of the current state of the art in ‘hyphenated’ techniques for characterisation of bulk materials, surface, and interfaces, whereby two or more analytical methods investigating different properties are applied simultaneously to the same sample to better characterise the sample than can be achieved by conducting separate analyses in series using different instruments. It is intended for final year undergraduates and recent graduates, who may have some background knowledge of standard analytical techniques, but are not familiar with ‘hyphenated’ techniques or hybrid instrumentation. The review will begin by defining ‘complementary’, ‘hybrid’ and ‘hyphenated’ techniques, as there is not a broad consensus among analytical scientists as to what each term means. The motivating factors driving increased development of hyphenated analytical methods will also be discussed. This introduction will conclude with a brief discussion of gas chromatography-mass spectroscopy and energy dispersive x-ray analysis in electron microscopy as two examples, in the context that combining complementary techniques for chemical analysis were among the earliest examples of hyphenated characterisation methods. The emphasis of the main review will be on techniques which are sufficiently well-established that the instrumentation is commercially available, to examine physical properties including physical, mechanical, electrical and thermal, in addition to variations in composition, rather than methods solely to identify and quantify chemical species. Therefore, the proposed topical review will address three broad categories of techniques that the reader may expect to encounter in a well-equipped materials characterisation laboratory: microscopy based techniques, scanning probe-based techniques, and thermal analysis based techniques. Examples drawn from recent literature, and a concluding case study, will be used to explain the practical issues that arise in combining different techniques. We will consider how the complementary and varied information obtained by combining these techniques may be interpreted together to better understand the sample in greater detail than that was possible before, and also how combining different techniques can simplify sample preparation and ensure reliable comparisons are made between multiple analyses on the same samples—a topic of particular importance as nanoscale technologies become more prevalent in applied and industrial research and development (R&D). The review will conclude with a brief outline of the emerging state of the art in the research laboratory, and a suggested approach to using hyphenated techniques, whether in the teaching, quality control or R&D laboratory.
New test techniques and analytical procedures for understanding the behavior of advanced propellers
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Bober, L. J.; Neumann, H. E.
1983-01-01
Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.
Pandey, Khushaboo; Dubey, Rama Shankar; Prasad, Bhim Bali
2016-03-01
The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.W.; Heinrich, R.R.; Graczyk, D.G.
The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handlesmore » a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, R.S.; Kong, E.J.; Bahner, M.A.
The paper discusses several projects to measure hydrocarbon emissions associated with the manufacture of fiberglass-reinforced plastics. The main purpose of the projects was to evaluate pollution prevention techniques to reduce emissions by altering raw materials, application equipment, and operator technique. Analytical techniques were developed to reduce the cost of these emission measurements. Emissions from a small test mold in a temporary total enclosure (TTE) correlated with emissions from full-size production molds in a separate TTE. Gravimetric mass balance measurements inside the TTE generally agreed to within +/-30% with total hydrocarbon (THC) measurements in the TTE exhaust duct.
Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján
2016-02-04
Simplicity, effectiveness, swiftness, and environmental friendliness - these are the typical requirements for the state of the art development of green analytical techniques. Liquid phase microextraction (LPME) stands for a family of elegant sample pretreatment and analyte preconcentration techniques preserving these principles in numerous applications. By using only fractions of solvent and sample compared to classical liquid-liquid extraction, the extraction kinetics, the preconcentration factor, and the cost efficiency can be increased. Moreover, significant improvements can be made by automation, which is still a hot topic in analytical chemistry. This review surveys comprehensively and in two parts the developments of automation of non-dispersive LPME methodologies performed in static and dynamic modes. Their advantages and limitations and the reported analytical performances are discussed and put into perspective with the corresponding manual procedures. The automation strategies, techniques, and their operation advantages as well as their potentials are further described and discussed. In this first part, an introduction to LPME and their static and dynamic operation modes as well as their automation methodologies is given. The LPME techniques are classified according to the different approaches of protection of the extraction solvent using either a tip-like (needle/tube/rod) support (drop-based approaches), a wall support (film-based approaches), or microfluidic devices. In the second part, the LPME techniques based on porous supports for the extraction solvent such as membranes and porous media are overviewed. An outlook on future demands and perspectives in this promising area of analytical chemistry is finally given. Copyright © 2015 Elsevier B.V. All rights reserved.
Safina, Gulnara
2012-01-27
Carbohydrates (glycans) and their conjugates with proteins and lipids contribute significantly to many biological processes. That makes these compounds important targets to be detected, monitored and identified. The identification of the carbohydrate content in their conjugates with proteins and lipids (glycoforms) is often a challenging task. Most of the conventional instrumental analytical techniques are time-consuming and require tedious sample pretreatment and utilising various labeling agents. Surface plasmon resonance (SPR) has been intensively developed during last two decades and has received the increasing attention for different applications, from the real-time monitoring of affinity bindings to biosensors. SPR does not require any labels and is capable of direct measurement of biospecific interaction occurring on the sensing surface. This review provides a critical comparison of modern analytical instrumental techniques with SPR in terms of their analytical capabilities to detect carbohydrates, their conjugates with proteins and lipids and to study the carbohydrate-specific bindings. A few selected examples of the SPR approaches developed during 2004-2011 for the biosensing of glycoforms and for glycan-protein affinity studies are comprehensively discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Prediction of flow-induced failures of braided flexible hoses and bellows
NASA Technical Reports Server (NTRS)
Sack, L. E.; Nelson, R. L.; Mason, D. R.; Cooper, R. A.
1972-01-01
Analytical techniques were developed to evaluate braided hoses and bellows for possibility of flow induced resonance. These techniques determine likelihood of high cycle fatigue failure when such resonance exists.
Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason
2016-01-01
With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM3 ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs. PMID:27983713
Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason
2016-12-15
With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM³ ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs.
A novel analytical technique suitable for the identification of plastics.
Nečemer, Marijan; Kump, Peter; Sket, Primož; Plavec, Janez; Grdadolnik, Jože; Zvanut, Maja
2013-01-01
The enormous development and production of plastic materials in the last century resulted in increasing numbers of such kinds of objects. Development of a simple and fast technique to classify different types of plastics could be used in many activities dealing with plastic materials such as packaging of food, sorting of used plastic materials, and also, if technique would be non-destructive, for conservation of plastic artifacts in museum collections, a relatively new field of interest since 1990. In our previous paper we introduced a non-destructive technique for fast identification of unknown plastics based on EDXRF spectrometry,1 using as a case study some plastic artifacts archived in the Museum in order to show the advantages of the nondestructive identification of plastic material. In order to validate our technique it was necessary to apply for this purpose the comparison of analyses with some of the analytical techniques, which are more suitable and so far rather widely applied in identifying some most common sorts of plastic materials.
In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...
An analytical technique for the measurement of the exchange (flux) of trace gases between the earth's surface and the atmosphere will be developed. Measurements will rely on the eddy correlation method (ECM). Target compounds are biogenically and anthropogenically emitted v...
Using a Collaborative Critiquing Technique to Develop Chemistry Students' Technical Writing Skills
ERIC Educational Resources Information Center
Carr, Jeremy M.
2013-01-01
The technique, termed "collaborative critiquing", was developed to teach fundamental technical writing skills to analytical chemistry students for the preparation of laboratory reports. This exercise, which can be completed prior to peer-review activities, is novel, highly interactive, and allows students to take responsibility for their…
Development of Multiobjective Optimization Techniques for Sonic Boom Minimization
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.
1996-01-01
A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.
Ariyama, Kaoru; Kadokura, Masashi; Suzuki, Tadanao
2008-01-01
Techniques to determine the geographic origin of foods have been developed for various agricultural and fishery products, and they have used various principles. Some of these techniques are already in use for checking the authenticity of the labeling. Many are based on multielement analysis and chemometrics. We have developed such a technique to determine the geographic origin of onions (Allium cepa L.). This technique, which determines whether an onion is from outside Japan, is designed for onions labeled as having a geographic origin of Hokkaido, Hyogo, or Saga, the main onion production areas in Japan. However, estimations of discrimination errors for this technique have not been fully conducted; they have been limited to those for discrimination models and do not include analytical errors. Interlaboratory studies were conducted to estimate the analytical errors of the technique. Four collaborators each determined 11 elements (Na, Mg, P, Mn, Zn, Rb, Sr, Mo, Cd, Cs, and Ba) in 4 test materials of fresh and dried onions. Discrimination errors in this technique were estimated by summing (1) individual differences within lots, (2) variations between lots from the same production area, and (3) analytical errors. The discrimination errors for onions from Hokkaido, Hyogo, and Saga were estimated to be 2.3, 9.5, and 8.0%, respectively. Those for onions from abroad in determinations targeting Hokkaido, Hyogo, and Saga were estimated to be 28.2, 21.6, and 21.9%, respectively.
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Spaulding, M. L.
1977-01-01
A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.
Statistically Qualified Neuro-Analytic system and Method for Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
1998-11-04
An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less
Flexible aircraft dynamic modeling for dynamic analysis and control synthesis
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1989-01-01
The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.
Islas, Gabriela; Hernandez, Prisciliano
2017-01-01
To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis. PMID:29181027
Green aspects, developments and perspectives of liquid phase microextraction techniques.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2014-02-01
Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. © 2013 Published by Elsevier B.V.
Methods for geochemical analysis
Baedecker, Philip A.
1987-01-01
The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.
NASA Technical Reports Server (NTRS)
Wiswell, E. R.; Cooper, G. R. (Principal Investigator)
1978-01-01
The author has identified the following significant results. The concept of average mutual information in the received spectral random process about the spectral scene was developed. Techniques amenable to implementation on a digital computer were also developed to make the required average mutual information calculations. These techniques required identification of models for the spectral response process of scenes. Stochastic modeling techniques were adapted for use. These techniques were demonstrated on empirical data from wheat and vegetation scenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.W.; Heinrich, R.R.; Jensen, K.J.
The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) atmore » Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koester, C J; Moulik, A
This article discusses developments in environmental analytical chemistry that occurred in the years of 2003 and 2004. References were found by searching the ''Science Citation Index and Current Contents''. As in our review of two years ago (A1), techniques are highlighted that represent current trends and state-of-the-art technologies in the sampling, extraction, separation, and detection of trace concentrations, low-part-per-billion and less, of organic, inorganic, and organometallic contaminants in environmental samples. New analytes of interest are also reviewed, the detections of which are made possible by recently developed analytical instruments and methods.
In 2002 the National Research Council (NRC) issued a report which identified a number of issues regarding biosolids land application practices and pointed out the need for improved and validated analytical techniques for regulated indicator organisms and pathogens. They also call...
Social Data Analytics Using Tensors and Sparse Techniques
ERIC Educational Resources Information Center
Zhang, Miao
2014-01-01
The development of internet and mobile technologies is driving an earthshaking social media revolution. They bring the internet world a huge amount of social media content, such as images, videos, comments, etc. Those massive media content and complicate social structures require the analytic expertise to transform those flood of information into…
Meinertz, J.R.; Stehly, G.R.; Hubert, T.D.; Bernardy, J.A.
1999-01-01
A method was developed for determining benzocaine and N-acetylbenzocaine concentrations in fillet tissue of rainbow trout. The method involves extracting the analytes with acetonitrile, removing lipids or hydrophobic compounds from the extract with hexane, and providing additional clean-up with solid-phase extraction techniques. Analyte concentrations are determined using reversed-phase high-performance liquid chromatographic techniques with an isocratic mobile phase and UV detection. The accuracy (range, 92 to 121%), precision (R.S.D., <14%), and sensitivity (method quantitation limit, <24 ng/g) for each analyte indicate the usefulness of this method for studies characterizing the depletion of benzocaine residues from fish exposed to benzocaine. Copyright (C) 1999.
Recommendations for accreditation of laboratories in molecular biology of hematologic malignancies.
Flandrin-Gresta, Pascale; Cornillet, Pascale; Hayette, Sandrine; Gachard, Nathalie; Tondeur, Sylvie; Mauté, Carole; Cayuela, Jean-Michel
2015-01-01
Over recent years, the development of molecular biology techniques has improved the hematological diseases diagnostic and follow-up. Consequently, these techniques are largely used in the biological screening of these diseases; therefore the Hemato-oncology molecular diagnostics laboratories must be actively involved in the accreditation process according the ISO 15189 standard. The French group of molecular biologists (GBMHM) provides requirements for the implementation of quality assurance for the medical molecular laboratories. This guideline states the recommendations for the pre-analytical, analytical (methods validation procedures, quality controls, reagents), and post-analytical conditions. In addition, herein we state a strategy for the internal quality control management. These recommendations will be regularly updated.
Guidance to Achieve Accurate Aggregate Quantitation in Biopharmaceuticals by SV-AUC.
Arthur, Kelly K; Kendrick, Brent S; Gabrielson, John P
2015-01-01
The levels and types of aggregates present in protein biopharmaceuticals must be assessed during all stages of product development, manufacturing, and storage of the finished product. Routine monitoring of aggregate levels in biopharmaceuticals is typically achieved by size exclusion chromatography (SEC) due to its high precision, speed, robustness, and simplicity to operate. However, SEC is error prone and requires careful method development to ensure accuracy of reported aggregate levels. Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an orthogonal technique that can be used to measure protein aggregation without many of the potential inaccuracies of SEC. In this chapter, we discuss applications of SV-AUC during biopharmaceutical development and how characteristics of the technique make it better suited for some applications than others. We then discuss the elements of a comprehensive analytical control strategy for SV-AUC. Successful implementation of these analytical control elements ensures that SV-AUC provides continued value over the long time frames necessary to bring biopharmaceuticals to market. © 2015 Elsevier Inc. All rights reserved.
Suba, Dávid; Urbányi, Zoltán; Salgó, András
2016-10-01
Capillary electrophoresis techniques are widely used in the analytical biotechnology. Different electrophoretic techniques are very adequate tools to monitor size-and charge heterogenities of protein drugs. Method descriptions and development studies of capillary zone electrophoresis (CZE) have been described in literature. Most of them are performed based on the classical one-factor-at-time (OFAT) approach. In this study a very simple method development approach is described for capillary zone electrophoresis: a "two-phase-four-step" approach is introduced which allows a rapid, iterative method development process and can be a good platform for CZE method. In every step the current analytical target profile and an appropriate control strategy were established to monitor the current stage of development. A very good platform was established to investigate intact and digested protein samples. Commercially available monoclonal antibody was chosen as model protein for the method development study. The CZE method was qualificated after the development process and the results were presented. The analytical system stability was represented by the calculated RSD% value of area percentage and migration time of the selected peaks (<0.8% and <5%) during the intermediate precision investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Greene, William H.
1990-01-01
A study was performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal of the study was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semi-analytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models. In several cases this fixed mode approach resulted in very poor approximations of the stress sensitivities. Almost all of the original modes were required for an accurate sensitivity and for small numbers of modes, the accuracy was extremely poor. To overcome this poor accuracy, two semi-analytical techniques were developed. The first technique accounts for the change in eigenvectors through approximate eigenvector derivatives. The second technique applies the mode acceleration method of transient analysis to the sensitivity calculations. Both result in accurate values of the stress sensitivities with a small number of modes and much lower computational costs than if the vibration modes were recalculated and then used in an overall finite difference method.
The role of light microscopy in aerospace analytical laboratories
NASA Technical Reports Server (NTRS)
Crutcher, E. R.
1977-01-01
Light microscopy has greatly reduced analytical flow time and added new dimensions to laboratory capability. Aerospace analytical laboratories are often confronted with problems involving contamination, wear, or material inhomogeneity. The detection of potential problems and the solution of those that develop necessitate the most sensitive and selective applications of sophisticated analytical techniques and instrumentation. This inevitably involves light microscopy. The microscope can characterize and often identify the cause of a problem in 5-15 minutes with confirmatory tests generally less than one hour. Light microscopy has and will make a very significant contribution to the analytical capabilities of aerospace laboratories.
Gómez-Caravaca, Ana M; Maggio, Rubén M; Cerretani, Lorenzo
2016-03-24
Today virgin and extra-virgin olive oil (VOO and EVOO) are food with a large number of analytical tests planned to ensure its quality and genuineness. Almost all official methods demand high use of reagents and manpower. Because of that, analytical development in this area is continuously evolving. Therefore, this review focuses on analytical methods for EVOO/VOO which use fast and smart approaches based on chemometric techniques in order to reduce time of analysis, reagent consumption, high cost equipment and manpower. Experimental approaches of chemometrics coupled with fast analytical techniques such as UV-Vis spectroscopy, fluorescence, vibrational spectroscopies (NIR, MIR and Raman fluorescence), NMR spectroscopy, and other more complex techniques like chromatography, calorimetry and electrochemical techniques applied to EVOO/VOO production and analysis have been discussed throughout this work. The advantages and drawbacks of this association have also been highlighted. Chemometrics has been evidenced as a powerful tool for the oil industry. In fact, it has been shown how chemometrics can be implemented all along the different steps of EVOO/VOO production: raw material input control, monitoring during process and quality control of final product. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Eckel, J. S.; Crabtree, M. S.
1984-01-01
Analytical and subjective techniques that are sensitive to the information transmission and processing requirements of individual communications-related tasks are used to assess workload imposed on the aircrew by A-10 communications requirements for civilian transport category aircraft. Communications-related tasks are defined to consist of the verbal exchanges between crews and controllers. Three workload estimating techniques are proposed. The first, an information theoretic analysis, is used to calculate bit values for perceptual, manual, and verbal demands in each communication task. The second, a paired-comparisons technique, obtains subjective estimates of the information processing and memory requirements for specific messages. By combining the results of the first two techniques, a hybrid analytical scale is created. The third, a subjective rank ordering of sequences of communications tasks, provides an overall scaling of communications workload. Recommendations for future research include an examination of communications-induced workload among the air crew and the development of simulation scenarios.
Posch, Tjorben Nils; Pütz, Michael; Martin, Nathalie; Huhn, Carolin
2015-01-01
In this review we introduce the advantages and limitations of electromigrative separation techniques in forensic toxicology. We thus present a summary of illustrative studies and our own experience in the field together with established methods from the German Federal Criminal Police Office rather than a complete survey. We focus on the analytical aspects of analytes' physicochemical characteristics (e.g. polarity, stereoisomers) and analytical challenges including matrix tolerance, separation from compounds present in large excess, sample volumes, and orthogonality. For these aspects we want to reveal the specific advantages over more traditional methods. Both detailed studies and profiling and screening studies are taken into account. Care was taken to nearly exclusively document well-validated methods outstanding for the analytical challenge discussed. Special attention was paid to aspects exclusive to electromigrative separation techniques, including the use of the mobility axis, the potential for on-site instrumentation, and the capillary format for immunoassays. The review concludes with an introductory guide to method development for different separation modes, presenting typical buffer systems as starting points for different analyte classes. The objective of this review is to provide an orientation for users in separation science considering using capillary electrophoresis in their laboratory in the future.
Development of an external ceramic insulation for the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Tanzilli, R. A. (Editor)
1972-01-01
The development and evaluation of a family of reusable external insulation systems for use on the space shuttle orbiter is discussed. The material development and evaluation activities are described. Additional information is provided on the development of an analytical micromechanical model of the reusable insulation and the development of techniques for reducing the heat transfer. Design data on reusable insulation systems and test techniques used for design data generation are included.
NASA Astrophysics Data System (ADS)
Friedl, L.; Macauley, M.; Bernknopf, R.
2013-12-01
Internationally, multiple organizations are placing greater emphasis on the societal benefits that governments, businesses, and NGOs can derive from applications of Earth-observing satellite observations, research, and models. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services by companies, agencies, and civil society. There are, however, significant efforts needed to bridge the Earth sciences and social and economic sciences fields to build capacity, develop case studies, and refine analytic techniques in quantifying socioeconomic benefits from the use of Earth observations. Some government programs, such as the NASA Earth Science Division's Applied Sciences Program have initiated activities in recent years to quantify the socioeconomic benefits from applications of Earth observations research, and to develop multidisciplinary models for organizations' decision-making activities. A community of practice has conducted workshops, developed impact analysis reports, published a book, developed a primer, and pursued other activities to advance analytic methodologies and build capacity. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to pursue a research agenda on analytic techniques, develop a body of knowledge, and promote broader skills and capabilities.
Dai, Jun; Wang, Chunlei; Traeger, Sarah C; Discenza, Lorell; Obermeier, Mary T; Tymiak, Adrienne A; Zhang, Yingru
2017-03-03
Atropisomers are stereoisomers resulting from hindered bond rotation. From synthesis of pure atropisomers, characterization of their interconversion thermodynamics to investigation of biological stereoselectivity, the evaluation of drug candidates subject to atropisomerism creates special challenges and can be complicated in both early drug discovery and later drug development. In this paper, we demonstrate an array of analytical techniques and systematic approaches to study the atropisomerism of drug molecules to meet these challenges. Using a case study of Bruton's tyrosine kinase (BTK) inhibitor drug candidates at Bristol-Myers Squibb, we present the analytical strategies and methodologies used during drug discovery including the detection of atropisomers, the determination of their relative composition, the identification of relative chirality, the isolation of individual atropisomers, the evaluation of interconversion kinetics, and the characterization of chiral stability in the solid state and in solution. In vivo and in vitro stereo-stability and stereo-selectivity were investigated as well as the pharmacological significance of any changes in atropisomer ratios. Techniques applied in these studies include analytical and preparative enantioselective supercritical fluid chromatography (SFC), enantioselective high performance liquid chromatography (HPLC), circular dichroism (CD), and mass spectrometry (MS). Our experience illustrates how atropisomerism can be a very complicated issue in drug discovery and why a thorough understanding of this phenomenon is necessary to provide guidance for pharmaceutical development. Analytical techniques and methodologies facilitate key decisions during the discovery of atropisomeric drug candidates by characterizing time-dependent physicochemical properties that can have significant biological implications and relevance to pharmaceutical development plans. Copyright © 2017 Elsevier B.V. All rights reserved.
The electromagnetic modeling of thin apertures using the finite-difference time-domain technique
NASA Technical Reports Server (NTRS)
Demarest, Kenneth R.
1987-01-01
A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.
Recent Methodology in Ginseng Analysis
Baek, Seung-Hoon; Bae, Ok-Nam; Park, Jeong Hill
2012-01-01
As much as the popularity of ginseng in herbal prescriptions or remedies, ginseng has become the focus of research in many scientific fields. Analytical methodologies for ginseng, referred to as ginseng analysis hereafter, have been developed for bioactive component discovery, phytochemical profiling, quality control, and pharmacokinetic studies. This review summarizes the most recent advances in ginseng analysis in the past half-decade including emerging techniques and analytical trends. Ginseng analysis includes all of the leading analytical tools and serves as a representative model for the analytical research of herbal medicines. PMID:23717112
ERIC Educational Resources Information Center
Gayles, Jochebed G.; Molenaar, Peter C. M.
2013-01-01
The fields of psychology and human development are experiencing a resurgence of scientific inquiries about phenomena that unfold at the level of the individual. This article addresses the issues of analyzing intraindividual psychological/developmental phenomena using standard analytical techniques for interindividual variation. When phenomena are…
ERIC Educational Resources Information Center
White, Sylvia E.
1995-01-01
Describes development of an objective content analytic category scheme for measuring the sexiness of women's business attire in media presentations. Finds women's business attire in television soap operas significantly more provocative than real-world attire. Finds a significant positive correlation between the degree of sexiness as measured by…
ERIC Educational Resources Information Center
Gao, Ruomei
2015-01-01
In a typical chemistry instrumentation laboratory, students learn analytical techniques through a well-developed procedure. Such an approach, however, does not engage students in a creative endeavor. To foster the intrinsic motivation of students' desire to learn, improve their confidence in self-directed learning activities and enhance their…
Airborne chemistry: acoustic levitation in chemical analysis.
Santesson, Sabina; Nilsson, Staffan
2004-04-01
This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.
Statistically qualified neuro-analytic failure detection method and system
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
2002-03-02
An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.
The space shuttle payload planning working groups. Volume 8: Earth and ocean physics
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Earth and Ocean Physics working group of the space shuttle payload planning activity are presented. The requirements for the space shuttle mission are defined as: (1) precision measurement for earth and ocean physics experiments, (2) development and demonstration of new and improved sensors and analytical techniques, (3) acquisition of surface truth data for evaluation of new measurement techniques, (4) conduct of critical experiments to validate geophysical phenomena and instrumental results, and (5) development and validation of analytical/experimental models for global ocean dynamics and solid earth dynamics/earthquake prediction. Tables of data are presented to show the flight schedule estimated costs, and the mission model.
Fiber optic sensors for corrosion detection
NASA Technical Reports Server (NTRS)
Smith, Alphonso C.
1993-01-01
The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.
Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review
Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef
2014-01-01
Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409
Katz, S Montana
2017-04-01
The Bi-Personal Field: Experiences in Child Psychoanalysis. By Antonino Ferro. New York: Routledge, 1992 (1999). 232 pp. The Intimate Room: Theory and Technique of the Analytic Field. By Giuseppe Civitarese. New York: Routledge, 2008 (2010). 240 pp. The Necessary Dream: New Theories and Techniques of Interpretation in Psychoanalysis. By Giuseppe Civitarese; translated by Ian Harvey. London: Karnac, 2013 (2014). 246 pp. The Analytic Field and Its Transformations. By Antonino Ferro and Giuseppe Civitarese. London: Karnac, 2015. 224 pp. © 2017 The Psychoanalytic Quarterly, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, Anna P. M.; Lawrence-Snyder, Marion; Angel, S. Michael
The development of in situ chemical sensors is critical for present-day expeditionary oceanography and the new mode of ocean observing systems that we are entering. New sensors take a significant amount of time to develop; therefore, validation of techniques in the laboratory for use in the ocean environment is necessary. Laser-induced breakdown spectroscopy (LIBS) is a promising in situ technique for oceanography. Laboratory investigations on the feasibility of using LIBS to detect analytes in bulk liquids at oceanic pressures were carried out. LIBS was successfully used to detect dissolved Na, Mn, Ca, K, and Li at pressures up to 2.76x107more » Pa. The effects of pressure, laser-pulse energy, interpulse delay, gate delay, temperature, and NaCl concentration on the LIBS signal were examined. An optimal range of laser-pulse energies was found to exist for analyte detection in bulk aqueous solutions at both low and high pressures. No pressure effect was seen on the emission intensity for Ca and Na, and an increase in emission intensity with increased pressure was seen for Mn. Using the dual-pulse technique for several analytes, a very short interpulse delay resulted in the greatest emission intensity. The presence of NaCl enhanced the emission intensity for Ca, but had no effect on peak intensity of Mn or K. Overall, increased pressure, the addition of NaCl to a solution, and temperature did not inhibit detection of analytes in solution and sometimes even enhanced the ability to detect the analytes. The results suggest that LIBS is a viable chemical sensing method for in situ analyte detection in high-pressure environments such as the deep ocean.« less
Cell bioprocessing in space - Applications of analytical cytology
NASA Technical Reports Server (NTRS)
Todd, P.; Hymer, W. C.; Goolsby, C. L.; Hatfield, J. M.; Morrison, D. R.
1988-01-01
Cell bioprocessing experiments in space are reviewed and the development of on-board cell analytical cytology techniques that can serve such experiments is discussed. Methods and results of experiments involving the cultivation and separation of eukaryotic cells in space are presented. It is suggested that an advanced cytometer should be developed for the quantitative analysis of large numbers of specimens of suspended eukaryotic cells and bioparticles in experiments on the Space Station.
Recent development of electrochemiluminescence sensors for food analysis.
Hao, Nan; Wang, Kun
2016-10-01
Food quality and safety are closely related to human health. In the face of unceasing food safety incidents, various analytical techniques, such as mass spectrometry, chromatography, spectroscopy, and electrochemistry, have been applied in food analysis. High sensitivity usually requires expensive instruments and complicated procedures. Although these modern analytical techniques are sensitive enough to ensure food safety, sometimes their applications are limited because of the cost, usability, and speed of analysis. Electrochemiluminescence (ECL) is a powerful analytical technique that is attracting more and more attention because of its outstanding performance. In this review, the mechanisms of ECL and common ECL luminophores are briefly introduced. Then an overall review of the principles and applications of ECL sensors for food analysis is provided. ECL can be flexibly combined with various separation techniques. Novel materials (e.g., various nanomaterials) and strategies (e.g., immunoassay, aptasensors, and microfluidics) have been progressively introduced into the design of ECL sensors. By illustrating some selected representative works, we summarize the state of the art in the development of ECL sensors for toxins, heavy metals, pesticides, residual drugs, illegal additives, viruses, and bacterias. Compared with other methods, ECL can provide rapid, low-cost, and sensitive detection for various food contaminants in complex matrixes. However, there are also some limitations and challenges. Improvements suited to the characteristics of food analysis are still necessary.
Analytical techniques for steroid estrogens in water samples - A review.
Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza
2016-12-01
In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
2014-01-01
This review aims to highlight the recent advances and methodological improvements in instrumental techniques applied for the analysis of different brominated flame retardants (BFRs). The literature search strategy was based on the recent analytical reviews published on BFRs. The main selection criteria involved the successful development and application of analytical methods for determination of the target compounds in various environmental matrices. Different factors affecting chromatographic separation and mass spectrometric detection of brominated analytes were evaluated and discussed. Techniques using advanced instrumentation to achieve outstanding results in quantification of different BFRs and their metabolites/degradation products were highlighted. Finally, research gaps in the field of BFR analysis were identified and recommendations for future research were proposed. PMID:27433482
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, S.S.; Attari, A.
1995-01-01
The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent withmore » XRF and an IGT developed sorbent with GFAA for total arsenic measurement.« less
RLV Turbine Performance Optimization
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.; Dorney, Daniel J.
2001-01-01
A task was developed at NASA/Marshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. There are four major objectives of this task: 1) to develop, enhance, and integrate advanced turbine aerodynamic design and analysis tools; 2) to develop the methodology for application of the analytical techniques; 3) to demonstrate the benefits of the advanced turbine design procedure through its application to a relevant turbine design point; and 4) to verify the optimized design and analysis with testing. Final results of the preliminary design and the results of the two-dimensional (2D) detailed design of the first-stage vane of a supersonic turbine suitable for a reusable launch vehicle (R-LV) are presented. Analytical techniques for obtaining the results are also discussed.
