Sample records for developing attractive magnetic

  1. Skin Necrosis After Implantation With the BAHA Attract: A Case Report and Review of the Literature.

    PubMed

    Chen, Stephanie Y; Mancuso, Dean; Lalwani, Anil K

    2017-03-01

    The bone-anchored hearing aid (BAHA) Attract is a transcutaneous bone conduction hearing aid that uses magnetic coupling to enable sound conduction. We report the first case of skin necrosis associated with the BAHA Attract and perform a literature review of soft tissue complications related to the device. A single patient who was found to develop skin necrosis 2 weeks after being fitted for the BAHA Attract speech processor. After the patient developed skin necrosis from the device, she was advised to immediately discontinue use of the Attract to allow complete wound healing, upon which the Attract was successfully converted to a percutaneous BAHA. We monitored for the development of skin complications from the BAHA Attract. The patient's immediate postoperative course was unremarkable and she was fitted with a speech processor of M5 magnet strength at 1 month postoperatively. After 1 week of use, she reported discomfort and was advised to downgrade to an M4 magnet; however, she continued to use the M5 and the following week was found to have developed skin necrosis around the device. Despite the infrequency of skin necrosis related to the BAHA Attract, it must be considered in counseling and managing candidates for the device.

  2. Measurement of Spindle Rigidity by using a Magnet Loader

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  3. Recent development of plasma optical systems (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, A. A., E-mail: gonchar@iop.kiev.ua

    2016-02-15

    The article devotes a brief description of the recent development and current status of an ongoing research of plasma optical systems based on the fundamental plasma optical idea magnetic electron isolation, equipotentialization magnetic field lines, and the axi-symmetric cylindrical electrostatic plasma lens (PL) configuration. The experimental, theoretical, and simulation investigations have been carried out over recent years collaboratively between IP NASU (Kiev), LBNL (Berkeley, USA), and HCEI RAS (Tomsk). The crossed electric and magnetic fields inherent the PL configuration that provides the attractive method for establishing a stable plasma discharge at low pressure. Using PL configuration, several high reliability plasmamore » devices were developed. These devices are attractive for many high-tech applications.« less

  4. A study on the changes in attractive force of magnetic attachments for overdenture.

    PubMed

    Leem, Han-Wool; Cho, In-Ho; Lee, Jong-Hyuk; Choi, Yu-Sung

    2016-02-01

    Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed.

  5. Magnetically operated check valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor); Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  6. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1993-03-01

    A magnetically operated check valve is disclosed having, in one aspect, a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  7. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  8. A study on the changes in attractive force of magnetic attachments for overdenture

    PubMed Central

    Lee, Jong-Hyuk; Choi, Yu-Sung

    2016-01-01

    PURPOSE Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. MATERIALS AND METHODS Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. RESULTS Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. CONCLUSION Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed. PMID:26949482

  9. A three-dimensional finite element evaluation of magnetic attachment attractive force and the influence of the magnetic circuit.

    PubMed

    Kumano, Hirokazu; Nakamura, Yoshinori; Kanbara, Ryo; Takada, Yukyo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-01-01

    The finite element method has been considered to be excellent evaluative technique to study magnetic circuit optimization. The present study analyzed and quantitatively evaluated the different effects of magnetic circuit on attractive force and magnetic flux density using a three-dimensional finite element method for comparative evaluation. The diameter of a non-magnetic material in the shield disk of a magnetic assembly was variably increased by 0.1 mm to a maximum 2.0 mm in this study design. The analysis results demonstrate that attractive force increases until the diameter of the non-magnetic spacing material reaches a diameter of 0.5 mm where it peaks and then decreases as the overall diameter increases over 0.5 mm. The present analysis suggested that the attractive force for a magnetic attachment is optimized with an appropriate magnetic assembly shield disk diameter using a non-magnetic material to effectively change the magnetic circuit efficiency and resulting retention.

  10. Science Can Be Attractive.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Discusses the properties of neodymium magnets and magnets in general and how magnets can be used to teach students important scientific principles, such as attraction, repulsion, and polarity; the role of magnetic forces in electronic communications and computers; the magnetic properties of the earth and compasses; and the relationship between…

  11. The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1978-01-01

    It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.

  12. Microfabricated optically pumped magnetometer arrays for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.

    2017-02-01

    Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.

  13. Evaluation of the attractive force of different types of new-generation magnetic attachment systems.

    PubMed

    Akin, Hakan; Coskun, M Emre; Akin, E Gulsah; Ozdemir, A Kemal

    2011-03-01

    Rare earth magnets have been used in prosthodontics, but their tendency for corrosion in the oral cavity and insufficient attractive forces limit long-term clinical application. The purpose of this study was to evaluate the attractive force of different types of new-generation magnetic attachment systems. The attractive force of the neodymium-iron-boron (Nd-Fe-B) and samarium-cobalt (Sm-Co) magnetic attachment systems, including closed-field (Hilop and Hicorex) and open-field (Dyna and Steco) systems, was measured in a universal testing machine (n=5). The data were statistically evaluated with 1-way ANOVA and post hoc Tukey-Kramer multiple comparison test (α=.05). The closed-field systems exhibited greater (P<.001) attractive force than the open-field systems. Moreover, there was a statistically significant difference in attractive force between Nd-Fe-B and Sm-Co magnets (P<.001). The strongest attractive force was found with the Hilop system (9.2 N), and the lowest force was found with the Steco system (2.3 N). The new generation of Nd-Fe-B closed-field magnets, along with improved technology, provides sufficient denture retention for clinical application. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  14. Developing Bisexual Attract-and-Kill for Polyphagous Insects: Ecological Rationale versus Pragmatics.

    PubMed

    Gregg, Peter C; Del Socorro, Alice P; Hawes, Anthony J; Binns, Matthew R

    2016-07-01

    We discuss the principles of bisexual attract-and-kill, in which females as well as males are targeted with an attractant, such as a blend of plant volatiles, combined with a toxicant. While the advantages of this strategy have been apparent for over a century, there are few products available to farmers for inclusion in integrated pest management schemes. We describe the development, registration, and commercialization of one such product, Magnet(®), which was targeted against Helicoverpa armigera and H. punctigera in Australian cotton. We advocate an empirical rather than theoretical approach to selecting and blending plant volatiles for such products, and emphasise the importance of field studies on ecologically realistic scales of time and space. The properties required of insecticide partners also are discussed. We describe the studies that were necessary to provide data for registration of the Magnet(®) product. These included evidence of efficacy, including local and area-wide impacts on the target pest, non-target impacts, and safety for consumers and applicators. In the decade required for commercial development, the target market for Magnet(®) has been greatly reduced by the widespread adoption of transgenic insect-resistant cotton in Australia. We discuss potential applications in resistance management for transgenic cotton, and for other pests in cotton and other crops.

  15. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Treesearch

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  16. Preparation of a Magnetically Switchable Bioelectrocatalytic System Employing Cross-Linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinwoo; Lee, Dohun; Oh, Eunkeu

    2005-11-18

    Nanostructured magnetic materials (NMMs)[1] have attracted much attention recently because of their broad biotechnological applications including support matrices for enzyme immobilization,[2] immunoassays,[3] drug delivery,[4] and biosensors.[ 5] Specifically, the easy separation and controlled placement of NMMs by means of an external magnetic field enables their application in the development of immobilized enzyme processes[2] and the construction of magnetically controllable bio-electrocatalytic systems.[5, 6] Herein, we demonstrate the use of immobilized enzymes in NMMs for magnetically switchable bio-electrocatalysis.

  17. Attractive and repulsive magnetic suspension systems overview

    NASA Technical Reports Server (NTRS)

    Cope, David B.; Fontana, Richard R.

    1992-01-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  18. A constitutive model for the forces of a magnetic bearing including eddy currents

    NASA Technical Reports Server (NTRS)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  19. Preferential flow paths in fractured rock detected by cross-borehole nano-iron tracer test

    NASA Astrophysics Data System (ADS)

    Chia, Yeeping; Chuang, Po-Yu

    2017-04-01

    Characterization of the preferential flow paths and their hydraulic properties is desirable for developing a hydrogeological conceptual model in fractured rock. However, the heterogeneity and anisotropy of the hydraulic property often make it difficult to understand groundwater flow paths through fractures. In this study, we adopted nanoscale zero-valent iron (nZVI) as a tracer to characterize fracture connectivity and hydraulic properties. A magnet array was placed in an observation well to attract arriving nZVI particles for identifying the location of incoming tracer. This novel approach was developed for the investigation of fracture flow at a hydrogeological research station in central Taiwan. A heat-pulse flowmeter test was performed to delineate the vertical distribution of permeable fractures in two boreholes, making it possible to design a field tracer test. The nZVI slurry was released in the sealed injection well. The arrival of the slurry in the observation well was evidenced by a breakthrough curve recorded by the fluid conductivity sensor as well as the nZVI particles attracted to the magnets. The iron nanoparticles attracted to the magnets provide the quantitative criteria for locating the position of tracer inlet in the observation well. The position of the magnet attracting the maximum weight of iron nanoparticles agrees well with the depth of a permeable fracture zone delineated by the flowmeter. Besides, a conventional saline tracer test was conducted in the field, producing a similar outcome as the nZVI tracer test. Our study results indicate that the nano-iron tracer test could be a promising method for the characterization of the preferential flow paths in fractured rock.

  20. On the analytical form of the Earth's magnetic attraction expressed as a function of time

    NASA Technical Reports Server (NTRS)

    Carlheim-Gyllenskold, V.

    1983-01-01

    An attempt is made to express the Earth's magnetic attraction in simple analytical form using observations during the 16th to 19th centuries. Observations of the magnetic inclination in the 16th and 17th centuries are discussed.

  1. Paramagnetic Beads and Magnetically Mediated Strain Enhance Cardiomyogenesis in Mouse Embryoid Bodies

    PubMed Central

    Geuss, Laura R.; Wu, Douglas C.; Ramamoorthy, Divya; Alford, Corinne D.; Suggs, Laura J.

    2014-01-01

    Mechanical forces play an important role in proper embryologic development, and similarly such forces can directly impact pluripotency and differentiation of mouse embryonic stem cells (mESC) in vitro. In addition, manipulation of the embryoid body (EB) microenvironment, such as by incorporation of microspheres or microparticles, can similarly influence fate determination. In this study, we developed a mechanical stimulation regimen using permanent neodymium magnets to magnetically attract cells within an EB. Arginine-Glycine-Aspartic Acid (RGD)-conjugated paramagnetic beads were incorporated into the interior of the EBs during aggregation, allowing us to exert force on individual cells using short-term magnetization. EBs were stimulated for one hour at different magnetic field strengths, subsequently exerting a range of force intensity on the cells at different stages of early EB development. Our results demonstrated that following exposure to a 0.2 Tesla magnetic field, ESCs respond to magnetically mediated strain by activating Protein Kinase A (PKA) and increasing phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) expression. The timing of stimulation can also be tailored to guide ESC differentiation: the combination of bone morphogenetic protein 4 (BMP4) supplementation with one hour of magnetic attraction on Day 3 enhances cardiomyogenesis by increasing contractile activity and the percentage of sarcomeric α-actin-expressing cells compared to control samples with BMP4 alone. Interestingly, we also observed that the beads alone had some impact on differentiation by increasingly slightly, albeit not significantly, the percentage of cardiomyocytes. Together these results suggest that magnetically mediated strain can be used to enhance the percentage of mouse ESC-derived cardiomyocytes over current differentiation protocols. PMID:25501004

  2. Direct observation of attractive skyrmions and skyrmion clusters in the cubic helimagnet Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Loudon, J. C.; Leonov, A. O.; Bogdanov, A. N.; Hatnean, M. Ciomaga; Balakrishnan, G.

    2018-04-01

    We report the discovery of attractive magnetic skyrmions and their clusters in noncentrosymmetric ferromagnets. These three-dimensional solitons have been predicted to exist in the cone phase of chiral ferromagnets [J. Phys: Condens. Matter 28, 35LT01 (2016), 10.1088/0953-8984/28/35/35LT01] and are fundamentally different from the more common repulsive axisymmetric skyrmions that occur in the magnetically saturated state. We present real-space images of these skyrmion clusters in thin (˜70 nm) single-crystal samples of Cu2OSeO3 taken using transmission electron microscopy and develop a phenomenological theory describing this type of skyrmion.

  3. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  4. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Xiang; Zhang, Wen-Ming; Li, Wen-Bo; Wei, Ke-Xiang; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2018-03-01

    The combination of nonlinear bistable and flextensional mechanisms has the advantages of wide operating frequency and high equivalent piezoelectric constant. In this paper, three magnetically coupled flextensional vibration energy harvesters (MF-VEHs) are designed from three magnetically coupled vibration systems which utilize a magnetic repulsion, two symmetrical magnetic attractions and multi-magnetic repulsions, respectively. The coupled dynamic models are developed to describe the electromechanical transitions. Simulations under harmonic excitation and random excitation are carried out to investigate the performance of the MF-VEHs with different parameters. Experimental validations of the MF-VEHs are performed under different excitation levels. The experimental results verify that the developed mathematical models can be used to accurately characterize the MF-VEHs for various magnetic coupling modes. A comparison of three MF-VEHs is provided and the results illustrate that a reasonable arrangement of multiple magnets can reduce the threshold excitation intensity and increase the harvested energy.

  5. Vortex attraction and the formation of sunspots

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1992-01-01

    A downdraft vortex ring in a stratified atmosphere exhibits universal attraction for nearby vertical magnetic flux bundles. It is speculated that the magnetic fields emerging through the surface of the sun are individually encircled by one or more subsurface vortex rings, providing an important part of the observed clustering of magnetic fibrils to form pores and sunspots.

  6. [A functional orthodontic magnetic appliance (FOMA) after Vardimon. 1. A three-dimensional analysis of the force system of the attractive magnets].

    PubMed

    Bourauel, C; Vardimon, A D; Drescher, D; Schmuth, G P

    1995-09-01

    The functional magnetic system (FMS) is a removable functional appliance which induces mandibular advance by means of mandibular and maxillary magnets in an attracting configuration. The maxillary and mandibular plates are each equipped with 2 cylindrically shaped cobalt-samarium magnets, 4 mm in diameter and 3 mm in height, which are welded into stainless steel housings. The force system of this magnetic configuration was analyzed using the orthodontic measurement and simulation system (OMSS). OMSS simulated the mandibular jaw movements by separating the installed magnets vertically, corresponding to a mouth opening of X = -10 mm, transversally (right excursion, +/left excursion, -) at Y = +/- 10 mm and sagittally (anterior displacement, +/posterior displacement, -) at Z = +/- 10 mm. The resulting 2D and 3D force/displacement diagrams elucidate the outstanding centripetal-spatial orientation characteristics of the functional magnetic appliance in reference to the full overlap brought about by the attraction of the mandibular magnet by the maxillary magnet. The maximum centripetal forces reached a value of approximately FY, max = 0.65 N for the vertical attracting force at full overlap of the mandibular and maxillary magnets (X = 0.55 mm, Y = Z = 0 mm), a value of FY, max = 0.65 N for the medial shearing force at a partial transversal overlap Z = 0, Y = +/- 2 mm and Y = +/- 6 mm), and for the sagittal shearing force a value of FZ, max = 1.2 N at a partial sagittal overlap of the magnets (Y = 0 mm, Z = +/- 2 mm).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Corrigendum: Like a Magnet: Catharsis Beliefs Attract Angry People to Violent Video Games.

    PubMed

    2016-07-01

    Bushman, B. J., & Whitaker, J. L. (2010). Like a magnet: Catharsis beliefs attract angry people to violent video games. Psychological Science, 21, 790-792. (Original DOI: 10.1177/0956797610369494). © The Author(s) 2016.

  8. Orientation of Magnetized MnBi in a Strong Static Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Zhong, Yunbo; Dong, Licheng; Zhou, Bangfei; Ren, Zhongming; Debray, Francois; Beaugnon, Eric

    2018-06-01

    Solidification of Bi-4.5 wt pct Mn alloy was investigated in the presence and absence of a strong static magnetic field (SSMF). A cooling rate ( R) of 60 K/min caused MnBi to orient with the SSMF, owing to the force moment and attractive force. The attractive force and magnetic gradient force induced formation of multilayered MnBi when R was 5 K/min. The magnetic gradient force was damped when R was 60 K/min. Low cooling rates favored the aggregation process.

  9. A 2 Tesla Full Scale High Performance Periodic Permanent Magnet Model for Attractive (228 KN) and repulsive Maglev

    NASA Technical Reports Server (NTRS)

    Stekly, Z. J. J.; Gardner, C.; Domigan, P.; Baker, J.; Hass, M.; McDonald, C.; Wu, C.; Farrell, R. A.

    1996-01-01

    Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Intermagnetics General Corporation. Placing these assemblies in a supporting structure with a 2.1 cm pole to pole separation resulted in a periodic field with a maximum value of 2.04 T. This is believed to be the highest field ever achieved by this type of device. The attractive force between the two 602 kg magnet assemblies is 228 kN, providing enough force for suspension of a 45,500 kg vehicle. If used in an attractive maglev system with an appropriate flat iron rail, one assembly will generate the same force with a gap of 1.05 cm leading to a lift to weight ratio of 38.6, not including the vehicle attachment structure. This permanent magnet compares well with superconducting systems which have lift to weight ratios in the range of 5 to 10. This paper describes the magnet assemblies and their measured magnetic performance. The measured magnetic field and resulting attractive magnetic force have a negative spring characteristic. Appropriate control coils are necessary to provide stable operation. The estimated performance of the assemblies in a stable repulsive mode, with eddy currents in a conducting guideway, is also discussed.

  10. Maximizing coupling strength of magnetically anchored surgical instruments: how thick can we go?

    PubMed

    Best, Sara L; Bergs, Richard; Gedeon, Makram; Paramo, Juan; Fernandez, Raul; Cadeddu, Jeffrey A; Scott, Daniel J

    2011-01-01

    The Magnetic Anchoring and Guidance System (MAGS) includes an external magnet that controls intra-abdominal surgical instruments via magnetic attraction forces. We have performed NOTES (Natural Orifice Transluminal Endoscopic Surgery) and LESS (Laparoendoscopic Single Site) procedures using MAGS instruments in porcine models with up to 2.5-cm-thick abdominal walls, but this distance may not be sufficient in some humans. The purpose of this study was to determine the maximal abdominal wall thickness for which the current MAGS platform is suitable. Successive iterations of prototype instruments were developed; those evaluated in this study include external (134-583 g, 38-61 mm diameter) and internal (8-39 g, 10-22 mm diameter) components using various grades, diameters, thicknesses, and stacking/shielding/focusing configurations of permanent Neodymium-iron-boron (NdFeB) magnets. Nine configurations were tested for coupling strength across distances of 0.1-10 cm. The force-distance tests across an air medium were conducted at 0.5-mm increments using a robotic arm fitted with a force sensor. A minimum theoretical instrument drop-off (decoupling) threshold was defined as the separation distance at which force decreased below the weight of the heaviest internal component (39 g). Magnetic attraction forces decreased exponentially over distance. For the nine configurations tested, the average forces were 3,334 ± 1,239 gf at 0.1 cm, 158 ± 98 gf at 2.5 cm, and 8.7 ± 12 gf at 5 cm; the drop-off threshold was 3.64 ± 0.8 cm. The larger stacking configurations and magnets yielded up to a 592% increase in attraction force at 2.5 cm and extended the drop-off threshold distance by up to 107% over single-stack anchors. For the strongest configuration, coupling force ranged from 5,337 gf at 0.1 cm to 0 gf at 6.95 cm and yielded a drop-off threshold distance of 4.78 cm. This study suggests that the strongest configuration of currently available MAGS instruments is suitable for clinically relevant abdominal wall thicknesses. Further platform development and optimization are warranted.

  11. Applications of metal nanoparticles in environmental cleanup

    EPA Science Inventory

    Iron nanoparticles (INPs) are one of the fastest-developing fields. INPs have a number of key physicochemical properties, such as high surface area, reactivity, optical and magnetic properties, and oxidation and reduction capacities, that make them attractive for water purificati...

  12. Overview of a flywheel stack energy storage system

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Davinder K.

    1988-01-01

    The concept of storing electrical energy in rotating flywheels provides an attractive substitute to batteries. To realize these advantages the critical technologies of rotor design, composite materials, magnetic suspension, and high efficiency motor/generators are reviewed in this paper. The magnetically suspended flywheel energy storage system, currently under development at the University of Maryland, consisting of a family of interference assembled rings, is presented as an integrated solution for energy storage.

  13. The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: a review

    PubMed Central

    ORTOLANI, ALESSANDRO; BIANCHI, MICHELE; MOSCA, MASSIMILIANO; CARAVELLI, SILVIO; FUIANO, MARIO; MARCACCI, MAURILIO; RUSSO, ALESSANDRO

    2016-01-01

    Magnetic scaffolds are becoming increasingly attractive in tissue engineering, due to their ability to enhance bone tissue formation by attracting soluble factors, such as growth factors, hormones and polypeptides, directly to the implantation site, as well as their potential to improve the fixation and stability of the implant. Moreover, there is increasing evidence that the synergistic effects of magnetic scaffolds and magnetic fields can promote bone repair and regeneration. In this manuscript we review the recent innovations in bone tissue engineering that exploit magnetic biomaterials combined with static magnetic fields to enhance bone cell adhesion and proliferation, and thus bone tissue growth. PMID:28217659

  14. Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback Control of Four Electromagnets at a Distance

    PubMed Central

    Probst, R.; Lin, J.; Komaee, A.; Nacev, A.; Cummins, Z.

    2010-01-01

    Any single permanent or electro magnet will always attract a magnetic fluid. For this reason it is difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a single droplet of ferrofluid by feedback control of 4 external electromagnets. The control algorithm we have developed takes into account, and is explicitly designed for, the nonlinear (fast decay in space, quadratic in magnet strength) nature of how the magnets actuate the ferrofluid, and it also corrects for electro-magnet charging time delays. With this control, we show that dynamic actuation of electro-magnets held outside a domain can be used to position a droplet of ferrofluid to any desired location and steer it along any desired path within that domain – an example of precision control of a ferrofluid by magnets acting at a distance. PMID:21218157

  15. Current status and recent topics of rare-earth permanent magnets

    NASA Astrophysics Data System (ADS)

    Sugimoto, S.

    2011-02-01

    After the development of Nd-Fe-B magnets, rare-earth magnets are now essential components in many fields of technology, because of their ability to provide a strong magnetic flux. There are two, well-established techniques for the manufacture of rare earth magnets: powder metallurgy is used to obtain high-performance, anisotropic, fully dense magnet bodies; and the melt-spinning or HDDR (hydrogenation, disproportionation, desorption and recombination) process is widely used to produce magnet powders for bonded magnets. In the industry of sintered Nd-Fe-B magnets, the total amount of production has increased and their dominant application has been changed to motors. In particular, their use for motors in hybrid cars is one of the most attractive applications. Bonded magnets have also been used for small motors, and the studies of nanocomposite and Sm-Fe-N magnets have become widespread. This paper reviews the current status and future trend in the research of permanent magnets.

  16. Simple Magnetic Device Indicates Thickness Of Alloy 903

    NASA Technical Reports Server (NTRS)

    Long, Pin Jeng; Rodriguez, Sergio; Bright, Mark L.

    1995-01-01

    Handheld device called "ferrite indicator" orginally designed for use in determining ferrite content of specimen of steel. Placed in contact with specimen and functions by indicating whether magnet attracted more strongly to specimen or to calibrated reference sample. Relative strength of attraction shows whether alloy overlay thinner than allowable.

  17. Rules of Attraction

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image composite shows two of the Mars Exploration Rover Opportunity's magnets, the 'capture' magnet (upper portion of left panel) and the 'filter' magnet (lower portion of left panel). Scientists use these tools to study the origins of martian dust in the atmosphere. The left panel was taken by the rover's panoramic camera. The four panels to the right, taken by the microscopic imager, show close-up views of the two magnets. The bull's-eye appearance of the capture magnet is a result of alternating magnetic fields, which are used to increase overall magnetic force. The filter magnet lacks these alternating fields and consequently produces a weaker magnetic force. This weaker force selectively attracts only strong magnetic particles.

    Scientists were surprised by the large dark particles on the magnets because airborne particles are smaller in size. They theorize that these spots might be aggregates of small particles that clump together in a magnetic field.

  18. Magnetic hydrogel nanocomposites and composite nanoparticles--a review of recent patented works.

    PubMed

    Daniel-da-Silva, Ana L; Carvalho, Rui S; Trindade, Tito

    2013-06-01

    Magnetic hydrogel nanocomposites and composite nanoparticles form a class of soft materials with remote controllable properties that have attracted great attention due to their potential use in diverse applications. These include medical applications such as controlled drug delivery, clinical imaging and cancer hyperthermia and ecological applications as well, such as wastewater treatment. The present review provides an overview of the patents disclosed and research work developed in the last decade on magnetic hydrogel nanocomposites and magnetic hydrogel composite nanoparticles envisaging the above mentioned applications. In this context, recent patented advances on chemical methods for the preparation of bulk hydrogel nanocomposites and composite nanoparticles will be reviewed.

  19. Present Status of the KSTAR Superconducting Magnet System Development

    NASA Astrophysics Data System (ADS)

    Kim, Keeman; H, K. Park; K, R. Park; B, S. Lim; S, I. Lee; M, K. Kim; Y, Chu; W, H. Chung; S, H. Baek; J Y, Choi; H, Yonekawa; A, Chertovskikh; Y, B. Chang; J, S. Kim; C, S. Kim; D, J. Kim; N, H. Song; K, P. Kim; Y, J. Song; I, S. Woo; W, S. Han; D, K. Lee; Y, K. Oh; K, W. Cho; J, S. Park; G, S. Lee; H, J. Lee; T, K. Ko; S, J. Lee

    2004-10-01

    The mission of Korea Superconducting Tokamak Advanced Research (KSTAR) project is to develop an advanced steady-state superconducting tokamak for establishing a scientific and technological basis for an attractive fusion reactor. Because one of the KSTAR mission is to achieve a steady-state operation, the use of superconducting coils is an obvious choice for the magnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and 14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into use in both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasma center and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement in KSTAR magnet-system development includes the development of CICC, the development of a full-size TF model coil, the development of a coil system for background magnetic-field generation, the construction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are in the stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.

  20. Crossover from impurity to valence band in diluted magnetic semiconductors: Role of Coulomb attraction by acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Florentin; Sen, Cengiz; Dagotto, Elbio R

    2007-01-01

    The crossover between an impurity band (IB) and a valence band (VB) regime as a function of the magnetic impurity concentration in a model for diluted magnetic semiconductors (DMSs) is studied systematically by taking into consideration the Coulomb attraction between the carriers and the magnetic impurities. The density of states and the ferromagnetic transition temperature of a spin-fermion model applied to DMSs are evaluated using dynamical mean-field theory and Monte Carlo (MC) calculations. It is shown that the addition of a square-well-like attractive potential can generate an IB at small enough Mn doping x for values of the p-d exchangemore » J that are not strong enough to generate one by themselves. We observe that the IB merges with the VB when x>=xc where xc is a function of J and the Coulomb strength V. Using MC simulations, we demonstrate that the range of the Coulomb attraction plays an important role. While the on-site attraction, which has been used in previous numerical simulations, effectively renormalizes J for all values of x, an unphysical result, a nearest-neighbor range attraction renormalizes J only at very low dopings, i.e., until the bound holes wave functions start to overlap. Thus, our results indicate that the Coulomb attraction can be neglected to study Mn-doped GaSb, GaAs, and GaP in the relevant doping regimes, but it should be included in the case of Mn-doped GaN, which is expected to be in the IB regime.« less

  1. A Two-Magnet System to Push Therapeutic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

    2010-12-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically "inject", or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier.

  2. Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, Bernard

    2012-06-20

    Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearbymore » proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.« less

  3. Non-Boolean computing with nanomagnets for computer vision applications

    NASA Astrophysics Data System (ADS)

    Bhanja, Sanjukta; Karunaratne, D. K.; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep

    2016-02-01

    The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.

  4. A Principle and Winding Design of Consequent-Pole Bearingless Motors

    NASA Astrophysics Data System (ADS)

    Takenaga, Tomohiro; Kubota, Yutaka; Chiba, Akira; Fukao, Tadashi

    Recently, bearingless motors have been developed to enhance motor drive systems with magnetic suspension. Several types of motors have been proposed as bearingless motors, such as induction, surface mounted permanent magnet, inset permanent magnet, interior permanent magnet, buried permanent magnet, homopolar, hybrid, and switched reluctance bearingless motors. Permanent magnet bearingless motors have been attracting more interests in these years because of the high efficiency. In this paper, a consequent-pole bearingless motor is proposed. A rotor has buried permanent magnets, of which polarities are like. The radial force of a consequent-pole bearingless motor is generated by dc current. Thus, rotational angular position is not needed in a magnetic suspension controller. Radial force variations caused by a rotor rotation are minimized by improving arrangement of stator suspension conductors. A prototype bearingless motor and its controller are built. In experiment, principles of magnetic suspension in the proposed consequent-pole bearingless drive are confirmed.

  5. Magnet Healing?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2000-03-01

    Many people are convinced that static magnets—applied to their skin—will heal ills, and many businesses sell such magnets. The biophysics of such healing was reviewed [1] together with the general biophysics of static fields. Birds and insects do use the earth’s magnetic field for navigation. While insect and frog egg development can clearly be influenced by high fields (7 T and 17 T respectively), there is no experimental evidence that small magnetic fields (of less than 0.5 T) might heal, and much evidence that they cannot heal. A puzzle to the physics community is: How to show laypersons that simple magnets (very probably) do not heal, however attractive that idea might be. [1] L. Finegold, The Physics of "Alternative Medicine": Magnet Therapy, The Scientific Review of Alternative Medicine 3:26-33 (1999).

  6. A Real-Time Localization System for an Endoscopic Capsule Using Magnetic Sensors †

    PubMed Central

    Pham, Duc Minh; Aziz, Syed Mahfuzul

    2014-01-01

    Magnetic sensing technology offers an attractive alternative for in vivo tracking with much better performance than RF and ultrasound technologies. In this paper, an efficient in vivo magnetic tracking system is presented. The proposed system is intended to localize an endoscopic capsule which delivers biomarkers around specific locations of the gastrointestinal (GI) tract. For efficiently localizing a magnetic marker inside the capsule, a mathematical model has been developed for the magnetic field around a cylindrical magnet and used with a localization algorithm that provides minimum error and fast computation. The proposed tracking system has much reduced complexity compared to the ones reported in the literature to date. Laboratory tests and in vivo animal trials have demonstrated the suitability of the proposed system for tracking a magnetic marker with expected accuracy. PMID:25379813

  7. Repulsive vacuum-induced forces on a magnetic particle

    NASA Astrophysics Data System (ADS)

    Sinha, Kanupriya

    2018-03-01

    We study the possibility of obtaining a repulsive vacuum-induced force for a magnetic point particle near a surface. Considering the toy model of a particle with an electric-dipole transition and a large magnetic spin, we analyze the interplay between the repulsive magnetic-dipole and the attractive electric-dipole contributions to the total Casimir-Polder force. Particularly noting that the magnetic-dipole interaction is longer ranged than the electric dipole due to the difference in their respective characteristic transition frequencies, we find a regime where the repulsive magnetic contribution to the total force can potentially exceed the attractive electric part in magnitude for a sufficiently large spin. We analyze ways to further enhance the magnitude of the repulsive magnetic Casimir-Polder force for an excited particle, such as by preparing it in a "super-radiant" magnetic sublevel and designing surface resonances close to the magnetic transition frequency.

  8. The Layered Structure of The Universe

    NASA Astrophysics Data System (ADS)

    Kursunoglu, Behram N.

    2003-06-01

    It has now become a habit for the cosmologists to introduce attraction or repulsion generating substances to describe the observed cosmological behavior of matter. Examples are dark energy to provide repulsive force to cause increasing acceleration accompanying the expansion of the universe, quintessence providing repulsive force. In this paper we believe that what is needed in the final analysis is attraction and repulsion. We show here that universe can be conceived to consist of attractive and repulsive layers of matter expanding with increasing acceleration. The generalized theory of gravitation as developed originally by Einstein and Schrödinger as a non-symmetric theory was modified by this author using Bianchi-Einstein Identities yielding coupling between the field and electric charge as well as between the field and magnetic charge, and there appears a fundamental length parameter ro where quintessence constitute magnetic repulsive layers while dark energy and all other kinds of names invented by cosmologists refer to attractive electric layers. This layered structure of the universe resembles the layered structure of the elementary particle predicted by this theory decades ago (1, 3, and 6). This implies a layer Doughnut structure of the universe. We have therefore, obtained a unification of the structure of the universe and the structure of elementary particles. Overall the forces consist of long range attractive, long range repulsive, short-range attractive, and short-range repulsive variety. We further discovered the existence of space oscillations whose roles in the expansion of the universe with increasing acceleration and further the impact in the propagation of the gravitational waves can be expected to play a role in their observation.

  9. Hidden Attraction - The History and Mystery of Magnetism

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    1996-04-01

    Long one of nature's most fascinating phenomena, magnetism was once the subject of many superstitions. Magnets were thought useful to thieves, effective as a love potion, and as a cure for gout or spasms. They could remove sorcery from women and put demons to flight and even reconcile married couples. It was said that a lodestone pickled in the salt of sucking fish had the power to attract gold. Today, these beliefs have been put aside, but magnetism is no less remarkable for our modern understanding of it. In Hidden Attraction , Gerrit L. Verschuur, a noted astronomer and National Book Award nominee for The Invisible Universe , traces the history of our fascination with magnetism, from the mystery and superstition that propelled the first alchemical experiments with lodestone, through the more tangible works of Faraday, Maxwell, Hertz and other great pioneers of magnetism (scientists responsible for the extraordinary advances in modern science and technology, including radio, the telephone, and computers, that characterize the twentieth century), to state-of-the-art theories that see magnetism as a basic force in the universe. Boasting many informative illustrations, this is an adventure of the mind, using the specific phenomenon of magnetism to show how we have moved from an era of superstitions to one in which the Theory of Everything looms on the horizon.

  10. May the Magnetic Force Be with You

    ERIC Educational Resources Information Center

    Wilcox, Jesse; Richey, Lindsey R.

    2012-01-01

    Although most elementary students have had experiences with magnets, they generally have misconceptions about magnetism (Driver et al. 1994; Burgoon, Heddle, and Duran 2010). For example, students may think magnets can attract all metals or that larger magnets are stronger than smaller magnets. Students often confuse magnets with magnetic…

  11. Cryostatless high temperature supercurrent bearings for rocket engine turbopumps

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Dill, James F.

    1989-01-01

    The rocket engine systems examined include SSME, ALS, and CTV systems. The liquid hydrogen turbopumps in the SSME and ALS vehicle systems are identified as potentially attractive candidates for development of Supercurrent Bearings since the temperatures around the bearings is about 30 K, which is considerably lower than the 95 K transition temperatures of HTS materials. At these temperatures, the current HTS materials are shown to be capable of developing significantly higher current densities. This higher current density capability makes the development of supercurrent bearings for rocket engines an attractive proposition. These supercurrent bearings are also shown to offer significant advantages over conventional bearings used in rocket engines. They can increase the life and reliability over rolling element bearings because of noncontact operation. They offer lower power loss over conventional fluid film bearings. Compared to conventional magnetic bearings, they can reduce the weight of controllers significantly, and require lower power because of the use of persistent currents. In addition, four technology areas that require further attention have been identified. These are: Supercurrent Bearing Conceptual Design Verification; HTS Magnet Fabrication and Testing; Cryosensors and Controller Development; and Rocket Engine Environmental Compatibility Testing.

