Science.gov

Sample records for developing attractive magnetic

  1. [Near fatal attraction of ingested magnets].

    PubMed

    Munchak, Itamar; Yardeni, Dan; Jacobson, Jeffrey M; Soudack-Ben Nun, Michalle; Augarten, Arie

    2013-03-01

    We report a case of intestinal perforation in a 20 month old girl following the ingestion of 2 small magnets. Ingestion of multiple magnets constitutes a unique problem. Magnets in adjacent intestinal loops may forcefully attract each other and produce pressure necrosis of the bowel wall, leading to perforation, fistula formation or intestinal obstruction. Therefore, these children should be observed carefully. Early surgical intervention should be considered when clinical symptoms develop, especially when, on sequential abdominal radiographs, there is no change in the magnets' location. Since toys with small magnets are ubiquitous, efforts should be made to increase parents' awareness on the one hand, and to alert toy manufacturers on the other hand.

  2. Attractive and repulsive magnetic suspension systems overview

    NASA Technical Reports Server (NTRS)

    Cope, David B.; Fontana, Richard R.

    1992-01-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  3. Properties of magnetically attractive experimental resin composites.

    PubMed

    Hirano, S; Yasukawa, H; Nomoto, R; Moriyama, K; Hirasawa, T

    1996-12-01

    SUS444 stainless steel filled chemically cured resin composites that can attract magnet were fabricated. The filler was treated with various concentrations of silane. The experimental composite was easy to handle and showed a good shelf life. The maximal properties obtained are as follows; The attraction force to a magnetic attachment was 1/3-1/4 lower than the commercially available magnet-keeper system for dental magnetic attachment. Flexural strength and Knoop hardness of the composite were 76MPa (7.7 kgf/mm2) and 64 KHN. These values were lower than the commercially available chemically cured composite used as a reference. Eluted metal from the composite in 1% lactic acid solution for 7 days showed 0.7 mg/cm2, but in 0.9% NaCl solution for 7 days, it could not be detected.

  4. Magnetic Attractions: Desegregating a Minority School District.

    ERIC Educational Resources Information Center

    Lyons, James Earl; Walton, Kathleen O'D.

    1988-01-01

    Politicians and chambers of commerce in Prince George's County, Maryland, recognized the need to improve opportunities for and achievement by Black students. Magnet and compensatory programs were implemented, as well as the "Comer School Development Program," which places special emphasis on parental involvement. (MLW)

  5. Magnet Trade Books: Attracting and Repelling Concepts

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Robinson, Richard D.

    2007-01-01

    A series of magnet trade books were analyzed against a validated list of magnet concepts (Barrow, 1990a) and their Flesch (1974) Readability was determined. These trade books were used to supplement a second grade unit on magnetism locally constructed from AIM's "Mostly Magnets" (1991). All trade books accurately described how like and unlike…

  6. Physical Attraction: The Mysteries of Magnetism

    SciTech Connect

    Stohr, Joachim

    2004-12-14

    Most people have intuitive associations with the word 'magnetism' based on everyday life: refrigerator magnets, the compass, north and south poles, or someone's 'magnetic personality'. Few people, however, realize how complicated the phenomenon really is, how much research still deals with the topic today, and how much it penetrates our modern industrialized world - from electricity, wireless communication at the speed of light to magnetic sensors in cars and data storage in computers. Stohr's lecture will provide a glimpse at the magic and science behind magnetism: its long history, scientific breakthroughs in its understanding, and its use in our modern society. In the process Stohr will show how research at SSRL/SLAC is addressing some of the forefront issues in magnetism research and technology today.

  7. [Magnets, pacemaker and defibrillator: fatal attraction?].

    PubMed

    Bergamin, C; Graf, D

    2015-05-27

    This article aims at clarifying the effects of a clinical magnet on pacemakers and Implantable Cardioverter Defibrillators. The effects of electromagnetic interferences on such devices, including interferences linked to electrosurgery and magnetic resonance imaging are also discussed. In general, a magnet provokes a distinctive effect on a pacemaker by converting it into an asynchronous mode of pacing, and on an Implantable Cardioverter Defibrillator by suspending its own antitachyarythmia therapies without affecting the pacing. In the operating room, the magnet has to be used cautiously with precisely defined protocols which respect the type of the device used, the type of intervention planned, the presence or absence of EMI and the pacing-dependency of the patient.

  8. The Magnetic Attraction of Honeybee Navigation.

    ERIC Educational Resources Information Center

    Ayres, David

    1991-01-01

    Discussed are the division of labor, defenses, genetics and evolution, communication, and navigation power of honeybees. The scientific and cross-curricular themes that can be offered using the economically important honeybee are described. Research that suggests that bees may be flying magnets is also discussed. (KR)

  9. Magnetic water treatment: A coming attraction?

    SciTech Connect

    Fryer, L.

    1995-10-01

    United Airlines and pharmaceutical company Eli Lilly and Company are among a number of users that are controlling scale and corrosion in cooling tower loops with magnetic water treatment, a controversial technology that has met with skepticism, disbelief, and claims of fraud. Experts and hundreds of published papers disagree on whether magnetic water treatment works, and if so, how. No scientific theory has proven how magnets can treat water, nor are there documented, reproducible laboratory test results. Field experience is mixed, with some installations working well and others failing. Despite the controversy and the lack of an adequately documented theoretical underpinning, the existence of large, apparently successful installations lends credence to the view that at least some magnetic water treatment systems are effective. The stakes are high. Most large HVAC systems are currently treated with chemicals. These chemicals generally work well, but they are costly, in many cases are environmentally damaging, and are subject to increasingly strict regulations. A reliable, low-cost, and more environmentally benign alternative that eliminates or sharply reduces the need for chemical treatment would have obvious benefits. Based on the review of the literature, discussions with users, vendors, and independent analysts, and tours of several apparently successful installations, E Source believes that this technology works in some cases and warrants further investigation. They caution prospective users to shop carefully and to select vendors with an established track record.

  10. Magnetism and Electricity Activity "Attracts" Student Interest

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this…

  11. Nano Goes Magnetic to Attract Big Business

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Glenn Research Center has combined state-of-the-art electrical designs with complex, computer-aided analyses to develop some of today s most advanced power systems, in space and on Earth. The center s Power and On-Board Propulsion Technology Division is the brain behind many of these power systems. For space, this division builds technologies that help power the International Space Station, the Hubble Space Telescope, and Earth-orbiting satellites. For Earth, it has woven advanced aerospace power concepts into commercial energy applications that include solar and nuclear power generation, battery and fuel cell energy storage, communications and telecommunications satellites, cryocoolers, hybrid and electric vehicles, and heating and air-conditioning systems.

  12. Attracting Capital: Magnets, Charters, and School Referendum Success

    ERIC Educational Resources Information Center

    Shober, Arnold F.

    2011-01-01

    Does school choice enhance the ability of school districts to raise revenue? School districts use charter and magnet schools to attract and retain students, but does choice improve the odds for school districts seeking increased taxing authority at the polls? If those parents who choose schools are attentive to district policies, then increasing…

  13. Hidden Attraction - The History and Mystery of Magnetism

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    1996-04-01

    Long one of nature's most fascinating phenomena, magnetism was once the subject of many superstitions. Magnets were thought useful to thieves, effective as a love potion, and as a cure for gout or spasms. They could remove sorcery from women and put demons to flight and even reconcile married couples. It was said that a lodestone pickled in the salt of sucking fish had the power to attract gold. Today, these beliefs have been put aside, but magnetism is no less remarkable for our modern understanding of it. In Hidden Attraction , Gerrit L. Verschuur, a noted astronomer and National Book Award nominee for The Invisible Universe , traces the history of our fascination with magnetism, from the mystery and superstition that propelled the first alchemical experiments with lodestone, through the more tangible works of Faraday, Maxwell, Hertz and other great pioneers of magnetism (scientists responsible for the extraordinary advances in modern science and technology, including radio, the telephone, and computers, that characterize the twentieth century), to state-of-the-art theories that see magnetism as a basic force in the universe. Boasting many informative illustrations, this is an adventure of the mind, using the specific phenomenon of magnetism to show how we have moved from an era of superstitions to one in which the Theory of Everything looms on the horizon.

  14. Swallowed magnets and batteries: a dangerous but not unexpected attraction.

    PubMed

    Teague, Warwick Jonathan; Vaughan, Elizabeth Mary; McHoney, Merrill; McCabe, Amanda Jayne

    2013-04-10

    An 18-month-old boy was witnessed swallowing a cluster of five magnetic toy balls. He was coincidentally noted on plain x-rays to have also recently swallowed a watch battery and a small screw. Initial outpatient management with serial review and x-rays was unsuccessful, and delayed inpatient surgical care by 9 days. Although the child never manifested features of systemic or gastrointestinal upset, emergency laparotomy confirmed a resultant jejunocolic fistula. This case demonstrates how clinical assessment of children who have swallowed magnets separately from each other can be falsely reassuring, and highlights the potential dangers of outpatient management. We recommend children who have swallowed separately >1 magnetic objects (or >1 objects capable of magnetic attraction) be managed as inpatients with active observation and timely foreign body removal.

  15. Attraction, merger, reflection, and annihilation in magnetic droplet soliton scattering

    NASA Astrophysics Data System (ADS)

    Maiden, M. D.; Bookman, L. D.; Hoefer, M. A.

    2014-05-01

    The interaction behaviors of solitons are defining characteristics of these nonlinear, coherent structures. Due to recent experimental observations, thin ferromagnetic films offer a promising medium in which to study the scattering properties of two-dimensional magnetic droplet solitons, particle-like, precessing dipoles. Here, a rich set of two-droplet interaction behaviors are classified through micromagnetic simulations. Repulsive and attractive interaction dynamics are generically determined by the relative phase and speeds of the two droplets and can be classified into four types: (1) merger into a breather bound state, (2) counterpropagation trapped along the axis of symmetry, (3) reflection, and (4) violent droplet annihilation into spin wave radiation and a breather. Utilizing a nonlinear method of images, it is demonstrated that these dynamics describe repulsive/attractive scattering of a single droplet off of a magnetic boundary with pinned/free spin boundary conditions, respectively. These results explain the mechanism by which propagating and stationary droplets can be stabilized in a confined ferromagnet.

  16. On the analytical form of the Earth's magnetic attraction expressed as a function of time

    NASA Technical Reports Server (NTRS)

    Carlheim-Gyllenskold, V.

    1983-01-01

    An attempt is made to express the Earth's magnetic attraction in simple analytical form using observations during the 16th to 19th centuries. Observations of the magnetic inclination in the 16th and 17th centuries are discussed.

  17. Same-Sex Attraction and Successful Adolescent Development

    ERIC Educational Resources Information Center

    Busseri, Michael A.; Willoughby, Teena; Chalmers, Heather; Bogaert, Anthony R.

    2006-01-01

    This study investigated the relation of adolescent same-sex attraction to "successful development" (Baltes, P. B., "Am. Psychol." 32:366-380, 1997). Based on a survey of high-school adolescents, four groups were defined according to the nature of self-reported sexual attraction: exclusively heterosexual (EHA; n=3594); mostly heterosexual (MHA;…

  18. Magnets, children and the bowel: a dangerous attraction?

    PubMed

    George, Anil Thomas; Motiwale, Sandeep

    2012-10-14

    Reports of magnet ingestion are increasing rapidly globally. However, multiple magnet ingestion, the subsequent potential complications and the importance of the early identification and proper management remain both under-recognized and underestimated. Published literature on such cases could possibly represent only the tip of an iceberg with press reports, web blogs and government documents highlighting further occurrence of many more such incidents. The increasing number of complications worldwide being reported secondary to magnet ingestion point not only to an acute lack of awareness about this condition among the medical profession but also among parents and carers who will be in most cases the first to pick up on magnet ingestion. There still seems to be no consensus on the management of magnet ingestion with several algorithms being proposed for management. Prevention of this condition remains a much better option than cure. Proper education and improved awareness among parents and carers and frontline medical staff is key in addressing this rapidly emerging problem. The goal of managing such cases of suspected magnet ingestion should be aimed at reducing delays between ingestion time, diagnosis time and intervention time.

  19. The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1978-01-01

    It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.

  20. Crossover from impurity to valence band in diluted magnetic semiconductors: Role of Coulomb attraction by acceptors

    SciTech Connect

    Popescu, Florentin; Sen, Cengiz; Dagotto, Elbio R; Moreo, Adriana

    2007-01-01

    The crossover between an impurity band (IB) and a valence band (VB) regime as a function of the magnetic impurity concentration in a model for diluted magnetic semiconductors (DMSs) is studied systematically by taking into consideration the Coulomb attraction between the carriers and the magnetic impurities. The density of states and the ferromagnetic transition temperature of a spin-fermion model applied to DMSs are evaluated using dynamical mean-field theory and Monte Carlo (MC) calculations. It is shown that the addition of a square-well-like attractive potential can generate an IB at small enough Mn doping x for values of the p-d exchange J that are not strong enough to generate one by themselves. We observe that the IB merges with the VB when x>=xc where xc is a function of J and the Coulomb strength V. Using MC simulations, we demonstrate that the range of the Coulomb attraction plays an important role. While the on-site attraction, which has been used in previous numerical simulations, effectively renormalizes J for all values of x, an unphysical result, a nearest-neighbor range attraction renormalizes J only at very low dopings, i.e., until the bound holes wave functions start to overlap. Thus, our results indicate that the Coulomb attraction can be neglected to study Mn-doped GaSb, GaAs, and GaP in the relevant doping regimes, but it should be included in the case of Mn-doped GaN, which is expected to be in the IB regime.

  1. Magnetic Refrigeration Development

    NASA Technical Reports Server (NTRS)

    Deardoff, D. D.; Johnson, D. L.

    1984-01-01

    Magnetic refrigeration is being developed to determine whether it may be used as an alternative to the Joule-Thomson circuit of a closed cycle refrigerator for providing 4 K refrigeration. An engineering model 4-15 K magnetic refrigerator has been designed and is being fabricated. This article describes the overall design of the magnetic refrigerator.

  2. Development of a magnetic liquid seal for clean robots

    NASA Astrophysics Data System (ADS)

    Mizumoto, M.; Inoue, H.

    1987-03-01

    A magnetic liquid seal is developed for clean robots used in semiconductor producing factories. This seal is made of a O-ring type elastic magnet in which magnetic liquid is attracted to the magnet directly. The results of experimental tests prove that the newly developed seal affords reliable sealing performance for clean robots in a cleanness class of 10 or less.

  3. Developing Bisexual Attract-and-Kill for Polyphagous Insects: Ecological Rationale versus Pragmatics.

    PubMed

    Gregg, Peter C; Del Socorro, Alice P; Hawes, Anthony J; Binns, Matthew R

    2016-07-01

    We discuss the principles of bisexual attract-and-kill, in which females as well as males are targeted with an attractant, such as a blend of plant volatiles, combined with a toxicant. While the advantages of this strategy have been apparent for over a century, there are few products available to farmers for inclusion in integrated pest management schemes. We describe the development, registration, and commercialization of one such product, Magnet(®), which was targeted against Helicoverpa armigera and H. punctigera in Australian cotton. We advocate an empirical rather than theoretical approach to selecting and blending plant volatiles for such products, and emphasise the importance of field studies on ecologically realistic scales of time and space. The properties required of insecticide partners also are discussed. We describe the studies that were necessary to provide data for registration of the Magnet(®) product. These included evidence of efficacy, including local and area-wide impacts on the target pest, non-target impacts, and safety for consumers and applicators. In the decade required for commercial development, the target market for Magnet(®) has been greatly reduced by the widespread adoption of transgenic insect-resistant cotton in Australia. We discuss potential applications in resistance management for transgenic cotton, and for other pests in cotton and other crops.

  4. Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice

    NASA Astrophysics Data System (ADS)

    Paulsen, C.; Giblin, S. R.; Lhotel, E.; Prabhakaran, D.; Balakrishnan, G.; Matsuhira, K.; Bramwell, S. T.

    2016-07-01

    A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect), electrolytes (the second Wien effect) and semiconductors (the Poole-Frenkel effect). It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches to spin ice to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole-Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems.

  5. Development of semiochemical attractants for monitoring and controlling Chlorophorus caragana.

    PubMed

    Zong, Shixiang; Liu, Xinhai; Cao, Chuanjian; Luo, Youqing; Ren, Lili; Zhang, Hui

    2013-01-01

    Chlorophorus caragana is an important wood-boring pest that infests Caragana korshinskii. The larvae bore into the stems to the point of hollowing them out, causing the whole tree to wither and even die. To control these infestations, volatile compounds were collected from C. korshinskii and used in electroantennography to ascertain which plant semiochemicals could be used to trap adult C. caragana in the field. Isophorone, cis-3-hexen-1-ol, 3-pentanone, dibutyl phthalate, and diisobutyl phthalate were the main volatile compounds produced by C. korshinskii. These compounds induced dose-dependent electrophysiological responses in the antennae of adult C. caragana to some degree. Accordingly, 58 different compound mixtures were tested in field trapping experiments over two consecutive years. Isophorone was most attractive to adult insects. In the field, the best traps were funnel-shaped ones hanging at a height of 1 m. The trapping efficiency was 63.8%. Adult beetles appear between mid June and late August, with an eclosion peak in mid July. The prototype trapping system developed could be used as a tool to monitor and control C. caragana adults.

  6. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  7. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites

    EPA Science Inventory

    Magnetic nano-catalysts have been prepared using simple modification of iron ferrites wherein their quasi-homogeneous state, because of nm size range, facilitates the catalysis process as increased surface is available for reaction; the easy separation of the catalysts by externa...

  8. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  9. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  10. Magnetic Suspension Technology Development

    NASA Technical Reports Server (NTRS)

    Britcher, Colin

    1998-01-01

    This Cooperative Agreement, intended to support focused research efforts in the area of magnetic suspension systems, was initiated between NASA Langley Research Center (LaRC) and Old Dominion University (ODU) starting January 1, 1997. The original proposal called for a three-year effort, but funding for the second year proved to be unavailable, leading to termination of the agreement following a 5-month no-cost extension. This report covers work completed during the entire 17-month period of the award. This research built on work that had taken place over recent years involving both NASA LARC and the Principal Investigator (PI). The research was of a rather fundamental nature, although specific applications were kept in mind at all times, such as wind tunnel Magnetic Suspension and Balance Systems (MSBS), space payload pointing and vibration isolation systems, magnetic bearings for unconventional applications, magnetically levitated ground transportation and electromagnetic launch systems. Fundamental work was undertaken in areas such as the development of optimized magnetic configurations, analysis and modelling of eddy current effects, control strategies for magnetically levitated wind tunnel models and system calibration procedures. Despite the termination of this Cooperative Agreement, several aspects of the research work are currently continuing with alternative forms of support.

  11. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    PubMed Central

    Du, Min; Ye, Xiongying; Wu, Kang; Zhou, Zhaoying

    2009-01-01

    In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ∼490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached. PMID:22574035

  12. A peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls.

    PubMed

    Du, Min; Ye, Xiongying; Wu, Kang; Zhou, Zhaoying

    2009-01-01

    In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ∼490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  13. A 2 Tesla Full Scale High Performance Periodic Permanent Magnet Model for Attractive (228 KN) and repulsive Maglev

    NASA Technical Reports Server (NTRS)

    Stekly, Z. J. J.; Gardner, C.; Domigan, P.; Baker, J.; Hass, M.; McDonald, C.; Wu, C.; Farrell, R. A.

    1996-01-01

    Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Intermagnetics General Corporation. Placing these assemblies in a supporting structure with a 2.1 cm pole to pole separation resulted in a periodic field with a maximum value of 2.04 T. This is believed to be the highest field ever achieved by this type of device. The attractive force between the two 602 kg magnet assemblies is 228 kN, providing enough force for suspension of a 45,500 kg vehicle. If used in an attractive maglev system with an appropriate flat iron rail, one assembly will generate the same force with a gap of 1.05 cm leading to a lift to weight ratio of 38.6, not including the vehicle attachment structure. This permanent magnet compares well with superconducting systems which have lift to weight ratios in the range of 5 to 10. This paper describes the magnet assemblies and their measured magnetic performance. The measured magnetic field and resulting attractive magnetic force have a negative spring characteristic. Appropriate control coils are necessary to provide stable operation. The estimated performance of the assemblies in a stable repulsive mode, with eddy currents in a conducting guideway, is also discussed.

  14. History and development of food-based attractants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult tephrids require sugar and protein for survival and for development of eggs, and volatile chemicals from these substances are the basis for food-based lures developed as baits for these pests. In this chapter, we discuss food-based lures that mimic food sources for adults other than host fruit...

  15. Frustrating a correlated superconductor: the 2D Attractive Hubbard Model in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbo; Engelbrecht, Jan R.

    2000-03-01

    At the Mean Field level (G. Murthy and R. Shankar, J. Phys. Condens. Matter, 7) (1995), the frustration due to an external field first makes the uniform BCS ground state unstable to an incommensurate (qne0) superconducting state and then to a spin-polarized Fermi Liquid state. Our interest is how fluctuations modify this picture, as well as the normal state of this system which has a quantum critical point. We use the Fluctuation-Exchange Approximation for the 2D Attractive Hubbard Model, to study this system beyond the Mean-Field level. Earlier work in zero field has shown that this numerical method successfully captures the critical scaling of the KT superconducting transition upon cooling in the normal state. Here we investigate how the pair-breaking external field modifies this picture, and the development of incommensurate pairing.

  16. The nature and development of sex attractant specificity in cockroaches of the genus Periplaneta. IV. electrophysiological study of attractant specificity and its determination by juvenile hormone.

    PubMed

    Schafer, R

    1977-02-01

    The antennae of male Periplaneta americana acquire a large number of olfactory receptors at the adult stage. Electrophysiological methods (single unit and electroantennogram recording) show that a portion of the receptors added at the adult ecdysis are sex attractant receptors. Sex attractant receptors are not present in large numbers on larval and adult female antennae. The differentiation of pheromone receptors is inhibited during normal larval development by juvenile hormone. Topical application of juvenile hormone-mimic to male antennae during the terminal larval instar inhibits their development. Comparative electrophysiological studies indicate a high degree of cross-reactivity of the P. americana sex attractant among four other species within the genus Periplaneta.

  17. Enduring Attraction: America’s Dependence On and Need to Secure Its Supply of Permanent Magnets

    DTIC Science & Technology

    2012-10-01

    refined metals neodymium and samarium, are key components in the manufacture of miniature high temperature resistant permanent magnets. These magnets...indispensable. Consequently, rare-earth permanent magnets comprise the widest use of REEs.12 Neodymium and Samarium Neodymium and samarium are only...military applications. Similarly, neodymium - iron-boron (NdFeB) magnets are incredibly strong—the most powerful commercial magnet available. Compared to

  18. An Active Attraction.

    ERIC Educational Resources Information Center

    Burns, Joseph C.; Buzzelli, Cary

    1992-01-01

    Describes a unit on magnetism that utilizes hands-on activities in which students make hypotheses for discrepant behavior, discover whether a magnet attracts one object through another, measure the strength of magnets, explore levitating paper clips, and play a game dependent on magnetic attraction. (MDH)

  19. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices

    PubMed Central

    2017-01-01

    Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated ‘tiny targets’ have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for

  20. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate.

    PubMed

    Effenberger, Fernando B; Couto, Ricardo A; Kiyohara, Pedro K; Machado, Giovanna; Masunaga, Sueli H; Jardim, Renato F; Rossi, Liane M

    2017-03-17

    The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe3O4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.

  1. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate

    NASA Astrophysics Data System (ADS)

    Effenberger, Fernando B.; Couto, Ricardo A.; Kiyohara, Pedro K.; Machado, Giovanna; Masunaga, Sueli H.; Jardim, Renato F.; Rossi, Liane M.

    2017-03-01

    The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe3O4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.

  2. Developing Students' Ideas about Magnets

    ERIC Educational Resources Information Center

    Cheng, Meng-Fei

    2009-01-01

    This paper illustrates a series of activities designed to encourage fourth to sixth-grade students to develop their conceptions of magnets. Through scaffolding activities and facilitation from the teacher, students will be able to generate, evaluate, and refine their explanations for how magnets work. Students can gradually develop sophisticated…

  3. Discovery and Development of Chemical Attractants Used to Trap Pestiferous Social Wasps (Hymenoptera: Vespidae).

    PubMed

    Landolt, Peter; Zhang, Qing-He

    2016-07-01

    Chemical attractants for trapping temperate social wasps have been discovered during the screening of chemicals as attractants for flies, the study of pentatomid bug pheromones, and the testing of volatiles of fermented sweet baits. Wasp attraction to these chemicals seems to be related to either food-finding or prey-finding behavior. Of these attractive chemicals, commercial lures marketed in North America for trapping wasps generally contain heptyl butyrate, or the combination of acetic acid and 2-methyl-1-butanol. Heptyl butyrate is a very good attractant for two major pest wasp species in North America and minor wasp pests in the Vespula rufa species group. The combination of acetic acid with isobutanol attracted nearly all North American pest species of social wasps, including yellowjackets (Vespula and Dolichovespula), a hornet (Vespa crabro), and several paper wasps (Polistes spp.). The testing of wasp chemical attractants in different geographic areas demonstrated responses of many wasp taxa and showed a broad potential scope for the marketing of trap lures. Comparisons of compounds structurally similar to isobutanol revealed similar activity with 2-methyl-1-butanol, which is now used commercially because of a vapor pressure that is more favorable than isobutanol for formulations and dispensers. Doses and concentrations needed for good wasp catches were determined for heptyl butyrate, acetic acid, isobutanol, and 2-methyl-1-butanol, either formulated in water or dispensed from a controlled release device. Trap designs were developed based on consumer considerations; visual appeal, ease and safety of use, and low environmental impact. The resultant lures and traps are marketed in numerous physical and on-line retail outlets throughout the United States and southern Canada.

  4. Attracting, Developing and Retaining Effective Teachers: Background Report for the United States

    ERIC Educational Resources Information Center

    Walsh, Kate; Wilcox, Danielle; Palmaffy, Tyce; Tracy, Christopher; Yiamouyiannis, Zeus; Ostermeier, Amy; Garcia, Lenore Yaffee

    2004-01-01

    This report presents a balanced picture of the debate on teacher quality in the U.S. and focuses on the aspects of teacher policy dealing with attracting, recruiting, developing and retaining effective teachers by synthesizing relevant research, identifying innovative and successful policy practices, facilitating exchanges of lessons among…

  5. Flywheel Magnetic Suspension Developments

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Kenny, Andrew; Sifford, Curtiss; Thomas, Erwin; Bhuiyan, Mohammad; Provenza, Andrew; Kascak, Albert; Montague, Gerald; Lei, Shuliang; Kim, Yeonkyu; Sun, Guangyoung; Chon, ChonHee; Tucker, Randy; Preuss, Jason; Li, Ming; Minihan, Thomas

    2002-01-01

    The paper provides an overview of many areas of the flywheel magnetic suspension (MS) R&D being performed at the Texas A&M Vibration Control and Electromechanics Lab (TAMU-VCEL). This includes system response prediction, actuator optimization and redundancy, controller realizations and stages, sensor enhancements and backup bearing reliability.

  6. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  7. Science Can Be Attractive.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Discusses the properties of neodymium magnets and magnets in general and how magnets can be used to teach students important scientific principles, such as attraction, repulsion, and polarity; the role of magnetic forces in electronic communications and computers; the magnetic properties of the earth and compasses; and the relationship between…

  8. Feasibility of using high temperature superconducting magnets and conventional magnetic loop antennas to attract or repel objects at the space station

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1989-01-01

    A study was undertaken to see if magnetic forces can be used at the Space Station to attract or repel spacecrafts such as the Orbital Manuevering Vehicle (OMV) or the Orbiter. A large magnet, in the form of a current loop, is assumed to be placed at the Space Station and another one on the spacecraft. The expression for the force between the two dipoles (loops) is obtained. Using a force of 15 Newtons (3.4 pounds) in order to move the spacecraft, the number of ampere-turn needed in the current loops was calculated at various distances between them. The expression for the force of attraction between a current loop and a soft magnetic material was also examined and the number of amp-turn needed to provide a force of one-tenth of a pound at various distances is also calculated. This one tenth of a pound force would be used in a life line system for the retrieval of an adrift crewman or tool at the Space Station. The feasibility of using conventional antenna on the Station and the incoming vehicle for attraction or repulsion was also examined.

  9. Attracting Diverse Students to a Magnet School: Risking Aspirations or Swallowing One's Beliefs

    ERIC Educational Resources Information Center

    Taggart, Amanda; Shoho, Alan R.

    2013-01-01

    This case study focuses on the ethics of advocating for a social justice perspective versus jeopardizing one's career aspirations. There are numerous subplots to this case involving the start-up of a new magnet school, including its leaders' concerns for meeting accountability measures and representing racially diverse, limited English proficient,…

  10. How Magnets Attract and Repel: Interessement in a Technology Commercialization Competition

    ERIC Educational Resources Information Center

    Spinuzzi, Clay; Nelson, Scott; Thomson, Keela S.; Lorenzini, Francesca; French, Rosemary A.; Pogue, Gregory; London, Noelle

    2016-01-01

    K6015, a South Korean firm seeking to commercialize its magnet technology in the US market, entered a technology commercialization training program structured as a competition. Through this program, K6015 (and others in the program) used several genres to progressively interest different sets of stakeholders. To understand how K6015 applied these…

  11. [Development and transition of magnetic attachments--a literature review].

    PubMed

    Hirata, M

    1997-12-01

    In the 1950 s, a new method of using magnets for the retainers of removable partial dentures (RPDs) was developed. It utilized magnetic attractive force instead of mechanical friction. However, the magnets used in those days were Alnico, Ferrite and/or Pt-Cobalt magnets and their retentive force was not strong enough to stabilize the dentures. Therefore, they gradually went out of use. In the middle of the 1970 s, Samarium Cobalt magnets, which have strong magnetic characteristics, were developed and introduced into dental field. In 1976, Sasaki first applied the samarium cobalt magnets to the retainers of PPDs. While in 1981, Mizutani, et al. first used well-fitted ferromagnetic alloy and the magnet for the purpose of stabilizing the RPD. Since then, many researchers have developed devices such as the magnetic retainer and the closed field magnetic attachment placed on the market in 1992. Now, as for the popular retainer of RPD, one can easily use a smaller yet stronger magnetic attachment which uses Neodium rather than Samarium Cobalt magnet.

  12. Static and dynamic phases for magnetic vortex matter with attractive and repulsive interactions.

    PubMed

    Drocco, J A; Olson Reichhardt, C J; Reichhardt, C; Bishop, A R

    2013-08-28

    Exotic vortex states with long range attraction and short range repulsion have recently been proposed to arise in certain superconducting hybrid structures such as type-I/type-II layered systems as well as multi-band superconductors. In previous work it has been shown that such systems can form clump or phase separated states, but little is known about how they behave in the presence of pinning and under an applied drive. Using large scale simulations we examine the static and dynamic properties of such vortex states interacting with random and periodic pinning. In the absence of pinning this system does not form patterns but instead undergoes complete phase separation. When pinning is present there is a transition from inhomogeneous to homogeneous vortex configurations similar to a wetting phenomenon. Under an applied drive, a dynamical dewetting process can occur from a strongly pinned homogeneous state into pattern forming states, such as moving stripes that are aligned with the direction of drive or moving labyrinth or clump phases. We show that a signature of the exotic vortex interactions observable with transport measurements is a robust double peak feature in the differential resistance curves. Our results should be valuable for determining whether such vortex interactions are occurring in these systems and also for addressing the general problem of systems with competing interactions in the presence of random and periodic pinning.

  13. Enduring Attraction: America’s Dependence On and Need to Secure Its Supply of Permanent Magnets

    DTIC Science & Technology

    2011-02-16

    Rare Earth Elements…………………………………………………………………………… 2 Applications……………………………………………………………………………. 3 Neodymium and Samarium ……………………………………………………………. 4...REEs in particular, the refined metals neodymium and samarium , are key components in the manufacture of miniature high-temperature resistant...earth permanent magnets comprise the widest use of REEs.12 Neodymium and Samarium Neodymium and samarium are only a portion of the REE market

  14. Visual attraction in Drosophila larvae develops during a critical period and is modulated by crowding conditions.

    PubMed

    Slepian, Zoe; Sundby, Kelsey; Glier, Sarah; McDaniels, Jennifer; Nystrom, Taylor; Mukherjee, Suvadip; Acton, Scott T; Condron, Barry

    2015-10-01

    The development of social behavior is poorly understood. Many animals adjust their behavior to environmental conditions based on a social context. Despite having relatively simple visual systems, Drosophila larvae are capable of identifying and are attracted to the movements of other larvae. Here, we show that Drosophila larval visual recognition is encoded by the movements of nearby larvae, experienced during a specific developmental critical period. Exposure to moving larvae, only during a specific period, is sufficient for later visual recognition of movement. Larvae exposed to wild-type body movements, during the critical period, are not attracted to the movements of tubby mutants, which have altered morphology. However, exposure to tubby, during the critical period, results in tubby recognition at the expense of wild-type recognition indicating that this is true learning. Visual recognition is not learned in excessively crowded conditions, and this is emulated by exposure, during the critical period, to food previously used by crowded larvae. We propose that Drosophila larvae have a distinct critical period, during which they assess both social and resource conditions, and that this irreversibly determines later visually guided social behavior. This model provides a platform towards understanding the regulation and development of social behavior.

  15. Implementation of ELECTRE Method in Determining the Priority of a Sustainable Tourist Attraction Development in Gorontalo Regency

    NASA Astrophysics Data System (ADS)

    Nawir, S.; Manda, R.; Rahman, T.; Fatmah, A. U.

    2017-03-01

    Prioritizing the development of a tourist attraction in Gorontalo regency is necessary, due to the limited budget allocation and the spread of tourist attractions that make it difficult to managed and supervised. Decision support system (DSS) that implementing Multi-Attribute Decision Making (MADM) such as Elimination Et Choix Traduisant La Realite (ELECTRE) method is required to assist the local government to make decision what kind of tourist attraction is the priority to developed. The purpose of this research is to help the local government in determine the priority of a sustainable tourist attraction development in Gorontalo regency. ELECTRE method is used to assess and rank the tourist attractions based on the advantages and disadvantages trough paired comparison on the same criteria. The process of collecting data is through interviews and literature review. The calculations of ELECTRE method obtained that the Reksonegoro Tourism Village or Soekarno Landing Site Museum is the most potential tourist attraction to be a priority for sustainable development. The result is provided sensible and straightforward rankings and, importantly, the decision makers more objective in determining the priority of a sustainable tourist attractions development.

  16. Rules of Attraction

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image composite shows two of the Mars Exploration Rover Opportunity's magnets, the 'capture' magnet (upper portion of left panel) and the 'filter' magnet (lower portion of left panel). Scientists use these tools to study the origins of martian dust in the atmosphere. The left panel was taken by the rover's panoramic camera. The four panels to the right, taken by the microscopic imager, show close-up views of the two magnets. The bull's-eye appearance of the capture magnet is a result of alternating magnetic fields, which are used to increase overall magnetic force. The filter magnet lacks these alternating fields and consequently produces a weaker magnetic force. This weaker force selectively attracts only strong magnetic particles.

    Scientists were surprised by the large dark particles on the magnets because airborne particles are smaller in size. They theorize that these spots might be aggregates of small particles that clump together in a magnetic field.

  17. Attracting, Developing, and Maintaining Human Capital: A New Model for Economic Development

    ERIC Educational Resources Information Center

    America's Promise Alliance (NJ1), 2011

    2011-01-01

    "Investing in Kids: Early Childhood Programs and Local Economic Development," a 2011 book by Timothy Bartik, Senior Economist at the W.E. Upjohn Institute for Employment Research, provides a new evidence-based approach for effective economic development. This approach is designed to support business growth and job creation by improving…

  18. Vancomycin-sensitive bacteria trigger development of colitis-associated colon cancer by attracting neutrophils

    PubMed Central

    Tanaka, Yuriko; Ito, Sachiko; Isobe, Ken-ichi

    2016-01-01

    Inflammatory bowel disease confers an increased risk of developing colitis-associated colon cancer (CAC). During the active colitis or developing tumor stage, commensal bacteria show dynamic translocation. However, whether alteration of the bacterial composition in the gut causes CAC is still unclear. To clarify the effect of commensal bacteria on CAC development, we employed an azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced murine CAC model treated with or without antibiotics. In addition, we analyzed the effects of antibiotics on infiltration of myeloid cells, colonic inflammatory responses, and colorectal cancer formation. We found that vancomycin treatment dramatically suppressed tumor development. In addition, AOM/DSS treatment greatly induced the infiltration of Gr-1high/CD11bhigh neutrophils to the colon, which led to the production of tumor necrosis factor α and inducible nitric oxide synthase. Vancomycin treatment suppressed the infiltration of neutrophils induced by AOM/DSS. Moreover, vancomycin treatment greatly reduced the colon injury and DNA damage caused by AOM/DSS-induced NO radicals. Our results indicate that vancomycin-sensitive bacteria induced colon inflammation and DNA damage by attracting neutrophils into damaged colon tissue, thus promoting tumor formation. PMID:27050089

  19. Vancomycin-sensitive bacteria trigger development of colitis-associated colon cancer by attracting neutrophils.

    PubMed

    Tanaka, Yuriko; Ito, Sachiko; Isobe, Ken-ichi

    2016-04-06

    Inflammatory bowel disease confers an increased risk of developing colitis-associated colon cancer (CAC). During the active colitis or developing tumor stage, commensal bacteria show dynamic translocation. However, whether alteration of the bacterial composition in the gut causes CAC is still unclear. To clarify the effect of commensal bacteria on CAC development, we employed an azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced murine CAC model treated with or without antibiotics. In addition, we analyzed the effects of antibiotics on infiltration of myeloid cells, colonic inflammatory responses, and colorectal cancer formation. We found that vancomycin treatment dramatically suppressed tumor development. In addition, AOM/DSS treatment greatly induced the infiltration of Gr-1(high)/CD11b(high) neutrophils to the colon, which led to the production of tumor necrosis factor α and inducible nitric oxide synthase. Vancomycin treatment suppressed the infiltration of neutrophils induced by AOM/DSS. Moreover, vancomycin treatment greatly reduced the colon injury and DNA damage caused by AOM/DSS-induced NO radicals. Our results indicate that vancomycin-sensitive bacteria induced colon inflammation and DNA damage by attracting neutrophils into damaged colon tissue, thus promoting tumor formation.

  20. Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti.

    PubMed

    Saratha, R; Mathew, Nisha

    2016-04-01

    A mosquito's dependence on olfaction in the hunt for human host could be efficiently exploited to protect humans from mosquito bites. The present study is undertaken to make the most attractant compound blend for Aedes aegypti mosquitoes to lure them to traps. Eleven molecules (M1-M11) at different dilutions were screened for attractancy against non-blood-fed adult female mosquitoes in an olfactometer. The results showed that the attractancy was dependent on both the chemical nature of the molecule and the strength of the odor. Out of 11 molecules screened, 9 showed significant attractancy (P < 0.05) when tested individually. The attractancy was in the order of M11 > M7 > M6 > M10 > M9 > M3 > M2 > M1 > M4 with attractancy indices (AIs) 86.11, 55.93, 55.17, 54, 52.94, 52, 50, 43.64, and 32, respectively, at the optimum dilutions. Seven blends (I-VII) were made and were screened for attractancy against Ae. aegypti. All the blends showed significant attractancy (P < 0.05). The attractancy was in the order of blend VII > III > IV > I > VI > V > II with AIs 96.63, 89.19, 65, 57.89, 56.1, 47.13, and 44.44, respectively. Among the seven blends, blend VII with constituent molecules M6, M9, M10, and M11 is the most promising with an AI value of 96.63. This blend will be useful in luring the host-seeking mosquitoes to traps. The field efficacy of these attractant blends may be explored in the future.

  1. The financial attractiveness assessment of large waste management projects registered as clean development mechanism.

    PubMed

    Bufoni, André Luiz; Oliveira, Luciano Basto; Rosa, Luiz Pinguelli

    2015-09-01

    This study illustrates the financial analyses for demonstration and assessment of additionality presented in the project design (PDD) and enclosed documents of the 431 large Clean Development Mechanisms (CDM) classified as the 'waste handling and disposal sector' (13) over the past ten years (2004-2014). The expected certified emissions reductions (CER) of these projects total 63.54 million metric tons of CO2eq, where eight countries account for 311 projects and 43.36 million metric tons. All of the projects declare themselves 'not financially attractive' without CER with an estimated sum of negative results of approximately a half billion US$. The results indicate that WM benchmarks and indicators are converging and reducing in variance, and the sensitivity analysis reveals that revenues have a greater effect on the financial results. This work concludes that an extensive financial database with simple standards for disclosure would greatly diminish statement problems and make information more comparable, reducing the risk and capital costs of WM projects.

  2. The financial attractiveness assessment of large waste management projects registered as clean development mechanism

    SciTech Connect

    Bufoni, André Luiz

    2015-09-15

    Highlights: • Projects are not financially attractive without registration as CDMs. • WM benchmarks and indicators are converging and reducing in variance. • A sensitivity analysis reveal that revenue has more of an effect on the financial results. • Results indicate that an extensive database would reduce WM project risk and capital costs. • Disclosure standards would make information more comparable worldwide. - Abstract: This study illustrates the financial analyses for demonstration and assessment of additionality presented in the project design (PDD) and enclosed documents of the 431 large Clean Development Mechanisms (CDM) classified as the ‘waste handling and disposal sector’ (13) over the past ten years (2004–2014). The expected certified emissions reductions (CER) of these projects total 63.54 million metric tons of CO{sub 2}eq, where eight countries account for 311 projects and 43.36 million metric tons. All of the projects declare themselves ‘not financially attractive’ without CER with an estimated sum of negative results of approximately a half billion US$. The results indicate that WM benchmarks and indicators are converging and reducing in variance, and the sensitivity analysis reveals that revenues have a greater effect on the financial results. This work concludes that an extensive financial database with simple standards for disclosure would greatly diminish statement problems and make information more comparable, reducing the risk and capital costs of WM projects.

  3. Facial attractiveness.

    PubMed

    Little, Anthony C

    2014-11-01

    Facial attractiveness has important social consequences. Despite a widespread belief that beauty cannot be defined, in fact, there is considerable agreement across individuals and cultures on what is found attractive. By considering that attraction and mate choice are critical components of evolutionary selection, we can better understand the importance of beauty. There are many traits that are linked to facial attractiveness in humans and each may in some way impart benefits to individuals who act on their preferences. If a trait is reliably associated with some benefit to the perceiver, then we would expect individuals in a population to find that trait attractive. Such an approach has highlighted face traits such as age, health, symmetry, and averageness, which are proposed to be associated with benefits and so associated with facial attractiveness. This view may postulate that some traits will be universally attractive; however, this does not preclude variation. Indeed, it would be surprising if there existed a template of a perfect face that was not affected by experience, environment, context, or the specific needs of an individual. Research on facial attractiveness has documented how various face traits are associated with attractiveness and various factors that impact on an individual's judgments of facial attractiveness. Overall, facial attractiveness is complex, both in the number of traits that determine attraction and in the large number of factors that can alter attraction to particular faces. A fuller understanding of facial beauty will come with an understanding of how these various factors interact with each other. WIREs Cogn Sci 2014, 5:621-634. doi: 10.1002/wcs.1316 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.

  4. Attractive action of FGF-signaling contributes to the postnatal developing hippocampus.

    PubMed

    Cuccioli, V; Bueno, C; Belvindrah, R; Lledo, P-M; Martinez, S

    2015-04-01

    During brain development neural cell migration is a crucial, well-orchestrated, process, which leads to the proper whole brain structural organization. As development proceeds, new neurons are continuously produced, and this protracted neurogenesis is maintained throughout life in specialized germinative areas inside the telencephalon: the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. In the anterior SVZ, newly generated neurons migrate through long distances, along the rostral migratory stream (RMS), before reaching their final destinations in the olfactory bulb (OB). Intriguingly, recent observations pointed out the existence of other postnatal tangential routes of migration alternative to the RMS but still starting from the SVZ. The presence of such dynamic and heterogeneous cell movements contributes to important features in the postnatal brain such as neural cell replacement and plasticity in cortical regions. In this work, we asked whether a caudal migratory pathway starting from the caudal SVZ continues through life. Strikingly, in vivo analysis of this caudal migration revealed the presence of a postnatal contribution of SVZ to the hippocampus. In vitro studies of the caudal migratory stream revealed the role of FGF signaling in attracting caudally the migrating neuroblasts during postnatal stages. Our findings demonstrate a postnatal neuronal contribution from the caudal ganglionic eminence (CGE) CGE-SVZ to the hippocampus through an FGF-dependent migrating mechanism. All together our data emphasizes the emerging idea that a developmental program is still operating in discrete domains of the postnatal brain and may contribute to the regulation of neural cell replacement processes in physiological plasticity and/or pathological circumstances.

  5. Development of a magnetically suspended momentum wheel

    NASA Technical Reports Server (NTRS)

    Hamilton, S. B.

    1973-01-01

    An engineering model of a magnetically suspended momentum wheel was designed, fabricated, and tested under laboratory conditions. The basic unit consisted of two magnet bearings, a sculptured aluminum rotor, brushless dc spin motor, and electronics. The magnet bearings, utilizing rare-earth cobltrat-samarium magnets were active radially and passive axially. The results of the program showed that momentum wheels with magnetic bearings are feasible and operable, and that magnetic bearings of this type are capable of being used for applications where high capacity, high stiffness, and low power consumption are required. The tests performed developed criteria for improved performance for future designs.

  6. Slip instability development and earthquake nucleation as a dynamical system's fixed-point attraction

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.

    2014-12-01

    A fault's transition from slow creep to the propagation of an earthquake-generating dynamic rupture is thought to start as a quasi-static slip instability. Here we examine how such an instability develops on a sliding interface whose strength is governed by a slip rate- and state-dependent friction, where the state variable evolves according to the aging law. We find that the development occurs as the attraction of a dynamical system to a fixed point. The fixed points are such that the state of slip and the rate at which velocity diverges (and its spatial distribution) are known. The fixed points are independent of the manner of external forcing and the values of slip rate and state before the onset of instability. For a fault under uniform normal stress and frictional properties, the sole parameter that determines the fixed point (to within a translational invariance) is the ratio of the frictional parameters, a/b (where, for steady-state rate weakening, 0develop in a chaotic fashion. The fixed-point solutions, as well as the critical thresholds concerning their stability, depend on the configuration of slip (e.g., in/anti-plane or mixed-mode slip) and the elastic environment in which the interface is embedded (e.g., a slip surface between elastic half-spaces or one lying below and parallel to a free surface); solving for a fixed point reduces to the solution of an equivalent problem of an equilibrium slip-weakening fracture; and fixed-point stability is determined by linear stability analysis. Solutions of

  7. Development of an attractant-baited trap for Oxythyrea funesta Poda (Coleoptera: Scarabaeidae, Cetoniinae).

    PubMed

    Vuts, József; Imrei, Zoltán; Töth, Miklós

    2008-01-01

    In electroantennographic tests isosafrol, methyl salicylate, (+/-)-lavandulol, geraniol, (E)-anethol, and beta-ionone evoked the largest responses from antennae of female or male Oxythyrea funesta (Coleoptera: Scarabaeidae, Cetoniinae) adult beetles. In field trapping tests in Hungary the 1:1 blend of (+/-)-lavandulol and 2-phenylethanol attracted significantly more adult O. funesta than the single compounds. The addition of (E)-anethol, a previously described attractant for the species, was without effect. There was no difference in the responses of male or female beetles. The binary 2-phenylethanol/(+/-)-lavandulol bait described, in this study is recommended for the use in traps of O. funesta for agricultural purposes.

  8. Present Status of the KSTAR Superconducting Magnet System Development

    NASA Astrophysics Data System (ADS)

    Kim, Keeman; H, K. Park; K, R. Park; B, S. Lim; S, I. Lee; M, K. Kim; Y, Chu; W, H. Chung; S, H. Baek; J Y, Choi; H, Yonekawa; A, Chertovskikh; Y, B. Chang; J, S. Kim; C, S. Kim; D, J. Kim; N, H. Song; K, P. Kim; Y, J. Song; I, S. Woo; W, S. Han; D, K. Lee; Y, K. Oh; K, W. Cho; J, S. Park; G, S. Lee; H, J. Lee; T, K. Ko; S, J. Lee

    2004-10-01

    The mission of Korea Superconducting Tokamak Advanced Research (KSTAR) project is to develop an advanced steady-state superconducting tokamak for establishing a scientific and technological basis for an attractive fusion reactor. Because one of the KSTAR mission is to achieve a steady-state operation, the use of superconducting coils is an obvious choice for the magnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and 14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into use in both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasma center and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement in KSTAR magnet-system development includes the development of CICC, the development of a full-size TF model coil, the development of a coil system for background magnetic-field generation, the construction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are in the stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.