Buchanan, Verica; Lu, Yafeng; McNeese, Nathan; Steptoe, Michael; Maciejewski, Ross; Cooke, Nancy
2017-03-01
Historically, domains such as business intelligence would require a single analyst to engage with data, develop a model, answer operational questions, and predict future behaviors. However, as the problems and domains become more complex, organizations are employing teams of analysts to explore and model data to generate knowledge. Furthermore, given the rapid increase in data collection, organizations are struggling to develop practices for intelligence analysis in the era of big data. Currently, a variety of machine learning and data mining techniques are available to model data and to generate insights and predictions, and developments in the field of visual analytics have focused on how to effectively link data mining algorithms with interactive visuals to enable analysts to explore, understand, and interact with data and data models. Although studies have explored the role of single analysts in the visual analytics pipeline, little work has explored the role of teamwork and visual analytics in the analysis of big data. In this article, we present an experiment integrating statistical models, visual analytics techniques, and user experiments to study the role of teamwork in predictive analytics. We frame our experiment around the analysis of social media data for box office prediction problems and compare the prediction performance of teams, groups, and individuals. Our results indicate that a team's performance is mediated by the team's characteristics such as openness of individual members to others' positions and the type of planning that goes into the team's analysis. These findings have important implications for how organizations should create teams in order to make effective use of information from their analytic models.
Digital Mapping Techniques '11–12 workshop proceedings
Soller, David R.
2014-01-01
At these meetings, oral and poster presentations and special discussion sessions emphasized: (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase formats; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure
NASA Technical Reports Server (NTRS)
Hallett, Michael P.; Reddell, Jerry P.
1997-01-01
This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.
Developing automated analytical methods for scientific environments using LabVIEW.
Wagner, Christoph; Armenta, Sergio; Lendl, Bernhard
2010-01-15
The development of new analytical techniques often requires the building of specially designed devices, each requiring its own dedicated control software. Especially in the research and development phase, LabVIEW has proven to be one highly useful tool for developing this software. Yet, it is still common practice to develop individual solutions for different instruments. In contrast to this, we present here a single LabVIEW-based program that can be directly applied to various analytical tasks without having to change the program code. Driven by a set of simple script commands, it can control a whole range of instruments, from valves and pumps to full-scale spectrometers. Fluid sample (pre-)treatment and separation procedures can thus be flexibly coupled to a wide range of analytical detection methods. Here, the capabilities of the program have been demonstrated by using it for the control of both a sequential injection analysis - capillary electrophoresis (SIA-CE) system with UV detection, and an analytical setup for studying the inhibition of enzymatic reactions using a SIA system with FTIR detection.
A systematic scanning election microscope analytical technique has been developed to examine granular activated carbon used a a medium for biomass attachment in liquid waste treatment. The procedure allows for the objective monitoring, comparing, and trouble shooting of combined ...
Modeling Lexical Borrowability.
ERIC Educational Resources Information Center
van Hout, Roeland; Muysken, Pieter
1994-01-01
Develops analytical techniques to determine "borrowability," the ease with which a lexical item or category of lexical items can be borrowed by one language from another. These techniques are then applied to Spanish borrowings in Bolivian Quechua on the basis of a set of bilingual texts. (29 references) (MDM)
Multilevel Modeling and Policy Development: Guidelines and Applications to Medical Travel.
Garcia-Garzon, Eduardo; Zhukovsky, Peter; Haller, Elisa; Plakolm, Sara; Fink, David; Petrova, Dafina; Mahalingam, Vaishali; Menezes, Igor G; Ruggeri, Kai
2016-01-01
Medical travel has expanded rapidly in recent years, resulting in new markets and increased access to medical care. Whereas several studies investigated the motives of individuals seeking healthcare abroad, the conventional analytical approach is limited by substantial caveats. Classical techniques as found in the literature cannot provide sufficient insight due to the nested nature of data generated. The application of adequate analytical techniques, specifically multilevel modeling, is scarce to non-existent in the context of medical travel. This study introduces the guidelines for application of multilevel techniques in public health research by presenting an application of multilevel modeling in analyzing the decision-making patterns of potential medical travelers. Benefits and potential limitations are discussed.
Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.
2002-01-01
High performance liquid chromatography coupled with programmable fluorescence detection was employed for the determination of 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs) in water, sediment, and semipermeable membrane devices (SPMDs). Chromatographic separation using this analytical method facilitates selectivity, sensitivity (ppt levels), and can serve as a non-destructive technique for subsequent analysis by other chromatographic and spectroscopic techniques. Extraction and sample cleanup procedures were also developed for water, sediment, and SPMDs using various chromatographic and wet chemical methods. The focus of this publication is to examine the enrichment techniques and the analytical methodologies used in the isolation, characterization, and quantitation of 15 PPPAHs in different sample matrices.
Multilevel Modeling and Policy Development: Guidelines and Applications to Medical Travel
Garcia-Garzon, Eduardo; Zhukovsky, Peter; Haller, Elisa; Plakolm, Sara; Fink, David; Petrova, Dafina; Mahalingam, Vaishali; Menezes, Igor G.; Ruggeri, Kai
2016-01-01
Medical travel has expanded rapidly in recent years, resulting in new markets and increased access to medical care. Whereas several studies investigated the motives of individuals seeking healthcare abroad, the conventional analytical approach is limited by substantial caveats. Classical techniques as found in the literature cannot provide sufficient insight due to the nested nature of data generated. The application of adequate analytical techniques, specifically multilevel modeling, is scarce to non-existent in the context of medical travel. This study introduces the guidelines for application of multilevel techniques in public health research by presenting an application of multilevel modeling in analyzing the decision-making patterns of potential medical travelers. Benefits and potential limitations are discussed. PMID:27252672
Iterative categorization (IC): a systematic technique for analysing qualitative data
2016-01-01
Abstract The processes of analysing qualitative data, particularly the stage between coding and publication, are often vague and/or poorly explained within addiction science and research more broadly. A simple but rigorous and transparent technique for analysing qualitative textual data, developed within the field of addiction, is described. The technique, iterative categorization (IC), is suitable for use with inductive and deductive codes and can support a range of common analytical approaches, e.g. thematic analysis, Framework, constant comparison, analytical induction, content analysis, conversational analysis, discourse analysis, interpretative phenomenological analysis and narrative analysis. Once the data have been coded, the only software required is a standard word processing package. Worked examples are provided. PMID:26806155
XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.
2009-01-01
Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.
Fifty years of solid-phase extraction in water analysis--historical development and overview.
Liska, I
2000-07-14
The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.
Image correlation and sampling study
NASA Technical Reports Server (NTRS)
Popp, D. J.; Mccormack, D. S.; Sedwick, J. L.
1972-01-01
The development of analytical approaches for solving image correlation and image sampling of multispectral data is discussed. Relevant multispectral image statistics which are applicable to image correlation and sampling are identified. The general image statistics include intensity mean, variance, amplitude histogram, power spectral density function, and autocorrelation function. The translation problem associated with digital image registration and the analytical means for comparing commonly used correlation techniques are considered. General expressions for determining the reconstruction error for specific image sampling strategies are developed.
Applications Of Measurement Techniques To Develop Small-Diameter, Undersea Fiber Optic Cables
NASA Astrophysics Data System (ADS)
Kamikawa, Neil T.; Nakagawa, Arthur T.
1984-12-01
Attenuation, strain, and optical time domain reflectometer (OTDR) measurement techniques were applied successfully in the development of a minimum-diameter, electro-optic sea floor cable. Temperature and pressure models for excess attenuation in polymer coated, graded-index fibers were investigated analytically and experimentally using these techniques in the laboratory. The results were used to select a suitable fiber for the cable. Measurements also were performed on these cables during predeployment and sea-trial testing to verify laboratory results. Application of the measurement techniques and results are summarized in this paper.
Sigma Metrics Across the Total Testing Process.
Charuruks, Navapun
2017-03-01
Laboratory quality control has been developed for several decades to ensure patients' safety, from a statistical quality control focus on the analytical phase to total laboratory processes. The sigma concept provides a convenient way to quantify the number of errors in extra-analytical and analytical phases through the defect per million and sigma metric equation. Participation in a sigma verification program can be a convenient way to monitor analytical performance continuous quality improvement. Improvement of sigma-scale performance has been shown from our data. New tools and techniques for integration are needed. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Petronijević, R. B.; Velebit, B.; Baltić, T.
2017-09-01
Intentional modification of food or substitution of food ingredients with the aim of gaining profit is food fraud or economically motivated adulteration (EMA). EMA appeared in the food supply chain, and following the global expansion of the food market, has become a world-scale problem for the global economy. Food frauds have involved oils, milk and meat products, infant formula, honey, juices, spices, etc. New legislation was enacted in the last decade in order to fight EMA. Effective analytical methods for food fraud detection are few and still in development. The majority of the methods in common use today for EMA detection are time consuming and inappropriate for use on the production line or out of the laboratory. The next step in the evolution of analytical techniques to combat food fraud is development of fast, accurate methods applicable using portable or handheld devices. Spectrophotometric and spectroscopic methods combined with chemometric analysis, and perhaps in combination with other rapid physico-chemical techniques, could be the answer. This review discusses some analytical techniques based on spectrophotometry and spectroscopy, which are used to reveal food fraud and EMA.
Pasin, Daniel; Cawley, Adam; Bidny, Sergei; Fu, Shanlin
2017-10-01
The proliferation of new psychoactive substances (NPS) in recent years has resulted in the development of numerous analytical methods for the detection and identification of known and unknown NPS derivatives. High-resolution mass spectrometry (HRMS) has been identified as the method of choice for broad screening of NPS in a wide range of analytical contexts because of its ability to measure accurate masses using data-independent acquisition (DIA) techniques. Additionally, it has shown promise for non-targeted screening strategies that have been developed in order to detect and identify novel analogues without the need for certified reference materials (CRMs) or comprehensive mass spectral libraries. This paper reviews the applications of HRMS for the analysis of NPS in forensic drug chemistry and analytical toxicology. It provides an overview of the sample preparation procedures in addition to data acquisition, instrumental analysis, and data processing techniques. Furthermore, it gives an overview of the current state of non-targeted screening strategies with discussion on future directions and perspectives of this technique. Graphical Abstract Missing the bullseye - a graphical respresentation of non-targeted screening. Image courtesy of Christian Alonzo.
Asadollahi, Aziz; Khazanovich, Lev
2018-04-11
The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of high-aspect-ratio jet-flap wings of arbitrary geometry
NASA Technical Reports Server (NTRS)
Lissaman, P. B. S.
1973-01-01
An analytical technique to compute the performance of an arbitrary jet-flapped wing is developed. The solution technique is based on the method of Maskell and Spence in which the well-known lifting-line approach is coupled with an auxiliary equation providing the extra function needed in jet-flap theory. The present method is generalized to handle straight, uncambered wings of arbitrary planform, twist, and blowing (including unsymmetrical cases). An analytical procedure is developed for continuous variations in the above geometric data with special functions to exactly treat discontinuities in any of the geometric and blowing data. A rational theory for the effect of finite wing thickness is introduced as well as simplified concepts of effective aspect ratio for rapid estimation of performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Feng; Liu, Yijin; Yu, Xiqian
Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancementmore » of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allows for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools, and are also discussed towards the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole technique may lead to biased and inaccurate conclusions. We then discuss the current progress of experimental design for synchrotron experiments and methods to mitigate beam effects. Finally, a perspective is provided to elaborate how synchrotron techniques can impact the development of next-generation battery chemistries.« less
Lin, Feng; Liu, Yijin; Yu, Xiqian; ...
2017-08-30
Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancementmore » of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allows for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools, and are also discussed towards the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole technique may lead to biased and inaccurate conclusions. We then discuss the current progress of experimental design for synchrotron experiments and methods to mitigate beam effects. Finally, a perspective is provided to elaborate how synchrotron techniques can impact the development of next-generation battery chemistries.« less
Lim, Wei Yin; Goh, Boon Tong; Khor, Sook Mei
2017-08-15
Clinicians, working in the health-care diagnostic systems of developing countries, currently face the challenges of rising costs, increased number of patient visits, and limited resources. A significant trend is using low-cost substrates to develop microfluidic devices for diagnostic purposes. Various fabrication techniques, materials, and detection methods have been explored to develop these devices. Microfluidic paper-based analytical devices (μPADs) have gained attention for sensing multiplex analytes, confirming diagnostic test results, rapid sample analysis, and reducing the volume of samples and analytical reagents. μPADs, which can provide accurate and reliable direct measurement without sample pretreatment, can reduce patient medical burden and yield rapid test results, aiding physicians in choosing appropriate treatment. The objectives of this review are to provide an overview of the strategies used for developing paper-based sensors with enhanced analytical performances and to discuss the current challenges, limitations, advantages, disadvantages, and future prospects of paper-based microfluidic platforms in clinical diagnostics. μPADs, with validated and justified analytical performances, can potentially improve the quality of life by providing inexpensive, rapid, portable, biodegradable, and reliable diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata; Cieślik, Piotr; Michalski, Aleksander J; Niemcewicz, Marcin; Kocik, Janusz; Chomiczewski, Krzysztof
2014-01-01
Modern threats of bioterrorism force the need to develop methods for rapid and accurate identification of dangerous biological agents. Currently, there are many types of methods used in this field of studies that are based on immunological or genetic techniques, or constitute a combination of both methods (immuno-genetic). There are also methods that have been developed on the basis of physical and chemical properties of the analytes. Each group of these analytical assays can be further divided into conventional methods (e.g. simple antigen-antibody reactions, classical PCR, real-time PCR), and modern technologies (e.g. microarray technology, aptamers, phosphors, etc.). Nanodiagnostics constitute another group of methods that utilize the objects at a nanoscale (below 100 nm). There are also integrated and automated diagnostic systems, which combine different methods and allow simultaneous sampling, extraction of genetic material and detection and identification of the analyte using genetic, as well as immunological techniques.
Analytical Chemistry Laboratory. Progress report for FY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.W.; Boparai, A.S.; Bowers, D.L.
The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients --more » Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Environmental studies were conducted to provide data that could be used by the Commissioner of Health for the State of New York in determining whether the Emergency Declaration Area (EDA) surrounding the Love Canal hazardous-waste site is habitable. The soil assessment compared concentrations of the Love Canal Indicator Chemicals found in the EDA to concentrations found in similar western New York communities. An analytical technique was developed to detect the indicator chemicals at very low levels, i.e. 1.0 ppb. The analytical technique utilized a gas chromatograph/mass spectrometer operating in the selected ion monitoring mode. The analytical results were statistically comparedmore » between the EDA and the comparison areas using a modified Wilcoxon rank sum test.« less
NASA Technical Reports Server (NTRS)
Kempler, Steve; Mathews, Tiffany
2016-01-01
The continuum of ever-evolving data management systems affords great opportunities to the enhancement of knowledge and facilitation of science research. To take advantage of these opportunities, it is essential to understand and develop methods that enable data relationships to be examined and the information to be manipulated. This presentation describes the efforts of the Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster to understand, define, and facilitate the implementation of ESDA to advance science research. As a result of the void of Earth science data analytics publication material, the cluster has defined ESDA along with 10 goals to set the framework for a common understanding of tools and techniques that are available and still needed to support ESDA.
The general 2-D moments via integral transform method for acoustic radiation and scattering
NASA Astrophysics Data System (ADS)
Smith, Jerry R.; Mirotznik, Mark S.
2004-05-01
The moments via integral transform method (MITM) is a technique to analytically reduce the 2-D method of moments (MoM) impedance double integrals into single integrals. By using a special integral representation of the Green's function, the impedance integral can be analytically simplified to a single integral in terms of transformed shape and weight functions. The reduced expression requires fewer computations and reduces the fill times of the MoM impedance matrix. Furthermore, the resulting integral is analytic for nearly arbitrary shape and weight function sets. The MITM technique is developed for mixed boundary conditions and predictions with basic shape and weight function sets are presented. Comparisons of accuracy and speed between MITM and brute force are presented. [Work sponsored by ONR and NSWCCD ILIR Board.
Specialized data analysis of SSME and advanced propulsion system vibration measurements
NASA Technical Reports Server (NTRS)
Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi
1993-01-01
The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.
Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw; Robert Vatalaro
2005-01-01
This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...
Analytical capillary isotachophoresis after 50 years of development: Recent progress 2014-2016.
Malá, Zdena; Gebauer, Petr; Boček, Petr
2017-01-01
This review brings a survey of papers on analytical ITP published since 2014 until the first quarter of 2016. The 50th anniversary of ITP as a modern analytical method offers the opportunity to present a brief view on its beginnings and to discuss the present state of the art from the viewpoint of the history of its development. Reviewed papers from the field of theory and principles confirm the continuing importance of computer simulations in the discovery of new and unexpected phenomena. The strongly developing field of instrumentation and techniques shows novel channel methodologies including use of porous media and new on-chip assays, where ITP is often included in a preseparative or even preparative function. A number of new analytical applications are reported, with ITP appearing almost exclusively in combination with other principles and methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qualitative evaluation of water displacement in simulated analytical breaststroke movements.
Martens, Jonas; Daly, Daniel
2012-05-01
One purpose of evaluating a swimmer is to establish the individualized optimal technique. A swimmer's particular body structure and the resulting movement pattern will cause the surrounding water to react in differing ways. Consequently, an assessment method based on flow visualization was developed complimentary to movement analysis and body structure quantification. A fluorescent dye was used to make the water displaced by the body visible on video. To examine the hypothesis on the propulsive mechanisms applied in breaststroke swimming, we analyzed the movements of the surrounding water during 4 analytical breaststroke movements using the flow visualization technique.
User-Centered Evaluation of Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean C.
Visual analytics systems are becoming very popular. More domains now use interactive visualizations to analyze the ever-increasing amount and heterogeneity of data. More novel visualizations are being developed for more tasks and users. We need to ensure that these systems can be evaluated to determine that they are both useful and usable. A user-centered evaluation for visual analytics needs to be developed for these systems. While many of the typical human-computer interaction (HCI) evaluation methodologies can be applied as is, others will need modification. Additionally, new functionality in visual analytics systems needs new evaluation methodologies. There is a difference betweenmore » usability evaluations and user-centered evaluations. Usability looks at the efficiency, effectiveness, and user satisfaction of users carrying out tasks with software applications. User-centered evaluation looks more specifically at the utility provided to the users by the software. This is reflected in the evaluations done and in the metrics used. In the visual analytics domain this is very challenging as users are most likely experts in a particular domain, the tasks they do are often not well defined, the software they use needs to support large amounts of different kinds of data, and often the tasks last for months. These difficulties are discussed more in the section on User-centered Evaluation. Our goal is to provide a discussion of user-centered evaluation practices for visual analytics, including existing practices that can be carried out and new methodologies and metrics that need to be developed and agreed upon by the visual analytics community. The material provided here should be of use for both researchers and practitioners in the field of visual analytics. Researchers and practitioners in HCI and interested in visual analytics will find this information useful as well as a discussion on changes that need to be made to current HCI practices to make them more suitable to visual analytics. A history of analysis and analysis techniques and problems is provided as well as an introduction to user-centered evaluation and various evaluation techniques for readers from different disciplines. The understanding of these techniques is imperative if we wish to support analysis in the visual analytics software we develop. Currently the evaluations that are conducted and published for visual analytics software are very informal and consist mainly of comments from users or potential users. Our goal is to help researchers in visual analytics to conduct more formal user-centered evaluations. While these are time-consuming and expensive to carryout, the outcomes of these studies will have a defining impact on the field of visual analytics and help point the direction for future features and visualizations to incorporate. While many researchers view work in user-centered evaluation as a less-than-exciting area to work, the opposite is true. First of all, the goal is user-centered evaluation is to help visual analytics software developers, researchers, and designers improve their solutions and discover creative ways to better accommodate their users. Working with the users is extremely rewarding as well. While we use the term “users” in almost all situations there are a wide variety of users that all need to be accommodated. Moreover, the domains that use visual analytics are varied and expanding. Just understanding the complexities of a number of these domains is exciting. Researchers are trying out different visualizations and interactions as well. And of course, the size and variety of data are expanding rapidly. User-centered evaluation in this context is rapidly changing. There are no standard processes and metrics and thus those of us working on user-centered evaluation must be creative in our work with both the users and with the researchers and developers.« less
Analytical techniques: A compilation
NASA Technical Reports Server (NTRS)
1975-01-01
A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.
NASA Astrophysics Data System (ADS)
Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka
2011-07-01
A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.
Developing the role of big data and analytics in health professional education.
Ellaway, Rachel H; Pusic, Martin V; Galbraith, Robert M; Cameron, Terri
2014-03-01
As we capture more and more data about learners, their learning, and the organization of their learning, our ability to identify emerging patterns and to extract meaning grows exponentially. The insights gained from the analyses of these large amounts of data are only helpful to the extent that they can be the basis for positive action such as knowledge discovery, improved capacity for prediction, and anomaly detection. Big Data involves the aggregation and melding of large and heterogeneous datasets while education analytics involves looking for patterns in educational practice or performance in single or aggregate datasets. Although it seems likely that the use of education analytics and Big Data techniques will have a transformative impact on health professional education, there is much yet to be done before they can become part of mainstream health professional education practice. If health professional education is to be accountable for its programs run and are developed, then health professional educators will need to be ready to deal with the complex and compelling dynamics of analytics and Big Data. This article provides an overview of these emerging techniques in the context of health professional education.
Historical review of missile aerodynamic developments
NASA Technical Reports Server (NTRS)
Spearman, M. Leroy
1989-01-01
A comprehensive development history to about 1970 is presented for missile technologies and their associated capabilities and difficulties. Attention is given to the growth of an experimental data base for missile design, as well as to the critical early efforts to develop analytical methods applicable to missiles. Most of the important missile development efforts made during the period from the end of the Second World War to the early 1960s were based primarily on experiences gained through wind tunnel and flight testing; analytical techniques began to demonstrate their usefulness in the design process only in the late 1960s.
Analytical advances in pharmaceutical impurity profiling.
Holm, René; Elder, David P
2016-05-25
Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Ewald, Melanie; Fechner, Peter; Gauglitz, Günter
2015-05-01
For the first time, a multi-analyte biosensor platform has been developed using the label-free 1-lambda-reflectometry technique. This platform is the first, which does not use imaging techniques, but is able to perform multi-analyte measurements. It is designed to be portable and cost-effective and therefore allows for point-of-need testing or on-site field-testing with possible applications in diagnostics. This work highlights the application possibilities of this platform in the field of animal testing, but is also relevant and transferable to human diagnostics. The performance of the platform has been evaluated using relevant reference systems like biomarker (C-reactive protein) and serology (anti-Salmonella antibodies) as well as a panel of real samples (animal sera). The comparison of the working range and limit of detection shows no loss of performance transferring the separate assays to the multi-analyte setup. Moreover, the new multi-analyte platform allows for discrimination between sera of animals infected with different Salmonella subtypes.
Research Data Alliance: Understanding Big Data Analytics Applications in Earth Science
NASA Astrophysics Data System (ADS)
Riedel, Morris; Ramachandran, Rahul; Baumann, Peter
2014-05-01
The Research Data Alliance (RDA) enables data to be shared across barriers through focused working groups and interest groups, formed of experts from around the world - from academia, industry and government. Its Big Data Analytics (BDA) interest groups seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. BDA seeks to analyze different scientific domain applications (e.g. earth science use cases) and their potential use of various big data analytics techniques. These techniques reach from hardware deployment models up to various different algorithms (e.g. machine learning algorithms such as support vector machines for classification). A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. This contribution will outline initial parts of such a classification and recommendations in the specific context of the field of Earth Sciences. Given lessons learned and experiences are based on a survey of use cases and also providing insights in a few use cases in detail.
Research Data Alliance: Understanding Big Data Analytics Applications in Earth Science
NASA Technical Reports Server (NTRS)
Riedel, Morris; Ramachandran, Rahul; Baumann, Peter
2014-01-01
The Research Data Alliance (RDA) enables data to be shared across barriers through focused working groups and interest groups, formed of experts from around the world - from academia, industry and government. Its Big Data Analytics (BDA) interest groups seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. BDA seeks to analyze different scientific domain applications (e.g. earth science use cases) and their potential use of various big data analytics techniques. These techniques reach from hardware deployment models up to various different algorithms (e.g. machine learning algorithms such as support vector machines for classification). A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. This contribution will outline initial parts of such a classification and recommendations in the specific context of the field of Earth Sciences. Given lessons learned and experiences are based on a survey of use cases and also providing insights in a few use cases in detail.
[Composition of chicken and quail eggs].
Closa, S J; Marchesich, C; Cabrera, M; Morales, J C
1999-06-01
Qualified food composition data on lipids composition are needed to evaluate intakes as a risk factor in the development of heart disease. Proximal composition, cholesterol and fatty acid content of chicken and quail eggs, usually consumed or traded, were analysed. Proximal composition were determined using AOAC (1984) specific techniques; lipids were extracted by a Folch's modified technique and cholesterol and fatty acids were determined by gas chromatography. Results corroborate the stability of eggs composition. Cholesterol content of quail eggs is similar to chicken eggs, but it is almost the half content of data registered in Handbook 8. Differences may be attributed to the analytical methodology used to obtain them. This study provides data obtained with up-date analytical techniques and accessory information useful for food composition tables.
Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques.
Noblitt, Scott D; Berg, Kathleen E; Cate, David M; Henry, Charles S
2016-04-07
Measurement variance is a crucial aspect of quantitative chemical analysis. Variance directly affects important analytical figures of merit, including detection limit, quantitation limit, and confidence intervals. Most reported analyses for emerging analytical techniques implicitly assume constant variance (homoskedasticity) by using unweighted regression calibrations. Despite the assumption of constant variance, it is known that most instruments exhibit heteroskedasticity, where variance changes with signal intensity. Ignoring nonconstant variance results in suboptimal calibrations, invalid uncertainty estimates, and incorrect detection limits. Three techniques where homoskedasticity is often assumed were covered in this work to evaluate if heteroskedasticity had a significant quantitative impact-naked-eye, distance-based detection using paper-based analytical devices (PADs), cathodic stripping voltammetry (CSV) with disposable carbon-ink electrode devices, and microchip electrophoresis (MCE) with conductivity detection. Despite these techniques representing a wide range of chemistries and precision, heteroskedastic behavior was confirmed for each. The general variance forms were analyzed, and recommendations for accounting for nonconstant variance discussed. Monte Carlo simulations of instrument responses were performed to quantify the benefits of weighted regression, and the sensitivity to uncertainty in the variance function was tested. Results show that heteroskedasticity should be considered during development of new techniques; even moderate uncertainty (30%) in the variance function still results in weighted regression outperforming unweighted regressions. We recommend utilizing the power model of variance because it is easy to apply, requires little additional experimentation, and produces higher-precision results and more reliable uncertainty estimates than assuming homoskedasticity. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hough, Susan L.; Hall, Bruce W.
The meta-analytic techniques of G. V. Glass (1976) and J. E. Hunter and F. L. Schmidt (1977) were compared through their application to three meta-analytic studies from education literature. The following hypotheses were explored: (1) the overall mean effect size would be larger in a Hunter-Schmidt meta-analysis (HSMA) than in a Glass…
Elements of analytic style: Bion's clinical seminars.
Ogden, Thomas H
2007-10-01
The author finds that the idea of analytic style better describes significant aspects of the way he practices psychoanalysis than does the notion of analytic technique. The latter is comprised to a large extent of principles of practice developed by previous generations of analysts. By contrast, the concept of analytic style, though it presupposes the analyst's thorough knowledge of analytic theory and technique, emphasizes (1) the analyst's use of his unique personality as reflected in his individual ways of thinking, listening, and speaking, his own particular use of metaphor, humor, irony, and so on; (2) the analyst's drawing on his personal experience, for example, as an analyst, an analysand, a parent, a child, a spouse, a teacher, and a student; (3) the analyst's capacity to think in a way that draws on, but is independent of, the ideas of his colleagues, his teachers, his analyst, and his analytic ancestors; and (4) the responsibility of the analyst to invent psychoanalysis freshly for each patient. Close readings of three of Bion's 'Clinical seminars' are presented in order to articulate some of the elements of Bion's analytic style. Bion's style is not presented as a model for others to emulate or, worse yet, imitate; rather, it is described in an effort to help the reader consider from a different vantage point (provided by the concept of analytic style) the way in which he, the reader, practices psychoanalysis.
ERIC Educational Resources Information Center
Miller, Jason W.; Stromeyer, William R.; Schwieterman, Matthew A.
2013-01-01
The past decade has witnessed renewed interest in the use of the Johnson-Neyman (J-N) technique for calculating the regions of significance for the simple slope of a focal predictor on an outcome variable across the range of a second, continuous independent variable. Although tools have been developed to apply this technique to probe 2- and 3-way…
NASA Technical Reports Server (NTRS)
1974-01-01
Technical information is presented covering the areas of: (1) analytical instrumentation useful in the analysis of physical phenomena; (2) analytical techniques used to determine the performance of materials; and (3) systems and component analyses for design and quality control.
Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L
2015-03-01
Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultramicroelectrode Array Based Sensors: A Promising Analytical Tool for Environmental Monitoring
Orozco, Jahir; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia
2010-01-01
The particular analytical performance of ultramicroelectrode arrays (UMEAs) has attracted a high interest by the research community and has led to the development of a variety of electroanalytical applications. UMEA-based approaches have demonstrated to be powerful, simple, rapid and cost-effective analytical tools for environmental analysis compared to available conventional electrodes and standardised analytical techniques. An overview of the fabrication processes of UMEAs, their characterization and applications carried out by the Spanish scientific community is presented. A brief explanation of theoretical aspects that highlight their electrochemical behavior is also given. Finally, the applications of this transducer platform in the environmental field are discussed. PMID:22315551
POLLUTION PREVENTION AND ENHANCEMENT OF BIODEGRADABILITY VIA ISOMER ELIMINATION IN CONSUMER PRODUCTS
The purpose of this project is to develop novel methodologies for the analysis and detection of chiral environmental contaminants. Conventional analytical techniques do not discriminate between enantiomers. By using newly developed enantioselective methods, the environmental pers...
Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology.
Jesus, Mafalda; Martins, Ana P J; Gallardo, Eugenia; Silvestre, Samuel
2016-01-01
Diosgenin, a steroidal sapogenin, occurs abundantly in plants such as Dioscorea alata , Smilax China, and Trigonella foenum graecum . This bioactive phytochemical not only is used as an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry, but has revealed also high potential and interest in the treatment of various types of disorders such as cancer, hypercholesterolemia, inflammation, and several types of infections. Due to its pharmacological and industrial importance, several extraction and analytical procedures have been developed and applied over the years to isolate, detect, and quantify diosgenin, not only in its natural sources and pharmaceutical compositions, but also in animal matrices for pharmacodynamic, pharmacokinetic, and toxicological studies. Within these, HPLC technique coupled to different detectors is the most commonly analytical procedure described for this compound. However, other alternative methods were also published. Thus, the present review aims to provide collective information on the most recent pharmacological data on diosgenin and on the most relevant analytical techniques used to isolate, detect, and quantify this compound as well.