  12. Substantiating In Vivo Magnetic Brain Tumor Targeting of Cationic Iron Oxide Nanocarriers via Adsorptive Surface Masking

    PubMed Central

    Chertok, Beata; David, Allan E.; Moffat, Bradford A.; Yang, Victor C.

    2009-01-01

    Cationic magnetic nanoparticles are attractive as potential vehicles for tumor drug delivery due to their favorable interactions with both the tumor milieu and the therapeutic cargo. However, systemic delivery of these nanoparticles to the tumor site is compromised by their rapid plasma clearance. We developed a simple method for in vivo protection of cationic nanocarriers, using non-covalent surface masking with a conjugate of low molecular weight heparin and polyethylene glycol. Surface masking resulted in an 11-fold increase in plasma AUC and a 2-fold increase in the magnetic capture of systemically injected nanoparticles in orthotopic rodent brain tumors. Overall, the described methodology could expand the prospective applications for cationic magnetic nanoparticles in magnetically-mediated gene/drug delivery. PMID:19782394

  13. Nano-magnetic particles used in biomedicine: core and coating materials.

    PubMed

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles.

    PubMed

    Chen, Shih-Wei; Lai, Jr-Jie; Chiang, Chen-Li; Chen, Cheng-Lung

    2012-06-01

    Magnetic hyperthermia using magnetic nanoparticles (MNPs) has attracted considerable attention as one of the promising tumor therapy. The study has been developed under single magnetic field. Recently, we found that the immobile MNP may generate more heat under two synchronous ac magnetic fields than traditional single and circular polarized fields based on model simulation result. According to this finding we constructed an orthogonal synchronized bi-directional field (OSB field). The system contained two LC resonant inverters (L: inductor, C: capacitor) and both vertical and transverse ac magnetic fields were generated by two Helmholtz coils. To reduce the interference, the axis directional of two coils were arranged orthogonally. The experiments showed that the heating ability of aggregated MNPs is greatly enhanced under this newly designed OSB field without increasing the strength of magnetic field. The OSB field system provides a promising way for future clinical hyperthermia.

  15. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Wei; Lai-Jie, Jr.; Chiang, Chen-Li; Chen, Cheng-Lung

    2012-06-01

    Magnetic hyperthermia using magnetic nanoparticles (MNPs) has attracted considerable attention as one of the promising tumor therapy. The study has been developed under single magnetic field. Recently, we found that the immobile MNP may generate more heat under two synchronous ac magnetic fields than traditional single and circular polarized fields based on model simulation result. According to this finding we constructed an orthogonal synchronized bi-directional field (OSB field). The system contained two LC resonant inverters (L: inductor, C: capacitor) and both vertical and transverse ac magnetic fields were generated by two Helmholtz coils. To reduce the interference, the axis directional of two coils were arranged orthogonally. The experiments showed that the heating ability of aggregated MNPs is greatly enhanced under this newly designed OSB field without increasing the strength of magnetic field. The OSB field system provides a promising way for future clinical hyperthermia.

  16. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    PubMed Central

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  17. Lutzomyia spp. (Diptera: Psychodidae) response to olfactory attractant- and light emitting diode-modified Mosquito Magnet X (MM-X) traps.

    PubMed

    Mann, Rajinder S; Kaufman, Phillip E; Butler, Jerry F

    2009-09-01

    Mosquito Magnet-X traps were modified for use with blue, green, red, and blue-green-red light-emitting diodes and olfactory attractants to determine the response of Lutzomyia shannoni (Dyar) and Lutzomyia vexator (Coquillett) (Diptera: Psychodidae) field populations to these attractants. Red and blue-green-red-baited traps captured the highest numbers of Lu. shannoni and Lu. vexator, respectively, although, there were no significant differences between the colors. Baiting the traps with CO, attracted significantly higher numbers of Lu. shannoni but showed no effect on Lu. vexator capture. In comparison with CO, alone, Lu. shannoni preferred 1-octen-3-ol and 1-hexen-3-ol (0.05 g per trap) in combination with CO.

  18. Magnetically Retained Relief Valve

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L. (Inventor); Cook, Charles R. (Inventor)

    2017-01-01

    A pressure relief valve includes a housing having a fluid inlet and at least one fluid outlet. A first structure mounted in the housing and fixed in relation thereto is in magnetic attraction with a second structure coupled to a piston disposed in a portion of the housing. The piston defines a chamber disposed adjacent to the fluid outlet(s) throughout the piston's stroke. The piston includes a sealing element providing a sealing force to prevent flow through the valve. The sealing force is independent of the magnetic attraction force between the first and second structures.

  19. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing.

    PubMed

    Ahmed, Anansa S; Ramanujan, R V

    2015-09-08

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible "skin" and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures.

  20. Shock Magnetic Field and Origin of the Earth

    NASA Technical Reports Server (NTRS)

    Tunyi, I.; Timko, M.; Roth, L. E.

    2001-01-01

    To the effects of impulse magnetic field in protoplanetary nebula (fast melting, cooling and magnetization of chondrules), there is added another possible effect - mechanism associated with the forces of attraction between magnetized planetesimals. Additional information is contained in the original extended abstract.

  1. Enduring Attraction: America’s Dependence on and Need to Secure Its Supply of Permanent Magnets

    DTIC Science & Technology

    2011-02-16

    AIR WAR COLLEGE AIR UNIVERSITY ENDURING ATTRACTION: AMERICA‟S DEPENDENCE ON AND NEED TO SECURE ITS SUPPLY OF PERMANENT MAGNETS by...February 2011 Distribution A: Approved for public release; distribution unlimited ii DISCLAIMER The views expressed in this academic...command of the 628th Mission Support Group at Joint Base Charleston, South Carolina following graduation from Air War College. iv TABLE OF CONTENTS

  2. Magnon transistor for all-magnon data processing

    PubMed Central

    Chumak, Andrii V.; Serga, Alexander A.; Hillebrands, Burkard

    2014-01-01

    An attractive direction in next-generation information processing is the development of systems employing particles or quasiparticles other than electrons—ideally with low dissipation—as information carriers. One such candidate is the magnon: the quasiparticle associated with the eigen-excitations of magnetic materials known as spin waves. The realization of single-chip all-magnon information systems demands the development of circuits in which magnon currents can be manipulated by magnons themselves. Using a magnonic crystal—an artificial magnetic material—to enhance nonlinear magnon–magnon interactions, we have succeeded in the realization of magnon-by-magnon control, and the development of a magnon transistor. We present a proof of concept three-terminal device fabricated from an electrically insulating magnetic material. We demonstrate that the density of magnons flowing from the transistor’s source to its drain can be decreased three orders of magnitude by the injection of magnons into the transistor’s gate. PMID:25144479

  3. Magnon transistor for all-magnon data processing.

    PubMed

    Chumak, Andrii V; Serga, Alexander A; Hillebrands, Burkard

    2014-08-21

    An attractive direction in next-generation information processing is the development of systems employing particles or quasiparticles other than electrons--ideally with low dissipation--as information carriers. One such candidate is the magnon: the quasiparticle associated with the eigen-excitations of magnetic materials known as spin waves. The realization of single-chip all-magnon information systems demands the development of circuits in which magnon currents can be manipulated by magnons themselves. Using a magnonic crystal--an artificial magnetic material--to enhance nonlinear magnon-magnon interactions, we have succeeded in the realization of magnon-by-magnon control, and the development of a magnon transistor. We present a proof of concept three-terminal device fabricated from an electrically insulating magnetic material. We demonstrate that the density of magnons flowing from the transistor's source to its drain can be decreased three orders of magnitude by the injection of magnons into the transistor's gate.

  4. Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment.

    PubMed

    Santos, Tássia R T; Silva, Marcela F; Nishi, Leticia; Vieira, Angélica M S; Fagundes-Klen, Márcia R; Andrade, Murilo B; Vieira, Marcelo F; Bergamasco, Rosângela

    2016-04-01

    In this work, to evaluate the effectiveness of the coagulation/flocculation using a natural coagulant, using Moringa oleifera Lam functionalized with magnetic iron oxide nanoparticles, producing flakes that are attracted by an external magnetic field, thereby allowing a fast settling and separation of the clarified liquid, is proposed. The removal efficiency of the parameters, apparent color, turbidity, and compounds with UV254nm absorption, was evaluated. The magnetic functionalized M. oleifera Lam coagulant could effectively remove 90 % of turbidity, 85 % of apparent color, and 50 % for the compounds with absorption at UV254nm, in surface waters under the influence of an external magnetic field within 30 min. It was found that the coagulation/flocculation treatment using magnetic functionalized M. oleifera Lam coagulant was able to reduce the values of the physico-chemical parameters evaluated with reduced settling time.

  5. Ultrafast magnetization modulation induced by the electric field component of a terahertz pulse in a ferromagnetic-semiconductor thin film.

    PubMed

    Ishii, Tomoaki; Yamakawa, Hiromichi; Kanaki, Toshiki; Miyamoto, Tatsuya; Kida, Noriaki; Okamoto, Hiroshi; Tanaka, Masaaki; Ohya, Shinobu

    2018-05-02

    High-speed magnetization control of ferromagnetic films using light pulses is attracting considerable attention and is increasingly important for the development of spintronic devices. Irradiation with a nearly monocyclic terahertz pulse, which can induce strong electromagnetic fields in ferromagnetic films within an extremely short time of less than ~1 ps, is promising for damping-free high-speed coherent control of the magnetization. Here, we successfully observe a terahertz response in a ferromagnetic-semiconductor thin film. In addition, we find that a similar terahertz response is observed even in a non-magnetic semiconductor and reveal that the electric-field component of the terahertz pulse plays a crucial role in the magnetization response through the spin-carrier interactions in a ferromagnetic-semiconductor thin film. Our findings will provide new guidelines for designing materials suitable for ultrafast magnetization reversal.

  6. Theory of plasma confinement in non-axisymmetric magnetic fields.

    PubMed

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  7. Application of nanoscale zero-valent iron tracer to delineate groundwater flow paths between a screened well and an open well in fractured rock

    NASA Astrophysics Data System (ADS)

    Chuang, P. Y.; Chiu, Y.; Liou, Y. H.; Teng, M. H.; Chia, Y.

    2016-12-01

    Fracture flow is of importance for water resources as well as the investigation of contaminant pathways. In this study, a novel characterization approach of nanoscale zero-valent iron (nZVI) tracer test was developed to accurately identify the connecting fracture zones of preferential flow between a screened well and an open well. Iron nanoparticles are magnetic and can be attracted by a magnet. This feature make it possible to design a magnet array for attracting nZVI particles at the tracer inlet to characterize the location of incoming tracer in the observation well. This novel approach was tested at two experiment wells with well hydraulic connectivity in a hydrogeological research station in central Taiwan. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. Then, the most permeable zone in the injection well was hydraulically isolated by well screen to prevent the injected nZVI particles from being stagnated at the hole bottom. Afterwards, another hydraulic test was implemented to re-examine the hydraulic connectivity between the two wells. When nZVI slurry was injected in the injection well, they migrated through connected permeable fractures to the observation well. A breakthrough curve, observed by the fluid conductivity sensor in the observation well, indicated the arrival of nZVI slurry. The iron nanoparticles attracted to the magnets in the observation well provide the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. This article demonstrates the potential of nano-iron tracer test to provide the quantitative information of fracture flow paths in fractured rock.

  8. Magnet Trade Books: Attracting and Repelling Concepts

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Robinson, Richard D.

    2007-01-01

    A series of magnet trade books were analyzed against a validated list of magnet concepts (Barrow, 1990a) and their Flesch (1974) Readability was determined. These trade books were used to supplement a second grade unit on magnetism locally constructed from AIM's "Mostly Magnets" (1991). All trade books accurately described how like and unlike…

  9. Two Devices for Removing Sludge From Bioreactor Wastewater

    NASA Technical Reports Server (NTRS)

    Archer, Shivaun; Hitchens, G. DUncan; Jabs, Harry; Cross, Jennifer; Pilkinton, Michelle; Taylor, Michael

    2007-01-01

    Two devices a magnetic separator and a special filter denoted a self-regenerating separator (SRS) have been developed for separating sludge from the stream of wastewater from a bioreactor. These devices were originally intended for use in microgravity, but have also been demonstrated to function in normal Earth gravity. The magnetic separator (see Figure 1) includes a thin-walled nonmagnetic, stainless-steel cylindrical drum that rotates within a cylindrical housing. The wastewater enters the separator through a recirculation inlet, and about 80 percent of the wastewater flow leaves through a recirculation outlet. Inside the drum, a magnet holder positions strong permanent magnets stationary and, except near a recirculation outlet, close to the inner drum surface. To enable magnetic separation, magnetite (a ferromagnetic and magnetically soft iron oxide) powder is mixed into the bioreactor wastewater. The magnetite becomes incorporated into the sludge by condensation, onto the powder particles, of microbe flocks that constitute the sludge. As a result, the magnets inside the drum magnetically attract the sludge onto the outer surface of the drum.

  10. Magnetic safety matches

    NASA Astrophysics Data System (ADS)

    Lindén, J.; Lindberg, M.; Greggas, A.; Jylhävuori, N.; Norrgrann, H.; Lill, J. O.

    2017-07-01

    In addition to the main ingredients; sulfur, potassium chlorate and carbon, ordinary safety matches contain various dyes, glues etc, giving the head of the match an even texture and appealing color. Among the common reddish-brown matches there are several types, which after ignition can be attracted by a strong magnet. Before ignition the match head is generally not attracted by the magnet. An elemental analysis based on proton-induced x-ray emission was performed to single out iron as the element responsible for the observed magnetism. 57Fe Mössbauer spectroscopy was used for identifying the various types of iron-compounds, present before and after ignition, responsible for the macroscopic magnetism: Fe2O3 before and Fe3O4 after. The reaction was verified by mixing the main chemicals in the match-head with Fe2O3 in glue and mounting the mixture on a match stick. The ash residue after igniting the mixture was magnetic.

  11. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate.

    PubMed

    Effenberger, Fernando B; Couto, Ricardo A; Kiyohara, Pedro K; Machado, Giovanna; Masunaga, Sueli H; Jardim, Renato F; Rossi, Liane M

    2017-03-17

    The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe 3 O 4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.

  12. Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas.

    PubMed

    Volotskova, O; Levchenko, I; Shashurin, A; Raitses, Y; Ostrikov, K; Keidar, M

    2010-10-01

    The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.

  13. Observation of a commensurate array of flux chains in tilted flux lattices in Bi-Sr-Ca-Cu-O single crystals

    NASA Astrophysics Data System (ADS)

    Bolle, C. A.; Gammel, P. L.; Grier, D. G.; Murray, C. A.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.

    1991-01-01

    We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields.

  14. Multifunctional Fluorescent-Magnetic Polymeric Colloidal Particles: Preparations and Bioanalytical Applications.

    PubMed

    Kaewsaneha, Chariya; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2015-10-28

    Fluorescent-magnetic particles (FMPs) play important roles in modern materials, especially as nanoscale devices in the biomedical field. The interesting features of FMPs are attributed to their dual detection ability, i.e., fluorescent and magnetic modes. Functionalization of FMPs can be performed using several types of polymers, allowing their use in various applications. The synergistic potentials for unique multifunctional, multilevel targeting nanoscale devices as well as combination therapies make them particularly attractive for biomedical applications. However, the synthesis of FMPs is challenging and must be further developed. In this review article, we summarized the most recent representative works on polymer-based FMP systems that have been applied particularly in the bioanalytical field.

  15. Impact of the Static and Radiofrequency Magnetic Fields Produced by a 7T MR Imager on Metallic Dental Materials.

    PubMed

    Oriso, Kenta; Kobayashi, Takuya; Sasaki, Makoto; Uwano, Ikuko; Kihara, Hidemichi; Kondo, Hisatomo

    2016-01-01

    We examined safety issues related to the presence of various metallic dental materials in magnetic resonance (MR) imaging at 7 tesla. A 7T MR imaging scanner was used to examine 18 kinds of materials, including 8 metals used in dental restorations, 6 osseointegrated dental implants, 2 abutments for dental implants, and 2 magnetic attachment keepers. We assessed translational attraction forces between the static magnetic field and materials via deflection angles read on a tailor-made instrument and compared with those at 3T. Heating effects from radiofrequency during image acquisitions using 6 different sequences were examined by measuring associated temperature changes in agarose-gel phantoms with a fiber-optic thermometer. Deflection angles of the metallic dental materials were significantly larger at 7T than 3T. Among full metal crowns (FMCs), deflection angles were 18.0° for cobalt-chromium (Co-Cr) alloys, 13.5° for nickel-chromium (Ni-Cr) alloys, and 0° for other materials. Deflection angles of the dental implants and abutments were minimal, ranging from 5.0 to 6.5°, whereas the magnetic attachment keepers were strongly attracted to the field, having deflection angles of 90° or more. Increases in temperature of the FMCs were significant but less than 1°C in every sequence. The dental implant of 50-mm length showed significant but mild temperature increases (up to 1.5°C) when compared with other dental implants and abutments, particularly on sequences with high specific absorption rate values. Although most metallic dental materials showed no apparent translational attraction or heating at 7T, substantial attraction forces on the magnetic attachment keepers suggested potential risks to patients and research participants undergoing MR imaging examinations.

  16. Design and fabrication of magnetic coolant filter

    NASA Astrophysics Data System (ADS)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not lose its strength even number of years of use. Dirty coolant is fed from the machines in to the reservoir of the coolant filter either by a pump or taken by the gravity and flows under the tray. This attracts the ferrous particles and builds up a cake of ferrous material and finally taken away by the scraper. The moving permanent magnets mounted on the shaft attracts ferrous chips and slide them on to plate and then to the discharge end or sludge bin. The coolant separated from chips flow back to the coolant tank. Well in this fast changing growth of metal working operation the recycling of cutting fluids become very important for the management of coolant. With the help of this developed model of magnetic coolant separator we can get highly efficient way of filtration guarantying fine finish, dimensional accuracy and increased tool life. The most significant role of this filter is that, it will reduce the waste disposal of coolant and a net profit for the production industries.

  17. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  18. Magnetic bearings for free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Curwen, P. W.; Flemig, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficiency of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficieny points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  19. Magnetic bearings for free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  20. Reduced Magnetism in Core–Shell Magnetite@MOF Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Sinnwell, Michael A.; Banerjee, Debasis

    Rare-earth elements (REEs) have significant commercial and military uses.1-3 However, REE extraction through conventional mining processes is expensive and feasible at only a few locations worldwide. Alternative methods are needed to produce REEs from more geographically disperse resources and in a cost effective, environmental friendly manner.4,5 Among various sources, geothermal brine, used for generating geothermal energy can possess attractive concentrations (ppb to ppm level) of REEs along with other dissolved metal ions.6 A system that can selectively trap the REEs using an existing geothermal power plant infrastructure would be an attractive additional revenue stream for the plant operator that couldmore » accelerate the development and deployment of geothermal plants in the United States and rest of the world.7,8 Here, we demonstrate a magnetic core-shell approach that can effectively extract REEs in their ionic form from aqueous solution with up to 99.99% removal efficiency. The shell, composed of thermally and chemically stable functionalized metal-organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core. Magnetic susceptibility of the particles was found to decline significantly after in situ growth of a MOF shell, which resulted from oxidation of Fe2+ species of the magnetite (Fe3O4) to Fe3+ species (maghemite). The core-shell particles can be completely removed from the mixture under an applied magnetic field, offering a practical, economic, and efficient REE-removal process.« less

  1. Component deficits of visual neglect: "Magnetic" attraction of attention vs. impaired spatial working memory.

    PubMed

    Toba, Monica N; Rabuffetti, Marco; Duret, Christophe; Pradat-Diehl, Pascale; Gainotti, Guido; Bartolomeo, Paolo

    2018-01-31

    Visual neglect is a disabling consequence of right hemisphere damage, whereby patients fail to detect left-sided objects. Its precise mechanisms are debated, but there is some consensus that distinct component deficits may variously associate and interact in different patients. Here we used a touch-screen based procedure to study two putative component deficits of neglect, rightward "magnetic" attraction of attention and impaired spatial working memory, in a group of 47 right brain-damaged patients, of whom 33 had signs of left neglect. Patients performed a visual search task on three distinct conditions, whereby touched targets could (1) be tagged, (2) disappear or (3) show no change. Magnetic attraction of attention was defined as more left neglect on the tag condition than on the disappear condition, where right-sided disappeared targets could not capture patients' attention. Impaired spatial working memory should instead produce more neglect on the no change condition, where no external cue indicated that a target had already been explored, than on the tag condition. Using a specifically developed analysis algorithm, we identified significant differences of performance between the critical conditions. Neglect patients as a group performed better on the disappear condition than on the no change condition and also better in the tag condition comparing with the no change condition. No difference was found between the tag condition and the disappear condition. Some of our neglect patients had dissociated patterns of performance, with predominant magnetic attraction or impaired spatial working memory. Anatomical results issued from both grey matter analysis and fiber tracking were consistent with the typical patterns of fronto-parietal and occipito-frontal disconnection in neglect, but did not identify lesional patterns specifically associated with one or another deficit, thus suggesting the possible co-localization of attentional and working memory processes in fronto-parietal networks. These findings give support to the hypothesis of the co-occurrence of distinct cognitive deficits in visual neglect and stress the necessity of multi-component models of visuospatial disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Animal Magnetism: Metaphoric Cues Alter Perceptions of Romantic Partners and Relationships.

    PubMed

    Christy, Andrew G; Hirsch, Kelly A; Schlegel, Rebecca J

    2016-01-01

    The psychological state of love is difficult to define, and we often rely on metaphors to communicate about this state and its constituent experiences. Commonly, these metaphors liken love to a physical force-it sweeps us off our feet, causes sparks to fly, and ignites flames of passion. Even the use of "attraction" to refer to romantic interest, commonplace in both popular and scholarly discourse, implies a force propelling two objects together. The present research examined the effects of exposing participants to a physical force (magnetism) on subsequent judgments of romantic outcomes. Across two studies, participants exposed to magnets reported greater levels of satisfaction, attraction, intimacy, and commitment.

  3. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer

    NASA Astrophysics Data System (ADS)

    Hervault, Aziliz; Thanh, Nguyêl; N. Thé, Kim

    2014-09-01

    Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.

  4. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.

    PubMed

    Hervault, Aziliz; Thanh, Nguyen Th Kim

    2014-10-21

    Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.

  5. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing

    NASA Astrophysics Data System (ADS)

    Ahmed, Anansa S.; Ramanujan, R. V.

    2015-09-01

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible “skin” and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures.

  6. Nanohybrids with Magnetic and Persistent Luminescence Properties for Cell Labeling, Tracking, In Vivo Real-Time Imaging, and Magnetic Vectorization.

    PubMed

    Teston, Eliott; Maldiney, Thomas; Marangon, Iris; Volatron, Jeanne; Lalatonne, Yoann; Motte, Laurence; Boisson-Vidal, Catherine; Autret, Gwennhael; Clément, Olivier; Scherman, Daniel; Gazeau, Florence; Richard, Cyrille

    2018-04-01

    Once injected into a living organism, cells diffuse or migrate around the initial injection point and become impossible to be visualized and tracked in vivo. The present work concerns the development of a new technique for therapeutic cell labeling and subsequent in vivo visualization and magnetic retention. It is hypothesized and subsequently demonstrated that nanohybrids made of persistent luminescence nanoparticles and ultrasmall superparamagnetic iron oxide nanoparticles incorporated into a silica matrix can be used as an effective nanoplatform to label therapeutic cells in a nontoxic way in order to dynamically track them in real-time in vitro and in living mice. As a proof-of-concept, it is shown that once injected, these labeled cells can be visualized and attracted in vivo using a magnet. This first step suggests that these nanohybrids represent efficient multifunctional nanoprobes for further imaging guided cell therapies development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing

    PubMed Central

    Ahmed, Anansa S.; Ramanujan, R. V.

    2015-01-01

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible “skin” and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures. PMID:26348284

  8. Analytical modelling of Halbach linear generator incorporating pole shifting and piece-wise spring for ocean wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Tan, Yimin; Lin, Kejian; Zu, Jean W.

    2018-05-01

    Halbach permanent magnet (PM) array has attracted tremendous research attention in the development of electromagnetic generators for its unique properties. This paper has proposed a generalized analytical model for linear generators. The slotted stator pole-shifting and implementation of Halbach array have been combined for the first time. Initially, the magnetization components of the Halbach array have been determined using Fourier decomposition. Then, based on the magnetic scalar potential method, the magnetic field distribution has been derived employing specially treated boundary conditions. FEM analysis has been conducted to verify the analytical model. A slotted linear PM generator with Halbach PM has been constructed to validate the model and further improved using piece-wise springs to trigger full range reciprocating motion. A dynamic model has been developed to characterize the dynamic behavior of the slider. This analytical method provides an effective tool in development and optimization of Halbach PM generator. The experimental results indicate that piece-wise springs can be employed to improve generator performance under low excitation frequency.

  9. A Magnet Spring Model

    ERIC Educational Resources Information Center

    Fay, T. H.; Mead, L.

    2006-01-01

    The paper discusses an elementary spring model representing the motion of a magnet suspended from the ceiling at one end of a vertical spring which is held directly above a second magnet fixed on the floor. There are two cases depending upon the north-south pole orientation of the two magnets. The attraction or repelling force induced by the…

  10. Assessing facial attractiveness: individual decisions and evolutionary constraints

    PubMed Central

    Kocsor, Ferenc; Feldmann, Adam; Bereczkei, Tamas; Kállai, János

    2013-01-01

    Background Several studies showed that facial attractiveness, as a highly salient social cue, influences behavioral responses. It has also been found that attractive faces evoke distinctive neural activation compared to unattractive or neutral faces. Objectives Our aim was to design a face recognition task where individual preferences for facial cues are controlled for, and to create conditions that are more similar to natural circumstances in terms of decision making. Design In an event-related functional magnetic resonance imaging (fMRI) experiment, subjects were shown attractive and unattractive faces, categorized on the basis of their own individual ratings. Results Statistical analysis of all subjects showed elevated brain activation for attractive opposite-sex faces in contrast to less attractive ones in regions that previously have been reported to show enhanced activation with increasing attractiveness level (e.g. the medial and superior occipital gyri, fusiform gyrus, precentral gyrus, and anterior cingular cortex). Besides these, females showed additional brain activation in areas thought to be involved in basic emotions and desires (insula), detection of facial emotions (superior temporal gyrus), and memory retrieval (hippocampus). Conclusions From these data, we speculate that because of the risks involving mate choice faced by women during evolutionary times, selection might have preferred the development of an elaborated neural system in females to assess the attractiveness and social value of male faces. PMID:24693356

  11. The Reversed Role of Magnets in St. Louis: Implications for Black Student Outcomes

    ERIC Educational Resources Information Center

    Grooms, Ain A.; Williams, Sheneka M.

    2015-01-01

    Magnet schools were originally created to attract a diverse student population. Using data from the 23 magnet schools in St. Louis, this longitudinal study is twofold: first, to review the performance outcomes of the magnet schools across a 5-year period, between 2005-2006 and 2009-2010, and second, to examine whether the magnet schools are…

  12. Magnetic properties of NdFeB-coated rubberwood composites

    NASA Astrophysics Data System (ADS)

    Noodam, Jureeporn; Sirisathitkul, Chitnarong; Matan, Nirundorn; Rattanasakulthong, Watcharee; Jantaratana, Pongsakorn

    2013-01-01

    Magnetic properties of composites prepared by coating lacquer containing neodymium iron boron (Nd-Fe-B) powders on rubberwood were characterized by vibrating sample magnetometry (VSM), magnetic moment measurements, and attraction tests with an iron-core solenoid. The Nd-Fe-B powders were recycled from electronic wastes by the ball-milling technique. Varying the milling time from 20 to 300 min, the magnetic squareness and the coercive field of the Nd-Fe-B powders were at the minimum when the powders were milled for 130 min. It followed that the coercive field of the magnetic wood composites was increased with the milling time increasing from 130 to 300 min. For the magnetic wood composites using Nd-Fe-B obtained from the same milling time, the magnetic squareness and the coercive field were rather insensitive to the variation of Nd-Fe-B concentration in coating lacquer from 0.43 to 1.00 g/cm3. By contrast, the magnetization and magnetic moment were increased with the Nd-Fe-B concentration increasing. Furthermore, the electrical current in the solenoid required for the attraction of the magnetic wood composites was exponentially reduced with the increase in the amount of Nd-Fe-B used in the coating.

  13. Hidden attraction: a menacing meal of magnets and batteries.

    PubMed

    Brown, Julie C; Murray, Karen F; Javid, Patrick J

    2012-08-01

    Magnet and button battery ingestions are increasingly common, and can result in significant morbidity. Timely identification of hazardous foreign body ingestions can be difficult in non-verbal and non-disclosing children. We aim to present a case that demonstrates some of the challenges around identifying and correctly locating magnets and batteries, and the importance of prompt identification and removal. We describe an older child with the covert ingestion of multiple magnets and batteries, with magnets that attracted across the stomach and a loop of jejunum. Mild symptoms and signs resulted in a delayed diagnosis and serious consequences. Radiographs suggested a gastric location of the foreign bodies. Health care workers should consider the possibility of battery or magnet ingestions in children with vomiting and abdominal pain, even when well-appearing. Like esophageal batteries, multiple gastrointestinal magnets and combined magnet-battery ingestions can cause significant morbidity, and prompt identification is important. Providers should ask verbal children for ingestion histories, and consider radiographs when symptoms are atypical or persistent. Like esophageal batteries, gastrointestinal magnet-battery ingestions should be removed promptly to prevent complications. Caregivers should supervise or limit the use of toys that include magnets and batteries. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Magnetic dipole moment estimation and compensation for an accurate attitude control in nano-satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Sako, Nobutada; Nakasuka, Shinichi

    2011-06-01

    Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.

  15. Single axis controlled hybrid magnetic bearing for left ventricular assist device: hybrid core and closed magnetic circuit.

    PubMed

    da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P

    2011-05-01

    In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices

    NASA Astrophysics Data System (ADS)

    Lu, J.-C.; Liao, W.-H.; Tung, Y.-C.

    2012-07-01

    Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research.

  17. Enduring Attraction: America’s Dependence On and Need to Secure Its Supply of Permanent Magnets

    DTIC Science & Technology

    2011-02-16

    124,000 tons. For the time being, the delta is bridged using materials stock-piled at various commercial mines around the world . This will not suffice...AIR WAR COLLEGE AIR UNIVERSITY ENDURING ATTRACTION: AMERICA’S DEPENDENCE ON AND NEED TO SECURE ITS SUPPLY OF PERMANENT MAGNETS by...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air University,Air War College,325 Chennault Circle

  18. Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer.

    PubMed

    Oida, Takenori; Kobayashi, Tetsuo

    2013-01-01

    Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.

  19. Molecular nanomagnets: Syntheses and characterization of high nuclearity transition metal complexes

    NASA Astrophysics Data System (ADS)

    Foguet-Albiol, Maria D.

    2006-12-01

    High nuclearity transition metal complexes have attracted a lot of attention because of their aesthetically pleasant structures and/or their potential applications. The fusion of the world of magnetism with the exciting research in physics and chemistry led to the realization of interesting types of materials that can function as nanoscale magnetic particles. The study of the magnetism of inorganic complexes and especially the study of these molecular nanomagnets (or single-molecule magnets, SMMs) is a field that has generated intense interest in the scientific community. Interest in these molecular nanomagnets arises as part of a broader investigation of nanomagnetism (and nanotechnology), as these represent the ultimate step in device miniaturization. The primary purpose of this dissertation is the development of new synthetic methods intended for the preparation of novel single-molecule magnets (SMMs). The definition of the "bottom-up approach" is to increase the size of molecules by adding new magnetic centers; this is attractive but does not actually reflect how the chemistry takes place. Various strategies have been employed in developing the aforementioned synthetic methods which include the use of mononuclear as well as preformed clusters as starting materials; and the introduction of new alcohol based ligands as N-methyldiethanolamine (mdaH2) and triethanolamine (teaH3), since currently only a few alcohol based ligands have been used by different research groups. Many of these efforts have led to the isolation of new polynuclear Mn clusters with nuclearities ranging all the way from four to thirty-one. Additionally, a family of related Fe7 complexes has been synthesized. The transition metal cluster chemistry has also been extended to nickel-containing species. Many of these polynulear transition metal complexes function as single-molecule magnets. An additional research direction discussed herein is the study of the exchange-coupled dimer of single-molecule magnets (SMMs) by previously unemployed techniques (i.e., inelastic neutron scattering (INS)). This latter study resulted in a better understanding of the effects of chemical and physical variations on the magnetic parameters S, D and J. These studies provide insight into approaches necessary to gain access to clusters that behave as single-molecule magnets at more technologically relevant temperatures, an issue of growing concern as the research area further matures.

  20. Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-11-01

    Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.

  1. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites

    EPA Science Inventory

    Magnetic nano-catalysts have been prepared using simple modification of iron ferrites wherein their quasi-homogeneous state, because of nm size range, facilitates the catalysis process as increased surface is available for reaction; the easy separation of the catalysts by externa...

  2. Magnetically actuated and controlled colloidal sphere-pair swimmer

    NASA Astrophysics Data System (ADS)

    Ran, Sijie; Guez, Allon; Friedman, Gary

    2016-12-01

    Magnetically actuated swimming of microscopic objects has been attracting attention partly due to its promising applications in the bio-medical field and partly due to interesting physics of swimming in general. While colloidal particles that are free to move in fluid can be an attractive swimming system due it its simplicity and ability to assemble in situ, stability of their dynamics and the possibility of stable swimming behavior in periodically varying magnetic fields has not been considered. Dynamic behavior of two magnetically interacting colloidal particles subjected to rotating magnetic field of switching frequency is analyzed here and is shown to result in stable swimming without any stabilizing feedback. A new mechanism of swimming that relies only on rotations of the particles themselves and of the particle pair axis is found to dominate the swimming dynamics of the colloidal particle pair. Simulation results and analytical arguments demonstrate that this swimming strategy compares favorably to dragging the particles with an external magnetic force when colloidal particle sizes are reduced.

  3. Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshiaki; Ogawa, Tomoyuki; Ishiyama, Kazushi

    2018-05-01

    The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.

  4. Attraction, merger, reflection, and annihilation in magnetic droplet soliton scattering

    NASA Astrophysics Data System (ADS)

    Maiden, M. D.; Bookman, L. D.; Hoefer, M. A.

    2014-05-01

    The interaction behaviors of solitons are defining characteristics of these nonlinear, coherent structures. Due to recent experimental observations, thin ferromagnetic films offer a promising medium in which to study the scattering properties of two-dimensional magnetic droplet solitons, particle-like, precessing dipoles. Here, a rich set of two-droplet interaction behaviors are classified through micromagnetic simulations. Repulsive and attractive interaction dynamics are generically determined by the relative phase and speeds of the two droplets and can be classified into four types: (1) merger into a breather bound state, (2) counterpropagation trapped along the axis of symmetry, (3) reflection, and (4) violent droplet annihilation into spin wave radiation and a breather. Utilizing a nonlinear method of images, it is demonstrated that these dynamics describe repulsive/attractive scattering of a single droplet off of a magnetic boundary with pinned/free spin boundary conditions, respectively. These results explain the mechanism by which propagating and stationary droplets can be stabilized in a confined ferromagnet.