  9. The Appetitive Aggression Scale—development of an instrument for the assessment of human's attraction to violence.

    PubMed Central

    Weierstall, Roland; Elbert, Thomas

    2011-01-01

    Background Several instruments, notably Buss and Perry's Aggression Questionnaire, have been developed for the assessment of aggressive behavior. However, in these instruments, the focus has been on reactive rather than instrumental forms of aggression, even though men in particular may find aggressive behavior attractive. A questionnaire or structured interview for the systematic assessment of the attraction to violence is not yet available. Objective We, therefore, developed a freely available short form for the assessment of a person's attraction to violent and planned forms of aggression based on reports of former combatants on the attraction to violence and the characteristics of instrumental aggression described in the literature. Method The Appetitive Aggression Scale (AAS) was administered to nine samples drawn from different populations, with a total of 1,632 former combatants and participants from war-affected regions (1,193 male and 439 female respondents). Results From the initial set of 31 items, a selection of 15 items was extracted to improve the scale's psychometric properties and assess the construct of appetitive aggression validly with respect to content. Cronbach's Alpha coefficient of 0.85 was appropriate. All items loaded significantly on a single factor accounting for 32% of the total variance. Further analysis revealed that the scale measures a specific construct that can be distinguished from other concepts of human aggression. Conclusions With the AAS, we present an easily administrable tool for the assessment of the attraction to violence. PMID:22893817

  10. The discovery and development of chemical attractants used to trap pestiferous wasps (Hymenoptera: Vespidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Social wasps are a stinging hazard, including in fruit crops where they also do direct feeding damage to trees and fruits, and at tall structures such as towers where some species form mating and overwintering aggregations. Chemical attractants are of use against these wasps as lures for traps and b...

  11. Inland waterway ports nodal attraction indices relevant in development strategies on regional level

    NASA Astrophysics Data System (ADS)

    Dinu, O.; Burciu, Ş.; Oprea, C.; Ilie, A.; Rosca, M.

    2016-08-01

    Present paper aims to propose a set of ranking indices and related criteria, concerning mainly spatial analysis, for the inland waterway port, with special view on inland ports of Danube. Commonly, the attraction potential of a certain transport node is assessed by its spatial accessibility indices considering both spatial features of the location provided by the networks that connect into that node and its economic potential defining the level of traffic flows depending on the economic centers of its hinterland. Paper starts with a overview of the critical needs that are required for potential sites to become inland waterway ports and presents nodal functions that coexist at different levels, leading to a port hierarchy from the points of view of: capacity, connection to hinterland, traffic structure and volume. After a brief review of the key inland waterway port ranking criterion, a selection of nodal attraction measures is made. Particular considerations for the Danube inland port case follows proposed methodology concerning indices of performance for network scale and centrality. As expected, the shorter the distance from an inland port to the nearest access point the greater accessibility. Major differences in ranking, dependent on selected criterion, were registered.

  12. Development of EPA`s new methods to quantify vector attraction of wastewater sludges

    SciTech Connect

    Farrell, J.B.; Bhide, V.; Smith, J.E. Jr.

    1996-05-01

    EPA`s 1979 and 1993 sludge regulations require that sewage sludge be reduced in vector attraction before it can be applied to the land. In the 1979 regulation, satisfactory vector attraction reduction (VAR) could be demonstrated if treatment processes reduced the volatile solids content of sludge by 38%. The 1993 regulation adds two alternative test methods for aerobic sludges for determining whether VAR has been adequate. In the first method, specific oxygen uptake rate (SOUR) of the sludge must be <1.5 mg O{sub 2}/hr/g total solids, and in the second method, the additional volatile solids reduction (AVSR) that occurs when the sludge is further digested for 30 days must be <15%. Experimentation with the new tests is described. Comparisons among the three methods showed that the 38% VSR requirement and the SOUR test were equivalent only near 20{degree}C. The AVSR test was more conservative than either of the other tests. 18 refs., 7 figs., 3 tabs.

  13. Development of magnetic eddy current testing techniques

    NASA Astrophysics Data System (ADS)

    Tada, Toyokazu; Suetsugu, Hidehiko

    2017-02-01

    IRIS (Internal Rotary Inspection System) has become a major maintenance inspection technique for the heat exchanger and reactor tubes. It is known that IRIS has a high precision of evaluation thickness, however there are a few disadvantages, such as slow inspection speed. Therefore, we have developed a magnetic eddy current flaw testing technique which combines a magnetic array forming a strong magnetic field, 4 coil structures for controlling the generation area of the eddy currents, and a desorption yoke structure to control the magnetizing force. In this presentation, details of this technique and practical application will be elaborated.

  14. Attracting Wildlife.

    ERIC Educational Resources Information Center

    Kaplan, Jay

    1979-01-01

    The artcile answers some questions frequently asked by growing numbers of bird and animal feeders regarding what types of feeders and seed to use and what kinds of birds can be attracted to a given area. It discusses problems which can arise from this enjoyable year-round recreation. (SB)

  15. Eigenvalue Attraction

    NASA Astrophysics Data System (ADS)

    Movassagh, Ramis

    2016-02-01

    We prove that the complex conjugate (c.c.) eigenvalues of a smoothly varying real matrix attract (Eq. 15). We offer a dynamical perspective on the motion and interaction of the eigenvalues in the complex plane, derive their governing equations and discuss applications. C.c. pairs closest to the real axis, or those that are ill-conditioned, attract most strongly and can collide to become exactly real. As an application we consider random perturbations of a fixed matrix M. If M is Normal, the total expected force on any eigenvalue is shown to be only the attraction of its c.c. (Eq. 24) and when M is circulant the strength of interaction can be related to the power spectrum of white noise. We extend this by calculating the expected force (Eq. 41) for real stochastic processes with zero-mean and independent intervals. To quantify the dominance of the c.c. attraction, we calculate the variance of other forces. We apply the results to the Hatano-Nelson model and provide other numerical illustrations. It is our hope that the simple dynamical perspective herein might help better understanding of the aggregation and low density of the eigenvalues of real random matrices on and near the real line respectively. In the appendix we provide a Matlab code for plotting the trajectories of the eigenvalues.

  16. Minor components in the sex pheromone of legume podborer: Maruca vitrata development of an attractive blend.

    PubMed

    Downham, M C A; Hall, D R; Chamberlain, D J; Cork, A; Farman, D I; Tamò, M; Dahounto, D; Datinon, B; Adetonah, S

    2003-04-01

    The legume podborer, Maruca vitrata (syn. M. testulalis) (F.) (Lepidoptera: Pyralidae) is a pantropical pest of legume crops. Sex pheromone was collected by gland extraction or trapping of volatiles from virgin female moths originating in India, West Africa, or Taiwan. Analysis by GC-EAG and GC-MS confirmed previously published findings that (E,E)-10,12-hexadecadienal is the most abundant EAG-active component with 2-5% of (E,E)-10,12-hexadecadienol also present. At least one other EAG response was detected at retention times typical of monounsaturated hexadecenals or tetradecenyl acetates, but neither could be detected by GC-MS. Laboratory wind-tunnel bioassays and a field bioassay of blends of (E,E)-10,12-hexadecadienal with (E,E )-10,12-hexadecadienol and a range of monounsaturated hexadecenal and tetradecenyl acetate isomers indicated greatest attraction of males was to those including (E,E)-10,12-hexadecadienol and (E)-10-hexadecenal as minor components. In subsequent trapping experiments in cowpea fields in Benin, traps baited with a three-component blend of (E,E)-10,12-hexadecadienal and these two minor components in a 100:5:5 ratio caught significantly more males than traps baited with the major component alone, either two-component blend, or virgin female moths. Further blend optimization experiments did not produce a more attractive blend. No significant differences in catches were found between traps baited with polyethylene vials or rubber septa, or between lures containing 0.01 and 0.1 mg of synthetic pheromone. Significant numbers of female M. vitrata moths, up to 50% of total catches, were trapped with synthetic blends but not with virgin females. At present there is no clear explanation for this almost unprecedented finding, but the phenomenon may improve the predictive power of traps for population monitoring.

  17. Proximity detector circuits: an attractive alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic fields

    SciTech Connect

    Altarawneh, Moaz M; Mielke, Charles H

    2009-01-01

    A new radio frequency oscillator circuit based on a proximity detector integrated circuit is described as an alternative for the traditional tunnel diode oscillator used for pulsed magnetic field measurements at low temperatures. The new circuit has been successfully applied to measure the superconducting upper critical field in Ba{sub 0.55}K{sub 0.45}Fe{sub 2}As{sub 2} single crystfl.ls up to 60 T. The new circuit design avoids many of the problems associated with tunnel diode circuits while keeping the advantages of contact less measurements in pulsed magnets.

  18. Development of multistage magnetic deposition microscopy.

    PubMed

    Nath, Pulak; Strelnik, Joseph; Vasanji, Amit; Moore, Lee R; Williams, P Stephen; Zborowski, Maciej; Roy, Shuvo; Fleischman, Aaron J

    2009-01-01

    Magnetic deposition microscropy (MDM) combines magnetic deposition and optical analysis of magnetically tagged cells into a single platform. Our multistage MDM uses enclosed microfabricated channels and a magnet assembly comprising four zones in series. The enclosed channels alleviate the problem plaguing previous versions of MDM: scouring of the cell deposition layer by the air-liquid interface as the channel is drained. The four-zone magnet assembly was designed to maximize capture efficiency, and experiments yielded total capture efficiencies of >99% of fluorescent- and magnetically-labeled Jurkat cells at reasonable throughputs (10(3) cells/min). A digital image processing protocol was developed to measure the average pixel intensities of the deposited cells in different zones, indicative of the marker expression. Preliminary findings indicate that the multistage MDM may be suitable for depositing cells and particles in successive zones according to their magnetic properties (e.g., magnetic susceptibilities or magnetophoretic mobilities). The overall goal is to allow the screening of multiple disease conditions in a single platform.

  19. Development of a CO2 releasing co-formulation 1 based on starch, Saccharomyces cerevisiae and Beauveria bassiana attractive towards western corn rootworm larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CO2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO2 emitting formulations need to be developed. This work aimed at the development of a slow release bead system in order to bridge the gap between application and hatching of...

  20. An Application of Project-Based Learning on the Development of Young Local Tour Guides on Tai Phuan's Culture and Tourist Attractions in Sisatchanalai District, Sukhothai Province

    ERIC Educational Resources Information Center

    Kerdpol, Sakon

    2016-01-01

    This paper presents an investigation of a research entitled, " An Application of Project-based Learning on the Development of Young Local Tour Guides on Tai Phuan's Culture and Tourist Attractions in Sisatchanalai District, Sukhothai Province. It was intended to develop young local tour guides on Tai Phuan's culture and tourist attractions in…

  1. Attractiveness and Psychological Development. Teacher Education Forum; Volume 4, Number 21.

    ERIC Educational Resources Information Center

    Algozzine, Robert; Salvia, John

    An investigation of the relationship between appearance and psychological development is presented in this paper. The central hypothesis of the investigation is that appearance is an important stimulus property in the psychological development of children, and as such has an effect on an individual's response to his environment as well as the…

  2. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  3. Development of HTS Magnet for Rotating Gantry

    NASA Astrophysics Data System (ADS)

    Tasaki, Kenji; Koyanagi, Kei; Takayama, S. Shigeki; Ishii, Yusuke; Kurusu, Tsutomu; Amemiya, Naoyuki; Ogitsu, Toru; iwata, Yoshiyuki; Noda, Koji

    The effectiveness of heavy-ion radiotherapy for cancer treatment has been recognized by medical experts and the public. However, due to the large size of the equipment, this therapy has not been widely adopted. In particular, the rotating gantries used to irradiate patients with the heavy-ion beams from any direction may be as heavy as 600 tons in our estimation. By employing high-temperature superconducting (HTS) wires in these rotating gantries and increasing the magnetic field generated by the deflecting coils, the total weight of the rotating gantry can be reduced to around the weight of those used for proton radiotherapy. A project for developing an HTS deflecting magnet for heavy-ion radiotherapy has been underway since 2013, supported by the Japanese Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED). The aim of this project is to develop fundamental technologies for designing and fabricating HTS deflecting magnets, such as irregular magnetic field estimating techniques, design technology for HTS magnets, high-precision HTS coil winding technology, AC loss estimating techniques, and thermal runaway estimating techniques and to fabricate a small model of an HTS deflecting magnet and evaluate its performance. In this paper, the project's progress will be described.

  4. Developments in electrical machines using permanent magnets

    NASA Astrophysics Data System (ADS)

    Chalmers, B. J.

    1996-05-01

    The availability of high-field permanent-magnet materials has created opportunities for the development of electrical machines with advantageous properties including high efficiency, compact size, low weight and brushless operation. The paper reports the design and performance of a number of motors and generators which have recently been developed and demonstrated.

  5. Electrochemical separation is an attractive strategy for development of radionuclide generators for medical applications.

    PubMed

    Chakravarty, Rubel; Dash, Ashutosh; Pillai, M R A

    2012-07-01

    Electrochemical separation techniques are not widely used in radionuclide generator technology and only a few studies have been reported [1-4]. Nevertheless, this strategy is useful when other parent-daughter separation techniques are not effective or not possible. Such situations are frequent when low specific activity (LSA) parent radionuclides are used for instance with adsorption chromatographic separations, which can result in lower concentration of the daughter radionuclide in the eluent. In addition, radiation instability of the column matrix in many cases can affect the performance of the generator when long lived parent radionuclides are used. Intricate knowledge of the chemistry involved in the electrochemical separation is crucial to develop a reproducible technology that ensures that the pure daughter radionuclide can be obtained in a reasonable time of operation. Crucial parameters to be critically optimized include the applied potential, choice of electrolyte, selection of electrodes, temperature of electrolyte bath and the time of electrolysis in order to ensure that the daughter radionuclide can be reproducibly recovered in high yields and high purity. The successful electrochemical generator technologies which have been developed and are discussed in this paper include the (90)Sr/(90)Y, (188)W/(188)Re and (99)Mo/(99m)Tc generators. Electrochemical separation not only acts as a separation technique but also is an effective concentration methodology which yields high radioactive concentrations of the daughter products. The lower consumption of reagents and minimal generation of radioactive wastes using such electrochemical techniques are compatible with 'green chemistry' principles.

  6. Conductor Development for High Field Dipole Magnets

    SciTech Connect

    Scanlan, R.M.; Dietderich, D.R.; Higley, H.C.

    2000-03-01

    Historically, improvements in dipole magnet performance have been paced by improvements in the superconductor available for use in these magnets. The critical conductor performance parameters for dipole magnets include current density, piece length, effective filament size, and cost. Each of these parameters is important for efficient, cost effective dipoles, with critical current density being perhaps the most important. Several promising magnet designs for the next hadron collider or a muon collider require fields of 12 T or higber, i.e. beyond the reach of NbTi. The conductor options include Nb{sub 3}Sn, Nb{sub 3}Al, or the high temperature superconductors. Although these conductors have the potential to provide the combination of performance and cost required, none of them have been developed sufficiently at this point to satisfy all the requirements. This paper will review the status of each class of advanced conductor and discuss the remaining problems that require solutions before these new conductors can be considered as practical. In particular, the plans for a new program to develop Nb{sub 3}Sn and Nb{sub 3}Al conductors for high energy physics applications will be presented. Also, the development of a multikiloamp Bi-2212 cable for dipole magnet applications will be reported.

  7. Development of a complex floral trait: The pollinator-attracting petal spots of the beetle daisy, Gorteria diffusa (Asteraceae).

    PubMed

    Thomas, Meredith M; Rudall, Paula J; Ellis, Allan G; Savolainen, Vincent; Glover, Beverley J

    2009-12-01

    Angiosperms possess a variety of complex floral traits that attract animal pollinators. Dark petal spots have evolved independently many times across the angiosperm phylogeny and have been shown to attract insect pollinators from several lineages. Here we present new data on the ontogeny and morphological complexity of the elaborate insect-mimicking petal spots of the South African daisy species, Gorteria diffusa (Asteraceae), commonly known as the beetle daisy, although it is fly-pollinated. Using light and scanning electron microscopy and histology, we identified three distinct specialized cell types of the petal epidermis that compose the petal spot. Sophisticated patterning of pigments, cuticular elaborations, and multicellular papillate trichomes make the G. diffusa petal spot a uniquely complex three-dimensional floral ornament. Examination of young inflorescence meristems revealed that G. diffusa ray florets develop (and probably also initiate) basipetally, in the opposite direction to the disc florets-a developmental phenomenon that has been found in some other daisies, but which contradicts conventional theories of daisy inflorescence architecture. Using these ontogenetic and morphological data, we have identified the mechanism by which G. diffusa patterns its insect-mimicking petal spots, and we propose a testable model for the genetic regulation of petal spot identity.

  8. The Changing Attractiveness of European Higher Education in the Next Decade: Current Developments, Future Challenges and Major Policy Issues

    ERIC Educational Resources Information Center

    Kwiek, Marek

    2009-01-01

    This article focuses on the different senses of the attractiveness of European systems and institutions for students, academics, the labour market and the economy, drawing attention to emergent tensions between different university stakeholders. Universities not only need to be attractive to increasingly differentiated student populations, but…

  9. The role of sexually explicit material in the sexual development of same-sex-attracted Black adolescent males.

    PubMed

    Arrington-Sanders, Renata; Harper, Gary W; Morgan, Anthony; Ogunbajo, Adedotun; Trent, Maria; Fortenberry, J Dennis

    2015-04-01

    Sexually explicit material (SEM) (including Internet, video, and print) may play a key role in the lives of Black same-sex sexually active youth by providing the only information to learn about sexual development. There is limited school- and/or family-based sex education to serve as models for sexual behaviors for Black youth. We describe the role SEM plays in the sexual development of a sample of Black same-sex attracted (SSA) young adolescent males ages 15-19. Adolescents recruited from clinics, social networking sites, and through snowball sampling were invited to participate in a 90-min, semi-structured qualitative interview. Most participants described using SEM prior to their first same-sex sexual experience. Participants described using SEM primarily for sexual development, including learning about sexual organs and function, the mechanics of same-gender sex, and to negotiate one's sexual identity. Secondary functions were to determine readiness for sex; to learn about sexual performance, including understanding sexual roles and responsibilities (e.g., "top" or "bottom"); to introduce sexual performance scripts; and to develop models for how sex should feel (e.g., pleasure and pain). Youth also described engaging in sexual behaviors (including condom non-use and/or swallowing ejaculate) that were modeled on SEM. Comprehensive sexuality education programs should be designed to address the unmet needs of young, Black SSA men, with explicit focus on sexual roles and behaviors that may be inaccurately portrayed and/or involve sexual risk-taking (such as unprotected anal intercourse and swallowing ejaculate) in SEM. This work also calls for development of Internet-based HIV/STI prevention strategies targeting young Black SSA men who may be accessing SEM.

  10. The Role of Sexually Explicit Material (SEM) in the Sexual Development of Black Young Same-Sex-Attracted Men

    PubMed Central

    Morgan, Anthony; Ogunbajo, Adedotun; Trent, Maria; Harper, Gary W.; Fortenberry, J. Dennis

    2015-01-01

    Sexually explicit material (SEM) (including Internet, video, and print) may play a key role in the lives of Black same-sex sexually active youth by providing the only information to learn about sexual development. There is limited school-and/or family-based sex education to serve as models for sexual behaviors for Black youth. We describe the role SEM plays in the sexual development of a sample of Black same-sex attracted (SSA) young adolescent men ages 15–19. Adolescents recruited from clinics, social networking sites, and through snowball sampling were invited to participate in a 90-min, semi-structured qualitative interview. Most participants described using SEM prior to their first same-sex sexual experience. Participants described using SEM primarily for sexual development, including learning about sexual organs and function, the mechanics of same-gender sex, and to negotiate one’s sexual identity. Secondary functions were to determine readiness for sex; to learn about sexual performance, including understanding sexual roles and responsibilities (e.g., “top” or “bottom”); to introduce sexual performance scripts; and to develop models for how sex should feel (e.g., pleasure and pain). Youth also described engaging in sexual behaviors (including condom non-use and/or swallowing ejaculate) that were modeled on SEM. Comprehensive sexuality education programs should be designed to address the unmet needs of young, Black SSA young men, with explicit focus on sexual roles and behaviors that may be inaccurately portrayed and/or involve sexual risk-taking (such as unprotected anal intercourse and swallowing ejaculate) in SEM. This work also calls for development of Internet-based HIV/STI prevention strategies targeting young Black SSA men who maybe accessing SEM. PMID:25677334

  11. Development of superconducting magnet systems for HIFExperiments

    SciTech Connect

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  12. Development of magnetic device for cell separation

    NASA Astrophysics Data System (ADS)

    Haik, Yousef; Pai, Vinay; Chen, Ching-Jen

    1999-04-01

    A magnetic device that separates red blood cells from the whole blood on a continuous basis is presented. The device utilizes permanent magnets in alternating spatial arrangements. Red blood cells are coupled with magnetic microspheres to facilitate the magnetic separation. Effectiveness of red blood cells separation and purity of plasma solution was improved using the device over conventional centrifugal methods.

  13. Three decades of superconducting magnet development

    NASA Astrophysics Data System (ADS)

    Desportes, Henri

    Superconducting Magnet Technology was born in the early 1960's after thediscovery by Kunzler of the high field properties of new superconductors, Nb 3Sn and Nb Zr. The technology advanced vigorously, mainly under the strong incentive of High Energy and Plasma Physics, and spread out to many areas of Physics and of practical applications. The paper retraces some of the adventurous developments leading to the present state-of-the-art. The new era of high T c superconductors is still in the expectant stage for such applications.

  14. Field study on the attraction and development of insects on human meconium and breast-fed-infant feces.

    PubMed

    De Jong, Grant D

    2014-09-01

    Urogenital myiasis of newborn infants, although rare, is usually considered to indicate neglect due to attraction of flies to feces; however, infant feces have not been determined to attract insects. Human meconium and breast-fed-infant feces were used to determine attractiveness to insects and to examine subsequent colonization and growth patterns of insect larvae. Despite small amounts of fecal material present, adults of Lucilia sericata arrived at breast-fed-infant feces within five minutes; insects were rarely observed on meconium. Oviposition and growth of L. sericata larvae occurred only on breast-fed-infant feces; however, the larvae did not progress beyond the second instar. These data suggest that urogenital myiasis by L. sericata in newborn human infants within the first few days postpartum would not be expected, but desiccation and depletion of infested feces may provide a possible pathway for urogenital myiasis in older newborn infants.

  15. Women's Drinking Decisions in Heterosocial Situations: Development and Validation of Scenarios to Assess Influence of Attraction and Risk-Awareness.

    PubMed

    Noel, Nora E; Ogle, Richard L; Maisto, Stephen A; Jackson, Lee A; Loomis, Randi B; Heaton, Jennifer A

    2016-07-12

    These three related studies created a set of ecologically valid scenarios for assessing relative associations of both attraction and sexual coercion risk-recognition in college women's heterosocial situational drinking decisions. The first study constructed nine scenarios using input from heterosexual drinking women in the age cohort (18-30) most likely to experience alcohol-related sexual coercion. In the second study, 50 female undergraduates (ages 18-25) assessed the salience of three important dimensions (attraction, risk, and realism) in these scenarios. The third study was a factor analysis (and a follow-up confirmatory factor analysis) of the elements of coercion-risk as perceived by the target group with two female samples recruited 1 year apart (Sample 1: N = 157, ages 18-29); Sample 2: N = 157, ages 18-30). Results confirmed that the scenarios could be a useful vehicle for assessing how women balance out risk and attraction to make in-the moment heterosocial drinking decisions. The factor analysis showed participants perceived two types of situations, based on whether the male character was "Familiar" or "Just Met" and perceived themselves as happier and more excited with Familiar males. However, in contrast to HIV risk studies, Familiar males were perceived as higher risk for unwanted sex. Future research will use the six scenarios that emerged from the factor analysis to study how attraction and risk perception differentially affect young adult women's social drinking decisions.

  16. Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications

    DTIC Science & Technology

    2015-01-23

    Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications Earlier wereport the successful...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Nanomagnetics, carbon nanotubes , multilayer materials, spin...Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications Report Title Earlier wereport the

  17. Development of instrumentation for magnetic nondestructive evaluation

    SciTech Connect

    Hariharan, S.

    1991-09-23

    The use of failure-prone components in critical applications has been traditionally governed by removing such components from service prior to the expiration of their predicted life expectancy. Such early retirement of materials does not guarantee that a particular sample will not fail in actual usage. The increasing cost of such life expectancy based operation and increased demand for improved reliability in industrial settings has necessitated an alternate form of quality control. Modern applications employ nondestructive evaluation (NDE), also known as nondestructive testing (NDT), as a means of monitoring the levels and growth of defects in a material throughout its operational life. This thesis describes the modifications made to existing instrumentation used for magnetic measurements at the Center for Nondestructive Evaluation at Iowa State University. Development of a new portable instrument is also given. An overview of the structure and operation of this instrumentation is presented. This thesis discusses the application of the magnetic hysteresis and Barkhausen measurement techniques, described in Sections 1.3.1 and 1.3.2 respectively, to a number of ferromagnetic specimens. Specifically, measurements were made on a number of railroad steel specimens for fatigue characterization, and on specimens of Damascus steel and Terfenol-D for materials evaluation. 60 refs., 51 figs., 5 tabs.

  18. Development of peristaltic crawling robot using magnetic fluid on the basis of locomotion mechanism of earthworm

    NASA Astrophysics Data System (ADS)

    Saga, Norihiko; Nakamura, Taro

    2002-11-01

    The field of bio-engineering with the aim of developing new machines, which utilizes the motion and control of organisms as a model, is attracting attention. This technology is pursued by paying attention to various shapes and movements of organisms and autonomous system of organisms in acting in response to environment surrounding them, and by mechanically elucidating the locomotion mechanism, propulsive mechanism, nerve system and sensation system of these organisms. On the other hand, in the field of hydrodynamics, magnetic fluid that changes its apparent viscosity depending on magnetic field has been developed, and its utilization is under trial in various fields. We paid attention to the peristaltic crawling of earthworm as transport function in place of wheels or ambulation, and have developed a micro robot running inside a tube using magnetic fluid. In this micro robot, a cell corresponding to earthworm's segment is composed of a natural rubber tube sealed with water-based magnetic fluid, and the cells are connected with elastic rods made of natural rubber. The feature of this micro robot is that its structure is simply composed of, and it can be controlled with external wireless force, by providing it with moving magnetism from the outside. This paper presents the analytical result of the peristaltic crawling of an actual earthworm and the evaluation result of transport mechanism of a prototype micro robot moved by external magnetic field.

  19. Developing Glassy Magnets from Simulated Composition of Martian Soil for Exploration Applications

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Ray, C. S.; Rogers, J. R.

    2004-01-01

    The long-term exploration goals of NASA include developing human habitation on Mars and conducting scientific investigations on Mars and other planetary bodies. In situ resource processing is a key objective in this area. We focus on the possibility of making magnetic glasses in situ for potential applications development. The paper will focus on ongoing work at NASA Marshall Space Flight Center on making magnetic glass from Mars soil simulants and its characterization. Analysis of the glass morphology, strength, chemistry and resulting magnetic properties will provide a fundamental understanding of the synthesized material that can be used for potential applications development. in an effort to characterize the magnetic properties of the Mars glasses, a series of tests were performed at NASA MSFC. Preliminary tests indicated that the glasses were attracted to a magnet and also had a small amount of residual magnetism. They were opaque (almost black in color). As the first step, a sample of Mars 1 glass (approx.1 mm x 1 mm x 5 mm length) was machined, weighed and its hysteresis curve was measured using a Vibration Sample Magnetometer (VSM). Next, a small furnace was designed and built and the sample was baked in a graphite (reducing agent) crucible at 800 C in an Argon atmosphere for 3 hours in the presence of a uniform, transverse (transverse to the 5mm length of the sample) magnetic field of 0.37 Tesla. The treated sample showed reddening on the outside and showed substantially increased residual magnetism. This sample was again analyzed in the VSM. The data clearly showed that some chemical change occurred during the heat treatment (color change) and that both the glasses have useful magnetic properties. Although no orientation effects of the magnetic field were considered, the data showed the following: 1. Both glass samples are primarily soft magnets and display ferromagnetic behavior (hysteresis, saturation, etc.) 2. The treated glass has improved saturation

  20. Development of a Thin Film Magnetic Moment Reference Material

    PubMed Central

    Pappas, D. P.; Halloran, S. T.; Owings, R. R.; da Silva, F. C. S.

    2008-01-01

    In this paper we present the development of a magnetic moment reference material for low moment magnetic samples. We first conducted an inter-laboratory comparison to determine the most useful sample dimensions and magnetic properties for common instruments such as vibrating sample magnetometers (VSM), SQUIDs, and alternating gradient field magnetometers. The samples were fabricated and then measured using a vibrating sample magnetometer. Their magnetic moments were calibrated by tracing back to the NIST YIG sphere, SRM 2853. PMID:27096108

  1. Design and Development of a Segmented Magnet Homopolar Torque Converter

    DTIC Science & Technology

    1975-07-01

    centrifugal, electromagnetic 9. magnetic fluid 10. surface tension - wetted/non-wetted surfaces 11. solidification - thermal, chemical B. Conducting...developing a metallic (liquid metal) magnetic - fluid shaft-seal for large turbine- generators. It was concluded that the magnetic liquid metal...effort and a program of that nature is under consideration. (Design with a con- ductive magnetic fluid must also consider the possibility of

  2. Vortex attraction and the formation of sunspots

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1992-01-01

    A downdraft vortex ring in a stratified atmosphere exhibits universal attraction for nearby vertical magnetic flux bundles. It is speculated that the magnetic fields emerging through the surface of the sun are individually encircled by one or more subsurface vortex rings, providing an important part of the observed clustering of magnetic fibrils to form pores and sunspots.

  3. Being Sexually Attracted to Minors: Sexual Development, Coping With Forbidden Feelings, and Relieving Sexual Arousal in Self-Identified Pedophiles.

    PubMed

    Houtepen, Jenny A B M; Sijtsema, Jelle J; Bogaerts, Stefan

    2016-01-02

    This article aims to provide more insight into pedophilic attraction and risk and protective factors for offending in nonclinical pedophiles. Fifteen participants were interviewed about sexuality, coping, and sexual self-regulation. Many participants struggled with acknowledging pedophilic interest in early puberty and experienced psychological difficulties as a result. Furthermore, many committed sex offenses during adolescence when they were still discovering their feelings. Early recognition of risk factors and early start of interventions seem vital in preventing offending. Moreover, results suggest that risk for offending can be diminished by creating more openness about pedophilia and by providing pedophiles with social support and control.

  4. Novel magnetic tips developed for the switching magnetization magnetic force microscopy.

    SciTech Connect

    Cambel, V.; Elias, P.; Gregusova, D.; Fedor, J.; Martaus, J.; Karapetrov, G.; Novosad, V.; Kostic, I.; Materials Science Division; Slovak Academy of Sciences

    2010-07-01

    Using micromagnetic calculations we search for optimal magnetic properties of novel magnetic tips to be used for a Switching Magnetization Magnetic Force Microscopy (SM-MFM), a novel technique based on two-pass scanning with reversed tip magnetization. Within the technique the sum of two scans images local atomic forces and their difference maps the local magnetic forces. The tip magnetization is switched during the scanning by a small magnetic field. The technology of novel low-coercitive magnetic tips is proposed. For best performance the tips must exhibit low magnetic moment, low switching field, and single-domain state at remanence. Such tips are equipped with Permalloy objects of a precise shape that are defined on their tilted sides. We calculate switching fields of such tips by solving the micromagnetic problem to find the optimum shape and dimensions of the Permalloy objects located on the tips. Among them, hexagon was found as the best shape for the tips.

  5. Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements

    SciTech Connect

    Lee, Jun-Youl

    2003-01-01

    Magnetic particle inspection (MPI) is a widely used nondestructive inspection method for aerospace applications essentially limited to experiment-based approaches. The analysis of MPI characteristics that affect sensitivity and reliability contributes not only reductions in inspection design cost and time but also improvement of analysis of experimental data. Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a magnetic field source, which produces a magnetic field gradient large enough to detect a defect in a test sample or component, is an important factor in magnetic particle inspection. In this work a finite element method (FEM) has been employed for numerical calculation of the MPI simulation technique. The FEM method is known to be suitable for complicated geometries such as defects in samples. This thesis describes the research that is aimed at providing a quantitative scientific basis for magnetic particle inspection. A new FEM solver for MPI simulation has been developed in this research for not only nonlinear reversible permeability materials but also irreversible hysteresis materials that are described by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic properties in this research (i.e., the magnetic properties of the material are identical in all directions in a single crystal). In the research, with a direct current field mode, an MPI situation has been simulated to measure the estimated volume of magnetic particles around defect sites before and after removing any external current fields. Currently, this new MPI simulation package is limited to solving problems with the single current source from either a solenoid or an axial directional current rod.

  6. Development of extrusion molded Nd-Fe-B magnets

    SciTech Connect

    Sakata, M.; Ikuma, K. ); Watanabe, R.; Iwasa, T.; Miyadera, H.; McAloon, K.

    1993-01-01

    A new manufacturing process for extrusion molded magnets, composed of isotropic Nd-Fe-B powder and Nylon-12, has been developed. This newly developed extrusion molding process has several interesting features. First, the extruded product contains 72% by volume magnetic powder and yields a (BH)[sub max] of 8.0 MGO[sub e]. Second, through the addition of an anti-oxidant, the viscosity of the magnetic powder-nylon compound remains almost constant during molding. Third, by means of a specially cooled outlet, which is separated from the heated die by a thermal insulator, an optimized temperature profile is obtained which yields uniformly smooth extrusion molded magnets. Both long thin-walled magnets and small arc-shaped (kawala) magnets are easily molded by this new process.

  7. Magnetic refrigeration: recent developments and alternative configurations

    NASA Astrophysics Data System (ADS)

    Almanza, Morgan; Kedous-Lebouc, Afef; Yonnet, Jean-Paul; Legait, Ulrich; Roudaut, Julien

    2015-07-01

    Magnetic refrigeration, based on magnetocaloric effect, is an upcoming environmentaly friendly technology with a high potential to improve energy efficiency and to reduce greenhouse gas emission. It is a multidisciplinary research theme and its real emergence requires, to overcome scientific and technical issues related to both material and system. This paper presents the state of the art in magnetic cooling, the main recent works achieved and discusses in more details the thermodynamic phenomenon according to the G2Elab experience in the field. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  8. Developing Glassy Magnets from Simulated Composition of Martian Soil for Exploration Applications

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Ray, Chandra; Rogers, Jan

    2004-01-01

    The long-term exploration goals of NASA include developing human habitation on Mars and conducting scientific investigations on Mars and other planetary bodies. In situ resource processing is a key objective in this area We focus OR the possibility of making magnetic glasses in situ for potential applications development. The paper will focus on ongoing work at NASA Marshall Space Flight Center on making magnetic glass h m Mars soil simulants and its characterization. Analysis of the glass morphology, strength, chemistry and resulting magnetic properties will provide a fi.mdamenta1 understanding ofthe synthesized materiai that can be used for pomtiai appiications cieveiopment. In an effort to characterize the magnetic properbes of the Mars glasses, a series of tests were performed at NASA MSFC. Preliminary tests indicated that the glasses were attracted to a magnet and also had a small amount of residual magnetism. They were opaque (almost black in color). As the first step, a sample of Mars 1 glass (-lm x lmm x 5 mm length) was machined, weighed and its hysteresis curve was measured using a Vibration Sample Magnetometer 0. Next, a small furnace was designed and built and the sample was baked in a graphite (reducing agent) crucible at 800 C in an Argon atmosphere for 3 hours in the presence of a uniform, transverse (transverse to the 5mm length of the sample) magnetic field of 0.37 Tesla. The treated sample showed reddening on the outside and showed substantially increased residual magnetism. This sample was again analyzed in the VSM. The data clearly showed that some chemical change occurred during the heat treatment (color change) and that both the glasses have useful magnetic properties. Although no orientation effects of the magnetic field were considered, the data showed the following: 1. Both glass samples are primarily soft magnets and display ferromagnetic behavior (hysteresis, saturation, etc.) 2. The treated glass has improved saturation magnetism (order

  9. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    PubMed

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  10. Development of Small-sized Fluid Control Valve with Self-holding Function Using Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Ueda, Hirofumi

    Recently, force feedback devices in virtual reality and power assisted nursing care systems have received much attention and active research. In such a control system, an actuator and a driving device such as a control valve are mounted on the human body. In this condition, the size and weight of the control valve become serious problems. At the same time, the valve should be operated with lower energy consumption because of using a limited electrical power. The typical electro magnetic solenoid valve drives its spool using a larger solenoid to open the valve. The complex construction of the valve for sealing makes its miniaturization and the fabrication of a low cost valve more difficult. In addition, the solenoid in the valve consumes more electrical power while the valve is kept opening. The purpose of our study is to develop a small-sized, lightweight, lower energy consumption and flexible control valve that can be safe enough to mount on the human body at a lower cost. In our pervious study, we proposed and tested the control valve that can open using a vibration motor. In this study, we propose and test a new type of fluid control valve with a self-holding function. The new valve uses a permanent magnet ball. It has a cylindrical magnet and two solenoids. The self-holding function of the valve is done as follows. When one side of the solenoid is stimulated by the current momentarily, the solenoid gives a repulsive force to the cylindrical magnet. The magnet moves toward the opposite side of the solenoid and is attracted to the iron core. Then, the magnet ball moves toward the cylindrical magnet and opens the orifice. The valve can keep open without electrical energy. As a result, the valve with the extremely lower energy consumption can be developed.

  11. Development and Testing of a Radial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA John H. Glenn Research Center has developed and tested a revolutionary Radial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Radial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Radial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical applications, manufacturing equipment, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Radial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  12. Development and Testing of an Axial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  13. Towards developing a compact model for magnetization switching in straintronics magnetic random access memory devices

    NASA Astrophysics Data System (ADS)

    Barangi, Mahmood; Erementchouk, Mikhail; Mazumder, Pinaki

    2016-08-01

    Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flipping delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the

  14. Status of high temperature superconductor development for accelerator magnets

    NASA Technical Reports Server (NTRS)

    Hirabayashi, H.

    1995-01-01

    High temperature superconductors are still under development for various applications. As far as conductors for magnets are concerned, the development has just been started. Small coils wound by silver sheathed Bi-2212 and Bi-2223 oxide conductors have been reported by a few authors. Essential properties of high T(sub c) superconductors like pinning force, coherent length, intergrain coupling, weak link, thermal property, AC loss and mechanical strength are still not sufficiently understandable. In this talk, a review is given with comparison between the present achievement and the final requirement for high T(sub c) superconductors, which could be particularly used in accelerator magnets. Discussions on how to develop high T(sub c) superconductors for accelerator magnets are included with key parameters of essential properties. A proposal of how to make a prototype accelerator magnet with high T(sub c) superconductors with prospect for future development is also given.

  15. Design and Development of a Segmented Magnet Homopolar Torque Converter

    DTIC Science & Technology

    1975-02-01

    IchineVr^V5^ thl ^^^P" concept in large homopolar crLt^ in th^ fi /I蔾’ ^^^C’ a^ electrodynamic power losses created in the fluid during machine...AD-A008 843 DESIGN AND DEVELOPMENT OF A SEGMENTED MAGNET HOMOPOLAR TORQUE CONVERTER C. J. Mole, et al Westinghouse Electric Corporation...This program is for the research and development of a new mechanical power trans- mission concept: the segmented magnet homopolar torque converter

  16. Development of high magnetic fields for energy research

    SciTech Connect

    Thompson, J.D.; Campbell, L.J.; Modler, R.; Movshovich, R.; Lawrence, J.M.; Awschalom, D.D.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The primary purpose of work has been to develop the scientific basis for DOE support of a program that would build a novel, nondestructive 100-tesla magnet that would be available as a user facility for cutting-edge, energy-related research and technology at very high magnetic fields.

  17. Space Magnets Attracting Interest on Earth: Applications of Physical and Biological Techniques In the Study of Gravisensing and Response System of Plants

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.; Boody, April; Cox, David (Technical Monitor)

    2002-01-01

    The BioTube/Magnetic Field Apparatus (MFA) research is designed to provide insight into the organization and operation of the gravity sensing systems of plants and other small organisms. This experiment on STS-107 uses magnetic fields to manipulate sensory cells in plant roots, thus using magnetic fields as a tool to study gravity-related phenomena. The experiment will be located in the SPACEHAB module and is about the size of a household microwave oven. The goal of the experiment is to improve our understanding of the basic phenomenon of how plants respond to gravity. The BioTube/MFA experiment specifically examines how gravitational forces serve as a directional signal for growth in the low-gravity environment of space. As with all basic research, this study will contribute to an improved understanding of how plants grow and will have important implications for improving plant growth and productivity on Earth. In BioTube/MFA, magnetic fields will be used to determine whether the distribution of subcellular starch grains, called amyloplasts, within plant cells predicts the direction in which roots will grow and curve in microgravity.

  18. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  19. Development of reliable 70 T pulsed magnets

    NASA Astrophysics Data System (ADS)

    Lagutin, A.; Rosseel, K.; Herlach, F.; Vanacken, J.; Bruynseraede, Y.

    2003-12-01

    A capacitor-driven pulsed magnet coil has been designed to generate fields in the 70-75 T range, with a life expectancy of at least 100 pulses, thus qualifying as a '75 T class user magnet'. The bore is 10 mm and the rise time used in our experiments is 4 ms. The coil consists of two coaxial sections: the inner section, where stresses are highest, is made with CuNb microcomposite wire and optimized Zylon reinforcement; the outer section is made with soft copper and glass fibre composite. In the inner section, the stress in each layer is self-contained, while the stresses induced in the outer section are transmitted to a thick shell made from steel and carbon fibre composite. The cross section of the copper wires is adjusted to redistribute the heating evenly between the inner and the outer section. Another innovative design feature is a system for axial compression that can be easily retightened during coil training. Two nearly identical coils were manufactured and tested to 72 T this is a limit imposed due to overheating when using our 10 kV, 0.5 MJ capacitor bank (at an energy of 380 kJ). At 75 T, the calculated von Mises stress in the Zylon composite is 2.6 GPa, well below the UTS of more than 3 GPa, and the CuNb wire is still in an elastic state.

  20. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center.

    PubMed

    Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz

    2013-12-01

    Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

  1. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center

    SciTech Connect

    Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz

    2013-12-15

    Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

  2. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  3. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz

    2013-12-01

    Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

  4. Extended use of superconducting magnets for bio-medical development

    SciTech Connect

    Stoynev, Stoyan E.

    2015-05-19

    Magnetic fields interact with biological cells affecting them in variety of ways which are usually hard to predict. Among them, it was observed that strong fields can align dividing cells in a preferred direction. It was also demonstrated that dividing cancer cells are effectively destroyed by applying electric fields in vivo with a success rate dependent on the cell-to-field orientation. Based on these facts, the present note aims to suggest the use of magnetic and electric fields for improved cancer treatment. Several possibilities of generating the electric fields inside the magnetic field volume are reviewed, main tentative approaches are described and discussed. Most if not all of them require special magnet configuration research which can be based on existing magnet systems in operation or in development.

  5. American Cockroach Sex Attractant.

    PubMed

    Jacobson, M; Beroza, M

    1965-02-12

    The structure (2,2-dimethyl-3-isopropylidenecyclopropyl propionate) previously assigned to the sex attractant of the American cockroach has now been shown by additional physical and chemical data and biological inactivity of the synthetic preparation to be incorrect. The structure of this attractant remains to be determined.

  6. Intelligence and Physical Attractiveness

    ERIC Educational Resources Information Center

    Kanazawa, Satoshi

    2011-01-01

    This brief research note aims to estimate the magnitude of the association between general intelligence and physical attractiveness with large nationally representative samples from two nations. In the United Kingdom, attractive children are more intelligent by 12.4 IQ points (r=0.381), whereas in the United States, the correlation between…

  7. Davis Street Magnet School: Linking Child Development with Literacy.

    ERIC Educational Resources Information Center

    Brown, Fay E.; Maholmes, Valerie; Murray, Edward T.; Nathan, Lola

    1998-01-01

    Describes the School Development Program of the Davis Street Magnet School, New Haven (Connecticut), a Comer school since the late 1980s. The program uses a number of strategies to develop literacy among students identified as problem readers. This Comerian approach enhances student development along six developmental pathways and strengthens…

  8. Fault Tolerant Magnetic Bearing Testing and Conical Magnetic Bearing Development for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Clark, Daniel

    2004-01-01

    During the six month tenure of the grant, activities included continued research of hydrostatic bearings as a viable backup-bearing solution for a magnetically levitated shaft system in extreme temperature environments (1000 F), developmental upgrades of the fault-tolerant magnetic bearing rig at the NASA Glenn Research Center, and assisting in the development of a conical magnetic bearing for extreme temperature environments, particularly turbomachinery. It leveraged work from the ongoing Smart Efficient Components (SEC) and the Turbine-Based Combined Cycle (TBCC) program at NASA Glenn Research Center. The effort was useful in providing technology for more efficient and powerful gas turbine engines.

  9. Influence of 60-Hz magnetic fields on sea urchin development

    SciTech Connect

    Zimmerman, S.; Zimmerman, A.M.; Winters, W.D.; Cameron, I.L. )

    1990-01-01

    Continuous exposure of sea urchin (Strongylocentrotus purpuratus) embryos at 18 degrees C to a cyclic 60-Hz magnetic field at 0.1 mT rms beginning 4 min after insemination caused a significant developmental delay during the subsequent 23 hours. No delay in development was recorded for periods up to 18 hours after fertilization. At 18 h, most embryos were in the mesenchyme blastula stage. At 23 h, most control embryos were in mid-gastrula whereas most magnetic-field-exposed embryos were in the early gastrula stage. Thus an estimated 1-h delay occurred between these developmental stages. The results are discussed in terms of possible magnetic-field modification of transcription as well as interference with cell migration during gastrulation. The present study extends and supports the growing body of information about potential effects of exposures to extremely-low-frequency (ELF) magnetic fields on developing organisms.

  10. Development of an electrical model for integrated magnetic inductors

    NASA Astrophysics Data System (ADS)

    Bechir, M. B.; Yaya, D. D.; Youssouf, M. K.; Soultan, M.; Capraro, S.; Siblini, A.; Chatelon, J. P.; Rousseau, J. J.

    2014-07-01

    Nowadays, the current trend consists in the development of new technologies with the aim of reducing volume, weight as well as production cost. With the aim of decreasing occupied component area, it will be interesting to use magnetic materials to confine the fields. Therefore, our works concern the modelling and the characterization of magnetic planar inductors. The proposed model is detailed for inductors fabricated with one magnetic layer. The model can take into account, the capacitance between turns and the capacitance between the last turn and the ground plane, the magnetic permeability, the skin and proximity effects of the conductors according to the frequency. The structure of optimization developed to extract the parameters of the model will be presented. Results of extracted parameters are compared with the simulation parameters. A good correlation is observed on Y11 and Y12 parameters on all the broad band frequency.

  11. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  12. Development Of A Magnetic Directional-Solidification Furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, Bill R.; Lehoczky, Sandor L.

    1996-01-01

    Report describes development of directional-solidification furnace in which axial magnetic field is imposed by surrounding ring permanent magnets and/or electromagnets and pole pieces. Furnace provides controlled axial temperature gradients in multiple zones, through which ampoule containing sample of material to be solidified is translated at controlled speed by low-vibration, lead-screw, stepping-motor-driven mechanism. Intended for use in low-gravity (spaceflight) experiments on melt growth of high-purity semiconductor crystals.

  13. MHD magnet technology development program summary, September 1982

    SciTech Connect

    Not Available

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  14. Heritability of Attractiveness to Mosquitoes

    PubMed Central

    Fernández-Grandon, G. Mandela; Gezan, Salvador A.; Armour, John A. L.; Pickett, John A.; Logan, James G.

    2015-01-01

    Female mosquitoes display preferences for certain individuals over others, which is determined by differences in volatile chemicals produced by the human body and detected by mosquitoes. Body odour can be controlled genetically but the existence of a genetic basis for differential attraction to insects has never been formally demonstrated. This study investigated heritability of attractiveness to mosquitoes by evaluating the response of Aedes aegypti (=Stegomyia aegypti) mosquitoes to odours from the hands of identical and non-identical twins in a dual-choice assay. Volatiles from individuals in an identical twin pair showed a high correlation in attractiveness to mosquitoes, while non-identical twin pairs showed a significantly lower correlation. Overall, there was a strong narrow-sense heritability of 0.62 (SE 0.124) for relative attraction and 0.67 (0.354) for flight activity based on the average of ten measurements. The results demonstrate an underlying genetic component detectable by mosquitoes through olfaction. Understanding the genetic basis for attractiveness could create a more informed approach to repellent development. PMID:25901606

  15. Attention Alters Perceived Attractiveness.

    PubMed

    Störmer, Viola S; Alvarez, George A

    2016-04-01

    Can attention alter the impression of a face? Previous studies showed that attention modulates the appearance of lower-level visual features. For instance, attention can make a simple stimulus appear to have higher contrast than it actually does. We tested whether attention can also alter the perception of a higher-order property-namely, facial attractiveness. We asked participants to judge the relative attractiveness of two faces after summoning their attention to one of the faces using a briefly presented visual cue. Across trials, participants judged the attended face to be more attractive than the same face when it was unattended. This effect was not due to decision or response biases, but rather was due to changes in perceptual processing of the faces. These results show that attention alters perceived facial attractiveness, and broadly demonstrate that attention can influence higher-level perception and may affect people's initial impressions of one another.