Bagnasco, Lucia; Cosulich, M Elisabetta; Speranza, Giovanna; Medini, Luca; Oliveri, Paolo; Lanteri, Silvia
2014-08-15
The relationships between sensory attribute and analytical measurements, performed by electronic tongue (ET) and near-infrared spectroscopy (NIRS), were investigated in order to develop a rapid method for the assessment of umami taste. Commercially available umami products and some aminoacids were submitted to sensory analysis. Results were analysed in comparison with the outcomes of analytical measurements. Multivariate exploratory analysis was performed by principal component analysis (PCA). Calibration models for prediction of the umami taste on the basis of ET and NIR signals were obtained using partial least squares (PLS) regression. Different approaches for merging data from the two different analytical instruments were considered. Both of the techniques demonstrated to provide information related with umami taste. In particular, ET signals showed the higher correlation with umami attribute. Data fusion was found to be slightly beneficial - not so significantly as to justify the coupled use of the two analytical techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology
2016-01-01
Diosgenin, a steroidal sapogenin, occurs abundantly in plants such as Dioscorea alata, Smilax China, and Trigonella foenum graecum. This bioactive phytochemical not only is used as an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry, but has revealed also high potential and interest in the treatment of various types of disorders such as cancer, hypercholesterolemia, inflammation, and several types of infections. Due to its pharmacological and industrial importance, several extraction and analytical procedures have been developed and applied over the years to isolate, detect, and quantify diosgenin, not only in its natural sources and pharmaceutical compositions, but also in animal matrices for pharmacodynamic, pharmacokinetic, and toxicological studies. Within these, HPLC technique coupled to different detectors is the most commonly analytical procedure described for this compound. However, other alternative methods were also published. Thus, the present review aims to provide collective information on the most recent pharmacological data on diosgenin and on the most relevant analytical techniques used to isolate, detect, and quantify this compound as well. PMID:28116217
Goetz, H; Kuschel, M; Wulff, T; Sauber, C; Miller, C; Fisher, S; Woodward, C
2004-09-30
Protein analysis techniques are developing fast due to the growing number of proteins obtained by recombinant DNA techniques. In the present paper we compare selected techniques, which are used for protein sizing, quantitation and molecular weight determination: sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), lab-on-a-chip or microfluidics technology (LoaC), size exclusion chromatography (SEC) and mass spectrometry (MS). We compare advantages and limitations of each technique in respect to different application areas, analysis time, protein sizing and quantitation performance.
ERIC Educational Resources Information Center
Asamoah, Daniel A.; Sharda, Ramesh; Kalgotra, Pankush; Ott, Mark
2016-01-01
Within the context of the telecom industry, this teaching case is an active learning analytics exercise to help students build hands-on expertise on how to utilize Big Data to solve a business problem. Particularly, the case utilizes an analytics method to help develop a customer retention strategy to mitigate against an increasing customer churn…
Mass Spectrometric Rapid Diagnosis of Infectious Diseases.
1980-01-01
the analytical procedures to warrant reporting anew the whole analytical procedure. A. Sample Collection and Storage Procedure Urine samples were...positives or false-negatives. Next we have carried out a longitudinal study on urine samples obtained from groups of volunteer subjects vaccinated with...sterilization and storage procedures. 2. Developed new, simpler sample preparation techniques including one to handle tissue culture media. 3. Improved on the
Graph Theoretic Foundations of Multibody Dynamics Part I: Structural Properties
Jain, Abhinandan
2011-01-01
This is the first part of two papers that use concepts from graph theory to obtain a deeper understanding of the mathematical foundations of multibody dynamics. The key contribution is the development of a unifying framework that shows that key analytical results and computational algorithms in multibody dynamics are a direct consequence of structural properties and require minimal assumptions about the specific nature of the underlying multibody system. This first part focuses on identifying the abstract graph theoretic structural properties of spatial operator techniques in multibody dynamics. The second part paper exploits these structural properties to develop a broad spectrum of analytical results and computational algorithms. Towards this, we begin with the notion of graph adjacency matrices and generalize it to define block-weighted adjacency (BWA) matrices and their 1-resolvents. Previously developed spatial operators are shown to be special cases of such BWA matrices and their 1-resolvents. These properties are shown to hold broadly for serial and tree topology multibody systems. Specializations of the BWA and 1-resolvent matrices are referred to as spatial kernel operators (SKO) and spatial propagation operators (SPO). These operators and their special properties provide the foundation for the analytical and algorithmic techniques developed in the companion paper. We also use the graph theory concepts to study the topology induced sparsity structure of these operators and the system mass matrix. Similarity transformations of these operators are also studied. While the detailed development is done for the case of rigid-link multibody systems, the extension of these techniques to a broader class of systems (e.g. deformable links) are illustrated. PMID:22102790
An analysis technique for testing log grades
Carl A. Newport; William G. O' Regan
1963-01-01
An analytical technique that may be used in evaluating log-grading systems is described. It also provides means of comparing two or more grading systems, or a proposed change with the system from which it was developed. The total volume and computed value of lumber from each sample log are the basic data used.
Validation of Multilevel Constructs: Validation Methods and Empirical Findings for the EDI
ERIC Educational Resources Information Center
Forer, Barry; Zumbo, Bruno D.
2011-01-01
The purposes of this paper are to highlight the foundations of multilevel construct validation, describe two methodological approaches and associated analytic techniques, and then apply these approaches and techniques to the multilevel construct validation of a widely-used school readiness measure called the Early Development Instrument (EDI;…
Methods and Techniques for Clinical Text Modeling and Analytics
ERIC Educational Resources Information Center
Ling, Yuan
2017-01-01
This study focuses on developing and applying methods/techniques in different aspects of the system for clinical text understanding, at both corpus and document level. We deal with two major research questions: First, we explore the question of "How to model the underlying relationships from clinical notes at corpus level?" Documents…
General Analytical Schemes for the Characterization of Pectin-Based Edible Gelled Systems
Haghighi, Maryam; Rezaei, Karamatollah
2012-01-01
Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details. PMID:22645484
On Establishing Big Data Wave Breakwaters with Analytics (Invited)
NASA Astrophysics Data System (ADS)
Riedel, M.
2013-12-01
The Research Data Alliance Big Data Analytics (RDA-BDA) Interest Group seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. RDA-BDA seeks to analyze different scientific domain applications and their potential use of various big data analytics techniques. A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. These combinations are complex since a wide variety of different data analysis algorithms exist (e.g. specific algorithms using GPUs of analyzing brain images) that need to work together with multiple analytical tools reaching from simple (iterative) map-reduce methods (e.g. with Apache Hadoop or Twister) to sophisticated higher level frameworks that leverage machine learning algorithms (e.g. Apache Mahout). These computational analysis techniques are often augmented with visual analytics techniques (e.g. computational steering on large-scale high performance computing platforms) to put the human judgement into the analysis loop or new approaches with databases that are designed to support new forms of unstructured or semi-structured data as opposed to the rather tradtional structural databases (e.g. relational databases). More recently, data analysis and underpinned analytics frameworks also have to consider energy footprints of underlying resources. To sum up, the aim of this talk is to provide pieces of information to understand big data analytics in the context of science and engineering using the aforementioned classification as the lighthouse and as the frame of reference for a systematic approach. This talk will provide insights about big data analytics methods in context of science within varios communities and offers different views of how approaches of correlation and causality offer complementary methods to advance in science and engineering today. The RDA Big Data Analytics Group seeks to understand what approaches are not only technically feasible, but also scientifically feasible. The lighthouse Goal of the RDA Big Data Analytics Group is a classification of clever combinations of various Technologies and scientific applications in order to provide clear recommendations to the scientific community what approaches are technicalla and scientifically feasible.
Banerjee, Shibdas; Mazumdar, Shyamalava
2012-01-01
The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research.
Deriving Earth Science Data Analytics Tools/Techniques Requirements
NASA Astrophysics Data System (ADS)
Kempler, S. J.
2015-12-01
Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.
Progress toward a cosmic dust collection facility on space station
NASA Technical Reports Server (NTRS)
Mackinnon, Ian D. R. (Editor); Carey, William C. (Editor)
1987-01-01
Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.
Active Control of Inlet Noise on the JT15D Turbofan Engine
NASA Technical Reports Server (NTRS)
Smith, Jerome P.; Hutcheson, Florence V.; Burdisso, Ricardo A.; Fuller, Chris R.
1999-01-01
This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage-mounted error sensors and passive control techniques is an effective means of reducing radiated noise from turbofan engines. Strategic selection of the location of the error transducers is shown to be effective for reducing the radiation towards particular directions in the farfield. An analytical model is used to predict the behavior of the control system and to guide the experimental design configurations, and the analytical results presented show good agreement with the experimentally observed results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.W.; Boparai, A.S.; Bowers, D.L.
This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 2000 (October 1999 through September 2000). This annual progress report, which is the seventeenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The ACL operates within the ANL system as a full-cost-recovery service center, but it has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support tomore » solve research problems of our clients--Argonne National Laboratory, the Department of Energy, and others--and will conduct world-class research and development in analytical chemistry and its applications. The ACL handles a wide range of analytical problems that reflects the diversity of research and development (R&D) work at ANL. Some routine or standard analyses are done, but the ACL operates more typically in a problem-solving mode in which development of methods is required or adaptation of techniques is needed to obtain useful analytical data. The ACL works with clients and commercial laboratories if a large number of routine analyses are required. Much of the support work done by the ACL is very similar to applied analytical chemistry research work.« less
NASA Astrophysics Data System (ADS)
Gao, Liang
This thesis describes the development of a combined label-free imaging and analytical strategy for intraoperative characterization of cancer lesions using the coherent anti-Stokes Raman scattering imaging (CARS) technique. A cell morphology-based analytical platform is developed to characterize CARS images and, hence, provide diagnostic information using disease-related pathology features. This strategy is validated for three different applications, including margin detection for radical prostatectomy, differential diagnosis of lung cancer, as well as detection and differentiation of breast cancer subtypes for in situ analysis of margin status during lumpectomy. As the major contribution of this thesis, the developed analytical strategy shows high accuracy and specificity for all three diseases and thus has introduced the CARS imaging technique into the field of human cancer diagnosis, which holds substantial potential for clinical translations. In addition, I have contributed a project aimed at miniaturizing the CARS imaging device into a microendoscope setup through a fiber-delivery strategy. A four-wave-mixing (FWM) background signal, which is caused by simultaneous delivery of the two CARS-generating excitation laser beams, is initially identified. A polarization-based strategy is then introduced and tested for suppression of this FWM noise. The approach shows effective suppression of the FWM signal, both on microscopic and prototype endoscopic setups, indicating the potential of developing a novel microendoscope with a compatible size for clinical use. These positive results show promise for the development of an all-fiber-based, label-free imaging and analytical platform for minimally invasive detection and diagnosis of cancers during surgery or surgical-biopsy, thus improving surgical outcomes and reducing patients' suffering.
Scriptotherapy: A Technique for Conflict Resolution.
ERIC Educational Resources Information Center
Johnson, Roy E.
Part 1 of this dissertation contains an introductory chapter entitled, "The Children Shout Fight Fight," in which the written analytical process named Scriptotherapy is discussed. In Chapter 1, "Early Adolescence an Ongoing Process," early adolescent growth and development, the process of moral development, temperament types…
Macroeconomic Activity Module - NEMS Documentation
2016-01-01
Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2016 (AEO2016). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code
Dinov, Ivo D
2016-01-01
Managing, processing and understanding big healthcare data is challenging, costly and demanding. Without a robust fundamental theory for representation, analysis and inference, a roadmap for uniform handling and analyzing of such complex data remains elusive. In this article, we outline various big data challenges, opportunities, modeling methods and software techniques for blending complex healthcare data, advanced analytic tools, and distributed scientific computing. Using imaging, genetic and healthcare data we provide examples of processing heterogeneous datasets using distributed cloud services, automated and semi-automated classification techniques, and open-science protocols. Despite substantial advances, new innovative technologies need to be developed that enhance, scale and optimize the management and processing of large, complex and heterogeneous data. Stakeholder investments in data acquisition, research and development, computational infrastructure and education will be critical to realize the huge potential of big data, to reap the expected information benefits and to build lasting knowledge assets. Multi-faceted proprietary, open-source, and community developments will be essential to enable broad, reliable, sustainable and efficient data-driven discovery and analytics. Big data will affect every sector of the economy and their hallmark will be 'team science'.
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.
Weber, Berthold; Hartmann, Beate; Stöckigt, Detlef; Schreiber, Klaus; Roloff, Michael; Bertram, Heinz-Jürgen; Schmidt, Claus O
2006-01-25
Liquid chromatography/mass spectrometry and liquid chromatography/nuclear magnetic resonance techniques with ultraviolet/diode array detection were used as complementary analytical tools for the reliable identification of polymethoxylated flavones in residues from molecular distillation of cold-pressed peel oils of Citrus sinensis. After development of a liquid chromatographic separation procedure, the presence of several polymethoxy flavones such as sinensetin, nobiletin, tangeretin, quercetogetin, heptamethoxyflavone, and other derivatives was unambiguously confirmed. In addition, proceranone, an acetylated tetranortriterpenoid with limonoid structure, was identified for the first time in citrus.
NASA Astrophysics Data System (ADS)
Yang, Jianwen
2012-04-01
A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, F.H.; Borek, T.T.; Christopher, J.Z.
1997-12-01
Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrificationmore » campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).« less
Frequency Response of Pressure Sensitive Paints
NASA Technical Reports Server (NTRS)
Winslow, Neal A.; Carroll, Bruce F.; Setzer, Fred M.
1996-01-01
An experimental method for measuring the frequency response of Pressure Sensitive Paints (PSP) is presented. These results lead to the development of a dynamic correction technique for PSP measurements which is of great importance to the advancement of PSP as a measurement technique. The ability to design such a dynamic corrector is most easily formed from the frequency response of the given system. An example of this correction technique is shown. In addition to the experimental data, an analytical model for the frequency response is developed from the one dimensional mass diffusion equation.
[Latest development in mass spectrometry for clinical application].
Takino, Masahiko
2013-09-01
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.
Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing
Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko
2015-01-01
The development of high-speed analytical techniques such as next-generation sequencing and microarrays allows high-throughput analysis of biological information at a low cost. These techniques contribute to medical and bioscience advancements and provide new avenues for scientific research. Here, we outline a variety of new innovative techniques and discuss their use in omics research (e.g., genomics, transcriptomics, metabolomics, proteomics, and interactomics). We also discuss the possible applications of these methods, including an interactome sequencing technology that we developed, in future medical and life science research. PMID:25649523
Surface Plasmon Resonance: New Biointerface Designs and High-Throughput Affinity Screening
NASA Astrophysics Data System (ADS)
Linman, Matthew J.; Cheng, Quan Jason
Surface plasmon resonance (SPR) is a surface optical technique that measures minute changes in refractive index at a metal-coated surface. It has become increasingly popular in the study of biological and chemical analytes because of its label-free measurement feature. In addition, SPR allows for both quantitative and qualitative assessment of binding interactions in real time, making it ideally suited for probing weak interactions that are often difficult to study with other methods. This chapter presents the biosensor development in the last 3 years or so utilizing SPR as the principal analytical technique, along with a concise background of the technique itself. While SPR has demonstrated many advantages, it is a nonselective method and so, building reproducible and functional interfaces is vital to sensing applications. This chapter, therefore, focuses mainly on unique surface chemistries and assay approaches to examine biological interactions with SPR. In addition, SPR imaging for high-throughput screening based on microarrays and novel hyphenated techniques involving the coupling of SPR to other analytical methods is discussed. The chapter concludes with a commentary on the current state of SPR biosensing technology and the general direction of future biosensor research.
Cismesia, Adam P.; Bailey, Laura S.; Bell, Matthew R.; Tesler, Larry F.; Polfer, Nicolas C.
2016-01-01
The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors? opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation. PMID:26975370
Iterative categorization (IC): a systematic technique for analysing qualitative data.
Neale, Joanne
2016-06-01
The processes of analysing qualitative data, particularly the stage between coding and publication, are often vague and/or poorly explained within addiction science and research more broadly. A simple but rigorous and transparent technique for analysing qualitative textual data, developed within the field of addiction, is described. The technique, iterative categorization (IC), is suitable for use with inductive and deductive codes and can support a range of common analytical approaches, e.g. thematic analysis, Framework, constant comparison, analytical induction, content analysis, conversational analysis, discourse analysis, interpretative phenomenological analysis and narrative analysis. Once the data have been coded, the only software required is a standard word processing package. Worked examples are provided. © 2016 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.
Industrial Demand Module - NEMS Documentation
2014-01-01
Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.
Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas
2014-01-01
This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.
NASA Astrophysics Data System (ADS)
Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.
We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.
Influence versus intent for predictive analytics in situation awareness
NASA Astrophysics Data System (ADS)
Cui, Biru; Yang, Shanchieh J.; Kadar, Ivan
2013-05-01
Predictive analytics in situation awareness requires an element to comprehend and anticipate potential adversary activities that might occur in the future. Most work in high level fusion or predictive analytics utilizes machine learning, pattern mining, Bayesian inference, and decision tree techniques to predict future actions or states. The emergence of social computing in broader contexts has drawn interests in bringing the hypotheses and techniques from social theory to algorithmic and computational settings for predictive analytics. This paper aims at answering the question on how influence and attitude (some interpreted such as intent) of adversarial actors can be formulated and computed algorithmically, as a higher level fusion process to provide predictions of future actions. The challenges in this interdisciplinary endeavor include drawing existing understanding of influence and attitude in both social science and computing fields, as well as the mathematical and computational formulation for the specific context of situation to be analyzed. The study of `influence' has resurfaced in recent years due to the emergence of social networks in the virtualized cyber world. Theoretical analysis and techniques developed in this area are discussed in this paper in the context of predictive analysis. Meanwhile, the notion of intent, or `attitude' using social theory terminologies, is a relatively uncharted area in the computing field. Note that a key objective of predictive analytics is to identify impending/planned attacks so their `impact' and `threat' can be prevented. In this spirit, indirect and direct observables are drawn and derived to infer the influence network and attitude to predict future threats. This work proposes an integrated framework that jointly assesses adversarial actors' influence network and their attitudes as a function of past actions and action outcomes. A preliminary set of algorithms are developed and tested using the Global Terrorism Database (GTD). Our results reveals the benefits to perform joint predictive analytics with both attitude and influence. At the same time, we discover significant challenges in deriving influence and attitude from indirect observables for diverse adversarial behavior. These observations warrant further investigation of optimal use of influence and attitude for predictive analytics, as well as the potential inclusion of other environmental or capability elements for the actors.
Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael
2018-05-01
Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of a Facility for Combustion Stability Experiments at Supercritical Pressure
2013-12-01
by the exhaust orifice. This technique adds freedom for designing a large array experimental conditions, because chamber pressure is controlled...analytical examination reveals a broad array of frequencies. The analytical relationship between chamber length L, acoustic frequency fF, and the speed...the pressure amplitude is directly controlled by altering the voltage input to the sirens, similar to a traditional loudspeaker . Last, both a PN and
A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines
Zhang, Lei; Dou, Xiao-Wen; Zhang, Cheng; Logrieco, Antonio F.; Yang, Mei-Hua
2018-01-01
The presence of mycotoxins in herbal medicines is an established problem throughout the entire world. The sensitive and accurate analysis of mycotoxin in complicated matrices (e.g., herbs) typically involves challenging sample pretreatment procedures and an efficient detection instrument. However, although numerous reviews have been published regarding the occurrence of mycotoxins in herbal medicines, few of them provided a detailed summary of related analytical methods for mycotoxin determination. This review focuses on analytical techniques including sampling, extraction, cleanup, and detection for mycotoxin determination in herbal medicines established within the past ten years. Dedicated sections of this article address the significant developments in sample preparation, and highlight the importance of this procedure in the analytical technology. This review also summarizes conventional chromatographic techniques for mycotoxin qualification or quantitation, as well as recent studies regarding the development and application of screening assays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, aptamer-based lateral flow assays, and cytometric bead arrays. The present work provides a good insight regarding the advanced research that has been done and closes with an indication of future demand for the emerging technologies. PMID:29393905
Jiménez-Díaz, I; Vela-Soria, F; Rodríguez-Gómez, R; Zafra-Gómez, A; Ballesteros, O; Navalón, A
2015-09-10
In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs -substances able to alter the normal hormone function of wildlife and humans-. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid-liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.
Commercial Demand Module - NEMS Documentation
2017-01-01
Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.
Wang, Huai-Song; Song, Min; Hang, Tai-Jun
2016-02-10
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Characteristics, Properties and Analytical Methods of Amoxicillin: A Review with Green Approach.
de Marco, Bianca Aparecida; Natori, Jéssica Sayuri Hisano; Fanelli, Stefany; Tótoli, Eliane Gandolpho; Salgado, Hérida Regina Nunes
2017-05-04
Bacterial infections are the second leading cause of global mortality. Considering this fact, it is extremely important studying the antimicrobial agents. Amoxicillin is an antimicrobial agent that belongs to the class of penicillins; it has bactericidal activity and is widely used in the Brazilian health system. In literature, some analytical methods are found for the identification and quantification of this penicillin, which are essential for its quality control, which ensures maintaining the product characteristics, therapeutic efficacy and patient's safety. Thus, this study presents a brief literature review on amoxicillin and the analytical methods developed for the analysis of this drug in official and scientific papers. The major analytical methods found were high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography (U-HPLC), capillary electrophoresis and iodometry and diffuse reflectance infrared Fourier transform. It is essential to note that most of the developed methods used toxic and hazardous solvents, which makes necessary industries and researchers choose to develop environmental-friendly techniques to provide enhanced benefits to environment and staff.
Recent advances in immunosensor for narcotic drug detection
Gandhi, Sonu; Suman, Pankaj; Kumar, Ashok; Sharma, Prince; Capalash, Neena; Suri, C. Raman
2015-01-01
Introduction: Immunosensor for illicit drugs have gained immense interest and have found several applications for drug abuse monitoring. This technology has offered a low cost detection of narcotics; thereby, providing a confirmatory platform to compliment the existing analytical methods. Methods: In this minireview, we define the basic concept of transducer for immunosensor development that utilizes antibodies and low molecular mass hapten (opiate) molecules. Results: This article emphasizes on recent advances in immunoanalytical techniques for monitoring of opiate drugs. Our results demonstrate that high quality antibodies can be used for immunosensor development against target analyte with greater sensitivity, specificity and precision than other available analytical methods. Conclusion: In this review we highlight the fundamentals of different transducer technologies and its applications for immunosensor development currently being developed in our laboratory using rapid screening via immunochromatographic kit, label free optical detection via enzyme, fluorescence, gold nanoparticles and carbon nanotubes based immunosensing for sensitive and specific monitoring of opiates. PMID:26929925
ERIC Educational Resources Information Center
Arnquist, Isaac J.; Beussman, Douglas J.
2007-01-01
Biological mass spectrometry is an important analytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. Currently, few hands-on opportunities exist for undergraduate students to learn about this technique. With the 2002 Nobel Prize being awarded, in part, for the development of biological mass…
2013-09-19
environments. This can include the development of new and/or improved analytical and numerical models, rapid data-processing techniques, and new subsurface ... imaging techniques that include active and passive sensor modalities in a variety of rural and urban terrains. Of particular interest is the broadband
Observability during planetary approach navigation
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; Burkhart, P. Daniel; Thurman, Sam W.
1993-01-01
The objective of the research is to develop an analytic technique to predict the relative navigation capability of different Earth-based radio navigation measurements. In particular, the problem is to determine the relative ability of geocentric range and Doppler measurements to detect the effects of the target planet gravitational attraction on the spacecraft during the planetary approach and near-encounter mission phases. A complete solution to the two-dimensional problem has been developed. Relatively simple analytic formulas are obtained for range and Doppler measurements which describe the observability content of the measurement data along the approach trajectories. An observability measure is defined which is based on the observability matrix for nonlinear systems. The results show good agreement between the analytic observability analysis and the computational batch processing method.
NASA Astrophysics Data System (ADS)
Schlager, Kenneth J.; Ruchti, Timothy L.
1995-04-01
TAMM for Transcutaneous Analyte Measuring Method is a near infrared spectroscopic technique for the noninvasive measurement of human blood chemistry. A near infrared indium gallium arsenide (InGaAs) photodiode array spectrometer has been developed and tested on over 1,000 patients as a part of an SBIR program sponsored by the Naval Medical Research and Development Command. Nine (9) blood analytes have been measured and evaluated during pre-clinical testing: sodium, chloride, calcium, potassium, bicarbonate, BUN, glucose, hematocrit and hemoglobin. A reflective rather than a transmissive invasive approach to measurement has been taken to avoid variations resulting from skin color and sensor positioning. The current status of the instrumentation, neural network pattern recognition algorithms and test results will be discussed.
Analytical learning and term-rewriting systems
NASA Technical Reports Server (NTRS)
Laird, Philip; Gamble, Evan
1990-01-01
Analytical learning is a set of machine learning techniques for revising the representation of a theory based on a small set of examples of that theory. When the representation of the theory is correct and complete but perhaps inefficient, an important objective of such analysis is to improve the computational efficiency of the representation. Several algorithms with this purpose have been suggested, most of which are closely tied to a first order logical language and are variants of goal regression, such as the familiar explanation based generalization (EBG) procedure. But because predicate calculus is a poor representation for some domains, these learning algorithms are extended to apply to other computational models. It is shown that the goal regression technique applies to a large family of programming languages, all based on a kind of term rewriting system. Included in this family are three language families of importance to artificial intelligence: logic programming, such as Prolog; lambda calculus, such as LISP; and combinatorial based languages, such as FP. A new analytical learning algorithm, AL-2, is exhibited that learns from success but is otherwise quite different from EBG. These results suggest that term rewriting systems are a good framework for analytical learning research in general, and that further research should be directed toward developing new techniques.
NASA Astrophysics Data System (ADS)
Frew, Russell; Cannavan, Andrew; Zandric, Zora; Maestroni, Britt; Abrahim, Aiman
2013-04-01
Traceability systems play a key role in assuring a safe and reliable food supply. Analytical techniques harnessing the spatial patterns in distribution of stable isotope and trace element ratios can be used for the determination of the provenance of food. Such techniques offer the potential to enhance global trade by providing an independent means of verifying "paper" traceability systems and can also help to prove authenticity, to combat fraudulent practices, and to control adulteration, which are important issues for economic, religious or cultural reasons. To address some of the challenges that developing countries face in attempting to implement effective food traceability systems, the IAEA, through its Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture, has initiated a 5-year coordinated research project involving institutes in 15 developing and developed countries (Austria, Botswana, Chile, China, France, India, Lebanon, Morocco, Portugal, Singapore, Sweden, Thailand, Uganda, UK, USA). The objective is to help in member state laboratories to establish robust analytical techniques and databases, validated to international standards, to determine the provenance of food. Nuclear techniques such as stable isotope and multi-element analysis, along with complementary methods, will be applied for the verification of food traceability systems and claims related to food origin, production, and authenticity. This integrated and multidisciplinary approach to strengthening capacity in food traceability will contribute to the effective implementation of holistic systems for food safety and control. The project focuses mainly on the development of techniques to confirm product authenticity, with several research partners also considering food safety issues. Research topics encompass determination of the geographical origin of a variety of commodities, including seed oils, rice, wine, olive oil, wheat, orange juice, fish, groundnuts, tea, pork, honey and coffee, the adulteration of milk with soy protein, chemical contamination of food products, and inhomogeneity in isotopic ratios in poultry and eggs as a means to determine production history. Analytical techniques include stable isotope ratio measurements (2H/1H, 13C/12C, 15N/14N, 18O/16O, 34S/32S, 87Sr/86Sr, 208Pb/207Pb/206Pb), elemental analysis, DNA fingerprinting, fatty acid and other biomolecule profiling, chromatography-mass spectrometry and near infra-red spectroscopy.
Hui, Boon Yih; Raoov, Muggundha; Zain, Nur Nadhirah Mohamad; Mohamad, Sharifah; Osman, Hasnah
2017-09-03
The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.
Training the next generation analyst using red cell analytics
NASA Astrophysics Data System (ADS)
Graham, Meghan N.; Graham, Jacob L.
2016-05-01
We have seen significant change in the study and practice of human reasoning in recent years from both a theoretical and methodological perspective. Ubiquitous communication coupled with advances in computing and a plethora of analytic support tools have created a push for instantaneous reporting and analysis. This notion is particularly prevalent in law enforcement, emergency services and the intelligence community (IC), where commanders (and their civilian leadership) expect not only a birds' eye view of operations as they occur, but a play-by-play analysis of operational effectiveness. This paper explores the use of Red Cell Analytics (RCA) as pedagogy to train the next-gen analyst. A group of Penn State students in the College of Information Sciences and Technology at the University Park campus of The Pennsylvania State University have been practicing Red Team Analysis since 2008. RCA draws heavily from the military application of the same concept, except student RCA problems are typically on non-military in nature. RCA students utilize a suite of analytic tools and methods to explore and develop red-cell tactics, techniques and procedures (TTPs), and apply their tradecraft across a broad threat spectrum, from student-life issues to threats to national security. The strength of RCA is not always realized by the solution but by the exploration of the analytic pathway. This paper describes the concept and use of red cell analytics to teach and promote the use of structured analytic techniques, analytic writing and critical thinking in the area of security and risk and intelligence training.
Ammar, T A; Abid, K Y; El-Bindary, A A; El-Sonbati, A Z
2015-12-01
Most drinking water industries are closely examining options to maintain a certain level of disinfectant residual through the entire distribution system. Chlorine dioxide is one of the promising disinfectants that is usually used as a secondary disinfectant, whereas the selection of the proper monitoring analytical technique to ensure disinfection and regulatory compliance has been debated within the industry. This research endeavored to objectively compare the performance of commercially available analytical techniques used for chlorine dioxide measurements (namely, chronoamperometry, DPD (N,N-diethyl-p-phenylenediamine), Lissamine Green B (LGB WET) and amperometric titration), to determine the superior technique. The commonly available commercial analytical techniques were evaluated over a wide range of chlorine dioxide concentrations. In reference to pre-defined criteria, the superior analytical technique was determined. To discern the effectiveness of such superior technique, various factors, such as sample temperature, high ionic strength, and other interferences that might influence the performance were examined. Among the four techniques, chronoamperometry technique indicates a significant level of accuracy and precision. Furthermore, the various influencing factors studied did not diminish the technique's performance where it was fairly adequate in all matrices. This study is a step towards proper disinfection monitoring and it confidently assists engineers with chlorine dioxide disinfection system planning and management.
Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Troude, Pénélope; Baillet-Guffroy, Arlette
2014-08-15
The purpose of the study was to perform a comparative analysis of the technical performance, respective costs and environmental effect of two invasive analytical methods (HPLC and UV/visible-FTIR) as compared to a new non-invasive analytical technique (Raman spectroscopy). Three pharmacotherapeutic models were used to compare the analytical performances of the three analytical techniques. Statistical inter-method correlation analysis was performed using non-parametric correlation rank tests. The study's economic component combined calculations relative to the depreciation of the equipment and the estimated cost of an AQC unit of work. In any case, analytical validation parameters of the three techniques were satisfactory, and strong correlations between the two spectroscopic techniques vs. HPLC were found. In addition, Raman spectroscopy was found to be superior as compared to the other techniques for numerous key criteria including a complete safety for operators and their occupational environment, a non-invasive procedure, no need for consumables, and a low operating cost. Finally, Raman spectroscopy appears superior for technical, economic and environmental objectives, as compared with the other invasive analytical methods. Copyright © 2014 Elsevier B.V. All rights reserved.
International Natural Gas Model 2011, Model Documentation Report
2013-01-01
This report documents the objectives, analytical approach and development of the International Natural Gas Model (INGM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
Toward interactive search in remote sensing imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Reid B; Hush, Do; Harvey, Neal
2010-01-01
To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new designmore » criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.« less
Digital Mapping Techniques '09-Workshop Proceedings, Morgantown, West Virginia, May 10-13, 2009
Soller, David R.
2011-01-01
As in the previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
NASA Technical Reports Server (NTRS)
Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard
1991-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
NASA Technical Reports Server (NTRS)
Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.
1992-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
Current Status of Mycotoxin Analysis: A Critical Review.
Shephard, Gordon S
2016-07-01
It is over 50 years since the discovery of aflatoxins focused the attention of food safety specialists on fungal toxins in the feed and food supply. Since then, analysis of this important group of natural contaminants has advanced in parallel with general developments in analytical science, and current MS methods are capable of simultaneously analyzing hundreds of compounds, including mycotoxins, pesticides, and drugs. This profusion of data may advance our understanding of human exposure, yet constitutes an interpretive challenge to toxicologists and food safety regulators. Despite these advances in analytical science, the basic problem of the extreme heterogeneity of mycotoxin contamination, although now well understood, cannot be circumvented. The real health challenges posed by mycotoxin exposure occur in the developing world, especially among small-scale and subsistence farmers. Addressing these problems requires innovative approaches in which analytical science must also play a role in providing suitable out-of-laboratory analytical techniques.
Sosa-Ferrera, Zoraida; Mahugo-Santana, Cristina; Santana-Rodríguez, José Juan
2013-01-01
Endocrine-disruptor compounds (EDCs) can mimic natural hormones and produce adverse effects in the endocrine functions by interacting with estrogen receptors. EDCs include both natural and synthetic chemicals, such as hormones, personal care products, surfactants, and flame retardants, among others. EDCs are characterised by their ubiquitous presence at trace-level concentrations and their wide diversity. Since the discovery of the adverse effects of these pollutants on wildlife and human health, analytical methods have been developed for their qualitative and quantitative determination. In particular, mass-based analytical methods show excellent sensitivity and precision for their quantification. This paper reviews recently published analytical methodologies for the sample preparation and for the determination of these compounds in different environmental and biological matrices by liquid chromatography coupled with mass spectrometry. The various sample preparation techniques are compared and discussed. In addition, recent developments and advances in this field are presented. PMID:23738329
NASA Astrophysics Data System (ADS)
Mashayekhi, Mohammad Jalali; Behdinan, Kamran
2017-10-01
The increasing demand to minimize undesired vibration and noise levels in several high-tech industries has generated a renewed interest in vibration transfer path analysis. Analyzing vibration transfer paths within a system is of crucial importance in designing an effective vibration isolation strategy. Most of the existing vibration transfer path analysis techniques are empirical which are suitable for diagnosis and troubleshooting purpose. The lack of an analytical transfer path analysis to be used in the design stage is the main motivation behind this research. In this paper an analytical transfer path analysis based on the four-pole theory is proposed for multi-energy-domain systems. Bond graph modeling technique which is an effective approach to model multi-energy-domain systems is used to develop the system model. In this paper an electro-mechanical system is used as a benchmark example to elucidate the effectiveness of the proposed technique. An algorithm to obtain the equivalent four-pole representation of a dynamical systems based on the corresponding bond graph model is also presented in this paper.
Bioimaging of cells and tissues using accelerator-based sources.
Petibois, Cyril; Cestelli Guidi, Mariangela
2008-07-01
A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.
NASA Astrophysics Data System (ADS)
Parvathi, S. P.; Ramanan, R. V.
2018-06-01
An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.
Developments in Cylindrical Shell Stability Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Starnes, James H., Jr.
1998-01-01
Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowson, Scott T.; Bruce, Joseph R.; Best, Daniel M.
2009-04-14
This paper presents key components of the Law Enforcement Information Framework (LEIF) that provides communications, situational awareness, and visual analytics tools in a service-oriented architecture supporting web-based desktop and handheld device users. LEIF simplifies interfaces and visualizations of well-established visual analytical techniques to improve usability. Advanced analytics capability is maintained by enhancing the underlying processing to support the new interface. LEIF development is driven by real-world user feedback gathered through deployments at three operational law enforcement organizations in the US. LEIF incorporates a robust information ingest pipeline supporting a wide variety of information formats. LEIF also insulates interface and analyticalmore » components from information sources making it easier to adapt the framework for many different data repositories.« less
Norwood, Daniel L; Mullis, James O; Davis, Mark; Pennino, Scott; Egert, Thomas; Gonnella, Nina C
2013-01-01
The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds representing the chemical diversity of extractables. This study demonstrates the complementary nature of SPE-LC/NMR with LC/MS for this particular pharmaceutical application. The identification of impurities leached into drugs from the components and materials associated with pharmaceutical containers, packaging components, and materials has historically been done using laboratory techniques based on the combination of chromatography with mass spectrometry. Such analytical techniques are widely recognized as having the selectivity and sensitivity required to separate the complex mixtures of impurities often encountered in such identification studies, including both the identification of leachable impurities as well as potential leachable impurities produced by laboratory extraction of packaging components and materials. However, while mass spectrometry-based analytical techniques have limitations for this application, newer analytical techniques based on the combination of chromatography with nuclear magnetic resonance spectroscopy provide an added dimension of structural definition. This article describes the development, optimization, and application of an analytical technique based on the combination of chromatography and nuclear magnetic resonance spectroscopy to the identification of potential leachable impurities from a pharmaceutical packaging material. The complementary nature of the analytical techniques for this particular pharmaceutical application is demonstrated.
Kranz, Christine
2014-01-21
In recent years, major developments in scanning electrochemical microscopy (SECM) have significantly broadened the application range of this electroanalytical technique from high-resolution electrochemical imaging via nanoscale probes to large scale mapping using arrays of microelectrodes. A major driving force in advancing the SECM methodology is based on developing more sophisticated probes beyond conventional micro-disc electrodes usually based on noble metals or carbon microwires. This critical review focuses on the design and development of advanced electrochemical probes particularly enabling combinations of SECM with other analytical measurement techniques to provide information beyond exclusively measuring electrochemical sample properties. Consequently, this critical review will focus on recent progress and new developments towards multifunctional imaging.
Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS
NASA Astrophysics Data System (ADS)
Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas
2014-05-01
Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected examples on combining isotopic systems for the study of ecosystem processes on different spatial scales will underpin the great opportunities substantiated by the field of analytical ecogeochemistry. Moreover, recent developments in plasma mass spectrometry and the application of new isotopic systems require sound metrological approaches in order to prevent scientific conclusions drawn from analytical artifacts.
The overstimulated state of dyslexia: perception, knowledge, and learning.
Arkowitz, S W
2000-01-01
Dyslexia is far more than a learning disorder; it has significant impact on personality organization. While dyslexia usually begins to manifest most clearly in early latency when the challenge of learning to read is at its height, often the dyslexic child's ego development and functioning has already been adversely affected. The literature from neuropsychology suggests that dyslexia is a subtle language-processing disorder that affects emotional, cognitive, and social development. The neuroanatomical literature also suggests a significant correlation between the neurodevelopmental basis for dyslexia, the caregiving environment, and psychological development. These two bodies of literature and analytic observations of a dyslexic patient suggest that the dyslexic individual may have a neurological deficit that increases vulnerability to overstimulation. The author hypothesizes that emotional and cognitive states result and reappear within the analytic encounter. This complicates clinical assessment and technical decisions. The author presents an analytic case and examines (1) the impact of deficit on the development of conflict; (2) the impact of the overwhelmed ego on the mastery of developmental tasks; and (3) the impact of dyslexia on dysgnosia, transference, and analytic process and technique.
Lin, Jia-Hui; Tseng, Wei-Lung
2015-01-01
Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.
Employment of adaptive learning techniques for the discrimination of acoustic emissions
NASA Astrophysics Data System (ADS)
Erkes, J. W.; McDonald, J. F.; Scarton, H. A.; Tam, K. C.; Kraft, R. P.
1983-11-01
The following aspects of this study on the discrimination of acoustic emissions (AE) were examined: (1) The analytical development and assessment of digital signal processing techniques for AE signal dereverberation, noise reduction, and source characterization; (2) The modeling and verification of some aspects of key selected techniques through a computer-based simulation; and (3) The study of signal propagation physics and their effect on received signal characteristics for relevant physical situations.
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1978-01-01
The development of system models that can provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer are described. Specific topics covered include: system models; performability evaluation; capability and functional dependence; computation of trajectory set probabilities; and hierarchical modeling of an air transport mission.
A Corona Discharge Initiated Electrochemical Electrospray Ionization Technique
Lloyd, John R.; Hess, Sonja
2009-01-01
We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity and selectivity of ESI experiments. Synopsis Using a standard ESI source a corona discharge initiated electrochemical ionization technique was established resulting from the electrochemistry occurring at the CD electrode surface. PMID:19747843
Considerations in detecting CDC select agents under field conditions
NASA Astrophysics Data System (ADS)
Spinelli, Charles; Soelberg, Scott; Swanson, Nathaneal; Furlong, Clement; Baker, Paul
2008-04-01
Surface Plasmon Resonance (SPR) has become a widely accepted technique for real-time detection of interactions between receptor molecules and ligands. Antibody may serve as receptor and can be attached to the gold surface of the SPR device, while candidate analyte fluids contact the detecting antibody. Minute, but detectable, changes in refractive indices (RI) indicate that analyte has bound to the antibody. A decade ago, an inexpensive, robust, miniature and fully integrated SPR chip, called SPREETA, was developed. University of Washington (UW) researchers subsequently developed a portable, temperature-regulated instrument, called SPIRIT, to simultaneously use eight of these three-channel SPREETA chips. A SPIRIT prototype instrument was tested in the field, coupled to a remote reporting system on a surrogate unmanned aerial vehicle (UAV). Two target protein analytes were released sequentially as aerosols with low analyte concentration during each of three flights and were successfully detected and verified. Laboratory experimentation with a more advanced SPIRIT instrument demonstrated detection of very low levels of several select biological agents that might be employed by bioterrorists. Agent detection under field-like conditions is more challenging, especially as analyte concentrations are reduced and complex matricies are introduced. Two different sample preconditioning protocols have been developed for select agents in complex matrices. Use of these preconditioning techniques has allowed laboratory detection in spiked heavy mud of Francisella tularensis at 10 3 CFU/ml, Bacillus anthracis spores at 10 3 CFU/ml, Staphylococcal enterotoxin B (SEB) at 1 ng/ml, and Vaccinia virus (a smallpox simulant) at 10 5 PFU/ml. Ongoing experiments are aimed at simultaneous detection of multiple agents in spiked heavy mud, using a multiplex preconditioning protocol.
Depth-resolved monitoring of analytes diffusion in ocular tissues
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Ghosn, Mohamad G.; Tuchin, Valery V.
2007-02-01
Optical coherence tomography (OCT) is a noninvasive imaging technique with high in-depth resolution. We employed OCT technique for monitoring and quantification of analyte and drug diffusion in cornea and sclera of rabbit eyes in vitro. Different analytes and drugs such as metronidazole, dexamethasone, ciprofloxacin, mannitol, and glucose solution were studied and whose permeability coefficients were calculated. Drug diffusion monitoring was performed as a function of time and as a function of depth. Obtained results suggest that OCT technique might be used for analyte diffusion studies in connective and epithelial tissues.
Planetary quarantine. Space research and technology
NASA Technical Reports Server (NTRS)
1973-01-01
Planetary quarantine strategies for advanced spacecraft consider effects of satellite encounter, Jupiter atmosphere entry, space radiation, and cleaning and decontamination techniques on microbiological growth probability. Analytical restructuring is developed for microbial burden prediction and planetary contamination.
Engineering Analysis of Stresses in Railroad Rails.
DOT National Transportation Integrated Search
1981-10-01
One portion of the Federal Railroad Administration's (FRA) Track Performance Improvement Program is the development of engineering and analytic techniques required for the design and maintenance of railroad track of increased integrity and safety. Un...
Preliminary Description of Stresses in Railroad Rail
DOT National Transportation Integrated Search
1976-11-01
One portion of the Federal Railroad Administration's (FRA) Track Performance Improvement Program is the development of engineering and analytic techniques required for the design and maintenance of railroad track of increased integrity and safety. Un...
Residential Demand Module - NEMS Documentation
2017-01-01
Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.
Carro, Antonia M; González, Paula; Lorenzo, Rosa A
2013-06-28
Pressurized liquid extraction (PLE) is an exhaustive technique used for the extraction of analytes from solid samples. Temperature, pressure, solvent type and volume, and the addition of other reagents notably influence the efficiency of the extraction. The analytical applications of this technique can be improved by coupling with appropriate derivatization reactions. The aim of this review is to discuss the recent applications of the sequential combination of PLE with derivatization and the approaches that involve simultaneous extraction and in situ derivatization. The potential of the latest developments to the trace analysis of environmental, food and biological samples is also analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.
Prediction of light aircraft interior noise
NASA Technical Reports Server (NTRS)
Howlett, J. T.; Morales, D. A.
1976-01-01
At the present time, predictions of aircraft interior noise depend heavily on empirical correction factors derived from previous flight measurements. However, to design for acceptable interior noise levels and to optimize acoustic treatments, analytical techniques which do not depend on empirical data are needed. This paper describes a computerized interior noise prediction method for light aircraft. An existing analytical program (developed for commercial jets by Cockburn and Jolly in 1968) forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.
Technique for determining the amount of hydrogen diffusing through a steel membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardash, N.V.; Batrakov, V.V.
1995-07-01
Hydrogen diffusion through steel membranes still attracts much attention from scientists, and during recent years new results have been reported. Hydrogen diffusion is usually studied in the cell designed by M.A. Devanathan, but there are also other techniques for determining hydrogen permeability, namely: from the change in the solution volume in a horizontal or gas microburette; from the hydrogen ionization current; from the penetration current; and from the buckling of the cathode. The authors developed an analytical method using autocatalytic titration for determining the amount of hydrogen passed through a steel membrane. The method is based on permanganatometry which ismore » widely used in analytical chemistry.« less
The analytical representation of viscoelastic material properties using optimization techniques
NASA Technical Reports Server (NTRS)
Hill, S. A.
1993-01-01
This report presents a technique to model viscoelastic material properties with a function of the form of the Prony series. Generally, the method employed to determine the function constants requires assuming values for the exponential constants of the function and then resolving the remaining constants through linear least-squares techniques. The technique presented here allows all the constants to be analytically determined through optimization techniques. This technique is employed in a computer program named PRONY and makes use of commercially available optimization tool developed by VMA Engineering, Inc. The PRONY program was utilized to compare the technique against previously determined models for solid rocket motor TP-H1148 propellant and V747-75 Viton fluoroelastomer. In both cases, the optimization technique generated functions that modeled the test data with at least an order of magnitude better correlation. This technique has demonstrated the capability to use small or large data sets and to use data sets that have uniformly or nonuniformly spaced data pairs. The reduction of experimental data to accurate mathematical models is a vital part of most scientific and engineering research. This technique of regression through optimization can be applied to other mathematical models that are difficult to fit to experimental data through traditional regression techniques.
Adsorption losses from urine-based cannabinoid calibrators during routine use.
Blanc, J A; Manneh, V A; Ernst, R; Berger, D E; de Keczer, S A; Chase, C; Centofanti, J M; DeLizza, A J
1993-08-01
The major metabolite of cannabis found in urine, 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid (delta 9-THC), is the compound most often used to calibrate cannabinoid immunoassays. The hydrophobic delta 9-THC molecule is known to adsorb to solid surfaces. This loss of analyte from calibrator solutions can lead to inaccuracy in the analytical system. Because the calibrators remain stable when not used, analyte loss is most probably caused by handling techniques. In an effort to develop an effective means of overcoming adsorption losses, we quantified cannabinoid loss from calibrators during the testing process. In studying handling of these solutions, we found noticeable, significant losses attributable to both the kind of pipette used for transfer and the contact surface-to-volume ratio of calibrator solution in the analyzer cup. Losses were quantified by immunoassay and by radioactive tracer. We suggest handling techniques that can minimize adsorption of delta 9-THC to surfaces. Using the appropriate pipette and maintaining a minimum surface-to-volume ratio in the analyzer cup effectively reduces analyte loss.
Ionic liquids in solid-phase microextraction: a review.
Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L
2011-06-10
Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed. Copyright © 2011 Elsevier B.V. All rights reserved.
Covaci, Adrian; Voorspoels, Stefan; Abdallah, Mohamed Abou-Elwafa; Geens, Tinne; Harrad, Stuart; Law, Robin J
2009-01-16
The present article reviews the available literature on the analytical and environmental aspects of tetrabromobisphenol-A (TBBP-A), a currently intensively used brominated flame retardant (BFR). Analytical methods, including sample preparation, chromatographic separation, detection techniques, and quality control are discussed. An important recent development in the analysis of TBBP-A is the growing tendency for liquid chromatographic techniques. At the detection stage, mass-spectrometry is a well-established and reliable technology in the identification and quantification of TBBP-A. Although interlaboratory exercises for BFRs have grown in popularity in the last 10 years, only a few participating laboratories report concentrations for TBBP-A. Environmental levels of TBBP-A in abiotic and biotic matrices are low, probably due to the major use of TBBP-A as reactive FR. As a consequence, the expected human exposure is low. This is in agreement with the EU risk assessment that concluded that there is no risk for humans concerning TBBP-A exposure. Much less analytical and environmental information exists for the various groups of TBBP-A derivatives which are largely used as additive flame retardants.
SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK.
Smith, David; Španěl, Patrik
2015-04-21
Selected ion flow tube mass spectrometry, SIFT-MS, a relatively new gas/vapour phase analytical method, is derived from the much earlier selected ion flow tube, SIFT, used for the study of gas phase ion-molecule reactions. Both the SIFT and SIFT-MS techniques were conceived and developed in the UK, the former at Birmingham University, the latter at Keele University along with the complementary flowing afterglow mass spectrometry, FA-MS, technique. The focus of this short review is largely to describe the origins, developments and, most importantly, the unique features of SIFT-MS as an analytical tool for ambient analysis and to indicate its growing use to analyse humid air, especially exhaled breath, its unique place as a on-line, real time analytical method and its growing use and applications as a non-invasive diagnostic in clinical diagnosis and therapeutic monitoring, principally within several UK universities and hospitals, and briefly in the wider world. A few case studies are outlined that show the potential of SIFT-MS and FA-MS in the detection and quantification of metabolites in exhaled breath as a step towards recognising pathophysiology indicative of disease and the presence of bacterial and fungal infection of the airways and lungs. Particular cases include the detection of Pseudomonas aeruginosa infection of the airways of patients with cystic fibrosis (SIFT-MS) and the measurement of total body water in patients with chronic kidney disease (FA-MS). The growing exploitation of SIFT-MS in other areas of research and commerce are briefly listed to show the wide utility of this unique UK-developed analytical method, and future prospects and developments are alluded to.
Lores, Marta; Llompart, Maria; Alvarez-Rivera, Gerardo; Guerra, Eugenia; Vila, Marlene; Celeiro, Maria; Lamas, J Pablo; Garcia-Jares, Carmen
2016-04-07
Cosmetic products placed on the market and their ingredients, must be safe under reasonable conditions of use, in accordance to the current legislation. Therefore, regulated and allowed chemical substances must meet the regulatory criteria to be used as ingredients in cosmetics and personal care products, and adequate analytical methodology is needed to evaluate the degree of compliance. This article reviews the most recent methods (2005-2015) used for the extraction and the analytical determination of the ingredients included in the positive lists of the European Regulation of Cosmetic Products (EC 1223/2009): comprising colorants, preservatives and UV filters. It summarizes the analytical properties of the most relevant analytical methods along with the possibilities of fulfilment of the current regulatory issues. The cosmetic legislation is frequently being updated; consequently, the analytical methodology must be constantly revised and improved to meet safety requirements. The article highlights the most important advances in analytical methodology for cosmetics control, both in relation to the sample pretreatment and extraction and the different instrumental approaches developed to solve this challenge. Cosmetics are complex samples, and most of them require a sample pretreatment before analysis. In the last times, the research conducted covering this aspect, tended to the use of green extraction and microextraction techniques. Analytical methods were generally based on liquid chromatography with UV detection, and gas and liquid chromatographic techniques hyphenated with single or tandem mass spectrometry; but some interesting proposals based on electrophoresis have also been reported, together with some electroanalytical approaches. Regarding the number of ingredients considered for analytical control, single analyte methods have been proposed, although the most useful ones in the real life cosmetic analysis are the multianalyte approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
Environmental Monitoring and the Gas Industry: Program Manager Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory D. Gillispie
1997-12-01
This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, wheremore » appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not described or discussed in detail in thk handbook. However, the underlying philosophy regarding the importance of proper collection, storage, and transport practices, as well as pertinent references, are presented.« less
High speed operation of permanent magnet machines
NASA Astrophysics Data System (ADS)
El-Refaie, Ayman M.
This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been investigated. A 6kW, 36slot/30pole prototype SPM machine has been designed and built. Experimental measurements have been used to verify the analytical and FEA results. These test results have demonstrated that wide constant-power speed range can be achieved. Other important machine features such as the near-sinusoidal back-emf, high efficiency, and low cogging torque have also been demonstrated.
Development, standardization, and validation of analytical methods provides state-of-the-science
techniques to evaluate the presence, or absence, of select PPCPs in biosolids. This research
provides the approaches, methods, and tools to assess the exposures and redu...
Advances in Adaptive Control Methods
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2009-01-01
This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matwiyoff, N.A.
1976-01-01
The prospects for the broad scale development of the utility of stable isotopes in science, medicine, agriculture, and environmental studies are considered with emphasis on the current status of isotope production, synthesis of isotopically labelled compounds, and analytical techniques.
Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong
2016-10-18
Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.
NASA Astrophysics Data System (ADS)
Holman, Hoi-Ying N.; Goth-Goldstein, Regine; Blakely, Elanor A.; Bjornstad, Kathy; Martin, Michael C.; McKinney, Wayne R.
2000-05-01
Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in the individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR-FTIR microscopy probes intact living cells providing a composite view of all of the molecular response and the ability to monitor the response over time in the same cell. Observed spectral changes include all types of lesions induced in that cell as well as cellular responses to external and internal stresses. These spectral changes combined with other analytical tools may provide a fundamental understanding of the key molecular mechanisms induced in response to stresses created by low- doses of chemicals. In this study we used the high spatial - resolution SR-FTIR vibrational spectromicroscopy as a sensitive analytical tool to detect chemical- and radiation- induced changes in individual human cells. Our preliminary spectral measurements indicate that this technique is sensitive enough to detect changes in nucleic acids and proteins of cells treated with environmentally relevant concentrations of dioxin. This technique has the potential to distinguish changes from exogenous or endogenous oxidative processes. Future development of this technique will allow rapid monitoring of cellular processes such as drug metabolism, early detection of disease, bio- compatibility of implant materials, cellular repair mechanisms, self assembly of cellular apparatus, cell differentiation and fetal development.
Models for randomly distributed nanoscopic domains on spherical vesicles
NASA Astrophysics Data System (ADS)
Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John
2018-06-01
The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.
Simulation and statistics: Like rhythm and song
NASA Astrophysics Data System (ADS)
Othman, Abdul Rahman
2013-04-01
Simulation has been introduced to solve problems in the form of systems. By using this technique the following two problems can be overcome. First, a problem that has an analytical solution but the cost of running an experiment to solve is high in terms of money and lives. Second, a problem exists but has no analytical solution. In the field of statistical inference the second problem is often encountered. With the advent of high-speed computing devices, a statistician can now use resampling techniques such as the bootstrap and permutations to form pseudo sampling distribution that will lead to the solution of the problem that cannot be solved analytically. This paper discusses how a Monte Carlo simulation was and still being used to verify the analytical solution in inference. This paper also discusses the resampling techniques as simulation techniques. The misunderstandings about these two techniques are examined. The successful usages of both techniques are also explained.
The acoustics of ducted propellers
NASA Astrophysics Data System (ADS)
Ali, Sherif F.
The return of the propeller to the long haul commercial service may be rapidly approaching in the form of advanced "prop fans". It is believed that the advanced turboprop will considerably reduce the operational cost. However, such aircraft will come into general use only if their noise levels meet the standards of community acceptability currently applied to existing aircraft. In this work a time-marching boundary-element technique is developed, and used to study the acoustics of ducted propeller. The numerical technique is developed in this work eliminated the inherent instability suffered by conventional approaches. The methodology is validated against other numerical and analytical results. The results show excellent agreement with the analytical solution and show no indication of unstable behavior. For the ducted propeller problem, the propeller is modeled by a rotating source-sink pairs, and the duct is modeled by rigid annular body of elliptical cross-section. Using the model and the developed technique, the effect of different parameters on the acoustic field is predicted and analyzed. This includes the effect of duct length, propeller axial location, and source Mach number. The results of this study show that installing a short duct around the propeller can reduce the noise that reaches an observer on a side line.
Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei
2012-01-01
Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083
2011-02-01
seakeeping was the transient wave technique, developed analytically by Davis and Zarnick (1964). At the David Taylor Model Basin, Davis and Zarnick, and...Gersten and Johnson (1969) applied the transient wave technique to regular wave model experiments for heave and pitch, at zero forward speed. These...tests demonstrated a potential reduction by an order of magnitude of the total necessary testing time. The transient wave technique was also applied to
NASA Astrophysics Data System (ADS)
Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo
2013-03-01
This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution `Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10-9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.
High-freezing-point fuel studies
NASA Technical Reports Server (NTRS)
Tolle, F. F.
1980-01-01
Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.
Banerjee, Shibdas; Mazumdar, Shyamalava
2012-01-01
The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research. PMID:22611397
Performance Analyses of Intercity Ground Passenger Transportation Systems
DOT National Transportation Integrated Search
1976-04-01
This report documents the development of analytical techniques and their use for investigating the performance of intercity ground passenger transportation systems. The purpose of the study is twofold: (1) to provide a capability of evaluating new pa...
On μe-scattering at NNLO in QED
NASA Astrophysics Data System (ADS)
Mastrolia, P.; Passera, M.; Primo, A.; Schubert, U.; Torres Bobadilla, W. J.
2018-05-01
We report on the current status of the analytic evaluation of the two-loop corrections to the μescattering in Quantum Electrodynamics, presenting state-of-the art techniques which have been developed to address this challenging task.
Big data analytics to aid developing livable communities.
DOT National Transportation Integrated Search
2015-12-31
In transportation, ubiquitous deployment of low-cost sensors combined with powerful : computer hardware and high-speed network makes big data available. USDOT defines big : data research in transportation as a number of advanced techniques applied to...
World Energy Projection System Plus Model Documentation: Coal Module
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Transportation Module
2017-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Residential Module
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Refinery Module
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Main Module
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
Transportation Sector Module - NEMS Documentation
2017-01-01
Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.
World Energy Projection System Plus Model Documentation: Electricity Module
2017-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
Laboratory evaluation of alcohol safety interlock systems. Volume 1 : summary report
DOT National Transportation Integrated Search
1974-01-01
The report contains the results of an experimental and analytical evaluation of instruments and techniques designed to prevent an intoxicated driver from operating his automobile. The prototype 'Alcohol Safety Interlock Systems' tested were developed...
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Storace, A. S.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
The component element method was used to develop a transient dynamic analysis computer program which is essentially based on modal synthesis combined with a central, finite difference, numerical integration scheme. The methodology leads to a modular or building-block technique that is amenable to computer programming. To verify the analytical method, turbine engine transient response analysis (TETRA), was applied to two blade-out test vehicles that had been previously instrumented and tested. Comparison of the time dependent test data with those predicted by TETRA led to recommendations for refinement or extension of the analytical method to improve its accuracy and overcome its shortcomings. The development of working equations, their discretization, numerical solution scheme, the modular concept of engine modelling, the program logical structure and some illustrated results are discussed. The blade-loss test vehicles (rig full engine), the type of measured data, and the engine structural model are described.
An overview on current fluid-inclusion research and applications
Chi, G.; Chou, I.-Ming; Lu, H.-Z.
2003-01-01
This paper provides an overview of some of the more important developments in fluid-inclusion research and applications in recent years, including fluid-inclusion petrography, PVTX studies, and analytical techniques. In fluid-inclusion petrography, the introduction of the concept of 'fluid-inclusion assemblage' has been a major advance. In PVTX studies, the use of synthetic fluid inclusions and hydrothermal diamond-anvil cells has greatly contributed to the characterization of the phase behaviour of geologically relevant fluid systems. Various analytical methods are being developed and refined rapidly, with the Laser-Raman and LA-ICP-MS techniques being particularly useful for volatile and solute analyses, respectively. Ore deposit research has been and will continue to be the main field of application of fluid inclusions. However, fluid inclusions have been increasingly applied to other fields of earth science, especially in petroleum geology and the study of magmatic and earth interior processes.
Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation
NASA Astrophysics Data System (ADS)
Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter
1996-01-01
The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.
Iontophoresis and Flame Photometry: A Hybrid Interdisciplinary Experiment
ERIC Educational Resources Information Center
Sharp, Duncan; Cottam, Linzi; Bradley, Sarah; Brannigan, Jeanie; Davis, James
2010-01-01
The combination of reverse iontophoresis and flame photometry provides an engaging analytical experiment that gives first-year undergraduate students a flavor of modern drug delivery and analyte extraction techniques while reinforcing core analytical concepts. The experiment provides a highly visual demonstration of the iontophoresis technique and…
Analytical approach of laser beam propagation in the hollow polygonal light pipe.