  5. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams.

    PubMed

    Dobrovolskiy, A; Dunets, S; Evsyukov, A; Goncharov, A; Gushenets, V; Litovko, I; Oks, E

    2010-02-01

    We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.

  6. Research on magnetic separation for complex nickel deep removal and magnetic seed recycling.

    PubMed

    Qiu, Yiqin; Xiao, Xiao; Ye, Ziwei; Guan, Zhijie; Sun, Shuiyu; Ren, Jie; Yan, Pingfan

    2017-04-01

    This study investigated the deep removal of complex nickel from simulated wastewater using magnetic separation and magnetic seed recycling. Nano-magnetite (Fe 3 O 4 ) was used as the magnetic seed. The flocculant applied was N,N-bis-(dithiocarboxy) ethanediamine (EDTC), a highly efficient heavy metal chelating agent included in dithiocarbamate (DTC). Important investigated parameters included hydraulic retention time, magnetic seed dosage, and magnetic field strength. The study also explored the magnetic flocculation mechanism involved in the reaction. The result indicated that the residual Ni concentration was reduced to less than 0.1 mg/L from the initial concentration of 50 mg/L under optimal conditions. Magnetic seed recovery reached 76.42% after a 3-h stirring period; recycled magnetic seeds were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). The zeta potential results illustrated that magnetic seeds firmly combined with flocs when the pH ranged from 6.5 to 7.5 due to the electrostatic attraction. When the pH was less than 7, magnetic seeds and EDTC were also combined due to electrostatic attraction. Particle size did affect microfloc size; it decreased microfloc size and increased floc volume through magnetic seed loading. The effective binding sites between flocs and magnetic seeds increased when adding the magnetic seeds. This led the majority of magnetic flocs to be integrated with the magnetic seeds, which served as a nucleus to enhance the flocculation property and ultimately improve the nickel complex removal rate.

  7. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.

  8. Magnetic Flux Density of Different Types of New Generation Magnetic Attachment Systems.

    PubMed

    Akin, Hakan

    2015-07-01

    The purpose of this study was to analyze the static magnetic flux density of different types of new generation laser-welded magnetic attachments in the single position and the attractive position and to determine the effect of different corrosive environments on magnetic flux density. Magnetic flux densities of four magnetic attachment systems (Hyper slim, Hicorex slim, Dyna, and Steco) were measured with a gaussmeter. Then magnetic attachment systems were immersed in two different media, namely 1% lactic acid solution (pH 2.3), and 0.9% NaCl solution (pH 7.3). Magnetic flux densities of the attachment systems were measured with a gaussmeter after immersion to compare with measurements before immersion (α = 0.05). The data were statistically evaluated with one-way ANOVA, paired-samples t-test, and post hoc Tukey-Kramer multiple comparisons tests (α = 0.05). The highest magnetic flux density was found in Dyna magnets for both single and attractive positions. In addition, after the magnets were in the corrosive environments for 2 weeks, they had a significant decrease in magnetic flux density (p < 0.05). No significant differences were found between corrosive environments (p > 0.05). The leakage flux of all the magnetic attachments did not exceed the WHO's guideline of 40 mT. The magnets exhibited a significant decrease in magnetic flux density after aging in corrosive environments including lactic acid and NaCl. © 2014 by the American College of Prosthodontists.

  9. Supercoherent states and physical systems

    NASA Technical Reports Server (NTRS)

    Fatyga, B. W.; Kostelecky, V. Alan; Nieto, Michael Martin; Truax, D. Rodney

    1992-01-01

    A method is developed for obtaining coherent states of a system admitting a supersymmetry. These states are called supercoherent states. The presented approach is based on an extension to supergroups of the usual group-theoretic approach. The example of the supersymmetric harmonic oscillator is discussed, thereby illustrating some of the attractive features of the method. Supercoherent states of an electron moving in a constant magnetic field are also described.

  10. Magnetic manipulation of particles and cells in ferrofluid flow through straight microchannels using two magnets

    NASA Astrophysics Data System (ADS)

    Zeng, Jian

    Microfluidic devices have been increasingly used in the past two decades for particle and cell manipulations in many chemical and biomedical applications. A variety of force fields have been demonstrated to control particle and cell transport in these devices including electric, magnetic, acoustic, and optical forces etc. Among these particle handling techniques, the magnetic approach provides clear advantages over others such as low cost, noninvasive, and free of fluid heating issues. However, the current knowledge of magnetic control of particle transport is still very limited, especially lacking is the handling of diamagnetic particle. This thesis is focused on the magnetic manipulation of diamagnetic particles and cells in ferrofluid flow through the use of a pair of permanent magnets. By varying the configuration of the two magnets, diverse operations of particles and cells is implemented in a straight microchannel that can potentially be integrated into lab-on-a-chip devices for various applications. First, an approach for embedding two, symmetrically positioned, repulsive permanent magnets about a straight rectangular microchannel in a PDMS-based microfluidic device is developed for particle focusing. Focusing particles and cells into a tight stream is often required in order for continuous detection, counting, and sorting. The closest distance between the magnets is limited only by the size of the magnets involved in the fabrication process. The device is used to implement and investigate the three-dimensional magnetic focusing of polystyrene particles in ferrofluid microflow with both top-view and side-view visualizations. The effects of flow speed and particle size on the particle focusing effectiveness are studied. This device is also applied to magnetically focus yeast cells in ferrofluid, which proves to be biocompatible as verified by cell viability test. In addition, an analytical model is developed and found to be able to predict the experimentally observed particle and cell focusing behaviors with reasonable agreement. Next, a simple magnetic technique to concentrate polystyrene particles and live yeast cells in ferrofluid flow through a straight rectangular microchannel is developed. Concentrating particles to a detectable level is often necessary in many applications. The magnetic field gradient is created by two attracting permanent magnets that are placed on the top and bottom of the planar microfluidic device and held in position by their natural attractive force. The effects of flow speed and magnet-magnet distance are studied and the device was applied for use for concentrating live yeast cells. The magnet-magnet distance is mainly controlled by the thickness of the device substrate and can be made small, providing a locally strengthened magnetic field as well as allowing for the use of dilute ferrofluid in the developed magnetic concentration technique. This advantage not only enables a magnetic/fluorescent label-free handling of diamagnetic particles but also renders such handling biocompatible. Lastly, a device is presented for a size-based continuous separation of particles through a straight rectangular microchannel. Particle separation is critical in many applications involving the sorting of cells. A first magnet is used for focusing the particle mixture into a single stream due to its relative close positioning with respect to the channel, thus creating a greater magnetic field magnitude. Then, a following magnet is used to displace the aligned particles to dissimilar flow paths by placing it farther away compared the first magnet, which provides a weaker magnetic field, therefore more sensitive towards the deflection of particles based on their size. The effects of both flow speed and separator magnet position are examined. The experimental data are found to fit well with analytical model predictions. This is followed by a study replacing the particles which are closely sized to that of live yeast cells and observe the separation of the cells from larger particles. Afterwards, a test for biocompatibility is confirmed.

  11. Magnetic nanoparticles: In vivo cancer diagnosis and therapy.

    PubMed

    Lima-Tenório, Michele K; Pineda, Edgardo A Gómez; Ahmad, Nasir M; Fessi, Hatem; Elaissari, Abdelhamid

    2015-09-30

    Recently, significant research efforts have been devoted to the finding of efficient approaches in order to reduce the side effects of traditional cancer therapy and diagnosis. In this context, magnetic nanoparticles have attracted much attention because of their unique physical properties, magnetic susceptibility, biocompatibility, stability and many more relevant characteristics. Particularly, magnetic nanoparticles for in vivo biomedical applications need to fulfill special criteria with respect to size, size distribution, surface charge, biodegradability or bio-eliminability and optionally bear well selected ligands for specific targeting. In this context, many routes have been developed to synthesize these materials, and tune their functionalities through intriguing techniques including functionalization, coating and encapsulation strategies. In this review article, the use of magnetic nanoparticles for cancer therapy and diagnosis is evaluated addressing potential applications in MRI, drug delivery, hyperthermia, theranostics and several other domains. In view of potential biomedical applications of magnetic nanoparticles, the review focuses on the most recent progress made with respect to synthetic routes to produce magnetic nanoparticles and their salient accomplishments for in vivo cancer diagnosis and therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    PubMed Central

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  13. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    PubMed

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.

  14. Failure Accommodation Tested in Magnetic Suspension Systems for Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Provenza, Andy J.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field and Texas A&M University are developing techniques for accommodating certain types of failures in magnetic suspension systems used in rotating machinery. In recent years, magnetic bearings have become a viable alternative to rolling element bearings for many applications. For example, industrial machinery such as machine tool spindles and turbomolecular pumps can today be bought off the shelf with magnetically supported rotating components. Nova Gas Transmission Ltd. has large gas compressors in Canada that have been running flawlessly for years on magnetic bearings. To help mature this technology and quiet concerns over the reliability of magnetic bearings, NASA researchers have been investigating ways of making the bearing system tolerant to faults. Since the potential benefits from an oil-free, actively controlled bearing system are so attractive, research that is focused on assuring system reliability and safety is justifiable. With support from the Fast Quiet Engine program, Glenn's Structural Mechanics and Dynamics Branch is working to demonstrate fault-tolerant magnetic suspension systems targeted for aerospace engine applications. The Flywheel Energy Storage Program is also helping to fund this research.

  15. Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields.

    PubMed

    Park, Tae Jung; Park, Jong Pil; Lee, Seok Jae; Jung, Dae-Hwan; Ko, Young Koan; Jung, Hee-Tae; Lee, Sang Yup

    2011-05-01

    Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.

  16. Fiber-Optic Magnetometry and Thermometry Using Optically Detected Magnetic Resonance With Nitrogen-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Blakley, Sean Michael

    Nitrogen--vacancy diamond (NVD) quantum sensors are an emerging technology that has shown great promise in areas like high-resolution thermometry and magnetometry. Optical fibers provide attractive new application paradigms for NVD technology. A detailed description of the fabrication processes associated with the development of novel fiber-optic NVD probes are presented in this work. The demonstrated probes are tested on paradigmatic model systems designed to ascertain their suitability for use in challenging biological environments. Methods employing optically detected magnetic resonance (ODMR) are used to accurately measure and map temperature distributions of small objects and to demonstrate emergent temperature-dependent phenomena in genetically modified living organisms. These methods are also used to create detailed high resolution spatial maps of both magnetic scalar and magnetic vector field distributions of spatially localized weak field features in the presence of a noisy, high-field background.

  17. Magnetism, superconductivity, and spontaneous orbital order in iron-based superconductors: Which comes first and why?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.

    Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less

  18. Magnetism, superconductivity, and spontaneous orbital order in iron-based superconductors: Which comes first and why?

    DOE PAGES

    Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.

    2016-12-02

    Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less

  19. Tunable interactions between paramagnetic colloidal particles driven in a modulated ratchet potential.

    PubMed

    Straube, Arthur V; Tierno, Pietro

    2014-06-14

    We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.

  20. Drug releasing nanoplatforms activated by alternating magnetic fields.

    PubMed

    Mertz, Damien; Sandre, Olivier; Bégin-Colin, Sylvie

    2017-06-01

    The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Interface engineered ferrite@ferroelectric core-shell nanostructures: A facile approach to impart superior magneto-electric coupling

    NASA Astrophysics Data System (ADS)

    Abraham, Ann Rose; Raneesh, B.; Das, Dipankar; Oluwafemi, Oluwatobi Samuel; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    The electric field control of magnetism in multiferroics is attractive for the realization of ultra-fast and miniaturized low power device applications like nonvolatile memories. Room temperature hybrid multiferroic heterostructures with core-shell (0-0) architecture (ferrite core and ferroelectric shell) were developed via a two-step method. High-Resolution Transmission Electron Microscopy (HRTEM) images confirm the core-shell structure. The temperature dependant magnetization measurements and Mossbauer spectra reveal superparamagnetic nature of the core-shell sample. The ferroelectric hysteresis loops reveal leaky nature of the samples. The results indicate the promising applications of the samples for magneto-electric memories and spintronics.

  2. Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.

    PubMed

    Dávila-Ibáñez, Ana B; Buurma, Niklaas J; Salgueiriño, Verónica

    2013-06-07

    The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.

  3. Magnet School Student Outcomes: What the Research Says. Research Brief No. 6

    ERIC Educational Resources Information Center

    Siegel-Hawley, Genevieve; Frankenberg, Erica

    2011-01-01

    This research brief outlines six major studies of magnet school student outcomes. Magnet schools are programs with special themes or emphases designed to attract families from a variety of different backgrounds. They were originally established to promote voluntary racial integration in urban districts. The studies are located within a much…

  4. Magnetotactic bacteria and magnetosomes - Scope and challenges.

    PubMed

    Jacob, Jobin John; Suthindhiran, K

    2016-11-01

    Geomagnetism aided navigation has been demonstrated by certain organisms which allows them to identify a particular location using magnetic field. This attractive technique to recognize the course was earlier exhibited in numerous animals, for example, birds, insects, reptiles, fishes and mammals. Magnetotactic bacteria (MTB) are one of the best examples for magnetoreception among microorganisms as the magnetic mineral functions as an internal magnet and aid the microbe to move towards the water columns in an oxic-anoxic interface (OAI). The ability of MTB to biomineralize the magnetic particles (magnetosomes) into uniform nano-sized, highly crystalline structure with uniform magnetic properties has made the bacteria an important topic of research. The superior properties of magnetosomes over chemically synthesized magnetic nanoparticles made it an attractive candidate for potential applications in microbiology, biophysics, biochemistry, nanotechnology and biomedicine. In this review article, the scope of MTB, magnetosomes and its challenges in research and industrial application have been discussed in brief. This article mainly focuses on the application based on the magnetotactic behaviour of MTB and magnetosomes in different areas of modern science. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  6. Propulsion and hydrodynamic particle transport of magnetically twisted colloidal ribbons

    NASA Astrophysics Data System (ADS)

    Massana-Cid, Helena; Martinez-Pedrero, Fernando; Navarro-Argemí, Eloy; Pagonabarraga, Ignacio; Tierno, Pietro

    2017-10-01

    We describe a method to trap, transport and release microscopic particles in a viscous fluid using the hydrodynamic flow field generated by a magnetically propelled colloidal ribbon. The ribbon is composed of ferromagnetic microellipsoids that arrange with their long axis parallel to each other, a configuration that is energetically favorable due to their permanent magnetic moments. We use an external precessing magnetic field to torque the anisotropic particles forming the ribbon, and to induce propulsion of the entire structure due to the hydrodynamic coupling with the close substrate. The propulsion speed of the ribbon can be controlled by varying the driving frequency, or the amplitude of the precessing field. The latter parameter is also used to reduce the average inter particle distance and to induce the twisting of the ribbon due to the increase in the attraction between the rotating ellipsoids. Furthermore, non magnetic particles are attracted or repelled with the hydrodynamic flow field generated by the propelling ribbon. The proposed method may be used in channel free microfluidic applications, where the precise trapping and transport of functionalized particles via non invasive magnetic fields is required.

  7. Design of biomimetic vascular grafts with magnetic endothelial patterning.

    PubMed

    Fayol, Delphine; Le Visage, Catherine; Ino, Julia; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2013-01-01

    The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.

  8. Anomalous matching effect and attractive vortex interaction in 7.5-/μm triangular microhole lattice on Pb film

    NASA Astrophysics Data System (ADS)

    Ishida, Takekazu; Yoshida, Masaaki; Nakata, Shin'ichiro; Koyama, Tomio

    2002-10-01

    It is considerably exciting to explore the novel vortex physics in multiply connected superconductors. We prepare triangular microhole lattice on Pb film (TriMHoLP) by evaporation of a type-I superconductor Pb upon a capillary plate (6-μm hole and 7.5-μm pitch) in vacuum. We measure the magnetization of TriMHoLP in the RSO mode under low fields (| H|⩽4.7 G). The polarity of magnetization peaks is identical against the field reversal. The magnetization curves as a function of temperature taken in a field-cooling mode of RSO are always positive irrelevant to the field polarity. We show that a vortex-vortex interaction is not always repulsive in a low- κ superconductor. We consider that a spontaneous magnetization and an anomalous matching effect near Tc are relevant to the attractive interaction between vortices.

  9. A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device

    NASA Astrophysics Data System (ADS)

    Pal, A. M.; Bhattacharya, S.; Biswas, S.; Basu, S.; Pal, R.

    2014-03-01

    A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere.

  10. Magnet Schools: Information on the Grant Award Process. Briefing Report to the Chairman, Committee on Labor and Human Resources, U.S. Senate.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Div. of Human Resources.

    Magnet schools offer special courses of study in order to attract students of different racial backgrounds. The Magnet School Assistance Program was authorized by Congress to provide funds to school districts for planning and promoting magnet schools. Eligible school districts desiring such assistance submit annual applications to the Secretary of…

  11. Suggestion for extended Viking magnetic properties experiment on future Mars missions

    NASA Technical Reports Server (NTRS)

    Madsen, M. B.; Knudsen, J. M.; Vistisen, L.; Hargraves, R. B.

    1993-01-01

    A remarkable result from the Viking missions was the discovery that the Martian soil is highly magnetic, in the sense that the soil is attracted by a small magnet. The soil was found to adhere almost equally well to a strong and a weak SmCo magnet in the Viking lander backhoe at both landing sites. An array of permanent magnets, with the purpose of establishing if the magnetic particles on Mars are present as discrete or as composite particles, has been constructed.

  12. Learning about static electricity and magnetism in a fourth-grade classroom

    NASA Astrophysics Data System (ADS)

    Henry, David Roy

    Students begin to develop mental models to explain electrostatic and magnetic phenomena throughout childhood, middle childhood and high school, although these mental models are often incoherent and unscientific (Borges, Tenico, & Gilbert, 1998; Maloney, 1985). This is a case study of a classroom of grade four students and the mental models of magnetism and static electricity they used during a six-week science unit. The 22 students studied magnetism and static electricity using inquiry activities structured to create an environment where students would be likely to construct powerful scientific ideas (Goldberg & Bendall, 1995). Multiple data sources, including students' writing, student assessments, teacher interviews, student interviews, teacher journals, and classroom video and audio recordings were used to uncover how fourth grade students made sense of static electricity and magnetism before, during, and after instruction. The data were analyzed using a social constructivist framework to determine if students were able to develop target scientific ideas about static electricity and magnetism. In general, students were found to have three core mental models prior to instruction: (1) Static electricity and magnetism are the same "substance"; (2) This substance exists on the surface of a magnet or a charged object and can be rubbed off, and (3) Opposite substances attract. During the activities, students had many opportunities to observe evidence that contradicted these core mental models. Using evidence from direct observations, the students practiced differentiating between evidence and ideas. Through group and class discussions, they developed evidenced-based (scientific) ideas. Final assessments revealed that students were able to construct target ideas such as: (1) static electricity and magnetism are fundamentally different; (2) there are two kinds of static "charge;" (3) magnet-rubbed wires act like a magnet; and (4) opposite substances move toward each other, like substances push away from each other. Some target ideas, such as "Magnetic materials are made up of magnetic domains that align to give an overall magnetic effect" were found to be difficult for students this age to develop. This case study will augment research about effective science teaching, teacher development and the support necessary for curriculum change.

  13. Time-Resolved X-Ray Magnetic Circular Dichroism - A Selective Probe of Magnetization Dynamics on Nanosecond Timescales

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Vogel, Jan; Bonfim, Marlio; Fontaine, Alain

    Many synchrotron radiation techniques have been developed in the last 15 years for studying the magnetic properties of thin-film materials. The most attractive properties of synchrotron radiation are its energy tunability and its time structure. The first property allows measurements in resonant conditions at an absorption edge of each of the magnetic elements constituting the probed sample, and the latter allows time-resolved measurements on subnanosecond timescales. In this review, we introduce some of the synchrotron-based techniques used for magnetic investigations. We then describe in detail X-ray magnetic circular dichroism (XMCD) and how time-resolved XMCD studies can be carried out in the pump-probe mode. Finally, we illustrate some applications to magnetization reversal dynamics in spin valves and tunnel junctions, using fast magnetic field pulses applied along the easy magnetization axis of the samples. Thanks to the element-selectivity of X-ray absorption spectroscopy, the magnetization dynamics of the soft (Permalloy) and the hard (cobalt) layers can be studied independently. In the case of spin valves, this allowed us to show that two magnetic layers that are strongly coupled in a static regime can become uncoupled on nanosecond timescales.Present address: Universidade Federal do Paraná, Centro Politécnico CP 19011, Curitiba - PR CEP 81531-990, Brazil

  14. Development of the Vacuum Circuit Breaker with an Electromagnetic Actuator

    NASA Astrophysics Data System (ADS)

    Morita, Ayumu; Yabu, Masato; Kajiwara, Satoru

    A new type of vacuum circuit breaker (VCB) has been developed, which needs a minimum of maintenance. This VCB is characterized by the following: (a) a significantly simplified driving mechanism, (b) no need for grease, and (c) a new electromagnetic actuator called a hybrid-type electromagnet. The number of movable parts is decreased to 15% of that of our conventional product with a spring drive. Solid lubricant is adopted instead of grease for almost all of the linkages, which helps to eliminate periodical lubricating maintenance. The hybrid-type electromagnet has an attractive force suitable for the spring force characteristics of the VCB through its combination of conventional plunger-type and plate-armature-type electromagnet. The VCB is held in the closed position by the attractive force of the permanent magnet without using a coil current. Its core structure is optimized to prevent the permanent magnet from demagnetization and to secure long-term reliability. To assess the solid lubricant reliability, some special tests were performed such as a rare operation test. Dynamic characteristics were measured for three specimens at intervals of a month, a year, and two years, respectively. It was confirmed that variation of the armature speed is small and the influence of the non-operation interval is negligible.

  15. Materials engineering, characterization, and applications of the organicbased magnet, V[TCNE

    NASA Astrophysics Data System (ADS)

    Harberts, Megan

    Organic materials have advantageous properties such as low cost and mechanical flexibility that have made them attractive to complement traditional materials used in electronics and have led to commercial success, especially in organic light emitting diodes (OLEDs). Many rapidly advancing technologies incorporate magnetic materials, leading to the potential for creating analogous organic-based magnetic applications. The semiconducting ferrimagnet, vanadium tetracyanoethylene, V[TCNE]x˜2, exhibits room temperature magnetic ordering which makes it an attractive candidate. My research is focused on development of thin films of V[TCNE]x˜2 through advancement in growth, materials engineering, and applications. My thesis is broken up into two sections, the first which provides background and details of V[TCNE]x˜2 growth and characterization. The second section focuses on advances beyond V[TCNE]x˜2 film growth. The ordering of the chapters is for the ease of the reader, but encompasses work that I led and robust collaborations that I have participated in. V[TCNE]x˜2 films are deposited through a chemical vapor deposition process (CVD). My advancements to the growth process have led to higher quality films which have higher magnetic ordering temperatures, more magnetically homogenous samples, and extremely narrow ferromagnetic resonance (FMR) linewidths. Beyond improvements in film growth, materials engineering has created new materials and structures with properties to compliment thin film V[TCNE]x˜2. Though a robust collaboration with chemistry colleagues, modification of the molecule TCNE has led to the creation of new magnetic materials vanadium methyl tricyanoethylene carboxylate, V[MeTCEC]x and vanadium ethyl tricyanoethylene carboxylate, V[ETCEC]x. Additionally, I have lead a project to deposit V[TCNE]x˜2 on periodically patterned substrates leading to the formation of a 1-D array of V[TCNE]x˜2 nanowires. These arrays exhibit in-plane magnetic anisotropy, which is not observed in films of V[TCNE]x˜2. Additional collaborations have also made significant progress in addressing one of the challenges for incorporating V[TCNE]x˜2 into applications, which is the degradation of magnetic properties with exposure to oxygen. By working off of encapsulation technology which has been developed for OLEDs, we have shown that we can use a simple epoxy to extend the magnetic properties of V[TCNE]x˜2 films from an order of hours to one month in ambient conditions.

  16. Frequency adjustable MEMS vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  17. Investigation of Barium Ferrite, Searching for Soft Magnetic Materials in High Frequency Applications

    NASA Astrophysics Data System (ADS)

    Wu, Shuang; Kanada, Isao; Mewes, Tim; Mewes, Claudia; Mankey, Gary; Ariake, Yusuke; Suzuki, Takao

    Soft ferrites have been extensively and intensively applied for high frequency device applications. Among them, Ba-ferrites substituted by Mn and Ti are particularly attractive as future soft magnetic material candidates for advanced high frequency device applications. However, very little has been known as to the intrinsic magnetic properties, such as damping parameter, which is crucial to develop high frequency devices. In the present study, much effort has been focused on fabrication of single crystal Ba-ferrites and measurements of damping parameter by FMR. Ba-ferrite samples consisted of many grains with various sizes have been prepared. The saturation magnetization and the magnetic anisotropy field of the sample are in reasonable agreement with the values in literature. The resonances positions in the FMR spectra over a wide frequency range also comply with theoretical predictions. However, the complex resonance shapes observed makes it difficult to extract dynamic magnetic property. Possible reasons are the demagnetization field originating from irregular sample shape or existence of multiple grains in the samples. S.W. acknowledges the support under the TDK Scholar Program.

  18. What Happens When Schools Become Magnet Schools? A Longitudinal Study of Diversity and Achievement

    ERIC Educational Resources Information Center

    Betts, Julian; Kitmitto, Sami; Levin, Jesse; Bos, Johannes; Eaton, Marian

    2015-01-01

    Magnet schools hold a prominent place in the history of education reforms in the United States. Best known for offering unique programs or curricula to attract students from outside a school's neighborhood, many magnet schools started off as neighborhood public schools but converted with the goals of increasing student diversity and achievement.…

  19. Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway

    PubMed Central

    Nishida, Keiji; Silver, Pamela A.

    2012-01-01

    Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply. PMID:22389629

  20. Nanoparticle-supported and magnetically recoverable ruthenium hydroxide catalyst: efficient hydration of nitriles to amides in aqueous medium.

    PubMed

    Polshettiwar, Vivek; Varma, Rajender S

    2009-01-01

    Magnetic attraction not filtration: A magnetic nanoparticle-supported ruthenium hydroxide catalyst (see figure) was readily prepared from inexpensive starting materials and shown to catalyze the hydration of nitriles with excellent yield in a benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity, and the inherent stability of the catalyst system are additional sustainable attributes of this protocol.

  1. Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.

    PubMed

    Okamoto, Eiji; Makino, Tsutomu; Tanaka, Shuji; Yasuda, Takahiko; Akasaka, Yuta; Tani, Makiko; Inoue, Yusuke; Mitoh, Ayumu; Mitamura, Yoshinori

    2007-01-01

    We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.

  2. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  3. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    PubMed Central

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-01-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874

  4. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    NASA Astrophysics Data System (ADS)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  5. Pushrod assembly

    DOEpatents

    Potter, J.D.

    1984-03-30

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved is described. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing magnet away from the carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  6. Pushrod assembly

    DOEpatents

    Potter, Jerry D.

    1987-01-01

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing said magnet away from said carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  7. Frustrated honeycomb-lattice bilayer quantum antiferromagnet in a magnetic field

    NASA Astrophysics Data System (ADS)

    Krokhmalskii, Taras; Baliha, Vasyl; Derzhko, Oleg; Schulenburg, Jörg; Richter, Johannes

    2018-05-01

    Frustrated bilayer quantum magnets have attracted attention as flat-band spin systems with unconventional thermodynamic properties. We study the low-temperature properties of a frustrated honeycomb-lattice bilayer spin-1/2 isotropic (XXX) Heisenberg antiferromagnet in a magnetic field by means of an effective low-energy theory using exact diagonalizations and quantum Monte Carlo simulations. Our main focus is on the magnetization curve and the temperature dependence of the specific heat indicating a finite-temperature phase transition in high magnetic fields.

  8. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  9. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  10. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    NASA Astrophysics Data System (ADS)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  11. Review of the magnetic fusion program by the 1986 ERAB Fusion Panel

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.

    1987-09-01

    The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.

  12. Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field

    PubMed Central

    Wang, Shunqiang; Zhou, Yihua; Tan, Jifu; Xu, Jiang; Yang, Jie; Liu, Yaling

    2014-01-01

    A multi-physics model was developed to study the delivery of magnetic nanoparticles (MNPs) to the stent-implanted region under an external magnetic field. The model is firstly validated by experimental work in literature. Then, effects of external magnetic field strength, magnetic particle size, and flow velocity on MNPs’ targeting and binding have been analyzed through a parametric study. Two new dimensionless numbers were introduced to characterize relative effects of Brownian motion (BM), magnetic force induced particle motion, and convective blood flow on MNPs motion. It was found that larger magnetic field strength, bigger MNP size, and slower flow velocity increase the capture efficiency of MNPs. The distribution of captured MNPs on the vessel along axial and azimuthal directions was also discussed. Results showed that the MNPs density decreased exponentially along axial direction after one-dose injection while it was uniform along azimuthal direction in the whole stented region (averaged over all sections). For the beginning section of the stented region, the density ratio distribution of captured MNPs along azimuthal direction is center-symmetrical, corresponding to the center-symmetrical distribution of magnetic force in that section. Two different generation mechanisms are revealed to form four main attraction regions. These results could serve as guidelines to design a better magnetic drug delivery system. PMID:24653546

  13. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall-Effect Thruster (PMHET), developed at the Plasma Physics Laboratory of UnB. The idea of using an array of permanent magnets, instead of an electromagnet, to produce a radial magnetic field inside the cylindrical plasma drift channel of the thruster is very attractive, especially because of the possibility of developing a HET with power consumption low enough to be used in small satellites or medium-size satellites with low on board power. Hall-Effect Thrusters are now a very good option for spacecraft primary propulsion and also for station-keeping of medium and large satellites. This is because of their high specific impulse, efficient use of propellant mass and combined low and precise thrust capabilities, which are related to an economy in terms of propellant mass utilization , longer satellite lifetime and easier spacecraft maneuvering in microgravity environment. The first HETs were developed in the mid 1950’s, and they were first called Closed Drift Thrusters. Today, the successful use of electric thrusters for attitude control and orbit modification on hundreds of satellites shows the advanced stage of development of this technology. In addition to this, after the success of space missions such as Deep Space One and Dawn (NASA), Hayabusa (JAXA) and Smart-1 (ESA), the employment of electric thrusters is also consolidated for the primary propulsion of spacecraft. This success is mainly due to three factors: reliability of this technology; efficiency of propellant utilization, and therefore reduction of the initial mass of the ship; possibility of operation over long time intervals, with practically unlimited cycling and restarts. This thrusting system is designed to be used in satellite attitude control and long term space missions. One of the greatest advantage of this kind of thruster is the production of a steady state magnetic field by permanent magnets providing electron trapping and Hall current generation within a significant decrease on the electric energy supply and thus turning this thruster into a specially good option when it comes to space usage for longer and deep space missions, where solar panels and electric energy storage on batteries is a limiting factor. Two prototype models of permanent magnets Hall Thrusters PHALL I and II were already developed and tested with different permanent magnets systems. From the first studies in Russia (former USSR) soon it became clear that the closed electron drift current (Hall current) inside the source channel was generated by the crossed electric and magnetic (radial) field configuration inside the cylindrical channel. The radial magnetic field action on the circular Hall current inside the channel, combined with the electric field action on the ions, is believed to be the main physical process responsible for plasma acceleration. However a good understanding of the acceleration mechanism and the steady-state plasma dynamics is still missing, and many issues concerning the role of electron transport, plasma fluctuations and instabilities are still open. In this work we describe an integrated diagnostic system used to elucidate these aspects such. Ion energy spectrum, plasma potential profiles, plasma instabilities spectrum, and electron distribution function are some of the plasma diagnosticis needed to undestand the main physics issues on Permanent Magnet Hall Thrusters.

  14. The Magnetic Attraction of Honeybee Navigation.

    ERIC Educational Resources Information Center

    Ayres, David

    1991-01-01

    Discussed are the division of labor, defenses, genetics and evolution, communication, and navigation power of honeybees. The scientific and cross-curricular themes that can be offered using the economically important honeybee are described. Research that suggests that bees may be flying magnets is also discussed. (KR)

  15. Nonlinear dynamics of attractive magnetic bearings

    NASA Technical Reports Server (NTRS)

    Hebbale, K. V.; Taylor, D. L.

    1987-01-01

    The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

  16. Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor.

    PubMed

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred; Micera, Silvestro

    2009-04-01

    The use of polymeric carriers containing dispersed magnetic nanocrystalline particles for targeted delivery of drugs in clinical practice has attracted the interest of the scientific community. In this paper a system comprised of alginate microparticles with a core of magnetite and carrying nerve growth factor (NGF) is described. The magnetic properties of these microspheres, typical of superparamagnetic materials, allow precise and controlled delivery to the intended tissue environment. Experiments carried out on PC12 cells with magnetic alginate microspheres loaded with NGF have confirmed the induction of cell differentiation which is strongly dependent on the distance from the microsphere cluster. In addition, finite element modelling (FEM) of the release profile from the microspheres in culture, indicated the possibility of creating defined and predictable NGF gradients from the loaded microspheres. These observations on the carriage and release of growth factors by the proposed microparticles open new therapeutic options for both neuronal regeneration and of the development of effective neuronal interfaces.

  17. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain.

    PubMed

    Tomitaka, Asahi; Arami, Hamed; Raymond, Andrea; Yndart, Adriana; Kaushik, Ajeet; Jayant, Rahul Dev; Takemura, Yasushi; Cai, Yong; Toborek, Michal; Nair, Madhavan

    2017-01-05

    Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core/gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ions on magnetic nanoparticle seeds. Hydrodynamic size and optical properties of magneto-plasmonic nanoparticles synthesized with the variation of Au ions and reducing agent concentrations were evaluated. The synthesized magneto-plasmonic nanoparticles exhibited superparamagnetic properties, and their magnetic properties contributed to the concentration-dependent contrast in magnetic resonance imaging (MRI). The imaging contrast from the gold shell part of the magneto-plasmonic nanoparticles was also confirmed by X-ray computed tomography (CT). The transmigration study of the magneto-plasmonic nanoparticles using an in vitro blood-brain barrier (BBB) model proved enhanced transmigration efficiency without disrupting the integrity of the BBB, and showed potential to be used for brain diseases and neurological disorders.

  18. Management of ingested magnets in children.

    PubMed

    Hussain, Sunny Z; Bousvaros, Athos; Gilger, Mark; Mamula, Petar; Gupta, Sandeep; Kramer, Robert; Noel, R Adam

    2012-09-01

    We describe a comprehensive algorithm for the management of ingested rare-earth magnets in children. These newer and smaller neodymium magnets sold as adult toys are much stronger than the traditional magnets, and can attract each other with formidable forces. If >1 magnet is swallowed at the same time, or a magnet is co-ingested with another metallic object, the loops of intestine can be squeezed between them resulting in bowel damage including perforations. An algorithm that uses the number of magnets ingested, location of magnets, and the timing of ingestion before intervention helps to delineate the roles of the pediatric gastroenterologists and surgeons in the management of these cases.