  16. Adolescent attraction to cults.

    PubMed

    Hunter, E

    1998-01-01

    This article details the reasons behind adolescents' attraction to cults. It is recommended that parents, teachers, and counselors familiarize themselves with the warning signs. Suggestions are offered on how to make adolescents less vulnerable to cult overtures.

  17. Attracting Water Drops

    NASA Video Gallery

    Astronauts Cady Coleman and Ron Garan perform the Attracting Water Drops experiment from Chabad Hebrew Academy in San Diego, Calif. This research determines if a free-floating water drop can be att...

  18. Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk.

    PubMed

    Chinnappan, Raja; Al Attas, Sana; Kaman, Wendy E; Bikker, Floris J; Zourob, Mohammed

    2017-04-15

    Mastitis in dairy cattle is an inflammatory reaction of the udder tissue. Mastitis increases plasmin levels, leading to an increased proteolysis of milk proteins such as casein, resulting in a significant decrease in milk quality and related dairy products. Due to its key-role in mastitis, we used plasmin proteolytic activity as a biomarker for the detection of mastitis in bovine mastitic milk. Inspired by earlier studies on protease activity using mastitic milk samples, we developed a simple colorimetric assay to distinguish mastitic milk from milk derived from healthy animals. The plasmin substrate coupled to magnetic nanoparticles form a black self-assembled monolayer on a gold sensor surface. In the presence of increased levels of plasmin, the substrate is cleaved and the peptide fragment attached to the magnetic beads, will be attracted by the magnet which is present under the sensor strips revealing the golden surface. We found the area of the golden color surface proportional to plasmin activity. The sensitivity of this method was determined to be 1 ng/ml of plasmin in vitro. Next, we tested the biosensor using mastitis positive milk of which infection is confirmed by bacterial cultures. This newly developed colorimetric biosensor has high potential in applications for the diagnosis of mastitis with potential spin offs to health, food and environmental sectors.

  19. Attracting Girls Into Physics

    NASA Astrophysics Data System (ADS)

    Hosny, Hala M.; Kahil, Heba M.

    2005-10-01

    From our national statistics, it is evident that in the population of physicists there are considerably fewer women than men. Our role is to attract girls to physics and thus decrease this gap. The institutional structure in Egypt provides an equal opportunity for girls to study sciences, including physics. It is reckoned that girls refrain from studying physics due to a group of social and economic factors. We will discuss teaching physics at schools and present some ideas to develop it. The media should play a role in placing female physicists in the spotlight. Unfortunately, careers that require intellectual skills are considered men's careers. This necessitates that society changes the way it sees women and trusts more in their skills and talents. We therefore call for the cooperation of governmental and nongovernmental bodies, together with universities and the production sectors involved. This will ultimately lead to enhancing the entrepreneurial projects related to physics and technology on the one hand, and will encourage girls to find challenging opportunities on the other.

  20. Development of a peristaltic crawling robot using magnetic fluid on the basis of the locomotion mechanism of the earthworm

    NASA Astrophysics Data System (ADS)

    Saga, Norihiko; Nakamura, Taro

    2004-06-01

    In the field of bio-engineering the aim of developing new machines which utilize the motion and control of organisms as a model is attracting attention. This technology is pursued by paying attention to various shapes and movements of organisms and autonomous system of organisms that act in response to the environment surrounding them, and by mechanically elucidating the locomotion mechanism, propulsive mechanism, nerve system and sensation system for these organisms. On the other hand, in the field of hydrodynamics, magnetic fluid that changes its apparent viscosity depending on the magnetic field has been developed, and its utilization is under trial in various fields. Attention has been paid to the peristaltic crawling of the earthworm as a transport function in place of wheels or ambulation, and based on these observations a micro-robot running inside a tube using magnetic fluid has been developed. In this micro-robot, individual cells corresponding to the earthworm's segment are composed of a natural rubber tube sealed with water-based magnetic fluid, and several cells are connected with elastic rods made of natural rubber. The feature of this micro-robot is that its structure is simply composed, and it can be controlled with external wireless force, by providing it with moving magnetism from the outside. This paper presents the analytical result on the peristaltic crawling of an actual earthworm and the evaluation result for the transport mechanism of a prototype micro-robot moved by an external magnetic field.

  1. An Attractive Idea.

    ERIC Educational Resources Information Center

    Gentry, Evan; Hughes, Allan E.

    1986-01-01

    Describes electricity experiments which can be used for such purposes as determining the magnetic field of a magnet, making an electromagnet, and showing the repulsion of like poles of a magnet. Includes list of materials needed, procedures used, and instructional strategies. (JN)

  2. Development and process control of magnetic tunnel junctions for magnetic random access memory devices

    NASA Astrophysics Data System (ADS)

    Kula, Witold; Wolfman, Jerome; Ounadjela, Kamel; Chen, Eugene; Koutny, William

    2003-05-01

    We report on the development and process control of magnetic tunnel junctions (MTJs) for magnetic random access memory (MRAM) devices. It is demonstrated that MTJs with high magnetoresistance ˜40% at 300 mV, resistance-area product (RA) ˜1-3 kΩ μm2, low intrinsic interlayer coupling (Hin) ˜2-3 Oe, and excellent bit switching characteristics can be developed and fully integrated with complementary metal-oxide-semiconductor circuitry into MRAM devices. MTJ uniformity and repeatability level suitable for mass production has been demonstrated with the advanced processing and monitoring techniques.

  3. Discovery of mosquito attractants and attraction-inhibitors invited talk on attractants and repellents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Department of Agriculture (USDA) has developed repellents and insecticides for the U.S. military since 1942. A small component of this research program has aimed at the discovery of attractants that can be used to produce potent lures for haematophagous arthropods, with a primary f...

  4. The embryonic development of frogs under strong DC magnetic fields

    SciTech Connect

    Ueno, S.; Harada, K.; Shiodawa, K.

    1984-09-01

    Possible influence of d.c. magnetic fields in the early embryonic development of frogs was studied. Embryos of African clawed toads, Xenopus laevis, were exposed to 1.0 T magnetic fields with different gradients of a range from 10 T/m to 10/sup 3/ T/m either during cleavage to neurula stage, blastula to neurula stage, or neurula to tail bud stage. The developmental processes of embryos during and after magnetic field exposures were followed to examine a possibility of teratogenic effects. The results suggest that the magnetic field exerts no harmful or modifying effects on the important morphogenetic movements such as gastrulation and neurulation. However, it was observed that embryos which were exposed to the gradient magnetic fields during cleavage to neurula stage occasionally developed into tadpoles with reduced pigmentation or some axial anomalies such as the formation of curled tail. Tadpoles with edema or microcephaly were also observed. Compared with the control, the rate of malformation was higher by about 35 %. The influence of oxygen concentration in Ringer's solution on the embryonic development was also studied, and toxicity of oxygen with high concentration is discussed.

  5. Thin Magnetically Soft Wires for Magnetic Microsensors

    PubMed Central

    Zhukova, Valentina; Ipatov, Mihail; Zhukov, Arcady

    2009-01-01

    Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1–30 μm in diameter) have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m) with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR) and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications. PMID:22291562

  6. Conical Magnetic Bearing Development and Magnetic Bearing Testing for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jansen, Mark

    2004-01-01

    The main proposed research of this grant were: to design a high-temperature, conical magnetic bearing facility, to test the high-temperature, radial magnetic bearing facility to higher speeds, to investigate different backup bearing designs and materials, to retrofit the high-temperature test facility with a magnetic thrust bearing, to evaluate test bearings at various conditions, and test several lubricants using a spiral orbit tribometer. A high-temperature, conical magnetic bearing facility has been fully developed using Solidworks. The facility can reuse many of the parts of the current high-temperature, radial magnetic bearing, helping to reduce overall build costs. The facility has the ability to measure bearing force capacity in the X, Y, and Z directions through a novel bearing mounting design. The high temperature coils and laminations, a main component of the facility, are based upon the current radial design and can be fabricated at Texas A&M University. The coil design was highly successful in the radial magnetic bearing. Vendors were contacted about fabrication of the high temperature lamination stack. Stress analysis was done on the laminations. Some of the components were procured, but due to budget cuts, the facility build up was stopped.

  7. Development of a superconducting bulk magnet for NMR and MRI

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)3 voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device.

  8. Development of Prototype HTS Components for Magnetic Suspension Applications

    NASA Technical Reports Server (NTRS)

    Haldar, P.; Hoehn, J., Jr.; Selvamanickam, V.; Farrell, R. A.; Balachandran, U.; Iyer, A. N.; Peterson, E.; Salazar, K.

    1996-01-01

    We have concentrated on developing prototype lengths of bismuth and thallium based silver sheathed superconductors by the powder-in-tube approach to fabricate high temperature superconducting (HTS) components for magnetic suspension applications. Long lengths of mono and multi filament tapes are presently being fabricated with critical current densities useful for maglev and many other applications. We have recently demonstrated the prototype manufacture of lengths exceeding 1 km of Bi-2223 multi filament conductor. Long lengths of thallium based multi-filament conductor have also been fabricated with practical levels of critical current density and improved field dependence behavior. Test coils and magnets have been built from these lengths and characterized over a range of temperatures and background fields to determine their performance. Work is in progress to develop, fabricate and test HTS windings that will be suitable for magnetic suspension, levitation and other electric power related applications.

  9. The attracting power of the gaze of politicians is modulated by the personality and ideological attitude of their voters: a functional magnetic resonance imaging study.

    PubMed

    Cazzato, Valentina; Liuzza, Marco Tullio; Caprara, Gian Vittorio; Macaluso, Emiliano; Aglioti, Salvatore Maria

    2015-10-01

    Observing someone rapidly moving their eyes induces reflexive shifts of overt and covert attention in the onlooker. Previous studies have shown that this process can be modulated by the onlooker's personality, as well as by the social features of the person depicted in the cued face. Here, we investigated whether an individual's preference for social dominance orientation, in-group perceived similarity (PS), and political affiliation of the cued-face modulated neural activity within specific nodes of the social attention network. During functional magnetic resonance imaging, participants were requested to perform a gaze-following task to investigate whether the directional gaze of various Italian political personages might influence the oculomotor behaviour of in-group or out-group voters. After scanning, we acquired measures of PS in personality traits with each political personage and preference for social dominance orientation. Behavioural data showed that higher gaze interference for in-group than out-group political personages was predicted by a higher preference for social hierarchy. Higher blood oxygenation level-dependent activity in incongruent vs. congruent conditions was found in areas associated with orienting to socially salient events and monitoring response conflict, namely the left frontal eye field, right supramarginal gyrus, mid-cingulate cortex and left anterior insula. Interestingly, higher ratings of PS with the in-group and less preference for social hierarchy predicted increased activity in the left frontal eye field during distracting gaze movements of in-group as compared with out-group political personages. Our results suggest that neural activity in the social orienting circuit is modulated by higher-order social dimensions, such as in-group PS and individual differences in ideological attitudes.

  10. Development of Novel Magnetic Nanoparticles for Hyperthermia Cancer Therapy

    PubMed Central

    Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack

    2013-01-01

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values. PMID:24619487

  11. United States Research and Development effort on ITER magnet tasks

    DOE PAGES

    Martovetsky, Nicolai N.; Reierson, Wayne T.

    2011-01-22

    This study presents the status of research and development (R&D) magnet tasks that are being performed in support of the U.S. ITER Project Office (USIPO) commitment to provide a central solenoid assembly and toroidal field conductor for the ITER machine to be constructed in Cadarache, France. The following development tasks are presented: winding development, inlets and outlets development, internal and bus joints development and testing, insulation development and qualification, vacuum-pressure impregnation, bus supports, and intermodule structure and materials characterization.

  12. Attracting girls to physics

    NASA Astrophysics Data System (ADS)

    Borg, Anne; Sui, Manling

    2013-03-01

    Large regional differences remain in the number of girls studying physics and the number of female physicists in academic positions. While many countries struggle with attracting female students to university studies in physics, climbing the academic ladder is the main challenge for these women. Furthermore, for many female physicists the working climate is not very supportive. The workshop Attracting Girls to Physics, organized as part of the 4th IUPAP International Conference on Women in Physics, South Africa 2011, addressed attitudes among education-seeking teenagers and approaches for attracting young girls to physics through successful recruitment plans, including highlighting the broad spectrum of career opportunities for those with physics qualifications. The current paper presents findings, examples of best practices, and recommendations resulting from this workshop.

  13. Attracting Girls to Physics

    NASA Astrophysics Data System (ADS)

    Sandow, Barbara; Marks, Ann; Borg, Anne

    2009-04-01

    In most countries the number of girls studying physics, as well female physicists in academic positions, is still low. Active recruitment at all levels is essential to change this situation. In some countries a large proportion of students are female, but career progression is difficult. Highlighting the broad spectrum of career opportunities for those with physics qualifications is a major approach in attracting girls to physics. This paper presents findings, examples of best practices, and recommendations resulting from the workshop, Attracting Girls to Physics, organized as part of the Third IUPAP International Conference on Women in Physics, Seoul, 2008.

  14. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  15. Attracting Philosophy Students--1.

    ERIC Educational Resources Information Center

    Coole, Walter A., Ed.

    This is the first in a series of occasional papers designed as a vehicle for the collection and dissemination of ideas for increasing philosophy course enrollments in two-year colleges. A project of the Subcommittee on Attracting Philosophy Students of the American Philosophical Association's Committee on Teaching Philosophy in Two-Year Colleges,…

  16. Adolescent Attraction to Cults.

    ERIC Educational Resources Information Center

    Hunter, Eagan

    1998-01-01

    Details the reasons behind adolescents' attraction to cults. and distinguishes functions of cults and the term "cult." Identifies various cults, and describes the process of involvement. Notes that in the absence of authentic, stabilizing standards, some youth are especially vulnerable. Provides recommendations for adults working with…

  17. New magnetic fluid developed with natural organic compounds biocompatible.

    PubMed

    Santos, J G; Silveira, L B; Fegueredo, P H S; Araújo, B F; Peternele, W S; Rodriguez, A F R; Vilela, E C; Garg, V K; Oliveira, A C; Azevedo, R B; Morais, P C

    2012-06-01

    This work was developed with an aqueous suspension of maghemite nanoparticles and colloidal emulsions with nanoparticles of magnetite. The nanoparticles were synthesized by co-precipitation method. The first was the magnetic emulsion nanoparticles of maghemite dispersed in the aqueous extract obtained from the leaf embauba (Cecropia Obtusifolia), whose tree is native to Central and South America. Thereby achieving the magnetic fluid extract embauba stabilized with ionic buffer solution pH 7.4. A second emulsion was prepared with colloidal magnetite nanoparticles with surfaces previously coated with oleic acid as a means of dispersing and using the oil extracted from in nature seed Andiroba (Carapa Guianensis), tree of the Brazilian Amazon. These new magnetic fluids the nanoparticles were characterized by Photoacoustic spectroscopy (PAS) to determine the coating layer of molecules on the surfaces of nanoparticles. In aqueous ionic magnetic fluid Cecropia Obtusifolia (MFCO) chlorogenic acid contributes to the electron density in the presence of four groups alcohols, a ketone group and a carboxylic group. In magnetic fluid-based oil andiroba MFAD PAS spectra show that oleic acid molecules are tightly linked on the surface of the nanoparticles.

  18. Development of training modules for magnetic particle inspection

    NASA Astrophysics Data System (ADS)

    Kosaka, Daigo; Eisenmann, David J.; Enyart, Darrel; Nakagawa, Norio; Lo, Chester; Orman, David

    2015-03-01

    Magnetic particle inspection (MPI) is a nondestructive evaluation technique used with ferromagnetic materials. Although the application of this method may appear straightforward, MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To fully appreciate industry specifications such as ASTM E-1444, users should develop a basic understanding of the many factors that are involved in MPI. We have developed a series of MPI training modules that are aimed at addressing this requirement. The modules not only offer qualitative explanations, but also show quantitative explanations in terms of measurement and numerical simulation data in many instances. There are five modules in all. Module ♯1 shows characteristics of waveforms and magnetizing methods. This allows MPI practitioners to make optimum choice of waveform and magnetizing method. Module ♯2 explains how material properties relate to the magnetic characteristics. Module ♯3 shows the strength of the excitation field or the flux leakage from a crack and how it compares to the detectability of a crack by MPI. Module ♯4 shows how specimen status may influence defect detection. Module ♯5 shows the effects of particle properties on defect detection.

  19. Sexual Attraction and Harassment: Management's New Problems.

    ERIC Educational Resources Information Center

    Driscoll, Jeanne Bosson

    1981-01-01

    Both sexual attraction and harassment must be dealt with if men and women are to develop truly productive working relationships. Key issues include policies on sexual attraction and harassment, availability of professional resources on the subjects, training, and the role of personnel specialists. (CT)

  20. Dissociating Averageness and Attractiveness: Attractive Faces Are Not Always Average

    ERIC Educational Resources Information Center

    DeBruine, Lisa M.; Jones, Benedict C.; Unger, Layla; Little, Anthony C.; Feinberg, David R.

    2007-01-01

    Although the averageness hypothesis of facial attractiveness proposes that the attractiveness of faces is mostly a consequence of their averageness, 1 study has shown that caricaturing highly attractive faces makes them mathematically less average but more attractive. Here the authors systematically test the averageness hypothesis in 5 experiments…

  1. Development of transient internal probe (TIP) magnetic field diagnostic

    SciTech Connect

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1994-12-31

    The Transient Internal Probe (TIP) is designed to permit measurement of internal magnetic fields, in hot, high density plasmas. The concept consists of accelerating a probe to high velocities (2.2 Km/s) in order to minimize probe exposure time to plasma. Faraday rotation within the probe is used to measure the local magnetic field. An Argon laser illuminates the probe consisting of a Faraday-rotator material with a retro-reflector that returns the incident light to the detection system. Performance results of the light gas gun and optical detection system will be shown. To date, the gas gun has been extensively tested consistently achieving velocities between 2 and 3 km/s. The probe and detection scheme have been tested by dropping the probe through a static magnetic field. Magnetic field resolution of 20 gauss and spatial resolution of 5 mm has been achieved. System frequency response is 10Mhz. Work is currently being conducted to integrate the diagnostic system with laboratory plasma experiments. Specifically a gas interfaced system has been developed to prevent helium muzzle gas from entering the plasma chamber with the probe. Additionally the probe must be separated from the sabot which protects the probe during acceleration in the gas gun. Data will be presented showing the results of various separation techniques.

  2. Development of a prototype magnetically suspended rotor ventricular assist device.

    PubMed

    Bearnson, G B; Maslen, E H; Olsen, D B; Allaire, P E; Khanwilkar, P S; Long, J W; Kim, H C

    1996-01-01

    A continuous flow centrifugal blood pump with magnetically suspended impeller has been designed, constructed, and tested. The system can be functionally divided into three subsystem designs: 1) centrifugal pump and flow paths, 2) magnetic bearings, and 3) brushless DC motor. The centrifugal pump is a Francis vane type design with a designed operating point of 6 L/min flow and 100 mmHg pressure rise at 2,300 RPM. Peak hydraulic efficiency is over 50%. The magnetic bearing system is an all active design with five axes of control. Rotor position sensors were developed as part of the system to provide feedback to a proportional-integral-derivative controller. The motor is a sensorless brushless DC motor. Back electromotive force voltage generated by the motor is used to provide commutation for the motor. No slots are employed in the motor design in order to reduce the radial force that the bearings must generate. Tests pumping blood in vitro were very encouraging; an index of hemolysis of 0.0086 +/- 0.0012 was measured. Further design refinement is needed to reduce power dissipation and size of the device. The concept of using magnetic bearings in a blood pump shows promise in a long-term implantable blood pump.

  3. Development of a suspension type sliding planar motion table using magnetic fluid lubrication

    NASA Astrophysics Data System (ADS)

    Li, Xinghui; Shinshi, Tadahiko; Hijikata, Wataru; Morimoto, Yoshihiro

    2016-06-01

    A sliding planar motion table system that can be used for the lens driving actuator of a laser cutting machine was developed. The system uses magnetic fluid as the lubricant to avoid the leakage of lubricating oil under the table and reduce environmental pollution. The motion table is suspended from the guide surface by an attractive force generated by electromagnets to reduce the contact and frictional forces between the table and the guide surface. The table is capable of movement in one rotational and two translational directions over the guide surface using six electromagnets and three non-contact displacement sensors. Experimental results showed that the magnetic suspension of the table reduced the friction by 82.1% compared to the friction that would otherwise be generated by the dead weight of the table. Circular motion within a diameter of 2 mm was achieved with resolutions of 5 μm and 20 μrad in the translational and rotational directions, respectively. A bandwidth of higher than 100 Hz was also achieved in the three movement directions.

  4. Development of a suspension type sliding planar motion table using magnetic fluid lubrication.

    PubMed

    Li, Xinghui; Shinshi, Tadahiko; Hijikata, Wataru; Morimoto, Yoshihiro

    2016-06-01

    A sliding planar motion table system that can be used for the lens driving actuator of a laser cutting machine was developed. The system uses magnetic fluid as the lubricant to avoid the leakage of lubricating oil under the table and reduce environmental pollution. The motion table is suspended from the guide surface by an attractive force generated by electromagnets to reduce the contact and frictional forces between the table and the guide surface. The table is capable of movement in one rotational and two translational directions over the guide surface using six electromagnets and three non-contact displacement sensors. Experimental results showed that the magnetic suspension of the table reduced the friction by 82.1% compared to the friction that would otherwise be generated by the dead weight of the table. Circular motion within a diameter of 2 mm was achieved with resolutions of 5 μm and 20 μrad in the translational and rotational directions, respectively. A bandwidth of higher than 100 Hz was also achieved in the three movement directions.

  5. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  6. Are Brazil Nuts Attractive?

    NASA Astrophysics Data System (ADS)

    Sanders, Duncan A.; Swift, Michael R.; Bowley, R. M.; King, P. J.

    2004-11-01

    We present event-driven simulation results for single and multiple intruders in a vertically vibrated granular bed. Under our vibratory conditions, the mean vertical position of a single intruder is governed primarily by a buoyancylike effect. Multiple intruders also exhibit buoyancy governed behavior; however, multiple neutrally buoyant intruders cluster spontaneously and undergo horizontal segregation. These effects can be understood by considering the dynamics of two neutrally buoyant intruders. We have measured an attractive force between such intruders which has a range of five intruder diameters, and we provide a mechanistic explanation for the origins of this force.

  7. Biobutanol: an attractive biofuel.

    PubMed

    Dürre, Peter

    2007-12-01

    Biofuels are an attractive means to prevent a further increase of carbon dioxide emissions. Currently, gasoline is blended with ethanol at various percentages. However, butanol has several advantages over ethanol, such as higher energy content, lower water absorption, better blending ability, and use in conventional combustion engines without modification. Like ethanol, it can be produced fermentatively or petrochemically. Current crude oil prices render the biotechnological process economic again. The best-studied bacterium to perform a butanol fermentation is Clostridium acetobutylicum. Its genome has been sequenced, and the regulation of solvent formation is under intensive investigation. This opens the possibility to engineer recombinant strains with superior biobutanol-producing ability.

  8. Phase Development and Magnetism in Ferromagnetic Bioglass Ceramics

    NASA Astrophysics Data System (ADS)

    Kis, A. C.; Leventouri, Th.; Thompson, J. R.

    2003-03-01

    The major phases that develop in ferromagnetic glass-ceramics are Fe_3O_4, Ca_3(PO_4)2 and CaSiO_3. The biocompatibility properties of the systems are associated with the calcium phosphate that forms apatite in a physiological environment. The magnetite phase in a bioglass ceramic makes it a possible candidate for hyperthermic treatment of animal bone cancer. The qualitative and quantitative development of the phases in systems with various starting concentrations and heat treatment parameters was studied by powder x-ray diffraction and Rietveld refinement methods. It was found that the magnetic properties of each system are strongly correlated with the corresponding structural properties.

  9. The Development of Drift Wave Turbulence in Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    McMurtrie, L.; Drake, J. F.; Swisdak, M. M.

    2013-12-01

    An important feature in collisionless magnetic reconnection is the development of sharp discontinuities along the separatrices bounding the Alfvenic outflow. The typical scale length of these features is ρs (the Larmor radius based on the sound speed) for guide field reconnection. Temperature gradients in the inflowing plasma (as might be found in the magnetopause) can lead to instabilities at these separatrices, specifically drift wave turbulence. We present standalone 2D and 3D PIC simulations of drift wave turbulence to investigate scaling properties and growth rates. Further investigations of the relative importance of drift wave turbulence in the development of reconnection will also be considered.

  10. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  11. Developing a magnetism conceptual survey and assessing gender differences in student understanding of magnetism

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2012-02-01

    We discuss the development of a research-based conceptual multiple-choice survey of magnetism. We also discuss the use of the survey to investigate gender differences in students' difficulties with concepts related to magnetism. We find that while there was no gender difference on the pre-test. However, female students performed significantly worse than male students when the survey was given as a post-test in traditionally taught calculus-based introductory physics courses with similar results in both the regular and honors versions of the course. In the algebra-based courses, the performance of female and male students has no statistical difference on the pre-test or the post-test.

  12. Magnetic bearing development for support of satellite flywheels

    NASA Astrophysics Data System (ADS)

    Palazzolo, Alan; Li, Mu; Kenny, Andrew; Lei, Shuliang; Havelka, Danny; Kascak, Albert

    1998-01-01

    The use of magnetic bearings (MB) for support of space based flywheels can provide significant improvement in efficiency due to reduction in drag torque. A NASA supported program directed through the Texas A&M Center for Space Power has been formed to advance the technology of MB's for satellite flywheel applications. The five areas of the program are: (a) Magnetic Field Simulation, (b) MB controller Development, (c) Electromechanical Rotordynamics Modeling, (d) Testing and (e) Technology Exchange. Planned innovations in these tasks include eddy current drag torque and power loss determination including moving conductor effects, digital (DSP) based control for high speed operation, MATLAB-based coupled flexible rotor/controller/actuator electromechanical model with fuzzy logic nonlinear control, and ultra high speed>100 krpm measurement of drag torque. The paper examines these areas and provides an overview of the project.

  13. Development of a microcomputer-based magnetic heading sensor

    NASA Technical Reports Server (NTRS)

    Garner, H. D.

    1987-01-01

    This paper explores the development of a flux-gate magnetic heading reference using a single-chip microcomputer to process heading information and to present it to the pilot in appropriate form. This instrument is intended to replace the conventional combination of mechanical compass and directional gyroscope currently in use in general aviation aircraft, at appreciable savings in cost and reduction in maintenance. Design of the sensing element, the signal processing electronics, and the computer algorithms which calculate the magnetic heading of the aircraft from the magnetometer data have been integrated in such a way as to minimize hardware requirements and simplify calibration procedures. Damping and deviation errors are avoided by the inherent design of the device, and a technique for compensating for northerly-turning-error is described.

  14. Development of High Performance Permanent Magnets Based on Nd-Fe-B System

    NASA Astrophysics Data System (ADS)

    Pourarian, F.

    2000-09-01

    Rare earth iron boron magnets based on Nd2Fe14B type is the most powerful permanent magnets, which have outstanding magnetic properties in the vicinity of room temperature. Production of NdFeB is carried out by two distinctly different processes. These include the conventional powder - sintering process and consolidation of rapidly solidified powders. The latter is used to produce both bonded and anisotropic bulk magnets. NdFeB sintered magnets essentially consist of three basic phases; Nd2Fe14B(Φ) Nd1Fe4B4 phase (η) and Nd-rich phase (n). Therefore, the magnetic properties of the magnets strongly depend on their microstructure. The current focus of NdFeB magnet research and development is on improvement of the magnetic properties such as the magnetic remanence (Br) and intrinsic coercivity (Hci), corrosion resistance and temperature characteristics of sintered magnets and rapidly solidified (melt spinning) magnets. Since the discovery of NdFeB magnets, their performance has been continuously enhanced and the current maximum energy product is achieved to be 444 kJ/m3 (55.8 MGOe). Other processes also have been used for improving microstructure for developing high energy product NdFeB magnets. These processes include: i) mechanical alloying process of metals which uses an inter-diffusional reaction magnet, ii) HDDR process (hydrogenation, disprorportionation, desorption, recombination) of magnet powder, and iii) nanocrystalline composite magnet (exchange-coupled) which are composed of magnetically hard and soft grains. The negative side of the NdFeB magnet is their low corrosion resistance. They are sensitive to attack by both climatic and corrosive environments, resulting in deterioration of the hard magnetic properties of the magnet. In this paper the development of the high-energy product NdFeB based magnets in terms of improved microstructure and magnet processing methods is reviewed.

  15. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    SciTech Connect

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  16. Development of a dc motor with virtually zero powered magnetic bearing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The development of magnetic bearings for use in direct current electric motors is discussed. The characteristics of the magnets used in the construction of the bearings are described. A magnetic bearing using steel armoring on permanent magnets was selected for performance tests. The specifications of the motor are presented. The test equipment used in the evaluation is described.

  17. Development of a micro nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Goloshevsky, Artem

    Application of Nuclear Magnetic Resonance (NMR) to on-line/in-line control of industrial processes is currently limited by equipment costs and requirements for installation. A superconducting magnet generating strong fields is the most expensive part of a typical NMR instrument. In industrial environments, fringe magnetic fields make accommodation of NMR instruments difficult. However, a portable, low-cost and low-field magnetic resonance system can be used in virtually any environment. Development of a number of hardware components for a portable, low-cost NMR instrument is reported in this dissertation. Chapter one provides a discussion on a miniaturized Helmholtz spiral radio-frequency (RF) coil (average diameter equal to 3.5 mm) and an NMR probe built around a capillary (outer diameter = 1.59 mm and inner diameter = 1.02 mm) for flow imaging. Experiments of NMR spectroscopy, static and dynamic (flow) imaging, conducted with the use of the miniaturized coil, are described. Chapter two presents a microfabricated package of two biaxial gradient coils and a Helmholtz RF coil. Planar configuration of discrete wires was used to create magnetic field gradients. Performance of the microfabricated gradient coils while imaging water flow compared well with a commercial gradient set of much larger size. Chapter three reports on flow imaging experiments with power law fluids (aqueous solutions of sodium salt of carboxymethyl cellulose (CMC)) of different viscosities, carried out in the NMR probe with the miniaturized RF coil and capillary. Viscosities of the CMC solutions were determined based on the curve fits of the velocity profiles and simultaneous measurements of the flow rates. The curve fits were carried out according to the power law model equations. The NMR viscosity measurements compared well with measurements of the same CMC samples, performed on a conventional rotational rheometer. A portable, home-built transceiver, designed for NMR applications utilizing a

  18. Perpendicular magnetic recording—Its development and realization

    NASA Astrophysics Data System (ADS)

    Iwasaki, Shun-ichi

    2012-02-01

    Development of perpendicular magnetic recording is summarized along with learning from the research study. The early stage of perpendicular recording was conducted with the research philosophy of complementarity between perpendicular and horizontal recordings. Although present production of the perpendicular recording HDDs exceeds 600 million per year, development of perpendicular recording experienced the valley of death in the 1990s. The difficult period was overcome by the collaboration system of industrial and academic communities. The research on perpendicular recording brought about development of new research model as well as the historical view of the development of technology and innovation. The huge influence of perpendicular recording on society also taught us the relationship between science and technology with culture and civilization.

  19. Formulation development and evaluation of metronidazole magnetic nanosuspension as a magnetic-targeted and polymeric-controlled drug delivery system

    NASA Astrophysics Data System (ADS)

    Latha, Subbiah; Selvamani, Palanisamy; Kumar, Chelladurai Senthil; Sharavanan, Palaniappan; Suganya, Govindan; Beniwal, Vijender Singh; Rao, Poduri Rama

    2009-05-01

    A nanosuspension of magnetically tagged metronidazole was developed by the solvent displacement method coupled with ultrasonication and was evaluated for its physicochemical properties. The drug release from metronidazole magnetic nanosuspension at pH 1.2 and 7.0 shows maximum correlation coefficient for zero order and Higuchi model, respectively. The anthelmintic activity of the formulated metronidazole magnetic nanosuspension was evaluated on Indian earthworms (Pheretima poi). Metronidazole magnetic nanosuspension at a dose of 10 and 50 mg/ml shortened by 31% and 34%, respectively, the mean time to death of the earthworms when compared against a non-magnetic metronidazole suspension. Thus, the developed metronidazole magnetic nanosuspension showed potent, controlled and targeted drug action and might be a good therapeutic avenue in combating infectious GI disorders.

  20. Development of Metallic Magnetic Calorimeters with a Critical Temperature Switch

    NASA Astrophysics Data System (ADS)

    Kim, S. R.; Choi, J.; Jo, H. S.; Kang, C. S.; Kim, G. B.; Kim, H. L.; Kim, I. W.; Lee, H. J.; Lee, J. H.; Lee, M. K.; Oh, S. Y.; Sala, E.; So, J. H.; Yoon, W. S.; Kim, Y. H.

    2016-07-01

    We report on the progress in the development of meander-shaped metallic magnetic calorimeters (MMCs) with a critical temperature switch. A niobium meander-shaped coil in an MMC is arranged to form a superconducting loop. It is to measure the change in magnetization and to apply a persistent current that magnetizes the MMC sensor material. In this work, part of the superconducting loop is fabricated with another superconducting material with its transition temperature (T_C) lower than that of niobium. A persistent current can be injected in the loop while reducing the temperature from above to below the T_C of the switch. Aluminum (Al) wires and an alloy of molybdenum and germanium (MoGe) were tested as critical temperature switch. The test with the Al switch demonstrated the temperature switch concept for meander-shaped MMCs that require a large field current. Microfabricated MoGe switches showed a T_C near 4.3 K, but only 7 mA of persistent current could be charged due to MoGe film discontinuity. This issue requires further improvement in the fabrication procedure.

  1. Magnetic and inertial fusion status and development plans

    SciTech Connect

    Correll, D.; Storm, E.

    1987-12-04

    Controlled fusion, pursued by investigators in both the magnetic and inertial confinement research programs, continues to be a strong candidate as an intrinsically safe and virtually inexhaustible long-term energy source. We describe the status of magnetic and inertial confinement fusion in terms of the accomplishments made by the research programs for each concept. The improvement in plasma parameters (most frequently discussed in terms of the Tn tau product of ion temperature, T, density, n, and confinement time, tau) can be linked with the construction and operation of experimental facilities. The scientific progress exhibited by larger scale fusion experiments within the US, such as Princeton Plasma Physics Laboratory's Fusion Test Reactor for magnetic studies and Lawrence Livermore National Laboratory's Nova laser for inertial studies, has been optimized by the theoretical advances in plasma and computational physics. Both TFTR and Nova have exhibited ion temperatures in excess of 10 keV at confinement parameters of n tau near 10/sup 13/ cm/sup -3/ . sec. At slightly lower temperatures (near a few keV), the value of n tau has exceeded 10/sup 14/ cm/sup -3/ . sec in both devices. Near-term development plans in fusion research include experiments within the US, Europe, and Japan to improve the plasma performance to reach conditions where the rate of fusion energy production equals or exceeds the heating power incident upon the plasma. 9 refs., 7 figs.

  2. Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment.

    PubMed

    Santos, Tássia R T; Silva, Marcela F; Nishi, Leticia; Vieira, Angélica M S; Klein, Márcia R F; Andrade, Murilo B; Vieira, Marcelo F; Bergamasco, Rosângela

    2016-04-01

    In this work, to evaluate the effectiveness of the coagulation/flocculation using a natural coagulant, using Moringa oleifera Lam functionalized with magnetic iron oxide nanoparticles, producing flakes that are attracted by an external magnetic field, thereby allowing a fast settling and separation of the clarified liquid, is proposed. The removal efficiency of the parameters, apparent color, turbidity, and compounds with UV254nm absorption, was evaluated. The magnetic functionalized M. oleifera Lam coagulant could effectively remove 90 % of turbidity, 85 % of apparent color, and 50 % for the compounds with absorption at UV254nm, in surface waters under the influence of an external magnetic field within 30 min. It was found that the coagulation/flocculation treatment using magnetic functionalized M. oleifera Lam coagulant was able to reduce the values of the physico-chemical parameters evaluated with reduced settling time.

  3. [The development of extrahepatic portacaval shunt device based on magnetic compression technique through the interventional procedure].

    PubMed

    Yan, Xiaopeng; Lv, Yi; Ma, Jia; Liu, Wenyan; Li, Jianhui; Ma, Feng; Wang, Haohua

    2013-11-01

    A device of extrahepatic portacaval shunt is introduced. This device is composed of the daughter and parent magnets and the vascular interventional operation equipment. It is based on the principle of magnetic compression technology, through the intervention approach the daughter and mother magnet are moved to the portal vein and inferior vena cava, respectively. Then the two magnets attract and compress the vessel walls of portal vein and inferior vena cava. Two weeks later, the magnets are detached from the vessel wall with a RUPS-set and the portacaval shunt is established. It is mainly used for the treatment of portal hypertension. It belongs to the interventional operation, there is no any foreign body remaining after the portacaval shunt is established, which can maintain long-term patency. Futhermore the portacaval shunt will not be expanded, therefore it can significantly reduce the incidence of hepatic encephalopathy.

  4. Magnetic field effects on plant growth, development, and evolution

    PubMed Central

    Maffei, Massimo E.

    2014-01-01

    The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed. PMID:25237317

  5. [Contrast agents in magnetic resonance imaging: development and problems].

    PubMed

    Xu, Yi-kai

    2002-09-01

    In spite of the inherent versatility of magnetic resonance imaging (MRI), researchers and clinicians from both home and aboard have made great achievements in developing safe and effective contrast agents. Many new agents are expected to be available for clinical use in the near future. It is of clinical importance that the agents should expand the diagnostic utility of MRI, improve the detection of tiny lesions and help evaluate specific tissue or organ functions. This article aims to examine current status of contrast agents for MRI and the problems waiting for solutions.

  6. Magnetic Resonance Imaging of Alimentary Tract Development in Manduca sexta

    PubMed Central

    Rowland, Ian J.; Goodman, Walter G.

    2016-01-01

    Non-invasive 3D magnetic resonance imaging techniques were used to investigate metamorphosis of the alimentary tract of Manduca sexta from the larval to the adult stage. The larval midgut contracts in volume immediately following cessation of feeding and then greatly enlarges during the late pharate pupal period. Magnetic resonance imaging revealed that the foregut and hindgut of the pharate pupa undergo ecdysis considerably earlier than the external exoskeleton. Expansion of air sacs in the early pupa and development of flight muscles several days later appear to orient the midgut into its adult position in the abdomen. The crop, an adult auxiliary storage organ, begins development as a dorsal outgrowth of the foregut. This coincides with a reported increase in pupal ecdysteroid titers. An outgrowth of the hindgut, the rectal sac, appears several days later and continues to expand until it nearly fills the dorsal half of the abdominal cavity. This development correlates with a second rise in pupal ecdysteroid titers. In the pharate pupa, the presence of paramagnetic species renders the silk glands hyperintense. PMID:27280776

  7. Magnetic particle imaging: current developments and future directions.

    PubMed

    Panagiotopoulos, Nikolaos; Duschka, Robert L; Ahlborg, Mandy; Bringout, Gael; Debbeler, Christina; Graeser, Matthias; Kaethner, Christian; Lüdtke-Buzug, Kerstin; Medimagh, Hanne; Stelzner, Jan; Buzug, Thorsten M; Barkhausen, Jörg; Vogt, Florian M; Haegele, Julian

    2015-01-01

    Magnetic particle imaging (MPI) is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs' response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs' superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs' response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle's MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles' iron core and hydrodynamic diameter, their anisotropy, the composition of the particles' suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions

  8. Magnetic particle imaging: current developments and future directions

    PubMed Central

    Panagiotopoulos, Nikolaos; Duschka, Robert L; Ahlborg, Mandy; Bringout, Gael; Debbeler, Christina; Graeser, Matthias; Kaethner, Christian; Lüdtke-Buzug, Kerstin; Medimagh, Hanne; Stelzner, Jan; Buzug, Thorsten M; Barkhausen, Jörg; Vogt, Florian M; Haegele, Julian

    2015-01-01

    Magnetic particle imaging (MPI) is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs’ response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs’ superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs’ response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle’s MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles’ iron core and hydrodynamic diameter, their anisotropy, the composition of the particles’ suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and

  9. Development and testing of a synchronous micropump based on electroplated coils and microfabricated polymer magnets

    NASA Astrophysics Data System (ADS)

    Halhouli, A. T. Al; Kilani, M. I.; Waldschik, A.; Phataralaoha, A.; Büttgenbach, S.

    2012-06-01

    In this paper, the concept, fabrication, activation and testing of a novel synchronous micropump based on microfabricated copper coils and polymer magnets are presented. The pump works by the synchronized rotation of two polymer magnets in an annular SU-8 microfluidic channel. Magnet rotation is achieved by sequentially activating a set of planar coils to repel or attract the first magnet (traveling magnet) through the channel, while the second one is anchored between the inlet and the outlet ports. At the end of each pumping cycle, the magnets exchange their anchored and traveling functions. The synchronization of magnet rotation has been achieved through programming two activation schemes that proved the high dependence of the pump operation and performance on employed activation scheme parameters. The magnetic forces exerted from electroplated coils on the polymer magnet were tested experimentally using a three-dimensional force sensor. Different coil dimensions have been investigated. A maximum force of 658 µN at an applied current of 138 mA was achieved. The micropump has successfully pumped water with rotational speeds up to 83.33 rpm. Water flow rates in the range of 17.3 µL min-1 at 31.25 rpm to 158.7 µL min-1 at 83.33 rpm were achieved.

  10. Perceived Attractiveness and Classroom Interactions

    ERIC Educational Resources Information Center

    Algozzine, Bob

    1977-01-01

    Adams and Cohen (1974) demonstrated that facial attractiveness was a salient factor in differential student-teacher interactions. This research investigates further the interaction between teachers and children perceived to be attractive or unattractive by those teachers. It was hypothesized that attractive children would exhibit more "positive,"…

  11. Quantifying male attractiveness.

    PubMed Central

    McNamara, John M; Houston, Alasdair I; Marques Dos Santos, Miguel; Kokko, Hanna; Brooks, Rob

    2003-01-01

    Genetic models of sexual selection are concerned with a dynamic process in which female preference and male trait values coevolve. We present a rigorous method for characterizing evolutionary endpoints of this process in phenotypic terms. In our phenotypic characterization the mate-choice strategy of female population members determines how attractive females should find each male, and a population is evolutionarily stable if population members are actually behaving in this way. This provides a justification of phenotypic explanations of sexual selection and the insights into sexual selection that they provide. Furthermore, the phenotypic approach also has enormous advantages over a genetic approach when computing evolutionarily stable mate-choice strategies, especially when strategies are allowed to be complex time-dependent preference rules. For simplicity and clarity our analysis deals with haploid mate-choice genetics and a male trait that is inherited phenotypically, for example by vertical cultural transmission. The method is, however, easily extendible to other cases. An example illustrates that the sexy son phenomenon can occur when there is phenotypic inheritance of the male trait. PMID:14561306

  12. Chemistry of sex attraction.

    PubMed Central

    Roelofs, W L

    1995-01-01

    The chemical communication system used to attract mates involves not only the overt chemical signals but also indirectly a great deal of chemistry in the emitter and receiver. As an example, in emitting female moths, this includes enzymes (and cofactors, mRNA, genes) of the pheromone biosynthetic pathways, hormones (and genes) involved in controlling pheromone production, receptors and second messengers for the hormones, and host plant cues that control release of the hormone. In receiving male moths, this includes the chemistry of pheromone transportation in antennal olfactory hairs (binding proteins and sensillar esterases) and the chemistry of signal transduction, which includes specific dendritic pheromone receptors and a rapid inositol triphosphate second messenger signal. A fluctuating plume structure is an integral part of the signal since the antennal receptors need intermittent stimulation to sustain upwind flight. Input from the hundreds of thousands of sensory cells is processed and integrated with other modalities in the central nervous system, but many unknown factors modulate the information before it is fed to motor neurons for behavioral responses. An unknown brain control center for pheromone perception is discussed relative to data from behavioral-threshold studies showing modulation by biogenic amines, such as octopamine and serotonin, from genetic studies on pheromone discrimination, and from behavioral and electrophysiological studies with behavioral antagonists. Images Fig. 1 PMID:7816846

  13. DEVELOPMENT OF A PRECISE MAGNETIC FIELD MEASUREMENT SYSTEM FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    WANDERER,P.; ESCALLIER,J.; GANETIS,G.; JAIN,A.; LOUIE,W.; MARONE,A.; THOMAS,R.

    2003-06-15

    Several recent applications for fast ramped magnets have been found that require precise measurement of the time-dependent fields. In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the typical level of accuracy for accelerators, {Delta} B/B better than 0.01%. To meet this need, we have begun development of a system containing 16 stationary pickup windings that will be sampled at a high rate. It is hoped that harmonics through the decapole can be measured with this system. Precise measurement of the time-dependent harmonics requires that both the pickup windings and the voltmeters be nearly identical. To minimize costs, printed circuit boards are being used for the pickup windings and a combination of amplifiers and ADC's for voltmeters. In addition, new software must be developed for the analysis. The paper will present a status report on this work.

  14. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    SciTech Connect

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-06-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence.

  15. Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets

    SciTech Connect

    2012-01-01

    REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to today’s best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

  16. Development of miniature moving magnet cryocooler SX040

    NASA Astrophysics Data System (ADS)

    Rühlich, I.; Mai, M.; Rosenhagen, C.; Schreiter, A.; Möhl, C.

    2011-06-01

    State of the art high performance cooled IR systems need to have more than just excellent E/O performance. Minimum size weight and power (SWaP) are the design goals to meet our forces' mission requirements. Key enabler for minimum SWaP of IR imagers is the operation temperature of the focal plane array (FPA) employed. State of the art MCT or InAsSb nBn technology has the potential to rise the FPA temperature from 77 K to 130-150 K (high operation temperature HOT) depending on the specific cut-off wavelength. Using a HOT FPA will significantly lower SWaP and keep those parameters finally dominated by the employed cryocooler. Therefore compact high performance cryocoolers are mandatory. For highest MTTF life AIM developed its Flexure Bearing Moving Magnet product family "SF". Such coolers achieve more than 20000 h MTTF with Stirling type expander and more than 5 years MTTF life with Pulse Tube coldfinger (like for Space applications). To keep the high lifetime potential but to significantly improve SWaP AIM is developing its "SX" type cooler family. The new SX040 cooler incorporates a highly efficient dual piston Moving Magnet driving mechanism resulting in very compact compressor of less than 100mm length. The cooler's high lifetime is also achieved by placing the coils outside the helium vessel as usual for moving magnet motors. The mating ¼" expander is extremely compact with less than 63 mm length. This allows a total dewar length from optical window to expander warm end of less than 100 mm even for large cold shields. The cooler is optimized for HOT detectors with operating temperatures exceeding 95 K. While this kind of cooler is the perfect match for many applications, handheld sights or targeting devices for the dismounted soldier are even more challenging with respect to SWaP. AIM therefore started to develop an even smaller cooler type with single piston and balancer. This paper gives an overview on the development of this new compact cryocooler. Technical

  17. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice

    PubMed Central

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Yang, Xiuhong

    2016-01-01

    The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B0) inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained. PMID:27034951

  18. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice.

    PubMed

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Yang, Xiuhong

    2016-01-01

    The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B 0) inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained.