Zhu, Guangzhi; Zhu, Xiao; Zhu, Changhong
2013-08-10
An analytical method of researching the light distribution properties on the output end of a hollow n-sided polygonal light pipe and a light source with a Gaussian distribution is developed. The mirror transformation matrices and a special algorithm of removing void virtual images are created to acquire the location and direction vector of each effective virtual image on the entrance plane. The analytical method is demonstrated by Monte Carlo ray tracing. At the same time, four typical cases are discussed. The analytical results indicate that the uniformity of light distribution varies with the structural and optical parameters of the hollow n-sided polygonal light pipe and light source with a Gaussian distribution. The analytical approach will be useful to design and choose the hollow n-sided polygonal light pipe, especially for high-power laser beam homogenization techniques.
Investigation and Development of Advanced Surface Microanalysis Techniques and Methods
1983-04-01
California 94402 and Stephen L. Grube Watkins-Johnson 440 Kings Village Road Scotts Valley, California 95066 as published in Analytical Chemistry , 1985, 57...34 E. Silberg , T. Y. Chang, E. A. Caridi, C. A. Evans Jr. and C. J. Hitzman in Gallium Arsenide and Related Compounds 1982, 10th International Symposium...Spectrometry," P. K. Chu and S. L. Grube, Analytical Chemistry . 13. "Direct Lateral and In-Depth Distributional Analysis for Ionic - Contaminants in
NASA Technical Reports Server (NTRS)
Lautenschlager, L.; Perry, C. R., Jr. (Principal Investigator)
1981-01-01
The development of formulae for the reduction of multispectral scanner measurements to a single value (vegetation index) for predicting and assessing vegetative characteristics is addressed. The origin, motivation, and derivation of some four dozen vegetation indices are summarized. Empirical, graphical, and analytical techniques are used to investigate the relationships among the various indices. It is concluded that many vegetative indices are very similar, some being simple algebraic transforms of others.
Contribution of Electrochemistry to the Biomedical and Pharmaceutical Analytical Sciences.
Kauffmann, Jean-Michel; Patris, Stephanie; Vandeput, Marie; Sarakbi, Ahmad; Sakira, Abdul Karim
2016-01-01
All analytical techniques have experienced major progress since the last ten years and electroanalysis is also involved in this trend. The unique characteristics of phenomena occurring at the electrode-solution interface along with the variety of electrochemical methods currently available allow for a broad spectrum of applications. Potentiometric, conductometric, voltammetric and amperometric methods are briefly reviewed with a critical view in terms of performance of the developed instrumentation with special emphasis on pharmaceutical and biomedical applications.
Chylewska, Agnieszka; Ogryzek, M; Makowski, Mariusz
2017-10-23
New analytical and molecular methods for microorganisms are being developed on various features of identification i.e. selectivity, specificity, sensitivity, rapidity and discrimination of the viable cell. The presented review was established following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis. This contribution also focuses on the development of analytical and biological methods in the analysis of microorganisms, with special attention paid to bio-samples containing microbes (blood, urine, lymph, wastewater). First, the paper discusses microbes characterization, their structure, surface, properties, size and then it describes pivotal points in the bacteria, viruses and fungi separation procedure obtained by researchers in the last 30 years. According to the above, detection techniques can be classified into three categories, which were, in our opinion, examined and modified most intensively during this period: electrophoretic, nucleic-acid-based, and immunological methods. The review covers also the progress, limitations and challenges of these approaches and emphasizes the advantages of new separative techniques in selective fractionating of microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Recent Advances in Paper-Based Sensors
Liana, Devi D.; Raguse, Burkhard; Gooding, J. Justin; Chow, Edith
2012-01-01
Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed. PMID:23112667
Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel
2016-01-01
A new procedure based on direct insert microvial thermal desorption injection allows the direct analysis of ionic liquid extracts by gas chromatography and mass spectrometry (GC-MS). For this purpose, an in situ ionic liquid dispersive liquid-liquid microextraction (in situ IL DLLME) has been developed for the quantification of bisphenol A (BPA), bisphenol Z (BPZ) and bisphenol F (BPF). Different parameters affecting the extraction efficiency of the microextraction technique and the thermal desorption step were studied. The optimized procedure, determining the analytes as acetyl derivatives, provided detection limits of 26, 18 and 19 ng L(-1) for BPA, BPZ and BPF, respectively. The release of the three analytes from plastic containers was monitored using this newly developed analytical method. Analysis of the migration test solutions for 15 different plastic containers in daily use identified the presence of the analytes at concentrations ranging between 0.07 and 37 μg L(-1) in six of the samples studied, BPA being the most commonly found and at higher concentrations than the other analytes.
Srinivas, Nuggehally R
2006-05-01
The development of sound bioanalytical method(s) is of paramount importance during the process of drug discovery and development culminating in a marketing approval. Although the bioanalytical procedure(s) originally developed during the discovery stage may not necessarily be fit to support the drug development scenario, they may be suitably modified and validated, as deemed necessary. Several reviews have appeared over the years describing analytical approaches including various techniques, detection systems, automation tools that are available for an effective separation, enhanced selectivity and sensitivity for quantitation of many analytes. The intention of this review is to cover various key areas where analytical method development becomes necessary during different stages of drug discovery research and development process. The key areas covered in this article with relevant case studies include: (a) simultaneous assay for parent compound and metabolites that are purported to display pharmacological activity; (b) bioanalytical procedures for determination of multiple drugs in combating a disease; (c) analytical measurement of chirality aspects in the pharmacokinetics, metabolism and biotransformation investigations; (d) drug monitoring for therapeutic benefits and/or occupational hazard; (e) analysis of drugs from complex and/or less frequently used matrices; (f) analytical determination during in vitro experiments (metabolism and permeability related) and in situ intestinal perfusion experiments; (g) determination of a major metabolite as a surrogate for the parent molecule; (h) analytical approaches for universal determination of CYP450 probe substrates and metabolites; (i) analytical applicability to prodrug evaluations-simultaneous determination of prodrug, parent and metabolites; (j) quantitative determination of parent compound and/or phase II metabolite(s) via direct or indirect approaches; (k) applicability in analysis of multiple compounds in select disease areas and/or in clinically important drug-drug interaction studies. A tabular representation of select examples of analysis is provided covering areas of separation conditions, validation aspects and applicable conclusion. A limited discussion is provided on relevant aspects of the need for developing bioanalytical procedures for speedy drug discovery and development. Additionally, some key elements such as internal standard selection, likely issues of mass detection, matrix effect, chiral aspects etc. are provided for consideration during method development.
Guimarães, Geovani Pereira; Santos, Ravely Lucena; Júnior, Fernando José de Lima Ramos; da Silva, Karla Monik Alves; de Souza, Fabio Santos
2016-01-01
Momordica charantia is a species cultivated throughout the world and widely used in folk medicine, and its medicinal benefits are well documented, especially its pharmacological properties, including antimicrobial activities. Analytical methods have been used to aid in the characterization of compounds derived from plant drug extracts and their products. This paper developed a methodological model to evaluate the integrity of the vegetable drug M. charantia in different particle sizes, using different analytical methods. M. charantia was collected in the semiarid region of Paraíba, Brazil. The herbal medicine raw material derived from the leaves and fruits in different particle sizes was analyzed using thermoanalytical techniques as thermogravimetry (TG) and differential thermal analysis (DTA), pyrolysis coupled to gas chromatography/mass spectrometry (PYR-GC/MS), and nuclear magnetic resonance (1H NMR), in addition to the determination of antimicrobial activity. The different particle surface area among the samples was differentiated by the techniques. DTA and TG were used for assessing thermal and kinetic parameters and PYR-GC/MS was used for degradation products chromatographic identification through the pyrograms. The infusions obtained from the fruit and leaves of Momordica charantia presented antimicrobial activity. PMID:27579215
Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie
2009-11-15
Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.
Veillet, Sébastien; Tomao, Valérie; Ruiz, Karine; Chemat, Farid
2010-07-26
In the past 10 years, trends in analytical chemistry have turned toward the green chemistry which endeavours to develop new techniques that reduce the influence of chemicals on the environment. The challenge of the green analytical chemistry is to develop techniques that meet the request for information output while reducing the environmental impact of the analyses. For this purpose petroleum-based solvents have to be avoided. Therefore, increasing interest was given to new green solvents such as limonene and their potential as alternative solvents in analytical chemistry. In this work limonene was used instead of toluene in the Dean-Stark procedure. Moisture determination on wide range of food matrices was performed either using toluene or limonene. Both solvents gave similar water percentages in food materials, i.e. 89.3+/-0.5 and 89.5+/-0.7 for carrot, 68.0+/-0.7 and 68.6+/-1.9 for garlic, 64.1+/-0.5 and 64.0+/-0.3 for minced meat with toluene and limonene, respectively. Consequently limonene could be used as a good alternative solvent in the Dean-Stark procedure. Copyright 2010 Elsevier B.V. All rights reserved.
Dave, Vivek S; Shahin, Hend I; Youngren-Ortiz, Susanne R; Chougule, Mahavir B; Haware, Rahul V
2017-10-30
The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher
2015-07-01
Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.
Murnick, Daniel E; Dogru, Ozgur; Ilkmen, Erhan
2008-07-01
We show a new ultrasensitive laser-based analytical technique, intracavity optogalvanic spectroscopy, allowing extremely high sensitivity for detection of (14)C-labeled carbon dioxide. Capable of replacing large accelerator mass spectrometers, the technique quantifies attomoles of (14)C in submicrogram samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity and detection via impedance variations, limits of detection near 10(-15) (14)C/(12)C ratios are obtained. Using a 15-W (14)CO2 laser, a linear calibration with samples from 10(-15) to >1.5 x 10(-12) in (14)C/(12)C ratios, as determined by accelerator mass spectrometry, is demonstrated. Possible applications include microdosing studies in drug development, individualized subtherapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon. The method can also be applied to detection of other trace entities.
Chemical and biological threat-agent detection using electrophoresis-based lab-on-a-chip devices.
Borowsky, Joseph; Collins, Greg E
2007-10-01
The ability to separate complex mixtures of analytes has made capillary electrophoresis (CE) a powerful analytical tool since its modern configuration was first introduced over 25 years ago. The technique found new utility with its application to the microfluidics based lab-on-a-chip platform (i.e., microchip), which resulted in ever smaller footprints, sample volumes, and analysis times. These features, coupled with the technique's potential for portability, have prompted recent interest in the development of novel analyzers for chemical and biological threat agents. This article will comment on three main areas of microchip CE as applied to the separation and detection of threat agents: detection techniques and their corresponding limits of detection, sampling protocol and preparation time, and system portability. These three areas typify the broad utility of lab-on-a-chip for meeting critical, present-day security, in addition to illustrating areas wherein advances are necessary.
Nuclear analytical techniques in medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cesareo, R.
1988-01-01
This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and tomore » map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.« less
Shape optimization of disc-type flywheels
NASA Technical Reports Server (NTRS)
Nizza, R. S.
1976-01-01
Techniques were developed for presenting an analytical and graphical means for selecting an optimum flywheel system design, based on system requirements, geometric constraints, and weight limitations. The techniques for creating an analytical solution are formulated from energy and structural principals. The resulting flywheel design relates stress and strain pattern distribution, operating speeds, geometry, and specific energy levels. The design techniques incorporate the lowest stressed flywheel for any particular application and achieve the highest specific energy per unit flywheel weight possible. Stress and strain contour mapping and sectional profile plotting reflect the results of the structural behavior manifested under rotating conditions. This approach toward flywheel design is applicable to any metal flywheel, and permits the selection of the flywheel design to be based solely on the criteria of the system requirements that must be met, those that must be optimized, and those system parameters that may be permitted to vary.
Application of analytical methods in authentication and adulteration of honey.
Siddiqui, Amna Jabbar; Musharraf, Syed Ghulam; Choudhary, M Iqbal; Rahman, Atta-Ur-
2017-02-15
Honey is synthesized from flower nectar and it is famous for its tremendous therapeutic potential since ancient times. Many factors influence the basic properties of honey including the nectar-providing plant species, bee species, geographic area, and harvesting conditions. Quality and composition of honey is also affected by many other factors, such as overfeeding of bees with sucrose, harvesting prior to maturity, and adulteration with sugar syrups. Due to the complex nature of honey, it is often challenging to authenticate the purity and quality by using common methods such as physicochemical parameters and more specialized procedures need to be developed. This article reviews the literature (between 2000 and 2016) on the use of analytical techniques, mainly NMR spectroscopy, for authentication of honey, its botanical and geographical origin, and adulteration by sugar syrups. NMR is a powerful technique and can be used as a fingerprinting technique to compare various samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Shan-Yang; Wang, Shun-Li
2012-04-01
The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.
Analytical techniques and instrumentation: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Technical information on developments in instrumentation is arranged into four sections: (1) instrumentation for analysis; (2) analysis of matter; (3) analysis of electrical and mechanical phenomena; and (4) structural analysis. Patent information for two of the instruments described is presented.
Instrumentation development for drug detection on the breath
DOT National Transportation Integrated Search
1972-09-01
Based on a survey of candidate analytical methods, mass spectrometry was identified as a promising technique for drug detection on the breath. To demonstrate its capabilities, an existing laboratory mass spectrometer was modified by the addition of a...
DOT National Transportation Integrated Search
1974-01-01
The report contains the results of an experimental and analytical evaluation of instruments and techniques designed to prevent an intoxicated driver from operating his automobile. The prototype 'Alcohol Safety Interlock Systems' tested were developed...
Development and Calibration of Highway Safety Manual Equations for Florida Conditions
DOT National Transportation Integrated Search
2011-08-31
The Highway Safety Manual (HSM) provides statistically-valid analytical tools and techniques for quantifying the potential effects on crashes as a result of decisions made in planning, design, operations, and maintenance. Implementation of the new te...
Development and calibration of highway safety manual equations for Florida conditions.
DOT National Transportation Integrated Search
2011-08-31
The Highway Safety Manual (HSM) provides statistically-valid analytical tools and techniques for : quantifying the potential effects on crashes as a result of decisions made in planning, design, : operations, and maintenance. Implementation of the ne...
World Energy Projection System Plus Model Documentation: Greenhouse Gases Module
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Natural Gas Module
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: District Heat Module
2017-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Industrial Module
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
Forensic Chemistry--A Symposium Collection.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1985
1985-01-01
Presents a collection of articles to provide chemistry teachers with resource materials to add forensic chemistry units to their chemistry courses. Topics range from development of forensic science laboratory courses and mock-crime scenes to forensic serology and analytical techniques. (JN)
e-Research and Learning Theory: What Do Sequence and Process Mining Methods Contribute?
ERIC Educational Resources Information Center
Reimann, Peter; Markauskaite, Lina; Bannert, Maria
2014-01-01
This paper discusses the fundamental question of how data-intensive e-research methods could contribute to the development of learning theories. Using methodological developments in research on self-regulated learning as an example, it argues that current applications of data-driven analytical techniques, such as educational data mining and its…
ERIC Educational Resources Information Center
Schaefer, David R.; adams, jimi; Haas, Steven A.
2013-01-01
Adolescent smoking and friendship networks are related in many ways that can amplify smoking prevalence. Understanding and developing interventions within such a complex system requires new analytic approaches. We draw on recent advances in dynamic network modeling to develop a technique that explores the implications of various intervention…
NASA Astrophysics Data System (ADS)
McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.
2015-12-01
We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods.Reference: Evans NJ, McInnes BIA, McDonald B, Becker T, Vermeesch P, Danisik M, Shelley M, Marillo-Sialer E and Patterson D. An in situ technique for (U-Th-Sm)/He and U-Pb double dating. J Analytical Atomic Spectrometry, 30, 1636 - 1645.
NASA Technical Reports Server (NTRS)
Michael, J. V.; Whytock, D. A.; Lee, J. H.; Payne, W. A.; Stief, L. J.
1977-01-01
Rate constants for the reaction of atomic chlorine with hydrogen peroxide were measured from 265-400 K using the flash photolysis-resonance fluorescence technique. Analytical techniques were developed to measure H2O2 under reaction conditions. Due to ambiguity in the interpretation of the analytical results, the data combine to give two equally acceptable representations of the temperature dependence. The results are compared to previous work at 298 K and are theoretically discussed in terms of the mechanism of the reaction. Additional experiments on the H + H2O2 reaction at 298 and 359 K are compared with earlier results from this laboratory and give a slightly revised bimolecular rate constant.
Chemical and Biological Dynamics Using Droplet-Based Microfluidics.
Dressler, Oliver J; Casadevall I Solvas, Xavier; deMello, Andrew J
2017-06-12
Recent years have witnessed an increased use of droplet-based microfluidic techniques in a wide variety of chemical and biological assays. Nevertheless, obtaining dynamic data from these platforms has remained challenging, as this often requires reading the same droplets (possibly thousands of them) multiple times over a wide range of intervals (from milliseconds to hours). In this review, we introduce the elemental techniques for the formation and manipulation of microfluidic droplets, together with the most recent developments in these areas. We then discuss a wide range of analytical methods that have been successfully adapted for analyte detection in droplets. Finally, we highlight a diversity of studies where droplet-based microfluidic strategies have enabled the characterization of dynamic systems that would otherwise have remained unexplorable.
Development of Gold Standard Ion-Selective Electrode-Based Methods for Fluoride Analysis
Martínez-Mier, E.A.; Cury, J.A.; Heilman, J.R.; Katz, B.P.; Levy, S.M.; Li, Y.; Maguire, A.; Margineda, J.; O’Mullane, D.; Phantumvanit, P.; Soto-Rojas, A.E.; Stookey, G.K.; Villa, A.; Wefel, J.S.; Whelton, H.; Whitford, G.M.; Zero, D.T.; Zhang, W.; Zohouri, V.
2011-01-01
Background/Aims: Currently available techniques for fluoride analysis are not standardized. Therefore, this study was designed to develop standardized methods for analyzing fluoride in biological and nonbiological samples used for dental research. Methods A group of nine laboratories analyzed a set of standardized samples for fluoride concentration using their own methods. The group then reviewed existing analytical techniques for fluoride analysis, identified inconsistencies in the use of these techniques and conducted testing to resolve differences. Based on the results of the testing undertaken to define the best approaches for the analysis, the group developed recommendations for direct and microdiffusion methods using the fluoride ion-selective electrode. Results Initial results demonstrated that there was no consensus regarding the choice of analytical techniques for different types of samples. Although for several types of samples, the results of the fluoride analyses were similar among some laboratories, greater differences were observed for saliva, food and beverage samples. In spite of these initial differences, precise and true values of fluoride concentration, as well as smaller differences between laboratories, were obtained once the standardized methodologies were used. Intraclass correlation coefficients ranged from 0.90 to 0.93, for the analysis of a certified reference material, using the standardized methodologies. Conclusion The results of this study demonstrate that the development and use of standardized protocols for F analysis significantly decreased differences among laboratories and resulted in more precise and true values. PMID:21160184
One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.
Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz
2009-07-15
The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.
NASA Astrophysics Data System (ADS)
Jenifer, M. Annie; Jha, Madan K.
2017-05-01
Groundwater is a treasured underground resource, which plays a central role in sustainable water management. However, it being hidden and dynamic in nature, its sustainable development and management calls for precise quantification of this precious resource at an appropriate scale. This study demonstrates the efficacy of three GIS-based multi-criteria decision analysis (MCDA) techniques, viz., Analytic Hierarchy Process (AHP), Catastrophe and Entropy in evaluating groundwater potential through a case study in hard-rock aquifer systems. Using satellite imagery and relevant field data, eight thematic layers (rainfall, land slope, drainage density, soil, lineament density, geology, proximity to surface water bodies and elevation) of the factors having significant influence on groundwater occurrence were prepared. These thematic layers and their features were assigned suitable weights based on the conceptual frameworks of AHP, Catastrophe and Entropy techniques and then they were integrated in the GIS environment to generate an integrated raster layer depicting groundwater potential index of the study area. The three groundwater prospect maps thus yielded by these MCDA techniques were verified using a novel approach (concept of 'Dynamic Groundwater Potential'). The validation results revealed that the groundwater potential predicted by the AHP technique has a pronounced accuracy of 87% compared to the Catastrophe (46% accuracy) and Entropy techniques (51% accuracy). It is concluded that the AHP technique is the most reliable for the assessment of groundwater resources followed by the Entropy method. The developed groundwater potential maps can serve as a scientific guideline for the cost-effective siting of wells and the effective planning of groundwater development at a catchment or basin scale.
A workflow learning model to improve geovisual analytics utility
Roth, Robert E; MacEachren, Alan M; McCabe, Craig A
2011-01-01
Introduction This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. Objectives The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. Methodology The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. Results/Conclusions In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009. PMID:21983545
A workflow learning model to improve geovisual analytics utility.
Roth, Robert E; Maceachren, Alan M; McCabe, Craig A
2009-01-01
INTRODUCTION: This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. OBJECTIVES: The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. METHODOLOGY: The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. RESULTS/CONCLUSIONS: In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009.
ERIC Educational Resources Information Center
Lou, Yu-Chiung; Lin, Hsiao-Fang; Lin, Chin-Wen
2013-01-01
The aims of the study were (a) to develop a scale to measure university students' task value and (b) to use confirmatory factor analytic techniques to investigate the construct validity of the scale. The questionnaire items were developed based on theoretical considerations and the final version contained 38 items divided into 4 subscales.…
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.
2007-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott, Robert C.
2006-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed
2014-06-01
Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.
In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft
NASA Technical Reports Server (NTRS)
Slafer, L. I.
1979-01-01
The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.
NASA Technical Reports Server (NTRS)
Mikes, F.
1984-01-01
Silane primers for use as thermal protection on external tanks were subjected to various analytic techniques to determine the most effective testing method for silane lot evaluation. The analytic methods included high performance liquid chromatography, gas chromatography, thermogravimetry (TGA), and fourier transform infrared spectroscopy (FTIR). It is suggested that FTIR be used as the method for silane lot evaluation. Chromatograms, TGA profiles, bar graphs showing IR absorbances, and FTIR spectra are presented.
Human Factors in Field Experimentation Design and Analysis of Analytical Suppression Model
1978-09-01
men in uf"an-dachine- Systems " supports the development of new doctrines, design of weapon systems as well as training programs for trQops. One...Experimentation Design -Master’s thesis: and Analysis.of an Analytical Suppression.Spebr17 Model PR@~w 3.RPR 7. AUTHOR(@) COT RIETeo 31AN? wijMu~aw...influences to suppression. Techniques are examined for including. the suppre.ssive effects of weapon systems in Lanchester-type combat m~odels, whir~h may be
Dual nozzle aerodynamic and cooling analysis study
NASA Technical Reports Server (NTRS)
Meagher, G. M.
1981-01-01
Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.
Silina, Yuliya E; Volmer, Dietrich A
2013-12-07
Analytical applications often require rapid measurement of compounds from complex sample mixtures. High-speed mass spectrometry approaches frequently utilize techniques based on direct ionization of the sample by laser irradiation, mostly by means of matrix-assisted laser desorption/ionization (MALDI). Compounds of low molecular weight are difficult to analyze by MALDI, however, because of severe interferences in the low m/z range from the organic matrix used for desorption/ionization. In recent years, surface-assisted laser desorption/ionization (SALDI) techniques have shown promise for small molecule analysis, due to the unique properties of nanostructured surfaces, in particular, the lack of a chemical background in the low m/z range and enhanced production of analyte ions by SALDI. This short review article presents a summary of the most promising recent developments in SALDI materials for MS analysis of low molecular weight analytes, with emphasis on nanostructured materials based on metals and semiconductors.
Heat transfer with hockey-stick steam generator. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, E; Gabler, M J
1977-11-01
The hockey-stick modular design concept is a good answer to future needs for reliable, economic LMFBR steam generators. The concept was successfully demonstrated in the 30 Mwt MSG test unit; scaled up versions are currently in fabrication for CRBRP usage, and further scaling has been accomplished for PLBR applications. Design and performance characteristics are presented for the three generations of hockey-stick steam generators. The key features of the design are presented based on extensive analytical effort backed up by extensive ancillary test data. The bases for and actual performance evaluations are presented with emphasis on the CRBRP design. The designmore » effort on these units has resulted in the development of analytical techniques that are directly applicable to steam generators for any LMFBR application. In conclusion, the hockey-stick steam generator concept has been proven to perform both thermally and hydraulically as predicted. The heat transfer characteristics are well defined, and proven analytical techniques are available as are personnel experienced in their use.« less
Guadalupe, Zenaida; Soldevilla, Alberto; Sáenz-Navajas, María-Pilar; Ayestarán, Belén
2006-04-21
A multiple-step analytical method was developed to improve the analysis of polymeric phenolics in red wines. With a common initial step based on the fractionation of wine phenolics by gel permeation chromatography (GPC), different analytical techniques were used: high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-mass spectrometry (MS), capillary zone electrophoresis (CZE) and spectrophotometry. This method proved to be valid for analyzing different families of phenolic compounds, such as monomeric phenolics and their derivatives, polymeric pigments and proanthocyanidins. The analytical characteristics of fractionation by GPC were studied and the method was fully validated, yielding satisfactory statistical results. GPC fractionation substantially improved the analysis of polymeric pigments by CZE, in terms of response, repeatability and reproducibility. It also represented an improvement in the traditional vanillin assay used for proanthocyanidin (PA) quantification. Astringent proanthocyanidins were also analyzed using a simple combined method that allowed these compounds, for which only general indexes were available, to be quantified.
NASA Astrophysics Data System (ADS)
Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.
2016-07-01
The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.
Diagnostics and Active Control of Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1998-01-01
This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.
Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.; ...
2016-07-05
Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.
Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less
Experimental and analytical determination of stability parameters for a balloon tethered in a wind
NASA Technical Reports Server (NTRS)
Redd, L. T.; Bennett, R. M.; Bland, S. R.
1973-01-01
Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.
NASA Astrophysics Data System (ADS)
Skaggs, Rhonda Lynn
A new cartridge sampling and derivatization technique was developed for the determination of aldehydes and ketones in air that allows measurement of sub-ppbv mixing ratios using sampling times of ten minutes or less. This thesis describes the development and evaluation of the analytical technique and a preliminary survey of carbonyl emissions from wounded plants. Also described is the development of an analytical technique for the measurement of argon, a passive biogeochemical tracer. Carbonyl compounds are sampled onto high pressure cartridges containing particles coated with 2,4- dinitrophenylhydrazine where they react to form hydrazones. The entire sample is eluted and transferred to the head of a high performance liquid chromatograph (HPLC) for separation and detection by UV absorbance. The method is demonstrated to be approximately two orders of magnitude more sensitive than the conventional DNPH technique in which only a small fraction of the hydrazones are transferred to the column. It was found that two calibration methods gave different sensitivities resulting from the formation of different ratios of syn and anti isomers of the hydrazones. These results suggest that many measurements of atmospheric carbonyls reported in the literature may have significant errors if syn and anti isomers were unresolved. A chamber method was used to study the emissions of aldehydes and ketones from a variety of wounded plants. 2-E-Hexenal and acetaldehyde were detected in the wound response emissions of all six plants examined. Enhanced concentrations of methylethyl ketone (MEK) in addition to acetaldehyde and 2-E-hexenal were detected following wounding of clover, and the emissions of 2-E-hexenal and MEK in response to wounding displayed different temporal release patterns. A novel application of a commercial photionization detector for the quantification of argon is described and applied to the headspace analysis of water. Argon is measured indirectly by its effect on an ionizable gas (nitric oxide) present in the detection cell. By varying the amount of nitric oxide added to the detection cell, two modes of operation were demonstrated: a competitive absorbance mode and a Penning ionization mode. Optimized Penning ionization detection with a nitric oxide concentration of ~940 ppmv was used to analyze air and the headspace of water samples. The limit of detection was determined to be 14 pmol Ar s-1.
[Detection of rubella virus RNA in clinical material by real time polymerase chain reaction method].
Domonova, É A; Shipulina, O Iu; Kuevda, D A; Larichev, V F; Safonova, A P; Burchik, M A; Butenko, A M; Shipulin, G A
2012-01-01
Development of a reagent kit for detection of rubella virus RNA in clinical material by PCR-RT. During development and determination of analytical specificity and sensitivity DNA and RNA of 33 different microorganisms including 4 rubella strains were used. Comparison of analytical sensitivity of virological and molecular-biological methods was performed by using rubella virus strains Wistar RA 27/3, M-33, "Orlov", Judith. Evaluation of diagnostic informativity of rubella virus RNAisolation in various clinical material by PCR-RT method was performed in comparison with determination of virus specific serum antibodies by enzyme immunoassay. A reagent kit for the detection of rubella virus RNA in clinical material by PCR-RT was developed. Analytical specificity was 100%, analytical sensitivity - 400 virus RNA copies per ml. Analytical sensitivity of the developed technique exceeds analytical sensitivity of the Vero E6 cell culture infection method in studies of rubella virus strains Wistar RA 27/3 and "Orlov" by 11g and 31g, and for M-33 and Judith strains is analogous. Diagnostic specificity is 100%. Diagnostic specificity for testing samples obtained within 5 days of rash onset: for peripheral blood sera - 20.9%, saliva - 92.5%, nasopharyngeal swabs - 70.1%, saliva and nasopharyngeal swabs - 97%. Positive and negative predictive values of the results were shown depending on the type of clinical material tested. Application of reagent kit will allow to increase rubella diagnostics effectiveness at the early stages of infectious process development, timely and qualitatively perform differential diagnostics of exanthema diseases, support tactics of anti-epidemic regime.
Microbiological Detection Systems for Molecular Analysis of Environmental Water and Soil Samples
Multiple detection systems are being targeted to track various species and genotypes of pathogens found in environmental samples with the overreaching goal of developing analytical separation and detection techniques for Salmonella enterica Serovars Typhi, Cryptosporidium parvum,...
DOT National Transportation Integrated Search
1974-01-01
This report contains the results of an experimental and analytical evaluation of instruments and techniques designed to prevent an intoxicated driver from operating his automobile. The prototype 'Alcohol Safety Interlock Systems' tested were develope...