  19. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2018-02-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  20. Enduring Attraction: America’s Dependence On and Need to Secure Its Supply of Permanent Magnets

    DTIC Science & Technology

    2012-10-01

    components, including possible nanotechnologies.15 Permanent Magnets The advent of these tiny powerful magnets ushered in the era of the Sony Walkman...also part of a persistent strategy to entice, if not force, foreign investment and manufacturing industry onto Chinese soil.30 The drastic 72 percent... strategy , they have a goal of generating 20,000 tons of rare earth oxides by 2012 and reestablishing their domestic magnet manufacturing business

  1. Magnetic vs. non-magnetic colloids - A comparative adsorption study to quantify the effect of dye-induced aggregation on the binding affinity of an organic dye.

    PubMed

    Williams, Tyler A; Lee, Jenny; Diemler, Cory A; Subir, Mahamud

    2016-11-01

    Due to attractive magnetic forces, magnetic particles (MPs) can exhibit colloidal instability upon molecular adsorption. Thus, by comparing the dye adsorption isotherms of MPs and non-magnetic particles of the same size, shape and functional group it should be possible to characterize the influence of magnetic attraction on MP aggregation. For a range of particle densities, a comparative adsorption study of malachite green (MG(+)) onto magnetic and non-magnetic colloids was carried out using a combination of a separation technique coupled with UV-vis spectroscopy, optical microscopy, and polarization dependent second harmonic generation (SHG) spectroscopy. Significant MP aggregation occurs in aqueous solution due to MG(+) adsorption. This alters the adsorption isotherm and challenges the determination of the adsorption equilibrium constant, Kads. The dye-induced aggregation is directly related to the MG(+) concentration, [MG(+)]. A modified Langmuir equation, which incorporates loss of surface sites due to this aggregation, accurately describes the resulting adsorption isotherms. The Kads of 1.1 (±0.3)×10(7) and a loss of maximum MP surface capacity of 2.8 (±0.7)×10(3)M(-1) per [MG(+)] has been obtained. Additionally, SHG has been established as an effective tool to detect aggregation in nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A low-cost, high-field-strength magnetic resonance imaging-compatible actuator.

    PubMed

    Secoli, Riccardo; Robinson, Matthew; Brugnoli, Michele; Rodriguez y Baena, Ferdinando

    2015-03-01

    To perform minimally invasive surgical interventions with the aid of robotic systems within a magnetic resonance imaging scanner offers significant advantages compared to conventional surgery. However, despite the numerous exciting potential applications of this technology, the introduction of magnetic resonance imaging-compatible robotics has been hampered by safety, reliability and cost concerns: the robots should not be attracted by the strong magnetic field of the scanner and should operate reliably in the field without causing distortion to the scan data. Development of non-conventional sensors and/or actuators is thus required to meet these strict operational and safety requirements. These demands commonly result in expensive actuators, which mean that cost effectiveness remains a major challenge for such robotic systems. This work presents a low-cost, high-field-strength magnetic resonance imaging-compatible actuator: a pneumatic stepper motor which is controllable in open loop or closed loop, along with a rotary encoder, both fully manufactured in plastic, which are shown to perform reliably via a set of in vitro trials while generating negligible artifacts when imaged within a standard clinical scanner. © IMechE 2015.

  3. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

  4. Uniform magnetic targeting of magnetic particles attracted by a new ferromagnetic biological patch.

    PubMed

    Pei, Ning; Cai, Lanlan; Yang, Kai; Ma, Jiaqi; Gong, Yongyong; Wang, Qixin; Huang, Zheyong

    2018-02-01

    A new non-toxic ferromagnetic biological patch (MBP) was designed in this paper. The MBP consisted of two external layers that were made of transparent silicone, and an internal layer that was made of a mixture of pure iron powder and silicon rubber. Finite-element analysis showed that the local inhomogeneous magnetic field (MF) around the MBP was generated when MBP was placed in a uniform MF. The local MF near the MBP varied with the uniform MF and shape of the MBP. Therefore, not only could the accumulation of paramagnetic particles be adjusted by controlling the strength of the uniform MF, but also the distribution of the paramagnetic particles could be improved with the different shape of the MBP. The relationship of the accumulation of paramagnetic particles or cells, magnetic flux density, and fluid velocity were studied through in vitro experiments and theoretical considerations. The accumulation of paramagnetic particles first increased with increment in the magnetic flux density of the uniform MF. But when the magnetic flux density of the uniform MF exceeded a specific value, the magnetic flux density of the MBP reached saturation, causing the accumulation of paramagnetic particles to fall. In addition, the adsorption morphology of magnetic particles or cells could be improved and the uniform distribution of magnetic particles could be achieved by changing the shape of the MBP. Also, MBP may be used as a new implant to attract magnetic drug carrier particles in magnetic drug targeting. Bioelectromagnetics. 39:98-107, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Evaluation of leakage flux out of a dental magnetic attachment.

    PubMed

    Nishida, M; Tegawa, Y; Kinouchi, Y

    2007-01-01

    A dental magnetic attachment is a device to retain dental prostheses such as overdentures by magnetic attraction. As compared with mechanical attachments, the magnetic attachment has a superior retention properties due to less lateral pressure to its abutment tooth, and hence it has come to be widely used, particularly for retaining overdentures. Because the dental magnetic attachments are a device used in the mouth, the tissues in the mouth are exposed to the magnetic fields leaking out of the magnetic attachments for a long time. It may therefore be important to discuss biological effects of the leakage magnetic fields. It is required at first to evaluate the strength of the leakage magnetic fields.

  6. Laparoscopic diagnosis of magnetic malrotation with fistula and volvulus.

    PubMed

    Wooten, Kimberly E; Hartin, Charles W; Ozgediz, Doruk E

    2012-01-01

    Most foreign bodies that a child ingests pass harmlessly through the gastrointestinal tract. However, ingesting multiple magnets places a child at risk for serious viscus injury. A 16-y-old boy swallowed multiple magnets and presented with abdominal pain and emesis. Upon laparoscopy, the boy was found to have malrotation with volvulus caused by a cecal magnet attracted to a gastric magnet, resulting in a gastrocecal fistula. We review the management of magnet ingestion with an emphasis on a high index of suspicion and the use of laparoscopy for diagnosis, as well as the consequences of a coexisting rotational anomaly.

  7. Viking magnetic properties investigation: preliminary results.

    PubMed

    Hargraves, R B; Collinson, D W; Spitzer, C R

    1976-10-01

    Three permanent magnet arrays are aboard the Viking lander. By sol 35, one array, fixed on a photometric reference test chart on top of the lander, has clearly attracted magnetic particles from airborne dust; two other magnet arrays, one strong and one weak, incorporated in the backhoe of the surface sampler, have both extracted considerable magnetic mineral from the surface as a result of nine insertions associated with sample acquisition. The loose martian surface material around the landing site is judged to contain 3 to 7 percent highly magnetic mineral which, pending spectrophotometric study, is thought to be mainly magnetite.

  8. Generalized Kerker effects in nanophotonics and meta-optics [Invited

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kivshar, Yuri S.

    2018-05-01

    The original Kerker effect was introduced for a hypothetical magnetic sphere, and initially it did not attract much attention due to a lack of magnetic materials required. Rejuvenated by the recent explosive development of the field of metamaterials and especially its core concept of optically-induced artificial magnetism, the Kerker effect has gained an unprecedented impetus and rapidly pervaded different branches of nanophotonics. At the same time, the concept behind the effect itself has also been significantly expanded and generalized. Here we review the physics and various manifestations of the generalized Kerker effects, including the progress in the emerging field of meta-optics that focuses on interferences of electromagnetic multipoles of different orders and origins. We discuss not only the scattering by individual particles and particle clusters, but also the manipulation of reflection, transmission, diffraction, and absorption for metalattices and metasurfaces, revealing how various optical phenomena observed recently are all ubiquitously related to the Kerker's concept.

  9. Long-range magnetic order and interchain interactions in the S = 2 chain system MnCl 3 (bpy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, Randy S.; Shinozaki, Shin-ichi; Okutani, Akira

    Here,more » a compound with very weakly interacting chains, MnCl 3(bpy), has attracted a great deal of attention as a possible S = 2 Haldane chain. However, long-range magnetic order of the chains prevents the Haldane gap from developing below 11.5 K. Based on a four-sublattice model, a description of the antiferromagnetic resonance (AFMR) spectrum up to frequencies of 1.5 THz and magnetic fields up to 50 T indicates that the interchain coupling is indeed quite small but that the Dzaloshinskii-Moriya interaction produced by broken inversion symmetry is substantial (0.12 meV). In addition, the antiferromagnetic, nearest-neighbor interaction within each chain (3.3 meV) is significantly stronger than previously reported. The excitation spectrum of this S = 2 compound is well described by a 1/S expansion about the classical limit.« less

  10. Long-range magnetic order and interchain interactions in the S = 2 chain system MnCl 3 (bpy)

    DOE PAGES

    Fishman, Randy S.; Shinozaki, Shin-ichi; Okutani, Akira; ...

    2016-09-28

    Here,more » a compound with very weakly interacting chains, MnCl 3(bpy), has attracted a great deal of attention as a possible S = 2 Haldane chain. However, long-range magnetic order of the chains prevents the Haldane gap from developing below 11.5 K. Based on a four-sublattice model, a description of the antiferromagnetic resonance (AFMR) spectrum up to frequencies of 1.5 THz and magnetic fields up to 50 T indicates that the interchain coupling is indeed quite small but that the Dzaloshinskii-Moriya interaction produced by broken inversion symmetry is substantial (0.12 meV). In addition, the antiferromagnetic, nearest-neighbor interaction within each chain (3.3 meV) is significantly stronger than previously reported. The excitation spectrum of this S = 2 compound is well described by a 1/S expansion about the classical limit.« less

  11. Modeling of particle interactions in magnetorheological elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biller, A. M., E-mail: kam@icmm.ru; Stolbov, O. V., E-mail: oleg100@gmail.com; Raikher, Yu. L., E-mail: raikher@icmm.ru

    2014-09-21

    The interaction between two particles made of an isotropic linearly polarizable magnetic material and embedded in an elastomer matrix is studied. In this case, when an external field is imposed, the magnetic attraction of the particles, contrary to point dipoles, is almost wraparound. The exact solution of the magnetic problem in the linear polarization case, although existing, is not practical; to circumvent its use, an interpolation formula is proposed. One more interpolation expression is developed for the resistance of the elastic matrix to the field-induced particle displacements. Minimization of the total energy of the pair reveals its configurational bistability inmore » a certain field range. One of the possible equilibrium states corresponds to the particles dwelling at a distance, the other—to their collapse in a tight dimer. This mesoscopic bistability causes magnetomechanical hysteresis which has important implications for the macroscopic behavior of magnetorheological elastomers.« less

  12. Magnetic suspension using high temperature superconducting cores

    NASA Technical Reports Server (NTRS)

    Scurlock, R. G.

    1992-01-01

    The development of YBCO high temperature superconductors, in wire and tape forms, is rapidly approaching the point where the bulk transport current density j vs magnetic field H characteristics with liquid nitrogen cooling will enable its use in model cores. On the other hand, BSCCO high temperature superconductor in wire form has poor j-H characteristics at 77 K today, although with liquid helium or hydrogen cooling, it appears to be superior to NbTi superconductor. Since liquid nitrogen cooling is approx. 100 times cheaper than liquid helium cooling, the use of YBCO is very attractive for use in magnetic suspension. The design is discussed of a model core to accommodate lift and drag loads up to 6000 and 3000 N respectively. A comparison is made between the design performance of a liquid helium cooled NbTi (or BSCCO) superconducting core and a liquid nitrogen cooled YBCO superconducting core.

  13. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-12-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  14. Nanodiamonds and Their Applications in Cells.

    PubMed

    Chipaux, Mayeul; van der Laan, Kiran J; Hemelaar, Simon R; Hasani, Masoumeh; Zheng, Tingting; Schirhagl, Romana

    2018-03-24

    Diamonds owe their fame to a unique set of outstanding properties. They combine a high refractive index, hardness, great stability and inertness, and low electrical but high thermal conductivity. Diamond defects have recently attracted a lot of attention. Given this unique list of properties, it is not surprising that diamond nanoparticles are utilized for numerous applications. Due to their hardness, they are routinely used as abrasives. Their small and uniform size qualifies them as attractive carriers for drug delivery. The stable fluorescence of diamond defects allows their use as stable single photon sources or biolabels. The magnetic properties of the defects make them stable spin qubits in quantum information. This property also allows their use as a sensor for temperature, magnetic fields, electric fields, or strain. This Review focuses on applications in cells. Different diamond materials and the special requirements for the respective applications are discussed. Methods to chemically modify the surface of diamonds and the different hurdles one has to overcome when working with cells, such as entering the cells and biocompatibility, are described. Finally, the recent developments and applications in labeling, sensing, drug delivery, theranostics, antibiotics, and tissue engineering are critically discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Current singularities at quasi-separatrix layers and three-dimensional magnetic nulls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, I. J. D.; Effenberger, Frederic, E-mail: feffen@waikato.ac.nz

    2014-11-10

    The open problem of how singular current structures form in line-tied, three-dimensional magnetic fields is addressed. A Lagrangian magneto-frictional relaxation method is employed to model the field evolution toward the final near-singular state. Our starting point is an exact force-free solution of the governing magnetohydrodynamic equations that is sufficiently general to allow for topological features like magnetic nulls to be inside or outside the computational domain, depending on a simple set of parameters. Quasi-separatrix layers (QSLs) are present in these structures and, together with the magnetic nulls, they significantly influence the accumulation of current. It is shown that perturbations affectingmore » the lateral boundaries of the configuration lead not only to collapse around the magnetic null but also to significant QSL currents. Our results show that once a magnetic null is present, the developing currents are always attracted to that specific location and show a much stronger scaling with resolution than the currents that form along the QSL. In particular, the null-point scalings can be consistent with models of 'fast' reconnection. The QSL currents also appear to be unbounded but give rise to weaker singularities, independent of the perturbation amplitude.« less

  16. Mechanical reinforcement for RACC cables in high magnetic background fields

    NASA Astrophysics Data System (ADS)

    Bayer, C. M.; Gade, P. V.; Barth, C.; Preuß, A.; Jung, A.; Weiß, K. P.

    2016-02-01

    Operable in liquid helium, liquid hydrogen or liquid nitrogen, high temperature superconductor (HTS) cables are investigated as future alternatives to low temperature superconductor (LTS) cables in magnet applications. Different high current HTS cable concepts have been developed and optimized in the last years—each coming with its own benefits and challenges. As the Roebel assembled coated conductor (RACC) is the only fully transposed HTS cable investigated so far, it is attractive for large scale magnet and accelerator magnet applications when field quality and alternating current (AC) losses are of highest importance. However, due to its filamentary character, the RACC is very sensitive to Lorentz forces. In order to increase the mechanical strength of the RACC, each of the HTS strands was covered by an additional copper tape. After investigating the maximum applicable transverse pressure on the strand composition, the cable was clamped into a stainless steel structure to reinforce it against Lorentz forces. A comprehensive test has been carried out in the FBI facility at 4.2 K in a magnetic field of up to 12 T. This publication discusses the maximum applicable pressure as well as the behaviour of the RACC cable as a function of an external magnetic field.

  17. Saturation of VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Williamson, M.; de Rozieres, M.; Almasi, H.; Chao, X.; Wang, W.; Wang, J.-P.; Tsoi, M.

    2018-05-01

    Voltage controlled magnetic anisotropy (VCMA) currently attracts considerable attention as a novel method to control and manipulate magnetic moments in high-speed and low-power spintronic applications based on magnetic tunnel junctions (MTJs). In our experiments, we use ferromagnetic resonance (FMR) to study and quantify VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB MTJ pillars. FMR is excited by applying a microwave current and detected via a small rectified voltage which develops across MTJ at resonance. The VCMA effective field can be extracted from the measured resonance field and was found to vary as a function of electrical bias applied to MTJ. At low applied biases, we observe a linear shift of the VCMA field as a function of the applied voltage which is consistent with the VCMA picture based on the bias-induced electron migration across the MgO/CoFeB interface. At higher biases, both positive and negative, we observe a deviation from the linear behavior which may indicate a saturation of the VCMA effect. These results are important for the design of MTJ-based applications.

  18. Analysis of Listening Skills Acquisition in Magnet Schools.

    ERIC Educational Resources Information Center

    Boyer, Wanda A.; Anderson, Frances

    A study conducted in a magnet school examined whether curricular attractions stressing science, second language acquisition, and use of computers make a difference in how effectively children listen and how well the pupil comprehends what is heard. Subjects were 58 fourth grade students who participated in an enriched curriculum. Data were…

  19. Microfabricated magnetic structures for future medicine: from sensors to cell actuators

    PubMed Central

    Vitol, Elina A; Novosad, Valentyn; Rozhkova, Elena A

    2013-01-01

    In this review, we discuss the prospective medical application of magnetic carriers microfabricated by top-down techniques. Physical methods allow the fabrication of a variety of magnetic structures with tightly controlled magnetic properties and geometry, which makes them very attractive for a cost-efficient mass-production in the fast growing field of nanomedicine. Stand-alone fabricated particles along with integrated devices combining lithographically defined magnetic structures and synthesized magnetic tags will be considered. Applications of microfabricated multifunctional magnetic structures for future medicinal purposes range from ultrasensitive in vitro diagnostic bioassays, DNA sequencing and microfluidic cell sorting to magnetomechanical actuation, cargo delivery, contrast enhancement and heating therapy. PMID:23148542

  20. Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jun-Youl

    2003-01-01

    Magnetic particle inspection (MPI) is a widely used nondestructive inspection method for aerospace applications essentially limited to experiment-based approaches. The analysis of MPI characteristics that affect sensitivity and reliability contributes not only reductions in inspection design cost and time but also improvement of analysis of experimental data. Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a magnetic field source, which produces a magnetic field gradient large enough to detect a defect in a test sample or component, is an important factor in magnetic particle inspection. In this work a finite element method (FEM) has beenmore » employed for numerical calculation of the MPI simulation technique. The FEM method is known to be suitable for complicated geometries such as defects in samples. This thesis describes the research that is aimed at providing a quantitative scientific basis for magnetic particle inspection. A new FEM solver for MPI simulation has been developed in this research for not only nonlinear reversible permeability materials but also irreversible hysteresis materials that are described by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic properties in this research (i.e., the magnetic properties of the material are identical in all directions in a single crystal). In the research, with a direct current field mode, an MPI situation has been simulated to measure the estimated volume of magnetic particles around defect sites before and after removing any external current fields. Currently, this new MPI simulation package is limited to solving problems with the single current source from either a solenoid or an axial directional current rod.« less

  1. Spin Dynamics in Novel Materials Systems

    NASA Astrophysics Data System (ADS)

    Yu, Howard

    Spintronics and organic electronics are fields that have made considerable advances in recent years, both in fundamental research and in applications. Organic materials have a number of attractive properties that enable them to complement applications traditionally fulfilled by inorganic materials, while spintronics seeks to take advantage of the spin degree of freedom to produce new applications. My research is aimed at combining these two fields to develop organic materials for spintronics use. My thesis is divided into three primary projects centered around an organic-based semiconducting ferrimagnet, vanadium tetracyanoethylene. First, we investigated the transport characteristics of a hybrid organic-inorganic heterostructure. Semiconductors form the basis of the electronics industry, and there has been considerable effort put forward to develop organic semiconductors for applications like organic light-emitting diodes and organic thin film transistors. Working with hybrid organic-inorganic semiconductor device structures allows us to potentially take advantage of the infrastructure that has already been developed for silicon and other inorganic semiconductors. This could potentially pave the way for a new class of active hybrid devices with multifunctional behavior. Second, we investigated the magnetic resonance characteristics of V[TCNE]x, in multiple measurement schemes and exploring the effect of temperature, frequency, and chemical tuning. Recently, the spintronics community has shifted focus from static electrical spin injection to various dynamic processes, such as spin pumping and thermal effects. Spin pumping in particular is an intriguing way to generate pure spin currents via magnetic resonance that has attracted a high degree of interest, with the FMR linewidth being an important metric for spin injection. Furthermore, we can potentially use these measurements to probe the magnetic properties as we change the physical properties of the materials by chemically tuning the organic ligand. We are therefore interested in exploring the resonance properties of this materials system to lay the groundwork for future spin pumping applications. Third, we have made preliminary measurements of spin pumping in hybrid and all-organic bilayer structures. As mentioned above, FMR-driven spin pumping is method for generating pure spin currents with no associated charge motion. This can be detected in a number of ways, one of which is monitoring the FMR characteristics of two ferromagnets in close contact, where spins injected from one magnet into the other changes the linewidth. In conjunction with the magnetic resonance measurements, we have started to investigate the FMR properties of these bilayer systems.

  2. Gd@Au15: A magic magnetic gold cluster for cancer therapy and bioimaging

    NASA Astrophysics Data System (ADS)

    Yadav, Brahm Deo; Kumar, Vijay

    2010-09-01

    We report from ab initio calculations a magic magnetic cage cluster of gold, Gd@Au15, obtained by doping of a Gd atom in gold clusters. It has a highest occupied molecular orbital-lowest unoccupied molecular orbital gap of 1.31 eV within the generalized gradient approximation that makes it a potential candidate for cancer therapy with an additional attractive feature that its large magnetic moment of 7 μB could be beneficial for magnetic resonance imaging.

  3. Muon spin rotation research program

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1980-01-01

    Data from cyclotron experiments and room temperature studies of dilute iron alloys and iron crystals under strain were analyzed. The Fe(Mo) data indicate that the effect upon the contact hyperfine field in Fe due to the introduction of Mo is considerably less than that expected from pure dilution, and the muon (+) are attracted to the Mo impurity sites. There is a significant change in the interstitial magnetic field with Nb concentration. The Fe(Ti) data, for which precession could clearly be observed early only at 468K and above, show that the Ti impurities are attractive to muon (+), and the magnitude of B(hf) is reduced far beyond the amount expected from pure dilution. Changes in the intersitital magnetic field with the introduction of Cr, W, Ge, and Si are also discussed. When strained to the elastic limit, the interstitial magnetic field in Fe crystals is reduced by 33 gauss, and the relaxation rate of the precession signal increases by 47%.

  4. Investigation of xFe2O4 (x = Mn, Co) doped hydroxylapatite ferromagnetic biomaterials for the treatment of damaged bone and magnetically targeted drug delivery systems

    NASA Astrophysics Data System (ADS)

    Anand, Vikas; Singh, K. J.; Kaur, Kulwinder; Bhatia, Gaurav

    2016-05-01

    Magnetically attracted MnFe2O4 and CoFe2O4 doped hydroxylapatite samples have been prepared by using co-precipitation method in the laboratory. Bioactive nature of samples has been confirmed from XRD spectra. Ferromagnetic behavior of samples has been studied by using vibration sample magnetometer. Human osteoblast cell line MG63 has been used to explore the cell viability of samples. Drug carrier ability of samples has been checked with gentamycin as an antibiotic and results show that samples can be used as excellent drug carriers. Drug loaded samples can be easily targeted to specific area due to their attractive nature towards external magnetic field. Our results indicate that prepared samples possess good bioactive as well as ferromagnetic behavior with drug carrier ability and hence, our samples can be potential candidates for the clinical applications.

  5. Seal device for ferromagnetic containers

    DOEpatents

    Meyer, R.E.; Jason, A.J.

    1994-10-18

    A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach there through until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity. 10 figs.

  6. Seal device for ferromagnetic containers

    DOEpatents

    Meyer, Ross E.; Jason, Andrew J.

    1994-01-01

    A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach therethrough until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity.

  7. Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination.

    PubMed

    Razmjou, Amir; Barati, Mohammad Reza; Simon, George P; Suzuki, Kiyonori; Wang, Huanting

    2013-06-18

    Freshwater shortage is one of the most pressing global issues. Forward osmosis (FO) desalination technology is emerging for freshwater production from saline water, which is potentially more energy-efficient than the current reverse osmosis process. However, the lack of a suitable draw solute is the major hurdle for commercial implementation of the FO desalination technology. We have previously reported that thermoresponsive hydrogels can be used as the draw agent for a FO process, and this new hydrogel-driven FO process holds promise for further development for practical application. In the present work, magnetic field-induced heating is explored for the purpose of developing a more effective way to recover water from swollen hydrogel draw agents. The composite hydrogel particles are prepared by copolymerization of sodium acrylate and N-isopropylacrylamide in the presence of magnetic nanoparticles (γ-Fe2O3, <50 nm). The results indicate that the magnetic heating is an effective and rapid method for dewatering of hydrogels by generating the heat more uniformly throughout the draw agent particles, and thus, a dense skin layer commonly formed via conventional heating from the outside of the particle is minimized. The FO dewatering performance is affected by the loading of magnetic nanoparticles and magnetic field intensity. Significantly enhanced liquid water recovery (53%) is achieved under magnetic heating, as opposed to only around 7% liquid water recovery obtained via convection heating. Our study shows that the magnetic heating is an attractive alternative stimulus for the extraction of highly desirable liquid water from the draw agent in the polymer hydrogel-driven forward osmosis process.

  8. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-07-20

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

  9. Multifunctional iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, M.; Denis, C.; Van Stappen, T.; De Meester, L.; Geukens, N.; Gils, A.; Verbiest, T.

    2015-03-01

    Multifunctional nanoparticles have attracted a lot of attention since they can combine interesting properties like magnetism, fluorescence or plasmonic effects. As a core material, iron oxide nanoparticles have been the subject of intensive research. These cost-effective and non-toxic particles are used nowadays in many applications. We developed a heterobifunctional PEG ligand that can be used to introduce functional groups (carboxylic acids) onto the surface of the NP. Via click chemistry, a siloxane functionality was added to this ligand, for a subsequent covalent ligand exchange reaction. The functionalized nanoparticles have an excellent colloidal stability in complex environments like buffers and serum or plasma. Antibodies were coupled to the introduced carboxylic acids and these NP-antibody bioconjugates were brought into contact with Legionella bacteria for magnetic separation experiments.

  10. [Evaluation of three dimensional orthodontic force produced by magnet of fix appliance].

    PubMed

    Dai, Xin; Hou, Zhi-ming; Yao, Ge; Wen, Jing-long

    2008-12-01

    To analyze the feature and magnitude of three dimensional orthodontic force produced by the magnet of fix appliance. Forces detected by universal fatigue test system included the attractive and repulsive,the inclined and rotated orthodontic forces of two magnets in different air gaps, and the integrated inclined and rotated orthodontic forces of two magnets and NiTi wire. The attractive and repulsive forces of two magnets were 4.68 to 0.45 N and 3.00 to 0.40 N respectively in the air gaps of 0 to 5 mm. The inclined orthodontic forces were 1.54 to 1.67 N, 0.63 to 0.69 N, 0.47 to 0.54 N when the magnets were vertically inclined 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The rotated orthodontic forces were 0.97 to 1.32 N, 0.53 to 0.59 N, 0.39 to 0.48 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The integrated orthodontic force of two magnets and 0.014-inch NiTi wire was 0.32 to 0.5 N when the magnets was vertically inclined 10 degrees to 40 degrees in the air gap of 4 mm. The integrated orthodontic force of two magnets and 0.012-inch NiTi wire was 0.32 to 0.39 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gap of 3 mm. Magnets made into orthodontic brackets to some extent could replace the mechanical orthodontic force produced by orthodontic wires and elastics.

  11. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y. S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe3O4) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY'S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis.

  12. Magnetic Separation Using HTS Bulk Magnet for Cs-Bearing Fe precipitates

    NASA Astrophysics Data System (ADS)

    Oka, T.; Ichiju, K.; Sasaki, S.; Ogawa, J.; Fukui, S.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Aoki, S.; Ohnishi, N.

    2017-09-01

    A peculiar magnetic separation technique has been examined in order to remove the Cs-bearing Fe precipitates formed of the waste ash from the withdrawn incinerator furnaces in Fukushima. The separation system was constructed in combination with high temperature superconducting bulk magnets which generates the intensive magnetic field over 2 T, which was activated by the pulsed field magnetization process. The separation experiment has been operated with use of the newly-built alternating channel type magnetic separating device, which followed the high-gradient magnetic separation technique. The magnetic stainless steel filters installed in the water channels are magnetized by the applied magnetic fields, and are capable of attracting the precipitates bearing the Fe compound and thin Cs contamination. The experimental results clearly exhibited the positive feasibility of HTS bulk magnets.

  13. Magnetic assembly route to colloidal responsive photonic nanostructures.

    PubMed

    He, Le; Wang, Mingsheng; Ge, Jianping; Yin, Yadong

    2012-09-18

    Responsive photonic structures can respond to external stimuli by transmitting optical signals. Because of their important technological applications such as color signage and displays, biological and chemical sensors, security devices, ink and paints, military camouflage, and various optoelectronic devices, researchers have focused on developing these functional materials. Conventionally, self-assembled colloidal crystals containing periodically arranged dielectric materials have served as the predominant starting frameworks. Stimulus-responsive materials are incorporated into the periodic structures either as the initial building blocks or as the surrounding matrix so that the photonic properties can be tuned. Although researchers have proposed various versions of responsive photonic structures, the low efficiency of fabrication through self-assembly, narrow tunability, slow responses to the external stimuli, incomplete reversibility, and the challenge of integrating them into existing photonic devices have limited their practical application. In this Account, we describe how magnetic fields can guide the assembly of superparamagnetic colloidal building blocks into periodically arranged particle arrays and how the photonic properties of the resulting structures can be reversibly tuned by manipulating the external magnetic fields. The application of the external magnetic field instantly induces a strong magnetic dipole-dipole interparticle attraction within the dispersion of superparamagnetic particles, which creates one-dimensional chains that each contains a string of particles. The balance between the magnetic attraction and the interparticle repulsions, such as the electrostatic force, defines the interparticle separation. By employing uniform superparamagnetic particles of appropriate sizes and surface charges, we can create one-dimensional periodicity, which leads to strong optical diffraction. Acting remotely over a large distance, magnetic forces drove the rapid formation of colloidal photonic arrays with a wide range of interparticle spacing. They also allowed instant tuning of the photonic properties because they manipulated the interparticle force balance, which changed the orientation of the colloidal assemblies or their periodicity. This magnetically responsive photonic system provides a new platform for chromatic applications: these colloidal particles assemble instantly into ordered arrays with widely, rapidly, and reversibly tunable structural colors, which can be easily and rapidly fixed in a curable polymer matrix. Based on these unique features, we demonstrated many applications of this system, such as structural color printing, the fabrication of anticounterfeiting devices, switchable signage, and field-responsive color displays. We also extended this idea to rapidly organize uniform nonmagnetic building blocks into photonic structures. Using a stable ferrofluid of highly charged magnetic nanoparticles, we created virtual magnetic moments inside the nonmagnetic particles. This "magnetic hole" strategy greatly broadens the scope of the magnetic assembly approach to the fabrication of tunable photonic structures from various dielectric materials.

  14. A review on hyperthermia via nanoparticle-mediated therapy.

    PubMed

    Sohail, Ayesha; Ahmad, Zaki; Bég, O Anwar; Arshad, Sarmad; Sherin, Lubna

    2017-05-01

    Hyperthermia treatment, generated by magnetic nanoparticles (MNPs) is promising since it is tumour-focused, minimally invasive and uniform. The most unique feature of magnetic nanoparticles is its reaction and modulation by a magnetic force basically responsible for enabling its potential as heating mediators for cancer therapy. In magnetic nanoparticle hyperthermia, a tumour is preferentially loaded with systemically administered nanoparticles with high-absorption cross-section for transduction of an extrinsic energy source to heat. To maximize the energy deposited in the tumour while limiting the exposure to healthy tissues, the heating is achieved by exposing the region of tissue containing magnetic nanoparticles to an alternating magnetic field. The magnetic nanoparticles dissipate heat from relaxation losses thereby heating localized tissue above normal physiological ranges. Besides thermal efficiency, the biocompatibility of magnetite nanoparticles assisted its deployment as efficient drug carrier for targeted therapeutic regimes. In the present article, we provide a state-of-the-art review focused on progress in nanoparticle induced hyperthermia treatments that have several potential advantages over both global and local hyperthermia treatments achieved without nanoparticles. Green bio-nanotechnology has attracted substantial attention and has demonstrable abilities to improve cancer therapy. Furthermore, we have listed the challenges associated with this treatment along with future prospective that could attract the interest of biomedical engineers, biomaterials scientists, medical researchers and pharmacological research groups. Copyright © 2017 Société Française du Cancer. All rights reserved.

  15. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics.

    PubMed

    Li, Yu-Ji; Dong, Ming; Kong, Fan-Min; Zhou, Jian-Ping

    2015-07-15

    Nanoparticulate system with theranostic applications has attracted significant attention in cancer therapeutics. In the present study, we have developed a novel composite PLGA NP co-encapsulated with anticancer drug (sorafenib) and magnetic NP (SPION). We have successfully developed nanosized folate-conjugated PEGylated PLGA nanoparticles (SRF/FA-PEG-PLGA NP) with both anticancer and magnetic resonance property. We have showed that FA-conjugated NP exhibits sustained drug release and enhanced cellular uptake in BEL7402 cancer cells. The targeted NP effectively suppressed the tumor cell proliferation and has improved the anticancer efficacy than that of free drug or non-targeted one. Additionally, enhanced MRI properties demonstrate this formulation has good imaging agent characteristics. Finally, SRF/FA-PEG-PLGA NP effectively inhibited the colony forming ability indicating its superior anticancer effect. Together, these multifunctional nanoparticles would be most ideal to improve the therapeutic response in cancer and holds great potential to be a part of future nanomedicine. Our unique approach could be extended for multiple biomedical applications. Copyright © 2015. Published by Elsevier B.V.

  16. Features of the accretion in the EX Hydrae system: Results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.; Semena, A. N.; Revnivtsev, M. G.

    2017-07-01

    A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.

  17. Developing Glassy Magnets from Simulated Composition of Martian Soil for Exploration Applications

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Ray, Chandra; Rogers, Jan

    2004-01-01

    The long-term exploration goals of NASA include developing human habitation on Mars and conducting scientific investigations on Mars and other planetary bodies. In situ resource processing is a key objective in this area We focus OR the possibility of making magnetic glasses in situ for potential applications development. The paper will focus on ongoing work at NASA Marshall Space Flight Center on making magnetic glass h m Mars soil simulants and its characterization. Analysis of the glass morphology, strength, chemistry and resulting magnetic properties will provide a fi.mdamenta1 understanding ofthe synthesized materiai that can be used for pomtiai appiications cieveiopment. In an effort to characterize the magnetic properbes of the Mars glasses, a series of tests were performed at NASA MSFC. Preliminary tests indicated that the glasses were attracted to a magnet and also had a small amount of residual magnetism. They were opaque (almost black in color). As the first step, a sample of Mars 1 glass (-lm x lmm x 5 mm length) was machined, weighed and its hysteresis curve was measured using a Vibration Sample Magnetometer 0. Next, a small furnace was designed and built and the sample was baked in a graphite (reducing agent) crucible at 800 C in an Argon atmosphere for 3 hours in the presence of a uniform, transverse (transverse to the 5mm length of the sample) magnetic field of 0.37 Tesla. The treated sample showed reddening on the outside and showed substantially increased residual magnetism. This sample was again analyzed in the VSM. The data clearly showed that some chemical change occurred during the heat treatment (color change) and that both the glasses have useful magnetic properties. Although no orientation effects of the magnetic field were considered, the data showed the following: 1. Both glass samples are primarily soft magnets and display ferromagnetic behavior (hysteresis, saturation, etc.) 2. The treated glass has improved saturation magnetism (order of magnitude increase), retentivity (factor of 6 increase) and susceptibility (order of magnitude increase) compared to the untreated glass 3. The untreated sample has higher coercivity (-50% that of Nickel) than the treated sample

  18. Theory of multinonlinear media and its application to the soliton processes in ferrite–ferroelectric structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherkasskii, M. A., E-mail: macherkasskii@hotmail.com; Nikitin, A. A.; Kalinikos, B. A.