  19. Development of magnetic shape memory alloy actuators for a swashplateless helicopter rotor

    NASA Astrophysics Data System (ADS)

    Couch, Ronald Newton

    Actuator concepts utilizing NiMnGa, ferromagnetic shape memory alloy are investigated for potential use on a smart rotor for trailing edge flap actuation. With their high energy density, large dynamic stroke, and wide operating bandwidth, ferromagnetic shape memory alloys (FSMA) like NiMnGa, seem like attractive candidates for smart rotor actuators, potentially able to fulfill the requirements for both primary rotor control and vibration suppression. However, because of the recent discovery of the material, current experimental data and analytical tools are limited. To rectify these shortcomings, an extensive set of detailed experiments were conducted on samples of NiMnGa to characterize the response of the alloy for a wide variety of mechanical and magnetic loading conditions. Measurements of the material performance parameters such as power density, damping properties, magneto-mechanical coupling, and transduction efficiency were included. Once characterized, the experimental data were used to develop a series of analytical tools to predict the behavior of the material. A model, developed in parallel to thermal shape memory alloy models is proposed to predict the quasi-static stress-strain behavior. A simple, low frequency, parameter based model was also developed to predict the alloy's dynamic strain response. A method for developing conceptual actuators utilizing NiMnGa as the actuation element was proposed. This approach incorporates experimental data into a process that down-selects a series of possible actuator configurations to obtain a single configuration optimized for volumetric and weight considerations. The proposed actuator was designed to deliver 2 mm of stroke and 60 N of force at an actuation frequency of 50 Hz. However, to generate the 1.0 T magnetic field, the actuator mass was determined to be 2.8 kg and required a minimum of 320 Watts of power for operation. The mass of the NiMnGa element was only 18.3 g. It was concluded that although the Ni

  20. Making vasectomy attractive.

    PubMed

    Herndon, N

    1992-08-01

    In 1989, Pro-Pater, a private, nonprofit family planning organization in Brazil, used attractive ads with the message Vasectomy, An Act of Love to promote vasectomy. The number of vasectomies performed/day at Pro-Pater clinics increased from 11 to 20 during the publicity campaign and fell after the ads stopped but continued at higher levels. Word of mouth communication among friends, neighbors, and relatives who had vasectomies maintained these high levels. This type of communication reduced the fear that often involves vasectomies because men hear from men they know and trust that vasectomies are harmless and do not deprive them of potency. In Sao Paulo, the percentage of men familiar with vasectomies and how they are performed increased after the campaign, but in Salvador, knowledge did not increase even though the number of vasectomies in Pro-Pater clinics increased. Organizations in Colombia and Guatemala have also been effective in educating men about vasectomies. These successes were especially relevant in Latin American where machismo has been an obstacle of family planning programs. The no-scalpel technique 1st introduced in China in 1974 reduces the fear of vasectomy and has fewer complications than the conventional technique. Further trained physicians can perform the no-scalpel technique in about 10 minutes compared with 15 minutes for the conventional technique. In 1987 during a 1-day festival in Thailand, physicians averaged 57 no-scalpel vasectomies/day compared with only 33 for conventional vasectomies. This technique has not spread to Guatemala, Brazil, Colombia, the US, and some countries in Asia and Africa. Extensive research does not indicate that vasectomy has an increased risk of testicular cancer, prostate cancer, and myocardial infarction. Physicians are working on ways to improve vasectomy.

  1. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1993-03-01

    A magnetically operated check valve is disclosed having, in one aspect, a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  2. Magnetically operated check valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor); Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  3. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  4. Mathematical developments regarding the general theory of the Earth magnetism

    NASA Technical Reports Server (NTRS)

    Schmidt, A.

    1983-01-01

    A literature survey on the Earth's magnetic field, citing the works of Gauss, Erman-Petersen, Quintus Icilius and Neumayer is presented. The general formulas for the representation of the potential and components of the Earth's magnetic force are presented. An analytical representation of magnetic condition of the Earth based on observations is also made.

  5. Development and Evaluation of an Attractive Self-Marking Ovitrap to Measure Dispersal and Determine Skip Oviposition in Aedes albopictus (Diptera: Culicidae) Field Populations

    PubMed Central

    Davis, Timothy J.; Tatem, Andrew J.; Hogsette, Jerome A.; Kline, Daniel L.

    2016-01-01

    Aedes albopictus (Skuse) is a container-breeding species with considerable public health importance. To date, Ae. albopictus oviposition behavior has been assessed in outdoor conditions, but only with laboratory-reared specimens. In outdoor large-cage and field studies, we used an attractive self-marking ovipositional device to assess Ae. albopictus skip oviposition behavior. In field studies, 37 wild Ae. albopictus that visited an attractive self-marking ovisite were subsequently captured at a sticky ovitrap within a 4-d period. Because the average Ae. albopictus gonotrophic period is 4.5–6 d, the wild-caught Ae. albopictus visited at least two oviposition sites within a single gonotrophic period. This provided field-based indirect evidence of skip oviposition. The mean distance traveled (MDT) during the 20-d evaluations ranged from 58 to 78 m. The maximum observed distance traveled was 149 m, which was the outer edge of our trapping ability. As populations of Ae. albopictus increased, the MDT during the 4- and 20-d post-marking period increased significantly. Additional observations of wild-marked and captured Aedes triseriatus (Say) are discussed. PMID:26534725

  6. Observer-Based Magnetic Bearing Controller Developed for Aerospace Flywheels

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; Provenza, Andrew J.

    2002-01-01

    A prototype of a versatile, observer-based magnetic bearing controller for aerospace flywheels was successfully developed and demonstrated on a magnetic bearing test rig (see the photograph) and an actual flywheel module. The objective of this development included a fast, yet low risk, control development process, and a robust, high-performance controller for a large variety of flywheels. This required a good system model, an efficient development procedure, and a model-based controller that addressed the key problems associated with flywheel and bearing imbalance, sensor error, and vibration. The model used in this control development and tuning procedure included the flexible rotor dynamics and motor-induced vibrations. Such a model was essential for low-risk scheduling of speed-dependent control parameters and for reliable evaluation of novel control strategies. The successfully tested control prototype utilized an extended Kalman filter to estimate the true rotor principal-axis motion from the raw sensor position feedback. For control refinement, the extended Kalman filter also estimated and eliminated the combined effects of mass-imbalance and sensor runouts from the input data. A key advantage of the design based on the extended Kalman filter is its ability to accurately estimate both the rotor's principal-axis position and gyroscopic rates with the least amount of phase lag. This is important for control parameter scheduling to dampen the gyroscopic motions. Because of large uncertainties in the magnetic bearing and imbalance characteristics, this state-estimation scheme alone is insufficient for containing the rotor motion within the desired 1-mil excursion radius. A nonlinear gain adjustment based on an estimation of the principal-axis orbit size was needed to provide a coarse (nonoptimal), but robust, control of the orbit growth. Control current minimization was achieved with a (steepest gradient) search of synchronous errors in the principal

  7. Novel Hall sensors developed for magnetic field imaging systems.

    SciTech Connect

    Cambel, V.; Karapetrov, G.; Novosad, V.; Bartolome, E.; Gregusova, D.; Fedor, J.; Kudela, R.; Soltys, J.; Materials Science Division; Slovak Academy of Sciences; Univ. Autonoma de Barcelona

    2007-09-01

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat.

  8. Development of superconducting magnetic bearing for flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yoshiki; Mizuno, Katsutoshi; Yamashita, Tomohisa; Ogata, Masafumi; Hasegawa, Hitoshi; Nagashima, Ken; Mukoyama, Shinichi; Matsuoka, Taro; Nakao, Kengo; Horiuch, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    2016-12-01

    We have been developing a superconducting magnetic bearing (SMB) that has high temperature superconducting (HTS) coils and bulks for a flywheel energy storage system (FESS) that have an output capability of 300 kW and a storage capacity of 100 kW h (Nagashima et al., 2008, Hasegawa et al., 2015) [1,2]. The world largest-class FESS with a SMB has been completed and test operation has started. A CFRP flywheel rotor that had a diameter of 2 m and weight of 4000 kg had a capability to be rotated at a maximum speed of 6000 min-1. The SMB using superconducting material both for its rotor and stator is capable of supporting the flywheel that had the heavy weight and the high seed rotation mentioned above. This paper describes the design of the SMB and results of the cooling test of the SMB.

  9. Magnetic fields: how is plant growth and development impacted?

    PubMed

    da Silva, Jaime A Teixeira; Dobránszki, Judit

    2016-03-01

    This review provides detailed insight on the effects of magnetic fields on germination, growth, development, and yield of plants focusing on ex vitro growth and development and discussing the possible physiological and biochemical responses. The MFs considered in this review range from the nanoTesla (nT) to geomagnetic levels, up to very strong MFs greater than 15 Tesla (T) and also super-weak MFs (near 0 T). The theoretical bases of the action of MFs on plant growth, which are complex, are not discussed here and thus far, there is limited mathematical background about the action of MFs on plant growth. MFs can positively influence the morphogenesis of several plants which allows them to be used in practical situations. MFs have thus far been shown to modify seed germination and affect seedling growth and development in a wide range of plants, including field, fodder, and industrial crops; cereals and pseudo-cereals; grasses; herbs and medicinal plants; horticultural crops (vegetables, fruits, ornamentals); trees; and model crops. This is important since MFs may constitute a non-residual and non-toxic stimulus. In addition to presenting and summarizing the effects of MFs on plant growth and development, we also provide possible physiological and biochemical explanations for these responses including stress-related responses of plants, explanations based on dia-, para-, and ferromagnetism, oriented movements of substances, and cellular and molecular changes.

  10. You must have been a beautiful baby: ratings of infant facial attractiveness fail to predict ratings of adult attractiveness.

    PubMed

    Harrison, Marissa A; Shortall, Jennifer C; Dispenza, Franco; Gallup, Gordon G

    2011-12-01

    Facial attractiveness has been studied extensively, but little research has examined the stability of facial attractiveness of individuals across different stages of development. We conducted a study examining the relationship between facial attractiveness in infants (age 24 months and under) and the same individuals as young adults (age 16-18 years) using infant and adult photographs from high school yearbooks. Contrary to expectations, independent raters' assessments of infant facial attractiveness did not correlate with adult facial attractiveness. These results are discussed in terms of the adaptive function of heightened attractiveness in infancy, which likely evolved to elicit and maintain parental care.

  11. Development of high-vacuum planar magnetron sputtering using an advanced magnetic field geometry

    SciTech Connect

    Ohno, Takahiro; Yagyu, Daisuke; Saito, Shigeru Ohno, Yasunori; Itoh, Masatoshi; Uhara, Yoshio; Miura, Tsutomu; Nakano, Hirofumi

    2015-11-15

    A permanent magnet in a new magnetic field geometry (namely, with the magnetization in the radial direction) was fabricated and used for high-vacuum planar magnetron sputtering using Penning discharge. Because of the development of this magnet, the discharge current and deposition rate were increased two to three times in comparison with the values attainable with a magnet in the conventional geometry. This improvement was because the available space for effective discharge of the energetic electrons for the ionization increased because the magnetic field distribution increased in both the axial and radial directions of discharge.

  12. Development of rotating magnetic field coil system in the HIST spherical torus device

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Kikuchi, Y.; Yamada, S.; Hashimoto, S.; Nishioka, T.; Fukumoto, N.; Nagata, M.

    2007-11-01

    Coaxial Helicity Injection (CHI) is one of most attractive methods to achieve non-inductive current drive in spherical torus devices. The current drive mechanism of CHI relies on MHD relaxation process of rotating kink behavior [1], so that there is a possibility to control the CHI by using an externally applied rotating magnetic field (RMF). We have recently started to develop a RMF coil system in the HIST spherical torus device. Eight coils are located above and below the midplane at four toroidal locations so that the RMF is resonant with n = 1 rotating kink mode driven by the CHI. In addition, the RMF coil set is installed inside a flux conserver of 5 mm thickness (cut-off frequency ˜ 170 Hz) so that the RMF penetrates into the plasma. The coil winding is made of 20 turns of enameled copper circular wires (1.5 mm^2 conductor cross section), covered with a thin stainless steal case of 0.5 mm thickness (cut-off frequency ˜ 710 kHz). The RMF system is driven by an IGBT inverter power supply (nominal current: 1 kA, nominal voltage: 1 kV) with an operating frequency band from 10 kHz to 30 kHz. The estimated amplitude of RMF neglecting effects of image current at the flux conserver is a few tens Gauss at around the magnetic axis. A preliminary experimental result will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003).

  13. Design and development of a new magnetic sensor for stress measurements

    NASA Astrophysics Data System (ADS)

    Aggelopoulos, S.

    2016-03-01

    This paper describes the design and the development of a new magnetic sensor for stress measurements using the magnetic Barkhausen noise and the magnetic permeability techniques in ferromagnetic steels. Both techniques together, become an important nondestructive technique, due to its exceptional material and stress characterization capabilities. The correlation of the two methods was investigated. Conclusions were derived based on the experimental results.

  14. Fetal Hippocampal Development: Analysis by Magnetic Resonance Imaging Volumetry

    PubMed Central

    Jacob, Francois Dominique; Habas, Piotr; Kim, Kio; Corbett-Detig, James; Xu, Duan; Studholme, Colin; Glenn, Orit A.

    2011-01-01

    The hippocampal formation plays an important role in learning and memory, however data on its development in utero in humans is limited. This study was performed to evaluate hippocampal development in healthy fetuses using 3D reconstructed magnetic resonance imaging (MRI). A cohort of 20 healthy pregnant women underwent prenatal MRI at a median gestational age of 24.9 weeks (range 21.3-31.9 weeks); 6 of the women also had a second fetal MRI performed at a 6 week interval. Routine 2D ultrafast T2-weighted images were used to reconstruct a 3D volume image, which was then used to manually segment the right and left hippocampi. Total hippocampal volume was calculated for each subject and compared against gestational age. There was a linear increase in total hippocampal volume with increasing gestational age (P<0.001). For subjects scanned twice, there was an increase in hippocampal size on the second fetal MRI (P=0.0004). This represents the first volumetric study of fetal hippocampal development in vivo. This normative volumetric data will be helpful for future comparison studies of suspected developmental abnormalities of hippocampal structure and function. PMID:21270675

  15. Facial Features: What Women Perceive as Attractive and What Men Consider Attractive

    PubMed Central

    Muñoz-Reyes, José Antonio; Iglesias-Julios, Marta; Pita, Miguel; Turiegano, Enrique

    2015-01-01

    Attractiveness plays an important role in social exchange and in the ability to attract potential mates, especially for women. Several facial traits have been described as reliable indicators of attractiveness in women, but very few studies consider the influence of several measurements simultaneously. In addition, most studies consider just one of two assessments to directly measure attractiveness: either self-evaluation or men's ratings. We explored the relationship between these two estimators of attractiveness and a set of facial traits in a sample of 266 young Spanish women. These traits are: facial fluctuating asymmetry, facial averageness, facial sexual dimorphism, and facial maturity. We made use of the advantage of having recently developed methodologies that enabled us to measure these variables in real faces. We also controlled for three other widely used variables: age, body mass index and waist-to-hip ratio. The inclusion of many different variables allowed us to detect any possible interaction between the features described that could affect attractiveness perception. Our results show that facial fluctuating asymmetry is related both to self-perceived and male-rated attractiveness. Other facial traits are related only to one direct attractiveness measurement: facial averageness and facial maturity only affect men's ratings. Unmodified faces are closer to natural stimuli than are manipulated photographs, and therefore our results support the importance of employing unmodified faces to analyse the factors affecting attractiveness. We also discuss the relatively low equivalence between self-perceived and male-rated attractiveness and how various anthropometric traits are relevant to them in different ways. Finally, we highlight the need to perform integrated-variable studies to fully understand female attractiveness. PMID:26161954

  16. Magnetic Micro/Nano Structures for Biological Manipulation

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Yu; Hsieh, Teng-Fu; Chang, Wei-Chieh; Yeh, Kun-Chieh; Hsu, Ming-Shinn; Chang, Ching-Ray; Chen, Jiann-Yeu; Wei, Zung-Hang

    2016-05-01

    Biomanipulation based on micro/nano structures is an attractive approach for biotechnology. To manipulate biological systems by magnetic forces, the magnetic labeling technology utilized magnetic nanoparticles (MNPs) as a common rule. Ferrofluid, well-dispersed MNPs, can be used for magnetic modification of the surface or as molds to form organized microstructures. For magnetic-based micro/nano structures, different methods to modulate magnetic field at the microscale have been developed. Specifically, this review focused on a new strategy which uses the concept of micromagnetism of patterned magnetic thin film with specific domain walls configurations to generate stable magnetic poles for cell patterning.

  17. [Effect of an alternating magnetic field on the development of spontaneous hypertension in rats].

    PubMed

    Markov, Kh M; Petrichuk, S V; Zavrieva, M K; Suslova, G F; Nartsissov, R P

    1984-12-01

    The effect of varying magnetic field on the development of spontaneous hypertension was studied in experiments on Okamoto rats. The influence of magnetic field during antenatal development caused persistent changes in lymphocyte and organ metabolism and accelerated the appearance of spontaneous hypertension in rats. Based on enzymatic activity of lymphocytes it is possible to predict the development of spontaneous arterial hypertension.

  18. Personality Mediators of Interpersonal Attraction.

    ERIC Educational Resources Information Center

    Johnson, Charles D.; And Others

    The current study was an examination of the effect of personality variables on the relationship between attitude disagreement and attraction. Attraction was measured in a neutral situation, designed to maximize any existing affective predispositions toward attitude agreement-disagreements. Subjects were placed in an ambiguous face-to-face…

  19. Physical Attractiveness and Counseling Skills.

    ERIC Educational Resources Information Center

    Vargas, Alice M.; Borkowski, John G.

    1982-01-01

    Searched for interaction between quality of counseling skills (presence or absence of empathy, genuineness, and positive regard) and physical attractiveness as determinants of counseling effectiveness. Attractiveness influenced perceived effectiveness of counselor's skill. Analyses of expectancy data revealed that only with good skills did…

  20. AIM: Attracting Women into Sciences.

    ERIC Educational Resources Information Center

    Hartman, Icial S.

    1995-01-01

    Addresses how to attract more college women into the sciences. Attracting Women into Sciences (AIM) is a comprehensive approach that begins with advising, advertising, and ambiguity. The advising process includes dispelling stereotypes and reviewing the options open to a female basic science major. Interaction, involvement and instruction, finding…

  1. African perceptions of female attractiveness.

    PubMed

    Coetzee, Vinet; Faerber, Stella J; Greeff, Jaco M; Lefevre, Carmen E; Re, Daniel E; Perrett, David I

    2012-01-01

    Little is known about mate choice preferences outside Western, educated, industrialised, rich and democratic societies, even though these Western populations may be particularly unrepresentative of human populations. To our knowledge, this is the first study to test which facial cues contribute to African perceptions of African female attractiveness and also the first study to test the combined role of facial adiposity, skin colour (lightness, yellowness and redness), skin homogeneity and youthfulness in the facial attractiveness preferences of any population. Results show that youthfulness, skin colour, skin homogeneity and facial adiposity significantly and independently predict attractiveness in female African faces. Younger, thinner women with a lighter, yellower skin colour and a more homogenous skin tone are considered more attractive. These findings provide a more global perspective on human mate choice and point to a universal role for these four facial cues in female facial attractiveness.

  2. Planning and Developing Magnet Schools: Experiences and Observations.

    ERIC Educational Resources Information Center

    Blank, Rolf K., Ed.; Messier, Paul R., Ed.

    This document consists of nine papers which discuss the planning and design, implementation and maintenance, and evaluation of magnet schools. They are based on practical experience with magnet schools, which first appeared in the early 1970s. By 1982, the movement had grown to include more than 1,200 schools in 140 urban school districts, and the…

  3. Theoretical Development, Design and Testing of a Magnetic Fuel Cell

    DTIC Science & Technology

    2002-12-01

    magnetic gas passing through a magnetic field is described for generation of electrical power. The first stage of this thesis explores the...Colorado, 1992 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the...Gamani Kurunasiri Thesis Co-Advisor John Powers Chairman Department of Electrical and Computer Engineering iii

  4. The LHC magnet system and its status of development

    NASA Technical Reports Server (NTRS)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  5. Early embryonic development of frogs under intense magnetic fields up to 8 T

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Iwasaka, M.; Shiokawa, K.

    1994-05-01

    A possible influence of intense magnetic fields on the embryonic development of frogs was studied in reference to a potential hazard in magnetic resonance imaging technology. Some of the most serious hazardous effects that could be induced by intense magnetic fields are teratogenic effects on developing embryos. In the present experiment, the possible influence of intense magnetic fields up to 8 T on the early embryonic development of Xenopus laevis was studied. Embryos were exposed to magnetic fields up to 8 T for the period from the precleavage stage to neurula in a small glass vial. Embryos were then cultured in Brown-Caston's medium until the feeding-tadpole stage. No apparent teratogenic effects were observed when embryos were cultured for 20 h from the stage of uncleaved fertilized egg to the neurula stage under magnetic fields of 8 T. We conclude that static magnetic fields up to 8 T do not appreciably affect the rapid cleavage and the following cell multiplication and differentiation in Xenopus laevis. We have also studied the early embryonic development of Xenopus laevis in a 40 nT magnetic field, or 1/1000 of the earth's magnetic field, and obtained negative results. Thus, again under this very low magnetic field, fertilized eggs developed normally and formed tadpoles with no appreciable abnormality.

  6. Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique

    NASA Astrophysics Data System (ADS)

    Fuke, K.; Tona, M.; Fujihara, A.; Sakurai, M.; Ishikawa, H.

    2012-08-01

    Nuclear magnetic resonance (NMR) technique is a well-established powerful tool to study the physical and chemical properties of a wide range of materials. However, presently, NMR applications are essentially limited to materials in the condensed phase. Although magnetic resonance was originally demonstrated in gas phase molecular beam experiments, no application to gas phase molecular ions has yet been demonstrated. Here, we present a novel principle of NMR detection for gas phase ions based on a "magnetic resonance acceleration" technique and describe the design and construction of an apparatus which we are developing. We also present an experimental technique and some results on the formation and manipulation of cold ion packets in a strong magnetic field, which are the key innovations to detect NMR signal using the present method. We expect this novel method to lead new realm for the study of mass-selected gas-phase ions with interesting applications in both fundamental and applied sciences.

  7. Development of a temperature-variable magnetic resonance imaging system using a 1.0 T yokeless permanent magnet

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Tamada, D.; Kose, K.

    2011-10-01

    A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5 °C to 45 °C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties.

  8. Development of a temperature-variable magnetic resonance imaging system using a 1.0T yokeless permanent magnet.

    PubMed

    Terada, Y; Tamada, D; Kose, K

    2011-10-01

    A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5°C to 45°C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties.

  9. Development of a novel centrifugal pump: magnetic rotary pump.

    PubMed

    Naganuma, S; Yambe, T; Sonobe, T; Kobayashi, S; Nitta, S

    1997-07-01

    The rotational axis of the centrifugal pump has some associated problems such as blood destruction and sealing between the axis and pump housing. To improve upon these deficits we have developed a new type of blood pump, the magnetic rotary pump (MRP). The MRP has an original design with no rotational axis and no impellers. We made a prototype MRP and examined its hemodynamics in mock circulation. The prototype MRP flow rate is only 1.0 L/min with an afterload of 30 mm Hg, and we have made some modifications in the size and drive mechanisms from these results. The modified MRP can achieve high flow rates and rotational speeds (6.0 L/min with an afterload of 100 mm Hg, 2,000 rpm) in a mock circuit, and the modified MRP was used for left heart assistance in an acute animal experiment. The MRP could maintain the hemodynamics of an anesthetized adult goat. These results suggest that the MRP needs to be improved in several areas, but the MRP may be useful as a blood pump.

  10. Development of a Hybrid Magnetic Resonance and Ultrasound Imaging System

    PubMed Central

    Sherwood, Victoria; Rivens, Ian; Collins, David J.; Leach, Martin O.; ter Haar, Gail R.

    2014-01-01

    A system which allows magnetic resonance (MR) and ultrasound (US) image data to be acquired simultaneously has been developed. B-mode and Doppler US were performed inside the bore of a clinical 1.5 T MRI scanner using a clinical 1–4 MHz US transducer with an 8-metre cable. Susceptibility artefacts and RF noise were introduced into MR images by the US imaging system. RF noise was minimised by using aluminium foil to shield the transducer. A study of MR and B-mode US image signal-to-noise ratio (SNR) as a function of transducer-phantom separation was performed using a gel phantom. This revealed that a 4 cm separation between the phantom surface and the transducer was sufficient to minimise the effect of the susceptibility artefact in MR images. MR-US imaging was demonstrated in vivo with the aid of a 2 mm VeroWhite 3D-printed spherical target placed over the thigh muscle of a rat. The target allowed single-point registration of MR and US images in the axial plane to be performed. The system was subsequently demonstrated as a tool for the targeting and visualisation of high intensity focused ultrasound exposure in the rat thigh muscle. PMID:25177702

  11. The dynamical crossover in attractive colloidal systems

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene; Mallamace, Domenico; Chen, Sow-Hsin

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  12. Further Development of an Optimal Design Approach Applied to Axial Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Bloodgood, V. Dale, Jr.; Groom, Nelson J.; Britcher, Colin P.

    2000-01-01

    Classical design methods involved in magnetic bearings and magnetic suspension systems have always had their limitations. Because of this, the overall effectiveness of a design has always relied heavily on the skill and experience of the individual designer. This paper combines two approaches that have been developed to aid the accuracy and efficiency of magnetostatic design. The first approach integrates classical magnetic circuit theory with modern optimization theory to increase design efficiency. The second approach uses loss factors to increase the accuracy of classical magnetic circuit theory. As an example, an axial magnetic thrust bearing is designed for minimum power.

  13. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  14. Progress Toward Attractive Stellarators

    SciTech Connect

    Neilson, G H; Brown, T G; Gates, D A; Lu, K P; Zarnstorff, M C; Boozer, A H; Harris, J H; Meneghini, O; Mynick, H E; Pomphrey, N; Reiman, A H; Xanthopoulos, P

    2011-01-05

    The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS design space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.

  15. Attracting men to vasectomy.

    PubMed

    Finger, W R

    1998-01-01

    There is far less information available for men about vasectomy than there is available for women about comparable contraceptive services. Also, men do not have medical check-ups on a regular basis, and therefore have less contact with medical practitioners during which vasectomy could otherwise be discussed. Vasectomy needs to be promoted in order for men to learn about and accept it as their contraceptive method of choice. To that end, Marie Stopes International (MSI) launches a vasectomy promotion campaign annually which includes advertising in local newspapers and upon billboards at football stadiums. The campaigns use light-hearted and bold ideas, with some shock value. This approach helps to relax men who otherwise tend to be wary of both the surgical procedure and subsequent consequences of vasectomy. Prevailing social norms should, however, guide the content of promotional campaigns. The UK is one of only a few countries in the world where about the same proportions of men and women use sterilization; 16% of men and 15% of women have been sterilized. A MSI campaign in the UK which began during fall 1997 prompted an increase in the number of inquiries about vasectomy at the Marie Stopes Vasectomy Clinic. Promotional campaigns in developing countries have also been successful. It is also important that campaigns be put in the larger context of promoting all contraceptive methods.

  16. Status of superconducting magnet development (SSC, RHIC, LHC)

    SciTech Connect

    Wanderer, P.

    1993-12-31

    This paper summarize recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hadron Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plan are also presented.

  17. Developments in deep brain stimulation using time dependent magnetic fields

    SciTech Connect

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  18. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  19. Developments in deep brain stimulation using time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.

    2012-04-01

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  20. The historical development of the magnetic method in exploration

    USGS Publications Warehouse

    Nabighian, M.N.; Grauch, V.J.S.; Hansen, R.O.; LaFehr, T.R.; Li, Y.; Peirce, J.W.; Phillips, J.D.; Ruder, M.E.

    2005-01-01

    The magnetic method, perhaps the oldest of geophysical exploration techniques, blossomed after the advent of airborne surveys in World War II. With improvements in instrumentation, navigation, and platform compensation, it is now possible to map the entire crustal section at a variety of scales, from strongly magnetic basement at regional scale to weakly magnetic sedimentary contacts at local scale. Methods of data filtering, display, and interpretation have also advanced, especially with the availability of low-cost, high-performance personal computers and color raster graphics. The magnetic method is the primary exploration tool in the search for minerals. In other arenas, the magnetic method has evolved from its sole use for mapping basement structure to include a wide range of new applications, such as locating intrasedimentary faults, defining subtle lithologic contacts, mapping salt domes in weakly magnetic sediments, and better defining targets through 3D inversion. These new applications have increased the method's utility in all realms of exploration - in the search for minerals, oil and gas, geothermal resources, and groundwater, and for a variety of other purposes such as natural hazards assessment, mapping impact structures, and engineering and environmental studies. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  1. Magnetically extracted microstructural development along the length of Co nanowire arrays: The interplay between deposition frequency and magnetic coercivity

    NASA Astrophysics Data System (ADS)

    Montazer, A. H.; Ramazani, A.; Almasi Kashi, M.

    2016-09-01

    Providing practical implications for developing the design and optimizing the performance of hard magnets based on nanowires (NWs) requires an in-depth understanding of the processes in fabrication and magnetic parameters. Here, an electrochemical deposition technique with different frequencies is used to fabricate 50 nm diameter Co NW arrays into the nanopores of anodic aluminum oxide templates. The resulting NWs with dendrites at the base are subsequently exposed to a chemical etching with which to prepare cylindrical Co NWs with an aspect ratio of 200. In this way, the coercivity at room temperature increases up to 20% for different deposition frequencies, indicating the occurrence of a magnetic hardening along the NW length. Decreasing the length of the cylindrical NWs in ascending order whilst also using a successive magnetometry, the deposition frequency is found to be an important parameter in further enhancing the initial coercivity up to 65% in the length range of 10 to 3 μm. The first-order reversal curve diagrams evaluated along the NW length evidence the elimination of a soft magnetic phase and the formation of harder magnetic domains when reducing the length. Alternatively, X-ray diffraction patterns show improvements in the crystallinity along the [002] direction, pertaining to the alignment of the hexagonal close-packed c-axis of cobalt and long axis of NWs when reducing the length. These results may address the growing need for the creative design and low cost fabrication of rare-earth-free permanent magnets with high coercivity and availability.

  2. Attraction between hydrated hydrophilic surfaces

    NASA Astrophysics Data System (ADS)

    Kanduč, Matej; Schneck, Emanuel; Netz, Roland R.

    2014-08-01

    According to common knowledge, hydrophilic surfaces repel via hydration forces while hydrophobic surfaces attract, but mounting experimental evidence suggests that also hydrophilic surfaces can attract. Using all-atom molecular dynamics simulations at prescribed water chemical potential we study the crossover from hydration repulsion to hydrophobic attraction for planar polar surfaces of varying stiffness and hydrogen-bonding capability. Rescaling the partial charges of the polar surface groups, we cover the complete spectrum from very hydrophobic surfaces (characterized by contact angles θ ≃ 135°) to hydrophilic surfaces exhibiting complete wetting (θ = 0°). Indeed, for a finite range θadh < θ < 90°, we find a regime where hydrophilic surfaces attract at sub-nanometer separation and stably adhere without intervening water. The adhesive contact angle θadh depends on surface type and lies in the range 65° < θadh < 80°, in good agreement with experiments. Analysis of the total number of hydrogen bonds (HBs) formed by water and surface groups rationalizes this crossover between hydration repulsion and hydrophilic attraction in terms of a subtle balance: Highly polar surfaces repel because of strongly bound hydration water, less polar hydrophilic surfaces attract because water-water HBs are preferred over surface-water HBs. Such solvent reorganization forces presumably underlie also other important phenomena, such as selective ion adsorption to interfaces as well as ion pair formation.

  3. Development of a Magnetic Attachment Method for Bionic Eye Applications.

    PubMed

    Fox, Kate; Meffin, Hamish; Burns, Owen; Abbott, Carla J; Allen, Penelope J; Opie, Nicholas L; McGowan, Ceara; Yeoh, Jonathan; Ahnood, Arman; Luu, Chi D; Cicione, Rosemary; Saunders, Alexia L; McPhedran, Michelle; Cardamone, Lisa; Villalobos, Joel; Garrett, David J; Nayagam, David A X; Apollo, Nicholas V; Ganesan, Kumaravelu; Shivdasani, Mohit N; Stacey, Alastair; Escudie, Mathilde; Lichter, Samantha; Shepherd, Robert K; Prawer, Steven

    2016-03-01

    Successful visual prostheses require stable, long-term attachment. Epiretinal prostheses, in particular, require attachment methods to fix the prosthesis onto the retina. The most common method is fixation with a retinal tack; however, tacks cause retinal trauma, and surgical proficiency is important to ensure optimal placement of the prosthesis near the macula. Accordingly, alternate attachment methods are required. In this study, we detail a novel method of magnetic attachment for an epiretinal prosthesis using two prostheses components positioned on opposing sides of the retina. The magnetic attachment technique was piloted in a feline animal model (chronic, nonrecovery implantation). We also detail a new method to reliably control the magnet coupling force using heat. It was found that the force exerted upon the tissue that separates the two components could be minimized as the measured force is proportionately smaller at the working distance. We thus detail, for the first time, a surgical method using customized magnets to position and affix an epiretinal prosthesis on the retina. The position of the epiretinal prosthesis is reliable, and its location on the retina is accurately controlled by the placement of a secondary magnet in the suprachoroidal location. The electrode position above the retina is less than 50 microns at the center of the device, although there were pressure points seen at the two edges due to curvature misalignment. The degree of retinal compression found in this study was unacceptably high; nevertheless, the normal structure of the retina remained intact under the electrodes.

  4. Development of Magnet Technologies for HTS Insert Coils

    NASA Astrophysics Data System (ADS)

    Wesche, Rainer; Uglietti, Davide; Bruzzone, Pierluigi; March, Stephen; Marinucci, Claudio; Stepanov, Boris; Glowa, Natalia

    An existing Nb3Sn laboratory magnet generating a magnetic field of 12 T is intended to be upgraded to 16 T by means of the use of a high temperature superconductor (HTS) insert coil. An outline design of the HTS insert coil is presented. In the design, the aspects of the maximum achievable operation current, the required copper cross-section to ensure a hot spot temperature below 200 K and the resulting forces and stresses have been considered. The length of the insert coil has been selected in such a way that the field uniformity will be better than 1% within a sphere of 3 cm diameter. The protection of the whole magnet system (LTS & HTS insert) is briefly described.

  5. Development of Turbulent Magnetic Reconnection in a Magnetic Island

    NASA Astrophysics Data System (ADS)

    Huang, Can; Lu, Quanming; Wang, Rongsheng; Guo, Fan; Wu, Mingyu; Lu, San; Wang, Shui

    2017-02-01

    In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.

  6. Development of closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.

    1982-01-01

    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.

  7. Advances In Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    1994-01-01

    NASA technical memorandum reviews state of technology of magnetic bearings, focusing mainly on attractive bearings rather than repulsive, eddy-current, or Lorentz bearings. Attractive bearings offer greater load capacities and preferred for aerospace machinery.

  8. Development of MnBi permanent magnet: neutron diffraction of MnBi powder

    SciTech Connect

    Cui, Jun; Choi, Jung-Pyung; Li, Guosheng; Polikarpov, Evgueni; Darsell, Jens T.; Kramer, Matthew J.; Zarkevich, Nikolai; Wang, L. L.; Johnson, D. D.; Marinescu, Melania; Huang, Qingzhen; Wu, Hui; Vuong, Nguyen V.; Liu, J.Ping

    2014-03-05

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained power. The result shows that the purity of the obtained powder is about 91wt.% at 300K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K respectively.

  9. Intention of Students in Less Developed Cities in China to Opt for Undergraduate Education Abroad: Does This Vary as Their Perceptions of the Attractions of Overseas Study Change?

    ERIC Educational Resources Information Center

    Hung, Fan-sing

    2010-01-01

    This study is based on a survey in 2007 of 12,961 senior secondary final year students in seven major cities in China, and shows that students in less developed cities manifest a stronger intention to study abroad than students in better off cities, controlling for students' other demographic characteristics and their major perceived attractions…

  10. Development of Magnetic Nanomaterials and Devices for Biological Applications

    DTIC Science & Technology

    2007-10-30

    Localization of [3H]leucine-labeled super - paramagnetic nanoparticles and directed delivery to retinal tissue by a magnetic field. 5 To define the effect...compound with super - paramagnetic nanoparticles 8 To systemically deliver neuroprotectant-labeled super - paramagnetic nanoparticles to retina 9 To...collected. I. Directed delivery and localization of nanoparticles in vivo Labeled (fluorescence of tritium) super - paramagnetic micro- or

  11. Development of contrast enhancing agents in magnetic resonance imaging.

    PubMed

    Lex, L

    1989-01-01

    Magnetic Resonance Imaging (MRI) is a powerful new diagnostic tool in medicine. In MRI there is a great need to improve the specific identification of different tissues i.e. to enhance the contrast between them. This review tries to cover most of the approaches known for solving this problem.

  12. Inflection Points in Magnetic Resonance Imaging Technology-35 Years of Collaborative Research and Development.

    PubMed

    Wood, Michael L; Griswold, Mark A; Henkelman, Mark; Hennig, Jürgen

    2015-09-01

    The technology for clinical magnetic resonance imaging (MRI) has advanced with remarkable speed and in such a manner reflecting the influence of 3 forces-collaboration between disciplines, collaboration between academia and industry, and the enabling of software applications by hardware. The forces are evident in the key developments from the past and emerging trends for the future highlighted in this review article. These developments are associated with MRI system attributes, such as wider, shorter, and stronger magnets; specialty magnets and hybrid devices; k space; and the notion that magnetic field gradients perform a Fourier transform on the spatial distribution of magnetization, phased-array coils and parallel imaging, the user interface, the wide range of contrast possible, and applications that exploit motion-induced phase shifts. An attempt is made to show connections between these developments and how the 3 forces mentioned previously will continue to shape the technology used so productively in clinical MRI.

  13. Aversion and attraction through olfaction

    PubMed Central

    Li, Qian; Liberles, Stephen D.

    2015-01-01

    Sensory cues that predict reward or punishment are fundamental drivers of animal behavior. For example, attractive odors of palatable food or a potential mate predict reward while aversive odors of pathogen-laced food or a predator predict punishment. Aversive and attractive odors can be detected by intermingled sensory neurons that express highly related olfactory receptors and display similar central projections. These findings raise basic questions of how innate odor valence is extracted from olfactory circuits, how such circuits are developmentally endowed and modulated by state, and the relationship between innate and learned odor responses. Here, we review odors, receptors, and neural circuits associated with stimulus valence, discussing salient principles derived from studies on nematodes, insects, and vertebrates. Understanding the organization of neural circuitry that mediates odor aversion and attraction will provide key insights into how the brain functions. PMID:25649823

  14. Development of nanostructured magnetic capsules by means of the layer by layer technique.

    PubMed

    Herrera, Oscar L; Parigi, Enrico; Habibi, Neda; Pastorino, Laura; Caneva Soumetz, Federico; Ruggiero, Carmelina

    2010-01-01

    Nanomagnetic particles have been already taken into account as drug carriers thank to the possibility to control their movement to a specific location where the treatment is required by means of high gradient magnetic fields (HGMF). In this work the layer-by-layer technique (LbL) and nanomagnetic particles were used to developed innovative nanostructured magnetic capsules (NSMC). Their potential application as magnetic drug carriers was investigated under the influence of both static and oscillating magnetic fields used respectively to control capsule displacement and shell permeability. The assembly process of the nanostructured magnetic capsules, its characterization by Quartz Crystal Microbalance (QCM), and the results obtained under the influence of the magnetic fields are presented.

  15. The development of magnetic degradable DP-Bioglass for hyperthermia cancer therapy.

    PubMed

    Wang, Tzu-Wei; Wu, Hsi-Chin; Wang, Wei-Ren; Lin, Feng-Huei; Lou, Pei-Jen; Shieh, Ming-Jium; Young, Tai-Horng

    2007-12-01

    In this study, a novel magnetic degradable material was developed by adding Fe ions into DP-Bioglass (Na(2)O-CaO-P(2)O(5)-SiO(2)) as thermoseed for hyperthermia cancer therapy under an alternating magnetic field. We have investigated the properties of developed magnetic DP-Bioglass including morphology, chemical composition, and magnetism. The degradability was conducted by measuring the released concentrations of Na, Ca, Si, P, and Fe ions. The biocompatibility was analyzed by biological assays, and the functional hyperthermia effect to cancer cells was evaluated by in vitro cell culture test. In the results, the morphology of synthesized magnetic DP-Bioglass was revealed in sphere and rod shape with particle size around 50-100 nm. From the hysteresis loop analysis, it showed that the group of Fe/Bioglass = 0.2 possessed the maximum magnetization property. When cultured with fibroblasts, the magnetic DP-Bioglass had no significant influence on cell viability and mediated low cytotoxicity. The thermal-induced property demonstrated that after exposure to an alternating magnetic field, the cell number of human Caucasian lung carcinoma cells (A549) was significantly decreased when temperature was increasing to 45 degrees C. In brief, successfully incorporated with Fe ions by sol-gel method, this magnetic degradable DP-Bioglass possessed the potential and properties of hyperthermia effect to lung carcinoma cells.

  16. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms.

    PubMed

    Cao, Quanliang; Han, Xiaotao; Li, Liang

    2014-08-07

    The use of a magnetic field for manipulating the motion of magnetic particles in microchannels has attracted increasing attention in microfluidic applications. Generation of a flexible and controllable magnetic field plays a crucial role in making better use of the particle manipulation technology. Recent advances in the development of magnet systems and magnetic field control methods have shown that it has great potential for effective and accurate manipulation of particles in microfluidic systems. Starting with the analysis of magnetic forces acting on the particles, this review gives the configurations and evaluations of three main types of magnet system proposed in microfluidic applications. The interaction mechanisms of magnetic particles with magnetic fields are also discussed.

  17. Effective writing that attracts patients.

    PubMed

    Baum, Neil

    2015-01-01

    Doctors today not only must communicate verbally, they must also realize that the written word is important to their ability to connect with the patients that they already have and also to attract new patients. Doctors will be expected to write blogs, to create content for their Web sites, to write articles for local publications, and even to learn to express themselves in 140 characters or less (i.e., Twitter). This article presents 10 rules for selecting the right words to enhance your communication with existing patients and potentially to attract new patients to your practice.

  18. Radiation Storm vs. The Magnetic Shield: Superheroes of Magnetism & Space Weather Education - A Model for Teacher Professional Development Workshops

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Johnson, R. M.

    2010-12-01

    Magnetic and electric fields and phenomena play important roles in various situations in astronomy, planetary science, and Earth science. Students often lack an intuitive sense of electromagnetic phenomena, and therefore struggle with the complexities of planetary and stellar magnetic fields. Hands-on magnetism activities can provide students with an intuitive grasp of the basics of magnetism, preparing them for more challenging conceptual studies of magnetic phenomena. For the past six years, we have been presenting a professional development workshop for teachers covering the topics of magnetism and space weather. The workshop, which has been conducted more than 20 times for a range of audiences, blends together several simple hands-on activities, background information on space weather and geomagnetism, a collection of images, animations, and interactives that illustrate important concepts, and guidance about specific links between these topics and national science education standards. These workshops have been very well-received, and have consistently been rated highly by participants in surveys. We believe the methods used in these workshops can be applied to other topics in science education and to astronomy and Earth science education specifically. In this presentation, we will describe our magnetism and space weather workshop, including some of the hands-on activities. We will describe successful aspects of the workshop and comment on ways we think this approach could be replicated for other topics. We will also display some of the interactives, graphics, and animations shown during the workshops. Resources have been added to the workshop over the years in response to recurring questions from teachers; we will comment on this process and how it might be applied to other topics. The activities and extensive background content used or referenced in the workshop are available for free on the Windows to the Universe web site (www.windows2universe.org). Hands on

  19. Recent developments in processing HTS silver-clad Bi-2223 tapes, coils and test magnets

    SciTech Connect

    Haldar, P.; Hoehn, J.G. Jr.; Motowidlo, L.R.; Balachandran, U.; Iwasa, Y.; Yunus, M.

    1993-10-01

    Considerable progress has been made in fabricating Bi-2223 high temperature superconductor (HTS) wires and tapes with high critical current densities that are attractive for electric power and high-field magnet applications. Powder-in-tube processed silver-clad Bi-2223 short tape samples, small coils and test magnets have been fabricated and measured at liquid nitrogen (77K), pumped liquid nitrogen (64 K), liquid neon (27K) and liquid helium (4.2K) temperatures. Optimization of thermo-mechanical process parameters have yielded J{sub c}`s in the superconducting core > 4.0 {times} 10{sup 4} A/cm{sup 2} at 77K zero field and > 2.0 {times} 10{sup 5} A/cm{sup 2} at 4.2K, zero field. Long lengths (up to 70 m) of mono-core conductors were fabricated and tested to carry significant amounts of current (23 A, {approximately}15,000 A/cm{sup 2}) at liquid nitrogen temperature. Recent test magnets assembled from pancake wound coils were measured to generate magnetic fields as high as 2.6, 1.8 and 0.36 Tesla at 4.2K, 27K and 77K respectively. These results show promise towards practical utilization of HTS materials.

  20. Visualization of human prenatal development by magnetic resonance imaging (MRI).

    PubMed

    Shiota, Kohei; Yamada, Shigehito; Nakatsu-Komatsu, Tomoko; Uwabe, Chigako; Kose, Katsumi; Matsuda, Yoshimasa; Haishi, Tomoyuki; Mizuta, Shinobu; Matsuda, Tetsuya

    2007-12-15

    It is essential to visualize the structures of embryos and their internal organs three-dimensionally to analyze morphogenesis; this used to rely solely on serial histological sectioning and solid reconstruction, which were tedious and time-consuming. We have applied imaging with a magnetic resonance (MR) microscope equipped with a 2.35 T superconducting magnet to visualize human embryos; we were successful in acquiring high-resolution sectional images and in identifying the detailed structures of major organs. The imaging process was facilitated by using a super-parallel MR microscope. A dataset of MR images of more than 1,000 human embryos, now collected, will be important for future biomedical research and for education.

  1. Development of 20 T class superconducting magnet with large bore

    SciTech Connect

    Kiyoshi, T.; Inoue, K.; Itoh, K.; Takeuchi, T.; Wada, H.; Maeda, H. ); Kuroishi, K.; Suzuki, F.; Takizawa, T.; Tada, N. )

    1992-01-01

    This paper reports that a 20T class superconducting magnet has been constructed at the National Research Institute for Metals in Japan. Its outermost two of four coils have been operated at 4.2K. Before operating all coils at 1.8K, in saturated superfluid helium, breakdown voltages within the coils were measured. With an inner coil of preliminary design, the system should generate 20.4T in a 44mm free bore.

  2. Magnetic and inertial fusion status and development plans

    NASA Astrophysics Data System (ADS)

    Correll, D.; Storm, E.

    1987-12-01

    Controlled fusion, pursued by investigators in both the magnetic and inertial confinement research programs, continues to be a strong candidate as an intrinsically safe and virtually inexhaustible long-term energy source. We describe the status of magnetic and inertial confinement fusion in terms of the accomplishments made by the research programs for each concept. The improvement in plasma parameters (most frequently discussed in terms of the Tn tau product of ion temperature, T, density, n, and confinement time, tau) can be linked with the construction and operation of experimental facilities. The scientific progress exhibited by larger scale fusion experiments within the US, such as Princeton Plasma Physics Laboratory's Fusion Test Reactor for magnetic studies and Lawrence Livermore National Laboratory's Nova laser for inertial studies, has been optimized by the theoretical advances in plasma and computational physics. Both the Tokamak Fusion Test Reactor (TFTR) and Nova have exhibited ion temperatures in excess of 10 keV at confinement parameters of n tau near 10 to the 13th power cm (-3) sec. At slightly lower temperatures (near a few keV), the value of n tau has exceeded 10 to the 13th power cm (-3) sec in both devices.

  3. Offset coil designs for superconducting magnets, a logical development

    SciTech Connect

    Collins, T.

    1986-03-01

    Dipoles and quadrupoles for any new, large proton ring must be stronger, smaller and have better field shape (systematic error) than those used in the Doubler. The present two-shell designs are rigid in that the coils are too thin but cannot be relatively fatter without destroying the field quality. An examination of the coil shapes for dipoles and quadrupoles which produce perfect fields from a uniform current density shows clearly that our persistent use of a circular form for the inner surface of the coils is a poor approximation. When this is corrected by ''offsets'' there is a striking improvement both in the strength of fields and in the field quality. The same analysis makes clear that the efficient use of superconductor and the overall magnet size is determined by the perfect coil shapes. Any reasonable magnet will not differ significantly from the ideal for these parameters. This will be particularly helpful in setting design goals for very large quadrupoles. The offset two-shell dipole design preserves the mechanical features of the highly successful, resilient doubler magnets while greatly extending the performance.

  4. Development of magnetic liquid metal suspensions for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Carle, Florian; Bai, Kunlun; Casara, Joshua; Vanderlick, Kyle; Brown, Eric

    2017-01-01

    We demonstrate how to suspend various magnetic and nonmagnetic particles in liquid metals and characterize their properties relevant to magnetohydrodynamics (MHD). The suspending method uses an acid as a flux to eliminate oxidation from both metal particles and liquid, which allows the particles to be wetted and suspended into the liquid if the particles have higher conductivity than the liquid. With this process we were able to suspend a wide range of particle materials and sizes from 40 nm to 500 μ m into three different liquid metal bases and volume fractions ϕ up to the liquid-solid transition ϕc. By controlling the volume fraction of iron particles in liquid eGaIn, we increased the magnetic permeability by a factor of 5.0 and the electrical conductivity by 13% over that of the pure liquid metal, which gives these materials the potential to exhibit strong MHD effects on the laboratory scale that are usually only observable in the cores of planets and stars. By adding nonmagnetic zinc particles, we increased the viscosity by a factor of 160 while keeping the magnetic and electrical properties nearly constant, which would allow independent control of MHD effects from turbulence. We show that the suspensions flow like Newtonian fluids up to the volume fraction of the liquid-solid transition ϕc.