Reagen, William K; Lindstrom, Kent R; Thompson, Kathy L; Flaherty, John M
2004-09-01
The widespread use of semi- and nonvolatile organofluorochemicals in industrial facilities, concern about their persistence, and relatively recent advancements in liquid chromatography/mass spectrometry (LC/MS) technology have led to the development of new analytical methods to assess potential worker exposure to airborne organofluorochemicals. Techniques were evaluated for the determination of 19 organofluorochemicals and for total fluorine in ambient air samples. Due to the potential biphasic nature of most of these fluorochemicals when airborne, Occupational Safety and Health Administration (OSHA) versatile sampler (OVS) tubes were used to simultaneously trap fluorochemical particulates and vapors from workplace air. Analytical methods were developed for OVS air samples to quantitatively analyze for total fluorine using oxygen bomb combustion/ion selective electrode and for 17 organofluorochemicals using LC/MS and gas chromatography/mass spectrometry (GC/MS). The experimental design for this validation was based on the National Institute of Occupational Safety and Health (NIOSH) Guidelines for Air Sampling and Analytical Method Development and Evaluation, with some revisions of the experimental design. The study design incorporated experiments to determine analytical recovery and stability, sampler capacity, the effect of some environmental parameters on recoveries, storage stability, limits of detection, precision, and accuracy. Fluorochemical mixtures were spiked onto each OVS tube over a range of 0.06-6 microg for each of 12 compounds analyzed by LC/MS and 0.3-30 microg for 5 compounds analyzed by GC/MS. These ranges allowed reliable quantitation at 0.001-0.1 mg/m3 in general for LC/MS analytes and 0.005-0.5 mg/m3 for GC/MS analytes when 60 L of air are sampled. The organofluorochemical exposure guideline (EG) is currently 0.1 mg/m3 for many analytes, with one exception being ammonium perfluorooctanoate (EG is 0.01 mg/m3). Total fluorine results may be used to determine if the individual compounds quantified provide a suitable mass balance of total airborne organofluorochemicals based on known fluorine content. Improvements in precision and/or recovery as well as some additional testing would be needed to meet all NIOSH validation criteria. This study provided valuable information about the accuracy of this method for organofluorochemical exposure assessment.
Analytical Chemistry: A Literary Approach.
ERIC Educational Resources Information Center
Lucy, Charles A.
2000-01-01
Provides an anthology of references to descriptions of analytical chemistry techniques from history, popular fiction, and film which can be used to capture student interest and frame discussions of chemical techniques. (WRM)
Petchkovsky, Leon
2017-06-01
Analytical psychology shares with many other psychotherapies the important task of repairing the consequences of developmental trauma. The majority of analytic patients come from compromised early developmental backgrounds: they may have experienced neglect, abuse, or failures of empathic resonance from their carers. Functional brain imagery techniques including Quantitative Electroencephalogram (QEEG), and functional Magnetic Resonance Imagery (fMRI), allow us to track mental processes in ways beyond verbal reportage and introspection. This independent perspective is useful for developing new psychodynamic hypotheses, testing current ones, providing diagnostic markers, and monitoring treatment progress. Jung, with the Word Association Test, grasped these principles 100 years ago. Brain imaging techniques have contributed to powerful recent advances in our understanding of neurodevelopmental processes in the first three years of life. If adequate nurturance is compromised, a range of difficulties may emerge. This has important implications for how we understand and treat our psychotherapy clients. The paper provides an overview of functional brain imaging and advances in developmental neuropsychology, and looks at applications of some of these findings (including neurofeedback) in the Jungian psychotherapy domain. © 2017, The Society of Analytical Psychology.
SRB Environment Evaluation and Analysis. Volume 2: RSRB Joint Filling Test/Analysis Improvements
NASA Technical Reports Server (NTRS)
Knox, E. C.; Woods, G. Hamilton
1991-01-01
Following the Challenger accident a very comprehensive solid rocket booster (SRB) redesign program was initiated. One objective of the program was to develop expertise at NASA/MSFC in the techniques for analyzing the flow of hot gases in the SRB joints. Several test programs were undertaken to provide a data base of joint performance with manufactured defects in the joints to allow hot gases to fill the joints. This data base was used also to develop the analytical techniques. Some of the test programs were Joint Environment Simulator (JES), Nozzle Joint Environment Simulator (NJES), Transient Pressure Test Article (TPTA), and Seventy-Pound Charge (SPC). In 1988 the TPTA test hardware was moved from the Utah site to MSFC and several RSRM tests were scheduled, to be followed by tests for the ASRM program. REMTECH Inc. supported these activities with pretest estimates of the flow conditions in the test joints, and post-test analysis and evaluation of the measurements. During this support REMTECH identified deficiencies in the gas-measurement instrumentation that existed in the TPTA hardware, made recommendations for its replacement, and identified improvements to the analytical tools used in the test support. Only one test was completed under the TPTA RSRM test program, and those scheduled for the ASRM were rescheduled to a time after the expiration of this contract. The attention of this effort was directed toward improvements in the analytical techniques in preparation for when the ASRM program begins.
Fan noise prediction assessment
NASA Technical Reports Server (NTRS)
Bent, Paul H.
1995-01-01
This report is an evaluation of two techniques for predicting the fan noise radiation from engine nacelles. The first is a relatively computational intensive finite element technique. The code is named ARC, an abbreviation of Acoustic Radiation Code, and was developed by Eversman. This is actually a suite of software that first generates a grid around the nacelle, then solves for the potential flowfield, and finally solves the acoustic radiation problem. The second approach is an analytical technique requiring minimal computational effort. This is termed the cutoff ratio technique and was developed by Rice. Details of the duct geometry, such as the hub-to-tip ratio and Mach number of the flow in the duct, and modal content of the duct noise are required for proper prediction.
Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review
Nunes, Lazaro Alessandro Soares; Mussavira, Sayeeda
2015-01-01
This systematic review presents the latest trends in salivary research and its applications in health and disease. Among the large number of analytes present in saliva, many are affected by diverse physiological and pathological conditions. Further, the non-invasive, easy and cost-effective collection methods prompt an interest in evaluating its diagnostic or prognostic utility. Accumulating data over the past two decades indicates towards the possible utility of saliva to monitor overall health, diagnose and treat various oral or systemic disorders and drug monitoring. Advances in saliva based systems biology has also contributed towards identification of several biomarkers, development of diverse salivary diagnostic kits and other sensitive analytical techniques. However, its utilization should be carefully evaluated in relation to standardization of pre-analytical and analytical variables, such as collection and storage methods, analyte circadian variation, sample recovery, prevention of sample contamination and analytical procedures. In spite of all these challenges, there is an escalating evolution of knowledge with the use of this biological matrix. PMID:26110030
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Konstantinidis, Spyridon; Heldin, Eva; Chhatre, Sunil; Velayudhan, Ajoy; Titchener-Hooker, Nigel
2012-01-01
High throughput approaches to facilitate the development of chromatographic separations have now been adopted widely in the biopharmaceutical industry, but issues of how to reduce the associated analytical burden remain. For example, acquiring experimental data by high level factorial designs in 96 well plates can place a considerable strain upon assay capabilities, generating a bottleneck that limits significantly the speed of process characterization. This article proposes an approach designed to counter this challenge; Strategic Assay Deployment (SAD). In SAD, a set of available analytical methods is investigated to determine which set of techniques is the most appropriate to use and how best to deploy these to reduce the consumption of analytical resources while still enabling accurate and complete process characterization. The approach is demonstrated by investigating how salt concentration and pH affect the binding of green fluorescent protein from Escherichia coli homogenate to an anion exchange resin presented in a 96-well filter plate format. Compared with the deployment of routinely used analytical methods alone, the application of SAD reduced both the total assay time and total assay material consumption by at least 40% and 5%, respectively. SAD has significant utility in accelerating bioprocess development activities. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo
2013-03-01
This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution 'Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10(-9) M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.
dos, Santos Luís Augusto; Marin, Heimar de Fátima; Marques, Isaac Rosa; Cunha, Isabel Cristina Kowal Olm
2007-01-01
This work intents, in a didactic form, to explain the benefits of use of a technique of project management, named Work Breakdown Structure: a graphical tool to identify the main results to be developed in a project. The real examples are applied to a sub-project of the Virtual Library in Health in Nursing (BVS-Enfermagem) to development of the Sites Catalogs. The benefits of graphical visualization for a major agreement between professionals of different expertise are presented.
Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H
2015-01-01
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.
Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)
NASA Astrophysics Data System (ADS)
Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer
2009-02-01
Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.
Antibody Microarray for E. coli O157:H7 and Shiga Toxin in Microtiter Plates.
Gehring, Andrew G; Brewster, Jeffrey D; He, Yiping; Irwin, Peter L; Paoli, George C; Simons, Tawana; Tu, Shu-I; Uknalis, Joseph
2015-12-04
Antibody microarray is a powerful analytical technique because of its inherent ability to simultaneously discriminate and measure numerous analytes, therefore making the technique conducive to both the multiplexed detection and identification of bacterial analytes (i.e., whole cells, as well as associated metabolites and/or toxins). We developed a sandwich fluorescent immunoassay combined with a high-throughput, multiwell plate microarray detection format. Inexpensive polystyrene plates were employed containing passively adsorbed, array-printed capture antibodies. During sample reaction, centrifugation was the only strategy found to significantly improve capture, and hence detection, of bacteria (pathogenic Escherichia coli O157:H7) to planar capture surfaces containing printed antibodies. Whereas several other sample incubation techniques (e.g., static vs. agitation) had minimal effect. Immobilized bacteria were labeled with a red-orange-fluorescent dye (Alexa Fluor 555) conjugated antibody to allow for quantitative detection of the captured bacteria with a laser scanner. Shiga toxin 1 (Stx1) could be simultaneously detected along with the cells, but none of the agitation techniques employed during incubation improved detection of the relatively small biomolecule. Under optimal conditions, the assay had demonstrated limits of detection of ~5.8 × 10⁵ cells/mL and 110 ng/mL for E. coli O157:H7 and Stx1, respectively, in a ~75 min total assay time.
NASA Technical Reports Server (NTRS)
Migneault, Gerard E.
1987-01-01
Emulation techniques can be a solution to a difficulty that arises in the analysis of the reliability of guidance and control computer systems for future commercial aircraft. Described here is the difficulty, the lack of credibility of reliability estimates obtained by analytical modeling techniques. The difficulty is an unavoidable consequence of the following: (1) a reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Use of emulation techniques for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques is then discussed. Finally several examples of the application of emulation techniques are described.
Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.
Model and Analytic Processes for Export License Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.
2011-09-29
This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determinemore » which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.« less
Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants
Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...
Pharmaceutical Concern and Prioritization Framework for Aquatic Life Effects
Human pharmaceuticals and veterinary drugs are being developed and used at an increasing rate world-wide. This, and increasingly sensitive analytical techniques, have lead to recurrent detection of pharmaceuticals as environmental pollutants. The goal of the present work was to d...
X-ray micro-beam techniques and phase contrast tomography applied to biomaterials
NASA Astrophysics Data System (ADS)
Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia
2015-12-01
A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.
A Toolbox of Metrology-Based Techniques for Optical System Alignment
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.;
2016-01-01
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
A Toolbox of Metrology-Based Techniques for Optical System Alignment
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hetherington, Samuel E.;
2016-01-01
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a "toolbox" format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
Analytical Applications of Monte Carlo Techniques.
ERIC Educational Resources Information Center
Guell, Oscar A.; Holcombe, James A.
1990-01-01
Described are analytical applications of the theory of random processes, in particular solutions obtained by using statistical procedures known as Monte Carlo techniques. Supercomputer simulations, sampling, integration, ensemble, annealing, and explicit simulation are discussed. (CW)
Thermoelectrically cooled water trap
Micheels, Ronald H [Concord, MA
2006-02-21
A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.
Enabling Analytics on Sensitive Medical Data with Secure Multi-Party Computation.
Veeningen, Meilof; Chatterjea, Supriyo; Horváth, Anna Zsófia; Spindler, Gerald; Boersma, Eric; van der Spek, Peter; van der Galiën, Onno; Gutteling, Job; Kraaij, Wessel; Veugen, Thijs
2018-01-01
While there is a clear need to apply data analytics in the healthcare sector, this is often difficult because it requires combining sensitive data from multiple data sources. In this paper, we show how the cryptographic technique of secure multi-party computation can enable such data analytics by performing analytics without the need to share the underlying data. We discuss the issue of compliance to European privacy legislation; report on three pilots bringing these techniques closer to practice; and discuss the main challenges ahead to make fully privacy-preserving data analytics in the medical sector commonplace.
A graph algebra for scalable visual analytics.
Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V
2012-01-01
Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.
Penn, Andrew M; Lu, Linghong; Chambers, Andrew G; Balshaw, Robert F; Morrison, Jaclyn L; Votova, Kristine; Wood, Eileen; Smith, Derek S; Lesperance, Maria; del Zoppo, Gregory J; Borchers, Christoph H
2015-12-01
Multiple reaction monitoring mass spectrometry (MRM-MS) is an emerging technology for blood biomarker verification and validation; however, the results may be influenced by pre-analytical factors. This exploratory study was designed to determine if differences in phlebotomy techniques would significantly affect the abundance of plasma proteins in an upcoming biomarker development study. Blood was drawn from 10 healthy participants using four techniques: (1) a 20-gauge IV with vacutainer, (2) a 21-gauge direct vacutainer, (3) an 18-gauge butterfly with vacutainer, and (4) an 18-gauge butterfly with syringe draw. The abundances of a panel of 122 proteins (117 proteins, plus 5 matrix metalloproteinase (MMP) proteins) were targeted by LC/MRM-MS. In addition, complete blood count (CBC) data were also compared across the four techniques. Phlebotomy technique significantly affected 2 of the 11 CBC parameters (red blood cell count, p = 0.010; hemoglobin concentration, p = 0.035) and only 12 of the targeted 117 proteins (p < 0.05). Of the five MMP proteins, only MMP7 was detectable and its concentration was not significantly affected by different techniques. Overall, most proteins in this exploratory study were not significantly influenced by phlebotomy technique; however, a larger study with additional patients will be required for confirmation.
An analytic performance model of disk arrays and its application
NASA Technical Reports Server (NTRS)
Lee, Edward K.; Katz, Randy H.
1991-01-01
As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.
Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method
NASA Astrophysics Data System (ADS)
Nikitin, M. P.; Orlov, A. V.; Znoyko, S. L.; Bragina, V. A.; Gorshkov, B. G.; Ksenevich, T. I.; Cherkasov, V. R.; Nikitin, P. I.
2018-08-01
Unique properties of magnetic nanoparticles (MNP) have provided many breakthrough solutions for life science. The immense potential of MNP as labels in advanced immunoassays stems from the fact that they, unlike optical labels, can be easily detected inside 3D opaque porous biosensing structures or in colored mediums, manipulated by an external magnetic field, exhibit high stability and negligible background signal in biological samples, etc. In this research, the magnetic nanolabels and an original technique of their quantification by non-linear magnetization have permitted development of novel methods of multiplex biosensing. Several types of highly sensitive multi-channel readers that offer an extremely wide linear dynamic range are developed to count MNP in different recognition zones for quantitative concentration measurements of various analytes. Four approaches to multiplex biosensing based on MNP have been demonstrated in one-run tests based on several 3D porous structures; flat and micropillar microfluidic sensor chips; multi-line lateral flow strips and modular architecture of the strips, which is the first 3D multiplexing method that goes beyond the traditional planar techniques. Detection of cardio- and cancer markers, small molecules and oligonucleotides were used in the experiments. The analytical characteristics of the developed multiplex methods are on the level of the modern time-consuming laboratory techniques. The developed multiplex biosensing platforms are promising for medical and veterinary diagnostics, food inspection, environmental and security monitoring, etc.
A dynamic mechanical analysis technique for porous media
Pattison, Adam J; McGarry, Matthew; Weaver, John B; Paulsen, Keith D
2015-01-01
Dynamic mechanical analysis (DMA) is a common way to measure the mechanical properties of materials as functions of frequency. Traditionally, a viscoelastic mechanical model is applied and current DMA techniques fit an analytical approximation to measured dynamic motion data by neglecting inertial forces and adding empirical correction factors to account for transverse boundary displacements. Here, a finite element (FE) approach to processing DMA data was developed to estimate poroelastic material properties. Frequency-dependent inertial forces, which are significant in soft media and often neglected in DMA, were included in the FE model. The technique applies a constitutive relation to the DMA measurements and exploits a non-linear inversion to estimate the material properties in the model that best fit the model response to the DMA data. A viscoelastic version of this approach was developed to validate the approach by comparing complex modulus estimates to the direct DMA results. Both analytical and FE poroelastic models were also developed to explore their behavior in the DMA testing environment. All of the models were applied to tofu as a representative soft poroelastic material that is a common phantom in elastography imaging studies. Five samples of three different stiffnesses were tested from 1 – 14 Hz with rough platens placed on the top and bottom surfaces of the material specimen under test to restrict transverse displacements and promote fluid-solid interaction. The viscoelastic models were identical in the static case, and nearly the same at frequency with inertial forces accounting for some of the discrepancy. The poroelastic analytical method was not sufficient when the relevant physical boundary constraints were applied, whereas the poroelastic FE approach produced high quality estimates of shear modulus and hydraulic conductivity. These results illustrated appropriate shear modulus contrast between tofu samples and yielded a consistent contrast in hydraulic conductivity as well. PMID:25248170
NASA Astrophysics Data System (ADS)
Chowdhury, D. P.; Pal, Sujit; Parthasarathy, R.; Mathur, P. K.; Kohli, A. K.; Limaye, P. K.
1998-09-01
Thin layer activation (TLA) technique has been developed in Zr based alloy materials, e.g., zircaloy II, using 40 MeV α-particles from Variable Energy Cyclotron Centre at Calcutta. A brief description of the methodology of TLA technique is presented to determine the surface wear. The sensitivity of the measurement of surface wear in zircaloy material is found to be 0.22±0.05 μm. The surface wear is determined by TLA technique in zircaloy material which is used in pressurised heavy water reactor and the values have been compared with that obtained by conventional technique for the analytical validation of the TLA technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shugart, L.R.
1988-01-01
It should be noted that there are few analytical techniques available for the detection and quantitation of chemical adducts in the DNA of living organisms. The reasons for this are: the analytical technique often has to accommodate the unique chemical and/or physical properties of the individual chemical or its metabolite; the percentage of total chemical that becomes most of the parent compound is usually detoxified and excreted; not all adducts that form between the genotoxic agent and DNA are stable or are involved in the development of subsequent deleterious events in the organism; and the amount of DNA available formore » analysis is often quite limited. 16 refs., 1 tab.« less
Analytical methods in multivariate highway safety exposure data estimation
DOT National Transportation Integrated Search
1984-01-01
Three general analytical techniques which may be of use in : extending, enhancing, and combining highway accident exposure data are : discussed. The techniques are log-linear modelling, iterative propor : tional fitting and the expectation maximizati...
Techniques for Forecasting Air Passenger Traffic
NASA Technical Reports Server (NTRS)
Taneja, N.
1972-01-01
The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.
A reference web architecture and patterns for real-time visual analytics on large streaming data
NASA Astrophysics Data System (ADS)
Kandogan, Eser; Soroker, Danny; Rohall, Steven; Bak, Peter; van Ham, Frank; Lu, Jie; Ship, Harold-Jeffrey; Wang, Chun-Fu; Lai, Jennifer
2013-12-01
Monitoring and analysis of streaming data, such as social media, sensors, and news feeds, has become increasingly important for business and government. The volume and velocity of incoming data are key challenges. To effectively support monitoring and analysis, statistical and visual analytics techniques need to be seamlessly integrated; analytic techniques for a variety of data types (e.g., text, numerical) and scope (e.g., incremental, rolling-window, global) must be properly accommodated; interaction, collaboration, and coordination among several visualizations must be supported in an efficient manner; and the system should support the use of different analytics techniques in a pluggable manner. Especially in web-based environments, these requirements pose restrictions on the basic visual analytics architecture for streaming data. In this paper we report on our experience of building a reference web architecture for real-time visual analytics of streaming data, identify and discuss architectural patterns that address these challenges, and report on applying the reference architecture for real-time Twitter monitoring and analysis.
NASA Astrophysics Data System (ADS)
Choiri, S.; Ainurofiq, A.; Ratri, R.; Zulmi, M. U.
2018-03-01
Nifedipin (NIF) is a photo-labile drug that easily degrades when it exposures a sunlight. This research aimed to develop of an analytical method using a high-performance liquid chromatography and implemented a quality by design approach to obtain effective, efficient, and validated analytical methods of NIF and its degradants. A 22 full factorial design approach with a curvature as a center point was applied to optimize of the analytical condition of NIF and its degradants. Mobile phase composition (MPC) and flow rate (FR) as factors determined on the system suitability parameters. The selected condition was validated by cross-validation using a leave one out technique. Alteration of MPC affected on time retention significantly. Furthermore, an increase of FR reduced the tailing factor. In addition, the interaction of both factors affected on an increase of the theoretical plates and resolution of NIF and its degradants. The selected analytical condition of NIF and its degradants has been validated at range 1 – 16 µg/mL that had good linearity, precision, accuration and efficient due to an analysis time within 10 min.
Coorssen, Jens R; Yergey, Alfred L
2015-12-03
Molecular mechanisms underlying health and disease function at least in part based on the flexibility and fine-tuning afforded by protein isoforms and post-translational modifications. The ability to effectively and consistently resolve these protein species or proteoforms, as well as assess quantitative changes is therefore central to proteomic analyses. Here we discuss the pros and cons of currently available and developing analytical techniques from the perspective of the full spectrum of available tools and their current applications, emphasizing the concept of fitness-for-purpose in experimental design based on consideration of sample size and complexity; this necessarily also addresses analytical reproducibility and its variance. Data quality is considered the primary criterion, and we thus emphasize that the standards of Analytical Chemistry must apply throughout any proteomic analysis.
Portable Analytical Systems for On-Site Diagnosis of Exposure to Pesticides and Nerve Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuehe; Wang, Jun; Liu, Guodong
In this chapter, we summarize recent work in our laboratory on the development of sensitive portable analytical systems for use in on-site detection of exposure to organophosphate (OP) pesticides and chemical nerve agents. These systems are based on various nanomaterials functioning as transducers; recognition agents or labels and various elelectrochemical/immunoassay techniques. The studied nanomaterials included functionalized carbon nanotubes (CNT), zirconia nanoparticles (NPs) and quantum dots (QDs). Three biomarkers e.g. the free OPs, metabolites of OPs and protein-OP adducts in biological matrices have been employed for biomonitoring of OP exposure with our developed system. It has been found that the nanomaterial-basedmore » portable analytical systems have high sensitivity for the detection of the biomarkers, which suggest that these technologies offer great promise for the rapid and on-site detection and evaluation of OP exposure.« less
Role of chromatography in the development of Standard Reference Materials for organic analysis.
Wise, Stephen A; Phinney, Karen W; Sander, Lane C; Schantz, Michele M
2012-10-26
The certification of chemical constituents in natural-matrix Standard Reference Materials (SRMs) at the National Institute of Standards and Technology (NIST) can require the use of two or more independent analytical methods. The independence among the methods is generally achieved by taking advantage of differences in extraction, separation, and detection selectivity. This review describes the development of the independent analytical methods approach at NIST, and its implementation in the measurement of organic constituents such as contaminants in environmental materials, nutrients and marker compounds in food and dietary supplement matrices, and health diagnostic and nutritional assessment markers in human serum. The focus of this review is the important and critical role that separation science techniques play in achieving the necessary independence of the analytical steps in the measurement of trace-level organic constituents in natural matrix SRMs. Published by Elsevier B.V.
Oliveri, Paolo
2017-08-22
Qualitative data modelling is a fundamental branch of pattern recognition, with many applications in analytical chemistry, and embraces two main families: discriminant and class-modelling methods. The first strategy is appropriate when at least two classes are meaningfully defined in the problem under study, while the second strategy is the right choice when the focus is on a single class. For this reason, class-modelling methods are also referred to as one-class classifiers. Although, in the food analytical field, most of the issues would be properly addressed by class-modelling strategies, the use of such techniques is rather limited and, in many cases, discriminant methods are forcedly used for one-class problems, introducing a bias in the outcomes. Key aspects related to the development, optimisation and validation of suitable class models for the characterisation of food products are critically analysed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Immunoanalysis Methods for the Detection of Dioxins and Related Chemicals
Tian, Wenjing; Xie, Heidi Qunhui; Fu, Hualing; Pei, Xinhui; Zhao, Bin
2012-01-01
With the development of biotechnology, approaches based on antibodies, such as enzyme-linked immunosorbent assay (ELISA), active aryl hydrocarbon immunoassay (Ah-I) and other multi-analyte immunoassays, have been utilized as alternatives to the conventional techniques based on gas chromatography and mass spectroscopy for the analysis of dioxin and dioxin-like compounds in environmental and biological samples. These screening methods have been verified as rapid, simple and cost-effective. This paper provides an overview on the development and application of antibody-based approaches, such as ELISA, Ah-I, and multi-analyte immunoassays, covering the sample extraction and cleanup, antigen design, antibody preparation and immunoanalysis. However, in order to meet the requirements for on-site fast detection and relative quantification of dioxins in the environment, further optimization is needed to make these immuno-analytical methods more sensitive and easy to use. PMID:23443395
METHOD 544. DETERMINATION OF MICROCYSTINS AND ...
Method 544 is an accurate and precise analytical method to determine six microcystins (including MC-LR) and nodularin in drinking water using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC/MS/MS). The advantage of this SPE-LC/MS/MS is its sensitivity and ability to speciate the microcystins. This method development task establishes sample preservation techniques, sample concentration and analytical procedures, aqueous and extract holding time criteria and quality control procedures. Draft Method 544 undergone a multi-laboratory verification to ensure other laboratories can implement the method and achieve the quality control measures specified in the method. It is anticipated that Method 544 may be used in UCMR 4 to collect nationwide occurrence data for selected microcystins in drinking water. The purpose of this research project is to develop an accurate and precise analytical method to concentrate and determine selected MCs and nodularin in drinking water.
In Vitro and In Vivo SERS Biosensing for Disease Diagnosis.
Moore, T Joshua; Moody, Amber S; Payne, Taylor D; Sarabia, Grace M; Daniel, Alyssa R; Sharma, Bhavya
2018-05-11
For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.
Warth, Arne; Muley, Thomas; Meister, Michael; Weichert, Wilko
2015-01-01
Preanalytic sampling techniques and preparation of tissue specimens strongly influence analytical results in lung tissue diagnostics both on the morphological but also on the molecular level. However, in contrast to analytics where tremendous achievements in the last decade have led to a whole new portfolio of test methods, developments in preanalytics have been minimal. This is specifically unfortunate in lung cancer, where usually only small amounts of tissue are at hand and optimization in all processing steps is mandatory in order to increase the diagnostic yield. In the following, we provide a comprehensive overview on some aspects of preanalytics in lung cancer from the method of sampling over tissue processing to its impact on analytical test results. We specifically discuss the role of preanalytics in novel technologies like next-generation sequencing and in the state-of the-art cytology preparations. In addition, we point out specific problems in preanalytics which hamper further developments in the field of lung tissue diagnostics.
Tankiewicz, Maciej; Fenik, Jolanta; Biziuk, Marek
2011-10-30
The intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to monitor pesticide residues in the environment with the aid of all accessible analytical methods. The analysis of samples for the presence of pesticides is problematic, because of the laborious and time-consuming operations involved in preparing samples for analysis, which themselves may be a source of additional contaminations and errors. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solventless and solvent-minimized techniques are coming into use. This paper discusses the most commonly used over the last 15 years sample preparation techniques for monitoring organophosphorus and organonitrogen pesticides residue in water samples. Furthermore, a significant trend in sample preparation, in accordance with the principles of 'Green Chemistry' is the simplification, miniaturization and automation of analytical techniques. In view of this aspect, several novel techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. The paper describes extraction techniques requiring the use of solvents - liquid-liquid extraction (LLE) and its modifications, membrane extraction techniques, hollow fibre-protected two-phase solvent microextraction, liquid phase microextraction based on the solidification of a floating organic drop (LPME-SFO), solid-phase extraction (SPE) and single-drop microextraction (SDME) - as well as solvent-free techniques - solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The advantages and drawbacks of these techniques are also discussed, and some solutions to their limitations are proposed. Copyright © 2011 Elsevier B.V. All rights reserved.
Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.
ERIC Educational Resources Information Center
Horlick, Gary
1984-01-01
This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…
Combustion Fundamentals Research
NASA Technical Reports Server (NTRS)
1984-01-01
The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.
Analytic Methods for Adjusting Subjective Rating Schemes.
ERIC Educational Resources Information Center
Cooper, Richard V. L.; Nelson, Gary R.
Statistical and econometric techniques of correcting for supervisor bias in models of individual performance appraisal were developed, using a variant of the classical linear regression model. Location bias occurs when individual performance is systematically overestimated or underestimated, while scale bias results when raters either exaggerate…
METHODOLOGY TO EVALUATE THE POTENTIAL FOR GROUND WATER CONTAMINATION FROM GEOTHERMAL FLUID RELEASES
This report provides analytical methods and graphical techniques to predict potential ground water contamination from geothermal energy development. Overflows and leaks from ponds, pipe leaks, well blowouts, leaks from well casing, and migration from injection zones can be handle...
CHEMICAL ANALYSIS OF WET SCRUBBERS UTILIZING ION CHROMATOGRAPHY
The report describes the key elements required to develop a sampling and analysis program for a wet scrubber using ion chromatography as the main analytical technique. The first part of the report describes a sampling program for two different types of wet scrubbers: the venturi/...
[The requirements of standard and conditions of interchangeability of medical articles].
Men'shikov, V V; Lukicheva, T I
2013-11-01
The article deals with possibility to apply specific approaches under evaluation of interchangeability of medical articles for laboratory analysis. The development of standardized analytical technologies of laboratory medicine and formulation of requirements of standards addressed to manufacturers of medical articles the clinically validated requirements are to be followed. These requirements include sensitivity and specificity of techniques, accuracy and precision of research results, stability of reagents' quality in particular conditions of their transportation and storage. The validity of requirements formulated in standards and addressed to manufacturers of medical articles can be proved using reference system, which includes master forms and standard samples, reference techniques and reference laboratories. This approach is supported by data of evaluation of testing systems for measurement of level of thyrotrophic hormone, thyroid hormones and glycated hemoglobin HB A1c. The versions of testing systems can be considered as interchangeable only in case of results corresponding to the results of reference technique and comparable with them. In case of absence of functioning reference system the possibilities of the Joined committee of traceability in laboratory medicine make it possible for manufacturers of reagent sets to apply the certified reference materials under development of manufacturing of sets for large listing of analytes.