    A theory is developed to describe the wave processes that occur in waveguide media having several types of nonlinearity, specifically, multinonlinear media. It is shown that the nonlinear Schrödinger equation can be used to describe the general wave process that occurs in such media. The competition between the electric wave nonlinearity and the magnetic wave nonlinearity in a layered multinonlinear ferrite–ferroelectric structure is found to change a total repulsive nonlinearity into a total attractive nonlinearity.

  19. Magnetism and Electricity Activity "Attracts" Student Interest

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this…

  20. Paramagnetism Paradoxes: Projectable Demonstrations

    ERIC Educational Resources Information Center

    Sauls, Frederick C.; Vitz, Ed

    2008-01-01

    Drops of oil in Mn(SO[subscript 4])(aq) and drops of the solution in oil show opposite effects when brought near a rare earth magnet. Oxygen, nitrogen, and air bubbles atop water show expected attraction, repulsion, and null behavior, respectively. Air bubbles atop aqueous Mn(SO[subscript 4]) show paradoxical behavior because the magnet's…

  1. 77 FR 45342 - Maxfield and Oberton Holdings, LLC; Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ..., including x-rays and monitoring for infection and internal damage. 27. Since March 2009 to approximately... had to undergo x-rays, CT scans, endoscopy, and an appendectomy to remove them. The girl's father had... attraction of the magnets to the metal equipment used to retrieve the magnets. 22. Children who undergo...

  2. Giant magnetic anisotropy of rare-earth adatoms and dimers adsorbed by graphene oxide.

    PubMed

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan; Shi, Li-Bin

    2017-05-24

    Nowadays, transition-metal adatoms and dimers with giant magnetic anisotropy have attracted much attention due to their potential applications in data storage, spintronics and quantum computations. Using density-functional calculations, we investigated the magnetic anisotropy of the rare-earth adatoms and dimers adsorbed by graphene oxide. Our calculations reveal that the adatoms of Tm, Er and Sm possess giant magnetic anisotropy, typically larger than 40 meV. When the dimers of (Tm,Er,Sm)-Ir are adsorbed onto graphene oxide, the magnetic anisotropy even exceeds 200 meV. The magnetic anisotropy can be tuned by the external electric field as well as the environment.

  3. Ball Lightning–Aerosol Electrochemical Power Source or A Cloud of Batteries

    PubMed Central

    2007-01-01

    Despite numerous attempts, an adequate theoretical and experimental simulation of ball lightning still remains incomplete. According to the model proposed here, the processes of electrochemical oxidation within separate aerosol particles are the basis for this phenomenon, and ball lightning is a cloud of composite nano or submicron particles, where each particle is a spontaneously formed nanobattery which is short-circuited by the surface discharge because it is of such a small size. As free discharge-shorted current loops, aerosol nanobatteries are exposed to a powerful mutual magnetic dipole–dipole attraction. The gaseous products and thermal energy produced by each nanobattery as a result of the intra-particle self-sustaining electrochemical reactions, cause a mutual repulsion of these particles over short distances and prevent their aggregation, while a collectivization of the current loops of separate particles, due to the electric arc overlapping between adjacent particles, weakens their mutual magnetic attraction over short distances. Discharge currents in the range of several amperes to several thousand amperes as well as the pre-explosive mega ampere currents, generated in the reduction–oxidation reactions and distributed between all the aerosol particles, explain both the magnetic attraction between the elements of the ball lightning substance and the impressive electromagnetic effects of ball lightning.

  4. A study of flux control for high-efficiency speed control of variable flux permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Kim, Young Hyun; Lee, Seong Soo; Lee, Jung Ho

    2018-05-01

    In this study, we evaluate the performance of permanent magnets (PMs). The efficiency of attraction in the high speed region was studied using the variable flux memory motor (VFMM). It is presented in order to analyze the magnetic characteristics of PMs, using the second quadrant plan data with re- and de-magnetization. In addition, this study focuses on the evaluation of operational characteristics relative to the magnetizing directions according to the d-axis currents, by using one of the finite element solutions. The feasibility of application for the VFMM has been experimentally demonstrated.

  5. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications

    NASA Astrophysics Data System (ADS)

    Hervault, Aziliz; Dunn, Alexander E.; Lim, May; Boyer, Cyrille; Mott, Derrick; Maenosono, Shinya; Thanh, Nguyen T. K.

    2016-06-01

    Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced features for the targeted delivery of DOX molecules via the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour which offers spatial and temporal control over the release of DOX. The iron oxide cores exhibit a superparamagnetic behaviour with a saturation magnetization around 70 emu g-1. The MNCs contained 8.1 wt% of polymer and exhibit good heating properties in an alternating magnetic field. The drug release experiments confirmed that only a small amount of DOX was released at room temperature and physiological pH, while the highest drug release of 85.2% was obtained after 48 h at acidic tumour pH under hyperthermia conditions (50 °C). The drug release kinetic followed Korsmeyer-Peppas model and displayed Fickian diffusion mechanism. From the results obtained it can be concluded that this smart magnetic nanocarrier is promising for applications in multi-modal cancer therapy, to target and efficiently deliver heat and drug specifically to the tumour.Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced features for the targeted delivery of DOX molecules via the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour which offers spatial and temporal control over the release of DOX. The iron oxide cores exhibit a superparamagnetic behaviour with a saturation magnetization around 70 emu g-1. The MNCs contained 8.1 wt% of polymer and exhibit good heating properties in an alternating magnetic field. The drug release experiments confirmed that only a small amount of DOX was released at room temperature and physiological pH, while the highest drug release of 85.2% was obtained after 48 h at acidic tumour pH under hyperthermia conditions (50 °C). The drug release kinetic followed Korsmeyer-Peppas model and displayed Fickian diffusion mechanism. From the results obtained it can be concluded that this smart magnetic nanocarrier is promising for applications in multi-modal cancer therapy, to target and efficiently deliver heat and drug specifically to the tumour. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07773g

  6. Continuous magnetic separator and process

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  7. Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence.

    PubMed

    Cai, Shu-Yi; Chang, Cheng-Han; Lin, Hung-I; Huang, Yuan-Fu; Lin, Wei-Ju; Lin, Shih-Yao; Liou, Yi-Rou; Shen, Tien-Lin; Huang, Yen-Hsiang; Tsao, Po-Wei; Tzou, Chen-Yang; Liao, Yu-Ming; Chen, Yang-Fang

    2018-05-23

    In recent years, flexible magnetoelectronics has attracted a great attention for its intriguing functionalities and potential applications, such as healthcare, memory, soft robots, navigation, and touchless human-machine interaction systems. Here, we provide the first attempt to demonstrate a new type of magneto-piezoresistance device, which possesses an ultrahigh sensitivity with several orders of resistance change under an external magnetic field (100 mT). In our device, Fe-Ni alloy powders are embedded in the silver nanowire-coated micropyramid polydimethylsiloxane films. Our devices can not only serve as an on/off switch but also act as a sensor that can detect different magnetic fields because of its ultrahigh sensitivity, which is very useful for the application in analog signal communication. Moreover, our devices contain several key features, including large-area and easy fabrication processes, fast response time, low working voltage, low power consumption, excellent flexibility, and admirable compatibility onto a freeform surface, which are the critical criteria for the future development of touchless human-machine interaction systems. On the basis of all of these unique characteristics, we have demonstrated a nontouch piano keyboard, instantaneous magnetic field visualization, and autonomous power system, making our new devices be integrable with magnetic field and enable to be implemented into our daily life applications with unfamiliar human senses. Our approach therefore paves a useful route for the development of wearable electronics and intelligent systems.

  8. Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk.

    PubMed

    Chinnappan, Raja; Al Attas, Sana; Kaman, Wendy E; Bikker, Floris J; Zourob, Mohammed

    2017-04-15

    Mastitis in dairy cattle is an inflammatory reaction of the udder tissue. Mastitis increases plasmin levels, leading to an increased proteolysis of milk proteins such as casein, resulting in a significant decrease in milk quality and related dairy products. Due to its key-role in mastitis, we used plasmin proteolytic activity as a biomarker for the detection of mastitis in bovine mastitic milk. Inspired by earlier studies on protease activity using mastitic milk samples, we developed a simple colorimetric assay to distinguish mastitic milk from milk derived from healthy animals. The plasmin substrate coupled to magnetic nanoparticles form a black self-assembled monolayer on a gold sensor surface. In the presence of increased levels of plasmin, the substrate is cleaved and the peptide fragment attached to the magnetic beads, will be attracted by the magnet which is present under the sensor strips revealing the golden surface. We found the area of the golden color surface proportional to plasmin activity. The sensitivity of this method was determined to be 1 ng/ml of plasmin in vitro. Next, we tested the biosensor using mastitis positive milk of which infection is confirmed by bacterial cultures. This newly developed colorimetric biosensor has high potential in applications for the diagnosis of mastitis with potential spin offs to health, food and environmental sectors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Comparison and evaluation of leakage flux on various types of dental magnetic attachment.

    PubMed

    Nishida, M; Tegawa, Y; Kinouchi, Y

    2008-01-01

    A dental magnetic attachment is a device to retain dental prostheses such as overdentures by magnetic attraction. As compared with mechanical attachments, the dental magnetic attachment has superior characteristics such as easy insertion, good esthetics and less lateral pressure to its abutment tooth. As a result, it has come to be used widely. There are various types of dental magnetic attachments. There are a cup type and a sandwich type in Japan, and several types of dental magnetic attachments in other countries. They are used for a long term in the mouth, it is necessary to clarify those leakage magnetic fields. Therefore, in this paper, we evaluate the leakage magnetic fields leaking out of sandwich type and open magnetic circuit type of dental magnetic attachment.

  10. Permanent magnet design for magnetic heat pumps using total cost minimization

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.

    2017-11-01

    The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.

  11. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  12. AC Loss Minimization in High Temperature Superconductors - U.K.

    DTIC Science & Technology

    2003-11-07

    high currents in high magnetic fields. The DC properties are very attractive, but to reduce the AC losses it is necessary to use a narrow conductor... NiFe in the whole magnetic field region (goHext=0.01 T - 6 T) roughly by a factor of 2, reflecting the sample Jc(B) dependencies. Also the magnetic ...ratio of the tape, there is no visible effect in a parallel magnetic field. Hysteresis losses in metallic substrates - CeO2:Pd/ NiFe and CeO2:Pd/NiCrW

  13. Materials Development and Spin Transport Study of Magnetic Insulator Based Heterostructures

    NASA Astrophysics Data System (ADS)

    Tang, Chi

    The subfield of magnetic insulator (MI) based spintronics is playing a substantial role in modern solid state physics research. Spin current in the MI is propagated in spin wave with a much longer decay length than spin-polarized carriers in conducting ferromagnet. In the MI-based hetereostructures, the adjacent non-magnetic materials can be magnetized in proximity of MI. Therefore, it is a promising system to study exotic transport phenomena such as quantum Anomalous Hall effect in topological insulator and graphene. Rare-earth Iron garnet (ReIG), a class of magnetic insulators with large electronic bandgap and high Curie temperature, stands out among various magnetic insulator materials and have attracted a great deal of attention in recent magnetic insulator based spintronics research. The first chapter of this dissertation gives a brief introduction to the spintronics research by introducing some essential concepts in the spintronics field and the most recent spin transport phenomena. The second chapter of this dissertation summarizes my work in the materials development of ReIG ferrimagnetic insulators, including exquisite control of high quality ultra-flat yttrium iron garnet (YIG) thin films with extremely low magnetic damping and engineering of strain induced robust perpendicular magnetic anisotropy in thulium iron garnet (TIG) and Bi-doped YIG films. The last chapter of this dissertation shows a systematic study in various ReIG based heterostructures, mainly divided into groups: ReIG (YIG & TIG)/heavy metal bilayers (Pd & Pt) and ReIG (YIG & TIG)/Dirac systems (graphene & topological insulator). The magneto-transport study disentangles the contribution from a spin current origin and proximity induced magnetism. Furthermore, the demonstration in the proximity coupling induced high-temperature ferromagnetic phase in low-dimensional Dirac systems, i.e. graphene and topological insulator surface states, provides new possibilities in the future spintronics applications. The modulation on the spin dynamics of magnetic insulator layer by topological insulator surface states is investigated at last, further confirming the superb properties of such magnetic insulator based spintronics systems.

  14. High quality TmIG films with perpendicular magnetic anisotropy grown by sputtering

    NASA Astrophysics Data System (ADS)

    Wu, C. N.; Tseng, C. C.; Yeh, S. L.; Lin, K. Y.; Cheng, C. K.; Fanchiang, Y. T.; Hong, M.; Kwo, J.

    Ferrimagnetic thulium iron garnet (TmIG) films grown on gadolinium gallium garnet substrates recently showed stress-induced perpendicular magnetic anisotropy (PMA), attractive for realization of quantum anomalous Hall effect (QAHE) of topological insulator (TI) films via the proximity effect. Moreover, current induced magnetization switching of Pt/TmIG has been demonstrated for the development of room temperature (RT) spintronic devices. In this work, high quality TmIG films (about 25nm) were grown by sputtering at RT followed by post-annealing. We showed that the film composition is tunable by varying the growth parameters. The XRD results showed excellent crystallinity of stoichiometric TmIG films with an out-of-plane lattice constant of 1.2322nm, a narrow film rocking curve of 0.017 degree, and a film roughness of 0.2 nm. The stoichiometric films exhibited PMA and the saturation magnetization at RT was 109 emu/cm3 (RT bulk value 110 emu/cm3) with a coercive field of 2.7 Oe. In contrast, TmIG films of Fe deficiency showed in-plane magnetic anisotropy. The high quality sputtered TmIG films will be applied to heterostructures with TIs or metals with strong spin-orbit coupling for novel spintronics.

  15. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation.

    PubMed

    Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing

    2017-11-08

    Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.

  16. Helical patterns of magnetization and magnetic charge density in iron whiskers

    NASA Astrophysics Data System (ADS)

    Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.

    2018-05-01

    Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.

  17. A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging

    DOE PAGES

    Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko; ...

    2015-03-17

    New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)] 2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)] 2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)] 2O to melanoma tissues transplanted into themore » tails of mice using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)] 2O was visualized by MRI. Thus, [Fe(salen)] 2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.« less

  18. A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko

    New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)] 2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)] 2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)] 2O to melanoma tissues transplanted into themore » tails of mice using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)] 2O was visualized by MRI. Thus, [Fe(salen)] 2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.« less

  19. Magnetic Enhancement of Stem Cell-Targeted Delivery into the Brain Following MR-Guided Focused Ultrasound for Opening the Blood-Brain Barrier.

    PubMed

    Shen, Wei-Bin; Anastasiadis, Pavlos; Nguyen, Ben; Yarnell, Deborah; Yarowsky, Paul J; Frenkel, Victor; Fishman, Paul S

    2017-07-01

    Focused ultrasound (FUS)-mediated blood-brain barrier disruption (BBBD) can enable even large therapeutics such as stem cells to enter the brain from the bloodstream. However, the efficiency is relatively low. Our previous study showed that human neural progenitor cells (hNPCs) loaded with superparamagnetic iron oxide nanoparticles (SPIONs) in culture were attracted by an external magnetic field. In vivo, enhanced brain retention was observed near a magnet mounted on the skull in a rat model of traumatic brain injury, where BBBD also occurs. The goal of the current study was to determine whether magnetic attraction of SPION-loaded hNPCs would also enhance their retention in the brain after FUS-mediated BBBD. A small animal magnetic resonance imaging (MRI)-guided FUS system operating at 1.5 MHz was used to treat rats (∼120 g) without tissue damage or hemorrhage. Evidence of successful BBBD was validated with both radiologic enhancement of gadolinium on postsonication TI MRI and whole brain section visualization of Evans blue dye. The procedure was then combined with the application of a powerful magnet to the head directly after intravenous injection of the hNPCs. Validation of cells within the brain was performed by staining with Perls' Prussian blue for iron and by immunohistochemistry with a human-specific antigen. By injecting equal numbers of iron oxide (SPIONs) and noniron oxide nanoparticles-loaded hNPCs, each labeled with a different fluorophore, we found significantly greater numbers of SPIONs-loaded cells retained in the brain at the site of BBBD as compared to noniron loaded cells. This result was most pronounced in regions of the brain closest to the skull (dorsal cortex) in proximity to the magnet surface. A more powerful magnet and a Halbach magnetic array resulted in more effective retention of SPION-labeled cells in even deeper brain regions such as the striatum and ventral cortex. There, up to 90% of hNPCs observed contained SPIONs compared to 60% to 70% with the less powerful magnet. Fewer cells were observed at 24 h posttreatment compared to 2 h (primarily in the dorsal cortex). These results demonstrate that magnetic attraction can substantially enhance the retention of stem cells after FUS-mediated BBBD. This procedure could provide a safer and less invasive approach for delivering stem cells to the brain, compared to direct intracranial injections, substantially reducing the risk of bleeding and infection.

  20. Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy

    NASA Astrophysics Data System (ADS)

    Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.

    2011-04-01

    A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.

  1. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering

    PubMed Central

    Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; D'Alessandro, T.; Sandri, M.; Bañobre-López, M.; Piñeiro-Redondo, Y.; Uhlarz, M.; Tampieri, A.; Rivas, J.; Herrmannsdörfer, T.; Dediu, V. A.; Ambrosio, L.; De Santis, R.

    2013-01-01

    In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation. PMID:23303218

  2. Music as Engaging, Educational Matrix: Exploring the Case of Marginalised Students Attending an "Alternative" Music Industry School

    ERIC Educational Resources Information Center

    Cleaver, David; Riddle, Stewart

    2014-01-01

    "Harmony High" is an alternative school where music functions as an educational magnet to attract marginalised students who have disengaged from the mainstream. Through an investigation of the student perspective, we discover that while acting as a magnet, music also becomes the educational matrix or "heart and soul" that helps…

  3. How Magnets Attract and Repel: Interessement in a Technology Commercialization Competition

    ERIC Educational Resources Information Center

    Spinuzzi, Clay; Nelson, Scott; Thomson, Keela S.; Lorenzini, Francesca; French, Rosemary A.; Pogue, Gregory; London, Noelle

    2016-01-01

    K6015, a South Korean firm seeking to commercialize its magnet technology in the US market, entered a technology commercialization training program structured as a competition. Through this program, K6015 (and others in the program) used several genres to progressively interest different sets of stakeholders. To understand how K6015 applied these…

  4. Simple System to Measure the Earth's Magnetic Field

    ERIC Educational Resources Information Center

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib

    2010-01-01

    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…

  5. New concepts and new design of permanent maglev rotary artificial heart blood pumps.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2006-05-01

    According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.

  6. Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients

    NASA Astrophysics Data System (ADS)

    Dhavalikar, Rohan; Rinaldi, Carlos

    2016-12-01

    Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI.

  7. Magnetic Nanoparticle Drug Carriers and their Study by Quadrupole Magnetic Field-Flow Fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-01-01

    Magnetic nanoparticle drug carriers continue to attract considerable interest for drug targeting in the treatment of cancers and other pathological conditions. The efficient delivery of therapeutic levels of drug to a target site while limiting nonspecific, systemic toxicity requires optimization of the drug delivery materials, the applied magnetic field, and the treatment protocol. The history and current state of magnetic drug targeting is reviewed. While initial studies involved micron-sized and larger carriers, and work with these microcarriers continues, it is the sub-micron carriers or nanocarriers that are of increasing interest. An aspect of magnetic drug targeting using nanoparticle carriers that has not been considered is then addressed. This aspect involves the variation in the magnetic properties of the nanocarriers. Quadrupole magnetic field-flow fractionation (QMgFFF) is a relatively new technique for characterizing magnetic nanoparticles. It is unique in its capability of determining the distribution in magnetic properties of a nanoparticle sample in suspension. The development and current state of this technique is also reviewed. Magnetic nanoparticle drug carriers have been found by QMgFFF analysis to be highly polydisperse in their magnetic properties, and the strength of response of the particles to magnetic field gradients is predicted to vary by orders of magnitude. It is expected that the least magnetic fraction of a formulation will contribute the most to systemic toxicity, and the depletion of this fraction will result in a more effective drug carrying material. A material that has a reduced systemic toxicity will allow higher doses of cytotoxic drugs to be delivered to the tumor with reduced side effects. Preliminary experiments involving a novel method of refining a magnetic nanoparticle drug carrier to achieve this result are described. QMgFFF is used to characterize the refined and unrefined material. PMID:19591456

  8. Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuyun; Sun, Yi; Ma, Liang; Zhao, Xinli; Yao, Xiaojing

    2018-07-01

    Borophene, a two-dimensional monolayer made of boron atoms, has attracted wide attention due to its appealing properties. Great efforts have been devoted to fine tuning its electronic and magnetic properties for desired applications. Herein, we theoretically investigate the versatile electronic and magnetic properties of bilayer borophene (BLB) intercalated by 3d transition metal (TM) atoms, TM@BLBs (TM = Ti-Fe), using ab initio calculations. Four allotropes of AA-stacking (α 1-, β-, β 12- and χ 3-) BLBs with different intercalation concentrations of TM atoms are considered. Our results show that the TM atoms are strongly bonded to the borophene layers with fairly large binding energies, around 6.31 ∼ 15.44 eV per TM atom. The BLBs with Cr and Mn intercalation have robust ferromagnetism, while for the systems decorated with Fe atoms, fruitful magnetic properties, such as nonmagnetic, ferromagnetic or antiferromagnetic, are identified. In particular, the α 1- and β-BLBs intercalated by Mn or Fe atom can be transformed into a semiconductor, half metal or graphene-like semimetal. Moreover, some heavily doped TM@BLBs expose high Curie temperatures above room temperature. The attractive properties of TM@BLBs entail an efficient way to modulate the electronic and magnetic properties of borophene sheets for advanced applications.

  9. 3-D Localization Method for a Magnetically Actuated Soft Capsule Endoscope and Its Applications

    PubMed Central

    Yim, Sehyuk; Sitti, Metin

    2014-01-01

    In this paper, we present a 3-D localization method for a magnetically actuated soft capsule endoscope (MASCE). The proposed localization scheme consists of three steps. First, MASCE is oriented to be coaxially aligned with an external permanent magnet (EPM). Second, MASCE is axially contracted by the enhanced magnetic attraction of the approaching EPM. Third, MASCE recovers its initial shape by the retracting EPM as the magnetic attraction weakens. The combination of the estimated direction in the coaxial alignment step and the estimated distance in the shape deformation (recovery) step provides the position of MASCE in 3-D. It is experimentally shown that the proposed localization method could provide 2.0–3.7 mm of distance error in 3-D. This study also introduces two new applications of the proposed localization method. First, based on the trace of contact points between the MASCE and the surface of the stomach, the 3-D geometrical model of a synthetic stomach was reconstructed. Next, the relative tissue compliance at each local contact point in the stomach was characterized by measuring the local tissue deformation at each point due to the preloading force. Finally, the characterized relative tissue compliance parameter was mapped onto the geometrical model of the stomach toward future use in disease diagnosis. PMID:25383064

  10. Effect of magnetization boundary condition on cavity magnon polariton of YIG thin film.

    PubMed

    Jiang, H H; Xiao, Y; Hu, C M; Guo, H; Xia, K

    2018-06-22

    Motivated by recent studies of cavity magnon polariton (CMP), we extended a previous theoretical work to generalize microwave transmission calculation with various magnetization boundary condition of YIG thin film embedded in cavity. It is found that numerical implementation given in this paper can be easily applied to other magnetization boundary condition and extended to magnetic multilayers. Numerical results show that ferromagnetic resonance mode of microwave transmission spectrum, which is absent in previous calculation, can be recovered by altering the pinning condition of surface spins. The demonstrated reliability of our theory opens attractive perspectives for studying CMP of thin film with complicated surface magnetization distribution and magnetic multilayers.

  11. Preparation and magnetic properties of magnetic photonic crystal by using monodisperse polystyrene covered Fe3O4 nanoparticles onto glass substrate

    NASA Astrophysics Data System (ADS)

    Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed

    2018-05-01

    Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.

  12. Magnetic polarons in a nonequilibrium polariton condensate

    NASA Astrophysics Data System (ADS)

    Mietki, Paweł; Matuszewski, Michał

    2017-09-01

    We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.

  13. Effect of magnetization boundary condition on cavity magnon polariton of YIG thin film

    NASA Astrophysics Data System (ADS)

    Jiang, H. H.; Xiao, Y.; Hu, C. M.; Guo, H.; Xia, K.

    2018-06-01

    Motivated by recent studies of cavity magnon polariton (CMP), we extended a previous theoretical work to generalize microwave transmission calculation with various magnetization boundary condition of YIG thin film embedded in cavity. It is found that numerical implementation given in this paper can be easily applied to other magnetization boundary condition and extended to magnetic multilayers. Numerical results show that ferromagnetic resonance mode of microwave transmission spectrum, which is absent in previous calculation, can be recovered by altering the pinning condition of surface spins. The demonstrated reliability of our theory opens attractive perspectives for studying CMP of thin film with complicated surface magnetization distribution and magnetic multilayers.

  14. Physical Attraction: The Mysteries of Magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohr, Joachim

    2004-12-14

    Most people have intuitive associations with the word 'magnetism' based on everyday life: refrigerator magnets, the compass, north and south poles, or someone's 'magnetic personality'. Few people, however, realize how complicated the phenomenon really is, how much research still deals with the topic today, and how much it penetrates our modern industrialized world - from electricity, wireless communication at the speed of light to magnetic sensors in cars and data storage in computers. Stohr's lecture will provide a glimpse at the magic and science behind magnetism: its long history, scientific breakthroughs in its understanding, and its use in our modernmore » society. In the process Stohr will show how research at SSRL/SLAC is addressing some of the forefront issues in magnetism research and technology today.« less

  15. Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Glazebrook, R. T.

    2016-10-01

    1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.

  16. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    NASA Astrophysics Data System (ADS)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  17. Prospects for Attractive Fusion Power

    NASA Astrophysics Data System (ADS)

    Najmabadi, Farrokh

    2006-10-01

    During the past ten years, the ARIES Team, a national team involving universities, national laboratories, and industry, has studied a variety of magnetic fusion power plants (tokamaks, stellarators, ST, and RFP). In this paper, we present the top-level requirements and goals for commercial fusion power plants developed with consultation with US utilities and industry. We will review several ARIES designs and discuss the candidate options for physics operation regime as well engineering design of various components (e.g., choice of structural material, coolant, breeder). For each option, we will discuss (1) the potential to satisfy the requirements and goals, and (2) the critical R&D needs. In particular, we will discuss fusion R&D issues which are similar to those of advanced fission systems. For tokamaks, our results indicate that dramatic improvement over first-stability operation can be obtained through either utilization of high-field magnets (e.g., high-temperature superconductors) or operation in advanced-tokamak modes (e.g., reversed-shear). In particular, if full benefits of reversed-shear operation are realized, as is assumed in ARIES-AT, tokamak power plants will have a cost of electricity competitive with other sources of electricity. Emerging technologies such as advanced Baryon cycle, high-temperature superconductor, and advanced manufacturing techniques can improve the cost and attractiveness of fusion plants.

  18. Citrate-capped superparamagnetic iron oxide (Fe3O4-CA) nanocatalyst for synthesis of pyrimidine derivative compound as antioxidative agent

    NASA Astrophysics Data System (ADS)

    Cahyana, A. H.; Pratiwi, D.; Ardiansah, B.

    2017-04-01

    The development of a recyclable catalyst based on magnetic nanoparticles has attracted an increasing interest as the emerging application in the heterogeneous catalyst field. Superparamagnetic iron oxide nanoparticle with citric acid as capping agent was successfully obtained from iron (III) chloride solution via two steps synthesis. The first step involving the formation of magnetite nanoparticle by bioreduction using Sargassum Sp, then its surface was modified by adding citric acid solution in the second step. The structural, surface morphology and magnetic properties of the nanocatalyst were investigated by various instrumentations such as scanning electron microscope with energy dispersive (SEM-EDS), and particle size analyser (PSA). Fe3O4-CA was then applied as reusable catalyst for Knoevenagel condensation of barbituric acid and cinnamaldehyde to produce (E)-5-(3-phenylallylidene)pyrimidine-2,4,6(1H,3H,5H)-trione. The optimum condition of this reaction was achieved by using 7.5% mole of catalyst at 50°C for 6 h to give 83% yield. Some spectroscopy techniques such as UV-Vis, FTIR, LC-MS and 1H-NMR were used to confirm the product’s structure. Furthermore, the synthesized compound has an attractive antioxidant activity based on the in-vitro analysis using DPPH method.

  19. Wall Climbing Micro Ground Vehicle (MGV)

    DTIC Science & Technology

    2013-09-01

    magnetic attraction, (2) vacuum suction, (3) bio-mimetic techniques such as gecko pads, and (4) adhesion forces generated by aerodynamic principles, also...large attractive forces, but are limited to ferrous surfaces. Vacuum suction, such as in suction cups, also has the ability to create large adhesion...clean. Vortex adhesion does not require a perfect seal like vacuum suction and has the ability to travel over porous surfaces such as brick and

  20. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  1. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  2. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  3. Molecular Beam Epitaxial Growth of Iron Nitrides on Zinc-Blende Gallium Nitride(001)

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Lin, Wenzhi; Chinchore, Abhijit; Wang, Kangkang; Smith, Arthur R.

    2008-03-01

    Iron nitrides are attractive materials for their high magnetic moments, corrosion, and oxidation resistance. We present the successful epitaxial growth of iron nitride on zinc-blende gallium nitride (c-GaN) in order to develop a novel magnetic transition metal nitride/semiconductor system. First, GaN is grown on magnesium oxide (MgO) substrates having (001) orientation using rf N2-plasma molecular beam epitaxy. Then we grow FeN at substrate temperature of ˜ 210 ^oC up to a thickness of ˜ 10.5 nm. In-situ reflection high-energy electron diffraction (RHEED) is used to monitor the surface during growth. Initial results suggest that the epitaxial relationship is FeN[001] || GaN[001] and FeN[100] || GaN[100]. Work in progress is to investigate the surface using in-situ scanning tunneling microscopy (STM) to reveal the surface structure at atomic scale, as well as to explore more Fe-rich magnetic phases.

  4. Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wei, Zhong; Zhang, Wanning; Cui, Haiyan

    2017-07-01

    Magnetic Ba3(PO4)2/Fe3O4-nanoparticle (called BPFN) was prepared, characterized, and developed as a low-cost adsorbent for malachite green (MG) from aqueous solution. Factors such as adsorption temperature, pH of solution, dosage of adsorbent, adsorption kinetics and isotherms were investigated. The maximum adsorption capacity obtained in this work was 1639 mg g- 1 at 45 °C and pH 6. The adsorption process fitted the pseudo-first-order kinetic model and Langmuir isotherm model. Evidences from zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) data revealed that the adsorption process was driven by electrostatic attraction, the interaction between Lewis base sbnd N(CH3)2 in MG and Lewis acid Ba sites of BPFN. In addition, the BPFN could be easily regenerated by a magnet and the adsorption capacity maintained at 70% after five cycles. The present study suggests that the BPFN had high potential of removing MG from wastewater.

  5. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  6. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation

    PubMed Central

    Hu, Lihua; Li, Yan; Zhang, Xuefei; Wang, Yaoguang; Cui, Limei; Wei, Qin; Ma, Hongmin; Yan, Liangguo; Du, Bin

    2016-01-01

    Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. MWHPO-GO exhibited excellent adsorption performance for the removal of synthetic dyes (methylene blue (MB) and methyl violet (MV)) and heavy metal (Pb(II)). Moreover, MWHPO-GO could be simply recovered from water with magnetic separation. The pseudo-second order equation and the Langmuir model exhibited good correlation with the adsorption kinetic and isotherm data, respectively, for these three pollutants. The thermodynamic results (ΔG < 0, ΔH < 0, ΔS < 0) implied that the adsorption process of MB, MV and Pb(II) was feasible, exothermic and spontaneous in nature. A possible adsorption mechanism has been proposed where π-π stacking interactions, H-bonding interaction and electrostatic attraction dominated the adsorption of MB/MV and chelation and electrostatic attraction dominated the adsorption of Pb(II). In addition, the excellent reproducibility endowed MWHPO-GO with the potential for application in water remediation. PMID:27354318

  7. A novel route in bone tissue engineering: magnetic biomimetic scaffolds.

    PubMed

    Bock, N; Riminucci, A; Dionigi, C; Russo, A; Tampieri, A; Landi, E; Goranov, V A; Marcacci, M; Dediu, V

    2010-03-01

    In recent years, interest in tissue engineering and its solutions has increased considerably. In particular, scaffolds have become fundamental tools in bone graft substitution and are used in combination with a variety of bio-agents. However, a long-standing problem in the use of these conventional scaffolds lies in the impossibility of re-loading the scaffold with the bio-agents after implantation. This work introduces the magnetic scaffold as a conceptually new solution. The magnetic scaffold is able, via magnetic driving, to attract and take up in vivo growth factors, stem cells or other bio-agents bound to magnetic particles. The authors succeeded in developing a simple and inexpensive technique able to transform standard commercial scaffolds made of hydroxyapatite and collagen in magnetic scaffolds. This innovative process involves dip-coating of the scaffolds in aqueous ferrofluids containing iron oxide nanoparticles coated with various biopolymers. After dip-coating, the nanoparticles are integrated into the structure of the scaffolds, providing the latter with magnetization values as high as 15 emu g(-)(1) at 10 kOe. These values are suitable for generating magnetic gradients, enabling magnetic guiding in the vicinity and inside the scaffold. The magnetic scaffolds do not suffer from any structural damage during the process, maintaining their specific porosity and shape. Moreover, they do not release magnetic particles under a constant flow of simulated body fluids over a period of 8 days. Finally, preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro. Hence, this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets

    PubMed Central

    Urban, Magdalena

    2017-01-01

    Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite—polyurethane modified with graphene nanoplates and ferromagnetic iron oxides—with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work. PMID:28906445

  9. Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets.

    PubMed

    Urban, Magdalena; Strankowski, Michał

    2017-09-14

    Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite-polyurethane modified with graphene nanoplates and ferromagnetic iron oxides-with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.

  10. Injectable PLGA/Fe3O4 implants carrying cisplatin for synergistic magnetic hyperthermal ablation of rabbit VX2 tumor.