  5. Attracting Birds to Your Backyard.

    ERIC Educational Resources Information Center

    Joyce, Brian

    1994-01-01

    Discusses methods for drawing birds to outdoor education areas, including the use of wild and native vegetation. Lists specific garden plants suitable for attracting birds in each season. Includes a guide to commercial bird seed and instructions for building homemade birdfeeders and nestboxes. (LZ)

  6. Sex Attraction in Pear Psylla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), a major economic pest of pears, have been shown to use a female-produced sex attractant pheromone. We compared the chemical profiles obtained from solvent extracts of diapausing and post-diapause winterform males and females, with g...

  7. The odorous attractant of the American cockroach, Periplaneta americana (L.). I. Quantitative aspects of the response to the attractant.

    PubMed

    WHARTON, D R; MILLER, G L; WHARTON, M L

    1954-03-01

    1. Procedures have been developed for studying quantitatively the response of the male American cockroach to the odorous attractant of the female. 2. The percentage of male roaches responding to extracts of the attractant of the female has been found to vary with the log of the concentration of the attractant throughout a wide range. 3. Adaptation to the olfactory stimulus has been demonstrated. 4. A theory of adaptation is offered.

  8. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    ERIC Educational Resources Information Center

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  9. Magnetic resonance microscopy of prostate tissue: How basic science can inform clinical imaging development

    SciTech Connect

    Bourne, Roger

    2013-03-15

    This commentary outlines how magnetic resonance imaging (MRI) microscopy studies of prostate tissue samples and whole organs have shed light on a number of clinical imaging mysteries and may enable more effective development of new clinical imaging methods.

  10. Development of integrated AC-DC magnetometer using high-Tc SQUID for magnetic properties evaluation of magnetic nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Mawardi Saari, Mohd; Takagi, Ryuki; Kusaka, Toki; Ishihara, Yuichi; Tsukamoto, Yuya; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2014-05-01

    We developed an integrated AC-DC magnetometer using a high critical temperature superconducting quantum interference device (high-Tc SQUID) to evaluate the static and dynamic magnetic properties of magnetic nanoparticles (MNPs) in solution. The flux-transformer method consisted of first-order planar and axial differential coils that were constructed for static and dynamic magnetization measurements, respectively. Vibrating-sample and harmonic detection techniques were used to reduce interference from excitation magnetic fields in the static and dynamic magnetization measurements, respectively. Static and dynamic magnetization measurements were performed on commercially available iron oxide nanoparticles in diluted solutions. The magnetic responses increased with the increase in concentration of the solutions in both measurement results. The magnetization curves showed that the diamagnetic signal due to the carrier liquid of the iron oxide nanoparticles existed in a dilute solution. Biasing with a proper DC magnetic field in the dynamic magnetization measurement resulted in improved signals of the second and third harmonics. Therefore, highly sensitive magnetic characterizations of MNPs utilizing the static and dynamic magnetization measurement are possible via the developed system.

  11. Development of Thermoelectric and Permanent Magnet Nanoparticles for Clean Energy Applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Phi-Khanh

    The global trend towards energy efficiency and environmental sustainability has generated a strong demand for clean energy technologies. Among the many energy solutions, the work in this dissertation contributes to two strategic goals: the reduction of fuel consumption in the transportation sector, and the increase of domestic wind power capacity. The key barriers to achieving these goals are materials challenges. Automobiles can be made more efficient by thermoelectric conversion of waste heat from the engine into electricity that can be used to power electrical components in the vehicle. Vehicles can forego petroleum fuel altogether by using electric or hybrid motors. Unfortunately, the conversion efficiency of current thermoelectric technology is too low to be considered economically feasible, and the permanent magnets used in electric vehicle motors and wind turbine generators require critical rare-earth elements that are economically unstable (often referred to as the "rare-earth crisis"). In order to combat these challenges, a "spark erosion" technique was utilized for producing nanoparticles that improve thermoelectric efficiency and contribute to the development of electromotors that do not require rare-earths. In Chapter 2 of this dissertation, I describe the utilization of spark erosion for producing high-quality thermoelectric nanoparticles at a remarkably high rate and with enhanced thermoelectric properties. The technique was employed to synthesize p-type bismuth-antimony telluride (BST) and n-type skutterudite nanoparticles, using a relatively small laboratory apparatus, with low energy consumption. The compacted BST nanocomposite samples made from these nanoparticles exhibit a well-defined, 20--50 nm size nanograin microstructure, and show an enhanced Figure of merit, ZT, of 1.36 at 360 K due to a reduction in lattice thermal conductivity. The skutterudite nanocomposites also show reduced thermal conductivity but still require enhancement in the

  12. Development of a fast EUV movie camera for study of magnetic reconnection in magnetically driven plasma jets

    NASA Astrophysics Data System (ADS)

    Chai, Kil-Byoung; Bellan, Paul

    2012-10-01

    The Caltech MHD driven jet experiment involves a low temperature (˜5 eV) and high density (˜10^21 m-3) plasma that travels at 10's of km/s. During and after formation, magnetic reconnections are observed together with kink and Rayleigh-Taylor instabilities [1]. It has also been observed that there are highly transient EUV emissions when there is magnetic reconnection. The first EUV peak occurs when flux tubes merge during formation and the second one occurs when a Rayleigh-Taylor instability causes the jet to break off from its source electrode. It would be helpful for understanding magnetic reconnection to investigate the spatial and temporal behaviors of these EUV bursts associated with magnetic reconnection. In order to achieve this, we are developing a high speed EUV movie camera. It consists of an Al coated YAG:Ce scintillator, an Au parabolic mirror (or a multilayer coated mirror for a specific EUV wavelength) and a fast framing camera (2x10^8 fps). We tested our system using visible light from the actual plasma jet and obtained image sequence with submicron time resolution.[4pt] [1] A. L. Moser and P. M. Bellan, Nature 482, 379 (2012).

  13. 18T resistive magnet development. Conceptual design second annual report

    SciTech Connect

    Agarwal, K.L.; Burgeson, J.E.; Gurol, H.; Mancuso, A.; Michels, P.H.

    1985-10-01

    This report documents the work performed on a normal conducting magnet during fiscal year 1985. Emphasis, during the study, was on refinement of the structural design and optimization of the coil current density distribution for either maximum field generation or minimum power consumption. The results have shown that one can generate a 4.4 tesla field using 6.14 megawatts or 3.1 tesla at 1.43 megawatts. The structural design has been modified to stiffen the outer turn of the conductor. The modification was confirmed to be structurally adequate by both analysis and test. 37 figs., 21 tabs.

  14. Development of magnetic fabric in sedimentary rocks: insights from early compactional structures

    NASA Astrophysics Data System (ADS)

    García-Lasanta, Cristina; Oliva-Urcia, Belén; Román-Berdiel, Teresa; Casas, Antonio M.; Pérez-Lorente, Félix

    2013-07-01

    The timing of development of the magnetic fabric is a major issue in the application of anisotropy of magnetic susceptibility (AMS) as a strain marker. Analysis of AMS in unconcealed synsedimentary structures can be a sound approximation to this task. In this work, three types of early compactional structures (ECS) were studied by means of AMS, since they can help to understand the timing of development of the magnetic fabric. All three types of ECS are found in fine-grained detrital rocks (to avoid other influences such as palaeocurrents), claystones and marls of the Enciso Group within the Cameros Basin (NE Spain): dinosaur footprints, load structures due to differential compaction and dish-and-flame structures associated with fluid migration related to seismites. In addition, to determine possible influences of lithology on the magnetic fabric, different rock types (siltstones and limestones) were also sampled. In general, the influence of ECS results in scattering of the three magnetic axes, higher at the margins of the structure than at its centre. This fact suggests that ECS occurs during the development of the magnetic fabric, disturbing the incipient magnetic fabric stages, and strongly conditions its later evolution during diagenesis. The later homogeneous compaction process due to sedimentary load and physicochemical processes reorient the susceptibility carriers to some extent (i.e. the magnetic fabric is still under development), but not totally, since AMS still records the previous scattering due to ECS imprint. For the Enciso Group deposits, the magnetic fabric begins to develop at the earliest stages after deposition and it stops when diagenetic processes have finished.

  15. The attraction of Brazil nuts

    NASA Astrophysics Data System (ADS)

    Sanders, D. A.; Swift, M. R.; Bowley, R. M.; King, P. J.

    2006-02-01

    Simulations of intruder particles in a vertically vibrated granular bed suggest that neutrally-buoyant intruders are attracted to one another (Phys. Rev. Lett., 93 (2004) 208002). The simulations, however, ignore important physical effects such as friction and convection which are known to influence intruder behaviour. Here, we present experimental evidence for this intruder-intruder interaction, obtained by monitoring the position of neutrally-buoyant metallic disks in a vibrated bed of glass spheres. An effective long-range attraction is shown to exist between a pair of intruders for a range of driving conditions. If further intruder particles are added, a tightly bound cluster of intruders can form. These results highlight the difficulty of retaining well-mixed granular beds under vertical vibration.

  16. Facial attractiveness: evolutionary based research

    PubMed Central

    Little, Anthony C.; Jones, Benedict C.; DeBruine, Lisa M.

    2011-01-01

    Face preferences affect a diverse range of critical social outcomes, from mate choices and decisions about platonic relationships to hiring decisions and decisions about social exchange. Firstly, we review the facial characteristics that influence attractiveness judgements of faces (e.g. symmetry, sexually dimorphic shape cues, averageness, skin colour/texture and cues to personality) and then review several important sources of individual differences in face preferences (e.g. hormone levels and fertility, own attractiveness and personality, visual experience, familiarity and imprinting, social learning). The research relating to these issues highlights flexible, sophisticated systems that support and promote adaptive responses to faces that appear to function to maximize the benefits of both our mate choices and more general decisions about other types of social partners. PMID:21536551

  17. Structural development of the Jurassic Magnetic Quiet Zone off Morocco and identification of Middle Jurassic magnetic lineations

    NASA Astrophysics Data System (ADS)

    Roeser, H. A.; Steiner, C.; Schreckenberger, B.; Block, M.

    2002-10-01

    Geophysical investigations carried out during two Meteor cruises have revealed weak linear magnetic anomalies in those parts of the Jurassic Magnetic Quiet Zone (JMQZ) off Morocco that are not affected by Cenozoic igneous activity. The linear magnetic anomalies are not correlated with variations in relief or structure of oceanic crust. Using the reversal sequence M25-M41, the anomalies of the JMQZ can be modeled with a half spreading rate of 2.2 cm/yr. Extrapolation of the weak lineations back to the slope anomaly S1 results in a breakup age of 170 Ma. According to this interpretation the crust of the JMQZ off Morocco has formed during the time 170-155 Ma (Bajocian to Oxfordian). However, much lower spreading rates (around 1 cm/yr) cannot be excluded. S1 coincides with a poorly developed "seaward dipping reflector sequence" (SDRS), which is most likely its source. The SDRS corroborates the earlier claim that S1 marks the ocean-continent transition. Seaward of S1 is a 70-km-wide strip of horizontal reflectors that become landward dipping to the west in the uppermost part of the basement; it parallels S1 over a distance of 200 km and may indicate excessive magma supply within the first 2 m.y. of seafloor spreading. Similar landward dipping reflectors are observed also in the conjugate Sohm Abyssal Plain off Nova Scotia. The average magnetization of the landward dipping reflectors is much lower than that of the SDRS. A lower crustal body with a seismic velocity of ˜7.3 km/s, which formed during the Neogene beneath the eastern part of the Essaouira Rise, has only a weak magnetization (<0.5 A/m).

  18. Can Pensions Help Attract Teachers?

    ERIC Educational Resources Information Center

    Kimball, Steven M.; Heneman, Herbert G.,III; Kellor, Eileen M.

    2005-01-01

    Every year there is a substantial flow of people into teaching roles as entrants or as movers from one school to another. Each such move involves attraction of the person to the job. Data for 1999-2000 reveal several important findings about teacher staffing. In 1999-2000, out of a teaching workforce of about 3.45 million, there were about 535,000…

  19. Male facial anthropometry and attractiveness.

    PubMed

    Soler, Caries; Kekäläinen, Jukka; Núñez, Manuel; Sancho, María; Núñez, Javier; Yaber, Iván; Gutiérrez, Ricardo

    2012-01-01

    The symmetry and masculinity of the face are often considered important elements of male facial attractiveness. However, facial preferences are rarely studied on natural faces. We studied the effect of these traits and facial metric parameters on facial attractiveness in Spanish and Colombian raters. In total, 13 metric and 11 asymmetry parameters from natural, unmanipulated frontal face photographs of 50 Spanish men were measured with the USIA semiautomatic anthropometric software. All raters (women and men) were asked to rank these images as potential long-term partners for females. In both sexes, facial attractiveness was negatively associated with facial masculinity, and preference was not associated with facial symmetry. In Spanish raters, both sexes preferred male traits that were larger in the right side of the face, which may reflect a human tendency to prefer a certain degree of facial asymmetry. We did not find such preference in Colombian raters, but they did show stronger preference for facial femininity than Spanish raters. Present results suggest that facial relative femininity, which is expected to signal, eg good parenting and cooperation skills, may be an important signal of mate quality when females seek long-term partners. Facial symmetry appears unimportant in such long-term mating preferences.

  20. Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance

    SciTech Connect

    Ludtka, GERALD M.

    2005-03-31

    Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in

  1. Development of high-Tc superconductor wires for magnet applications

    NASA Astrophysics Data System (ADS)

    Tenbrink, J.; Heine, K.; Krauth, H.; Wilhelm, M.

    1991-03-01

    Bi-2212/Ag 1-mm round untextured wires have been produced with critical current densities of 1200 A/sq cm at 77 K, 0 T and up to about 2.0 x 10 to the 4th A/sq cm at 4.2 K in magnetic fields beyond 20 T. In order to achieve this, a two-step annealing procedure is necessary with a partial melting of the wire core, the melt having a composition near Bi2(Sr,Ca)2Cu1O(6+x). On cooling, the Bi2(Sr,Ca)2Cu1O(6+x) phase appears at 880 C, as revealed by in situ XRD (X-ray diffraction) measurements. Long-term annealing at 840 C leads to the transformation of this phase into the Bi2Sr2Ca1Cu2O(8+x) phase. The alkaline earth cuprate (Sr,Ca)14Cu24O=40 and CuO occur as major extraneous phases. Helically shaped samples yield a lower jc between 3 x 103 and maximum 1.0 x 10 to the 4th A/sq cm at 4.2 K, 10 T. Cracks due to thermal expansion mismatch with the sample holder and remaining inhomogeneities along the wire are responsible for these lower values. From I-V curves measured at 4.2 K, n-values were determined to be 20 to 25 in the interesting very-high-field region beyond 20 T. Bi-2223/Ag highly textured thin tapes yield an appreciably higher jc of 2.6 x 10 to the 4th A/sq cm at 77 K, 0 T. Temperature-dependent measurements of jc as a function of magnetic field B yielded onset of significant flux creep above 20 K, limiting the range of application in magnet technology to the temperature range up to 20 K unless an additional more effective pinning mechanism is introduced.

  2. Development of high-gradient and open-gradient magnetic separation

    SciTech Connect

    Hise, E C

    1981-01-01

    This paper was prepared: to review the accomplishments in both high-gradient magnetic separation (HGMS) and open-gradient magnetic separation (OGMS) by the Oak Ridge National Laboratory (ORNL) group during the past three years; to show, through the medium of motion pictures, the operation of the various separation methods and devices used and developed; to show qualitative results of the separation performed; and to make available, to those interested, detailed reports of the experimental procedures and the resulting data. The qualitative separation of pyritic sulfur and ash forming minerals from fine coal by high gradient magnetic separation has been demonstrated at feed rates up to one ton per hour, and in a machine that is commercially produced in sizes for feed rates up to several hundred tons per hour. The quantitative separation of pyritic sulfur and ash forming minerals from fine coal by free fall open gradient magnetic separation has been demonstrated at a laboratory scale and at 300 kg per hour in a solenoidal magnet configuration. A magnet modeling analysis has shown that an optimum magnet can be designed with practical physical constraints which can generate separating forces two to three times those of the existing solenoidal configuration and with a large processing capacity. The analytical predictions of the behavior of particles traversing these separating forces have been experimentally confirmed within 15% in existing magnets.

  3. Development of high-stability magnet power supply

    NASA Astrophysics Data System (ADS)

    Choi, W. S.; Kim, M. J.; Jeong, I. W.; Kim, D. E.; Park, H. C.; Park, K. H.

    2016-06-01

    A very stable (≤10 ppm) magnet power supply (MPS) is required in an accelerator to achieve acceptable beam dynamics. Many factors affect the stability of an MPS, so design of the MPS requires much attention to noise-reduction schemes and to good processing of the signals from the feedback stage. This paper describes some design considerations for an MPS installed and operated in the Pohang Accelerator Laboratory: (1) control method, (2) oversampling technology, (3) ground isolation between hardware modules and (4) low-pass filter design to reduce the switching noise and rectifier ripple components, and shows the stability of three designed devices. The MPS design considerations were verified and validated in simulations and experiments. This paper also shows the relationship between stability and measurement aperture time of digital voltage meter 3458 A to measure stability of a current.

  4. New developments in magnetic resonance imaging of the nail unit.

    PubMed

    Soscia, Ernesto; Sirignano, Cesare; Catalano, Onofrio; Atteno, Mariangela; Costa, Luisa; Caso, Francesco; Peluso, Rosario; Bruner, Vincenzo; Aquino, Maria Maddalena; Del Puente, Antonio; Salvatore, Marco; Scarpa, Raffaele

    2012-07-01

    The evolution of dedicated magnetic resonance imaging (MRI) musculoskeletal equipment allows new sequences and better images of the nail unit. The use of MRI has modified the imaging strategies used in treating inflammatory arthritis. In the case of psoriatic arthritis (PsA), the MRI study of the nail unit identifies nail involvement, which appears as an initial lesion for the induction of distal phalanx damage and consequently of distal interphalangeal joint arthritis. All patients with psoriasis, even in the absence of a clinically evident onychopathy, show characteristic MRI changes in the nail. This evidence could have a practical diagnostic value, because MRI study of the nail could document diagnosis in patients with undifferentiated spondyloarthropathies who have a barely evident psoriasis. We discuss the advantages and problems related to the use of low-field and high-field MRI in the study of the nail unit of patients with PsA.

  5. Recent progress towards developing a high field, high-T(sub c) superconducting magnet for magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Derochemont, L. Pierre; Oakes, Carlton E.; Squillante, Michael R.; Duan, Hong-Min; Hermann, Allen M.; Andrews, Robert J.; Poeppel, Roger B.; Maroni, Victor A.; Carlberg, Ingrid A.; Kelliher, Warren C.

    1992-01-01

    This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials.

  6. Development of a new experimental device for long-duration magnetic reconnection in weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Yanai, Ryoma; Kaminou, Yasuhiro; Nishida, Kento; Inomoto, Michiaki

    2016-10-01

    Magnetic reconnection is a universal phenomenon which determines global structure and energy conversion in magnetized plasmas. Many experimental studies have been carried out to explore the physics of magnetic reconnection in fully ionized condition. However, it is predicted that the behavior of magnetic reconnection in weakly ionized plasmas such as solar chromosphere plasma will show different behavior such as ambipolar diffusion caused by interaction with neutral particles. In this research, we are developing a new experimental device to uncover the importance of ambipolar diffusion during magnetic reconnection in weakly ionized plasmas. We employ an inverter-driven rotating magnetic fields technique, which is used for generating steady azimuthal plasma current, to establish long-duration ( 1 ms) anti-parallel reconnection with magnetic field of 5 mT in weakly ionized plasma. We will present development status and initial results from the new experimental setup. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus'', Giant-in Aid for Scientific Research (KAKENHI) 15H05750, 15K14279, 26287143 and the NIFS Collaboration Research program (NIFS14KNWP004).

  7. Development of Highly Efficient Saving Processes of Rare Earth in R-T-B Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Saguchi, A.; Uesugi, T.; Takigawa, Y.; Higashi, K.

    In this study, cost reduction of manufacturing R (Nd, Pr, and Dy) -T (Fe, Co)-B permanent magnets was investigated. An efficient direct melting recycle of R-T-B magnet scraps and multiple methods for saving Dy were focused. In the former, Decarburization and deoxidation of R-T-B magnet scraps were developed as a pre-treatment technique for conventional induction melting. The decarburized scraps 0.001mass% carbon or less was subsequently deoxidized by calciothermic reduction. The recycled scraps can be used as low cost alloying elements by re-melting. In the latter, the casting conditions for R-T-B alloy with small admixture of Ga and the improved pulverization process of R-T-B magnet alloy were developed. Microstructure of R-T-B magnet alloy with small admixture Ga was optimized by controlling cooling rate during solidification, and its average crystalline size was to be 5 μm. In order to obtain finer R-T-B magnet alloy powder preferable to the coercive force, conditions of hydrogen decrepitation (HD) prior to pulverization were optimized. Specific surface area of the HD magnet alloy was increased with decreasing temperature and hydrogen pressure, and its grindability was verified by Jet milling.

  8. Progress in the Development of the Wuhan High Magnetic Field Center

    NASA Astrophysics Data System (ADS)

    Li, L.; Peng, T.; Ding, H. F.; Han, X. T.; Xia, Z. C.; Ding, T. H.; Wang, J. F.; Xie, J. F.; Wang, S. L.; Huang, Y.; Duan, X. Z.; Yao, K. L.; Herlach, F.; Vanacken, J.; Pan, Y.

    2010-04-01

    Since April 2008 the Wuhan High Magnetic Field Center (WHMFC) has been under development at the Huazhong University of Science and Technology (HUST) at Wuhan, China. It is funded by the Chinese National Development and Reformation Committee. Magnets with bore sizes from 12 to 34 mm and peak fields in the range of 50 to 80 T have been designed. The power supplies for these magnets are a capacitor bank with 12 modules of 1 MJ, 25 kV each and a 100 MVA/100 MJ flywheel pulse generator. The objective of the facility is to accommodate external users for extensive experiments in pulsed high magnetic fields. Up to seven measurement stations will be available at temperatures in the range from 50 mK to 400 K. The first prototype 1 MJ, 25 kV capacitor bank with thyristors, crowbar diodes and a mechanical switch has been developed and successfully tested. For the protection of the thyristor switch, a toroidal inductor is developed to limit the current at 40 kA. Five magnets have been wound with CuNb and copper wires and internal reinforcement by Zylon fiber; external reinforcement is a stainless steel shell encased by carbon fiber composite. Two Helium flow cryostats have been successfully tested and reached temperatures down to 4.2 K. Measurement stations for magneto-transport and magnetization are in operation. The design, construction and testing of the prototype system are presented.

  9. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook; Kim, Byoung Chul; Ahn, Jung Keun

    2014-02-15

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  10. Engineered Magnetic Core-Shell Structures.

    PubMed

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field.

  11. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  12. Development of a Non-Magnetic Inertial Sensor for Vibration Stabilization in a Linear Collider

    SciTech Connect

    Frisch, Josef; Decker, Valentin; Doyle, Eric; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Seryi, Andrei; Chang, Allison; Partridge, Richard; /Brown U.

    2006-09-01

    One of the options for controlling vibration of the final focus magnets in a linear collider is to use active feedback based on accelerometers. While commercial geophysics sensors have noise performance that substantially exceeds the requirements for a linear collider, they are physically large, and cannot operate in the strong magnetic field of the detector. Conventional nonmagnetic sensors have excessive noise for this application. We report on the development of a non-magnetic inertial sensor, and on a novel commercial sensor both of which have demonstrated the required noise levels for this application.

  13. Magnetic nanoparticles coated with dimercaptosuccinic acid: development, characterization, and application in biomedicine

    NASA Astrophysics Data System (ADS)

    Ruiz, Amalia; Morais, Paulo César; Bentes de Azevedo, Ricardo; Lacava, Zulmira G. M.; Villanueva, Angeles; del Puerto Morales, María

    2014-11-01

    This review intends to summarize some of the results achieved in the development of magnetic nanoparticles coated with anionic ligands, specifically dimercaptosuccinic acid applied in the biomedical area. We describe synthetic routes used to produce iron oxide-based magnetic nanoparticles, subsequently coated with DMSA as well as functionalization strategies for specific purposes with polymers, antibodies, and cytokines. Finally, we have collected data on biological interactions of DMSA-coated nanoparticles in vitro and in vivo, in particular cell interaction process, pharmacokinetics, and biodistribution in different animal models and their promising applications in drug delivery, NMR imaging, hyperthermia, nanothermometry, magnetic separation, and bioremediation.

  14. Micro-fabricated magnetic microcalorimeter development for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Bandler, Simon R.; Adams, Joseph S.; Beyer, Joern; Hseih, Wen-Ting; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas

    2008-07-01

    X-ray microcalorimeters using magnetic sensors show great promise for use in astronomical x-ray spectroscopy. We have begun to develop technology for fabricating arrays of magnetic calorimeters for X-ray astronomy. The magnetization change in each pixel of the paramagnetic sensor material due to the heat input of an absorbed x-ray is sensed by a meander shaped coil. With this geometry it is possible to obtain excellent energy sensitivity, low magnetic cross-talk and large format arrays fabricated on wafers that are separate from the SQUID read-out. We report on the results from our prototype arrays, which are coupled to low noise 2-stage SQUIDs developed at the PTB Berlin. The first testing results are presented and the sensitivity compared with calculations.

  15. Development of Rare-Earth Free Mn-Al Permanent Magnet Employing Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Singh, N.; Shyam, R.; Upadhyay, N. K.; Dhar, A.

    2015-02-01

    Most widely used high-performance permanent magnets are currently based on intermetallics of rare-earths in combination with Fe and Co. Rare-earth elements required for these magnets are getting expensive by the day. Consequently, there is a thrust worldwide to develop economical rare-earth free permanent magnets. It is acknowledged that the phase in Mn-Al alloys possesses magnetic properties without the presence of ferromagnetic elements such as Fe, Co, and Ni. In the present study, we report the synthesis of magnetic phase of Mn54Al46 alloy synthesized using mechanical alloying followed by solutionizing and annealing to obtain the desired magnetic phase. It is well known that Al dissolves partially in Mn matrix hence supersaturated solid solution of Mn54Al46 alloy powder was obtained by mechanical alloying using a planetary high-energy ball mill. For this purpose elemental Mn and Al powders were ball-milled in Argon atmosphere at 400 rpm using stainless steel bowl with ball to powder ratio of 15:1. These mechanically alloyed Mn54Al46 powders were then consolidated using spark plasma sintering at 550°C for 20 min. followed by solution treatment at 1050°C for 5 hrs and then water quenched to retain high temperature phase. Subsequently, the Mn54Al46 samples were annealed in the temperature range 450°C-650°C to obtain the magnetic phase. These samples were characterized by XRD and SEM and the magnetic properties were measured using a vibrating sample magnetometer (VSM). It was observed that the magnetization and coercivity of MnAl magnets exhibited strong dependence on annealing temperature and annealing time.

  16. A Report on the Development of Rare Earth-Cobalt Permanent Magnet Technology - Japan.

    DTIC Science & Technology

    1981-07-01

    500 km/hr velocities for which it has been designed. Levitated systems employing permanent magnets are also being developed in Japan using ferrite or...magnetrons, crossed- field amplifiers and backward-wave oscillators. 2. Waveguide Devices: Ferrite biasing in nonreciprocal waveguides, circulators etc...magnets and in some cases even ferrites . As energy costs increase, designers of motors and of systems which traditionally use large electromagnets are now

  17. Magnetic field measurements on bridges and development of a mobile SQUID system

    NASA Astrophysics Data System (ADS)

    Krieger, Juergen; Krause, Hans-Joachim; Gampe, Uwe; Sawade, Gottfried

    1999-02-01

    The paper describes the application of Non-Destructive Testing for the detection of ruptures in the prestressing reinforcement. These damages can be detected by the non- destructive and contactless magnetic stray field measuring method. The paper presents the underlying physical principle and the results of measurements on bridges. Furthermore, the development of a multi-channel system utilizing Superconducting Quantum Interference Devices as most sensitive magnetic field detectors will be reported. First laboratory measurements indicate the potential of this new technique.

  18. Development and Fielding of High-Speed Laser Shadowgraphy for Electro-Magnetically Driven Cylindrical Implosions

    DTIC Science & Technology

    2013-06-01

    shockwave in a cylindrical geometry provides fundamental benchmarks used in the modeling of 1-D and 2-D hydrodynamic phenomena from high or solid...DEVELOPMENT AND FIELDING OF HIGH-SPEED LASER SHADOWGRAPHY FOR ELECTRO -MAGNETICALLY DRIVEN CYLINDRICAL IMPLOSIONS J. P. Roberts, G. Rodriguez...an electro -magnetically driven solid density liner implosion in Lucite is described. The laser shadowgraphy system utilizes an advanced high-energy

  19. Conformation-dependent DNA attraction

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-05-01

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by

  20. Magnetic Resonance Imaging: A Tool for Pork Pie Development.

    PubMed

    Gaunt, Adam P; Morris, Robert H; Newton, Michael I

    2013-08-28

    The traditional British pork pie consists of roughly chopped pork cooked in a hot water pastry crust. Due to shrinkage of the meat during cooking, the gap formed around the meat is usually sealed using a gelatin based jelly to exclude air and thus help to preserve the pie. The properties of the jelly are such that it will ingress into the pastry crust causing undesirable softening. The jelly is traditionally produced by simmering pig trotters with seasoning for several hours. In this work we demonstrate the potential of magnetic resonance imaging (MRI) as a tool for investigating the conditions required for producing jellies with different properties and present two examples of this use. Firstly we demonstrate that MRI can determine the ability of water to diffuse through the jelly which is critical in minimizing the amount of moisture moving from the jelly to the crust. Secondly, the impact of jelly temperature on the penetration length into the crust is investigated. These examples highlight the power of MRI as a tool for food assessment.

  1. Acarine attractants: Chemoreception, bioassay, chemistry and control.

    PubMed

    Carr, Ann L; Roe, Michael

    2016-07-01

    The Acari are of significant economic importance in crop production and human and animal health. Acaricides are essential for the control of these pests, but at the same time, the number of available pesticides is limited, especially for applications in animal production. The Acari consist of two major groups, the mites that demonstrate a wide variety of life strategies, i.e., herbivory, predation and ectoparasitism, and ticks which have evolved obligatory hematophagy. The major sites of chemoreception in the acarines are the chelicerae, palps and tarsi on the forelegs. A unifying name, the "foretarsal sensory organ" (FSO), is proposed for the first time in this review for the sensory site on the forelegs of all acarines. The FSO has multiple sensory functions including olfaction, gustation, and heat detection. Preliminary transcriptomic data in ticks suggest that chemoreception in the FSO is achieved by a different mechanism from insects. There are a variety of laboratory and field bioassay methods that have been developed for the identification and characterization of attractants but minimal techniques for electrophysiology studies. Over the past three to four decades, significant progress has been made in the chemistry and analysis of function for acarine attractants in mites and ticks. In mites, attractants include aggregation, immature female, female sex and alarm pheromones; in ticks, the attraction-aggregation-attachment, assembly and sex pheromones; in mites and ticks host kairomones and plant allomones; and in mites, fungal allomones. There are still large gaps in our knowledge of chemical communication in the acarines compared to insects, especially relative to acarine pheromones, and more so for mites than ticks. However, the use of lure-and-kill and lure-enhanced biocontrol strategies has been investigated for tick and mite control, respectively, with significant environmental advantages which warrant further study.

  2. Development of a new magnetic Barkhausen spectroscopy method for the non-destructive characterization of magnetic materials

    NASA Astrophysics Data System (ADS)

    Kypris, Orfeas; Nlebedim, Ikenna; Jiles, David

    2014-03-01

    Barkhausen emissions, which result from discontinuous, irreversible changes in magnetization, are related to the stress state, defect/inclusion sizes and microstructure of ferromagnetic materials. Time domain analysis of Barkhausen signals measured at the surface of a specimen can reveal the average magnitude of stress in the structure. Such analysis offers a powerful tool for magnetic nondestructive characterization of materials. However, determining the stress and other microstructural parameters as a function of depth still remains a challenging problem, which can be treated in the frequency domain. In this work, a model for stress-depth profiling of ferromagnets is developed. In the model, the frequency spectrum at the surface of a specimen is described in terms of two parameters; the average amplitude of Barkhausen emissions at their origin Vorig and ζ, which is proportional to the square root of magnetic permeability. A ferromagnetic structure is mathematically divided into homogeneous layers with each layer acting as a source of Barkhausen signal having a unique spectrum that is attenuated as it propagates to the surface. We show that Vorig and ζ correlate with stress and we provide a framework for detecting stress variations as a function of depth.

  3. Neural activity associated with enhanced facial attractiveness by cosmetics use.

    PubMed

    Ueno, Aya; Ito, Ayahito; Kawasaki, Iori; Kawachi, Yousuke; Yoshida, Kazuki; Murakami, Yui; Sakai, Shinya; Iijima, Toshio; Matsue, Yoshihiko; Fujii, Toshikatsu

    2014-04-30

    Previous psychological studies have shown that make-up enhances facial attractiveness. Although neuroimaging evidence indicates that the orbitofrontal cortex (OFC) shows greater activity for faces of attractive people than for those of unattractive people, there is no direct evidence that the OFC also shows greater activity for the face of an individual wearing make-up than for the same face without make-up. Using functional magnetic resonance imaging (fMRI), we investigated neural activity while subjects viewed 144 photographs of the same faces with and without make-up (48 with make-up, 48 without make-up, and 48 scrambled photographs) and assigned these faces an attractiveness rating. The behavioral data showed that the faces with make-up were rated as more attractive than those without make-up. The imaging data revealed that the left OFC and the right hippocampus showed greater activity for faces with make-up than for those without make-up. Furthermore, the activities of the right anterior cingulate cortex, left hippocampus, and left OFC increased with increasing facial attractiveness resulting from cosmetics use. These results provide direct evidence of the neural underpinnings of cosmetically enhanced facial attractiveness.

  4. Rock magnetic properties of a soil developed on an alluvial deposit at Buttermilk Creek, Texas, USA

    NASA Astrophysics Data System (ADS)

    Lindquist, Anna K.; Feinberg, Joshua M.; Waters, Michael R.

    2011-12-01

    The evolution of magnetization within a floodplain soil begins with initial deposition of magnetic particles during sedimentation and continues via subsequent alteration and growth of iron-bearing compounds by pedogenic and biologic processes. Measurements of soil magnetic properties capture information about the developmental history of the soil and are a convenient method by which to investigate environmental change and pedogenesis. Using a range of magnetic measurements, a comprehensive scenario for soil development was constructed for floodplain sediments at the Debra L. Friedkin site, an important archeological site near Buttermilk Creek, Texas. Floodplain deposits have traditionally been avoided for soil magnetism studies because it is thought that the episodic input of sediment would form soils characterized by discrete sedimentary units rather than a continuous record of pedogenesis. We demonstrate that alluvial deposits can sometimes carry a straightforwardly interpretable magnetic signal similar to those typically seen in loess deposits. Smooth variation of rock magnetic parameters as a function of depth also leads us to conclude that the soil at this site is largely undisturbed and that the age of lithic artifacts found within the soil may be interpreted within stratigraphic context.

  5. [Development and use of quality control program in magnetic resonance].

    PubMed

    Berardi, P; Bergamini, C; Gavelli, G; Lembo, C; Pavlica, P; Pierotti, L; Vianello Vos, C

    1995-03-01

    In 1992, two identical 0.5 Magnetic Resonance units were installed in Policlinico S. Orsola-Malpighi in Bologna. A Quality Assurance (QA) protocol was designed by the Medical Physics Department to monitor both systems as of Acceptance Test. Our main goals in drawing up the QA protocol were: 1) Completeness--to check all the most significant physical parameters; 2) Efficiency--to reduce examination time of the QC Protocol; 3) Reliability--to achieve good repeatability of results. The QA protocol consists of two QC programs: 1) Daily check of Variable Echo image SNR of a homogeneous phantom, Eddy Current compensation, laser printer test; 2) Monthly check of SNR of Spin Echo and Fast Scan images, integral uniformity, B0 uniformity, B1 uniformity, T2 stability, ghosts, slice thickness, slice profile, geometrical distortion, resolution power. SNR dependence on FOV, NEX, matrix and slice thickness, and resolution dependence on slice thickness and position were tested as Acceptance test. The daily checks provide continual monitoring of the performance of both systems and laser printer and have shown: 1) strong fluctuations in image reproduction probably due to film emulsion instability; 2) a "warning" of imminent malfunction. The monthly checks were in line with acceptance test data and have shown: 1) different behavior of the two systems that should perform analogously; 2) greater result stability in one system with better results also in terms of diagnostic images. The main aim of our QA protocol is to optimize diagnostic accuracy by checking several physical parameters that act as good "indicators" for possible malfunctioning. We believe this can be done with simple but useful daily QC supporting a routine more complex QC program and can be achieved through continual application of both protocols.

  6. Development of cos-theta Nb{sub 3}Sn dipole magnets for VLHC

    SciTech Connect

    Alexander Zlobin et al.

    2001-07-20

    This paper describes the double aperture dipole magnets developed for a VLHC based on Nb{sub 3}Sn superconductor, a cos-theta coil, cold and warm iron yokes, and the wind-and-react fabrication technique. Status of the model R and D program, strand and cable and other major component development are also discussed.

  7. Children's Facial Trustworthiness Judgments: Agreement and Relationship with Facial Attractiveness

    PubMed Central

    Ma, Fengling; Xu, Fen; Luo, Xianming

    2016-01-01

    This study examined developmental changes in children's abilities to make trustworthiness judgments based on faces and the relationship between a child's perception of trustworthiness and facial attractiveness. One hundred and one 8-, 10-, and 12-year-olds, along with 37 undergraduates, were asked to judge the trustworthiness of 200 faces. Next, they issued facial attractiveness judgments. The results indicated that children made consistent trustworthiness and attractiveness judgments based on facial appearance, but with-adult and within-age agreement levels of facial judgments increased with age. Additionally, the agreement levels of judgments made by girls were higher than those by boys. Furthermore, the relationship between trustworthiness and attractiveness judgments increased with age, and the relationship between two judgments made by girls was closer than those by boys. These findings suggest that face-based trait judgment ability develops throughout childhood and that, like adults, children may use facial attractiveness as a heuristic cue that signals a stranger's trustworthiness. PMID:27148111

  8. Children's Facial Trustworthiness Judgments: Agreement and Relationship with Facial Attractiveness.

    PubMed

    Ma, Fengling; Xu, Fen; Luo, Xianming

    2016-01-01

    This study examined developmental changes in children's abilities to make trustworthiness judgments based on faces and the relationship between a child's perception of trustworthiness and facial attractiveness. One hundred and one 8-, 10-, and 12-year-olds, along with 37 undergraduates, were asked to judge the trustworthiness of 200 faces. Next, they issued facial attractiveness judgments. The results indicated that children made consistent trustworthiness and attractiveness judgments based on facial appearance, but with-adult and within-age agreement levels of facial judgments increased with age. Additionally, the agreement levels of judgments made by girls were higher than those by boys. Furthermore, the relationship between trustworthiness and attractiveness judgments increased with age, and the relationship between two judgments made by girls was closer than those by boys. These findings suggest that face-based trait judgment ability develops throughout childhood and that, like adults, children may use facial attractiveness as a heuristic cue that signals a stranger's trustworthiness.

  9. Novel modeling and dynamic simulation of magnetic tunnel junctions for spintronic sensor development

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Liu, Jie; Yang, Chunsheng

    2017-01-01

    Spintronic magnetic sensors with the integration of magnetic materials and microstructures have been enabling people to make use of the electron spin and charge properties in many applications. The high demand for such sensors has in turn spurred the technology developments in both novel materials and their atomic-level controls. Few works, however, have been carried out and reported thus far in modeling and simulation of these spintronic magnetic sensing units based on magnetic tunnel junction (MTJ) technology. Accordingly, this paper proposes a novel modeling approach as well as an iterative simulation methodology for MTJs. A more comprehensive electrical tunneling model is established for better interpreting the conductance and current generated by the electron tunneling, and this model can also facilitate the iterative simulation of the micromagnetic dynamics. Given the improved tunneling model as well as the updated dynamic simulation, the electric characteristics of an MTJ with an external magnetic field can be conveniently computed, which provides a reliable benchmark for the future development of novel spintronic magnetic sensors.

  10. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    PubMed

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  11. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

    PubMed Central

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R. Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-01-01

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873

  12. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

    PubMed

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-07-07

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

  13. Development and operational experience of magnetic horn system for T2K experiment

    NASA Astrophysics Data System (ADS)

    Sekiguchi, T.; Bessho, K.; Fujii, Y.; Hagiwara, M.; Hasegawa, T.; Hayashi, K.; Ishida, T.; Ishii, T.; Kobayashi, H.; Kobayashi, T.; Koike, S.; Koseki, K.; Maruyama, T.; Matsumoto, H.; Nakadaira, T.; Nakamura, K.; Nakayoshi, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Shibata, M.; Suzuki, Y.; Tada, M.; Takahashi, K.; Tsukamoto, T.; Yamada, Y.; Yamanoi, Y.; Yamaoka, H.; Ichikawa, A. K.; Kubo, H.; Butcher, Z.; Coleman, S.; Missert, A.; Spitz, J.; Zimmerman, E. D.; Tzanov, M.; Bartoszek, L.

    2015-07-01

    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and 6.63×1020 protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the νμ →νe oscillation phenomenon in 2013 by the T2K experiment. In this paper, details of the design, construction, and operation experience of the T2K magnetic horns are described.

  14. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  15. Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles

    PubMed Central

    Wu, Liang; Jackson, George; Müller, Erich A.

    2013-01-01

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962

  16. Effects of Switching Behavior for the Attraction on Pedestrian Dynamics.

    PubMed

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2015-01-01

    Walking is a fundamental activity of our daily life not only for moving to other places but also for interacting with surrounding environment. While walking on the streets, pedestrians can be aware of attractions like shopping windows. They can be influenced by the attractions and some of them might shift their attention towards the attractions, namely switching behavior. As a first step to incorporate the switching behavior, this study investigates collective effects of switching behavior for an attraction by developing a behavioral model. Numerical simulations exhibit different patterns of pedestrian behavior depending on the strength of the social influence and the average length of stay. When the social influence is strong along with a long length of stay, a saturated phase can be defined at which all the pedestrians have visited the attraction. If the social influence is not strong enough, an unsaturated phase appears where one can observe that some pedestrians head for the attraction while others walk in their desired direction. These collective patterns of pedestrian behavior are summarized in a phase diagram by comparing the number of pedestrians who visited the attraction to the number of passersby near the attraction. Measuring the marginal benefits with respect to the strength of the social influence and the average length of stay enables us to identify under what conditions enhancing these variables would be more effective. The findings from this study can be understood in the context of the pedestrian facility management, for instance, for retail stores.

  17. Development of a 22,000 RPM magnetic bearing system for the SSME HPOTP

    SciTech Connect

    Artinian, V.

    1995-12-31

    The design, fabrication, and testing of a permanent magnet bias, homopolar radial magnetic bearing is described. The current flight version of the SSME HPOTP (Space Shuttle Main Engine High Pressure Oxygen Turbo Pump) was used as a baseline, to define the magnetic bearing performance requirements. The HPOTP magnetic bearing system is a full five axis levitation support system with two 1,800 pound load capacity radial bearings and one 300 pound thrust bearing. The system is designed to operate at 22,000 rpm, in a cryogenic temperature of {minus}321{degrees}F. A rotordynamic model for a magnetic bearing version of the HPOTP was developed to determine the static and dynamic loads on the bearing. The electromechanical design followed a parametric analysis, performed with AVCON`s magnetic bearing program PERAMCON and magnetic Finite Element Analysis (FEA) software. The use of three different materials on the rotor (9% nickel, stainless steel, and cobalt steel) required extensive stress and thermal analysis to ensure the interference fits were maintained during operation at 22,000 rpm and {minus}300{degrees}F. The rotordynamic stability analysis of the coupled rotor/housing/bearing system also provided the controller transfer function. An AVCON developed digital controller was utilized to implement the transfer function and control algorithm. AVCON proprietary sensors for position input and pulse-width modulated (PWM) power amplifiers for output were also implemented in the system. A HPOTP simulator test rig was designed and built to perform operational and partial load testing of the bearings at cryogenic temperatures and spin speeds up to 20,000 rpm. Fabrication of the HPOTP simulator with magnetic bearings was completed at the end of 1994. Testing of the HPOTP simulator is ongoing.

  18. [Research as attractiveness parameter for young surgeons].

    PubMed

    Vollmar, B

    2012-04-01

    Increasing concern has been expressed about the significant shortage of new trainees in surgery. As research in the context of surgical education and training is an essential element of attraction for the field of surgery, there is an urgent priority to implement clear room for research in the concepts of education and training. In this article the relevance of both the thesis accompanying the study and research training during surgical residency for the clinical self-image, personal satisfaction and academic development of young surgeons will be presented.

  19. Facial attractiveness, weight status, and personality trait attribution: The role of attractiveness in weight stigma.

    PubMed

    Cross, Nicole; Kiefner-Burmeister, Allison; Rossi, James; Borushok, Jessica; Hinman, Nova; Burmeister, Jacob; Carels, Robert A

    2016-04-11

    The current study examined the influence of facial attractiveness and weight status on personality trait attributions (e.g., honest, friendly) among more and less facially attractive as well as thin and overweight models. Participants viewed pictures of one of four types of models (overweight/less attractive, overweight/more attractive, thin/less attractive, thin/more attractive) and rated their attractiveness (facial, body, overall) and personality on 15 traits. Facial attractiveness and weight status additively impacted personality trait ratings. In mediation analyses, the facial attractiveness condition was no longer associated with personality traits after controlling for perceived facial attractiveness in 12 personality traits. Conversely, the thin and overweight condition was no longer associated with personality traits after controlling for perceived body attractiveness in only 2 personality traits. Post hoc moderation analysis indicated that weight status differently influenced the association between body attractiveness and personality trait attribution. Findings bear implications for attractiveness bias, weight bias, and discrimination research.

  20. Molecular attraction of condensed bodies

    NASA Astrophysics Data System (ADS)

    Derjaguin, B. V.; Abrikosova, I. I.; Lifshitz, E. M.

    2015-09-01

    From the Editorial Board. As a contribution to commemorating the 100th anniversary of the birth of Evgenii Mikhailovich Lifshitz, it was found appropriate by the Editorial Board of Uspekhi Fizicheskikh Nauk (UFN) [Physics-Uspekhi] journal that the materials of the jubilee-associated Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences published in this issue (pp. 877-905) be augmented by the review paper "Molecular attraction of condensed bodies" reproduced from a 1958 UFN issue. Included in this review, in addition to an account by Evgenii Mikhailovich Lifshitz of his theory of molecular attractive forces between condensed bodies (first published in Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (ZhETF) in 1955 and in its English translation Journal of Experimental and Theoretical Physics (JETP) in 1956), is a summary of a series of experimental studies beginning in 1949 by Irina Igorevna Abrikosova at the Institute of Physical Chemistry of the Academy of Sciences of the USSR in a laboratory led by Boris Vladimirovich Derjaguin (1902-1994), a Corresponding Member of the USSR Academy of Sciences. In 1958, however, UFN was not yet available in English translation, so the material of the review is insufficiently accessible to the present-day English-speaking reader. This is the reason why the UFN Editorial Board decided to contribute to celebrating the 100th anniversary of E M Lifshitz's birthday by reproducing on the journal's pages a 1958 review paper which contains both E M Lifshitz's theory itself and the experimental data that underpinned it (for an account of how Evgenii Mikhailovich Lifshitz was enlisted to explain the experimental results of I I Abrikosova and B V Derjaguin, see the letter to the editors N P Danilova on page 925 of this jubilee collection of publications).

  1. Applications attract DuPont

    SciTech Connect

    Rotman, D.

    1996-08-07

    Scientists at DuPont say they have demonstrated the first chemical processing application for high-temperature superconducting (HTS) magnets. DuPont says the work, which uses a HTS magnet to separate mineral contaminants from kaolin, points to the feasibility of a range of HTS applications in industrial processing, including those involving polymerization. DuPont`s success comes after 10 years of work to commercialize high-temperature superconductors. And while superconductors have lost much of their luster since the late 1980s, the company says it is still bullish on their prospects. {open_quotes}At the moment, there`s no real market for superconductors,{close_quotes} says Alan Lauder, general manager/superconductivity. But, he says, several potentially lucrative applications could be commercialized within the next several years.