MASS SPECTROMETRY IMAGING FOR DRUGS AND METABOLITES
Greer, Tyler; Sturm, Robert; Li, Lingjun
2011-01-01
Mass spectrometric imaging (MSI) is a powerful analytical technique that provides two- and three-dimensional spatial maps of multiple compounds in a single experiment. This technique has been routinely applied to protein, peptide, and lipid molecules with much less research reporting small molecule distributions, especially pharmaceutical drugs. This review’s main focus is to provide readers with an up-to-date description of the substrates and compounds that have been analyzed for drug and metabolite composition using MSI technology. Additionally, ionization techniques, sample preparation, and instrumentation developments are discussed. PMID:21515430
NASA Technical Reports Server (NTRS)
1976-01-01
Analytic techniques have been developed for detecting and identifying abrupt changes in dynamic systems. The GLR technique monitors the output of the Kalman filter and searches for the time that the failure occured, thus allowing it to be sensitive to new data and consequently increasing the chances for fast system recovery following detection of a failure. All failure detections are based on functional redundancy. Performance tests of the F-8 aircraft flight control system and computerized modelling of the technique are presented.
Sensor Data Qualification Technique Applied to Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Simon, Donald L.
2013-01-01
This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.
Analysis of CL-20 in environmental matrices: water and soil.
Larson, Steven L; Felt, Deborah R; Davis, Jeffrey L; Escalon, Lynn
2002-04-01
Analytical techniques for the detection of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo(5.5.0.05,9.03,11)dodecane (CL-20) in water and soil are developed by adapting methods traditionally used for the analysis of nitroaromatics. CL-20 (a new explosives compound) is thermally labile, exhibits high polarity, and has low solubility in water. These constraints make the use of specialized sample handling, preparation, extraction, and analysis necessary. The ability to determine the concentrations of this new explosive compound in environmental matrices is helpful in understanding the environmental fate and effects of CL-20; understanding the physical, chemical, and biological fate of CL-20; and can be used in developing remediation technologies and determining their efficiency. The toxicity and mobility of new explosives in soil and groundwater are also of interest, and analytical techniques for quantitating CL-20 and its degradation products in soil and natural waters make these investigations possible.
Real-Time Visualization of Network Behaviors for Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.
Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less
Khan, F I; Abbasi, S A
2000-07-10
Fault tree analysis (FTA) is based on constructing a hypothetical tree of base events (initiating events) branching into numerous other sub-events, propagating the fault and eventually leading to the top event (accident). It has been a powerful technique used traditionally in identifying hazards in nuclear installations and power industries. As the systematic articulation of the fault tree is associated with assigning probabilities to each fault, the exercise is also sometimes called probabilistic risk assessment. But powerful as this technique is, it is also very cumbersome and costly, limiting its area of application. We have developed a new algorithm based on analytical simulation (named as AS-II), which makes the application of FTA simpler, quicker, and cheaper; thus opening up the possibility of its wider use in risk assessment in chemical process industries. Based on the methodology we have developed a computer-automated tool. The details are presented in this paper.
Franquelo, M L; Duran, A; Castaing, J; Arquillo, D; Perez-Rodriguez, J L
2012-01-30
This paper presents the novel application of recently developed analytical techniques to the study of paint layers on sculptures that have been restored/repainted several times across centuries. Analyses were performed using portable XRF, μ-XRD and μ-Raman instruments. Other techniques, such as optical microscopy, SEM-EDX and μ-FTIR, were also used. Pigments and other materials including vermilion, minium, red lac, ivory black, lead white, barium white, zinc white (zincite), titanium white (rutile and anatase), lithopone, gold and brass were detected. Pigments from both ancient and modern times were found due to the different restorations/repaintings carried out. μ-Raman was very useful to characterise some pigments that were difficult to determine by μ-XRD. In some cases, pigments identification was only possible by combining results from the different analytical techniques used in this work. This work is the first article devoted to the study of sculpture cross-section samples using laboratory-made μ-XRD systems. Copyright © 2011 Elsevier B.V. All rights reserved.
The evolution of analytical chemistry methods in foodomics.
Gallo, Monica; Ferranti, Pasquale
2016-01-08
The methodologies of food analysis have greatly evolved over the past 100 years, from basic assays based on solution chemistry to those relying on the modern instrumental platforms. Today, the development and optimization of integrated analytical approaches based on different techniques to study at molecular level the chemical composition of a food may allow to define a 'food fingerprint', valuable to assess nutritional value, safety and quality, authenticity and security of foods. This comprehensive strategy, defined foodomics, includes emerging work areas such as food chemistry, phytochemistry, advanced analytical techniques, biosensors and bioinformatics. Integrated approaches can help to elucidate some critical issues in food analysis, but also to face the new challenges of a globalized world: security, sustainability and food productions in response to environmental world-wide changes. They include the development of powerful analytical methods to ensure the origin and quality of food, as well as the discovery of biomarkers to identify potential food safety problems. In the area of nutrition, the future challenge is to identify, through specific biomarkers, individual peculiarities that allow early diagnosis and then a personalized prognosis and diet for patients with food-related disorders. Far from the aim of an exhaustive review of the abundant literature dedicated to the applications of omic sciences in food analysis, we will explore how classical approaches, such as those used in chemistry and biochemistry, have evolved to intersect with the new omics technologies to produce a progress in our understanding of the complexity of foods. Perhaps most importantly, a key objective of the review will be to explore the development of simple and robust methods for a fully applied use of omics data in food science. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, M. F.; Miriyala, N.; Lee, J.; Hassanpourfard, M.; Kumar, A.; Thundat, T.
2016-05-01
Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which is dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ˜10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g-1 K-1) and a resolution of 23 mJ/(g K) for ˜150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.
Impact of the macroeconomic factors on university budgeting the US and Russia
NASA Astrophysics Data System (ADS)
Bogomolova, Arina; Balk, Igor; Ivachenko, Natalya; Temkin, Anatoly
2017-10-01
This paper discuses impact of macroeconomics factor on the university budgeting. Modern developments in the area of data science and machine learning made it possible to utilise automated techniques to address several problems of humankind ranging from genetic engineering and particle physics to sociology and economics. This paper is the first step to create a robust toolkit which will help universities sustain macroeconomic challenges utilising modern predictive analytics techniques.
NASA Technical Reports Server (NTRS)
Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.
1999-01-01
Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.
Characterization of carrier erythrocytes for biosensing applications
NASA Astrophysics Data System (ADS)
Bustamante López, Sandra C.; Meissner, Kenith E.
2017-09-01
Erythrocyte abundance, mobility, and carrying capacity make them attractive as a platform for blood analyte sensing as well as for drug delivery. Sensor-loaded erythrocytes, dubbed erythrosensors, could be reinfused into the bloodstream, excited noninvasively through the skin, and used to provide measurement of analyte levels in the bloodstream. Several techniques to load erythrocytes, thus creating carrier erythrocytes, exist. However, their cellular characteristics remain largely unstudied. Changes in cellular characteristics lead to removal from the bloodstream. We hypothesize that erythrosensors need to maintain native erythrocytes' (NEs) characteristics to serve as a long-term sensing platform. Here, we investigate two loading techniques and the properties of the resulting erythrosensors. For loading, hypotonic dilution requires a hypotonic solution while electroporation relies on electrical pulses to perforate the erythrocyte membrane. We analyze the resulting erythrosensor signal, size, morphology, and hemoglobin content. Although the resulting erythrosensors exhibit morphological changes, their size was comparable with NEs. The hypotonic dilution technique was found to load erythrosensors much more efficiently than electroporation, and the sensors were loaded throughout the volume of the erythrosensors. Finally, both techniques resulted in significant loss of hemoglobin. This study points to the need for continued development of loading techniques that better preserve NE characteristics.
NASA Astrophysics Data System (ADS)
Dumencu, A.; Horbaniuc, B.; Dumitraşcu, G.
2016-08-01
The analytical approach of unsteady conduction heat transfer under actual conditions represent a very difficult (if not insurmountable) problem due to the issues related to finding analytical solutions for the conduction heat transfer equation. Various techniques have been developed in order to overcome these difficulties, among which the alternate directions method and the decomposition method. Both of them are particularly suited for two-dimension heat propagation. The paper deals with both techniques in order to verify whether the results provided are in good accordance. The studied case consists of a long hollow cylinder, and considers that the time-dependent temperature field varies both in the radial and the axial directions. The implicit technique is used in both methods and involves the simultaneous solving of a set of equations for all of the nodes for each time step successively for each of the two directions. Gauss elimination is used to obtain the solution of the set, representing the nodal temperatures. After using the two techniques the results show a very good agreement, and since the decomposition is easier to use in terms of computer code and running time, this technique seems to be more recommendable.
Danezis, G P; Anagnostopoulos, C J; Liapis, K; Koupparis, M A
2016-10-26
One of the recent trends in Analytical Chemistry is the development of economic, quick and easy hyphenated methods to be used in a field that includes analytes of different classes and physicochemical properties. In this work a multi-residue method was developed for the simultaneous determination of 28 xenobiotics (polar and hydrophilic) using hydrophilic interaction liquid chromatography technique (HILIC) coupled with triple quadrupole mass spectrometry (LC-MS/MS) technology. The scope of the method includes plant growth regulators (chlormequat, daminozide, diquat, maleic hydrazide, mepiquat, paraquat), pesticides (cyromazine, the metabolite of the fungicide propineb PTU (propylenethiourea), amitrole), various multiclass antibiotics (tetracyclines, sulfonamides quinolones, kasugamycin and mycotoxins (aflatoxin B1, B2, fumonisin B1 and ochratoxin A). Isolation of the analytes from the matrix was achieved with a fast and effective technique. The validation of the multi-residue method was performed at the levels: 10 μg/kg and 100 μg/kg in the following representative substrates: fruits-vegetables (apples, apricots, lettuce and onions), cereals and pulses (flour and chickpeas), animal products (milk and meat) and cereal based baby foods. The method was validated taking into consideration EU guidelines and showed acceptable linearity (r ≥ 0.99), accuracy with recoveries between 70 and 120% and precision with RSD ≤ 20% for the majority of the analytes studied. For the analytes that presented accuracy and precision values outside the acceptable limits the method still is able to serve as a semi-quantitative method. The matrix effect, the limits of detection and quantification were also estimated and compared with the current EU MRLs (Maximum Residue Levels) and FAO/WHO MLs (Maximum Levels) or CXLs (Codex Maximum Residue Limits). The combined and expanded uncertainty of the method for each analyte per substrate, was also estimated. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hong, D. C.; Langer, J. S.
1986-01-01
An analytic approach to the problem of predicting the widths of fingers in a Hele-Shaw cell is presented. The analysis is based on the WKB technique developed recently for dealing with the effects of surface tension in the problem of dendritic solidification. It is found that the relation between the dimensionless width lambda and the dimensionless group of parameters containing the surface tension, nu, has the form lambda - 1/2 = nu exp 2/3 in the limit of small nu.
Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations
NASA Astrophysics Data System (ADS)
Tawfik, Ashraf M.; Fichtner, Horst; Schlickeiser, Reinhard; Elhanbaly, A.
2018-02-01
The aim of this paper is to develop a fractional derivative model of energetic particle transport for both uniform and non-uniform large-scale magnetic field by studying the fractional Telegraph equation and the fractional advection-diffusion equation. Analytical solutions of the space-time fractional Telegraph equation and space-time fractional advection-diffusion equation are obtained by use of the Caputo fractional derivative and the Laplace-Fourier technique. The solutions are given in terms of Fox's H function. As an illustration they are applied to the case of solar energetic particles.
Wardak, Cecylia; Grabarczyk, Malgorzata
2016-08-02
A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.
Low thermal flux glass-fiber tubing for cryogenic service
NASA Technical Reports Server (NTRS)
Hall, C. A.; Spond, D. E.
1977-01-01
This paper describes analytical techniques, fabrication development, and test results for composite tubing that has many applications in aerospace and commercial cryogenic installations. Metal liner fabrication is discussed in detail with attention given to resistance-welded liners, fusion-welded liners, chem-milled tubing liners, joining tube liners and end fittings, heat treatment and leak checks. Composite overwrapping, a second method of tubing fabrication, is also discussed. Test programs and analytical correlation are considered along with composite tubing advantages such as minimum weight, thermal efficiency and safety and reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassemi, S.A.
1988-04-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
NASA Technical Reports Server (NTRS)
Kassemi, Siavash A.
1988-01-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
Biosensors for hepatitis B virus detection.
Yao, Chun-Yan; Fu, Wei-Ling
2014-09-21
A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed.
Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research.
Ercius, Peter; Alaidi, Osama; Rames, Matthew J; Ren, Gang
2015-10-14
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Conners, Timothy R.; Sims, Robert L.
1998-01-01
Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.
Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research
Alaidi, Osama; Rames, Matthew J.
2016-01-01
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. PMID:26087941
Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem
2017-01-01
Introduction There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility. PMID:28103450
Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem
2017-04-01
There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered: In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary: In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility.
Ambient ionization and miniature mass spectrometry system for chemical and biological analysis
Ma, Xiaoxiao; Ouyang, Zheng
2016-01-01
Ambien ionization and miniaturization of mass spectrometers are two fields in mass spectrometry that have advanced significantly in the last decade. The integration of the techniques developed in these two fields is leading to the development of complete miniature analytical systems that can be used for on-site or point-of-care analysis by non-expert users. In this review, we report the current status of development in ambient ionization and miniature mass spectrometers, with an emphasis on those techniques with potential impact on the point-of-care (POC) diagnostics. The challenges in the future development of the integrated systems are discussed with possible solutions presented. PMID:28042191
Determining Kinetic Parameters for Isothermal Crystallization of Glasses
NASA Technical Reports Server (NTRS)
Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.
2006-01-01
Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.
ERIC Educational Resources Information Center
Walton, Katherine M.; Ingersoll, Brooke R.
2015-01-01
Adult responsiveness is related to language development both in young typically developing children and in children with autism spectrum disorders, such that parents who use more responsive language with their children have children who develop better language skills over time. This study used a micro-analytic technique to examine how two facets…
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1982-01-01
Models, measures, and techniques for evaluating the effectiveness of aircraft computing systems were developed. By "effectiveness" in this context we mean the extent to which the user, i.e., a commercial air carrier, may expect to benefit from the computational tasks accomplished by a computing system in the environment of an advanced commercial aircraft. Thus, the concept of effectiveness involves aspects of system performance, reliability, and worth (value, benefit) which are appropriately integrated in the process of evaluating system effectiveness. Specifically, the primary objectives are: the development of system models that provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer.
An Example of a Hakomi Technique Adapted for Functional Analytic Psychotherapy
ERIC Educational Resources Information Center
Collis, Peter
2012-01-01
Functional Analytic Psychotherapy (FAP) is a model of therapy that lends itself to integration with other therapy models. This paper aims to provide an example to assist others in assimilating techniques from other forms of therapy into FAP. A technique from the Hakomi Method is outlined and modified for FAP. As, on the whole, psychotherapy…
NASA Technical Reports Server (NTRS)
Bozeman, Robert E.
1987-01-01
An analytic technique for accounting for the joint effects of Earth oblateness and atmospheric drag on close-Earth satellites is investigated. The technique is analytic in the sense that explicit solutions to the Lagrange planetary equations are given; consequently, no numerical integrations are required in the solution process. The atmospheric density in the technique described is represented by a rotating spherical exponential model with superposed effects of the oblate atmosphere and the diurnal variations. A computer program implementing the process is discussed and sample output is compared with output from program NSEP (Numerical Satellite Ephemeris Program). NSEP uses a numerical integration technique to account for atmospheric drag effects.
A history of development in rotordynamics: A manufacturer's perspective
NASA Technical Reports Server (NTRS)
Shemeld, David E.
1987-01-01
The subject of rotordynamics and instability problems in high performance turbomachinery has been a topic of considerable industry discussion and debate over the last 15 or so years. This paper reviews an original equipment manufacturer's history of development of concepts and equipment as applicable to multistage centrifugal compressors. The variety of industry user compression requirements and resultant problematical situations tends to confound many of the theories and analytical techniques set forth. The experiences and examples described herein support the conclusion that the successful addressing of potential rotordynamics problems is best served by a fundamental knowledge of the specific equipment. This in addition to having the appropriate analytical tools. Also, that the final proof is in the doing.
Rethinking Visual Analytics for Streaming Data Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris
In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less
Developments and advances concerning the hyperpolarisation technique SABRE.
Mewis, Ryan E
2015-10-01
To overcome the inherent sensitivity issue in NMR and MRI, hyperpolarisation techniques are used. Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that utilises parahydrogen, a molecule that possesses a nuclear singlet state, as the source of polarisation. A metal complex is required to break the singlet order of parahydrogen and, by doing so, facilitates polarisation transfer to analyte molecules ligated to the same complex through the J-coupled network that exists. The increased signal intensities that the analyte molecules possess as a result of this process have led to investigations whereby their potential as MRI contrast agents has been probed and to understand the fundamental processes underpinning the polarisation transfer mechanism. As well as discussing literature relevant to both of these areas, the chemical structure of the complex, the physical constraints of the polarisation transfer process and the successes of implementing SABRE at low and high magnetic fields are discussed. Copyright © 2015 John Wiley & Sons, Ltd.
Recent trends in analytical methods and separation techniques for drugs of abuse in hair.
Baciu, T; Borrull, F; Aguilar, C; Calull, M
2015-01-26
Hair analysis of drugs of abuse has been a subject of growing interest from a clinical, social and forensic perspective for years because of the broad time detection window after intake in comparison to urine and blood analysis. Over the last few years, hair analysis has gained increasing attention and recognition for the retrospective investigation of drug abuse in a wide variety of contexts, shown by the large number of applications developed. This review aims to provide an overview of the state of the art and the latest trends used in the literature from 2005 to the present in the analysis of drugs of abuse in hair, with a special focus on separation analytical techniques and their hyphenation with mass spectrometry detection. The most recently introduced sample preparation techniques are also addressed in this paper. The main strengths and weaknesses of all of these approaches are critically discussed by means of relevant applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Ping-Hung; Chen, Shun-Niang; Tseng, Sheng-Hao; Deng, Ming-Jay; Lin, Yang-Wei; Sun, Yuh-Chang
2016-01-01
This paper describes a fabrication protocol for a dipole-assisted solid phase extraction (SPE) microchip available for trace metal analysis in water samples. A brief overview of the evolution of chip-based SPE techniques is provided. This is followed by an introduction to specific polymeric materials and their role in SPE. To develop an innovative dipole-assisted SPE technique, a chlorine (Cl)-containing SPE functionality was implanted into a poly(methyl methacrylate) (PMMA) microchip. Herein, diverse analytical techniques including contact angle analysis, Raman spectroscopic analysis, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis were employed to validate the utility of the implantation protocol of the C-Cl moieties on the PMMA. The analytical results of the X-ray absorption near-edge structure (XANES) analysis also demonstrated the feasibility of the Cl-containing PMMA used as an extraction medium by virtue of the dipole-ion interactions between the highly electronegative C-Cl moieties and the positively charged metal ions. PMID:27584954
Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
NASA Astrophysics Data System (ADS)
Shen-Shen, Chen; Juan, Wang; Qing-Hua, Li
2016-04-01
A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).
Analytical model for real time, noninvasive estimation of blood glucose level.
Adhyapak, Anoop; Sidley, Matthew; Venkataraman, Jayanti
2014-01-01
The paper presents an analytical model to estimate blood glucose level from measurements made non-invasively and in real time by an antenna strapped to a patient's wrist. Some promising success has been shown by the RIT ETA Lab research group that an antenna's resonant frequency can track, in real time, changes in glucose concentration. Based on an in-vitro study of blood samples of diabetic patients, the paper presents a modified Cole-Cole model that incorporates a factor to represent the change in glucose level. A calibration technique using the input impedance technique is discussed and the results show a good estimation as compared to the glucose meter readings. An alternate calibration methodology has been developed that is based on the shift in the antenna resonant frequency using an equivalent circuit model containing a shunt capacitor to represent the shift in resonant frequency with changing glucose levels. Work under progress is the optimization of the technique with a larger sample of patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, G.; Kips, R.; Lindvall, R.
The CUP-2 uranium ore concentrate (UOC) standard reference material, a powder, was produced at the Blind River uranium refinery of Eldorado Resources Ltd. in Canada in 1986. This material was produced as part of a joint effort by the Canadian Certified Reference Materials Project and the Canadian Uranium Producers Metallurgical Committee to develop a certified reference material for uranium concentration and the concentration of several impurity constituents. This standard was developed to satisfy the requirements of the UOC mining and milling industry, and was characterized with this purpose in mind. To produce CUP-2, approximately 25 kg of UOC derived frommore » the Blind River uranium refinery was blended, homogenized, and assessed for homogeneity by X-ray fluorescence (XRF) analysis. The homogenized material was then packaged into bottles, containing 50 g of material each, and distributed for analysis to laboratories in 1986. The CUP-2 UOC standard was characterized by an interlaboratory analysis program involving eight member laboratories, six commercial laboratories, and three additional volunteer laboratories. Each laboratory provided five replicate results on up to 17 analytes, including total uranium concentration, and moisture content. The selection of analytical technique was left to each participating laboratory. Uranium was reported on an “as-received” basis; all other analytes (besides moisture content) were reported on a “dry-weight” basis. A bottle of 25g of CUP-2 UOC standard as described above was purchased by LLNL and characterized by the LLNL Nuclear Forensics Group. Non-destructive and destructive analytical techniques were applied to the UOC sample. Information obtained from short-term techniques such as photography, gamma spectrometry, and scanning electron microscopy were used to guide the performance of longer-term techniques such as ICP-MS. Some techniques, such as XRF and ICP-MS, provided complementary types of data. The results indicate that the CUP-2 standard has a natural isotopic ratio, and does not appear to have been isotopically enriched or depleted in any way, and was not contaminated by a source of uranium with a non-natural isotopic composition. Furthermore, the lack of 233U and 236U above the instrumental detection limit indicates that this sample was not exposed to a neutron flux, which would have generated one or both of these isotopes in measurable concentrations.« less
The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.
FINANCIAL ANALYSIS OF CURRENT OPERATIONS OF COLLEGES AND UNIVERSITIES.
ERIC Educational Resources Information Center
SWANSON, JOHN E.; AND OTHERS
TECHNIQUES FOR DEVELOPING FINANCIAL AND RELATED COST-EFFECTIVENESS DATA FOR PUBLIC AND PRIVATELY SUPPORTED AMERICAN COLLEGES AND UNIVERSITIES WERE STUDIED TO FORMULATE PRINCIPLES, PROCEDURES, AND STANDARDS FOR THE ACCUMULATION AND ANALYSES OF CURRENT OPERATING COSTS. AFTER SEPARATE ANALYSES OF INSTITUTIONAL PROCEDURES AND REPORTS, ANALYTIC UNITS…
Characteristics of Effective Leadership Networks
ERIC Educational Resources Information Center
Leithwood, Kenneth; Azah, Vera Ndifor
2016-01-01
Purpose: The purpose of this paper is to inquire about the characteristics of effective school leadership networks and the contribution of such networks to the development of individual leaders' professional capacities. Design/methodology/approach: The study used path-analytic techniques with survey data provided by 450 school and district leaders…
SOLUTIONS APPROXIMATING SOLUTE TRANSPORT IN A LEAKY AQUIFER RECEIVING WASTEWATER INJECTION
A mathematical model amenable to analytical solution techniques is developed for the investigation of contaminant transport from an injection well into a leaky aquifer system, which comprises a pumped and an unpumped aquifer connected to each other by an aquitard. A steady state ...
NASA Astrophysics Data System (ADS)
Smythe, Elizabeth Jennings
This thesis focuses on the development of a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of this fiber-based probe featured an array of coupled optical antennas, which we designed to enhance the Raman signal of nearby analytes. When this array interacted with an analyte, it generated SERS signals specific to the chemical composition of the sample; some of these SERS signals coupled back into the fiber. We used the other facet of the probe to input light into the fiber and collect the SERS signals that coupled into the probe. In this dissertation, the development of the probe is broken into three sections: (i) characterization of antenna arrays, (ii) fabrication of the probe, and (iii) device measurements. In the first section we present a comprehensive study of metallic antenna arrays. We carried out this study to determine the effects of antenna geometry, spacing, and composition on the surface plasmon resonance (SPR) of a coupled antenna array; the wavelength range and strength of the SPR are functions of the shape and interactions of the antennas. The SPR of the array ultimately amplified the Raman signal of analytes and produced a measurable SERS signal, thus determination of the optimal array geometries for SERS generation was an important first step in the development of the SERS fiber probe. We then introduce a new technique developed to fabricate the SERS fiber probes. This technique involves transferring antenna arrays (created by standard lithographic methods) from a large silicon substrate to a fiber facet. We developed this fabrication technique to bypass many of the limitations presented by previously developed methods for patterning unconventional substrates (i.e. small and/or non-planar substrates), such as focused ion-beam milling and soft lithography. In the third section of this thesis, we present SERS measurements taken with the fiber probe. We constructed a measurement system to couple light into the probe and filter out background noise; this allowed simultaneous detection of multiple chemicals. Antenna array enhancement factor (EF) calculations are shown; these allowed us to determine that the probe efficiently collected SERS signals.
Magnuson, Matthew; Campisano, Romy; Griggs, John; Fitz-James, Schatzi; Hall, Kathy; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Silvestri, Erin; Smith, Terry; Willison, Stuart; Ernst, Hiba
2014-11-01
Catastrophic incidents can generate a large number of samples of analytically diverse types, including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for sample analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to acceptable levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illustrates the result of applying this principle, in the form of a compendium of analytical methods for contaminants of interest. The compendium is based on experience with actual incidents, where appropriate and available. This paper also discusses efforts aimed at adaptation of existing methods to increase fitness-for-purpose and development of innovative methods when necessary. The contaminants of interest are primarily those potentially released through catastrophes resulting from malicious activity. However, the same techniques discussed could also have application to catastrophes resulting from other incidents, such as natural disasters or industrial accidents. Further, the high sample throughput enabled by the techniques discussed could be employed for conventional environmental studies and compliance monitoring, potentially decreasing costs and/or increasing the quantity of data available to decision-makers. Published by Elsevier Ltd.
On-orbit evaluation of the control system/structural mode interactions on OSO-8
NASA Technical Reports Server (NTRS)
Slafer, L. I.
1980-01-01
The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. This paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments. The test results have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system, and also verified the approach taken to vehicle and servo ground testing.
Errors in the Extra-Analytical Phases of Clinical Chemistry Laboratory Testing.
Zemlin, Annalise E
2018-04-01
The total testing process consists of various phases from the pre-preanalytical to the post-postanalytical phase, the so-called brain-to-brain loop. With improvements in analytical techniques and efficient quality control programmes, most laboratory errors now occur in the extra-analytical phases. There has been recent interest in these errors with numerous publications highlighting their effect on service delivery, patient care and cost. This interest has led to the formation of various working groups whose mission is to develop standardized quality indicators which can be used to measure the performance of service of these phases. This will eventually lead to the development of external quality assessment schemes to monitor these phases in agreement with ISO15189:2012 recommendations. This review focuses on potential errors in the extra-analytical phases of clinical chemistry laboratory testing, some of the studies performed to assess the severity and impact of these errors and processes that are in place to address these errors. The aim of this review is to highlight the importance of these errors for the requesting clinician.
Sell, Bartosz; Sniegocki, Tomasz; Zmudzki, Jan; Posyniak, Andrzej
2018-04-01
Reported here is a new analytical multiclass method based on QuEChERS technique, which has proven to be effective in diagnosing fatal poisoning cases in animals. This method has been developed for the determination of analytes in liver samples comprising rodenticides, carbamate and organophosphorus pesticides, coccidiostats and mycotoxins. The procedure entails addition of acetonitrile and sodium acetate to 2 g of homogenized liver sample. The mixture was shaken intensively and centrifuged for phase separation, which was followed by an organic phase transfer into a tube containing sorbents (PSA and C18) and magnesium sulfate, then it was centrifuged, the supernatant was filtered and analyzed by liquid chromatography tandem mass spectrometry. A validation of the procedure was performed. Repeatability variation coefficients <15% have been achieved for most of the analyzed substances. Analytical conditions allowed for a successful separation of variety of poisons with the typical screening detection limit at ≤10 μg/kg levels. The method was used to investigate more than 100 animals poisoning incidents and proved that is useful to be used in animal forensic toxicology cases.
NASA Astrophysics Data System (ADS)
Martin, Michael C.; Holman, Hoi-Ying N.; Blakely, Eleanor A.; Goth-Goldstein, Regine; McKinney, Wayne R.
2000-03-01
Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR FTIR microscopy probes intact living cells providing a composite view of all of the molecular responses and the ability to monitor the responses over time in the same cell. Observed spectral changes include all types of lesions induced in that cell as well as cellular responses to external and internal stresses. These spectral changes combined with other analytical tools may provide a fundamental understanding of the key molecular mechanisms induced in response to stresses created by low-doses of radiation and chemicals. In this study we used high spatial-resolution SR FTIR vibrational spectromicroscopy at ALS Beamline 1.4.3 as a sensitive analytical tool to detect chemical- and radiation-induced changes in individual human cells. Our preliminary spectral measurements indicate that this technique is sensitive enough to detect changes in nucleic acids and proteins of cells treated with environmentally relevant concentrations of oxidative stresses: bleomycin, hydrogen peroxide, and X-rays. We observe spectral changes that are unique to each exogenous stressor. This technique has the potential to distinguish changes from exogenous or endogenous oxidative processes. Future development of this technique will allow rapid monitoring of cellular processes such as drug metabolism, early detection of disease, bio-compatibility of implant materials, cellular repair mechanisms, self assembly of cellular apparatus, cell differentiation and fetal development.
Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms.
Jaffe, Jacob D; Feeney, Caitlin M; Patel, Jinal; Lu, Xiaodong; Mani, D R
2016-11-01
Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques. Graphical Abstract ᅟ.
Hahn, David W; Omenetto, Nicoló
2012-04-01
The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis. © 2012 Society for Applied Spectroscopy
Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Jaffe, Jacob D.; Feeney, Caitlin M.; Patel, Jinal; Lu, Xiaodong; Mani, D. R.
2016-11-01
Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques.
Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...
Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A
2007-01-01
The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.
Analytical Chemistry: A retrospective view on some current trends.