    PubMed

    Yang, Yang; Wang, Fengjuan; Zheng, Kaiyuan; Deng, Liming; Yang, Lu; Zhang, Nan; Xu, Chunyan; Ran, Haitao; Wang, Zhaoxia; Wang, Zhigang; Zheng, Yuanyi

    2017-01-01

    Magnetic hyperthermia ablation has attracted wide attention in tumor therapy for its minimal invasion. Although the chemo-hyperthermal synergism has been proven to be effective in subcutaneously xenografted tumors of nude mice in our previous experiment, the occurrence of residual tumors due to incomplete ablation is more common in relatively larger and deeper-seated tumors in anti-tumor therapy. Thus, a larger tumor and larger animal model are needed for further study of the therapeutic efficacy. In this study, we tested the efficiency of this newly developed technique using a rabbit tumor model. Furthermore, we chose cisplatin (DDP), which has been confirmed with high efficiency in enhancing hyperthermia therapy as the chemotherapeutic drug for the synergistic magnetic hyperthermal ablation therapy of tumors. In vitro studies demonstrated that developed DDP-loaded magnetic implants (DDP/PLGA-Fe3O4) have great heating efficacy and the drug release can be significantly boosted by an external alternating magnetic field (AMF). In vivo studies showed that the phase-transitional DDP/PLGA-Fe3O4 materials that are ultrasound (US) and computerized tomography (CT) visible can be well confined in the tumor tissues after injection. When exposed to AMF, efficient hyperthermia was induced, which led to the cancer cells' coagulative necrosis and accelerating release of the drug to kill residual tumors. Furthermore, an activated anti-tumor immune system can promote apoptosis of tumor cells. In conclusion, the DDP/PLGA-Fe3O4 implants can be used efficiently for the combined chemotherapy and magnetic-hyperthermia ablation of rabbit tumors.

  11. Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs)

    PubMed Central

    Hoffmann, Herbert C.; Debowski, Marta; Müller, Philipp; Paasch, Silvia; Senkovska, Irena; Kaskel, Stefan; Brunner, Eike

    2012-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a well-established method for the investigation of various types of porous materials. During the past decade, metal–organic frameworks have attracted increasing research interest. Solid-state NMR spectroscopy has rapidly evolved into an important tool for the study of the structure, dynamics and flexibility of these materials, as well as for the characterization of host–guest interactions with adsorbed species such as xenon, carbon dioxide, water, and many others. The present review introduces and highlights recent developments in this rapidly growing field.

  12. The Department of Defense Superconductivity Research and Development (DSRD) Options. A Study of Possible Directions for Exploitation of Superconductivity in Military Applications.

    DTIC Science & Technology

    1987-07-01

    transmission lines Low - noise mm wave detectors, mixers and amplifiers Multi-GHz chirp transform processors High performance small antenna arrays Multi-GHz A/D...attractive alternative. The overall advantages for HTS mm wave receivers are very- low quantum-limited noise , wide bandwidth, low electrical power...0 0 3 2 1 6 6.3A 0 0 0 2 -3 S Total 2 2 4 S 4 17 116 10, ELF Communication (far term). Extremely low frequency communication via magnetic wave has

  13. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  14. Hydrogen adatom interaction on graphene: A first principles study

    DOE PAGES

    Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing; ...

    2018-05-01

    Interaction between two hydrogen adatoms on graphene was studied by first-principles calculations. We showed that there is an attraction between two H adatoms on graphene. However, the strength of interaction between two hydrogen adatoms and magnetic properties of graphene are strongly dependent on the residence of the two adatoms on the graphene sublattices. Hydrogen adatoms introduce lattice distortion and electron localization in graphene which mediate the attractive interaction between the two H adatoms.

  15. Hydrogen adatom interaction on graphene: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing

    Interaction between two hydrogen adatoms on graphene was studied by first-principles calculations. We showed that there is an attraction between two H adatoms on graphene. However, the strength of interaction between two hydrogen adatoms and magnetic properties of graphene are strongly dependent on the residence of the two adatoms on the graphene sublattices. Hydrogen adatoms introduce lattice distortion and electron localization in graphene which mediate the attractive interaction between the two H adatoms.

  16. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field.

    PubMed

    Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin

    2016-01-05

    A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein.

    PubMed

    Fock, Jeppe; Parmvi, Mattias; Strömberg, Mattias; Svedlindh, Peter; Donolato, Marco; Hansen, Mikkel Fougt

    2017-02-15

    There is an increasing need to develop biosensor methods that are highly sensitive and that can be combined with low-cost consumables. The use of magnetic nanoparticles (MNPs) is attractive because their detection is compatible with low-cost disposables and because application of a magnetic field can be used to accelerate assay kinetics. We present the first study and comparison of the performance of magnetic susceptibility measurements and a newly proposed optomagnetic method. For the comparison we use the C-reactive protein (CRP) induced agglutination of identical samples of 100nm MNPs conjugated with CRP antibodies. Both methods detect agglutination as a shift to lower frequencies in measurements of the dynamics in response to an applied oscillating magnetic field. The magnetic susceptibility method probes the magnetic response whereas the optomagnetic technique probes the modulation of laser light transmitted through the sample. The two techniques provided highly correlated results upon agglutination when they measure the decrease of the signal from the individual MNPs (turn-off detection strategy), whereas the techniques provided different results, strongly depending on the read-out frequency, when detecting the signal due to MNP agglomerates (turn-on detection strategy). These observations are considered to be caused by differences in the volume-dependence of the magnetic and optical signals from agglomerates. The highest signal from agglomerates was found in the optomagnetic signal at low frequencies. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Haloing in bimodal magnetic colloids: The role of field-induced phase separation

    NASA Astrophysics Data System (ADS)

    Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Suloeva, L.; Zubarev, A.

    2012-07-01

    If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter10.1039/c0sm00261e 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters—the initial nanoparticle concentration (φ0) and the magnetic-to-thermal energy ratio (α)—and the three accumulation regimes are mapped onto a α-φ0 phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems.

  19. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less

  20. Status of the tokamak program

    NASA Astrophysics Data System (ADS)

    Sheffield, J.

    1981-08-01

    For a specific configuration of magnetic field and plasma to be economically attractive as a commercial source of energy, it must contain a high-pressure plasma in a stable fashion while thermally isolating the plasma from the walls of the containment vessel. The tokamak magnetic configuration is presently the most successful in terms of reaching the considered goals. Tokamaks were developed in the USSR in a program initiated in the mid-1950s. By the early 1970s tokamaks were operating not only in the USSR but also in the U.S., Australia, Europe, and Japan. The advanced state of the tokamak program is indicated by the fact that it is used as a testbed for generic fusion development - for auxiliary heating, diagnostics, materials - as well as for specific tokamak advancement. This has occurred because it is the most economic source of a large, reproducible, hot, dense plasma. The basic tokamak is considered along with tokamak improvements, impurity control, additional heating, particle and power balance in a tokamak, aspects of microscopic transport, and macroscopic stability.

  1. Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet

    NASA Astrophysics Data System (ADS)

    Du, Haifeng; Zhao, Xuebing; Rybakov, Filipp N.; Borisov, Aleksandr B.; Wang, Shasha; Tang, Jin; Jin, Chiming; Wang, Chao; Wei, Wensheng; Kiselev, Nikolai S.; Zhang, Yuheng; Che, Renchao; Blügel, Stefan; Tian, Mingliang

    2018-05-01

    We report direct evidence of the field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B 20 -type FeGe nanostripes observed by means of high-resolution Lorentz transmission electron microscopy. It is shown that above certain critical values of an external magnetic field the character of such long-range skyrmion interactions changes from attraction to repulsion. Experimentally measured equilibrium inter-skyrmion and skyrmion-edge distances as a function of the applied magnetic field shows quantitative agreement with the results of micromagnetic simulations. The important role of demagnetizing fields and the internal symmetry of three-dimensional magnetic skyrmions are discussed in detail.

  2. Engineered, thermoresponsive, magnetic nanocarriers of oligo(ethylene glycol)-methacrylate-based biopolymers

    NASA Astrophysics Data System (ADS)

    McCallister, Thomas; Gidney, Elwood; Adams, Devin; Diercks, David R.; Ghosh, Santaneel

    2014-11-01

    Engineered magnetic nanocarriers offer attractive options for implementing novel therapeutic solutions in biomedical research; however lack of biocompatibility and external tunability have prevented a biomedical breakthrough. Here we report multifunctional, magnetic nanospheres with tailored size, volumetric transition range, and magnetic properties based on biocompatible, thermo-responsive oligo(ethylene glycol) methacrylate biopolymers. Precise control of the nanosphere size in the range 100-300 nm, coupled with a higher and broader volumetric transition range (32-42 °C), is ideal for various biomedical applications. More importantly, super-paramagnetic behavior of the nanocarriers, even after polymer shell shrinkage, indicates stable and easily controllable loss mechanisms under exposure to an ac magnetic field.

  3. [Magnets, pacemaker and defibrillator: fatal attraction?].

    PubMed

    Bergamin, C; Graf, D

    2015-05-27

    This article aims at clarifying the effects of a clinical magnet on pacemakers and Implantable Cardioverter Defibrillators. The effects of electromagnetic interferences on such devices, including interferences linked to electrosurgery and magnetic resonance imaging are also discussed. In general, a magnet provokes a distinctive effect on a pacemaker by converting it into an asynchronous mode of pacing, and on an Implantable Cardioverter Defibrillator by suspending its own antitachyarythmia therapies without affecting the pacing. In the operating room, the magnet has to be used cautiously with precisely defined protocols which respect the type of the device used, the type of intervention planned, the presence or absence of EMI and the pacing-dependency of the patient.

  4. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent.

    PubMed

    Glaus, Charles; Rossin, Raffaella; Welch, Michael J; Bao, Gang

    2010-04-21

    A novel nanoparticle-based dual-modality positron emission tomograph/magnetic resonance imaging (PET/MRI) contrast agent was developed. The probe consisted of a superparamagnetic iron oxide (SPIO) core coated with PEGylated phospholipids. The chelator 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to PEG termini to allow labeling with positron-emitting (64)Cu. Radiolabeling with (64)Cu at high yield and high purity was readily achieved. The (64)Cu-SPIO probes produced strong MR and PET signals and were stable in mouse serum for 24 h at 37 degrees C. Biodistribution and in vivo PET/CT imaging studies of the probes showed a circulation half-life of 143 min and high initial blood retention with moderate liver uptake, making them an attractive contrast agent for disease studies.

  5. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  6. Room temperature electrical spin injection into GaAs by an oxide spin injector

    PubMed Central

    Bhat, Shwetha G.; Kumar, P. S. Anil

    2014-01-01

    Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time τ ~ 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of τ. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a τ of ~0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices. PMID:24998440

  7. Nature of the electromagnetic force between classical magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-09-01

    The Lorentz force law of classical electrodynamics states that the force 𝑭𝑭 exerted by the magnetic induction 𝑩𝑩 on a particle of charge 𝑞𝑞 moving with velocity 𝑽𝑽 is given by 𝑭𝑭 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩. Since this force is orthogonal to the direction of motion, the magnetic field is said to be incapable of performing mechanical work. Yet there is no denying that a permanent magnet can readily perform mechanical work by pushing/pulling on another permanent magnet or by attracting pieces of magnetizable material such as scrap iron or iron filings. We explain this apparent contradiction by examining the magnetic Lorentz force acting on an Amperian current loop, which is the model for a magnetic dipole. We then extend the discussion by analyzing the Einstein-Laub model of magnetic dipoles in the presence of external magnetic fields.

  8. Engineered materials for all-optical helicity-dependent magnetic switching

    NASA Astrophysics Data System (ADS)

    Mangin, S.; Gottwald, M.; Lambert, C.-H.; Steil, D.; Uhlíř, V.; Pang, L.; Hehn, M.; Alebrand, S.; Cinchetti, M.; Malinowski, G.; Fainman, Y.; Aeschlimann, M.; Fullerton, E. E.

    2014-03-01

    The possibility of manipulating magnetic systems without applied magnetic fields have attracted growing attention over the past fifteen years. The low-power manipulation of the magnetization, preferably at ultrashort timescales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization in engineered magnetic materials. We demonstrate that all-optical helicity-dependent switching (AO-HDS) can be observed not only in selected rare earth-transition metal (RE-TM) alloy films but also in a much broader variety of materials, including RE-TM alloys, multilayers and heterostructures. We further show that RE-free Co-Ir-based synthetic ferrimagnetic heterostructures designed to mimic the magnetic properties of RE-TM alloys also exhibit AO-HDS. These results challenge present theories of AO-HDS and provide a pathway to engineering materials for future applications based on all-optical control of magnetic order.

  9. Dysprosium-free melt-spun permanent magnets.

    PubMed

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  10. Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor.

    PubMed

    Zhang, Xiuyun; Sun, Yi; Ma, Liang; Zhao, Xinli; Yao, Xiaojing

    2018-07-27

    Borophene, a two-dimensional monolayer made of boron atoms, has attracted wide attention due to its appealing properties. Great efforts have been devoted to fine tuning its electronic and magnetic properties for desired applications. Herein, we theoretically investigate the versatile electronic and magnetic properties of bilayer borophene (BLB) intercalated by 3d transition metal (TM) atoms, TM@BLBs (TM = Ti-Fe), using ab initio calculations. Four allotropes of AA-stacking (α 1 -, β-, β 12 - and χ 3 -) BLBs with different intercalation concentrations of TM atoms are considered. Our results show that the TM atoms are strongly bonded to the borophene layers with fairly large binding energies, around 6.31 ∼ 15.44 eV per TM atom. The BLBs with Cr and Mn intercalation have robust ferromagnetism, while for the systems decorated with Fe atoms, fruitful magnetic properties, such as nonmagnetic, ferromagnetic or antiferromagnetic, are identified. In particular, the α 1 - and β-BLBs intercalated by Mn or Fe atom can be transformed into a semiconductor, half metal or graphene-like semimetal. Moreover, some heavily doped TM@BLBs expose high Curie temperatures above room temperature. The attractive properties of TM@BLBs entail an efficient way to modulate the electronic and magnetic properties of borophene sheets for advanced applications.

  11. The Resistive-Wall Instability in Multipulse Linear Induction Accelerators

    DOE PAGES

    Ekdahl, Carl

    2017-05-01

    The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less

  12. The Resistive-Wall Instability in Multipulse Linear Induction Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl

    The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less

  13. Missing magnetism in Sr 4Ru 3O 10: Indication for Antisymmetric Exchange Interaction

    DOE PAGES

    Weickert, Franziska; Civale, Leonardo; Maiorov, Boris; ...

    2017-06-20

    Metamagnetism occuring inside a ferromagnetic phase is peculiar. Therefore, Sr 4Ru 3O 10, a T C = 105 K ferromagnet, has attracted much attention in recent years, because it develops a pronounced metamagnetic anomaly below T C for magnetic fields applied in the crystallographic ab-plane. The metamagnetic transition moves to higher fields for lower temperatures and splits into a double anomaly at critical fields H c1 = 2.3 T and H c2 = 2.8 T, respectively. Here, we report a detailed study of the different components of the magnetization vector as a function of temperature, applied magnetic field, and varyingmore » angle in Sr 4Ru 3O 10. We discover for the first time a reduction of the magnetic moment in the plane of rotation at the metamagnetic transition. The anomaly shifts to higher fields by rotating the field from H ⊥ c to H || c. We compare our experimental findings with numerical simulations based on spin reorientation models taking into account magnetocrystalline anisotropy, Zeeman effect and antisymmetric exchange interactions. While Magnetocrystalline anisotropy combined with a Zeeman term are sufficient to explain a metamagnetic transition in Sr 4Ru 3O 10, a Dzyaloshinskii-Moriya term is crucial to account for the reduction of the magnetic moment as observed in the experiments.« less

  14. Missing magnetism in Sr 4Ru 3O 10: Indication for Antisymmetric Exchange Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weickert, Franziska; Civale, Leonardo; Maiorov, Boris

    Metamagnetism occuring inside a ferromagnetic phase is peculiar. Therefore, Sr 4Ru 3O 10, a T C = 105 K ferromagnet, has attracted much attention in recent years, because it develops a pronounced metamagnetic anomaly below T C for magnetic fields applied in the crystallographic ab-plane. The metamagnetic transition moves to higher fields for lower temperatures and splits into a double anomaly at critical fields H c1 = 2.3 T and H c2 = 2.8 T, respectively. Here, we report a detailed study of the different components of the magnetization vector as a function of temperature, applied magnetic field, and varyingmore » angle in Sr 4Ru 3O 10. We discover for the first time a reduction of the magnetic moment in the plane of rotation at the metamagnetic transition. The anomaly shifts to higher fields by rotating the field from H ⊥ c to H || c. We compare our experimental findings with numerical simulations based on spin reorientation models taking into account magnetocrystalline anisotropy, Zeeman effect and antisymmetric exchange interactions. While Magnetocrystalline anisotropy combined with a Zeeman term are sufficient to explain a metamagnetic transition in Sr 4Ru 3O 10, a Dzyaloshinskii-Moriya term is crucial to account for the reduction of the magnetic moment as observed in the experiments.« less

  15. Activation of Schwann cells in vitro by magnetic nanocomposites via applied magnetic field.

    PubMed

    Liu, Zhongyang; Huang, Liangliang; Liu, Liang; Luo, Beier; Liang, Miaomiao; Sun, Zhen; Zhu, Shu; Quan, Xin; Yang, Yafeng; Ma, Teng; Huang, Jinghui; Luo, Zhuojing

    2015-01-01

    Schwann cells (SCs) are attractive seed cells in neural tissue engineering, but their application is limited by attenuated biological activities and impaired functions with aging. Therefore, it is important to explore an approach to enhance the viability and biological properties of SCs. In the present study, a magnetic composite made of magnetically responsive magnetic nanoparticles (MNPs) and a biodegradable chitosan-glycerophosphate polymer were prepared and characterized. It was further explored whether such magnetic nanocomposites via applied magnetic fields would regulate SC biological activities. The magnetization of the magnetic nanocomposite was measured by a vibrating sample magnetometer. The compositional characterization of the magnetic nanocomposite was examined by Fourier-transform infrared and X-ray diffraction. The tolerance of SCs to the magnetic fields was tested by flow-cytometry assay. The proliferation of cells was examined by a 5-ethynyl-2-deoxyuridine-labeling assay, a PrestoBlue assay, and a Live/Dead assay. Messenger ribonucleic acid of BDNF, GDNF, NT-3, and VEGF in SCs was assayed by quantitative real-time polymerase chain reaction. The amount of BDNF, GDNF, NT-3, and VEGF secreted from SCs was determined by enzyme-linked immunosorbent assay. It was found that magnetic nanocomposites containing 10% MNPs showed a cross-section diameter of 32.33±1.81 µm, porosity of 80.41%±0.72%, and magnetization of 5.691 emu/g at 8 kOe. The 10% MNP magnetic nanocomposites were able to support cell adhesion and spreading and further promote proliferation of SCs under magnetic field exposure. Interestingly, a magnetic field applied through the 10% MNP magnetic scaffold significantly increased the gene expression and protein secretion of BDNF, GDNF, NT-3, and VEGF. This work is the first stage in our understanding of how to precisely regulate the viability and biological properties of SCs in tissue-engineering grafts, which combined with additional molecular factors may lead to the development of new nerve grafts.

  16. Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire

    NASA Astrophysics Data System (ADS)

    Choomphon-anomakhun, Natthaphon; Ebner, Armin D.; Natenapit, Mayuree; Ritter, James A.

    2017-04-01

    A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical model was shown to be capable of realistically predicting the dynamic nature of magnetic particle capture and accumulation around a wire in HGMS-type systems.

  17. Developing Glassy Magnets from Simulated Composition of Martian Soil for Exploration Applications

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Ray, C. S.; Rogers, J. R.

    2004-01-01

    The long-term exploration goals of NASA include developing human habitation on Mars and conducting scientific investigations on Mars and other planetary bodies. In situ resource processing is a key objective in this area. We focus on the possibility of making magnetic glasses in situ for potential applications development. The paper will focus on ongoing work at NASA Marshall Space Flight Center on making magnetic glass from Mars soil simulants and its characterization. Analysis of the glass morphology, strength, chemistry and resulting magnetic properties will provide a fundamental understanding of the synthesized material that can be used for potential applications development. in an effort to characterize the magnetic properties of the Mars glasses, a series of tests were performed at NASA MSFC. Preliminary tests indicated that the glasses were attracted to a magnet and also had a small amount of residual magnetism. They were opaque (almost black in color). As the first step, a sample of Mars 1 glass (approx.1 mm x 1 mm x 5 mm length) was machined, weighed and its hysteresis curve was measured using a Vibration Sample Magnetometer (VSM). Next, a small furnace was designed and built and the sample was baked in a graphite (reducing agent) crucible at 800 C in an Argon atmosphere for 3 hours in the presence of a uniform, transverse (transverse to the 5mm length of the sample) magnetic field of 0.37 Tesla. The treated sample showed reddening on the outside and showed substantially increased residual magnetism. This sample was again analyzed in the VSM. The data clearly showed that some chemical change occurred during the heat treatment (color change) and that both the glasses have useful magnetic properties. Although no orientation effects of the magnetic field were considered, the data showed the following: 1. Both glass samples are primarily soft magnets and display ferromagnetic behavior (hysteresis, saturation, etc.) 2. The treated glass has improved saturation magnetism (order of magnitude increase), retentivity (factor of 6 increase) and susceptibility (order of magnitude increase) compared to the untreated glass 3. The untreated sample has higher coercivity (approx.50% that of Nickel) than the treated sample 4. Both samples have similar energy density. Results from a systematic study to quantify the effects of processing conditions such as heat treatment, atmosphere, containerless processing (by electrostatic levitation), and applications of external magnetic fields of different strengths will be discussed. Efforts on optimizing the magnetic properties of the product and the feasibility of using it for a couple of specific magnetic applications such as heat generation using an ac field and for electro forming will also be covered. The latter is an in situ manufacturing technique being studied for in-space fabrication applications at MSFC.

  18. A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy.

    PubMed

    Demyanenko, Andrey V; Zhao, Lin; Kee, Yun; Nie, Shuyi; Fraser, Scott E; Tyszka, J Michael

    2009-09-01

    We present an optimized uniplanar magnetic resonance gradient design specifically tailored for MR imaging applications in developmental biology and histology. Uniplanar gradient designs sacrifice gradient uniformity for high gradient efficiency and slew rate, and are attractive for surface imaging applications where open access from one side of the sample is required. However, decreasing the size of the uniplanar gradient set presents several unique engineering challenges, particularly for heat dissipation and thermal insulation of the sample from gradient heating. We demonstrate a new three-axis, target-field optimized uniplanar gradient coil design that combines efficient cooling and insulation to significantly reduce sample heating at sample-gradient distances of less than 5mm. The instrument is designed for microscopy in horizontal bore magnets. Empirical gradient current efficiencies in the prototype coils lie between 3.75G/cm/A and 4.5G/cm/A with current and heating-limited maximum gradient strengths between 235G/cm and 450G/cm at a 2% duty cycle. The uniplanar gradient prototype is demonstrated with non-linearity corrections for both high-resolution structural imaging of tissue slices and for long time-course imaging of live, developing amphibian embryos in a horizontal bore 7T magnet.

  19. Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Lascialfari, Alessandro; Angelakeris, Mavroeidis; Vasilakaki, Marianna; Trohidou, Kalliopi; Douvalis, Alexios P.; Psycharakis, Stylianos; Ranella, Anthi; Manna, Liberato; Lappas, Alexandros

    2014-03-01

    Research on magnetic nanocrystals attracts wide-spread interest because of their challenging fundamental properties, but it is also driven by problems of practical importance to the society, ranging from electronics (e.g. magnetic recording) to biomedicine. In that respect, iron oxides are model functional materials as they adopt a variety of oxidation states and coordinations that facilitate their use. We show that a promising way to engineer further their technological potential in diagnosis and therapy is the assembly of primary nanocrystals into larger colloidal entities, possibly with increased structural complexity. In this context, elevated-temperature nanochemistry (c.f. based on a polyol approach) permitted us to develop size-tunable, low-cytotoxicity iron-oxide nanoclusters, entailing iso-oriented nanocrystals, with enhanced magnetization. Experimental (magnetometry, electron microscopy, Mössbauer and NMR spectroscopies) results supported by Monte Carlo simulations are reviewed to show that such assemblies of surface-functionalized iron oxide nanocrystals have a strong potential for innovation. The clusters' optimized magnetic anisotropy (including microscopic surface spin disorder) and weak ferrimagnetism at room temperature, while they do not undermine colloidal stability, endow them a profound advantage as efficient MRI contrast agents and hyperthermic mediators with important biomedical potential.

  20. APTES Functionalized Iron Oxide-Silver Magnetic Hetero-Nanocomposites for Selective Capture and Rapid Removal of Salmonella enteritidis from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Trang, Vu Thi; Dinh, Ngo Xuan; Lan, Hoang; Tam, Le Thi; Huy, Tran Quang; Tuan, Pham Anh; Phan, Vu Ngoc; Le, Anh-Tuan

    2018-02-01

    Magnetic nanomaterials, as a promising platform for the fast and sensitive detection of bacterial pathogens, have attracted increasing interest from researchers in recent years. In this work, by utilizing a two-step synthetic technique consisting of co-precipitation and subsequent hydrothermal reaction, followed by functionalization steps with (3-aminopropyl)triethoxysilane (APTES) and the antibody against Salmonella enteritidis, antibody-conjugated Fe3O4-Ag@APTES hetero-nanocomposites were successfully prepared. Due to the specific antibody, the developed Fe3O4-Ag@APTES@SE-Ab conjugates are capable of selectively capturing S. enteritidis at a low concentration of about 101 CFU/mL. Moreover, the prepared magnetic conjugates also revealed that the S. enteritidis could be rapidly removed from water solution in 20 min by using an external magnetic field with a removal efficiency obtained of ˜ 91.36%. These results indicated that the Fe3O4-Ag@APTES@SE-Ab conjugates are promising for the rapid selective capture and removal of bacterial pathogens from aqueous environments, and can be used for improving the detection quality of pathogens in water samples using immunosensor-based diagnostic tests.

  1. Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure

    NASA Astrophysics Data System (ADS)

    Nakajima, Atsushi; Hirata, Katsuhiro; Niguchi, Noboru; Kato, Masayuki

    2018-03-01

    Supporting forces of magnetic bearings are lower than those of mechanical bearings. In order to solve these problems, this paper proposes a new three-axis active control magnetic bearing (3-axis AMB) with an asymmetric structure where its rotor is attracted only in one axial direction due to a negative pressure of fluid. Our proposed 3-axis AMB can generate a large suspension force in one axial direction due to the asymmetric structure. The performances of our proposed 3-axis AMB are computed through 3-D finite element analysis.

  2. Effect of Heat-Treatment on the Phases of Ni-Mn-Ga Magnetic Shape Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq, Ashfia; Ari-Gur, Pnina; Kimmel, Giora

    2009-01-01

    The Heusler alloys Ni50Mn25+xGa25-x display magnetic shape memory effect (MSM) with very fast and large reversible strain under magnetic fields. This large strain and the speed of reaction make MSM alloys attractive as smart materials. Our crystallographic investigation of these alloys, focused on non-stoichiometric composition with excess of manganese. Using neutron diffraction, we revealed the necessary processing parameters to achieve and preserve the homogeneous metastable one-phase martensitic structure that is needed for an MSM effect at room temperature.

  3. Permanent magnet online magnetization performance analysis of a flux mnemonic double salient motor using an improved hysteresis model

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyong; Quan, Li; Chen, Yunyun; Liu, Guohai; Shen, Yue; Liu, Hui

    2012-04-01

    The concept of the memory motor is based on the fact that the magnetization level of the AlNiCo permanent magnet in the motor can be regulated by a temporary current pulse and memorized automatically. In this paper, a new type of memory motor is proposed, namely a flux mnemonic double salient motor drive, which is particularly attractive for electric vehicles. To accurately analyze the motor, an improved hysteresis model is employed in the time-stepping finite element method. Both simulation and experimental results are given to verify the validity of the new method.

  4. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1974-01-01

    Based on the premises that (1) magnetic suspension techniques can play a useful role in large-scale aerodynamic testing and (2) superconductor technology offers the only practical hope for building large-scale magnetic suspensions, an all-superconductor three-component magnetic suspension and balance facility was built as a prototype and was tested successfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities have been made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  5. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities. [cryogenic traonics wind tunnel

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    Based on the premises that magnetic suspension techniques can play a useful role in large scale aerodynamic testing, and that superconductor technology offers the only practical hope for building large scale magnetic suspensions, an all-superconductor 3-component magnetic suspension and balance facility was built as a prototype and tested sucessfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities at Langley Research Center were made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  6. Self-bound droplets of a dilute magnetic quantum liquid

    NASA Astrophysics Data System (ADS)

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  7. Self-bound droplets of a dilute magnetic quantum liquid.

    PubMed

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-10

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  8. Analytic solution of magnetic induction distribution of ideal hollow spherical field sources

    NASA Astrophysics Data System (ADS)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-12-01

    The Halbach type hollow spherical permanent magnet arrays (HSPMA) are volume compacted, energy efficient field sources, and capable of producing multi-Tesla field in the cavity of the array, which have attracted intense interests in many practical applications. Here, we present analytical solutions of magnetic induction to the ideal HSPMA in entire space, outside of array, within the cavity of array, and in the interior of the magnet. We obtain solutions using concept of magnetic charge to solve the Poisson's and Laplace's equations for the HSPMA. Using these analytical field expressions inside the material, a scalar demagnetization function is defined to approximately indicate the regions of magnetization reversal, partial demagnetization, and inverse magnetic saturation. The analytical field solution provides deeper insight into the nature of HSPMA and offer guidance in designing optimized one.

  9. Single coil bistable, bidirectional micromechanical actuator

    DOEpatents

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  10. Magnetic-field-induced rotation of light with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Shuai; Ding, Dong-Sheng, E-mail: dds@ustc.edu.cn; Zhou, Zhi-Yuan

    Light carrying orbital angular momentum (OAM) has attractive applications in the fields of precise optical measurements and high capacity optical communications. We study the rotation of a light beam propagating in warm {sup 87}Rb atomic vapor using a method based on magnetic-field-induced circular birefringence. The dependence of the rotation angle on the magnetic field makes it appropriate for weak magnetic field measurements. We quote a detailed theoretical description that agrees well with the experimental observations. The experiment shown here provides a method to measure the magnetic field intensity precisely and expands the application of OAM-carrying light. This technique has advantagemore » in measurement of magnetic field weaker than 0.5 G, and the precision we achieved is 0.8 mG.« less

  11. Latching Solenoid-Operated Ball Valve

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron

    1994-01-01

    Proposed solenoid-operated ball valve latches in open or closed position until energized to change position. Electrical energy consumed only during opening or closing motion. Valve ball contains central channel through which fluid could flow. Made of highly magnetically permeable steel. When appropriate coil(s) energized by brief pulse (or pulses) of electrical current at appropriate polarity, ball rotates clockwise until permanent magnets come to rest against hard stops in housing, and inlet and outlet ports aligned with central channel so fluid flows through valve. Magnets adhere to stops by magnetic attraction, latching valve in open position. To close valve, appropriate coil(s) energized by pulse (or pulses) of appropriate polarity to generate magnetic forces rotating ball counterclockwise until magnets make contact with hard stops, and inlet and outlet ports sealed.

  12. AR Sco as a possible seed of highly magnetized white dwarf

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Banibrata; Rao, A. R.; Bhatia, Tanayveer Singh

    2017-12-01

    We explore the possibility that the recently discovered white dwarf pulsar AR Sco acquired its high spin and magnetic field due to repeated episodes of accretion and spin-down. An accreting white dwarf can lead to a larger mass and consequently a smaller radius thus causing an enhanced rotation period and a magnetic field. This spinning magnetic white dwarf temporarily can inhibit accretion, spin down and eventually, the accretion can start again due to the shrinking of the binary period by gravitational radiation. A repetition of the above cycle can eventually lead to a high magnetic field white dwarf, recently postulated to be the reason for overluminous type Ia supernovae. We also point out that these high magnetic field spinning white dwarfs are attractive sites for gravitational radiation.

  13. Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers.

    PubMed

    Mitin, D; Kovacs, A; Schrefl, T; Ehresmann, A; Holzinger, D; Albrecht, M

    2018-08-31

    Magnetic stray fields generated by domain walls (DWs) have attracted significant attention as they might be employed for precise positioning and active control of micro- and nano-sized magnetic objects in fluids or in the field of magnonics. The presented work intends to investigate the near-field response of magnetic stray field landscapes above generic types of charged DWs as occurring in thin films with in-plane anisotropy and preferential formation of Néel type DWs when disturbed by external magnetic fields. For this purpose, artificial magnetic stripe domain patterns with three defined domain configurations, i.e. head-to-head (tail-to-tail), head-to-side, and side-by-side, were fabricated via ion bombardment induced magnetic patterning of an exchange-biased IrMn/CoFe bilayer. The magnetic stray field landscapes as well as the local magnetization reversal of the various domain configurations were analyzed in an external magnetic field by scanning magnetoresistive microscopy and compared to micromagnetic simulations.

  14. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  15. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  16. Effects of intergranular phase on the coercivity for MnBi magnets prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Cao, J.; Huang, Y. L.; Hou, Y. H.; Zhang, G. Q.; Shi, Z. Q.; Zhong, Z. C.; Liu, Z. W.

    2018-05-01

    MnBi magnets with a high content of low temperature phase (LTP) and excellent magnetic properties were prepared by spark plasma sintering (SPS) using ball milling powders as precursors without magnetic purification. A complicated intergranular phase, which contains Mn phase, Bi phase, MnO phase, and even amorphous phase in MnBi magnets, was characterized and reported systematically. It was found that the formation of intergranular phase which was contributed by ball milling precursors and sintering mechanism, jointly, had important influence on the magnetic properties. The appropriate content of intergranular phase was beneficial in improving the coercivity due to the strong magnetic isolation effects. The optimum magnetic properties with Mr=26.0 emu/g, Hci= 7.11 kOe and (BH)max=1.53 MGOe at room temperature, and a maximum value Hci= 25.37 kOe at 550 K can be obtained. Strongly favorable magnetic properties make SPSed MnBi magnets an attractive candidate material for small permanent magnets used in high-temperature applications.

  17. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOEpatents

    Viswanathan, Tito

    2015-10-27

    A method of separating a liquid hydrocarbon material from a body of water, includes: (a) mixing magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the magnetic carbon-metal nanocomposites each to be adhered by the liquid hydrocarbon material to form a mixture; (b) applying a magnetic force to the mixture to attract the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material; and (c) removing the body of water from the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material while maintaining the applied magnetic force. The magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material, for a period of time effective to allow the carbon-metal nanocomposites to be formed.

  18. Magnetic vesicles as MRI-trackable biogenic nanovectors

    NASA Astrophysics Data System (ADS)

    Andriola Silva, Amanda K.; Luciani, Nathalie; Gazeau, Florence; Wilhelm, Claire

    2012-03-01

    Magnetic labeling renders cells MRI-detectable which provides attractive solutions for tracking the fate of a transplanted cell population. Understanding the interplay of magnetic nanoparticles and cells is then an important point that should not be neglected. Here we show that in the condition of food starvation, macrophage cells emit vesicles containing nanoparticles. First, we inferred the intracellular iron oxide load from the magnetophoretic velocity of cells at a calibrated magnetic field gradient. After magnetic labeling and culture in stress conditions, the intracellular iron oxide load was once more determined and a detectable difference was observed before and after stress. Moreover, we identified in the stress conditioned medium membrane vesicle structures carrying magnetic particles. Besides pointing out the role of cell-derived vesicles in the sequestration of the intracellular magnetic label, experiments also demonstrated that vesicles were able to chaperone the magnetic cargo into naïve cells.