  2. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    DTIC Science & Technology

    2012-07-01

    are given in the reportable results section. f ) Develop and use SWI and SWIM for use in evaluating abnormal vasculature and microbleeds in mTBI...reconstruction approach.”, MRM, Juen 26, 2012, epub, ahead of print. f ) A manuscript comparing ASL with SWIM data is in progress. Presentations: Our...Research (PTBIR). December 8th, 2011. 2012 f ) Henry Ford Hospital. The role of the vasculature in neurodegenerative disease with a focus on TBI and

  3. Development and testing of a new magnetic-tracking device for image guidance

    NASA Astrophysics Data System (ADS)

    Schneider, Mark; Stevens, Charles

    2007-03-01

    Optical tracking systems pioneered the use of position sensors in surgical navigation. The requirement to maintain a clear line-of-sight between the emitters and detectors, however, renders them unsuitable for tracking flexible invasive instruments. On the other hand, advances in electromagnetic tracking systems permit a key-enabling role in imageguided procedures. First-generation magnetic systems present a significant challenge for tracker designers to improve both performance and acceptance. Troublesome magnetic problems include inaccuracies due to the presence of metallic distorters in the tracking volume and to dynamic motion of the tracked object. A new magnetic tracker (3D Guidance TM), recently developed at Ascension Technology, seeks to address these problems. Employing third-generation pulsed-DC magnetic tracking technology and new signal processing techniques, the new tracker overcomes the distorting effects of non-magnetic conductive metals (300-series stainless steel, titanium and aluminum) and composite tables experienced by AC trackers. Ascension has developed a break-through flat transmitter that negates ferrous metal distortion emanating from procedural tables. The tracker development has also significantly advanced the state of the art in sensor miniaturization. The 3D Guidance TM features the world's smallest electromagnetic tracking sensors, opening the door to new applications for minimally invasive procedures. Finally, dynamic accuracy has been significantly improved with the implementation of Kalman based algorithms. Test results are reported.

  4. Application and development of advanced Lorentz microscopy techniques for the study of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Beacham, Robert J.

    This PhD project presents an investigation into the development of magnetic imaging methods in the TEM and their application in imaging narrow domain walls in multilayer magnetic structures. Lorentz microscopy techniques are limited in quantitative magnetic imaging as this generally requires using scanning imaging modes which limits the capability of imaging dynamic processes. The first imaging method developed in this study is a phase gradient technique with the aim of producing quantitative magnetic contrast proportional to the magnetic induction of the sample whilst maintaining a live imaging mode. This method uses a specifically engineered, semi-electron-transparent graded wedge aperture to controllably perturb intensity in the back focal plane. The results of this study found that this method could produce magnetic contrast proportional to the sample induction, however the required gradient of the wedge aperture made this contrast close to the noise level with large associated errors. In the second part of this study we investigated the development of a technique aimed at gaining sub-microsecond temporal resolution within TEMs based on streak imaging. We are using ramped pulsed magnetic fields, applied across nanowire samples to both induce magnetic behaviour and detect the electron beam across the detector with respect to time. We are coupling this with a novel pixelated detector on the TEM in the form of a Medipix/Timepix chip capable of microsecond exposure times without adding noise. Running this detector in integral mode and allowing for practical limitations such as experiment time and aperture stability, the resultant streak images were taken in Fresnel, Foucault and low angle diffraction imaging modes. We found that while this method is theoretically viable, the limiting factor was the contrast of the magnetic signal in the streak and therefore the total image counts. Domain walls (DWs) in synthetic antiferromagnetically (SAF) coupled films patterned

  5. WInd-and-react Bi-2212 coil development for accelerator magnets

    SciTech Connect

    Godeke, A.; Acosta, P.; Cheng, D.; Dietderich, D. R.; Mentink, M. G. T.; Prestemon, S. O.; Meinesz, M.; Hong, S.; Huang, Y.; Miao, H.; Parrell, J.; Sabbi, G.L.

    2009-10-13

    Sub-scale coils are being manufactured and tested at Lawrence Berkeley National Laboratory in order to develop wind-and-react Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (Bi-2212) magnet technology for future graded accelerator magnet use. Previous Bi-2212 coils showed significant leakage of the conductors core constituents to the environment, which can occur during the partial melt reaction around 890 C in pure oxygen. The main origin of the observed leakage is intrinsic leakage of the wires, and the issue is therefore being addressed at the wire manufacturing level. We report on further compatibility studies, and the performance of new sub-scale coils that were manufactured using improved conductors. These coils exhibit significantly reduced leakage, and carry currents that are about 70% of the witness wire critical current (I{sub c}). The coils demonstrate, for the first time, the feasibility of round wire Bi-2212 conductors for accelerator magnet technology use. Successful high temperature superconductor coil technology will enable the manufacture of graded accelerator magnets that can surpass the, already closely approached, intrinsic magnetic field limitations of Nb-based superconducting magnets.

  6. Development of lateralization of the magnetic compass in a migratory bird.

    PubMed

    Gehring, Dennis; Wiltschko, Wolfgang; Güntürkün, Onur; Denzau, Susanne; Wiltschko, Roswitha

    2012-10-22

    The magnetic compass of a migratory bird, the European robin (Erithacus rubecula), was shown to be lateralized in favour of the right eye/left brain hemisphere. However, this seems to be a property of the avian magnetic compass that is not present from the beginning, but develops only as the birds grow older. During first migration in autumn, juvenile robins can orient by their magnetic compass with their right as well as with their left eye. In the following spring, however, the magnetic compass is already lateralized, but this lateralization is still flexible: it could be removed by covering the right eye for 6 h. During the following autumn migration, the lateralization becomes more strongly fixed, with a 6 h occlusion of the right eye no longer having an effect. This change from a bilateral to a lateralized magnetic compass appears to be a maturation process, the first such case known so far in birds. Because both eyes mediate identical information about the geomagnetic field, brain asymmetry for the magnetic compass could increase efficiency by setting the other hemisphere free for other processes.

  7. Development of a Process to Build Polyimide Insulated Magnets For Operation at 350C

    SciTech Connect

    Zatz, Irving J.

    2013-07-09

    An extensive R&D program has been conducted that has confirmed the feasibility of designing and fabricating copper alloy magnets that can successfully operate at temperatures as high as 350C. The process, originally developed for the possibility of manufacturing in-vessel resonant magnetic field perturbation (RMP) coils for JET, has been optimized for insulated magnet (and, potentially, other high temperature component) applications. One of the benefits of high temperature operation is that active cooling may no longer be required, greatly simplifying magnet/component design. These elevated temperatures are beyond the safe operating limits of conventional OFHC copper and the epoxies that bond and insulate the turns of typical magnets. This would necessitate the use an alternative copper alloy conductor such as C18150 (CuCrZr). Coil manufacture with polyimide is very similar to conventional epoxy bonded coils. Conductors would be dry wound then impregnated with polyimide of low enough viscosity to permit saturation, then cured; similar to the vacuum pressure impregnation process used for conventional epoxy bonded coils. Representative polyimide insulated coils were mechanically tested at both room temperature and 350C. Mechanical tests included turn-to-turn shear bond strength and overall polyimide adhesion strength, as well as the flexural strength of a 48-turn polyimide-bonded coil bundle. This paper will detail the results of the testing program on coil samples. These results demonstrate mechanical properties as good, or better than epoxy bonded magnets, even at 350C.

  8. Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis.

    PubMed

    Peng, Weng Kung; Chen, Lan; Han, Jongyoon

    2012-09-01

    A novel, compact-sized (19 cm × 16 cm) and portable (500 g) magnetic resonance relaxometry system is designed and developed. We overcame several key engineering barriers so that magnetic resonance technology can be potentially used for disease diagnosis-monitoring in point-of-care settings, directly on biological cells and tissues. The whole system consists of a coin-sized permanent magnet (0.76 T), miniaturized radio-frequency microcoil probe, compact lumped-circuit duplexer, and single board 1-W power amplifier, in which a field programmable gate array -based spectrometer is used for pulse excitation, signal acquisition, and data processing. We show that by measuring the proton transverse relaxation rates from a large pool of natural abundance proton-nuclei presence in less than 1 μL of red blood cells, one can indirectly deduce the relative magnetic susceptibility of the bulk cells within a few minutes of signal acquisition time. Such rapid and sensitive blood screening system can be used to monitor the fluctuation of the bulk magnetic susceptibility of the biological cells (e.g., human blood cells), where unusual state of the bulk magnetic susceptibility is related to a number of diseases.

  9. Three-dimensional chiral skyrmions with attractive interparticle interactions

    NASA Astrophysics Data System (ADS)

    Leonov, A. O.; Monchesky, T. L.; Loudon, J. C.; Bogdanov, A. N.

    2016-09-01

    We introduce a new class of isolated three-dimensional skyrmion that can occur within the cone phase of chiral magnetic materials. These novel solitonic states consist of an axisymmetric core separated from the host phase by an asymmetric shell. These skyrmions attract one another. We derive regular solutions for isolated skyrmions arising in the cone phase of cubic helimagnets and investigate their bound states.

  10. Development and Testing of a Magnetically Actuated Capsule Endoscopy for Obesity Treatment

    PubMed Central

    Do, Thanh Nho; Seah, Tian En Timothy; Yu, Ho Khek; Phee, Soo Jay

    2016-01-01

    Intra-gastric balloons (IGB) have become an efficient and less invasive method for obesity treatment. The use of traditional IGBs require complex insertion tools and flexible endoscopes to place and remove the balloon inside the patient’s stomach, which may cause discomfort and complications to the patient. This paper introduces a new ingestible weight-loss capsule with a magnetically remote-controlled inflatable and deflatable balloon. To inflate the balloon, biocompatible effervescent chemicals are used. As the source of the actuation is provided via external magnetic fields, the magnetic capsule size can be significantly reduced compared to current weight-loss capsules in the literature. In addition, there are no limitations on the power supply. To lose weight, the obese subject needs only to swallow the magnetic capsule with a glass of water. Once the magnetic capsule has reached the patient’s stomach, the balloon will be wirelessly inflated to occupy gastric space and give the feeling of satiety. The balloon can be wirelessly deflated at any time to allow the magnetic capsule to travel down the intestine and exit the body via normal peristalsis. The optimal ratio between the acid and base to provide the desired gas volume is experimentally evaluated and presented. A prototype capsule (9.6mm x 27mm) is developed and experimentally validated in ex-vivo experiments. The unique ease of delivery and expulsion of the proposed magnetic capsule is slated to make this development a good treatment option for people seeking to lose excess weight. PMID:26815309

  11. Tunable magnetic states in hexagonal boron nitride sheets

    NASA Astrophysics Data System (ADS)

    Machado-Charry, Eduardo; Boulanger, Paul; Genovese, Luigi; Mousseau, Normand; Pochet, Pascal

    2012-09-01

    Magnetism in two dimensional atomic sheets has attracted considerable interest as its existence could allow the development of electronic and spintronic devices. The existence of magnetism is not sufficient for devices, however, as states must be addressable and modifiable through the application of an external drive. We show that defects in hexagonal boron nitride present a strong interplay between the N-N distance in the edge and the magnetic moments of the defects. By stress-induced geometry modifications, we change the ground state magnetic moment of the defects. This control is made possible by the triangular shape of the defects as well as the strong spin localisation in the magnetic state.

  12. Development of a compact magnetic resonance imaging system for a cold room

    NASA Astrophysics Data System (ADS)

    Adachi, Satoru; Ozeki, Toshihiro; Shigeki, Ryosuke; Handa, Shinya; Kose, Katsumi; Haishi, Tomoyuki; Aoki, Masaaki

    2009-05-01

    A compact magnetic resonance imaging (MRI) system for a cold (-5 °C) room has been developed to acquire MR images below the freezing point of water. The MRI system consists of a 1.0 T permanent magnet, a higher-order shim coil set, and a gradient coil probe, installed in the cold room, and a compact MRI console installed in a room at normal temperature (20-25 °C). The most difficult problem for the installation of the MRI system in the cold room was the degradation of the field homogeneity of the permanent magnet shimmed at 25 °C. To overcome this problem, higher-order shim coils were developed and the temperature variation of the magnetic field distribution was measured using a standard phantom with and without shim coil currents. As a result, it was confirmed that the homogeneity (the difference between the minimum and maximum values) of the magnetic field in the 17×17×19 mm3 rectangular parallelepiped region was improved from 117 to 59 ppm using an appropriate combination of shim coil currents. A snowpack immersed in dodecane (C12H26) was imaged using a driven-equilibrium three-dimensional (3D) spin-echo sequence at -5 °C. The visualized 3D structure of the snowpack demonstrated the effectiveness of our approach.

  13. A group's physical attractiveness is greater than the average attractiveness of its members: the group attractiveness effect.

    PubMed

    van Osch, Yvette; Blanken, Irene; Meijs, Maartje H J; van Wolferen, Job

    2015-04-01

    We tested whether the perceived physical attractiveness of a group is greater than the average attractiveness of its members. In nine studies, we find evidence for the so-called group attractiveness effect (GA-effect), using female, male, and mixed-gender groups, indicating that group impressions of physical attractiveness are more positive than the average ratings of the group members. A meta-analysis on 33 comparisons reveals that the effect is medium to large (Cohen's d = 0.60) and moderated by group size. We explored two explanations for the GA-effect: (a) selective attention to attractive group members, and (b) the Gestalt principle of similarity. The results of our studies are in favor of the selective attention account: People selectively attend to the most attractive members of a group and their attractiveness has a greater influence on the evaluation of the group.

  14. Development of a fingertip glove equipped with magnetic tracking sensors.

    PubMed

    Fahn, Chin-Shyurng; Sun, Herman

    2010-01-01

    In this paper, we present the development of a data glove system based on fingertip tracking techniques. To track the fingertip position and orientation, a sensor module and two generator coils are attached on the fingertip and metacarpal of the corresponding finger. By tracking the fingertip, object manipulation tasks in a virtual environment or teleoperation system can be carried out more precisely, because fingertips are the foremost areas that reach the surface of an object in most of grasping processes. To calculate the bending angles of a finger, we also propose a method of constructing the shape of the finger. Since the coils are installed on the fingertips and metacarpals, there is no contact point between the sensors and finger joints. Hence, the shape of the sensors does not change as the fingers are bending, and both the quality of measurement and the lifetime of the sensors will not decrease in time. For the convenience of using this glove, a simple and efficient calibration process consisting of only one calibration gesture is also provided, so that all required parameters can be determined automatically. So far, the experimental results of the sensors performing linear movement and bending angle measurements are very satisfactory. It reveals that our data glove is available for a man-machine interface.

  15. Theoretical development of a magnetic force and an induced motion in elastic media for a magneto-motive technique

    NASA Astrophysics Data System (ADS)

    Lim, In Gweon; Park, Suhyun; Oh, Junghwan

    2016-08-01

    The theoretical development of a magnetic force and an induced motion while applying a magnetic field to magnetic nanoparticles in elastic media is described. An analytical expression for tissue-surface displacement derived from Mindlin's theory of elasticity in semi-infinite media was used to analyze the magneto-motive technique. The initial motion of the magnetic nanoparticles is driven by a constant magnetic force that displays a dampened transient motion before steady-state movement at twice the modulation frequency of the applied sinusoidal magnetic field. The motion of the nanoparticles at double the modulation frequency originated from the magnetic force being proportional to the product of the magnetic flux density and its gradient. Finally, we demonstrate the detection of iron-oxide nanoparticles taken up by liver parenchymal Kupffer cells and macrophages in atherosclerotic plaques by using a differential-phase optical coherence tomography (DP-OCT) system to compare simulation results with experimental data.

  16. Developing topologies of thin-film SQUID sensors for measuring extremely subtle magnetic fields

    NASA Astrophysics Data System (ADS)

    Kostyurina, E. A.; Kalashnikov, K. V.; Filippenko, L. V.; Koshelets, V. P.

    2016-11-01

    A topology of thin-film SQUID sensors that are based on Nb/AlO x /Nb tunnel junctions has been developed and optimized for nondestructive testing of materials and for other systems with a magnetic field sensitivity of <10 fT/Hz1/2.

  17. High Heels Increase Women's Attractiveness.

    PubMed

    Guéguen, Nicolas

    2015-11-01

    Research has found that the appearance of women's apparel helps increase their attractiveness as rated by men and that men care more about physical features in potential opposite-sex mates. However, the effect of sartorial appearance has received little interest from scientists. In a series of studies, the length of women's shoe heels was examined. A woman confederate wearing black shoes with 0, 5, or 9 cm heels asked men for help in various circumstances. In Study 1, she asked men to respond to a short survey on gender equality. In Study 2, the confederate asked men and women to participate in a survey on local food habit consumption. In Study 3, men and women in the street were observed while walking in back of the female confederate who dropped a glove apparently unaware of her loss. It was found that men's helping behavior increased as soon as heel length increased. However, heel length had no effect on women's helping behavior. It was also found that men spontaneously approached women more quickly when they wore high-heeled shoes (Study 4). Change in gait, foot-size judgment, and misattribution of sexiness and sexual intent were used as possible explanations.

  18. Attracting Girls into Physics (abstract)

    NASA Astrophysics Data System (ADS)

    Gadalla, Afaf

    2009-04-01

    A recent international study of women in physics showed that enrollment in physics and science is declining for both males and females and that women are severely underrepresented in careers requiring a strong physics background. The gender gap begins early in the pipeline, from the first grade. Girls are treated differently than boys at home and in society in ways that often hinder their chances for success. They have fewer freedoms, are discouraged from accessing resources or being adventurous, have far less exposure to problem solving, and are not encouraged to choose their lives. In order to motivate more girl students to study physics in the Assiut governorate of Egypt, the Assiut Alliance for the Women and Assiut Education District collaborated in renovating the education of physics in middle and secondary school classrooms. A program that helps in increasing the number of girls in science and physics has been designed in which informal groupings are organized at middle and secondary schools to involve girls in the training and experiences needed to attract and encourage girls to learn physics. During implementation of the program at some schools, girls, because they had not been trained in problem-solving as boys, appeared not to be as facile in abstracting the ideas of physics, and that was the primary reason for girls dropping out of science and physics. This could be overcome by holding a topical physics and technology summer school under the supervision of the Assiut Alliance for the Women.

  19. A Two-Magnet System to Push Therapeutic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

    2010-12-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically "inject", or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier.

  20. A Two-Magnet System to Push Therapeutic Nanoparticles.

    PubMed

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B

    2010-12-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically "inject", or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier.

  1. A Two-Magnet System to Push Therapeutic Nanoparticles

    PubMed Central

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

    2010-01-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically “inject”, or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier. PMID:21243119

  2. MR Measurement of Alloy Magnetic Susceptibility: Towards Developing Tissue-Susceptibility Matched Metals

    PubMed Central

    Astary, Garrett W.; Peprah, Marcus K.; Fisher, Charles R.; Stewart, Rachel L.; Carney, Paul R.; Sarntinoranont, Malisa; Meisel, Mark W.; Manuel, Michele V.; Mareci, Thomas H.

    2013-01-01

    Magnetic resonance imaging (MRI) can be used to relate structure to function mapped with high-temporal resolution electrophysiological recordings using metal electrodes. Additionally, MRI may be used to guide the placement of electrodes or conductive cannula in the brain. However, the magnetic susceptibility mismatch between implanted metals and surrounding brain tissue can severely distort MR images and spectra, particularly in high magnetic fields. In this study, we present a modified MR method of characterizing the magnetic susceptibility of materials that can be used to develop biocompatible, metal alloys that match the susceptibility of host tissue in order to eliminate MR distortions proximal to the implant. This method was applied at 4.7 T and 11.1 T to measure the susceptibility of a model solid-solution alloy of Cu and Sn, which is inexpensive but not biocompatible. MR-derived relative susceptibility values of four different compositions of Cu-Sn alloy deviated by less than 3.1% from SQUID magnetometry absolute susceptibility measurements performed up to 7 T. These results demonstrate that the magnetic susceptibility varies linearly with atomic percentage in these solid-solution alloys, but are not simply the weighted average of Cu and Sn magnetic susceptibilities. Therefore susceptibility measurements are necessary when developing susceptibility-matched, solid-solution alloys for the elimination of susceptibility artifacts in MR. This MR method does not require any specialized equipment and is free of geometrical constraints, such as sample shape requirements associated with SQUID magnetometry, so the method can be used at all stages of fabrication to guide the development of a susceptibility matched, biocompatible device. PMID:23727587

  3. MR measurement of alloy magnetic susceptibility: towards developing tissue-susceptibility matched metals.

    PubMed

    Astary, Garrett W; Peprah, Marcus K; Fisher, Charles R; Stewart, Rachel L; Carney, Paul R; Sarntinoranont, Malisa; Meisel, Mark W; Manuel, Michele V; Mareci, Thomas H

    2013-08-01

    Magnetic resonance imaging (MRI) can be used to relate structure to function mapped with high-temporal resolution electrophysiological recordings using metal electrodes. Additionally, MRI may be used to guide the placement of electrodes or conductive cannula in the brain. However, the magnetic susceptibility mismatch between implanted metals and surrounding brain tissue can severely distort MR images and spectra, particularly in high magnetic fields. In this study, we present a modified MR method of characterizing the magnetic susceptibility of materials that can be used to develop biocompatible, metal alloys that match the susceptibility of host tissue in order to eliminate MR distortions proximal to the implant. This method was applied at 4.7T and 11.1T to measure the susceptibility of a model solid-solution alloy of Cu and Sn, which is inexpensive but not biocompatible. MR-derived relative susceptibility values of four different compositions of Cu-Sn alloy deviated by less than 3.1% from SQUID magnetometry absolute susceptibility measurements performed up to 7T. These results demonstrate that the magnetic susceptibility varies linearly with atomic percentage in these solid-solution alloys, but are not simply the weighted average of Cu and Sn magnetic susceptibilities. Therefore susceptibility measurements are necessary when developing susceptibility-matched, solid-solution alloys for the elimination of susceptibility artifacts in MR. This MR method does not require any specialized equipment and is free of geometrical constraints, such as sample shape requirements associated with SQUID magnetometry, so the method can be used at all stages of fabrication to guide the development of a susceptibility matched, biocompatible device.

  4. Response of Lucilia sericata (Diptera: Calliphoridae) to Screwworm Oviposition Attractant.

    PubMed

    Chaudhury, M F; Zhu, J J; Skoda, S R

    2015-07-01

    The sheep blowfly, Lucilia sericata Meigen (Diptera: Calliphoridae), causes sheep myiasis in various parts of the world. Female flies are attracted to sheep following various olfactory cues emanating from the sheep's body, and oviposit on suitable substrates on sheep ultimately causing myiasis. Earlier workers attempted to reduce fly population in the field, with some success, using traps baited with various attractants. This research was conducted to determine if L. sericata would respond to a recently developed synthetic attractant that has attracted gravid screwworms, Cochliomyia hominivorax Coquerel, and stimulated them to oviposit. Results of the laboratory bioassays demonstrated that gravid females L. sericata were attracted to substrates treated with the synthetic screwworm attractant composed of five compounds--dimethyl disulfide, dimethyl trisulfide, phenol, p-cresol, and indole. Tests with various combinations of these compounds suggest that the sulfur compounds and indole are the most important compounds to elicit attraction and stimulate oviposition, while phenol and p-cresol may have minor roles. Semiochemical baits based on these compounds may be useful in the field to trap gravid L. sericata.

  5. Perceptions of human attractiveness comprising face and voice cues.

    PubMed

    Wells, Timothy; Baguley, Thom; Sergeant, Mark; Dunn, Andrew

    2013-07-01

    In human mate choice, sexually dimorphic faces and voices comprise hormone-mediated cues that purportedly develop as an indicator of mate quality or the ability to compete with same-sex rivals. If preferences for faces communicate the same biologically relevant information as do voices, then ratings of these cues should correlate. Sixty participants (30 male and 30 female) rated a series of opposite-sex faces, voices, and faces together with voices for attractiveness in a repeated measures computer-based experiment. The effects of face and voice attractiveness on face-voice compound stimuli were analyzed using a multilevel model. Faces contributed proportionally more than voices to ratings of face-voice compound attractiveness. Faces and voices positively and independently contributed to the attractiveness of male compound stimuli although there was no significant correlation between their rated attractiveness. A positive interaction and correlation between attractiveness was shown for faces and voices in relation to the attractiveness of female compound stimuli. Rather than providing a better estimate of a single characteristic, male faces and voices may instead communicate independent information that, in turn, provides a female with a better assessment of overall mate quality. Conversely, female faces and voices together provide males with a more accurate assessment of a single dimension of mate quality.

  6. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  7. Magnetic Suspension Being Developed for Future Lube-Free Turbomachinery Application

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew J.

    2003-01-01

    The NASA Glenn Research Center, the U.S. Army, Texas A&M University, and other industrial partners are continuing to work together to develop magnetic suspension technology to withstand the harsh environmental conditions inside current and future turbomachinery. In fiscal year 2002, our third-generation radial magnetic bearing successfully controlled rotor motion while at 1000 F (540 C) and 20 000 rpm. The ability to command the rotor s position while spinning at this speed was also demonstrated. Future work is planned to include radial bearing tests to 1100 F (593 C) and 30 000 rpm. In fiscal year 2003, we plan to test a high-temperature thrust bearing.

  8. Development of very small-diameter, inductively coupled magnetized plasma device.

    PubMed

    Kuwahara, D; Mishio, A; Nakagawa, T; Shinohara, S

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (~10(19) m(-3)) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ~1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.

  9. Development of a magnetic system for the treatment of Helicobacter pylori infections

    NASA Astrophysics Data System (ADS)

    Silva, Érica L.; Carvalho, Juliana F.; Pontes, Thales R. F.; Oliveira, Elquio E.; Francelino, Bárbara L.; Medeiros, Aldo C.; do Egito, E. Sócrates T.; Araujo, José H.; Carriço, Artur S.

    2009-05-01

    We report a study to develop a magnetic system for local delivery of amoxicillin. Magnetite microparticles produced by coprecipitation were coated with a solution of amoxicillin and Eudragit ®S100 by spray drying. Scanning electron microscopy, optical microscopy, X-ray powder diffraction and vibrating sample magnetometry revealed that the particles were superparamagnetic, with an average diameter of 17.2 μm, and an initial susceptibility controllable by the magnetite content in the suspension feeding the sprayer. Our results suggest a possible way to treat Helicobacter pylori infections, using an oral drug delivery system, and open prospects to coat magnetic microparticles by spray drying for biomedical applications.

  10. Attraction rules: germ cell migration in zebrafish.

    PubMed

    Raz, Erez; Reichman-Fried, Michal

    2006-08-01

    The migration of zebrafish primordial germ cell towards the region where the gonad develops is guided by the chemokine SDF-1a. Recent studies show that soon after their specification, the cells undergo a series of morphological alterations before they become motile and are able to respond to attractive cues. As migratory cells, primordial germ cells move towards their target while correcting their path upon exiting a cyclic phase in which morphological cell polarity is lost. In the following stages, the cells gather at specific locations and move as cell clusters towards their final target. In all of these stages, zebrafish germ cells respond as individual cells to alterations in the shape of the sdf-1a expression domain, by directed migration towards their target - the position where the gonad develops.

  11. Attractive faces temporally modulate visual attention

    PubMed Central

    Nakamura, Koyo; Kawabata, Hideaki

    2014-01-01

    Facial attractiveness is an important biological and social signal on social interaction. Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does. Little is known, however, about the temporal characteristics of visual attention for facial attractiveness. In this study, we investigated the temporal modulation of visual attention induced by facial attractiveness by using a rapid serial visual presentation. Fourteen male faces and two female faces were successively presented for 160 ms, respectively, and participants were asked to identify two female faces embedded among a series of multiple male distractor faces. Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA. These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention. PMID:24994994

  12. Romantic attraction and adolescent smoking trajectories.

    PubMed

    Pollard, Michael S; Tucker, Joan S; Green, Harold D; Kennedy, David P; Go, Myong-Hyun

    2011-12-01

    Research on sexual orientation and substance use has established that lesbian, gay, and bisexual (LGB) individuals are more likely to smoke than heterosexuals. This analysis furthers the examination of smoking behaviors across sexual orientation groups by describing how same- and opposite-sex romantic attraction, and changes in romantic attraction, are associated with distinct six-year developmental trajectories of smoking. The National Longitudinal Study of Adolescent Health dataset is used to test our hypotheses. Multinomial logistic regressions predicting smoking trajectory membership as a function of romantic attraction were separately estimated for men and women. Romantic attraction effects were found only for women. The change from self-reported heterosexual attraction to lesbian or bisexual attraction was more predictive of higher smoking trajectories than was a consistent lesbian or bisexual attraction, with potentially important differences between the smoking patterns of these two groups.

  13. A statistical model of facial attractiveness.

    PubMed

    Said, Christopher P; Todorov, Alexander

    2011-09-01

    Previous research has identified facial averageness and sexual dimorphism as important factors in facial attractiveness. The averageness and sexual dimorphism accounts provide important first steps in understanding what makes faces attractive, and should be valued for their parsimony. However, we show that they explain relatively little of the variance in facial attractiveness, particularly for male faces. As an alternative to these accounts, we built a regression model that defines attractiveness as a function of a face's position in a multidimensional face space. The model provides much more predictive power than the averageness and sexual dimorphism accounts and reveals previously unreported components of attractiveness. The model shows that averageness is attractive in some dimensions but not in others and resolves previous contradictory reports about the effects of sexual dimorphism on the attractiveness of male faces.

  14. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, Jifeng

    2009-11-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and they are independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. And the prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  15. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, J.; Peterson, R.

    2009-12-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and are largely independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. The prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  16. When a repellent becomes an attractant: harmful saponins are kairomones attracting the symbiotic Harlequin crab.

    PubMed

    Caulier, Guillaume; Flammang, Patrick; Gerbaux, Pascal; Eeckhaut, Igor

    2013-01-01

    Marine organisms have developed a high diversity of chemical defences in order to avoid predators and parasites. In sea cucumbers, saponins function as repellents and many species produce these cytotoxic secondary metabolites. Nonetheless, they are colonized by numerous symbiotic organisms amongst which the Harlequin crab, Lissocarcinus orbicularis, is one of the most familiar in the Indo-Pacific Ocean. We here identify for the first time the nature of the molecules secreted by sea cucumbers and attracting the symbionts: saponins are the kairomones recognized by the crabs and insuring the symbiosis. The success of this symbiosis would be due to the ability that crabs showed during evolution to bypass the sea cucumber chemical defences, their repellents becoming powerful attractants. This study therefore highlights the complexity of chemical communication in the marine environment.

  17. Development of magnetic bearing system for a new third-generation blood pump.

    PubMed

    Lee, Jung Joo; Ahn, Chi Bum; Choi, Jaesoon; Park, Jun Woo; Song, Seung-Joon; Sun, Kyung

    2011-11-01

    A magnetic bearing system is a crucial component in a third-generation blood pump, particularly when we consider aspects such as system durability and blood compatibility. Many factors such as efficiency, occupying volume, hemodynamic stability in the flow path, mechanical stability, and stiffness need to be considered for the use of a magnetic bearing system in a third-generation blood pump, and a number of studies have been conducted to develop novel magnetic bearing design for better handling of these factors. In this study, we developed and evaluated a new magnetic bearing system having a motor for a new third-generation blood pump. This magnetic bearing system consists of a magnetic levitation compartment and a brushless direct current (BLDC) motor compartment. The active-control degree of freedom is one; this control is used for controlling the levitation in the axial direction. The levitation in the radial direction has a passive magnetic levitation structure. In order to improve the system efficiency, we separated the magnetic circuit for axial levitation by using a magnetic circuit for motor drive. Each magnetic circuit in the bearing system was designed to have a minimum gap by placing mechanical parts, such as the impeller blades, outside the circuit. A custom-designed noncontact gap sensor was used for minimizing the system volume. We fabricated an experimental prototype of the proposed magnetic bearing system and evaluated its performance by a control system using the Matlab xPC Target system. The noncontact gap sensor was an eddy current gap sensor with an outer diameter of 2.38 mm, thickness of 0.88 mm, and resolution of 5 µm. The BLDC motor compartment was designed to have an outer diameter of 20 mm, length of 28.75 mm, and power of 4.5 W. It exhibited a torque of 8.6 mNm at 5000 rpm. The entire bearing system, including the motor and the sensor, had an outer diameter of 22 mm and a length of 97 mm. The prototype exhibited sufficient levitation

  18. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering

    SciTech Connect

    Kerdtongmee, P.; Srinoum, D.; Nisoa, M.

    2011-10-15

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 {Omega} impedance matching. A plasma density up to 1.1 x 10{sup 12} cm{sup -3} in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.

  19. Permanent magnet Hall Thrusters development and applications on future brazilian space missions

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Martins, Alexandre A.; Miranda, Rodrigo; Schelling, Adriane; de Souza Alves, Lais; Gonçalves Costa, Ernesto; de Oliveira Coelho Junior, Helbert; Castelo Branco, Artur; de Oliveira Lopes, Felipe Nathan

    2015-10-01

    The Plasma Physics Laboratory (PPLUnB) has been developing a Permanent Magnet Hall Thruster (PHALL) for the Space Research Program for Universities (UNIESPAÇO), part of the Brazilian Space Activities Program (PNAE) since 2004. The PHALL project consists on a plasma source design, construction and characterization of the Hall type that will function as a plasma propulsion engine and characterized by several plasma diagnostics sensors. PHALL is based on a plasma source in which a Hall current is generated inside a cylindrical annular channel with an axial electric field produced by a ring anode and a radial magnetic field produced by permanent magnets. In this work it is shown a brief description of the plasma propulsion engine, its diagnostics instrumentation and possible applications of PHALL on orbit transfer maneuvering for future Brazilian geostationary satellite space missions.

  20. Development of a long pulse plasma gun discharge for magnetic turbulence studies

    NASA Astrophysics Data System (ADS)

    Schaffner, David

    2016-10-01

    A long pulse ( 300 μs) plasma gun discharge is in development at the Bryn Mawr College Plasma Laboratory for the production of sustained magnetized plasma injection for magnetohydrodynamic (MHD) turbulence studies. An array of eight 0.5mF parallel capacitors are used to create a pulse-forming-network (PFN) with a plateaued current output of 50kA for at least 200 of the 300 μs pulse. A 24cm inner diameter plasma gun provides stuffing flux fields at the stuffing threshold in order to allow for the continuous injection of magnetic helicity. Plasma is injected into a 24cm diameter flux-conserving aluminum chamber with a high density port array for fine spatial resolution diagnostic access. Fluctuations of magnetic field and saturation current are measured using pickup probes and Langmuir probes respectively.

  1. Developing Physics-Based Procedures for Local Helioseismic Probing of Sunspots and Magnetic Regions

    NASA Astrophysics Data System (ADS)

    Birch, Aaron; Braun, D. C.; Crouch, A.; Rempel, M.; Fan, Y.; Centeno, R.; Toomre, J.; Haber, D.; Hindman, B.; Featherstone, N.; Duvall, T., Jr.; Jackiewicz, J.; Thompson, M.; Stein, R.; Gizon, L.; Cameron, R.; Saidi, Y.; Hanasoge, S.; Burston, R.; Schunker, H.; Moradi, H.

    2010-05-01

    We have initiated a project to test and improve the local helioseismic techniques of time-distance and ring-diagram analysis. Our goals are to develop and implement physics-based methods that will (1) enable the reliable determinations of subsurface flow, magnetic field, and thermal structure in regions of strong magnetic fields and (2) be quantitatively tested with realistic solar magnetoconvection simulations in the presence of sunspot-like magnetic fields. We are proceeding through a combination of improvements in local helioseismic measurements, forward modeling of the helioseismic wavefield, kernel computations, inversions, and validation through numerical simulations. As improvements over existing techniques are made they will be applied to the SDO/HMI observations. This work is funded through the the NASA Heliophysics Science Division through the Solar Dynamics Observatory (SDO) Science Center program.

  2. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering.

    PubMed

    Kerdtongmee, P; Srinoum, D; Nisoa, M

    2011-10-01

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.

  3. Development of an x-ray diffraction camera used in magnetic fields up to 10 T.

    PubMed

    Mitsui, Yoshifuru; Koyama, Keiichi; Takahashi, Kohki; Watanabe, Kazuo

    2011-12-01

    A high-field x-ray diffraction (HF-XRD) camera was developed to observe structural changes of magnetic materials in magnetic fields up to 10 T. The instrument mainly consists of a Debye-Scherrer-type camera with a diameter of 80.1 mm, a 10-T cryocooled superconducting magnet with a 100-mm room-temperature bore, an x-ray source, a power supply, and a chiller for the x-ray source. An x-ray detector (image plate) in the HF-XRD camera can be taken out and inserted into the magnet without changing the sample position. The performance of the instrument was tested by measuring the HF-XRD for silicon and ferromagnetic MnBi powders. A change of x-ray diffraction pattern was observed due to the magnetic orientation of MnBi, showing that the instrument is useful for studying field-induced orientation processes and structural properties of field-controlled materials.

  4. Development of the magnetic force-induced dual vibration energy harvester using a unimorph cantilever

    NASA Astrophysics Data System (ADS)

    Umaba, M.; Nakamachi, E.; Morita, Y.

    2015-12-01

    In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever, the pendulum and a pair of permanent magnets. One magnet was attached at the edge of cantilever, and the counterpart magnet at the edge of pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous existence of vibration, is converted to the electric energy via the piezoelectric unimorph cantilever vibration. At first, we studied the energy convert mechanism and analyze the performance of novel energy harvester, where the resonance free vibration of unimorph piezoelectric cantilever generated a high electric power. Next, we equipped the counterpart permanent magnet at the edge of pendulum, which vibrates with a very low frequency caused by the human walking. Then the counterpart magnet was set at the edge of unimorph piezoelectric cantilever, which vibrated with a high frequency. This low-to-high frequency convert "dual vibration system" can be characterized as an enhanced energy harvester. We examined and obtained average values of voltage and power in this system, as 8.31 mV and 0.33 μW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.

  5. New Magnetic Database Initiatives: Exploitation of and Integration with other Developments.

    NASA Astrophysics Data System (ADS)

    Constable, C.; Staudigel, H.; Tauxe, L.; Koppers, A.; Johnson, C.; Solheid, P.; Jackson, M.; Banerjee, S.; Pisarevsky, S.

    2002-12-01

    The steadily increasing collection of paleo, rock, and environmental magnetic data necessitates a community effort to ensure its timely electronic archival and allow appropriate exploitation of research tools from an IT perspective. This will ensure that scientific data gathered with public funds can be readily accessible to the broadest possible range of researchers. Although paleomagnetic databases providing a limited digital archive of legacy data have existed for some time, they lack the interoperability and generality required for the breadth of modern scientific endeavors. Drawing on expertise represented in both the Geochemical Earth Reference Model (GERM) and its parent body EarthRef.org protocols are being developed within the magnetics community that will provide the range of information needed for paleo and rock magnetic databases. The goal in establishing these databases is to provide an enduring digital archive that can be exploited for current scientific investigations, and permit new and interdisciplinary studies that can explore combinations of measurements not previously considered. While strategies for harvesting legacy data are also desirable, a strong focus on gathering newly collected data at the publication stage is necessary, so that these data become broadly available in a timely fashion. The ongoing dialog on minimal and desirable metadata suitable for magnetic databases has a strong basis in the traditional geophysical areas in which magnetic data are applied, and must also include fundamental rock magnetic information. The metadata must be designed to allow flexible syntheses of magnetic data into the standard kinds of models (such as magnetostratigraphic time scales, geomagnetic field models, plate reconstructions, etc.) and be sufficiently general to enable cross-fertilization with communities involved in related geophysical enterprises such as stratigraphy, petrology, radiometric dating, tectonics and paleoclimate studies. This

  6. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    SciTech Connect

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  7. Miscalibrations in judgements of attractiveness with cosmetics.

    PubMed

    Jones, Alex L; Kramer, Robin S S; Ward, Robert

    2014-10-01

    Women use cosmetics to enhance their attractiveness. How successful they are in doing so remains unknown--how do men and women respond to cosmetics use in terms of attractiveness? There are a variety of miscalibrations where attractiveness is concerned--often, what one sex thinks the opposite sex finds attractive is incorrect. Here, we investigated observer perceptions about attractiveness and cosmetics, as well as their understanding of what others would find attractive. We used computer graphic techniques to allow observers to vary the amount of cosmetics applied to a series of female faces. We asked observers to optimize attractiveness for themselves, for what they thought women in general would prefer, and what they thought men in general would prefer. We found that men and women agree on the amount of cosmetics they find attractive, but overestimate the preferences of women and, when considering the preferences of men, overestimate even more. We also find that models' self-applied cosmetics are far in excess of individual preferences. These findings suggest that attractiveness perceptions with cosmetics are a form of pluralistic ignorance, whereby women tailor their cosmetics use to an inaccurate perception of others' preferences. These findings also highlight further miscalibrations of attractiveness ideals.

  8. Facial shape and judgements of female attractiveness.

    PubMed

    Perrett, D I; May, K A; Yoshikawa, S

    1994-03-17

    The finding that photographic and digital composites (blends) of faces are considered to be attractive has led to the claim that attractiveness is averageness. This would encourage stabilizing selection, favouring phenotypes with an average facial structure. The 'averageness hypothesis' would account for the low distinctiveness of attractive faces but is difficult to reconcile with the finding that some facial measurements correlate with attractiveness. An average face shape is attractive but may not be optimally attractive. Human preferences may exert directional selection pressures, as with the phenomena of optimal outbreeding and sexual selection for extreme characteristics. Using composite faces, we show here that, contrary to the averageness hypothesis, the mean shape of a set of attractive faces is preferred to the mean shape of the sample from which the faces were selected. In addition, attractive composites can be made more attractive by exaggerating the shape differences from the sample mean. Japanese and caucasian observers showed the same direction of preferences for the same facial composites, suggesting that aesthetic judgements of face shape are similar across different cultural backgrounds. Our finding that highly attractive facial configurations are not average shows that preferences could exert a directional selection pressure on the evolution of human face shape.

  9. Radiofrequency Coils and Pulse Sequences for Cardiac Magnetic Resonance Applications: New Perspectives and Future Developments.

    PubMed

    Giovannetti, Giulio; De Marchi, Daniele; Pingitore, Alessandro

    2016-01-01

    Cardiac magnetic resonance (CMR) is a relevant diagnostic tool for the evaluation of cardiac morphology, function, and mass. The assessment of myocardial tissue content through the measurement of longitudinal (T1) and transversal (T2) relaxation properties and the development of different technical advances are important clinical novelties of CMR. Recently, magnetic resonance spectroscopy has been explored for the assessment of the metabolic state of tissue for cardiac function evaluation by using nuclei other than protons, such as (13)C and (23)Na, expanding our knowledge of the kinetics of metabolic processes. The design and development of dedicated radiofrequency coils and pulse sequences are fundamental to maximizing signal-to-noise ratio data while achieving faster cardiac examination. This review highlights the new technical developments in CMR sequences and coils.

  10. Neural network controller development for a magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Fittro, Roger L.; Pang, Da-Chen; Anand, Davinder K.

    1994-01-01

    A neural network controller has been developed to accommodate disturbances and nonlinearities and improve the robustness of a magnetically suspended flywheel energy storage system. The controller is trained using the back propagation-through-time technique incorporated with a time-averaging scheme. The resulting nonlinear neural network controller improves system performance by adapting flywheel stiffness and damping based on operating speed. In addition, a hybrid multi-layered neural network controller is developed off-line which is capable of improving system performance even further. All of the research presented in this paper was implemented via a magnetic bearing computer simulation. However, careful attention was paid to developing a practical methodology which will make future application to the actual bearing system fairly straightforward.

  11. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  12. Current status and recent topics of rare-earth permanent magnets

    NASA Astrophysics Data System (ADS)

    Sugimoto, S.

    2011-02-01

    After the development of Nd-Fe-B magnets, rare-earth magnets are now essential components in many fields of technology, because of their ability to provide a strong magnetic flux. There are two, well-established techniques for the manufacture of rare earth magnets: powder metallurgy is used to obtain high-performance, anisotropic, fully dense magnet bodies; and the melt-spinning or HDDR (hydrogenation, disproportionation, desorption and recombination) process is widely used to produce magnet powders for bonded magnets. In the industry of sintered Nd-Fe-B magnets, the total amount of production has increased and their dominant application has been changed to motors. In particular, their use for motors in hybrid cars is one of the most attractive applications. Bonded magnets have also been used for small motors, and the studies of nanocomposite and Sm-Fe-N magnets have become widespread. This paper reviews the current status and future trend in the research of permanent magnets.

  13. Development of the 1.2 T~1.5 T Permanent Magnetic Resonance Imaging Device and Its Application for Mouse Imaging.

    PubMed

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Zhao, Qiang; Li, Shiyu

    2015-01-01

    By improving the main magnet, gradient, and RF coils design technology, manufacturing methods, and inventing new magnetic resonance imaging (MRI) special alloy, a cost-effective and small animal specific permanent magnet-type three-dimensional magnetic resonance imager was developed. The main magnetic field strength of magnetic resonance imager with independent intellectual property rights is 1.2~1.5 T. To demonstrate its effectiveness and validate the mouse imaging experiments in different directions, we compared the images obtained by small animal specific permanent magnet-type three-dimensional magnetic resonance imager with that obtained by using superconductor magnetic resonance imager for clinical diagnosis.

  14. House Fly (Musca domestica L.) Attraction to Insect Honeydew

    PubMed Central

    Hung, Kim Y.; Michailides, Themis J.; Millar, Jocelyn G.; Wayadande, Astri; Gerry, Alec C.

    2015-01-01

    House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house

  15. Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils.

    PubMed

    Gaspar, André S; Wagner, Friedrich E; Amaral, Vítor S; Costa Lima, Sofia A; Khomchenko, Vladimir A; Santos, Judes G; Costa, Benilde F O; Durães, Luísa

    2017-02-05

    Higher quality magnetic nanoparticles are needed for use as magnetic nanoprobe in medical imaging techniques and cancer therapy. Moreover, the phytochemistry benefits of some Amazonian essential oils have sparked great interest for medical treatments. In this work, a magnetic nanoprobe was developed, allying the biocompatibility and superparamagnetism of iron oxide nanoparticles (SPIONs) with benefits associated with Amazonian oils from Copaiba and Andiroba trees. SPIONs were obtained by two thermal decomposition procedures and different amounts of precursors (iron acetylacetonates). Their characterization was accomplished by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetization. The obtained nanoparticles composition and magnetic properties were not affected by the relative proportion of iron(II) and iron(III) in the precursor system. However, when changing the reducing and stabilizing agents the coating layer shows different compositions/relative weight - the more promising SPIONs have a coating mainly composed by oleylamine and an iron oxide:coating wt% ratio of 55:45. Nanoparticles size distributions were very narrow and centred in the average size of 6-7nm. Cellular assays confirmed the biocompatibility of SPIONs and their effective internalization in human colon cancer cells. Mössbauer/XRD results indicated maghemite as their main iron oxide phase, but traces of magnetite proved to be present. Magnetization saturations of 57emu/g at 5K and 42emu/g at 300K were achieved. With incorporation of SPIONs into Copaiba and Andiroba essential oils, these values show a 4-fold decrease, but the supermagnetic behaviour is preserved providing the effective formation of a nanofluid.

  16. Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils

    NASA Astrophysics Data System (ADS)

    Gaspar, André S.; Wagner, Friedrich E.; Amaral, Vítor S.; Costa Lima, Sofia A.; Khomchenko, Vladimir A.; Santos, Judes G.; Costa, Benilde F. O.; Durães, Luísa

    2017-02-01

    Higher quality magnetic nanoparticles are needed for use as magnetic nanoprobe in medical imaging techniques and cancer therapy. Moreover, the phytochemistry benefits of some Amazonian essential oils have sparked great interest for medical treatments. In this work, a magnetic nanoprobe was developed, allying the biocompatibility and superparamagnetism of iron oxide nanoparticles (SPIONs) with benefits associated with Amazonian oils from Copaiba and Andiroba trees. SPIONs were obtained by two thermal decomposition procedures and different amounts of precursors (iron acetylacetonates). Their characterization was accomplished by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetization. The obtained nanoparticles composition and magnetic properties were not affected by the relative proportion of iron(II) and iron(III) in the precursor system. However, when changing the reducing and stabilizing agents the coating layer shows different compositions/relative weight - the more promising SPIONs have a coating mainly composed by oleylamine and an iron oxide:coating wt% ratio of 55:45. Nanoparticles size distributions were very narrow and centred in the average size of 6-7 nm. Cellular assays confirmed the biocompatibility of SPIONs and their effective internalization in human colon cancer cells. Mössbauer/XRD results indicated maghemite as their main iron oxide phase, but traces of magnetite proved to be present. Magnetization saturations of 57 emu/g at 5 K and 42 emu/g at 300 K were achieved. With incorporation of SPIONs into Copaiba and Andiroba essential oils, these values show a 4-fold decrease, but the supermagnetic behaviour is preserved providing the effective formation of a nanofluid.