Niessner, Reinhard
2018-04-01
In a retrospective view some current trends in Analytical Chemistry are outlined and connected to work published more than a hundred years ago in the same field. For example, gravimetric microanalysis after specific precipitation, once the sole basis for chemical analysis, has been transformed into a mass-sensitive transducer in combination with compound-specific receptors. Molecular spectroscopy, still practising the classical absorption/emission techniques for detecting elements or molecules experiences a change to Raman spectroscopy, is now allowing analysis of a multitude of additional features. Chemical sensors are now used to perform a vast number of analytical measurements. Especially paper-based devices (dipsticks, microfluidic pads) celebrate a revival as they can potentially revolutionize medicine in the developing world. Industry 4.0 will lead to a further increase of sensor applications. Preceding separation and enrichment of analytes from complicated matrices remains the backbone for a successful analysis, despite increasing attempts to avoid clean-up. Continuous separation techniques will become a key element for 24/7 production of goods with certified quality. Attempts to get instantaneous and specific chemical information by optical or electrical transduction will need highly selective receptors in large quantities. Further understanding of ligand - receptor complex structures is the key for successful generation of artificial bio-inspired receptors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fundamentals and techniques of nonimaging optics, volume 2
NASA Astrophysics Data System (ADS)
Winston, R.; Ogallagher, J. J.
1983-06-01
The formalism describing the operation is being defined, nonimaging concentrators and are being designed, and experiments and analytical studies are being conducted to evaluate the performance of new designs. In addition, components and materials particularly suited for use with these techniques were studied, and applications with an emphasis on solar energy concentration were explored. The motivation for the basic principles of nonimaging optics as they developed before 1978 are surveyed. The present status of the subdiscipline of nonimaging optics is summarized and an overview of the potential for future developments which is just beginning to emerge is presented.
Update on Chemical Analysis of Recovered Hydrazine Family Fuels for Recycling
NASA Technical Reports Server (NTRS)
Davis, C. L.
1997-01-01
The National Aeronautics and Space Administration, Kennedy Space Center, has developed a program to re-use and/or recycle hypergolic propellants recovered from propellant systems. As part of this effort, new techniques were developed to analyze recovered propellants. At the 1996 PDCS, the paper 'Chemical Analysis of Recovered Hydrazine Family Fuels For Recycling' presented analytical techniques used in accordance with KSC specifications which define what recovered propellants are acceptable for recycling. This paper is a follow up to the 1996 paper. Lower detection limits and response linearity were examined for two gas chromatograph methods.
Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins.
Sun, Bingyun; Hood, Leroy
2014-06-06
The advent of proteomics technology has transformed our understanding of biological membranes. The challenges for studying membrane proteins have inspired the development of many analytical and bioanalytical tools, and the techniques of glycoproteomics have emerged as an effective means to enrich and characterize membrane and plasma-membrane proteomes. This Review summarizes the development of various glycoproteomics techniques to overcome the hurdles formed by the unique structures and behaviors of membrane proteins with a focus on N-glycoproteomics. Example contributions of N-glycoproteomics to the understanding of membrane biology are provided, and the areas that require future technical breakthroughs are discussed.
Fraser, Karl; Harrison, Scott J; Lane, Geoff A; Otter, Don E; Hemar, Yacine; Quek, Siew-Young; Rasmussen, Susanne
2014-01-01
Tea is the second most consumed beverage in the world after water and there are numerous reported health benefits as a result of consuming tea, such as reducing the risk of cardiovascular disease and many types of cancer. Thus, there is much interest in the chemical composition of teas, for example; defining components responsible for contributing to reported health benefits; defining quality characteristics such as product flavor; and monitoring for pesticide residues to comply with food safety import/export requirements. Covered in this review are some of the latest developments in mass spectrometry-based analytical techniques for measuring and characterizing low molecular weight components of tea, in particular primary and secondary metabolites. The methodology; more specifically the chromatography and detection mechanisms used in both targeted and non-targeted studies, and their main advantages and disadvantages are discussed. Finally, we comment on the latest techniques that are likely to have significant benefit to analysts in the future, not merely in the area of tea research, but in the analytical chemistry of low molecular weight compounds in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ndong, Mamadou; Lauvergnat, David; Nauts, André
2013-11-28
We present new techniques for an automatic computation of the kinetic energy operator in analytical form. These techniques are based on the use of the polyspherical approach and are extended to take into account Cartesian coordinates as well. An automatic procedure is developed where analytical expressions are obtained by symbolic calculations. This procedure is a full generalization of the one presented in Ndong et al., [J. Chem. Phys. 136, 034107 (2012)]. The correctness of the new implementation is analyzed by comparison with results obtained from the TNUM program. We give several illustrations that could be useful for users of themore » code. In particular, we discuss some cyclic compounds which are important in photochemistry. Among others, we show that choosing a well-adapted parameterization and decomposition into subsystems can allow one to avoid singularities in the kinetic energy operator. We also discuss a relation between polyspherical and Z-matrix coordinates: this comparison could be helpful for building an interface between the new code and a quantum chemistry package.« less
Bilcke, Joke; Beutels, Philippe; Brisson, Marc; Jit, Mark
2011-01-01
Accounting for uncertainty is now a standard part of decision-analytic modeling and is recommended by many health technology agencies and published guidelines. However, the scope of such analyses is often limited, even though techniques have been developed for presenting the effects of methodological, structural, and parameter uncertainty on model results. To help bring these techniques into mainstream use, the authors present a step-by-step guide that offers an integrated approach to account for different kinds of uncertainty in the same model, along with a checklist for assessing the way in which uncertainty has been incorporated. The guide also addresses special situations such as when a source of uncertainty is difficult to parameterize, resources are limited for an ideal exploration of uncertainty, or evidence to inform the model is not available or not reliable. for identifying the sources of uncertainty that influence results most are also described. Besides guiding analysts, the guide and checklist may be useful to decision makers who need to assess how well uncertainty has been accounted for in a decision-analytic model before using the results to make a decision.
Visualization techniques for computer network defense
NASA Astrophysics Data System (ADS)
Beaver, Justin M.; Steed, Chad A.; Patton, Robert M.; Cui, Xiaohui; Schultz, Matthew
2011-06-01
Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operator to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.
Recent developments in computer vision-based analytical chemistry: A tutorial review.
Capitán-Vallvey, Luis Fermín; López-Ruiz, Nuria; Martínez-Olmos, Antonio; Erenas, Miguel M; Palma, Alberto J
2015-10-29
Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartas, Raul; Mimendia, Aitor; Valle, Manel del
2009-05-23
Calibration models for multi-analyte electronic tongues have been commonly built using a set of sensors, at least one per analyte under study. Complex signals recorded with these systems are formed by the sensors' responses to the analytes of interest plus interferents, from which a multivariate response model is then developed. This work describes a data treatment method for the simultaneous quantification of two species in solution employing the signal from a single sensor. The approach used here takes advantage of the complex information recorded with one electrode's transient after insertion of sample for building the calibration models for both analytes.more » The departure information from the electrode was firstly processed by discrete wavelet for transforming the signals to extract useful information and reduce its length, and then by artificial neural networks for fitting a model. Two different potentiometric sensors were used as study case for simultaneously corroborating the effectiveness of the approach.« less
An analytic data analysis method for oscillatory slug tests.
Chen, Chia-Shyun
2006-01-01
An analytical data analysis method is developed for slug tests in partially penetrating wells in confined or unconfined aquifers of high hydraulic conductivity. As adapted from the van der Kamp method, the determination of the hydraulic conductivity is based on the occurrence times and the displacements of the extreme points measured from the oscillatory data and their theoretical counterparts available in the literature. This method is applied to two sets of slug test response data presented by Butler et al.: one set shows slow damping with seven discernable extremities, and the other shows rapid damping with three extreme points. The estimates of the hydraulic conductivity obtained by the analytic method are in good agreement with those determined by an available curve-matching technique.
Analytical Chemistry of Surfaces: Part II. Electron Spectroscopy.
ERIC Educational Resources Information Center
Hercules, David M.; Hercules, Shirley H.
1984-01-01
Discusses two surface techniques: X-ray photoelectron spectroscopy (ESCA) and Auger electron spectroscopy (AES). Focuses on fundamental aspects of each technique, important features of instrumentation, and some examples of how ESCA and AES have been applied to analytical surface problems. (JN)
Numerical modeling of pollutant transport using a Lagrangian marker particle technique
NASA Technical Reports Server (NTRS)
Spaulding, M.
1976-01-01
A derivation and code were developed for the three-dimensional mass transport equation, using a particle-in-cell solution technique, to solve coastal zone waste discharge problems where particles are a major component of the waste. Improvements in the particle movement techniques are suggested and typical examples illustrated. Preliminary model comparisons with analytic solutions for an instantaneous point release in a uniform flow show good results in resolving the waste motion. The findings to date indicate that this computational model will provide a useful technique to study the motion of sediment, dredged spoils, and other particulate waste commonly deposited in coastal waters.
Earth Science Data Analytics: Preparing for Extracting Knowledge from Information
NASA Technical Reports Server (NTRS)
Kempler, Steven; Barbieri, Lindsay
2016-01-01
Data analytics is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. Data analytics is a broad term that includes data analysis, as well as an understanding of the cognitive processes an analyst uses to understand problems and explore data in meaningful ways. Analytics also include data extraction, transformation, and reduction, utilizing specific tools, techniques, and methods. Turning to data science, definitions of data science sound very similar to those of data analytics (which leads to a lot of the confusion between the two). But the skills needed for both, co-analyzing large amounts of heterogeneous data, understanding and utilizing relevant tools and techniques, and subject matter expertise, although similar, serve different purposes. Data Analytics takes on a practitioners approach to applying expertise and skills to solve issues and gain subject knowledge. Data Science, is more theoretical (research in itself) in nature, providing strategic actionable insights and new innovative methodologies. Earth Science Data Analytics (ESDA) is the process of examining, preparing, reducing, and analyzing large amounts of spatial (multi-dimensional), temporal, or spectral data using a variety of data types to uncover patterns, correlations and other information, to better understand our Earth. The large variety of datasets (temporal spatial differences, data types, formats, etc.) invite the need for data analytics skills that understand the science domain, and data preparation, reduction, and analysis techniques, from a practitioners point of view. The application of these skills to ESDA is the focus of this presentation. The Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster was created in recognition of the practical need to facilitate the co-analysis of large amounts of data and information for Earth science. Thus, from a to advance science point of view: On the continuum of ever evolving data management systems, we need to understand and develop ways that allow for the variety of data relationships to be examined, and information to be manipulated, such that knowledge can be enhanced, to facilitate science. Recognizing the importance and potential impacts of the unlimited ways to co-analyze heterogeneous datasets, now and especially in the future, one of the objectives of the ESDA cluster is to facilitate the preparation of individuals to understand and apply needed skills to Earth science data analytics. Pinpointing and communicating the needed skills and expertise is new, and not easy. Information technology is just beginning to provide the tools for advancing the analysis of heterogeneous datasets in a big way, thus, providing opportunity to discover unobvious scientific relationships, previously invisible to the science eye. And it is not easy It takes individuals, or teams of individuals, with just the right combination of skills to understand the data and develop the methods to glean knowledge out of data and information. In addition, whereas definitions of data science and big data are (more or less) available (summarized in Reference 5), Earth science data analytics is virtually ignored in the literature, (barring a few excellent sources).
Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew
2015-01-01
Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists. PMID:25742012
Big data analytics as a service infrastructure: challenges, desired properties and solutions
NASA Astrophysics Data System (ADS)
Martín-Márquez, Manuel
2015-12-01
CERN's accelerator complex generates a very large amount of data. A large volumen of heterogeneous data is constantly generated from control equipment and monitoring agents. These data must be stored and analysed. Over the decades, CERN's researching and engineering teams have applied different approaches, techniques and technologies for this purpose. This situation has minimised the necessary collaboration and, more relevantly, the cross data analytics over different domains. These two factors are essential to unlock hidden insights and correlations between the underlying processes, which enable better and more efficient daily-based accelerator operations and more informed decisions. The proposed Big Data Analytics as a Service Infrastructure aims to: (1) integrate the existing developments; (2) centralise and standardise the complex data analytics needs for CERN's research and engineering community; (3) deliver real-time, batch data analytics and information discovery capabilities; and (4) provide transparent access and Extract, Transform and Load (ETL), mechanisms to the various and mission-critical existing data repositories. This paper presents the desired objectives and properties resulting from the analysis of CERN's data analytics requirements; the main challenges: technological, collaborative and educational and; potential solutions.
Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew
2015-01-01
Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists.
NASA Astrophysics Data System (ADS)
Blackie, J. R.; Robinson, M.
2007-01-01
Dr J.S.G. McCulloch was deeply involved in the establishment of research catchments in East Africa and subsequently in the UK to investigate the hydrological consequences of changes in land use. Comparison of these studies provides an insight into how influential his inputs and direction have been in the progressive development of the philosophy, the instrumentation and the analytical techniques now employed in catchment research. There were great contrasts in the environments: tropical highland (high radiation, intense rainfall) vs. temperate maritime (low radiation and frontal storms), contrasting soils and vegetation types, as well as the differing social and economic pressures in developing and developed nations. Nevertheless, the underlying scientific philosophy was common to both, although techniques had to be modified according to local conditions. As specialised instrumentation and analytical techniques were developed for the UK catchments many were also integrated into the East African studies. Many lessons were learned in the course of these studies and from the experiences of other studies around the world. Overall, a rigorous scientific approach was developed with widespread applicability. Beyond the basics of catchment selection and the quantification of the main components of the catchment water balance, this involved initiating parallel process studies to provide information on specific aspects of catchment behaviour. This information could then form the basis for models capable of extrapolation from the observed time series to other periods/hydrological events and, ultimately, the capability of predicting the consequences of changes in catchment land management to other areas in a range of climates.
Montgomery, L D; Montgomery, R W; Guisado, R
1995-05-01
This investigation demonstrates the feasibility of mental workload assessment by rheoencephalographic (REG) and multichannel electroencephalographic (EEG) monitoring. During the performance of this research, unique testing, analytical and display procedures were developed for REG and EEG monitoring that extend the current state of the art and provide valuable tools for the study of cerebral circulatory and neural activity during cognition. REG records are analyzed to provide indices of the right and left hemisphere hemodynamic changes that take place during each test sequence. The EEG data are modeled using regression techniques and mathematically transformed to provide energy-density distributions of the scalp electrostatic field. These procedures permit concurrent REG/EEG cognitive testing not possible with current techniques. The introduction of a system for recording and analysis of cognitive REG/EEG test sequences facilitates the study of learning and memory disorders, dementia and other encephalopathies.
NASA Technical Reports Server (NTRS)
Montgomery, L. D.; Montgomery, R. W.; Guisado, R.
1995-01-01
This investigation demonstrates the feasibility of mental workload assessment by rheoencephalographic (REG) and multichannel electroencephalographic (EEG) monitoring. During the performance of this research, unique testing, analytical and display procedures were developed for REG and EEG monitoring that extend the current state of the art and provide valuable tools for the study of cerebral circulatory and neural activity during cognition. REG records are analyzed to provide indices of the right and left hemisphere hemodynamic changes that take place during each test sequence. The EEG data are modeled using regression techniques and mathematically transformed to provide energy-density distributions of the scalp electrostatic field. These procedures permit concurrent REG/EEG cognitive testing not possible with current techniques. The introduction of a system for recording and analysis of cognitive REG/EEG test sequences facilitates the study of learning and memory disorders, dementia and other encephalopathies.
NASA Technical Reports Server (NTRS)
Weinstock, K. J.; Morrissey, L. A.
1984-01-01
Rock type identification may be assisted by the use of remote sensing of associated vegetation, particularly in areas of dense vegetative cover where surface materials are not imaged directly by the sensor. The geobotanical discrimination of ultramafic parent materials was investigated and analytical techniques for lithologic mapping and mineral exploration were developed. The utility of remotely sensed data to discriminate vegetation types associated with ultramafic parent materials in a study area in southwest Oregon were evaluated. A number of specific objectives were identified, which include: (1) establishment of the association between vegetation and rock types; (2) examination of the spectral separability of vegetation types associated with rock types; (3) determination of the contribution of each TMS band for discriminating vegetation associated with rock types and (4) comparison of analytical techniques for spectrally classifying vegetation.
Dumont, Elodie; De Bleye, Charlotte; Sacré, Pierre-Yves; Netchacovitch, Lauranne; Hubert, Philippe; Ziemons, Eric
2016-05-01
Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, near-infrared, Raman and mainly surface-enhanced Raman spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.
Yoshioka, Toshiaki; Nagatomi, Yasushi; Harayama, Koichi; Bamba, Takeshi
2018-07-01
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances that are mainly generated during heating in food; therefore, the European Union (EU) has regulated the amount of benzo[a]pyrene and PAH4 in various types of food. In addition, the Scientific Committee on Food of the EU and the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives have recommended that 16 PAHs should be monitored. Since coffee beverages and dark beer are roasted during manufacture, monitoring these 16 PAHs is of great importance. On the other hand, supercritical fluid chromatography (SFC) is a separation method that has garnered attention in recent years as a complement for liquid and gas chromatography. Therefore, we developed a rapid high-sensitivity analytical method for the above-mentioned 16 PAHs in coffee beverages and dark beer involving supercritical fluid chromatography/atmospheric pressure chemical ionization-mass spectrometry (SFC/APCI-MS) and simple sample preparation. In this study, we developed a novel analytical technique that increased the sensitivity of MS detection by varying the back-pressure in SFC depending on the elution of PAHs. In addition, analysis of commercially available coffee and dark beer samples in Japan showed that the risk of containing the 16 PAHs may be low. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Pre-concentration technique for reduction in "Analytical instrument requirement and analysis"
NASA Astrophysics Data System (ADS)
Pal, Sangita; Singha, Mousumi; Meena, Sher Singh
2018-04-01
Availability of analytical instruments for a methodical detection of known and unknown effluents imposes a serious hindrance in qualification and quantification. Several analytical instruments such as Elemental analyzer, ICP-MS, ICP-AES, EDXRF, ion chromatography, Electro-analytical instruments which are not only expensive but also time consuming, required maintenance, damaged essential parts replacement which are of serious concern. Move over for field study and instant detection installation of these instruments are not convenient to each and every place. Therefore, technique such as pre-concentration of metal ions especially for lean stream elaborated and justified. Chelation/sequestration is the key of immobilization technique which is simple, user friendly, most effective, least expensive, time efficient; easy to carry (10g - 20g vial) to experimental field/site has been demonstrated.
Analyzing the Heterogeneous Hierarchy of Cultural Heritage Materials: Analytical Imaging.
Trentelman, Karen
2017-06-12
Objects of cultural heritage significance are created using a wide variety of materials, or mixtures of materials, and often exhibit heterogeneity on multiple length scales. The effective study of these complex constructions thus requires the use of a suite of complementary analytical technologies. Moreover, because of the importance and irreplaceability of most cultural heritage objects, researchers favor analytical techniques that can be employed noninvasively, i.e., without having to remove any material for analysis. As such, analytical imaging has emerged as an important approach for the study of cultural heritage. Imaging technologies commonly employed, from the macroscale through the micro- to nanoscale, are discussed with respect to how the information obtained helps us understand artists' materials and methods, the cultures in which the objects were created, how the objects may have changed over time, and importantly, how we may develop strategies for their preservation.
Technical Development and Application of Soft Computing in Agricultural and Biological Engineering
USDA-ARS?s Scientific Manuscript database
Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...
Development of Soft Computing and Applications in Agricultural and Biological Engineering
USDA-ARS?s Scientific Manuscript database
Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...
A Characteristics Approach to the Evaluation of Economics Software Packages.
ERIC Educational Resources Information Center
Lumsden, Keith; Scott, Alex
1988-01-01
Utilizes Bloom's Taxonomy to identify elements of teacher and student interest. Depicts the way in which these interests are developed into characteristics for use in analytically evaluating software. Illustrates the use of this evaluating technique by appraising the much used software package "Running the British Economy." (KO)
A Review of Meta-Analysis Packages in R
ERIC Educational Resources Information Center
Polanin, Joshua R.; Hennessy, Emily A.; Tanner-Smith, Emily E.
2017-01-01
Meta-analysis is a statistical technique that allows an analyst to synthesize effect sizes from multiple primary studies. To estimate meta-analysis models, the open-source statistical environment R is quickly becoming a popular choice. The meta-analytic community has contributed to this growth by developing numerous packages specific to…
Investigating the Effectiveness of Group Work in Mathematics
ERIC Educational Resources Information Center
Sofroniou, Anastasia; Poutos, Konstantinos
2016-01-01
Group work permits students to develop a range of critical thinking, analytical and communication skills; effective team work; appreciation and respect for other views, techniques and problem-solving methods, all of which promote active learning and enhance student learning. This paper presents an evaluation of employing the didactic and…
ERIC Educational Resources Information Center
Bryan, Audrey
2010-01-01
This article offers an empirical critique of recent social and educational policy responses to cultural diversity in an Irish context, with a particular focus on anti-racism, integration and intercultural education policies developed during the so-called "Celtic Tiger" era. Combining ethnographic and discourse analytic techniques, I…
Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration
NASA Technical Reports Server (NTRS)
Merritt, D. A.; Brand, W. A.; Hayes, J. M.
1994-01-01
In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).
Analytical technique characterizes all trace contaminants in water
NASA Technical Reports Server (NTRS)
Foster, J. N.; Lysyj, I.; Nelson, K. H.
1967-01-01
Properly programmed combination of advanced chemical and physical analytical techniques characterize critically all trace contaminants in both the potable and waste water from the Apollo Command Module. This methodology can also be applied to the investigation of the source of water pollution.
NASA Astrophysics Data System (ADS)
Waubke, Holger; Kasess, Christian H.
2016-11-01
Devices that emit structure-borne sound are commonly decoupled by elastic components to shield the environment from acoustical noise and vibrations. The elastic elements often have a hysteretic behavior that is typically neglected. In order to take hysteretic behavior into account, Bouc developed a differential equation for such materials, especially joints made of rubber or equipped with dampers. In this work, the Bouc model is solved by means of the Gaussian closure technique based on the Kolmogorov equation. Kolmogorov developed a method to derive probability density functions for arbitrary explicit first-order vector differential equations under white noise excitation using a partial differential equation of a multivariate conditional probability distribution. Up to now no analytical solution of the Kolmogorov equation in conjunction with the Bouc model exists. Therefore a wide range of approximate solutions, especially the statistical linearization, were developed. Using the Gaussian closure technique that is an approximation to the Kolmogorov equation assuming a multivariate Gaussian distribution an analytic solution is derived in this paper for the Bouc model. For the stationary case the two methods yield equivalent results, however, in contrast to statistical linearization the presented solution allows to calculate the transient behavior explicitly. Further, stationary case leads to an implicit set of equations that can be solved iteratively with a small number of iterations and without instabilities for specific parameter sets.
Development and evaluation of the RT-PCR kit for the rabies virus diagnosis.
Dedkov, Vladimir G; Deviatkin, A A; Poleschuk, E M; Safonova, M V; Markelov, M L; Shipulin, G A
To improve the diagnosis, surveillance, and control for the rabies virus, a kit for hybridization-triggered fluorescence detection of rabies virus DNA by the RT-PCR technique was developed and evaluated. The analytical sensitivity of the kit was 4*10 GE per ml. High specificity of the kit was shown using representative sampling of viral, bacterial, and human nucleic acids.
NASA Technical Reports Server (NTRS)
Mitchell, C. E.
1980-01-01
Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analyticalmore » chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.« less
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques are proposed as a solution to a difficulty arising in the analysis of the reliability of highly reliable computer systems for future commercial aircraft. The difficulty, viz., the lack of credible precision in reliability estimates obtained by analytical modeling techniques are established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible, (2) a complex system design technique, fault tolerance, (3) system reliability dominated by errors due to flaws in the system definition, and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. The technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. The use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques.
NASA Astrophysics Data System (ADS)
Yen, S. P. S.; Lewis, C. R.
Research is reported to identify polycarbonate (PC) film characteristics and fabrication procedures which extend the reliable performance range of PC capacitors to 125 C without derating, and establish quality control techniques and transfer technology to US PC film manufacturers. The approach chosen to solve these problems was to develop techniques for fabricating biaxially oriented (BX) 2 microns or thinner PC film with a low dissipation factor up to 140 C; isotropic dimensional stability; high crystallinity; and high voltage breakdown strength. The PC film structure and morphology was then correlated to thermal and electrical capacitor behavior. Analytical techniques were developed to monitor film quality during capacitor fabrication, and as a result, excellent performance was demonstrated during initial capacitor testing.
Strain gage measurement errors in the transient heating of structural components
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1993-01-01
Significant strain-gage errors may exist in measurements acquired in transient thermal environments if conventional correction methods are applied. Conventional correction theory was modified and a new experimental method was developed to correct indicated strain data for errors created in radiant heating environments ranging from 0.6 C/sec (1 F/sec) to over 56 C/sec (100 F/sec). In some cases the new and conventional methods differed by as much as 30 percent. Experimental and analytical results were compared to demonstrate the new technique. For heating conditions greater than 6 C/sec (10 F/sec), the indicated strain data corrected with the developed technique compared much better to analysis than the same data corrected with the conventional technique.
Common aspects influencing the translocation of SERS to Biomedicine.
Gil, Pilar Rivera; Tsouts, Dionysia; Sanles-Sobrido, Marcos; Cabo, Andreu
2018-01-04
In this review, we introduce the reader the analytical technique, surface-enhanced Raman scattering motivated by the great potential we believe this technique have in biomedicine. We present the advantages and limitations of this technique relevant for bioanalysis in vitro and in vivo and how this technique goes beyond the state of the art of traditional analytical, labelling and healthcare diagnosis technologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Historical review of missile aerodynamic developments
NASA Technical Reports Server (NTRS)
Spearman, M. Leroy
1989-01-01
The development of missiles from early history up to about 1970 is discussed. Early unpowered missiles beyond the rock include the spear, the bow and arrow, the gun and bullet, and the cannon and projectile. Combining gunpowder with projectiles resulted in the first powered missiles. In the early 1900's, the development of guided missiles was begun. Significant advances in missile technology were made by German scientists during World War II. The dispersion of these advances to other countries following the war resulted in accelerating the development of guided missiles. In the late 1940's and early 1950's there was a proliferation in the development of missile systems in many countries. These developments were based primarily on experimental work and on relatively crude analytical techniques. Discussed here are some of the missile systems that were developed up to about 1970; some of the problems encountered; the development of an experimental data base for use with missiles; and early efforts to develop analytical methods applicable to missiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hien, P.D.
1994-12-31
Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclearmore » science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.« less
On the Contribution of Raman Spectroscopy to Forensic Science
NASA Astrophysics Data System (ADS)
Buzzini, Patrick; Massonnet, Genevieve
2010-08-01
Raman spectroscopy has only recently sparked interest from forensic laboratories. The Raman technique has demonstrated important advantages such as its nondestructive nature, its fast analysis time, and especially the possibility of performing microscopical in situ analyses. In forensic applications, it is a versatile technique that covers a wide spectrum of substances such as trace evidence, illicit drugs and inks. An overview of the recent developments of Raman spectroscopy in forensic science will be discussed. Also, the requirements for an analytical technique for the examination of physical evidence will be described. Examples of casework will be depicted.
Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Jabłońska-Czapla, Magdalena
2015-01-01
Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962
Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell.
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-01-01
Thanks to recent developments in additive manufacturing techniques, it is now possible to fabricate porous biomaterials with arbitrarily complex micro-architectures. Micro-architectures of such biomaterials determine their physical and biological properties, meaning that one could potentially improve the performance of such biomaterials through rational design of micro-architecture. The relationship between the micro-architecture of porous biomaterials and their physical and biological properties has therefore received increasing attention recently. In this paper, we studied the mechanical properties of porous biomaterials made from a relatively unexplored unit cell, namely rhombicuboctahedron. We derived analytical relationships that relate the micro-architecture of such porous biomaterials, i.e. the dimensions of the rhombicuboctahedron unit cell, to their elastic modulus, Poisson's ratio, and yield stress. Finite element models were also developed to validate the analytical solutions. Analytical and numerical results were compared with experimental data from one of our recent studies. It was found that analytical solutions and numerical results show a very good agreement particularly for smaller values of apparent density. The elastic moduli predicted by analytical and numerical models were in very good agreement with experimental observations too. While in excellent agreement with each other, analytical and numerical models somewhat over-predicted the yield stress of the porous structures as compared to experimental data. As the ratio of the vertical struts to the inclined struts, α, approaches zero and infinity, the rhombicuboctahedron unit cell respectively approaches the octahedron (or truncated cube) and cube unit cells. For those limits, the analytical solutions presented here were found to approach the analytic solutions obtained for the octahedron, truncated cube, and cube unit cells, meaning that the presented solutions are generalizations of the analytical solutions obtained for several other types of porous biomaterials. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analytical Chemistry Laboratory Progress Report for FY 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.W.; Boparai, A.S.; Bowers, D.L.
The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program inmore » analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.« less
Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS.
Lidén, Carola; Skare, Lizbet; Lind, Birger; Nise, Gun; Vahter, Marie
2006-05-01
There is a great need to accurately assess skin exposure to contact allergens. We have developed a technique for assessment of skin exposure to nickel, chromium and cobalt using acid wipe sampling by cellulose wipes with 1% nitric acid. Chemical analysis was performed by inductively coupled plasma mass spectrometry (ICP-MS). The recovery of nickel, chromium and cobalt from arms and palms was 93%. The analytical result is expressed in terms of mass per unit area (microg/cm(2)). The developed acid wipe sampling technique is suitable for determination of nickel, chromium and cobalt deposited on the skin. The technique may be used in workplace studies, in studies of individuals in the general population, in dermatitis patients, in identification of risk groups, as well as in developing preventive strategies and in follow-up after intervention.
Genome wide approaches to identify protein-DNA interactions.
Ma, Tao; Ye, Zhenqing; Wang, Liguo
2018-05-29
Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL
The Wellhead Analytic Element Model (WhAEM) demonstrates a new technique for the definition of time-of-travel capture zones in relatively simple geohydrologic settings. he WhAEM package includes an analytic element model that uses superposition of (many) analytic solutions to gen...
Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry
Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui
2014-01-01
Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355
Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui
2012-09-18
Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.
Propellant grain dynamics in aft attach ring of shuttle solid rocket booster
NASA Technical Reports Server (NTRS)
Verderaime, V.
1979-01-01
An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.
Information support for decision making on dispatching control of water distribution in irrigation
NASA Astrophysics Data System (ADS)
Yurchenko, I. F.
2018-05-01
The research has been carried out on developing the technique of supporting decision making for on-line control, operational management of water allocation for the interfarm irrigation projects basing on the analytical patterns of dispatcher control. This technique provides an increase of labour productivity as well as higher management quality due to the improved level of automation, as well as decision making optimization taking into account diagnostics of the issues, solutions classification, information being required to the decision makers.