  19. Synthesis and Stability of Iron Nanoparticles for Lunar Environment Studies

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; McNatt, Jeremiah

    2009-01-01

    Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.

  20. Drug loaded silica coated MnFe2O4 ferromagnetic biomaterials for targeted cancer treatment

    NASA Astrophysics Data System (ADS)

    Anand, Vikas; Singh, K. J.; Kaur, Kulwinder; Bhatia, Gaurav

    2017-05-01

    Magnetically attracted silica coated MnFe2O4 samples have been prepared by using co-precipitation method. Structural changes have been confirmed from XRD spectra. Ferromagnetic behavior of samples has been studied by using vibration sample magnetometer. Cytotoxicity and cell culture of samples have been investigated by using human MG63 cell line and found that sample provide a healthy environment to the growth of cell lines. Drug carrier ability of sample has been checked with gentamycin as an antibiotic and results show that sample can be used as excellent drug carriers. Drug loaded samples can be easily targeted to specific area due to their attractive nature towards external magnetic field. Moreover, magnetic nanoparticles can also be used to kill the cancer cells by using hyperthermia technique. Hyperthermia is a process to raise the temperature of surrounding cells in the presence of external AC magnetic field above the maximum temperature limit for surviving of the cancer cells. Cancer cell can survive only up to 47°C. After that cancer cells start to die, but healthy cells can easily survive up to higher temperature. Our results indicate that prepared samples possess good drug carrier ability and hence, can be potential candidates for cancer cell treatment.

  1. Inhibition of the cancer-associated TASK 3 channels by magnetically induced thermal release of Tetrandrine from a polymeric drug carrier.

    PubMed

    Shi, Chen; Thum, Carolin; Zhang, Qian; Tu, Wei; Pelaz, Beatriz; Parak, Wolfgang J; Zhang, Yu; Schneider, Marc

    2016-09-10

    Two-pore domain (K2P) potassium channels have recently attracted growing interest in the field of cancer research. These channels play an important role in cancer biology specifically for cancer progression, including proliferation, migration, and apoptosis, which makes them an attractive target for novel cancer therapies. Here, we examined the effect of Tetrandrine (Tet), a natural compound known as a channel modulator, which is associated with anticancer activities, as potential drug in this regard. Xenopus oocyte with overexpression of K2P 9.1 (TASK 3) channels has been chosen as model system for this purpose. In order to release Tet and trigger the channels we developed a polymeric magnetic delivery system: Tetrandrine-Magnetite co-loaded poly (lactic-co-glycolic) acid particles. The embedded iron oxide magnetite (Fe3O4) nanoparticles (NPs) allow to inductively heat the particles by applying a high frequency alternating magnetic field, and thus trigger the release of the co-encapsulated Tet. As a proof of concept the nanoparticulate drug delivery system was heated by raising the suspension's temperature proving the temperature dependent release behaviour. Both heating approaches were then successfully applied for measuring the TASK 3 channels current in response to the released drug. It was found that the released Tet amount is sufficient to inhibit the TASK 3 channels in a dose dependent manner. Thus, such a stimulus responsive drug delivery system holds great promise as a novel approach for the treatment of various cancer types such as for the interaction with the two-pore domain potassium channels K2P 9.1. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery.

    PubMed

    Chen, Shu; Li, Ying; Guo, Chen; Wang, Jing; Ma, Junhe; Liang, Xiangfeng; Yang, Liang-Rong; Liu, Hui-Zhou

    2007-12-04

    In this study, temperature-responsive magnetite/polymer nanoparticles were developed from iron oxide nanoparticles and poly(ethyleneimine)-modified poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer. The particles were characterized by TEM, XRD, DLS, VSM, FTIR, and TGA. A typical product has an approximately 20 nm magnetite core and an approximately 40 nm hydrodynamic diameter with a narrow size distribution and is superparamagnetic with large saturation magnetization (51.34 emu/g) at room temperature. The most attractive feature of the nanoparticles is their temperature-responsive volume-transition property. DLS results indicated that their average hydrodynamic diameter underwent a sharp decrease from 45 to 25 nm while evaluating the temperature from 20 to 35 degrees C. The temperature-dependent evolution of the C-O stretching band in the FTIR spectra of the aqueous nanoparticles solution revealed that thermo-induced self-assembly of the immobilized block copolymers occurred on the magnetite solid surfaces, which is accompanied by a conformational change from a fully extended state to a highly coiled state of the copolymer. Consequently, the copolymer shell could act as a temperature-controlled "gate" for the transit of guest substance. The uptake and release of both hydrophobic and hydrophilic model drugs were well controlled by switching the transient opening and closing of the polymer shell at different temperatures. A sustained release of about 3 days was achieved in simulated human body conditions. In primary mouse experiments, drug-entrapped magnetic nanoparticles showed good biocompatibility and effective therapy for spinal cord damage. Such intelligent magnetic nanoparticles are attractive candidates for widespread biomedical applications, particularly in controlled drug-targeting delivery.

  3. Delineation of Groundwater Flow Pathway in Fractured Bedrock Using Nano-Iron Tracer Test in the Sealed Well

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-04-01

    Deterministic delineation of the preferential flow paths and their hydraulic properties are desirable for developing hydrogeological conceptual models in bedrock aquifers. In this study, we proposed using nanoscale zero-valent iron (nZVI) as a tracer to characterize the fractured connectivity and hydraulic properties. Since nZVI particles are magnetic, we designed a magnet array to attract the arriving nZVI particles in the observation well for identifying the location of incoming tracer. This novel approach was examined at two experiment wells with well hydraulic connectivity in a hydrogeological research station in the fractured aquifer. Heat-pulse flowmeter test was used to detect the vertical distribution of permeable zones in the borehole, providing the design basis of tracer test. Then, the less permeable zones in the injection well were sealed by casing to prevent the injected nZVI particles from being stagnated at the bottom hole. Afterwards, hydraulic test was implemented to examine the hydraulic connectivity between two wells. When nZVI slurry was released in the injection well, they could migrate through connected permeable fractures to the observation well. A breakthrough curve was obtained by the fluid conductivity sensor in the observation well, indicating the arrival of nZVI slurry. The iron nanoparticles that were attracted to the magnets in the observation well provide the quantitative information to locate the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. Finally, the numerical method was utilized to simulate the process of tracer migration. This article demonstrates that nano-iron tracer test can be a promising approach for characterizing connectivity patterns and transmissivities of the flow paths in the fractured rock.

  4. Two-dimensional melting of colloids with long-range attractive interactions.

    PubMed

    Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa

    2017-02-22

    The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.

  5. Theoretical analysis of flux amplification by soft magnetic material in a putative biological magnetic-field receptor.

    PubMed

    Shcherbakov, Valera P; Winklhofer, Michael

    2010-03-01

    Birds are endowed with a magnetic sense that allows them to detect Earth's magnetic field and to use it for orientation. Physiological and behavioral experiments have shown the upper beak to host a magnetoreceptor. Putative magnetoreceptive structures in the beak are nerve terminals that each contain a dozen or so of micrometer-sized clusters of superparamagnetic nanocrystals made of magnetite/maghemite and numerous electron-opaque platelets filled with a so far unidentified, amorphous ferric iron compound. The platelets typically form chainlike structures, which have been proposed to function as magnetic flux focusers for detecting the intensity of the geomagnetic field. Here, we test that proposition from first principles and develop an unconstrained model to determine the equilibrium distribution of magnetization along a linear chain of platelets which we assume to behave magnetically soft and to have no magnetic remanence. Our analysis, which is valid for arbitrary values of the intrinsic magnetic susceptibility chi , shows that chi needs to be much greater than unity to amplify the external field by two orders of magnitude in a chain of platelets. However, the high amplification is confined to the central region of the chain and subsides quadratically toward the ends of the chain. For large values of chi , the possibility opens up of realizing magnetoreceptor mechanisms on the basis of attraction forces between adjacent platelets in a linear chain. The force in the central region of the chain may amount to several pN, which would be sufficient to convert magnetic input energy into mechanical output energy. The striking feature of an ensemble of platelets is its ability to organize into tightly spaced chains under the action of an external field of given strength. We discuss how this property can be exploited for a magnetoreception mechanism.

  6. Self-Assembled Magnetic Surface Swimmers: Theoretical Model

    NASA Astrophysics Data System (ADS)

    Aranson, Igor; Belkin, Maxim; Snezhko, Alexey

    2009-03-01

    The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.

  7. A Magnetic Microbead Occlusion Model to Induce Ocular Hypertension-Dependent Glaucoma in Mice

    PubMed Central

    Cueva Vargas, Jorge L.; Di Polo, Adriana

    2016-01-01

    The use of rodent models of glaucoma has been essential to understand the molecular mechanisms that underlie the pathophysiology of this multifactorial neurodegenerative disease. With the advent of numerous transgenic mouse lines, there is increasing interest in inducible murine models of ocular hypertension. Here, we present an occlusion model of glaucoma based on the injection of magnetic microbeads into the anterior chamber of the eye using a modified microneedle with a facetted bevel. The magnetic microbeads are attracted to the iridocorneal angle using a handheld magnet to block the drainage of aqueous humour from the anterior chamber. This disruption in aqueous dynamics results in a steady elevation of intraocular pressure, which subsequently leads to the loss of retinal ganglion cells, as observed in human glaucoma patients. The microbead occlusion model presented in this manuscript is simple compared to other inducible models of glaucoma and also highly effective and reproducible. Importantly, the modifications presented here minimize common issues that often arise in occlusion models. First, the use of a bevelled glass microneedle prevents backflow of microbeads and ensures that minimal damage occurs to the cornea during the injection, thus reducing injury-related effects. Second, the use of magnetic microbeads ensures the ability to attract most beads to the iridocorneal angle, effectively reducing the number of beads floating in the anterior chamber avoiding contact with other structures (e.g., iris, lens). Lastly, the use of a handheld magnet allows flexibility when handling the small mouse eye to efficiently direct the magnetic microbeads and ensure that there is little reflux of the microbeads from the eye when the microneedle is withdrawn. In summary, the microbead occlusion mouse model presented here is a powerful investigative tool to study neurodegenerative changes that occur during the onset and progression of glaucoma. PMID:27077732

  8. Magnetic Molecules from Chemist's Point of View

    NASA Astrophysics Data System (ADS)

    Hendrickson, David

    2002-03-01

    A single-molecule magnet (SMM) is a molecule that functions as a nanoscale, single-domain magnetic particle that, below its blocking temperature, exhibits magnetization hysteresis [1]. SMMs have attracted considerable interest because they : (1) can serve as the smallest nanomagnet, monodisperse in size, shape and anisotropy; (2) exhibit quantum tunneling of magnetization (QTM); and (3) may function as memory devices in a quantum computer. SMM’s are synthetically designed nanomagnets, built from a core containing metal ion unpaired spin carriers bridged by oxide or other simple ions which is surrounded by organic ligands. Many systematic changes can be made in the structure of these molecular nanomagnets. Manganese-containing SMM’s are known with from Mn4 to Mn_30 compositions. The magnetic bistability, which is desirable for data storage applications, is achievable at temperatures below 3K. The largest spin of the ground state of a SMM is presently S = 13. Appreciable largely uniaxial magnetoanisotropy in the ground state leads to magnetic bistability. Rather than a continuum of higher energy states separating the “spin-up” and “spin-down” ground states, the quantum nature of the molecular nanomagnets result in a well defined ladder of discrete quantum states. Recent studies have definitively shown that, under conditions that can be controlled via the application of external perturbations, quantum tunneling may occur through the energy separating the “spin-up” and “spin-down” states. The tunneling is due to weak symmetry breaking perturbations that give rise to long-lived quantum states consisting of coherent superpositions of the “spin-up” and “spin-down” states. It is the ability to manipulate these coherent states that makes SMMs particularly attractive for quantum computation. Reference: [1] G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, “Single-molecule Magnets”, M.R.S. Bull. 25, 66 (2001).

  9. Magnetic focusing immunosensor for the detection of Salmonella typhimurium in foods

    NASA Astrophysics Data System (ADS)

    Pivarnik, Philip E.; Cao, He; Letcher, Stephen V.; Pierson, Arthur H.; Rand, Arthur G.

    1999-01-01

    From 1988 through 1992 Salmonellosis accounted for 27% of the total reported foodborne disease outbreaks and 57% of the outbreaks in which the pathogen was identified. The prevalence of Salmonellosis and the new requirements to monitor the organism as a marker in pathogen reduction programs will drive the need for rapid, on-site testing. A compact fiber optic fluorometer using a red diode laser as an excitation source and fiber probes for analyte detection has been constructed and used to measure Salmonella. The organisms were isolated with anti-Salmonella magnetic beads and were labeled with a secondary antibody conjugated to a red fluorescent dye. The response of the system was proportional to the concentration of Salmonella typhimurium from 3.2 X 105 colony forming units (CFU)/ml to 1.6 X 107 CFU/ml. The system was developed to utilize a fiber-optic magnetic focusing problem that attracted the magnetic microspheres to the surface of a sample chamber directly in front of the excitation and emission fibers. The signal obtained from a homogenous suspension of fluorescent magnetic microspheres was 9 to 10 picowatts. After focusing, the signal from the fluorescent labeled magnetic microspheres increased to 200 picowatts, approximately 20 times greater than the homogeneous suspension. The magnetic focusing assay detected 1.59 X 105 colony forming units/ml of Salmonella typhimurium cultured in growth media. The process of magnetic focusing in front of the fibers has the potential to reduce the background fluorescence from unbound secondary antibodies, eliminating several rinsing steps, resulting in a simple rapid assay.

  10. Organization of Single Molecule Magnets on Surfaces

    NASA Astrophysics Data System (ADS)

    Sessoli, Roberta

    2006-03-01

    The field of magnetic molecular clusters showing slow relaxation of the magnetization has attracted a great interest for the spectacular quantum effects in the dynamics of the magnetization that range from resonant quantum tunneling to topological interferences. Recently these systems, known as Single Molecule Magnets (SMMs), have also been proposed as model systems for the investigation of flame propagation in flammable substances. A renewed interest in SMMs also comes from the possibility to exploit their rich and complex magnetic behavior in nano-spintronics. However, at the crystalline state these molecular materials are substantially insulating. They can however exhibit significant transport properties if the conduction occurs through one molecule connected to two metal electrodes, or through a tunneling mechanism when the SMM is grafted on a conducting surface, as occurs in scanning tunnel microscopy experiments. Molecular compounds can be organized on surfaces thanks to the self assembly technique that exploits the strong affinity of some groups for the surface, e.g. thiols for gold surfaces. However the deposition of large molecules mainly comprising relatively weak coordinative bonds is far from trivial. Several different approaches have started to be investigated. We will briefly review here the strategies developed in a collaboration between the Universities of Florence and Modena. Well isolated molecules on Au(111) surfaces have been obtained with sub-monolayer coverage and different spacers. Organization on a large scale of micrometric structures has been obtained thanks to micro-contact printing. The magnetic properties of the grafted molecules have been investigated through magneto-optical techniques and the results show a significant change in the magnetization dynamics whose origin is still object of investigations.

  11. Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications

    PubMed Central

    Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh

    2015-01-01

    Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized “columnar particles” by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or “magnetic washing”). PMID:26053747

  12. Using magnetic charge to understand soft-magnetic materials

    NASA Astrophysics Data System (ADS)

    Arrott, Anthony S.; Templeton, Terry L.

    2018-04-01

    This is an overview of what the Landau-Lifshitz-Gilbert equations are doing in soft-magnetic materials with dimensions large compared to the exchange length. The surface magnetic charges try to cancel applied magnetic fields inside the soft magnetic material. The exchange energy tries to reach a minimum while meeting the boundary conditions set by the magnetic charges by using magnetization patterns that have a curl but no divergence. It can almost do this, but it still pays to add some divergence to further lower the exchange energy. There are then both positively and negatively charged regions in the bulk. The unlike charges attract one another, but do not annihilate because they are paid for by the reduction in exchange energy. The micromagnetics of soft magnetic materials is about how those charges rearrange themselves. The topology of magnetic charge distributions presents challenges for mathematicians. No one guessed that they like to form helical patterns of extended multiples of charge density.

  13. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  14. Polydopamine-reinforced magnetization of zeolitic imidazolate framework ZIF-7 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from the air-water environment.

    PubMed

    Zhang, Suling; Yao, Weixuan; Ying, Jianbo; Zhao, Hongting

    2016-06-24

    Zeolitic imidazolate frameworks (ZIFs) consist of metal nodes connected to imidazolate linkers, having both the properties of metal-organic frameworks (MOFs) and inorganic zeolites, such as controllable pore sizes, high porosity and surface areas, as well as exceptional thermal and chemical stability, thereby making them a class of attractive materials for diverse analytical applications. In this study, we reported a facile magnetization process of ZIF-7 (zinc benzimidazolate) for simultaneous magnetic extraction of polycyclic aromatic hydrocarbons (PAHs) by simply mixing ZIF-7 and polydopamine (PDA)-coated Fe3O4 nanoparticles (PDA@Fe3O4) in solutions. Functional groups (-OH and -NH2), provided by PDA as a highly efficient molecular linker, could attract and anchor ZIF-7 through noncovalent adsorption and covalent cross-link interactions, thereby promoting the complete magnetization of ZIFs and enhancing their stability and reusability. The bridging ligand benzimidazolate, could be bonded with PAHs because of its high surface area, large pores, accessible coordinative unsaturated sites (π-complexation), and π-π stacking action. This ZIF-based magnetic solid-phase extraction (SPE), coupled with gas chromatography/tandem mass spectrometry (GC/MS), was further evaluated for analysis of PAHs from rainwater and air samples of particulate matter less than 2.5μm in diameter (PM2.5). The main effective parameters, including ionic strength, solution pH, extraction time, desorption solvent and desorption time, were investigated, respectively. Under optimized conditions, the developed method based on Fe3O4@PDA/ZIF-7 gave detection limits of 0.71-5.79ng/L, and quantification limits of 2.50-19.2ng/L for PAHs, respectively. The relative standard deviations for intra-day and inter-day analyses were in the range of 3.1-9.1% and 6.1-12.7%, respectively. The PAHs founded in PM2.5 were in the range of 0.40-6.79ng/m(3). Good recoveries (>82%) with low relative standard deviations (≤9.2%) were achieved. This method was demonstrated to be an accurate, convenient and sensitive pretreatment procedure for trace analysis of environmental water and air samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A case for Redundant Arrays of Inexpensive Disks (RAID)

    NASA Technical Reports Server (NTRS)

    Patterson, David A.; Gibson, Garth; Katz, Randy H.

    1988-01-01

    Increasing performance of CPUs and memories will be squandered if not matched by a similar performance increase in I/O. While the capacity of Single Large Expensive Disks (SLED) has grown rapidly, the performance improvement of SLED has been modest. Redundant Arrays of Inexpensive Disks (RAID), based on the magnetic disk technology developed for personal computers, offers an attractive alternative to SLED, promising improvements of an order of magnitude in performance, reliability, power consumption, and scalability. This paper introduces five levels of RAIDs, giving their relative cost/performance, and compares RAID to an IBM 3380 and a Fujitsu Super Eagle.

  16. EM Modelling of RF Propagation Through Plasma Plumes

    NASA Astrophysics Data System (ADS)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  17. Molecular nanomagnets with switchable coupling for quantum simulation

    DOE PAGES

    Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...

    2014-12-11

    Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less

  18. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    PubMed

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less

  20. Magnetic skyrmion-based artificial neuron device

    NASA Astrophysics Data System (ADS)

    Li, Sai; Kang, Wang; Huang, Yangqi; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2017-08-01

    Neuromorphic computing, inspired by the biological nervous system, has attracted considerable attention. Intensive research has been conducted in this field for developing artificial synapses and neurons, attempting to mimic the behaviors of biological synapses and neurons, which are two basic elements of a human brain. Recently, magnetic skyrmions have been investigated as promising candidates in neuromorphic computing design owing to their topologically protected particle-like behaviors, nanoscale size and low driving current density. In one of our previous studies, a skyrmion-based artificial synapse was proposed, with which both short-term plasticity and long-term potentiation functions have been demonstrated. In this work, we further report on a skyrmion-based artificial neuron by exploiting the tunable current-driven skyrmion motion dynamics, mimicking the leaky-integrate-fire function of a biological neuron. With a simple single-device implementation, this proposed artificial neuron may enable us to build a dense and energy-efficient spiking neuromorphic computing system.

  1. Modern Micro and Nanoparticle-Based Imaging Techniques

    PubMed Central

    Ryvolova, Marketa; Chomoucka, Jana; Drbohlavova, Jana; Kopel, Pavel; Babula, Petr; Hynek, David; Adam, Vojtech; Eckschlager, Tomas; Hubalek, Jaromir; Stiborova, Marie; Kaiser, Jozef; Kizek, Rene

    2012-01-01

    The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted. PMID:23202187

  2. Itinerant Antiferromagnetism in FeMnP 0.8Si 0.2

    DOE PAGES

    Sales, Brian C.; Susner, Michael A.; Conner, Benjamin S.; ...

    2015-09-25

    Compounds based on the Fe 2P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a noncentrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. We report the growth and characterization of millimeter-sized single crystals of FeMnP 0.8Si 0.2 with the Fe 2P structure. Single-crystal x-ray diffraction, magnetization, resistivity, and Hall and heat capacity data are reported. The crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. Themore » room-temperature resistivity is close to the Ioffe-Regel limit for a metal. Single-crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism were not changed after high-temperature anneals and a rapid quench to room temperature« less

  3. Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution.

    PubMed

    Zhang, Fan; Wei, Zhong; Zhang, Wanning; Cui, Haiyan

    2017-07-05

    Magnetic Ba 3 (PO 4 ) 2 /Fe 3 O 4 -nanoparticle (called BPFN) was prepared, characterized, and developed as a low-cost adsorbent for malachite green (MG) from aqueous solution. Factors such as adsorption temperature, pH of solution, dosage of adsorbent, adsorption kinetics and isotherms were investigated. The maximum adsorption capacity obtained in this work was 1639mgg -1 at 45°C and pH6. The adsorption process fitted the pseudo-first-order kinetic model and Langmuir isotherm model. Evidences from zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) data revealed that the adsorption process was driven by electrostatic attraction, the interaction between Lewis base N(CH 3 ) 2 in MG and Lewis acid Ba sites of BPFN. In addition, the BPFN could be easily regenerated by a magnet and the adsorption capacity maintained at 70% after five cycles. The present study suggests that the BPFN had high potential of removing MG from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A new real-time method for investigation of affinity properties and binding kinetics of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Orlov, Alexey V.; Nikitin, Maxim P.; Bragina, Vera A.; Znoyko, Sergey L.; Zaikina, Marina N.; Ksenevich, Tatiana I.; Gorshkov, Boris G.; Nikitin, Petr I.

    2015-04-01

    A method for quantitative investigation of affinity constants of receptors immobilized on magnetic nanoparticles (MP) is developed based on spectral correlation interferometry (SCI). The SCI records with a picometer resolution the thickness changes of a layer of molecules or nanoparticles due to a biochemical reaction on a cover slip, averaged over the sensing area. The method is compatible with other types of sensing surfaces employed in biosensing. The measured values of kinetic association constants of magnetic nanoparticles are 4 orders of magnitude higher than those of molecular antibody association with antigen. The developed method also suggests highly sensitive detection of antigens in a wide dynamic range. The limit of detection of 92 pg/ml has been demonstrated for prostate-specific antigen (PSA) with 50-nm MP employed as labels, which produce 3-order amplification of the SCI signals. The calibration curve features high sensitivity (slope) of 3-fold signal raise per 10-fold increase of PSA concentration within 4-order dynamic range, which is an attractive compromise for precise quantitative and highly sensitive immunoassay. The proposed biosensing technique offers inexpensive disposable sensor chips of cover slips and represents an economically sound alternative to traditional immunoassays for disease diagnostics, detection of pathogens in food and environmental monitoring.

  5. Synthesization and magnetic properties of Ba1-xYxFe12O19 hexaferrites prepared by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Rehman, Khalid Mehmood Ur; Liu, Xiansong; Li, Mingling; Jiang, Shuai; Wu, Yingchun; Zhang, Cong; Liu, Chaocheng; Meng, Xiangyu; Li, Haohao

    2017-03-01

    M-type hexaferrite Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powder and magnets existed to ready according to the conventional ceramic reaction method. X-ray difractometer was used to study the phase compositions of the calcites powder samples. There was a single magnetoplumbite segment in the calcanei magnetic powder with the intensification of x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13. The influence of yttrium aggregation on attractive possessions of the magnets was studied scientifically. The magnetic properties of the magnets were measured by a magnetic properties test instrument (VSM). The saturation magnetization (σs) and coercivity (Hcj) of the Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powders with different Yttrium aggregation (x) were determined. The saturation magnetization (σs) was decreased whereas coercivity (Hcj) was increased. The magnetic properties of the magnet at x=0.13 reached the maximum values.

  6. Magnetophoretic Conductors and Diodes in a 3D Magnetic Field.

    PubMed

    Abedini-Nassab, Roozbeh; Joh, Daniel Y; Van Heest, Melissa; Baker, Cody; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B

    2016-06-14

    We demonstrate magnetophoretic conductor tracks that can transport single magnetized beads and magnetically labeled single cells in a 3-dimensional time-varying magnetic field. The vertical field bias, in addition to the in-plane rotating field, has the advantage of reducing the attraction between particles, which inhibits the formation of particle clusters. However, the inclusion of a vertical field requires the re-design of magnetic track geometries which can transport magnetized objects across the substrate. Following insights from magnetic bubble technology, we found that successful magnetic conductor geometries defined in soft magnetic materials must be composed of alternating sections of positive and negative curvature. In addition to the previously studied magnetic tracks taken from the magnetic bubble literature, a drop-shape pattern was found to be even more adept at transporting small magnetic beads and single cells. Symmetric patterns are shown to achieve bi-directional conduction, whereas asymmetric patterns achieve unidirectional conduction. These designs represent the electrical circuit corollaries of the conductor and diode, respectively. Finally, we demonstrate biological applications in transporting single cells and in the size based separation of magnetic particles.

  7. Functional Nanoparticles for Magnetic Resonance Imaging

    PubMed Central

    Mao, Xinpei; Xu, Jiadi; Cui, Honggang

    2016-01-01

    Nanoparticle-based magnetic resonance imaging (MRI) contrast agents have received much attention over the past decade. By virtue of a high payload of magnetic moieties, enhanced accumulation at disease sites, and a large surface area for additional modification with targeting ligands, nanoparticle-based contrast agents offer promising new platforms to further enhance the high resolution and sensitivity of MRI for various biomedical applications. T2* superparamagnetic iron oxide nanoparticles (SPIONs) first demonstrated superior improvement on MRI sensitivity. The prevailing SPION attracted growing interest in the development of refined nanoscale versions of MRI contrast agents. Afterwards, T1-based contrast agents were developed, and became the most studied subject in MRI due to the positive contrast they provide that avoids the susceptibility associated with MRI signal reduction. Recently, chemical exchange saturation transfer (CEST) contrast agents have emerged and rapidly gained popularity. The unique aspect of CEST contrast agents is that their contrast can be selectively turned “on” and “off” by radiofrequency (RF) saturation. Their performance can be further enhanced by incorporating a large number of exchangeable protons into well-defined nanostructure. Besides activatable CEST contrast agents, there is growing interest in developing nanoparticle-based activatable MRI contrast agents responsive to stimuli (pH, enzyme, etc.), which improves sensitivity and specificity. In this review, we summarize the recent development of various types of nanoparticle-based MRI contrast agents, and have focused our discussions on the key advantages of introducing nanoparticles in MRI. PMID:27040463

  8. An Overview of Hardware for Protein Crystallization in a Magnetic Field.

    PubMed

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-11-16

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed.

  9. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    PubMed

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  10. Novel magnetic-fluorescent bifunctional Janus nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Wang, Qiutong; Geng, Yuting; Li, Jianhao; Yin, Meizhen; Hu, Yiseng; Liu, Yangxiu; Pan, Kai

    2018-04-01

    Magnetic-fluorescent bifunctional materials have received global attention owing to their potential in many fields. Herein, we reported a novel magnetic-fluorescent bifunctional Janus nanofiber membrane (NFM) by adding the as-prepared magnetic CoFe2O4 nanoparticles into the polyacrylonitrile (PAN) side (m-PAN) and the fluorescent molecules of 1,8-naphthalene anhydride (1,8-NAD) into the polyvinylpyrrolidone (PVP) side (f-PVP) via electrospinning method. The obtained m-PAN/f-PVP Janus NFM exhibited excellent magnetic performance and high fluorescent properties due to the unique structure. Compared with the m-PAN/f-PVP composite NFM, the Janus NFM showed higher fluorescent performance because the fluorescent molecules were isolated from the magnetic nanoparticles. In addition, the Janus NFM not only maintain the good self-supporting state in water but also realize a directional movement attracted by a magnet. The unique structure of Janus nanofiber is of great importance and demonstrates great potential applications.

  11. An Overview of Hardware for Protein Crystallization in a Magnetic Field

    PubMed Central

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-01-01

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed. PMID:27854318

  12. Rare-earth magnet ingestion: a childhood danger reaches adolescence.

    PubMed

    Agha, Beesan Shalabi; Sturm, Jesse J; Costello, Brian E

    2013-10-01

    Ingestion of multiple magnets may cause serious gastrointestinal morbidity, such as pressure necrosis, perforation, fistula formation, or intestinal obstruction due to forceful attraction across bowel wall. Although the consequences of multiple magnet ingestion are well documented in young children, the current popularity of small, powerful rare-earth magnets marketed as "desk toys" has heightened this safety concern in all pediatric age groups. A recent US Consumer Product Safety Commission product-wide warning additionally reports the adolescent practice of using toy high-powered, ball-bearing magnets to simulate tongue and lip piercings, a behavior that may increase risk of inadvertent ingestion. We describe 2 cases of older children (male; aged 10 and 13 years, respectively) with unintentional ingestion of multiple rare-earth magnets. Health care providers should be alerted to the potential for misuse of these high-powered, ball-bearing magnets among older children and adolescents.

  13. Magnetically Attached Multifunction Maintenance Rover

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces that could be adjusted to maximize or minimize the overall attractive magnetic force. Even with a paint thickness of 2 mm, a preliminary design provides a safety factor of 5 in the magnetic force in the upside- down, water-jets-operating condition, in which the total load (including the weight of the MAGMER and cables and the water-jet force) would be about 260 lb (the weight of 118 kg). Optionally, the MAGMER could carry magnetic shielding and/or could be equipped with a demagnetizing module to remove residual magnetism from the structure. The MAGMER would carry four charge-coupled-device cameras for visual inspection, monitoring of operation, navigation, and avoidance of collisions with obstacles. The control system of the MAGMER would include navigation and collision-avoidance subsystems that would utilize surface features as landmarks, in addition to direct images of obstacles.

  14. On-demand Droplet Manipulation via Triboelectrification

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Vahabi, Hamed; Cackovic, Matthew; Jiang, Rui; Kota, Arun

    2017-11-01

    Controlled manipulation of liquid droplets has attracted tremendous interest across different scientific fields over the past two decades. To date, a variety of external stimuli-mediated methods such as magnetic field, electric field, and light have been developed for manipulating droplets on surfaces. However, these methods usually have drawbacks such as complex fabrication of manipulation platform, low droplet motility, expensive actuation system and lack of precise control. In this work, we demonstrate the controlled manipulation of liquid droplet with both high (e.g., water) and low (e.g., n-hexadecane) dielectric strengths on a smooth, slippery surface via triboelectric effect. Our highly simple, facile and portable methodology enables on-demand, precise manipulation of droplets using solely the electrostatic attraction or repulsion force, which is exerted on the droplet by a simple charged actuator (e.g., Teflon film). We envision that our triboelectric effect enabled droplet manipulation methodology will open a new avenue for droplet based lab-on-a-chip systems, energy harvesting devices and biomedical applications.

  15. Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures

    NASA Astrophysics Data System (ADS)

    Okuda, Mitsuhiro; Eloi, Jean-Charles; Jones, Sarah E. Ward; Sarua, Andrei; Richardson, Robert M.; Schwarzacher, Walther

    2012-10-01

    The synthesis of magnetic, monodisperse nanoparticles has attracted great interest in nanoelectronics and nanomedicine. Here we report the fabrication of pure magnetite nanoparticles, less than ten nanometers in size, using the cage-shaped protein apoferritin (Fe3O4-ferritin). Crystallizable proteins were obtained through careful successive separation methods, including a magnetic chromatography that enabled the effective separation of proteins, including a Fe3O4 nanoparticle (7.9 ± 0.8 nm), from empty ones. Macroscopic protein crystals allowed the fabrication of three-dimensional arrays of Fe3O4 nanoparticles with interparticle gaps controlled by dehydration, decreasing their magnetic susceptibilities and increasing their blocking temperatures through enhanced dipole-dipole interactions.

  16. High pressure superconducting radial magnetic bearing

    NASA Technical Reports Server (NTRS)

    Eyssa, Y. M.; Huang, X.

    1990-01-01

    In a conventional radial magnetic bearing, the rotor (soft magnetic material) can only have attraction force from one of the electromagnets in the stator. The stator electromagnets consist of small copper windings with a soft magnetic material iron yoke. The maximum pressure obtainable is about 200 N/sq cm. It is shown that replacing the stator copper winding by a superconducting winding in the above configuration can increase the pressure to about 1000 N/sq cm. It is also shown that replacing the iron in the rotor by a group of superconducting windings in persistent mode and using a group of saddle coils in the stator can produce a pressure in excess of 2000 N/sq cm.

  17. Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources.

    PubMed

    Osman, O; Zanini, L F; Frénéa-Robin, M; Dumas-Bouchiat, F; Dempsey, N M; Reyne, G; Buret, F; Haddour, N

    2012-10-01

    Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).

  18. Individual Magnetic Molecules on Ultrathin Insulating Surfaces

    NASA Astrophysics Data System (ADS)

    El Hallak, Fadi; Warner, Ben; Hirjibehedin, Cyrus

    2012-02-01

    Single molecule magnets have attracted ample interest because of their exciting magnetic and quantum properties. Recent studies have demonstrated that some of these molecules can be evaporated on surfaces without losing their magnetic properties [M. Mannini et al., Nature 468, 417, (2010)]. This remarkable progress enhances the chances of real world applications for these molecules. We present STM imaging and spectroscopy data on iron phthalocyanine molecules deposited on Cu(100) and on a Cu2N ultrathin insulating surface. These molecules have been shown to display a large magnetic anisotropy on another thin insulating surface, oxidized Cu(110) [N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009)]. By using a combination of elastic and inelastic electron tunnelling spectroscopy, we investigate the binding of the molecules to the surface and the impact that the surface has on their electronic and magnetic properties.

  19. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  20. Lateral restoring force on a magnet levitated above a superconductor

    NASA Technical Reports Server (NTRS)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  1. Microscopic Investigation into the Electric Field Effect on Proximity-Induced Magnetism in Pt

    NASA Astrophysics Data System (ADS)

    Yamada, K. T.; Suzuki, M.; Pradipto, A.-M.; Koyama, T.; Kim, S.; Kim, K.-J.; Ono, S.; Taniguchi, T.; Mizuno, H.; Ando, F.; Oda, K.; Kakizakai, H.; Moriyama, T.; Nakamura, K.; Chiba, D.; Ono, T.