  17. Attracting and retaining nurses in primary care.

    PubMed

    Drennan, Vari; Andrews, Sarah; Sidhu, Rajinder; Peacock, Richard

    2006-06-01

    There is increasing demand for nurses to work in primary care. This is driven in part by the need to retain current levels but also by the modernisation plans for primary care services, which require new roles for nurses, new ways of working and more nurses in primary care settings. While campaigns for increased recruitment of hospital nurses and doctors has been largely successful in recent years, primary care has still to see the impact. This article reports on a Department of Health (England) funded project that aimed to identify strategies and exemplars to assist primary care trusts (PCTs) and the workforce development confederations (WDCs) in strategic health authorities in attracting and retaining nurses to primary care at registered nurse level. It reports on the range of initiatives identified, the perceived benefits and challenges. It concludes by proposing a strategic model for planning for the recruitment and retention of primary care nurses.

  18. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  19. Micro-magnetic resonance imaging study of live quail embryos during embryonic development.

    PubMed

    Duce, Suzanne; Morrison, Fiona; Welten, Monique; Baggott, Glenn; Tickle, Cheryll

    2011-01-01

    Eggs containing live Japanese quail embryos were imaged using micro-magnetic resonance imaging (μMRI) at 24-h intervals from Day 0 to 8, the period during which the main body axis is being laid down and organogenesis is taking place. Considerable detail of non-embryonic structures such as the latebra was revealed at early stages but the embryo could only be visualized around Day 3. Three-dimensional (3D) changes in embryo length and volume were quantified and also changes in volume in the extra- and non-embryonic components. The embryo increased in length by 43% and nearly trebled in volume between Day 4 and Day 5. Although the amount of yolk remained fairly constant over the first 5 days, the amount of albumen decreases significantly and was replaced by extra-embryonic fluid (EEF). ¹H longitudinal (T₁) and transverse (T₂) relaxation times of different regions within the eggs were determined over the first 6 days of development. The T₂ measurements mirrored the changes in image intensity observed, which can be related to the aqueous protein concentrations. In addition, a comparison of the development of Day 0 to 3 quail embryos exposed to radiofrequency (rf) pulses, 7 T static magnetic fields and magnetic field gradients for an average of 7 h with the development of control embryos did not reveal any gross changes, thus confirming that μMRI is a suitable tool for following the development of live avian embryos over time from the earliest stages.

  20. Development of materials related to the 60T and 100T magnets

    SciTech Connect

    Han, K.; Embury, J.D.

    1997-12-31

    In the past year, the effort in materials science related to the 60T and 100T magnets at Los Alamos has been concentrated in three areas: (a) development of a fabrication route for Cu-Ag wire in collaboration with Handy and Harman and IGC and (b) investigation of the mechanical properties of a variety of potential high strength high conductivity materials (c) selection of the reinforcement materials for the coils and development of a fabrication route for these materials. The selection of the conductors and reinforcement materials is based on their mechanical properties and electrical properties at cryogenic temperature ({minus} 196 C). The authors have taken the approach of trying to relate the properties both to design requirements and to the service life of magnet. Thus, they have given some consideration both to the role of the internal stresses developed during the fabrication on the elastic-plastic transition and on the mechanical and thermal stability of heavily drawn wires. The feasibility of the fabrication route and the cost of manufacturing the materials must also be considered. They have emphasized the need to develop a fabrication route capable of producing the conductors with homogeneous mechanical and electrical properties and with a cross-section of 8.6 mm x 5.2 mm and 146 m in length or longer for a 100T magnet.

  1. Development of a Proof of Concept Low Temperature Superfluid Magnetic Pump with Applications

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.

    State of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin coolers over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. Development of a proof of concept Superfluid Magnetic Pump is discussed in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He- 4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, or active magnetic regenerative refrigerators. Due to its superior thermal transport properties this pump can also be used as a simple circulator of sub-Lambda 4He to distribute cooling over large surface areas. The pump discussed in this work was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pascal. This pump worked in an "ideal" thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be put to test in suitable sub Kelvin refrigeration systems. Numerical modeling of an Active Magnetic Regenerative Refrigerator (AMRR) that uses the Superfluid Magnetic Pump (SMP) to circulate liquid 3He-4He through a magnetic regenerator is presented as a potential application of such a pump.

  2. Effects of Strong Static Magnetic Fields on Amphibian Development and Gene Expression

    NASA Astrophysics Data System (ADS)

    Kawakami, Satomi; Kashiwagi, Keiko; Furuno, Nobuaki; Yamashita, Masamichi; Kashiwagi, Akihiko; Tanimoto, Yoshifumi

    2006-07-01

    This investigation attempts to clarify the effects of strong vertical and static magnetic fields (SMFs) of 11-15 T on Xenopus laevis development and on Xotx2 (an important regulator of fore- and midbrain morphogenesis) and Xag1 (essential for cement gland formation) gene expression. Results showed that (1) a strong SMF significantly retarded normal development and induced microcephaly, two heads, abnormal cement glands and multiple malformations, indicating that SMF inhibits normal embryonic development, (2) a strong SMF suppressed Xotx2 and Xag1 expression.

  3. The Development of a Ceramic Mold for Hot-Forging of Micro-Magnets

    SciTech Connect

    Christenson, Todd; Garino, Terry

    1999-06-25

    A new mold material has been developed for use in making rare-earth permanent magnet components with precise dimensions in the 10 to 1000 µm range by hot-forging. These molds are made from molds poly(methyl)methacrylate (PMMA) made by deep x-ray lithography (DXRL). An alumina bonded with colloidal silica has been developed for use in these molds. This material can be heated to 950°C without changing dimensions where it develops the strength needed to withstand the hot-fmging conditions (750°C, 100 MPa). In addition, it disintegrates in HF so that parts can be easily removed after forging.

  4. Modeling of magnetic fields on a cylindrical surface and associated parameter estimation for development of a size sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Rajamani, Rajesh

    2016-11-01

    This paper develops analytical sensing principles for estimation of circumferential size of a cylindrical surface using magnetic sensors. An electromagnet and magnetic sensors are used on a wearable band for measurement of leg size. In order to enable robust size estimation during rough real-world use of the wearable band, three estimation algorithms are developed based on models of the magnetic field variation over a cylindrical surface. The magnetic field models developed include those for a dipole and for a uniformly magnetized cylinder. The estimation algorithms used include a linear regression equation, an extended Kalman filter and an unscented Kalman filter. Experimental laboratory tests show that the size sensor in general performs accurately, yielding sub-millimeter estimation errors. The unscented Kalman filter yields the best performance that is robust to bias and misalignment errors. The size sensor developed herein can be used for monitoring swelling due to fluid accumulation in the lower leg and a number of other biomedical applications.

  5. Basic principles and concepts underlying recent advances in magnetic resonance imaging of the developing brain.

    PubMed

    Panigrahy, Ashok; Borzage, Matthew; Blüml, Stefan

    2010-02-01

    Over the last decade, magnetic resonance (MR) imaging has become an essential tool in the evaluation of both in vivo human brain development and perinatal brain injury. Recent technology including MR-compatible neonatal incubators, neonatal head coils, advanced MR pulse sequences, and 3-T field strength magnets allow high-quality MR imaging studies to be performed on sick neonates. This article will review basic principles and concepts underlying recent advances in MR spectroscopy, diffusion, perfusion, and volumetric MR imaging. These techniques provide quantitative assessment and novel insight of both brain development and brain injury in the immature brain. Knowledge of normal developmental changes in quantitative MR values is also essential to interpret pathologic cases.

  6. A Magnet Spring Model

    ERIC Educational Resources Information Center

    Fay, T. H.; Mead, L.

    2006-01-01

    The paper discusses an elementary spring model representing the motion of a magnet suspended from the ceiling at one end of a vertical spring which is held directly above a second magnet fixed on the floor. There are two cases depending upon the north-south pole orientation of the two magnets. The attraction or repelling force induced by the…

  7. Beer Consumption Increases Human Attractiveness to Malaria Mosquitoes

    PubMed Central

    Lefèvre, Thierry; Gouagna, Louis-Clément; Dabiré, Kounbobr Roch; Elguero, Eric; Fontenille, Didier; Renaud, François; Costantini, Carlo; Thomas, Frédéric

    2010-01-01

    Background Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso. Methodology/Principal Findings We used a Y tube-olfactometer designed to take advantage of the whole body odour (breath and skin emanations) as a stimulus to gauge human attractiveness to Anopheles gambiae (the primary African malaria vector) before and after volunteers consumed either beer (n = 25 volunteers and a total of 2500 mosquitoes tested) or water (n = 18 volunteers and a total of 1800 mosquitoes). Water consumption had no effect on human attractiveness to An. gambiae mosquitoes, but beer consumption increased volunteer attractiveness. Body odours of volunteers who consumed beer increased mosquito activation (proportion of mosquitoes engaging in take-off and up-wind flight) and orientation (proportion of mosquitoes flying towards volunteers' odours). The level of exhaled carbon dioxide and body temperature had no effect on human attractiveness to mosquitoes. Despite individual volunteer variation, beer consumption consistently increased attractiveness to mosquitoes. Conclusions/Significance These results suggest that beer consumption is a risk factor for malaria and needs to be integrated into public health policies for the design of control measures. PMID:20209056

  8. Time constant of round superconducting structures determined from the time development of the induced magnetic field

    NASA Astrophysics Data System (ADS)

    Takács, S.

    2016-12-01

    It is shown that evaluating the time development of the penetrated magnetic field into the superconductors can be used for the determination of time constant for round structures, too. The calculations are very similar to those used for the flat structures. The method is very simple, both by the practical realization of the experiment and by the evaluation of the time evolution of the penetrated magnetic field above the superconductor. The procedure uses an exponential decrease of the applied magnetic field, which can be easily performed by discharging an external circuit. By determining the position of the maximum of the difference between the penetrated field induction and the applied magnetic field induction, the corresponding time constant can be evaluated by a very simple equation, which is calculated in the paper. The results are very similar to the previous calculations, obtained for the flat superconducting cables. In addition, it is suggested that knowing the time constant of superconducting structures could be in many cases more important both for research aspects and for practical applications.

  9. Development of low temperature and high magnetic field X-ray diffraction facility

    SciTech Connect

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P. Chaddah, P.

    2015-06-24

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to −8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  10. Development of low temperature and high magnetic field X-ray diffraction facility

    NASA Astrophysics Data System (ADS)

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P.; Chaddah, P.

    2015-06-01

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to -8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr0.5Sr0.5MnO3 sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  11. Development of a Magnetic Beads Quantitative Detection System for Fast Diagnosis

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yujiro; Morishita, Tomohiro; Matsuyama, Kenji; Takasa, Kenji; Shibasaki, Ichiro

    This paper reports the development and performance of a detection system for magnetic beads. The system consists of a semiconductor based magneto-resistance sensor for beads detection and a lateral flow kit. Detection of anti-gen of H.Influenza at concentration of 0.1ng/ml was performed with satisfactory sensitivity, showing the system to be a promising for immunoassay.

  12. Development and Characterization of a High Magnetic Field Solenoid for Laser Plasma Experiments

    SciTech Connect

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Divol, L; Fulkerson, S; Satariano, J; Price, D; Bower, J; Edwards, J; Town, R; Glenzer, S H; Offenberger, A A; Tynan, G R; James, A N

    2006-05-05

    An electromagnetic solenoid was developed to study the quenching of nonlocal heat transport in laser-produced gas-jet plasmas by high external magnetic fields. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves fields exceeding 10 T. Temporally resolved measurements of the electron temperature profile transverse to a high power laser beam were obtained using Thomson Scattering. A method for optimizing the solenoid design based on the available stored energy is presented.

  13. Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet

    SciTech Connect

    Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I.; Manuilov, V. N.; Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K.

    2006-01-03

    An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

  14. Development of SERS substrate using phage-based magnetic template for triplex assay in sepsis diagnosis.

    PubMed

    Nguyen, Anh H; Shin, Yesol; Sim, Sang Jun

    2016-11-15

    Development of a new substrate for surface-enhanced Raman scattering (SERS) is one area of interest for the improvement of SERS performance. Herein, we introduce a new method for developing new mesoporous SERS substrates using M13 phages that display cysteine-rich peptides on the pVIII major units, which is an alternative for thiol donor using chemical modifications. Together with the SERS substrate development, and the use of the SERS technique for sepsis diagnostics is a new approach in clinical settings. The substrates were characterized and magnetized with magnetic immuno colloids made of gold-coated magnetic nanoparticles and specific antibodies. Conventionally, the SERS-tags are prepared by using gold nanoparticles and are modified with Raman dyes to immobilize specific antibodies to capture the biomarkers in the serum samples. However, in this method the SERS-tags are bound to the mesoporous substrate via antibody/antigen interactions to form clusters or layer-by-layer assemblies of SERS-tags for Raman signal enhancement. The SERS spectra showed distinct peaks for tags corresponding to three typical sepsis-specific biomarkers for diagnostics with the limit of detection values of 27 pM, 103 pM, and 78 pM for C-reactive protein (CRP), procalcitonin (PCT), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), respectively. With such an approach, SERS can be used for clinical purposes and can be improved by phage display modification rather than chemical alternatives.

  15. Ontogeny of collective behavior reveals a simple attraction rule.

    PubMed

    Hinz, Robert C; de Polavieja, Gonzalo G

    2017-02-28

    The striking patterns of collective animal behavior, including ant trails, bird flocks, and fish schools, can result from local interactions among animals without centralized control. Several of these rules of interaction have been proposed, but it has proven difficult to discriminate which ones are implemented in nature. As a method to better discriminate among interaction rules, we propose to follow the slow birth of a rule of interaction during animal development. Specifically, we followed the development of zebrafish, Danio rerio, and found that larvae turn toward each other from 7 days postfertilization and increase the intensity of interactions until 3 weeks. This developmental dataset allows testing the parameter-free predictions of a simple rule in which animals attract each other part of the time, with attraction defined as turning toward another animal chosen at random. This rule makes each individual likely move to a high density of conspecifics, and moving groups naturally emerge. Development of attraction strength corresponds to an increase in the time spent in attraction behavior. Adults were found to follow the same attraction rule, suggesting a potential significance for adults of other species.

  16. Ontogeny of collective behavior reveals a simple attraction rule

    PubMed Central

    Hinz, Robert C.; de Polavieja, Gonzalo G.

    2017-01-01

    The striking patterns of collective animal behavior, including ant trails, bird flocks, and fish schools, can result from local interactions among animals without centralized control. Several of these rules of interaction have been proposed, but it has proven difficult to discriminate which ones are implemented in nature. As a method to better discriminate among interaction rules, we propose to follow the slow birth of a rule of interaction during animal development. Specifically, we followed the development of zebrafish, Danio rerio, and found that larvae turn toward each other from 7 days postfertilization and increase the intensity of interactions until 3 weeks. This developmental dataset allows testing the parameter-free predictions of a simple rule in which animals attract each other part of the time, with attraction defined as turning toward another animal chosen at random. This rule makes each individual likely move to a high density of conspecifics, and moving groups naturally emerge. Development of attraction strength corresponds to an increase in the time spent in attraction behavior. Adults were found to follow the same attraction rule, suggesting a potential significance for adults of other species. PMID:28193864

  17. Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field

    NASA Astrophysics Data System (ADS)

    Sharma, Shashi; Katiyar, V. K.; Singh, Uaday

    2015-04-01

    A mathematical model is developed to describe the trajectories of a cluster of magnetic nanoparticles in a blood vessel for the application of magnetic drug targeting (MDT). The magnetic nanoparticles are injected into a blood vessel upstream from a malignant tissue and are captured at the tumour site with help of an applied magnetic field. The applied field is produced by a rare earth cylindrical magnet positioned outside the body. All forces expected to significantly affect the transport of nanoparticles were incorporated, including magnetization force, drag force and buoyancy force. The results show that particles are slow down and captured under the influence of magnetic force, which is responsible to attract the magnetic particles towards the magnet. It is optimized that all particles are captured either before or at the centre of the magnet (z≤0) when blood vessel is very close proximity to the magnet (d=2.5 cm). However, as the distance between blood vessel and magnet (d) increases (above 4.5 cm), the magnetic nanoparticles particles become free and they flow away down the blood vessel. Further, the present model results are validated by the simulations performed using the finite element based COMSOL software.

  18. Develop and test an internally cooled, cabled superconductor (ICCS) for large scale MHD magnets

    SciTech Connect

    Marston, P.G.; Hale, J.R.; Dawson, A.M.

    1990-04-30

    The work conducted under DOE/PETC Contract DE-AC22-84PC70512 has included four principal tasks, (1) development of a Design Requirements Definition for a retrofit MHD magnet system, (2) analysis of an internally cooled, cabled superconductor (ICCS) to use in that design, (3) design of an experiment to test a subscale version of that conductor, which is a NbTi, copper stabilized superconductor, and (4) proof-of-concept testing of the conductor. The program was carried forth through the third task with very successful development and test of a conventional ICCS conductor with 27 multifilamentary copper-superconductor composite strands and a new concept conductor in which, in each triplet, two strands were pure copper and the third strand was a multifilamentary composite. In reviewing the magnet design and the premises for the conductor design it became obvious that, since the principal source of perturbation in MHD magnets derives from slippage between coils, or between turns in a coil, thereby producing frictional heat which must flow through the conductor sheath and the helium to the superconductor strands, an extra barrier might be highly effective in enhancing magnet stability and protection. This concept was developed and a sample conductor manufactured and tested in comparison with an identical conductor lacking such an additional barrier. Results of these conductor tests confirm the potential value of such a barrier. As the work of tasks 1 through 3 has been reported in detail in quarterly and semiannual reports, as well as in special reports prepared throughout the course of this project, this report reviews early work briefly and then discusses this last phase in great detail. 8 refs., 36 figs.

  19. May the Magnetic Force Be with You

    ERIC Educational Resources Information Center

    Wilcox, Jesse; Richey, Lindsey R.

    2012-01-01

    Although most elementary students have had experiences with magnets, they generally have misconceptions about magnetism (Driver et al. 1994; Burgoon, Heddle, and Duran 2010). For example, students may think magnets can attract all metals or that larger magnets are stronger than smaller magnets. Students often confuse magnets with magnetic…

  20. Serial dependence in the perception of attractiveness

    PubMed Central

    Xia, Ye; Leib, Allison Yamanashi; Whitney, David

    2016-01-01

    The perception of attractiveness is essential for choices of food, object, and mate preference. Like perception of other visual features, perception of attractiveness is stable despite constant changes of image properties due to factors like occlusion, visual noise, and eye movements. Recent results demonstrate that perception of low-level stimulus features and even more complex attributes like human identity are biased towards recent percepts. This effect is often called serial dependence. Some recent studies have suggested that serial dependence also exists for perceived facial attractiveness, though there is also concern that the reported effects are due to response bias. Here we used an attractiveness-rating task to test the existence of serial dependence in perceived facial attractiveness. Our results demonstrate that perceived face attractiveness was pulled by the attractiveness level of facial images encountered up to 6 s prior. This effect was not due to response bias and did not rely on the previous motor response. This perceptual pull increased as the difference in attractiveness between previous and current stimuli increased. Our results reconcile previously conflicting findings and extend previous work, demonstrating that sequential dependence in perception operates across different levels of visual analysis, even at the highest levels of perceptual interpretation. PMID:28006077

  1. Electron attraction mediated by Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.

    2016-07-01

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  2. Reciprocity of Interpersonal Attraction: A Confirmed Hypothesis.

    ERIC Educational Resources Information Center

    La Voie, Lawrence; Kenny, David A.

    An increase in reciprocity of interpersonal attraction during the early acquaintance period followed by continuing social reciprocity are propositions that are central principles of several social psychological viewpoints. However, there is little empirical evidence of increasing reciprocity of interpersonal attraction over time. Two potential…

  3. Electron attraction mediated by Coulomb repulsion.

    PubMed

    Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S

    2016-07-21

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  4. An innovative mosquito trap for testing attractants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe a simple trap modification for testing or using attractants to collect flying mosquitoes. The trap also can test the effectiveness of spatial repellents. The proposed design may facilitate standardized testing of mosquito attractants and repellents. The trap uses a standard Centers f...

  5. Aging and Attractiveness: Marriage Makes a Difference.

    ERIC Educational Resources Information Center

    Giesen, Carol Boellhoff

    1989-01-01

    Examined women's agreement with double standard of aging. Women (N=32) aged 28 to 63 shared definitions of attractiveness, femininity, and sexual appeal. Findings showed attractiveness was defined primarily by appearance, femininity by behavior and inferred traits, and sexual appeal by both. Found age differences among married women, but few age…

  6. Expression of Power and Heterosexual Attraction.

    ERIC Educational Resources Information Center

    DeBlasio, Cynthia L.; Ellyson, Steve L.

    Facial attractiveness has been the focus of considerable research in social psychology. Nonverbal behaviors emitted by the face may affect the perceived attractiveness of males and females differently. Visual behavior has particularly important functions in regulating social interaction and in establishing and conveying social power. Power and…

  7. Sexual Attractiveness of Males and Females.

    ERIC Educational Resources Information Center

    Taylor, Peggy; And Others

    The most important characteristics for females judging the attractiveness of males, and for males judging females, were eyes, body build and facial complexion. Previously, females tended to place less importance on physical components of attraction for both themselves and men. Possible interpretations are: (1) women have become more egalitarian…

  8. Brain Systems for Assessing Facial Attractiveness

    ERIC Educational Resources Information Center

    Winston, Joel S.; O'Doherty, John; Kilner, James M.; Perrett, David I.; Dolan, Raymond J.

    2007-01-01

    Attractiveness is a facial attribute that shapes human affiliative behaviours. In a previous study we reported a linear response to facial attractiveness in orbitofrontal cortex (OFC), a region involved in reward processing. There are strong theoretical grounds for the hypothesis that coding stimulus reward value also involves the amygdala. The…

  9. Development and fabrication of a chargeable magnet system for spacecraft control

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design of variable permanent magnets for use in magnetic balancing and control of earth orbiting spacecraft is discussed. These magnets can be used instead of air coils or electromagnets in applications where the objective is to produce, or eliminate, torque on the spacecraft through interaction with the earth's magnetic field. The configuration of the magnet for minimum size and weight is described.

  10. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  11. Visual perception of male body attractiveness.

    PubMed

    Fan, J; Dai, W; Liu, F; Wu, J

    2005-02-07

    Based on 69 scanned Chinese male subjects and 25 Caucasian male subjects, the present study showed that the volume height index (VHI) is the most important visual cue to male body attractiveness of young Chinese viewers among the many body parameters examined in the study. VHI alone can explain ca. 73% of the variance of male body attractiveness ratings. The effect of VHI can be fitted with two half bell-shaped exponential curves with an optimal VHI at 17.6 l m(-2) and 18.0 l m(-2) for female raters and male raters, respectively. In addition to VHI, other body parameters or ratios can have small, but significant effects on male body attractiveness. Body proportions associated with fitness will enhance male body attractiveness. It was also found that there is an optimal waist-to-hip ratio (WHR) at 0.8 and deviations from this optimal WHR reduce male body attractiveness.

  12. An Internet study of men sexually attracted to children: Sexual attraction patterns.

    PubMed

    Bailey, J Michael; Hsu, Kevin J; Bernhard, Paula A

    2016-10-01

    To our knowledge, this is the first large study of the attractions of child-attracted men recruited in any manner other than their being charged with legal offenses. We recruited 1,189 men from websites for adults attracted to children. Men in our sample were highly attracted to children, and they were much less attracted to adults, especially to adult men. However, men varied with respect to which combination of gender and age they found most attractive. Men in our sample were especially attracted to pubescent boys and prepubescent girls. Their self-reported attraction patterns closely tracked the age/gender gradient of sexual arousal established in prior research. Consistent with the gradient, men most attracted to prepubescent children were especially likely to have bisexual attractions to children. Pedohebephilia-attraction to sexually immature children-is best considered a collection of related if distinct sexual orientations, which vary in the particular combination of gender and sexual maturity that elicits greatest sexual attraction. Finally, our study reveals the potential power and efficiency of studying highly cooperative child-attracted men recruited via the Internet. (PsycINFO Database Record

  13. How facial attractiveness affects sustained attention.

    PubMed

    Li, Jie; Oksama, Lauri; Hyönä, Jukka

    2016-10-01

    The present study investigated whether and how facial attractiveness affects sustained attention. We adopted a multiple-identity tracking paradigm, using attractive and unattractive faces as stimuli. Participants were required to track moving target faces amid distractor faces and report the final location of each target. In Experiment 1, the attractive and unattractive faces differed in both the low-level properties (i.e., luminance, contrast, and color saturation) and high-level properties (i.e., physical beauty and age). The results showed that the attractiveness of both the target and distractor faces affected the tracking performance: The attractive target faces were tracked better than the unattractive target faces; when the targets and distractors were both unattractive male faces, the tracking performance was poorer than when they were of different attractiveness. In Experiment 2, the low-level properties of the facial images were equalized. The results showed that the attractive target faces were still tracked better than unattractive targets while the effects related to distractor attractiveness ceased to exist. Taken together, the results indicate that during attentional tracking the high-level properties related to the attractiveness of the target faces can be automatically processed, and then they can facilitate the sustained attention on the attractive targets, either with or without the supplement of low-level properties. On the other hand, only low-level properties of the distractor faces can be processed. When the distractors share similar low-level properties with the targets, they can be grouped together, so that it would be more difficult to sustain attention on the individual targets.

  14. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    SciTech Connect

    Lee, Hee Uk; Song, Yoon Seok; Park, Chulhwan; Kim, Seung Wook

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analyses using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.

  15. On the Development of a Magnetically Vectored Variable ISP Plasma Rocket

    NASA Technical Reports Server (NTRS)

    Feliciano, Enectali Figueroa; Diaz, Franklin R. Chang; Squire, Jared P.

    1997-01-01

    The development of a Magnetically Vectored Variable I(sub sp) Plasma Rocket at the Advanced Space Propulsion Laboratory (ASPL) is in progress at NASA's Johnson Space Center. The facility is using a small, 3.2 m tandem mirror device to study the application of RF heated magnetically contained plasmas for space propulsion. The central cell radius is 0.1 m and fields of 0.2 T and 2 T are possible in the central and end-cell mirror sections, respectively. A magnetoplasmadynamic (MPD) injector has just been acquired and will be used along with other methods of plasma refueling. A 1 MW magnet power supply upgrade is being developed with full implementation by the Spring of 1997. Two microwave systems for discharge initiation and plasma heating at 2.45 GHz and 14.0 GHz, respectively, are in operation. Additionally, RF systems with 200 kW and 1 MW of power are being modified and conditioned for operation. The concept provides electrode-less operation and variable thrush'specific impulse at constant power (200 -30 N /5000-30,000 seconds at 10 MW with a 60% efficiency). Optimization for speed or payload are possible with the same engine, giving the rocket great flexibility. Missions to Mars in 90 days are described, and missions to Pluto are under study.

  16. Three-Dimensional Magnetic Analysis Technique Developed for Evaluating Stirling Convertor Linear Alternators

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.

    2003-01-01

    The Department of Energy, the Stirling Technology Company (STC), and the NASA Glenn Research Center are developing Stirling convertors for Stirling radioisotope generators to provide electrical power for future NASA deep space missions. STC is developing the 55-We technology demonstration convertor (TDC) under contract to the Department of Energy. The Department of Energy recently named Lockheed Martin as the system integration contractor for the Stirling radioisotope generator development project. Lockheed Martin will develop the Stirling radioisotope generator engineering unit and has contract options to develop the qualification unit and the first flight unit. Glenn s role includes an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. As a part of this work, Glenn has established an in-house Stirling research laboratory for testing, analyzing, and evaluating Stirling machines. STC has built four 55-We convertors for NASA, and these are being tested at Glenn. A cross-sectional view of the 55-We TDC is shown in the figure. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. In support, Glenn has been developing finite element analysis and finite element method tools for performing various linear alternator thermal and electromagnetic analyses and evaluating design configurations. A three-dimensional magnetostatic finite element model of STC's 55-We TDC linear alternator was developed to evaluate the demagnetization fields affecting the alternator magnets. Since the actual linear alternator hardware is symmetric to the quarter section about the axis of motion, only a quarter section of the alternator was modeled. The components modeled included the mover laminations, the neodymium-iron-boron magnets, the stator laminations, and the copper coils. The

  17. Development of hybrid bearing system with thrust superconducting magnetic bearing and radial active electromagnetic bearing

    NASA Astrophysics Data System (ADS)

    Nicolsky, R.; Pereira, A. S.; de Andrade, R.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Ripper, A.; Gawalek, W.; Habisreuther, T.; Strasser, T.

    A superconducting/electromagnetic hybrid bearing system is currently under development and test. This system consists of a thrust superconducting magnetic bearing and a double radial active electromagnetic bearing/motor devices. The thrust bearing has been designed using NdFeB permanent magnets levitating on a set of superconducting monoliths of YBCO, prepared by top seeded melt texturing technique, which supports the weight of the rotor. The bearing/motor devices were conceived as 4-pole 2-phase induction machine using stator windings for delivering torque and radial positioning simultaneously. Using this superconducting axial bearing and the active bearings for the rotor radial positioning, a fully levitating vertical-shaft inductive machine has been tested. The tests were successful in reaching a controlled levitation up to 6,300 rpm.

  18. Development and application of setup for ac magnetic field in neutron scattering experiments.

    PubMed

    Klimko, Sergey; Zhernenkov, Kirill; Toperverg, Boris P; Zabel, Hartmut

    2010-10-01

    We report on a new setup developed for neutron scattering experiments in periodically alternating magnetic fields at the sample position. The assembly consisting of rf generator, amplifier, wide band transformer, and resonance circuit. It allows to generate homogeneous ac magnetic fields over a volume of a few cm(3) and variable within a wide range of amplitudes and frequencies. The applicability of the device is exemplified by ac polarized neutron reflectometry (PNR): a new method established to probe remagnetization kinetics in soft ferromagnetic films. Test experiments with iron films demonstrate that the ac field within the accessible range of frequencies and amplitudes produces a dramatic effect on the PNR signal. This shows that the relevant ac field parameters generated by the device match well with the scales involved in the remagnetization processes. Other possible applications of the rf unit are briefly discussed.

  19. Development of a high resolution alpha spectrometer using a magnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Yoon, W. S.; Kang, C. S.; Kim, S. R.; Kim, G. B.; Lee, H. J.; Lee, M. K.; Lee, J. H.; So, J. H.; Kim, Y. H.

    2015-06-01

    We have developed a high resolution alpha spectrometer with a magnetic calorimeter. The operating principle of the detector is the calorimetric measurement of the temperature increase from particle absorption in a gold foil absorber at milli-Kelvin temperatures. A magnetic calorimeter made of gold doped with erbium on a superconducting meander pickup coil was used to accurately measure the temperature change, thereby acting as an ultra-sensitive thermometer. The detector demonstrated 1.2 keV FWHM equivalent resolution in alpha particle detection with an 241Am source. Many peaks were observed in the low-energy region from the absorption of low-energy X-rays, gamma rays, and conversion electrons. An energy resolution of 400 eV FWHM was achieved for 60 keV gamma rays that were measured with the alpha particles. Possible applications of such high resolution detectors are discussed.

  20. Development of a magnetic vector potential profile measurement using a Heavy Ion Beam Probe

    NASA Astrophysics Data System (ADS)

    Fimognari, P. J.; Demers, D. R.; Crowley, T. P.

    2015-11-01

    Measurement of the plasma current density profile remains a fundamental need in toroidal confinement. Establishing this unique capability within the fusion program is invaluable to stability and transport studies. Inference of localized values of the magnetic vector potential, which will enable current density profile studies, can be accomplished through measurement of the toroidal velocity of secondary ions produced through electron-impact ionization of a heavy ion beam in an axisymmetric plasma. We are developing a specialized detector to measure particle velocity and the techniques necessary to unfold the magnetic vector potential profile, and hence the poloidal flux and current density profiles. Initial modeling of the velocity detector has been performed. Simulations are enabling estimation of anticipated sensitivity to, and resolution of, equilibrium and fluctuating quantities. Results of this work and forward looking plans will be presented. This work is supported by US DoE award no. DE-SC0006077.

  1. Development of a Low-Cost Ceramic Insulation Material for Magnet Applications

    NASA Astrophysics Data System (ADS)

    Stewart, M. W.; Hooker, M. W.; Fabian, P. E.; Codell, D. E.; Arzberger, S. C.; Grandlienard, S. D.; Kano, K. S.

    2006-03-01

    Future magnet designs for fusion devices and particle accelerators will require cost-effective, radiation-resistant materials. The use of hybrid inorganic/organic composite insulation systems will improve the lifetime, reliability, and performance of these systems. Previously, Composite Technology Development, Inc. (CTD) developed a highly-radiation-resistant, hybrid inorganic/organic insulation system, CTD-1012PX, which can be co-processed with the magnet's Nb3Sn superconductor. This process allows the coil to be wound and insulated prior to heat treatment. However, the cost of the CTD-1012PX insulation system is generally higher than organic insulations due to the higher prices of the ceramic fibers and ceramic-matrix precursor materials. Recently, CTD demonstrated the potential for significantly reducing the cost of hybrid ceramic/organic insulation through the development of a lower-cost inorganic-matrix system and the use of lower-cost reinforcement fibers. Without accounting for the cost of a yet-to-be-developed fiber/matrix interface material, the new insulation system costs approximately 16 percent of the currently used CTD-1012PX system. This paper summarizes an on-going effort to develop this new low-cost, hybrid inorganic/organic insulation system. The options evaluated for cost reduction, as well as mechanical test results showing the effects of these changes on the properties of the insulation system, are presented..

  2. X-rays and magnetism.

    PubMed

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  3. DEVELOPMENT OF S-BAND LOW-NOISE PERIODIC PERMANENT MAGNETIC TRAVELING-WAVE TUBE

    DTIC Science & Technology

    MICROWAVE AMPLIFIERS, *TRAVELING WAVE TUBES, ANODES, DESIGN, ELECTRON BEAMS, ELECTRON GUNS, FOCUSING , HELIXES, IMPEDANCE MATCHING, MAGNETIC FIELDS, MAGNETS, NOISE (RADIO), REDUCTION, S BAND, STANDING WAVE RATIOS

  4. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid.

    PubMed

    Shimada, Kunio; Saga, Norihiko

    2017-02-10

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  5. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    PubMed Central

    Shimada, Kunio; Saga, Norihiko

    2017-01-01

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement. PMID:28208625

  6. Facial attractiveness: beauty and the machine.

    PubMed

    Eisenthal, Yael; Dror, Gideon; Ruppin, Eytan

    2006-01-01

    This work presents a novel study of the notion of facial attractiveness in a machine learning context. To this end, we collected human beauty ratings for data sets of facial images and used various techniques for learning the attractiveness of a face. The trained predictor achieves a significant correlation of 0.65 with the average human ratings. The results clearly show that facial beauty is a universal concept that a machine can learn. Analysis of the accuracy of the beauty prediction machine as a function of the size of the training data indicates that a machine producing human-like attractiveness rating could be obtained given a moderately larger data set.

  7. Development and testing of a magnetic position sensor system for automotive and avionics applications

    NASA Astrophysics Data System (ADS)

    Jacobs, Bryan C.; Nelson, Carl V.

    2001-08-01

    A magnetic sensor system has been developed to measure the 3-D location and orientation of a rigid body relative to an array of magnetic dipole transmitters. A generalized solution to the measurement problem has been formulated, allowing the transmitter and receiver parameters (position, orientation, number, etc.) to be optimized for various applications. Additionally, the method of images has been used to mitigate the impact of metallic materials in close proximity to the sensor. The resulting system allows precise tracking of high-speed motion in confined metal environments. The sensor system was recently configured and tested as an abdomen displacement sensor for an automobile crash-test dummy. The test results indicate a positional accuracy of approximately 1 mm rms during 20 m/s motions. The dynamic test results also confirmed earlier covariance model predictions, which were used to optimize the sensor geometry. A covariance analysis was performed to evaluate the applicability of this magnetic position system for tracking a pilot's head motion inside an aircraft cockpit. Realistic design parameters indicate that a robust tracking system, consisting of lightweight pickup coils mounted on a pilot's helmet, and an array of transmitter coils distributed throughout a cockpit, is feasible. Recent test and covariance results are presented.

  8. Axial magnetic bearing development for the BiVACOR rotary BiVAD/TAH.

    PubMed

    Greatrex, Nicholas A; Timms, Daniel L; Kurita, Nobuyuki; Palmer, Edward W; Masuzawa, Toru

    2010-03-01

    A suspension system for the BiVACOR biventricular assist device (BiVAD) has been developed and tested. The device features two semi-open centrifugal impellers mounted on a common rotating hub. Flow balancing is achieved through the movement of the rotor in the axial direction. The rotor is suspended in the pump casings by an active magnetic suspension system in the axial direction and a passive hydrodynamic bearing in the radial direction. This paper investigates the axial movement capacity of the magnetic bearing system and the power consumption at various operating points. The force capacity of the passive hydrodynamic bearing is investigated using a viscous glycerol solution. Axial rotor movement in the range of +/-0.15 mm is confirmed and power consumption is under 15.5 W. The journal bearing is shown to stabilize the rotor in the radial direction at the required operating speed. Magnetic levitation is a viable suspension technique for the impeller of an artificial heart to improve device lifetime and reduce blood damage.

  9. The Development of a Noncontact Letter Input Interface “Fingual” Using Magnetic Dataset

    NASA Astrophysics Data System (ADS)

    Fukushima, Taishi; Miyazaki, Fumio; Nishikawa, Atsushi

    We have newly developed a noncontact letter input interface called “Fingual”. Fingual uses a glove mounted with inexpensive and small magnetic sensors. Using the glove, users can input letters to form the finger alphabets, a kind of sign language. The proposed method uses some dataset which consists of magnetic field and the corresponding letter information. In this paper, we show two recognition methods using the dataset. First method uses Euclidean norm, and second one additionally uses Gaussian function as a weighting function. Then we conducted verification experiments for the recognition rate of each method in two situations. One of the situations is that subjects used their own dataset; the other is that they used another person's dataset. As a result, the proposed method could recognize letters with a high rate in both situations, even though it is better to use their own dataset than to use another person's dataset. Though Fingual needs to collect magnetic dataset for each letter in advance, its feature is the ability to recognize letters without the complicated calculations such as inverse problems. This paper shows results of the recognition experiments, and shows the utility of the proposed system “Fingual”.

  10. Development of techniques in magnetic resonance and structural studies of the prion protein

    SciTech Connect

    Bitter, Hans-Marcus L.

    2000-07-01

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging

  11. Effect of magnetized extender on sperm membrane integrity and development of oocytes in vitro fertilized with liquid storage boar semen.

    PubMed

    Lee, Sang-Hee; Park, Choon-Keun

    2015-03-01

    The objective of this study was to evaluate the effect of a magnetized extender on sperm membrane damage and development of oocytes in vitro fertilized with liquid storage boar semen. Before semen dilution, extender was flowed through a neodymium magnet (0, 2000, 4000 and 6000G) for 5min and collected semen was preserved for 168h at 18°C. In results, plasma membrane integrity with live sperm was significantly higher in semen treated with extenders magnetized at 4000G than sperm treated with extenders magnetized at 0G during semen preservation for 120-168h (p<0.05). In addition, acrosomal membrane damage was significantly lower in semen treated with extenders magnetized at 4000 and 6000G compared to 0 and 2000G during semen preservation for 168h (p<0.05). And mitochondrial membrane damage with all sperm was significantly lower in semen treated with extenders magnetized at 2000G than other groups during semen preservation for 168h. The ability of semen to achieve successful in vitro fertilization was also not significantly different among the groups during preservation. However, when the semen was preserved for 168h, the blastocyst formation rates were significantly higher at 6000G compared to 0 and 2000G (p<0.05). In conclusion, these results suggest that highly magnetized semen extender could protect the sperm membrane from damage, and improve the ability of rates of in vitro blastocyst development and magnetized semen diluter is beneficial for long liquid preservation of boar semen.

  12. The Influence of Workplace Attraction on Recruitment and Retention

    ERIC Educational Resources Information Center

    Amundson, Norman E.

    2007-01-01

    Economic changes have made the topics of recruitment and retention key issues for career development and human resource professionals. In this article, a model of workplace attraction is presented as 1 way of better understanding the match between workers and workplaces. Many contextual variables such as age, culture, and gender influence the…

  13. Infant Preferences for Attractive Faces: A Cognitive Explanation.

    ERIC Educational Resources Information Center

    Rubenstein, Adam J.; Kalakanis, Lisa; Langlois, Judith H.

    1999-01-01

    Four studies assessed a cognitive explanation for development of infants' preference for attractive faces: cognitive averaging and preferences for mathematically averaged faces, or prototypes. Findings indicated that adults and 6-month olds prefer prototypical, mathematically averaged faces and that 6-month olds can abstract the central tendency…

  14. Magnetic forces produced by rectangular permanent magnets in static microsystems.

    PubMed

    Gassner, Anne-Laure; Abonnenc, Mélanie; Chen, Hong-Xu; Morandini, Jacques; Josserand, Jacques; Rossier, Joel S; Busnel, Jean-Marc; Girault, Hubert H

    2009-08-21

    Finite element numerical simulations were carried out in 2D geometries to map the magnetic field and force distribution produced by rectangular permanent magnets as a function of their size and position with respect to a microchannel. A single magnet, two magnets placed in attraction and in repulsion have been considered. The goal of this work is to show where magnetic beads are preferentially captured in a microchannel. These simulations were qualitatively corroborated, in one geometrical case, by microscopic visualizations of magnetic bead plug formation in a capillary. The results show that the number of plugs is configuration dependent with: in attraction, one plug in the middle of the magnets; in repulsion, two plugs near the edges of the magnets; and with a single magnet, a plug close to the center of the magnet. The geometry of the magnets (h and l are the height and length of the magnets respectively) and their relative spacing s has a significant impact on the magnetic flux density. Its value inside a magnet increases with the h/l ratio. Consequently, bar magnets produce larger and more uniform values than flat magnets. The l/s ratio also influences the magnetic force value in the microchannel, both increasing concomitantly for all the configurations. In addition, a zero force zone in the middle appears in the attraction configuration as the l/s ratio increases, while with a single magnet, the number of maxima and minima goes from one to two, producing two focusing zones instead of only one.

  15. Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors.

    PubMed

    Higashiyama, Tetsuya; Yang, Wei-Cai

    2017-01-01

    Pollen tube guidance in flowering plants is a unique and critical process for successful sexual reproduction. The pollen tube that grows from pollen, which is the male gametophyte, precisely navigates to the embryo sac, which is the female gametophyte, within the pistil. Recent advances have clarified the molecular framework of gametophytic pollen tube guidance. Multiple species-specific attractant peptides are secreted from synergid cells, the proper development and function of which are regulated by female gametes. Multiple receptor-like kinases on the pollen tube tip are involved in sensing species-specific attractant peptides. In this Update article, recent progress in our understanding of the mechanism of gametophytic pollen tube guidance is reviewed, including attraction by synergid cells, control of pollen tube guidance by female gametes, and directional growth of the pollen tube by directional cue sensing. Future directions in the study of pollen tube guidance also are discussed.

  16. Development of a multilayered polymeric DNA biosensor using radio frequency technology with gold and magnetic nanoparticles.

    PubMed

    Yang, Cheng-Hao; Kuo, Long-Sheng; Chen, Ping-Hei; Yang, Chii-Rong; Tsai, Zuo-Min

    2012-01-15

    This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures.

  17. Development of advanced magnetic resonance sensor for industrial applications. Final report

    SciTech Connect

    De Los Santos, A.

    1997-06-01

    Southwest Research Institute (SwRI) and various subcontractors, in a cooperative agreement with the DOE, have developed and tested an advanced magnetic resonance (MR) sensor for several industrial applications and made various market surveys. The original goal of the program was to develop an advanced moisture sensor to allow more precise and rapid control of drying processes so that energy and/or product would not be wasted. Over the course of the program, it was shown that energy savings were achievable but in many processes the return in investment did not justify the cost of a magnetic resonance sensor. However, in many processes, particularly chemical, petrochemical, paper and others, the return in investment can be very high as to easily justify the cost of a magnetic resonance sensor. In these industries, substantial improvements in product yield, quality, and efficiency in production can cause substantial energy savings and reductions in product wastage with substantial environmental effects. The initial applications selected for this program included measurement of corn gluten at three different points and corn germ at one point in an American Maize corn processing plant. During the initial phases (I and II) of this program, SwRI developed a prototype advanced moisture sensor utilizing NMR technology capable of accurately and reliably measuring moisture in industrial applications and tested the sensor in the laboratory under conditions simulating on-line products in the corn wet milling industry. The objective of Phase III was to test the prototype sensor in the plant environment to determine robustness, reliability and long term stability. Meeting these objectives would permit extended field testing to improve the statistical database used to calibrate the sensor and subject the sensor to true variations in operating conditions encountered in the process rather than those which could only be simulated in the laboratory.

  18. Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt

    NASA Astrophysics Data System (ADS)

    Cervi, Eduardo Cimino; da Costa, Antonio Carlos Saraiva; de Souza Junior, Ivan Granemann

    2014-12-01

    Topsoil magnetic susceptibility (κ) is a fast and convenient method used to detect potentially polluted areas by heavy metals. Topsoil measurements are carried out in situ with Bartington MS2D loop sensor, designed to measure the magnetic susceptibility of top 10 cm of soil and detect 90% of the total signal from a depth of 6 cm. However, soils developed on basalt are difficult to assess due to their large amounts of ferrimagnetic minerals. The aim of this study was evaluate the applicability of κ to discriminate anthropogenic/lithogenic environments characterized by different parent materials in the city of Maringá/Brazil. In this paper, topsoil susceptibility (κ) was measured in 66 urban soils using a Bartington MS2D loop sensor. To investigate the magnetic background levels, samples of a Rhodic Ferralsol profile were measured using a laboratory MS2B sensor. X-ray diffractometry (XRD) analysis was carried out to verify the mineralogical composition of the different lithology. Cu, Fe, Ni, Mn, Pb and Zn concentrations were measured in 29 topsoil samples. The κ values ranged from 316 × 10- 5 SI in a sandstone region to 6,945 × 10- 5 SI in soils developed on basalt. The χfd values of urban topsoil varied from 2% to 11.3%. Lower values of κ and χfd in the sandstone region indicated that the lithogenic contribution is of primary significance. Significant positive correlations between κ and Cu, Fe and Mn are related to the parent material, enriched in iron oxides, as verified by XRD. The background values (mean of 4,235 × 10- 8 m3 kg- 1) were higher in subsoil, suggesting the inexistence of anthropogenic pollution. The topsoil susceptibility was efficient for distinguish different lithogenic environments. Although anthropogenic pollution in soils developed on basalt is difficult to assess due to the high natural background, our results suggest that heavy metal contents are not related to the human activity.

  19. Attracting and retaining nurses in HIV care.

    PubMed

    Puplampu, Gideon L; Olson, Karin; Ogilvie, Linda; Mayan, Maria

    2014-01-01

    Attracting and retaining nurses in HIV care is essential to treatment success, preventing the spread of HIV, slowing its progression, and improving the quality of life of people living with HIV. Despite the wealth of studies examining HIV care, few have focused on the factors that influenced nurses' choices to specialize in HIV care. We examined the factors that attracted and retained eight nurses currently working in HIV care in two large Canadian cities. Participants were primarily women between the ages of 20 and 60 years. Interviews were conducted between November 2010 and September 2011 using interpretive description, a qualitative design. Factors that influenced participants to focus their careers in HIV care included both attracting factors and retaining factors. Although more research is needed, this exploration of attracting and retaining factors may motivate others to specialize in HIV nursing, and thus help to promote adequate support for individuals suffering from the disease.

  20. Electrostatic attraction between overall neutral surfaces.

    PubMed

    Adar, Ram M; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.

  1. Young Children's Stereotyping of Facial Attractiveness

    ERIC Educational Resources Information Center

    Dion, Karen K.

    1973-01-01

    When shown photographs, young children preferred children with attractive faces as potential friends, and attributed prosocial behaviors to them. They disliked unattractive faces and attributed antisocial behaviors to them. (ST)

  2. Does being attractive always help? Positive and negative effects of attractiveness on social decision making.

    PubMed

    Agthe, Maria; Spörrle, Matthias; Maner, Jon K

    2011-08-01

    Previous studies of organizational decision making demonstrate an abundance of positive biases directed toward highly attractive individuals. The current research, in contrast, suggests that when the person being evaluated is of the same sex as the evaluator, attractiveness hurts, rather than helps. Three experiments assessing evaluations of potential job candidates (Studies 1 and 3) and university applicants (Study 2) demonstrated positive biases toward highly attractive other-sex targets but negative biases toward highly attractive same-sex targets. This pattern was mediated by variability in participants' desire to interact with versus avoid the target individual (Studies 1 and 2) and was moderated by participants' level of self-esteem (Study 3); the derogation of attractive same-sex targets was not observed among people with high self-esteem. Findings demonstrate an important exception to the positive effects of attractiveness in organizational settings and suggest that negative responses to attractive same-sex targets stem from perceptions of self-threat.

  3. Development of a Gas Filled Magnet spectrometer within the FIPPS project

    NASA Astrophysics Data System (ADS)

    Chebboubi, A.; Kessedjian, G.; Faust, H.; Blanc, A.; Jentschel, M.; Köster, U.; Materna, T.; Méplan, O.; Sage, C.; Serot, O.

    2016-06-01

    The Fission Product Prompt γ -ray Spectrometer, FIPPS, is under development to enable prompt γ -ray spectroscopy correlated with fission fragment identification. This will open new possibilities in the study of fission and of nuclear structure of neutron rich nuclei. FIPPS will consist of an array of γ and neutron detectors coupled with a fission fragment filter. The chosen solution for the filter is a Gas Filled Magnet (GFM). Both experimental and modeling work was performed in order to extract the key parameters of such a device and design the future GFM of the FIPPS project. Experiments performed with a GFM behind the LOHENGRIN spectrometer demonstrated the capability of additional beam purification.

  4. Development of a Flat-plate Cryogenic Oscillating Heat Pipe for Improving HTS Magnet Cooling

    NASA Astrophysics Data System (ADS)

    Natsume, K.; Mito, T.; Yanagi, N.; Tamura, H.

    A new method of including cryogenic oscillating heat pipes (OHPs) in the HTS coil windings as a thermal transport device has been studied. In this work, two type of OHPs are tested in low temperature. Employed working fluids are H2, Ne, N2. We have attained high performance thermal property using a bent-pipe cryogenic OHP as a prototype. Obtained effective conductivities have reached to 46000 W/m K. Then a flat-plate cryogenic OHP has been developed, that is suitable for imbedding in magnet windings. Preliminary experiments have been conducted and the result has been promising.

  5. Development of Novel Magnetic Metal Oxide Thin Films and Carbon Nanotube Materials for Potential Device Applications

    DTIC Science & Technology

    2016-05-09

    spin spring materials .”To study this possibility, we extended our investigation to the synthesis of CoFe2O4/CoFe2/CoFe2O4 trilayers under different...09-05-2016 18-May-2011 17-May-2014 Final Report: Development of Novel Magnetic Metal Oxide Thin Films and Carbon Nanotube Materials for Potential...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Nanomagnetics, carbon nanotubes, multilayer materials , spin

  6. Development and field trial of a FBG-based magnetic sensor for large hydrogenerators

    NASA Astrophysics Data System (ADS)

    Fracarolli, João. P. V.; Rosolem, João. B.; Tomiyama, Elias K.; Floridia, Claudio; Penze, Rivael S.; Peres, Rodrigo; Dini, Danilo C.; Hortencio, Claudio A.; Dilli, Paulo I. G.; da Silva, Erlon V.; dos Santos, Marcéu. C.; Fruett, Fabiano

    2016-05-01

    We propose a passive optical sensor for online magnetic field monitoring in large hydrogenerators, based on FBG (Fiber Bragg Grating) technology and a magnestostrictive material (Terfenol-D). The objective of this sensor is to detect faults in the rotor windings due to inter turn short-circuits. This device is packaged in a novel rod-shaped enclosure, allowing it to be easily installed on the ventilation ducts of the stator of the machine. This sensor was developed and tested in laboratory and it has been evaluated in a field test on a 200 MVA, 60 poles hydrogenerator.

  7. Development of Rutherford-type cables for high field accelerator magnets at Fermilab

    SciTech Connect

    Andreev, N.; Barzi, E.; Borissov, E.; Elementi, L.; Kashikhin, V.S.; Lombardo, V.; Rusy, A.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2006-08-01

    Fermilab's cabling facility has been upgraded to a maximum capability of 42 strands. This facility is being used to study the effect of cabling on the performance of the various strands, and for the development and fabrication of cables in support of the ongoing magnet R&D programs. Rutherford cables of various geometries, packing factors, with and without a stainless steel core, were fabricated out of Cu alloys, NbTi, Nb{sub 3}Al, and various Nb{sub 3}Sn strands. The parameters of the upgraded cabling machine and results of cable R&D efforts at Fermilab are reported.

  8. Mammalian social odours: attraction and individual recognition

    PubMed Central

    Brennan, Peter A; Kendrick, Keith M

    2006-01-01

    Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent–offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory

  9. Defining the brain systems of lust, romantic attraction, and attachment.

    PubMed

    Fisher, Helen E; Aron, Arthur; Mashek, Debra; Li, Haifang; Brown, Lucy L

    2002-10-01

    Mammals and birds have evolved three primary, discrete, interrelated emotion-motivation systems in the brain for mating, reproduction, and parenting: lust, attraction, and male-female attachment. Each emotion-motivation system is associated with a specific constellation of neural correlates and a distinct behavioral repertoire. Lust evolved to initiate the mating process with any appropriate partner; attraction evolved to enable individuals to choose among and prefer specific mating partners, thereby conserving their mating time and energy; male-female attachment evolved to enable individuals to cooperate with a reproductive mate until species-specific parental duties have been completed. The evolution of these three emotion-motivation systems contribute to contemporary patterns of marriage, adultery, divorce, remarriage, stalking, homicide and other crimes of passion, and clinical depression due to romantic rejection. This article defines these three emotion-motivation systems. Then it discusses an ongoing project using functional magnetic resonance imaging of the brain to investigate the neural circuits associated with one of these emotion-motivation systems, romantic attraction.

  10. Electronic Phase Exhibits Attraction Between Like Net Charges

    NASA Astrophysics Data System (ADS)

    Manz, Thomas

    A new electronic phase transition was observed in thin plastic films metallized with gold, optionally with an additional layer of aluminum metallization. This phase transition occurred only when the dielectric layers of two metallized films faced each other. When charged to high voltage magnitudes and then grounded, an electronic phase transition occurred during the discharge step that led to a strong attraction between the paired metallized films, even though the films carried like net charges. The resulting electronic phase (and its attractive force) persisted for several days with no apparent decay at ambient temperatures (c. 25 C). After rotating the films along an axis not parallel to the films, the magnetic field due to rotational motion of the charge carriers relative to the thin films persisted for seconds before dissipation. This demonstrates free current lifetimes lasting seconds. Computations and experiments were performed that show the underlying mechanism for the attraction of like net charges is scattering of electromagnetic waves by an electric field cusp at the charged interfaces. Scattering theory calculations reveal this scattering should be most prevalent in the infrared and microwave regions. This has potential applications for shielding electronic circuits from electromagnetic noise at these wavelengths.

  11. Malaria Mosquitoes Attracted by Fatal Fungus

    PubMed Central

    George, Justin; Jenkins, Nina E.; Blanford, Simon; Thomas, Matthew B.; Baker, Thomas C.

    2013-01-01

    Insect-killing fungi such as Beauveria bassiana are being evaluated as possible active ingredients for use in novel biopesticides against mosquito vectors that transmit malaria. Fungal pathogens infect through contact and so applications of spores to surfaces such as walls, nets, or other resting sites provide possible routes to infect mosquitoes in and around domestic dwellings. However, some insects can detect and actively avoid fungal spores to reduce infection risk. If true for mosquitoes, such behavior could render the biopesticide approach ineffective. Here we find that the spores of B. bassiana are highly attractive to females of Anopheles stephensi, a major anopheline mosquito vector of human malaria in Asia. We further find that An. stephensi females are preferentially attracted to dead and dying caterpillars infected with B. bassiana, landing on them and subsequently becoming infected with the fungus. Females are also preferentially attracted to cloth sprayed with oil-formulated B. bassiana spores, with 95% of the attracted females becoming infected after a one-minute visit on the cloth. This is the first report of an insect being attracted to a lethal fungal pathogen. The exact mechanisms involved in this behavior remain unclear. Nonetheless, our results indicate that biopesticidal formulations comprising B. bassiana spores will be conducive to attraction and on-source visitation by malaria vectors. PMID:23658757

  12. Ailing Voters Advance Attractive Congressional Candidates

    PubMed Central

    Franklin, Robert G.; Palumbo, Rocco

    2015-01-01

    Among many benefits of facial attractiveness, there is evidence that more attractive politicians are more likely to be elected. Recent research found this effect to be most pronounced in congressional districts with high disease threat—a result attributed to an adaptive disease avoidance mechanism, whereby the association of low attractiveness with poor health is particularly worrisome to voters who feel vulnerable to disease. We provided a more direct test of this explanation by examining the effects of individuals’ own health and age. Supporting a disease avoidance mechanism, less healthy participants showed a stronger preference for more attractive contenders in U.S. Senate races than their healthier peers, and this effect was stronger for older participants, who were generally less healthy than younger participants. Stronger effects of health for older participants partly reflected the absence of positive bias toward attractive candidates among the healthiest, suggesting that healthy older adults may be unconcerned about disease threat or sufficiently wise to ignore attractiveness. PMID:25562113

  13. Social attraction mediated by fruit flies' microbiome.

    PubMed

    Venu, Isvarya; Durisko, Zachary; Xu, Jianping; Dukas, Reuven

    2014-04-15

    Larval and adult fruit flies are attracted to volatiles emanating from food substrates that have been occupied by larvae. We tested whether such volatiles are emitted by the larval gut bacteria by conducting tests under bacteria-free (axenic) conditions. We also tested attraction to two bacteria species, Lactobacillus brevis, which we cultured from larvae in our lab, and L. plantarum, a common constituent of fruit flies' microbiome in other laboratory populations and in wild fruit flies. Neither larvae nor adults showed attraction to axenic food that had been occupied by axenic larvae, but both showed the previously reported attraction to standard food that had been occupied by larvae with an intact microbiome. Larvae also showed significant attraction to volatiles from axenic food and larvae to which we added only either L. brevis or L. plantarum, and volatiles from L. brevis reared on its optimal growth medium. Controlled learning experiments indicated that larvae experienced with both standard and axenic used food do not perceive either as superior, while focal larvae experienced with simulated used food, which contains burrows, perceive it as superior to unused food. Our results suggest that flies rely on microbiome-derived volatiles for long-distance attraction to suitable food patches. Under natural settings, fruits often contain harmful fungi and bacteria, and both L. brevis and L. plantarum produce compounds that suppress the growth of some antagonistic fungi and bacteria. The larval microbiome volatiles may therefore lead prospective fruit flies towards substrates with a hospitable microbial environment.

  14. N-butyl sulfide as an attractant and co-attractant for male and female codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research to discover and develop attractants for the codling moth (CM), Cydia pomonella L., has involved identification of the chemicals eliciting moth orientation to conspecific female moths, host fruits, fermented baits, and species of microbes. Pear eester, acetic acid, and N-butyl sulfide are am...

  15. The odorous attractant of the American cockroach, Periplaneta americana (L.). II. A bioassay method for the attractant.

    PubMed

    WHARTON, D R; MILLER, G L; WHARTON, M L

    1954-03-01

    A method has been developed for the assay of the odorous attractant of the cockroach, P. americana. The method, called the counterpoint test, employs two matched groups of roaches and provides for a simultaneous titration of standard and unknown. It has a statistical error of +/-40 per cent at a level of significance of 95 per cent.

  16. Development of Permanent Magnet Reluctance Motor Suitable for Variable-Speed Drive for Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu

    Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.

  17. Hinode Observation of Photospheric Magnetic Activities Triggering X-ray Microflares Around a Well-developed Sunspot

    NASA Astrophysics Data System (ADS)

    Kano, R.; Shimizu, T.; Tarbell, T. D.

    2010-09-01

    Microflares, which are small energetic events in the solar corona, are an example of dynamical phenomena suitable for understanding energy release processes in the solar corona. We identified 55 microflares around a well-developed sunspot surrounded by a moat with high-cadence X-ray images from the Hinode X-ray Telescope, and searched for their photospheric counterparts in line-of-sight magnetograms taken with the Hinode Solar Optical Telescope. We found opposite magnetic polarities encountering each other around the footpoints of 28 microflares, while we could not find such encounters around the footpoints of the other 27 microflares. Emerging magnetic fluxes in the moat were the dominant origin causing the encounters of opposite polarities (21 of 28 events). Unipolar moving magnetic features (MMFs) with negative polarities the same as the sunspot definitely caused the encounters of opposite polarities for five microflares. The decrease of magnetic flux, i.e., magnetic flux cancellation, was confirmed at the encountering site in typical examples of microflares. Microflares were not isotropically distributed around the spot; the microflares with emerging magnetic fluxes (EMFs) were observed in the direction where magnetic islands with the same polarity as the spot were located at the outer boundary of the moat, while the microflares with negative MMFs were observed in the direction where magnetic islands with polarity opposite to the spot were located at the outer boundary of the moat. We also found that EMFs in the moat had a unique orientation in which those with the same polarity as the spot is closer to the spot than the other one that had the opposite polarity to the spot. These observational results lead to two magnetic configurations including magnetic reconnection for triggering energy release at least in half of the microflares around the spot, and suggest that the global magnetic structures around the spot strongly affect what kinds of polarity encounters

  18. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.

  19. The 17 March 2015 storm: the associated magnetic flux rope structure and the storm development

    NASA Astrophysics Data System (ADS)

    Marubashi, Katsuhide; Cho, Kyung-Suk; Kim, Rok-Soon; Kim, Sujin; Park, Sung-Hong; Ishibashi, Hiromitsu

    2016-11-01

    The objective of this study is (1) to determine the magnetic cloud (MC) structure associated with the 17 March 2015 storm and (2) to gain an insight into how the storm developed responding to the solar wind conditions. First, we search MC geometries which can explain the observed solar wind magnetic fields by fitting to both cylindrical and toroidal flux rope models. Then, we examine how the resultant MC geometries can be connected to the solar source region to find out the most plausible model for the observed MC. We conclude that the observations are most consistently explained by a toroidal flux rope with the torus plane nearly parallel to the ecliptic plane. It is emphasized that the observations are characterized by the peculiar spacecraft crossing through the MC, in that the magnetic fields to be observed are southward throughout the passage. For understanding of the storm development, we first estimate the injection rate of the storm ring current from the observed Dst variation. Then, we derive an expression to calculate the estimated injection rate from the observed solar wind variations. The point of the method is to evaluate the injection rate by the convolution of the dawn-to-dusk electric field in the solar wind and a response function. By using the optimum response function thus determined, we obtain a modeled Dst variation from the solar wind data, which is in good agreement with the observed Dst variation. The agreement supports the validity of our method to derive an expression for the ring current injection rate as a function of the solar wind variation.[Figure not available: see fulltext.

  20. [Recent progress in nuclear magnetic resonance spectrum for drug research and development].

    PubMed

    Zhong, Jun; Jiang, Xue-mei

    2015-01-01

    In the process of modern drug research, the new methods and technologies which can detect drug molecules' chemical composition, structure and interaction with biomolecules are always the key scientific problems people care about. Spectra (including IR, UV and NMR) are the most common analytical methods, of which NMR can obtain detailed parameter about the nucleus of organic molecules through researching the laws of nuclear transition in the impact of surrounding chemical environment. The parameter contains rich information about the chemical composition, structure and interaction with other molecules of organic molecules. In many complex environments, such as liquid, solid or gas state, even biological in situ environment, NMR can provide molecules' chemical composition, atomic-resolution three-dimensional structure, information of interaction with each other and dynamic process, especially the information about drug interacting with biomacromolecules. In recent years, the applications of nuclear magnetic resonance spectrum in drug research and development are more and more widespread. This paper reviewed its recent progress in structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in drug research and development. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in drug research. In the second part, we explained the basic principles briefly and summarized progress in methods and techniques for drug research. In the third part, we discussed applications of nuclear magnetic resonance ir structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in detail. The conclusions were stated in the last part.

  1. Development of a novel shape memory alloy-actuated resettable locking device for magnetic bearing reaction wheel

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyong; Yan, Xiaojun; Zhang, Shaowei; Nie, Jingxu

    2014-01-01

    The current investigation proposes a shape memory alloy (SMA)-actuated resettable locking device for magnetic bearing reaction wheel. The device employed two SMA wire-based actuators to realize locking and unlocking. Dual-slope mating surfaces were used on one hand to transmit the motion between a moving part and a clamp, and on the other hand to achieve a self-locking linkage in the locking state. Moreover, geometric parameters of the two SMA wires and corresponding bias springs were also designed. Based on the proposed design scheme, four locking devices were manufactured and assembled. Performance and environmental tests were performed to verify the proposed locking device. Test results show that the locking device can protect the magnetic bearing reaction wheel from launch vibration damage, and can withstand the thermal environment in the launch and on-orbit stage. Moreover, the device can be successfully operated for 76 times, and the response time for the locking and unlocking processes under 7 V power supply is 0.9 s and 5.6 s, respectively. Considering the results obtained from these tests, we conclude that the proposed resettable locking device is an attractive alternative technology to conventional motor-driven or pyrotechnics-based technologies, and can be applied reliably in the magnetic bearing reaction wheel.

  2. Development of a novel shape memory alloy-actuated resettable locking device for magnetic bearing reaction wheel.

    PubMed

    Zhang, Xiaoyong; Yan, Xiaojun; Zhang, Shaowei; Nie, Jingxu

    2014-01-01

    The current investigation proposes a shape memory alloy (SMA)-actuated resettable locking device for magnetic bearing reaction wheel. The device employed two SMA wire-based actuators to realize locking and unlocking. Dual-slope mating surfaces were used on one hand to transmit the motion between a moving part and a clamp, and on the other hand to achieve a self-locking linkage in the locking state. Moreover, geometric parameters of the two SMA wires and corresponding bias springs were also designed. Based on the proposed design scheme, four locking devices were manufactured and assembled. Performance and environmental tests were performed to verify the proposed locking device. Test results show that the locking device can protect the magnetic bearing reaction wheel from launch vibration damage, and can withstand the thermal environment in the launch and on-orbit stage. Moreover, the device can be successfully operated for 76 times, and the response time for the locking and unlocking processes under 7 V power supply is 0.9 s and 5.6 s, respectively. Considering the results obtained from these tests, we conclude that the proposed resettable locking device is an attractive alternative technology to conventional motor-driven or pyrotechnics-based technologies, and can be applied reliably in the magnetic bearing reaction wheel.

  3. Unconscious processing of facial attractiveness: invisible attractive faces orient visual attention.

    PubMed

    Hung, Shao-Min; Nieh, Chih-Hsuan; Hsieh, Po-Jang

    2016-11-16

    Past research has proven human's extraordinary ability to extract information from a face in the blink of an eye, including its emotion, gaze direction, and attractiveness. However, it remains elusive whether facial attractiveness can be processed and influences our behaviors in the complete absence of conscious awareness. Here we demonstrate unconscious processing of facial attractiveness with three distinct approaches. In Experiment 1, the time taken for faces to break interocular suppression was measured. The results showed that attractive faces enjoyed the privilege of breaking suppression and reaching consciousness earlier. In Experiment 2, we further showed that attractive faces had lower visibility thresholds, again suggesting that facial attractiveness could be processed more easily to reach consciousness. Crucially, in Experiment 3, a significant decrease of accuracy on an orientation discrimination task subsequent to an invisible attractive face showed that attractive faces, albeit suppressed and invisible, still exerted an effect by orienting attention. Taken together, for the first time, we show that facial attractiveness can be processed in the complete absence of consciousness, and an unconscious attractive face is still capable of directing our attention.

  4. Unconscious processing of facial attractiveness: invisible attractive faces orient visual attention

    PubMed Central

    Hung, Shao-Min; Nieh, Chih-Hsuan; Hsieh, Po-Jang

    2016-01-01

    Past research has proven human’s extraordinary ability to extract information from a face in the blink of an eye, including its emotion, gaze direction, and attractiveness. However, it remains elusive whether facial attractiveness can be processed and influences our behaviors in the complete absence of conscious awareness. Here we demonstrate unconscious processing of facial attractiveness with three distinct approaches. In Experiment 1, the time taken for faces to break interocular suppression was measured. The results showed that attractive faces enjoyed the privilege of breaking suppression and reaching consciousness earlier. In Experiment 2, we further showed that attractive faces had lower visibility thresholds, again suggesting that facial attractiveness could be processed more easily to reach consciousness. Crucially, in Experiment 3, a significant decrease of accuracy on an orientation discrimination task subsequent to an invisible attractive face showed that attractive faces, albeit suppressed and invisible, still exerted an effect by orienting attention. Taken together, for the first time, we show that facial attractiveness can be processed in the complete absence of consciousness, and an unconscious attractive face is still capable of directing our attention. PMID:27848992

  5. Gravitational mass attraction measurement for drag-free references

    NASA Astrophysics Data System (ADS)

    Swank, Aaron J.

    this research is therefore to develop the necessary equations for the gravitational mass attraction force and gradients between two general distributed bodies. Assuming the drag-free reference mass to be a single point mass object is no longer necessary for the gravitational attraction calculations. Furthermore, the developed equations are coupled with physical measurements in order to eliminate the mass attraction uncertainty associated with mass properties. The mass attraction formula through a second order expansion consists of the measurable quantifies of mass, mass center, and moment of inertia about the mass center. Thus, the gravitational self-attraction force on the drag free reference due to the satellite can be indirectly measured. By incorporating physical measurements into the mass attraction calculation, the uncertainty in the density distribution as well as geometrical variations due to the manufacturing process are included in the analysis. For indirect gravitational mass attraction measurements, the corresponding properties of mass, mass center, and moment of inertia must be precisely determined for the proof mass and satellite components. This work focuses on the precision measurement of the moment of inertia for the drag-free test mass. Presented here is the design of a new moment of inertia measurement apparatus utilizing a five-wire torsion pendulum design. The torsion pendulum is utilized to measure the moment of inertia tensor for a prospective drag-free test mass geometry. The measurement results presented indicate the prototype five-wire torsion has matched current state of the art precision. With only minimal work to reduce laboratory environmental disturbances, the apparatus has the prospect of exceeding state of the art precision by almost an order of magnitude. In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center to a level better than typical measurement devices. Although the

  6. Magnetic susceptibility measurements as proxy method to monitor soil pollution: development of experimental protocols for field surveys.

    PubMed

    D'Emilio, Mariagrazia; Chianese, Domenico; Coppola, Rosa; Macchiato, Maria; Ragosta, Maria

    2007-02-01

    In the framework of the development of new methods for measuring and monitoring soil pollution, this paper deals with the use of magnetic methodologies to monitor the heavy metals presence in soils. In particular it shows a procedure for collecting magnetic susceptibility measurements in order to interpret them as proxy variable for monitoring heavy metals in soils. Magnetic measurements are carried out using a magnetic susceptibility meter with two different probes for in situ field surveys. The experimental procedure is divided in two parts. In the first part we carry out laboratory tests aimed to evaluate, for both the probes, the effective investigation depth for soil, the measurement reproducibility under different conditions, and the influence of water content. We complete this part comparing in situ measurements obtained by means of two probes with different characteristics. In the second part we carry out tests to evaluate the relationships between heavy metal levels and magnetic susceptibility values of soil samples. We investigate the variability of the magnetic susceptibility measurements contaminating different soil samples with well known concentration of heavy metals. Moreover we study the correlation between magnetic susceptibility values and metal concentrations, determined by means of AAS, in soil samples collected during a field survey. Results suggest that a careful check of the experimental procedure play a crucial role for using magnetic susceptibility measurements for heavy metals in situ monitoring. This is very helpful both for improving the quality of data and for making simpler data interpretation.

  7. Structural properties of the solar flare-producing coronal current system developed in an emerging magnetic flux tube

    NASA Astrophysics Data System (ADS)

    Magara, Tetsuya

    2017-02-01

    The activity of a magnetic structure formed in the solar corona depends on a coronal current system developed in the structure, which determines how an electric current flows in the corona. To investigate structural properties of the coronal current system responsible for producing a solar flare, we perform magnetohydrodynamic simulation of an emerging magnetic flux tube which forms a coronal magnetic structure. Investigation using fractal dimensional analysis and electric current streamlines reveals that the flare-producing coronal current system relies on a specific coronal current structure of two-dimensional spatiality, which has a sub-region where a nearly anti-parallel magnetic field configuration is spontaneously generated. We discuss the role of this locally generated anti-parallel magnetic field configuration in causing the reconnection of a three-dimensional magnetic field, which is a possible mechanism for producing a flare. We also discuss how the twist of a magnetic flux tube affects structural properties of a coronal current system, showing how much volume current flux is carried into the corona by an emerging flux tube. This gives a way to evaluate the activity of a coronal magnetic structure.

  8. Development of a proof of concept low temperature 4He Superfluid Magnetic Pump

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Miller, Franklin K.

    2017-03-01

    We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.

  9. Development of a 3 tesla - 10 Hz pulsed magnet-modulator system

    SciTech Connect

    Krausse, G.J.; Butterfield, K.B.

    1984-01-01

    In order to support the experimental work done at the Los Alamos Meson Physics Facility new instrumentation and data collection systems of advanced design are developed on a regular basis. Within the instrumentation system for an experiment at LAMPF, The Photo-Excitation of the H/sup -/ Ion Resonances, there exists a need for a pulsed air-core electromagnet and modulator system. The magnet must be capable of producing a field strength of 0 to 3T in a volume of 3.5 cm/sup 3/. In addition it must be radiation resistant, have a uniform field, operate in a high vacuum with little or no outgassing, and the physical layout of the magnet must provide minimal azimuthal obstruction to both the ion and laser beams. The modulator must be capable of producing up to a 15KA pulse with duration of two ..mu..s at a maximum repetition rate of 10 Hz. Modulator layout must be extremely reliable so that data collection time is not lost during the experiment. This paper describes in detail the development of the system.

  10. Development and investigation of a magnetic resonance imaging-compatible microlens-based optical detector

    NASA Astrophysics Data System (ADS)

    Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L.; Peter, Jörg

    2015-09-01

    A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.

  11. Photogrammetric Analysis of Attractiveness in Indian Faces

    PubMed Central

    Duggal, Shveta; Kapoor, DN; Verma, Santosh; Sagar, Mahesh; Lee, Yung-Seop; Moon, Hyoungjin

    2016-01-01

    Background The objective of this study was to assess the attractive facial features of the Indian population. We tried to evaluate subjective ratings of facial attractiveness and identify which facial aesthetic subunits were important for facial attractiveness. Methods A cross-sectional study was conducted of 150 samples (referred to as candidates). Frontal photographs were analyzed. An orthodontist, a prosthodontist, an oral surgeon, a dentist, an artist, a photographer and two laymen (estimators) subjectively evaluated candidates' faces using visual analog scale (VAS) scores. As an objective method for facial analysis, we used balanced angular proportional analysis (BAPA). Using SAS 10.1 (SAS Institute Inc.), the Turkey's studentized range test and Pearson correlation analysis were performed to detect between-group differences in VAS scores (Experiment 1), to identify correlations between VAS scores and BAPA scores (Experiment 2), and to analyze the characteristic features of facial attractiveness and gender differences (Experiment 3); the significance level was set at P=0.05. Results Experiment 1 revealed some differences in VAS scores according to professional characteristics. In Experiment 2, BAPA scores were found to behave similarly to subjective ratings of facial beauty, but showed a relatively weak correlation coefficient with the VAS scores. Experiment 3 found that the decisive factors for facial attractiveness were different for men and women. Composite images of attractive Indian male and female faces were constructed. Conclusions Our photogrammetric study, statistical analysis, and average composite faces of an Indian population provide valuable information about subjective perceptions of facial beauty and attractive facial structures in the Indian population. PMID:27019809

  12. Conversion of traditional osseointegrated bone-anchored hearing aids to the Baha(®) attract in four pediatric patients.

    PubMed

    Cedars, Elizabeth; Chan, Dylan; Lao, Anga; Hardies, Lauren; Meyer, Anna; Rosbe, Kristina

    2016-12-01

    Bone-anchored hearing aids are external devices attached to the skull via a titanium implant, and can be used for multiple types of hearing loss. Traditionally, osseointegrated implants have been coupled to the external processor with a percutaneous abutment, but more recently, a fully implanted, transcutaneous magnet-based system has become available. Skin reactions from the percutaneous portion are a common complication that can prevent use of the device during critical windows of language development and learning in children. We describe our experience replacing the Baha(®) abutment system with the Baha(®) Attract in four pediatric patients. Specific operative considerations for incision placement, and magnet and implant coverage are discussed. All patients maintained osseointegration, had excellent long-term wound healing without post-operative infection, and were able to wear their devices more consistently.

  13. Measurement of Spindle Rigidity by using a Magnet Loader

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  14. Development and validation of a treatment planning model for magnetic nanoparticle hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Stigliano, Robert Vincent

    The use of magnetic nanoparticles (mNPs) to induce local hyperthermia has been emerging in recent years as a promising cancer therapy, in both a stand-alone and combination treatment setting, including surgery radiation and chemotherapy. The mNP solution can be injected either directly into the tumor, or administered intravenously. Studies have shown that some cancer cells associate with, internalize, and aggregate mNPs more preferentially than normal cells, with and without antibody targeting. Once the mNPs are delivered inside the cells, a low frequency (30-300kHz) alternating electromagnetic field is used to activate the mNPs. The nanoparticles absorb the applied field and provide localized heat generation at nano-micron scales. Treatment planning models have been shown to improve treatment efficacy in radiation therapy by limiting normal tissue damage while maximizing dose to the tumor. To date, there does not exist a clinical treatment planning model for magnetic nanoparticle hyperthermia which is robust, validated, and commercially available. The focus of this research is on the development and experimental validation of a treatment planning model, consisting of a coupled electromagnetic and thermal model that predicts dynamic thermal distributions during treatment. When allowed to incubate, the mNPs are often sequestered by cancer cells and packed into endosomes. The proximity of the mNPs has a strong influence on their ability to heat due to interparticle magnetic interaction effects. A model of mNP heating which takes into account the effects of magnetic interaction was developed, and validated against experimental data. An animal study in mice was conducted to determine the effects of mNP solution injection duration and PEGylation on macroscale mNP distribution within the tumor, in order to further inform the treatment planning model and future experimental technique. In clinical applications, a critical limiting factor for the maximum applied field is

  15. Development of novel FePt/nanodiamond hybrid nanostructures: L10 phase size-growth suppression and magnetic properties

    NASA Astrophysics Data System (ADS)

    Douvalis, A. P.; Bourlinos, A. B.; Tucek, J.; Čépe, K.; Bakas, T.; Zboril, R.

    2016-05-01

    A new type of hybrid nanomaterial composed of magnetic FePt nanoparticles grown on the surface of nanodiamond nanotemplate assemblies is described for the first time. Post annealing in vacuum of the as-made nanomaterial bearing cubic A1 soft magnetic FePt nanoparticles leads to the development of FePt nanoparticles with tetragonal L10 hard, magnetic-phase characteristics, leaving untouched the nanodiamond nanotemplate assemblies. X-ray diffraction, high-resolution transmission electron microscopy including chemical mapping (HRTEM/HAADF), magnetization measurements, and 57Fe Mössbauer spectroscopy data show that the magnetic FePt nanoparticles, with average sizes of 3 and 8 nm in the as-made and annealed hybrids, respectively, are homogenously distributed within the nanodiamond template in both nanomaterials. As a consequence, their structural, morphological, and magnetic properties differ significantly from the corresponding properties of the nonsupported (free) as-made and annealed FePt nanoparticles with average sizes of 6 and 32 nm, respectively, developed by the same methods. This spatial isolation suppresses the size-growth of the FePt nanoparticles during the post-annealing procedure, triggering superparamagnetic relaxation phenomena, which are exposed as a combination of hard and soft magnetic-phase characteristics.

  16. Development of FeSiBNbCu Nanocrystalline Soft Magnetic Alloys with High B s and Good Manufacturability

    NASA Astrophysics Data System (ADS)

    Wan, Fangpei; He, Aina; Zhang, Jianhua; Song, Jiancheng; Wang, Anding; Chang, Chuntao; Wang, Xinmin

    2016-10-01

    In order to develop Fe-based nanocrystalline soft magnetic alloys with high saturation magnetic flux density ( B s) and good manufacturability, the effect of the Nb content on the thermal stability, microstructural evolution and soft magnetic properties of Fe78- x Si13B8Nb x Cu1 ( x = 0, 1, 2 and 3) alloys were investigated. It is found that proper Nb addition is effective in widening the optimum annealing temperature range and refining the α-Fe grain in addition to enhancing the soft magnetic properties. For the representative Fe76 Si13B8Nb2Cu1 alloy, the effective annealing time can be over 60 min in the optimal temperature range of 500-600°C. FeSiBNbCu nanocrystalline soft magnetic alloys with desirable soft magnetic properties including high B s of 1.39 T, low coercivity ( H c) of 1.5 A/m and high effective permeability ( μ e) of 21,500 at 1 kHz have been developed. The enhanced soft magnetic performance and manufacturability of the FeSiBNbCu nanocrystalline alloys are attributed to the high activated energy for the precipitation of α-Fe(Si) and the second phase. These alloys with excellent performance have promising applications in electromagnetic fields like inductors.

  17. Replacement and Original Magnet Engineering Options (ROMEOs): A European Seventh Framework Project to Develop Advanced Permanent Magnets Without, or with Reduced Use of, Critical Raw Materials

    NASA Astrophysics Data System (ADS)

    Mcguiness, P.; Akdogan, O.; Asali, A.; Bance, S.; Bittner, F.; Coey, J. M. D.; Dempsey, N. M.; Fidler, J.; Givord, D.; Gutfleisch, O.; Katter, M.; Le Roy, D.; Sanvito, S.; Schrefl, T.; Schultz, L.; Schwöbl, C.; Soderžnik, M.; Šturm, S.; Tozman, P.; Üstüner, K.; Venkatesan, M.; Woodcock, T. G.; Žagar, K.; Kobe, S.

    2015-06-01

    The rare-earth crisis, which peaked in the summer of 2011 with the prices of both light and heavy rare earths soaring to unprecedented levels, brought about the widespread realization that the long-term availability and price stability of rare earths could not be guaranteed. This triggered a rapid response from manufacturers involved in rare earths, as well as governments and national and international funding agencies. In the case of rare-earth-containing permanent magnets, three possibilities were given quick and serious consideration: (I) increased recycling of devices containing rare earths; (II) the search for new, mineable, rare-earth resources beyond those in China; and (III) the development of high-energy-product permanent magnets with little or no rare-earth content used in their manufacture. The Replacement and Original Magnet Engineering Options (ROMEO) project addresses the latter challenge using a two-pronged approach. With its basis on work packages that include materials modeling and advanced characterization, the ROMEO project is an attempt to develop a new class of novel permanent magnets that are free of rare earths. Furthermore, the project aims to minimize rare-earth content, particularly heavy-rare-earth (HRE) content, as much as possible in Nd-Fe-B-type magnets. Success has been achieved on both fronts. In terms of new, rare-earth-free magnets, a Heusler alloy database of 236,945 compounds has been narrowed down to approximately 20 new compounds. Of these compounds, Co2MnTi is expected to be a ferromagnet with a high Curie temperature and a high magnetic moment. Regarding the reduction in the amount of rare earths, and more specifically HREs, major progress is seen in electrophoretic deposition as a method for accurately positioning the HRE on the surface prior to its diffusion into the microstructure. This locally increases the coercivity of the rather small Nd-Fe-B-type magnet, thereby substantially reducing the dependence on the HREs Dy and

  18. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    NASA Astrophysics Data System (ADS)

    Kessedjian, G.; Chebboubi, A.; Faust, H.; Köster, U.; Materna, T.; Sage, C.; Serot, O.

    2013-03-01

    The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f)98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM) is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  19. Development of an enzymatic reaction device using magnetic bead-cluster handling

    NASA Astrophysics Data System (ADS)

    Shikida, Mitsuhiro; Takayanagi, Kentaro; Honda, Hiroyuki; Ito, Hiroshi; Sato, Kazuo

    2006-09-01

    We previously proposed a magnetic bead-cluster handling device for Micro-total analysis systems (Micro-TAS) and investigated its operation principle. The device does not need mechanical fluidic devices, such as pumps and valves, for handling solutions. We further developed the biochemical reaction unit chip, which is a key component in Micro-TAS, by applying a bead-cluster handling mechanism. We were able to do the enzymatic reaction by using hydrolysis between alkaline phosphatase and p-nitrophenyl phosphate. We also confirmed that the obtained calibration curves were linear during the enzymatic reaction. We had 70% reaction efficiency on the reaction chip by performing a comparative experiment. From these results, we concluded that our developed reaction chip is applicable to enzymatic immuno-assay systems.

  20. Recent developments of rare-earth-free hard-magnetic materials

    NASA Astrophysics Data System (ADS)

    Li, Da; Pan, DeSheng; Li, ShaoJie; Zhang, ZhiDong

    2016-01-01

    Recent advances in rare-earth-free hard-magnetic materials including magnetic bulk, thin films, nanocomposites and nanostructures are introduced. Since the costs of the rare-earth metals boosts up the price of the high-performance rare-earth permanent magnets, there is a much revived interest in various types of hard-magnetic materials based on rare-earth-free compounds. The 3d transition metals and their alloys with large coercivity and high Curie temperatures (working temperatures) are expected to overcome the disadvantages of rare-earth magnets. Making rare-earth-free magnets with a large energy product to meet tomorrow's energy needs is still a challenge.

  1. Chemical visualization of an attractant peptide, LURE.

    PubMed

    Goto, Hiroaki; Okuda, Satohiro; Mizukami, Akane; Mori, Hitoshi; Sasaki, Narie; Kurihara, Daisuke; Higashiyama, Tetsuya

    2011-01-01

    The pollen tube attractant peptide LUREs of Torenia fournieri are diffusible peptides that attract pollen tubes in vitro. Here, we report a method enabling the direct visualization of a LURE peptide without inhibiting its attraction activity by conjugating it with the Alexa Fluor 488 fluorescent dye. After purifying and refolding the recombinant LURE2 with a polyhistidine tag, its amino groups were targeted for conjugation with the Alexa Fluor dye. Labeling of LURE2 was confirmed by its fluorescence and mass spectrometry. In our in vitro assay using gelatin beads, Alexa Fluor 488-labeled LURE2 appeared to have the same activity as unlabeled LURE2. Using the labeled LURE2, the relationship between the spatiotemporal change of distribution and activity of LURE2 was examined. LURE2 attracted pollen tubes when embedded in gelatin beads, but hardly at all when in agarose beads. Direct visualization suggested that the significant difference between these conditions was the retention of LURE2 in the gelatin bead, which might delay diffusion of LURE2 from the bead. Direct visualization of LURE peptide may open the way to studying the spatiotemporal dynamics of LURE in pollen tube attraction.

  2. Human body odour, symmetry and attractiveness.

    PubMed

    Rikowski, A; Grammer, K

    1999-05-07

    Several studies have found body and facial symmetry as well as attractiveness to be human mate choice criteria. These characteristics are presumed to signal developmental stability. Human body odour has been shown to influence female mate choice depending on the immune system, but the question of whether smell could signal general mate quality, as do other cues, was not addressed in previous studies. We compared ratings of body odour, attractiveness, and measurements of facial and body asymmetry of 16 male and 19 female subjects. Subjects wore a T-shirt for three consecutive nights under controlled conditions. Opposite-sex raters judged the odour of the T-shirts and another group evaluated portraits of the subjects for attractiveness. We measured seven bilateral traits of the subject's body to assess body asymmetry. Facial asymmetry was examined by distance measurements of portrait photographs. The results showed a significant positive correlation between facial attractiveness and sexiness of body odour for female subjects. We found positive relationships between body odour and attractiveness and negative ones between smell and body asymmetry for males only if female odour raters were in the most fertile phase of their menstrual cycle. The outcomes are discussed in the light of different male and female reproductive strategies.

  3. Development of magnesium diboride (MgB 2) wires and magnets using in situ strand fabrication method

    NASA Astrophysics Data System (ADS)

    Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E. W.

    2007-06-01

    Since 2001 when magnesium diboride (MgB 2) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc.

  4. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    PubMed

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co-Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  5. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    PubMed Central

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  6. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-04-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10‑6 cm3·g‑1–1.29 × 10‑6 cm3·g‑1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10‑6 cm3·g‑1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10‑6 cm3·g‑1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10‑6 cm3·g‑1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments.

  7. Self-attracting walk on heterogeneous networks.

    PubMed

    Kim, Kanghun; Kyoung, Jaegu; Lee, D-S

    2016-05-01

    Understanding human mobility in cyberspace becomes increasingly important in this information era. While human mobility, memory-dependent and subdiffusive, is well understood in Euclidean space, it remains elusive in random heterogeneous networks like the World Wide Web. Here we study the diffusion characteristics of self-attracting walks, in which a walker is more likely to move to the locations visited previously than to unvisited ones, on scale-free networks. Under strong attraction, the number of distinct visited nodes grows linearly in time with larger coefficients in more heterogeneous networks. More interestingly, crossovers to sublinear growths occur in strongly heterogeneous networks. To understand these phenomena, we investigate the characteristic volumes and topology of the cluster of visited nodes and find that the reinforced attraction to hubs results in expediting exploration first but delaying later, as characterized by the scaling exponents that we derive. Our findings and analysis method can be useful for understanding various diffusion processes mediated by human.

  8. Pollen tube guidance by attractant molecules: LUREs.

    PubMed

    Okuda, Satohiro; Higashiyama, Tetsuya

    2010-01-01

    Sexual reproduction in flowering plants requires pollen-tube guidance, which is thought to be mediated by chemoattractants derived from target ovules. To date, however, no convincing evidence has been reported of a particular molecule being the true attractant. Emerging data indicate that two synergid cells, which are on either side of the egg cell, emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen-tube guidance. Recently, it was demonstrated that LUREs (LURE1 and LURE2), cysteine-rich polypeptides secreted from the synergid cell, are the key molecules in pollen-tube guidance. In this review, we summarize the mechanism of pollen-tube guidance, with special focus on gametophytic guidance and the attractants.

  9. Self-attracting walk on heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Kim, Kanghun; Kyoung, Jaegu; Lee, D.-S.

    2016-05-01

    Understanding human mobility in cyberspace becomes increasingly important in this information era. While human mobility, memory-dependent and subdiffusive, is well understood in Euclidean space, it remains elusive in random heterogeneous networks like the World Wide Web. Here we study the diffusion characteristics of self-attracting walks, in which a walker is more likely to move to the locations visited previously than to unvisited ones, on scale-free networks. Under strong attraction, the number of distinct visited nodes grows linearly in time with larger coefficients in more heterogeneous networks. More interestingly, crossovers to sublinear growths occur in strongly heterogeneous networks. To understand these phenomena, we investigate the characteristic volumes and topology of the cluster of visited nodes and find that the reinforced attraction to hubs results in expediting exploration first but delaying later, as characterized by the scaling exponents that we derive. Our findings and analysis method can be useful for understanding various diffusion processes mediated by human.

  10. Messages about physical attractiveness in animated cartoons.

    PubMed

    Klein, Hugh; Shiffman, Kenneth S

    2006-12-01

    Relying upon a content analysis of one specific type of medium to which young people are exposed beginning at an early age, on a regular basis, and for many years (i.e., animated cartoons), the present study examines what types of messages are provided about being physically unattractive, physically attractive, and ordinary-looking. This research concerns itself with identifying the characteristics that tend to be associated with being good-looking or unattractive, and then discussing the implications of the findings. Results indicate that many variables were found to differ based on cartoon characters' physical attractiveness, including gender, age, intelligence, body weight, emotional states experienced, prosocial behaviors, antisocial behaviors, and overall goodness/badness. Whenever differences were found, the overriding tendency was for cartoons to provide positive messages about being attractive and negative messages about being unattractive.

  11. Shukla-Eliasson attractive force: Revisited

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.; Akbari-Moghanjoughi

    2013-04-01

    By investigating the dielectric response of the Fermi-Dirac plasma in the linear limit and evaluating the electrostatic potential around the positive stationary test charge, we find that the Shukla-Eliasson attractive force is present for the plasma density range expected in the interiors of large planets for a wide range of plasma atomic number. This research, which is based on the generalized electron Fermi-momentum, further confirms the existence of the newly discovered Lennard-Jones-like attractive potential and its inevitable role in plasma crystallization in the cores of planets. Moreover, it is observed that the characteristics of the attractive potential are strongly sensitive to the variation of plasma density and composition. Current research can also have applications in the study of strong laser-matter interactions and inertially confined plasmas.

  12. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  13. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  14. Attraction between like-charged monovalent ions.

    PubMed

    Zangi, Ronen

    2012-05-14

    Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.

  15. Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells.

    PubMed

    Adams, Christopher; Israel, Liron Limor; Ostrovsky, Stella; Taylor, Arthur; Poptani, Harish; Lellouche, Jean-Paul; Chari, Divya

    2016-04-06

    Genetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic nanoparticles (MNPs) offering dual mode gene delivery and imaging contrast capacity offer a valuable tool in this context. Despite their key benefits, there is a critical lack of neurocompatible and multifunctional particles described for use with transplant populations for neurological applications. Here, a systematic screen of MNPs (using a core shown to cause contrast in magnetic resonance imaging (MRI)) bearing various surface chemistries (polyethylenimine (PEI) and oxidized PEI and hybrids of oxidized PEI/alginic acid, PEI/chitosan and PEI/polyamidoamine) is performed to test their ability to genetically engineer neural stem cells (NSCs; a cell population of high clinical relevance for central nervous system disorders). It is demonstrated that gene delivery to NSCs can be safely achieved using two of the developed formulations (PEI and oxPEI/alginic acid) when used in conjunction with oscillating magnetofection technology. After transfection, intracellular particles can be detected by histological procedures with labeled cells displaying contrast in MRI (for real time cell tracking).

  16. Development of a Magnetic Resonance Imaging-Based Method for Particle Concentration Measurement

    NASA Astrophysics Data System (ADS)

    Borup, Daniel D.; Elkins, Christopher J.; Eaton, John K.

    2016-11-01

    Magnetic Resonance Imaging (MRI) is well suited for the study of fluid mechanics in complex flows where optical access is not possible. Current MRI-based techniques allow for the measurement of 3D, 3-component velocity and scalar concentration fields. The current work aims to develop and validate a technique for measuring the concentration of a dispersed phase of solid microspheres in a turbulent water flow. Such a diagnostic would allow for the study of the transport of small particles in arbitrarily complicated biological, engineering, or natural flows. In the presence of paramagnetic particles, MRI signal decays more rapidly than it does for pure water due to small disturbances in the magnetic field. We predicted the spatial extent and magnitude of this disturbance using a standard theoretical framework for MRI and obtained reasonable agreement with experimental results. Using the linear relationship between particle volume fraction and signal decay rate, we also obtained 3D concentration data for a particle streak injected into a ribbed serpentine channel flow. These data were used to validate the new method, and the transport of solid particles was compared to the transport of a passive scalar in the same flow. Daniel Borup is supported by NSF Grant No. DGE-114747.

  17. Lane formation in a driven attractive fluid

    NASA Astrophysics Data System (ADS)

    Wächtler, C. W.; Kogler, F.; Klapp, S. H. L.

    2016-11-01

    We investigate nonequilibrium lane formation in a generic model of a fluid with attractive interactions, that is, a two-dimensional Lennard-Jones fluid composed of two particle species driven in opposite directions. Performing Brownian dynamics simulations for a wide range of parameters, supplemented by a stability analysis based on dynamical density functional theory, we identify generic features of lane formation in the presence of attraction, including structural properties. In fact, we find a variety of states (as compared to purely repulsive systems), as well as a close relation between laning and long-wavelength instabilities of the homogeneous phase such as demixing and condensation.

  18. Glassy states in attractive micellar systems

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Broccio, M.; Faraone, A.; Chen, W. R.; Chen, S.-H.

    2004-08-01

    Recent mode coupling theory (MCT) calculations show that in attractive colloids one may observe a new type of glass originating from clustering effects, as a result of the attractive interaction. This happens in addition to the known glass-forming mechanism due to cage effects in the hard sphere system. MCT also indicates that, within a certain volume fraction range, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass re-entrance and the glass-to-glass transitions possible. Here we present experimental evidence and details on this complex phase behavior in a three-block copolymer micellar system.

  19. Lane formation in a driven attractive fluid.

    PubMed

    Wächtler, C W; Kogler, F; Klapp, S H L

    2016-11-01

    We investigate nonequilibrium lane formation in a generic model of a fluid with attractive interactions, that is, a two-dimensional Lennard-Jones fluid composed of two particle species driven in opposite directions. Performing Brownian dynamics simulations for a wide range of parameters, supplemented by a stability analysis based on dynamical density functional theory, we identify generic features of lane formation in the presence of attraction, including structural properties. In fact, we find a variety of states (as compared to purely repulsive systems), as well as a close relation between laning and long-wavelength instabilities of the homogeneous phase such as demixing and condensation.

  20. Bayesian long branch attraction bias and corrections.

    PubMed

    Susko, Edward

    2015-03-01

    Previous work on the star-tree paradox has shown that Bayesian methods suffer from a long branch attraction bias. That work is extended to settings involving more taxa and partially resolved trees. The long branch attraction bias is confirmed to arise more broadly and an additional source of bias is found. A by-product of the analysis is methods that correct for biases toward particular topologies. The corrections can be easily calculated using existing Bayesian software. Posterior support for a set of two or more trees can thus be supplemented with corrected versions to cross-check or replace results. Simulations show the corrections to be highly effective.