    2018-04-01

    Electric field effects on magnetism in metals have attracted widespread attention, but the microscopic mechanism is still controversial. We experimentally show the relevancy between the electric field effect on magnetism and on the electronic structure in Pt in a ferromagnetic state using element-specific measurements: x-ray magnetic circular dichroism (XMCD) and x-ray absorption spectroscopy (XAS). Electric fields are applied to the surface of ultrathin metallic Pt, in which a magnetic moment is induced by the ferromagnetic proximity effect resulting from a Co underlayer. XMCD and XAS measurements performed under the application of electric fields reveal that both the spin and orbital magnetic moments of Pt atoms are electrically modulated, which can be explained not only by the electric-field-induced shift of the Fermi level but also by the change in the orbital hybridizations.

  2. Green Synthesis of Nanocrystals and Nanocomposites

    EPA Science Inventory

    Metal nanomaterials have attracted considerable attention because of their unique magnetic, optical, electrical, and catalytic properties and their potential applications in nanoelectronics as well as in various wet chemical synthesis methods. There is also great interest in synt...

  3. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  4. Nanoscale Interparticle Distance within Dimers in Solution Measured by Light Scattering

    PubMed Central

    2017-01-01

    We demonstrate a novel approach to quantify the interparticle distance in colloidal dimers using Mie scattering. The interparticle distance is varied in a controlled way by changing the ionic strength of the solution and the magnetic attraction between the particles. The measured scaling behavior is interpreted using an energy–distance model that includes the repulsive electrostatic and attractive magnetic interactions. The center-to-center distances of particles with a 525 nm radius can be determined with a root-mean-square accuracy of 12 nm. The data show that the center-to-center distance is larger by 83 nm compared to perfect spheres. The underlying distance offset can be attributed to repulsion by charged protrusions caused by particle surface roughness. The measurement method accurately quantifies interparticle distances that can be used to study cluster formation and colloid aggregation in complex systems, e.g., in biosensing applications. PMID:29183122

  5. A novel numerical model to predict the morphological behavior of magnetic liquid marbles using coarse grained molecular dynamics concepts

    NASA Astrophysics Data System (ADS)

    Polwaththe-Gallage, Hasitha-Nayanajith; Sauret, Emilie; Nguyen, Nam-Trung; Saha, Suvash C.; Gu, YuanTong

    2018-01-01

    Liquid marbles are liquid droplets coated with superhydrophobic powders whose morphology is governed by the gravitational and surface tension forces. Small liquid marbles take spherical shapes, while larger liquid marbles exhibit puddle shapes due to the dominance of gravitational forces. Liquid marbles coated with hydrophobic magnetic powders respond to an external magnetic field. This unique feature of magnetic liquid marbles is very attractive for digital microfluidics and drug delivery systems. Several experimental studies have reported the behavior of the liquid marbles. However, the complete behavior of liquid marbles under various environmental conditions is yet to be understood. Modeling techniques can be used to predict the properties and the behavior of the liquid marbles effectively and efficiently. A robust liquid marble model will inspire new experiments and provide new insights. This paper presents a novel numerical modeling technique to predict the morphology of magnetic liquid marbles based on coarse grained molecular dynamics concepts. The proposed model is employed to predict the changes in height of a magnetic liquid marble against its width and compared with the experimental data. The model predictions agree well with the experimental findings. Subsequently, the relationship between the morphology of a liquid marble with the properties of the liquid is investigated. Furthermore, the developed model is capable of simulating the reversible process of opening and closing of the magnetic liquid marble under the action of a magnetic force. The scaling analysis shows that the model predictions are consistent with the scaling laws. Finally, the proposed model is used to assess the compressibility of the liquid marbles. The proposed modeling approach has the potential to be a powerful tool to predict the behavior of magnetic liquid marbles serving as bioreactors.

  6. Kin discrimination allows plants to modify investment towards pollinator attraction.

    PubMed

    Torices, Rubén; Gómez, José M; Pannell, John R

    2018-05-22

    Pollinators tend to be preferentially attracted to large floral displays that may comprise more than one plant in a patch. Attracting pollinators thus not only benefits individuals investing in advertising, but also other plants in a patch through a 'magnet' effect. Accordingly, there could be an indirect fitness advantage to greater investment in costly floral displays by plants in kin-structured groups than when in groups of unrelated individuals. Here, we seek evidence for this strategy by manipulating relatedness in groups of the plant Moricandia moricandioides, an insect-pollinated herb that typically grows in patches. As predicted, individuals growing with kin, particularly at high density, produced larger floral displays than those growing with non-kin. Investment in attracting pollinators was thus moulded by the presence and relatedness of neighbours, exemplifying the importance of kin recognition in the evolution of plant reproductive strategies.

  7. Attracted by a magnet: Exploration behaviour of rodents in the presence of magnetic objects.

    PubMed

    Malewski, Sandra; Malkemper, E Pascal; Sedláček, František; Šumbera, Radim; Caspar, Kai R; Burda, Hynek; Begall, Sabine

    2018-06-01

    Magnetosensitivity is widespread among animals with rodents being the most intensively studied mammalian group. The available behavioural assays for magnetoreception are time-consuming, which impedes screens for treatment effects that could characterize the enigmatic magnetoreceptors. Here, we present a fast and simple approach to test if an animal responds to magnetic stimuli: the magnetic object assay (MOA). The MOA focuses on investigating an animal's spontaneous exploration behaviour in the presence of a bar magnet compared to a demagnetised control. We present consistently longer exploration of the magnet in three different rodent species: Ansell's mole-rat (Fukomys anselli), C57BL/6J laboratory mouse, and naked mole-rat (Heterocephalus glaber). For the naked mole-rat this is the first report that this species reacts on magnetic stimuli. We conclude that the MOA holds the potential to screen if an animal responds to magnetic stimuli, indicating the possession of a magnetic sense. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy

    NASA Astrophysics Data System (ADS)

    Xiong, Mingfeng; Gao, Yunxia; Liu, Jing

    2014-03-01

    In this study, Ni nanoparticles were loaded into the partially oxidized gallium and its alloys to fabricate desired magnetic nanofluid. It was disclosed that the Ni nanoparticles sharply increased the freezing temperature and latent heat of the obtained magnetic nano liquid metal fluid, while the melting process was less affected. For the gallium sample added with 10 vol% coated Ni particles, a hysteresis loop was observed and the magnetization intensity decreased with the increase of the temperature. The slope for the magnetization-temperature curve within 10-30 K was about 20 times of that from 40 K to 400 K. Further, the dynamic impact experiments of striking magnetic liquid metal droplets on the magnet revealed that the regurgitating of the leading edge of the liquid disk and the subsequent wave that often occurred in the gallium-indium droplets would disappear for the magnetic fluids case due to attraction force of the magnet.

  9. Rare-earth magnet ingestion-related injuries among children, 2000-2012.

    PubMed

    De Roo, Ana C; Thompson, Meghan C; Chounthirath, Thiphalak; Xiang, Huiyun; Cowles, Nancy A; Shmuylovskaya, Liliya; Smith, Gary A

    2013-11-01

    This study describes the epidemiology of rare-earth magnet ingestion by children by retrospectively analyzing 72 cases of magnet ingestion collected from Saferproducts.gov and the US Consumer Product Safety Commission from 2000 through 2012. The mean child age was 6.4 years. Patients ingested between 1 and 40 magnets, most often 1 to 4 magnets. Unique circumstances of ingestion included faux piercing (19.4%) and mistaking magnets for candy (6.9%). Surgery was required in 69.7% of cases where treatment was reported. Fifty-three patients were hospitalized (73.6%), and the length of hospital stay was reported in 58.5% of those cases, ranging from 1 to 54 days. Approximately half (50.7%) of the magnets causing injury were products intended for use by adults. Study findings demonstrate that pediatric ingestion of rare-earth magnets can cause serious gastrointestinal injury. Establishing a performance standard that limits the attraction force of these magnets offers the best prevention solution to this important pediatric public health problem.

  10. Nontrivial interplay of strong disorder and interactions in quantum spin-Hall insulators doped with dilute magnetic impurities

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Hui; Cazalilla, Miguel A.

    2018-06-01

    We investigate nonperturbatively the effect of a magnetic dopant impurity on the edge transport of a quantum spin Hall (QSH) insulator. We show that for a strongly coupled magnetic dopant located near the edge of a system, a pair of transmission antiresonances appear. When the chemical potential is on resonance, interaction effects broaden the antiresonance width with decreasing temperature, thus suppressing transport for both repulsive and moderately attractive interactions. Consequences for the recently observed QSH insulating phase of the 1 -T' of WTe2 are briefly discussed.

  11. Fluid flow rate control device

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H. (Inventor); Mohtar, Rafic (Inventor); Nelson, Richard O. (Inventor)

    1991-01-01

    A poppet is modulated between closed and full open positions by a brushless DC motor operating magnetically through a housing to drive a permanent magnet rotor which carries the poppet. The rotor is supported on several parallel cables which are stationarily fixed at one end and attached to the rotor at the other end, whereby rotation of the rotor twists the cables, causing axial foreshortening and axial translation of rotor and poppet. Axial translation is enhanced by placing a spacer between the cables, intermediate their ends. A permanent magnet ring is disposed around the valve seat directly axially attracting the rotor to a valve closed position.

  12. UHV-compatible magnetic material for atom optics

    NASA Astrophysics Data System (ADS)

    Hopkins, S. A.; Hinds, E. A.; Boshier, M. G.

    Magnetic videotape is of great interest for trapping and guiding cold atomic vapors, but was hitherto considered unsuitable for manipulating Bose-Einstein condensates (BEC) because of the presumed evolution of gas under vacuum. We have studied the outgassing in vacuum of the most promising tape, Ampex 398 Betacam SP. We find that after cleaning in ethanol and baking for 200 h at 100 °C the magnetic patterns are undisturbed and the outgassing is remarkably small: 4×10-10 Torrls-1cm-2, due mostly to hydrogen. This makes the tape exceedingly attractive for manipulation of BEC.

  13. Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary.

    PubMed

    Evans, T E; Moyer, R A; Thomas, P R; Watkins, J G; Osborne, T H; Boedo, J A; Doyle, E J; Fenstermacher, M E; Finken, K H; Groebner, R J; Groth, M; Harris, J H; La Haye, R J; Lasnier, C J; Masuzaki, S; Ohyabu, N; Pretty, D G; Rhodes, T L; Reimerdes, H; Rudakov, D L; Schaffer, M J; Wang, G; Zeng, L

    2004-06-11

    A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.

  14. Magnetic resonance imaging of amyloid plaques in transgenic mouse models of Alzheimer's disease

    PubMed Central

    Chamberlain, Ryan; Wengenack, Thomas M.; Poduslo, Joseph F.; Garwood, Michael; Jack, Clifford R.

    2011-01-01

    A major objective in the treatment of Alzheimer's disease is amyloid plaque reduction. Transgenic mouse models of Alzheimer's disease provide a controlled and consistent environment for studying amyloid plaque deposition in Alzheimer's disease. Magnetic resonance imaging is an attractive tool for longitudinal studies because it offers non-invasive monitoring of amyloid plaques. Recent studies have demonstrated the ability of magnetic resonance imaging to detect individual plaques in living mice. This review discusses the mouse models, MR pulse sequences, and parameters that have been used to image plaques and how they can be optimized for future studies. PMID:21499442

  15. Bacterial Magnetosome: A Novel Biogenetic Magnetic Targeted Drug Carrier with Potential Multifunctions

    PubMed Central

    Sun, Jianbo; Li, Ying; Liang, Xing-Jie; Wang, Paul C.

    2012-01-01

    Bacterial magnetosomes (BMs) synthesized by magnetotactic bacteria have recently drawn great interest due to their unique features. BMs are used experimentally as carriers for antibodies, enzymes, ligands, nucleic acids, and chemotherapeutic drugs. In addition to the common attractive properties of magnetic carriers, BMs also show superiority as targeting nanoscale drug carriers, which is hardly matched by artificial magnetic particles. We are presenting the potential applications of BMs as drug carriers by introducing the drug-loading methods and strategies and the recent research progress of BMs which has contributed to the application of BMs as drug carriers. PMID:22448162

  16. Electric-field control of magnetic moment in Pd

    PubMed Central

    Obinata, Aya; Hibino, Yuki; Hayakawa, Daichi; Koyama, Tomohiro; Miwa, Kazumoto; Ono, Shimpei; Chiba, Daichi

    2015-01-01

    Several magnetic properties have recently become tunable with an applied electric field. Particularly, electrically controlled magnetic phase transitions and/or magnetic moments have attracted attention because they are the most fundamental parameters in ferromagnetic materials. In this study, we showed that an electric field can be used to control the magnetic moment in films made of Pd, usually a non-magnetic element. Pd ultra-thin films were deposited on ferromagnetic Pt/Co layers. In the Pd layer, a ferromagnetically ordered magnetic moment was induced by the ferromagnetic proximity effect. By applying an electric field to the ferromagnetic surface of this Pd layer, a clear change was observed in the magnetic moment, which was measured directly using a superconducting quantum interference device magnetometer. The results indicate that magnetic moments extrinsically induced in non-magnetic elements by the proximity effect, as well as an intrinsically induced magnetic moments in ferromagnetic elements, as reported previously, are electrically tunable. The results of this study suggest a new avenue for answering the fundamental question of “can an electric field make naturally non-magnetic materials ferromagnetic?” PMID:26391306

  17. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    NASA Technical Reports Server (NTRS)

    Curwen, Peter W.; Rao, Dantam K.; Wilson, Donald R.

    1992-01-01

    This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long-term stability and reliability represent areas of uncertainty for magnetic bearings. Considerable development effort will be required to establish the long-term suitability of these bearings for Stirling space power applications.

  18. Motor/Generator and Inverter Characterization for Flywheel System Applications

    NASA Technical Reports Server (NTRS)

    Tamarcus, Jeffries L.

    2004-01-01

    The Advanced Electrical Systems Development Branch at NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheels systems for satellite energy storage and attitude applications. These flywheels will serve as replacement for chemical nickel hydrogen, nickel cadmium batteries and gyroscopic wheels. The advantages of using flywheel systems for energy storage on satellites are high energy density, high power density, long life, deep depth of discharge, and broad operating temperature ranges. A flywheel system for space applications consist of a number of flywheel modules, the motor/generator and magnetic bearing, and an electronics package. The motor/generator electronics package includes a pulse-width modulated inverter that drives the flywheel permanent magnet motor/generator located at one end of the shaft. This summer, I worked under the direct supervision of my mentor, Walter Santiago, and the goal for this summer was to characterize motor generator and inverter attributes in order to increase their viability as a more efficient energy storage source for space applications. To achieve this goal, magnetic field measurements around the motor/generator permanent magnet and the impedance of the motor/generator three phase windings were characterized, and a recreation of the inverter pulse width modulated control system was constructed. The Flywheel modules for space use are designed to maximize energy density and minimize loss, and attaining these values will aid in locating and reducing losses within the flywheel system as a whole, making flywheel technology more attractive for use as energy storage in future space applications.

  19. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    NASA Astrophysics Data System (ADS)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume analysis on the plasma electrons. Balancing the plasma electron generation and loss yielded nominal values used in miniature ion thrusters. This result was ultimately used to develop a design tool for miniature discharges. This tool was used to perform a parametric evaluation on the magnet field configuration of the research mode. By understanding the plasma behavior, significant improvements over the baseline configuration were obtained with relatively minor changes, thus revealing the importance of plasma structure on the performance of miniature ring-cusp discharges.

  20. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  1. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    NASA Astrophysics Data System (ADS)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-12-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  2. A Rapid Magnetic Solid Phase Extraction Method Followed by Liquid Chromatography-Tandem Mass Spectrometry Analysis for the Determination of Mycotoxins in Cereals

    PubMed Central

    La Barbera, Giorgia; Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; Montone, Carmela Maria; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-01-01

    Mycotoxins can contaminate various food commodities, including cereals. Moreover, mycotoxins of different classes can co-contaminate food, increasing human health risk. Several analytical methods have been published in the literature dealing with mycotoxins determination in cereals. Nevertheless, in the present work, the aim was to propose an easy and effective system for the extraction of six of the main mycotoxins from corn meal and durum wheat flour, i.e., the main four aflatoxins, ochratoxin A, and the mycoestrogen zearalenone. The developed method exploited magnetic solid phase extraction (SPE), a technique that is attracting an increasing interest as an alternative to classical SPE. Therefore, the use of magnetic graphitized carbon black as a suitable extracting material was tested. The same magnetic material proved to be effective in the extraction of mycoestrogens from milk, but has never been applied to complex matrices as cereals. Ultra high–performance liquid chromatography tandem mass spectrometry was used for detection. Recoveries were >60% in both cereals, even if the matrix effects were not negligible. The limits of quantification of the method results were comparable to those obtained by other two magnetic SPE-based methods applied to cereals, which were limited to one or two mycotoxins, whereas in this work the investigated mycotoxins belonged to three different chemical classes. PMID:28430148

  3. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    PubMed

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-12-11

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  4. A Rapid Magnetic Solid Phase Extraction Method Followed by Liquid Chromatography-Tandem Mass Spectrometry Analysis for the Determination of Mycotoxins in Cereals.

    PubMed

    Barbera, Giorgia La; Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; Montone, Carmela Maria; Chiozzi, Riccardo Zenezini; Laganà, Aldo

    2017-04-21

    Mycotoxins can contaminate various food commodities, including cereals. Moreover, mycotoxins of different classes can co-contaminate food, increasing human health risk. Several analytical methods have been published in the literature dealing with mycotoxins determination in cereals. Nevertheless, in the present work, the aim was to propose an easy and effective system for the extraction of six of the main mycotoxins from corn meal and durum wheat flour, i.e., the main four aflatoxins, ochratoxin A, and the mycoestrogen zearalenone. The developed method exploited magnetic solid phase extraction (SPE), a technique that is attracting an increasing interest as an alternative to classical SPE. Therefore, the use of magnetic graphitized carbon black as a suitable extracting material was tested. The same magnetic material proved to be effective in the extraction of mycoestrogens from milk, but has never been applied to complex matrices as cereals. Ultra high-performance liquid chromatography tandem mass spectrometry was used for detection. Recoveries were >60% in both cereals, even if the matrix effects were not negligible. The limits of quantification of the method results were comparable to those obtained by other two magnetic SPE-based methods applied to cereals, which were limited to one or two mycotoxins, whereas in this work the investigated mycotoxins belonged to three different chemical classes.

  5. Current-controlled unidirectional edge-meron motion

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-11-01

    In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.

  6. Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples.

    PubMed

    Ren, Ji-Yun; Wang, Xiao-Li; Li, Xiao-Li; Wang, Ming-Lin; Zhao, Ru-Song; Lin, Jin-Ming

    2018-02-01

    Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted great interest because of their large surface area and high chemical and thermal stability. However, to the best of our knowledge, no work has reported the use of magnetic COFs as adsorbents for magnetic solid-phase extraction (MSPE) to enrich and determine environmental pollutants. This work aims to investigate the feasibility of using covalent triazine-based framework (CTF)/Fe 2 O 3 composites as MSPE adsorbents to enrich and analyze perfluorinated compounds (PFCs) at trace levels in water samples. Under the optimal conditions, the method developed exhibited low limits of detection (0.62-1.39 ng·L -1 ), a wide linear range (5-4000 ng L -1 ), good repeatability (1.12-9.71%), and good reproducibility (2.45-7.74%). The new method was successfully used to determine PFCs in actual environmental water samples. MSPE based on CTF/Fe 2 O 3 composites exhibits potential for analysis of PFCs at trace levels in environmental water samples. Graphical abstract Magnetic covalent triazine-based frameworks (CTFs) were used as magnetic solid-phase extraction adsorbents for the sensitive determination of perfluorinated compounds in environmental water samples. PFBA perfluorobutyric acid, PFBS perfluorobutane sulfonate, PFDA perfluorodecanoic acid, PFDoA perfluorododecanoic acid, PFHpA perfluoroheptanoic acid, PFHxA perfluorohexanoic acid, PFHxS perfluorohexane sulfonate, PFNA perfluorononanoic acid, PFOA perfluorooctanoic acid, PFPeA perfluoropentanoic acid, PFUdA Perfluoroundecanoic acid.

  7. Greener production of nanomaterials and their applications in catalysis and environmental remediation

    EPA Science Inventory

    Metal nanomaterials have attracted considerable attention because of their unique magnetic, optical, electrical, and catalytic properties and their potential applications in nanoelectronics. There is great interest in synthesizing metal nanoparticles due to their extraordinary pr...

  8. 2011 FIRST LEGO League

    NASA Image and Video Library

    2011-12-03

    Two 2011 Mississippi FIRST LEGO League competitors from Stokes-Beard Magnet Elementary School in Columbus urge their robots on during the annual tournament Dec. 3. The competition attracted more than 1,000 participants and guests to the Lake Terrace Convention Center in Hattiesburg.

  9. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer for detecting bridge cables.

    PubMed

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.

  10. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    NASA Astrophysics Data System (ADS)

    Jiemsakul, Thanakorn; Manakasettharn, Supone; Kanharattanachai, Sivakorn; Wanna, Yongyuth; Wangsuya, Sujint; Pratontep, Sirapat

    2017-01-01

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO2 laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs.

  11. A Magnetic Flux Leakage and Magnetostrictive Guided Wave Hybrid Transducer for Detecting Bridge Cables

    PubMed Central

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483

  12. Novel transcranial magnetic stimulation coil for mice

    NASA Astrophysics Data System (ADS)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  13. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Attractiveness Modulates Neural Processing of Infant Faces Differently in Males and Females.

    PubMed

    Yin, Lijun; Fan, Mingxia; Lin, Lijia; Sun, Delin; Wang, Zhaoxin

    2017-01-01

    Consistent attention and proper processing of infant faces by adults are essential for infant survival. Previous behavioral studies showed gender differences in processing infant cues (e.g., crying, laughing or facial attractiveness) and more importantly, the efforts invested in nurturing offspring. The underlying neural mechanisms of processing unknown infant faces provide hints for understanding behavioral differences. This functional magnetic resonance imaging (fMRI) study recruited 32 unmarried adult (16 females and 16 males) participants to view unfamiliar infant faces and rate the attractiveness. Adult faces were also included. Behaviorally, despite that females and males showed no differences in attractiveness ratings of infant faces, a positive correlation was found between female's (but not male's) subjective liking for infants and attractiveness ratings of the infant faces. Functionally, brain activations to infant faces were modulated by attractiveness differently in males and females. Specifically, in female participants, activities in the ventromedial prefrontal cortex (vmPFC) and striatum/Nucleus Accumbens (NAcc) were positively modulated by infant facial attractiveness, and the modulation coefficients of these two regions were positively correlated. In male participants, infant facial attractiveness negatively modulated the activity in the dorsomedial prefrontal cortex (dmPFC). Our findings reveal that different neural mechanisms are involved in the processing of infant faces, which might lead to observed behavioral differences between males and females towards the baby.

  15. Attractiveness Modulates Neural Processing of Infant Faces Differently in Males and Females

    PubMed Central

    Yin, Lijun; Fan, Mingxia; Lin, Lijia; Sun, Delin; Wang, Zhaoxin

    2017-01-01

    Consistent attention and proper processing of infant faces by adults are essential for infant survival. Previous behavioral studies showed gender differences in processing infant cues (e.g., crying, laughing or facial attractiveness) and more importantly, the efforts invested in nurturing offspring. The underlying neural mechanisms of processing unknown infant faces provide hints for understanding behavioral differences. This functional magnetic resonance imaging (fMRI) study recruited 32 unmarried adult (16 females and 16 males) participants to view unfamiliar infant faces and rate the attractiveness. Adult faces were also included. Behaviorally, despite that females and males showed no differences in attractiveness ratings of infant faces, a positive correlation was found between female’s (but not male’s) subjective liking for infants and attractiveness ratings of the infant faces. Functionally, brain activations to infant faces were modulated by attractiveness differently in males and females. Specifically, in female participants, activities in the ventromedial prefrontal cortex (vmPFC) and striatum/Nucleus Accumbens (NAcc) were positively modulated by infant facial attractiveness, and the modulation coefficients of these two regions were positively correlated. In male participants, infant facial attractiveness negatively modulated the activity in the dorsomedial prefrontal cortex (dmPFC). Our findings reveal that different neural mechanisms are involved in the processing of infant faces, which might lead to observed behavioral differences between males and females towards the baby. PMID:29184490

  16. Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method

    PubMed Central

    Chen, Keyun; Ren, Lei; Chen, Zhipeng; Pan, Chengfeng; Zhou, Wei; Jiang, Lelun

    2016-01-01

    Micro-needle electrodes (MEs) have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII), electromyography (EMG) and electrocardiography (ECG) recording. A magnetization-induced self-assembling method (MSM) was developed to fabricate a microneedle array (MA). A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode). The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations. PMID:27657072

  17. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles.

    PubMed

    Kim, Dong-Hyun; Vitol, Elina A; Liu, Jing; Balasubramanian, Shankar; Gosztola, David J; Cohen, Ezra E; Novosad, Valentyn; Rozhkova, Elena A

    2013-06-18

    Hybrid nanoarchitectures are among the most promising nanotechnology-enabled materials for biomedical applications. Interfacing of nanoparticles with active materials gives rise to the structures with unique multiple functionality. Superparamagnetic iron oxide nanoparticles particles SPION are widely employed in the biology and in developing of advanced medical technologies. Polymeric micelles offer the advantage of multifunctional carriers which can serve as delivery vehicles carrying nanoparticles, hydrophobic chemotherapeutics and other functional materials and molecules. Stimuli-responsive polymers are especially attractive since their properties can be modulated in a controlled manner. Here we report on multifunctional thermo-responsive poly(N-isopropylacrylamide-co-acrylamide)-block-poly(ε-caprolactone) random block copolymer micelles as magnetic hyperthermia-mediated payload release and imaging agents. The combination of copolymers, nanoparticles and doxorubicin drug was tailored the way that the loaded micelles were cable to respond to magnetic heating at physiologically-relevant temperatures. A surface functionalization of the micelles with the integrin β4 antibody and consequent interfacing of the resulting nanobio hybrid with squamous head and neck carcinoma cells which is known to specifically over-express the A9 antigen resulted in concentration of the micelles on the surface of cells. No inherent cytotoxicity was detected for the magnetic micelles without external stimuli application. Furthermore, SPION-loaded micelles demonstrate significant MRI contrast enhancement abilities.

  18. Symposium Q: Magnetic Thin Films, Heterostructures, and Device Materials

    DTIC Science & Technology

    2007-05-22

    results in the formation of sodium carboxylate groups, that electronics, also known as magnetoelectronics or spintronics. Mn promoted the adsorption of...Q8.29 Magnetic Properties of Microcrystalline Si Thin films and Nickel Silicide Nanowires. Joondong Kim’, Seongjin Jang 2 , Bi-Ching Shih 2 , Hao...Buffalo, New York. The silicides , such as NiSi 2 and CoSi2 , have been attractive materials to crystallize Si and grow an epitaxial Si film with a small

  19. Method for lake restoration

    DOEpatents

    Dawson, Gaynor W.; Mercer, Basil W.

    1979-01-01

    A process for removing pollutants or minerals from lake, river or ocean sediments or from mine tailings is disclosed. Magnetically attractable collection units containing an ion exchange or sorbent media with an affinity for a chosen target substance are distributed in the sediments or tailings. After a period of time has passed sufficient for the particles to bind up the target substances, a magnet drawn through the sediments or across the tailings retrieves the units along with the target substance.

  20. Beating the macroscopic quantum tunneling limit by man-made magnetic dead layers

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Chen, Kezheng

    2018-05-01

    Magnetic dead layers (MDLs) are always undesirable in practical applications due to their highly frustrated spin configurations and severe degradation of host magnetism. Here we provide new insights in MDLs and unravel their attractive prospect for ferrimagnetic hybrid of Fe3O4 and γ-Fe2O3 (denoted as Fe3O4@γ-Fe2O3 in the main text) to exhibit macroscopic quantum tunneling (MQT) phenomena in measureable kelvin range. The 3 nm-sized negatively-charged Fe3O4@γ-Fe2O3 nanoparticles were immersed in various metal chloride solutions containing Mn2+, Co2+, Ni2+, Fe3+, and Fe2+ cations to form cationic MDLs via electrostatic attraction. These man-made MDLs, if being of positive enough zeta potentials, greatly disordered the magnetic dipole interactions among Fe3O4@γ-Fe2O3 nanoparticles and induce extra energy barrier to yield pronounced MQT effect in Fe3O4@γ-Fe2O3 nanoparticles even though they were dispersed neither in water nor in oil. Their crossover temperatures dividing MQT and purely thermal relaxation were found to be one order of magnitude higher than reported values in other MQT systems, and more strikingly, they could be tailored by altering the soak period in our facile and scalable route.

  1. Universal thermodynamics of the one-dimensional attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Yu, Yi-Cong; Batchelor, M. T.; Guan, Xi-Wen

    2018-03-01

    The one-dimensional (1D) Hubbard model, describing electrons on a lattice with an on-site repulsive interaction, provides a paradigm for the physics of quantum many-body phenomena. Here, by solving the thermodynamic Bethe ansatz equations, we study the universal thermodynamics, quantum criticality, and magnetism of the 1D attractive Hubbard model. We show that the compressibility and the susceptibility of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like state obey simple additivity rules at low temperatures, indicating an existence of two free quantum fluids. The magnetic properties, such as magnetization and susceptibility, reveal three physical regions: quantum fluids at low temperatures, a non-Fermi liquid at high temperatures, and the quantum fluid to non-Fermi liquid crossover in between. The lattice interaction is seen to significantly influence the nature of the FFLO-like state in 1D. Furthermore, we show that the dimensionless Wilson ratio provides an ideal parameter to map out the various phase boundaries and to characterize the two free fluids of the FLLO-like state. The quantum scaling functions for the thermal and magnetic properties yield the same dynamic critical exponent z =2 and correlation critical exponent ν =1 /2 in the quantum critical region whenever a phase transition occurs. Our results provide a rigorous understanding of quantum criticality and free fluids of many-body systems on a 1D lattice.

  2. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOEpatents

    Viswanathan, Tito

    2014-02-11

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  3. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass

    NASA Astrophysics Data System (ADS)

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-12-01

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V-1 s-1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.

  4. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells.

    PubMed

    Vittorio, Orazio; Voliani, Valerio; Faraci, Paolo; Karmakar, Biswajit; Iemma, Francesca; Hampel, Silke; Kavallaris, Maria; Cirillo, Giuseppe

    2014-06-01

    Catechin-dextran conjugates have recently attracted a lot of attention due to their anticancer activity against a range of cancer cells. Magnetic nanoparticles have the ability to concentrate therapeutically important drugs due to their magnetic-spatial control and provide opportunities for targeted drug delivery. Enhancement of the anticancer efficiency of catechin-dextran conjugate by functionalisation with magnetic iron oxide nanoparticles. Modification of the coating shell of commercial magnetic nanoparticles (Endorem) composed of dextran with the catechin-dextran conjugate. Catechin-dextran conjugated with Endorem (Endo-Cat) increased the intracellular concentration of the drug and it induced apoptosis in 98% of pancreatic tumour cells placed under magnetic field. The conjugation of catechin-dextran with Endorem enhances the anticancer activity of this drug and provides a new strategy for targeted drug delivery on tumour cells driven by magnetic field. The ability to spatially control the delivery of the catechin-dextran by magnetic field makes it a promising agent for further application in cancer therapy.

  5. Electromagnetic Nature of Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Schaeffer, Bernard

    2014-09-01

    As it is known since two millenaries, there is an attraction between an electric charge and a neutral object. Coulomb found the fundamental laws of electricity two centuries ago. After one century of nuclear physics, the fundamental laws of the strong force are still ignored. It has been found that electric and magnetic Coulomb's laws alone, without any hypothetical centrifugal force, are able to predict the binding energy of the simplest bound nucleus, the deuteron 2 H with a precision of 4 % . The nuclear potential is given by the formula: Uem2 H / A =e2/4 πɛ0 (1/rnp + a - 1/rnp - a ) + μ0 |μnμp |/4 π rnp3. This potential shows a horizontal inflection point where the electric and magnetic forces are equilibrated, coinciding with the experimental deuteron binding energy. Similar results have been obtained for the α particle 4 He where the electric attractive potential is four times larger than that of 2 H while the magnetic repulsion is only 1 . 5 times larger and the 4 HE binding energy six times larger than that of the deuteron. These results, prove the electromagnetic nature of the nuclear energy without the usual assumptions.

  6. Quantum droplets of light in the presence of synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Wilson, Kali; Westerberg, Niclas; Valiente, Manuel; Duncan, Callum; Wright, Ewan; Ohberg, Patrik; Faccio, Daniele

    2017-04-01

    Recently, quantum droplets have been demonstrated in dipolar Bose-Einstein condensates, where the long range (nonlocal) attractive interaction is counterbalanced by a local repulsive interaction. In this work, we investigate the formation of quantum droplets in a two-dimensional nonlocal fluid of light. Fluids of light allow us to control the geometry of the system, and thus introduce vorticity which in turn creates an artificial magnetic field for the quantum droplet. In a quantum fluid of light, the photons comprising the fluid are treated as a gas of interacting Bose-particles, where the nonlocal interaction comes from the nonlinearity inherent in the material, in our case an attractive third-order thermo-optical nonlinearity. In contrast to matter-wave droplets, photon fluid droplets are not stabilised by local particle-particle scattering, but from the quantum pressure itself, i.e., a balance between diffraction and the nonlocal nonlinearity. We will present a numerical and analytical investigation of the ground state of these droplets and of their subsequent dynamics under the influence of a self-induced artificial magnetic field, and discuss experimental work with the possibility to include artificial gauge interactions between droplets.

  7. Reward uncertainty enhances incentive salience attribution as sign-tracking

    PubMed Central

    Anselme, Patrick; Robinson, Mike J. F.; Berridge, Kent C.

    2014-01-01

    Conditioned stimuli (CSs) come to act as motivational magnets following repeated association with unconditioned stimuli (UCSs) such as sucrose rewards. By traditional views, the more reliably predictive a Pavlovian CS-UCS association, the more the CS becomes attractive. However, in some cases, less predictability might equal more motivation. Here we examined the effect of introducing uncertainty in CS-UCS association on CS strength as an attractive motivation magnet. In the present study, Experiment 1 assessed the effects of Pavlovian predictability versus uncertainty about reward probability and/or reward magnitude on the acquisition and expression of sign-tracking (ST) and goal-tracking (GT) responses in an autoshaping procedure. Results suggested that uncertainty produced strongest incentive salience expressed as sign-tracking. Experiment 2 examined whether a within-individual temporal shift from certainty to uncertainty conditions could produce a stronger CS motivational magnet when uncertainty began, and found that sign-tracking still increased after the shift. Overall, our results support earlier reports that ST responses become more pronounced in the presence of uncertainty regarding CS-UCS associations, especially when uncertainty combines both probability and magnitude. These results suggest that Pavlovian uncertainty, although diluting predictability, is still able to enhance the incentive motivational power of particular CSs. PMID:23078951

  8. Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time.

    PubMed

    Kim, Ji-Wook; Jeong, Hee-Kyung; Southard, Kaden M; Jun, Young-Wook; Cheon, Jinwoo

    2018-04-17

    The ability to sense and manipulate the state of biological systems has been extensively advanced during the past decade with the help of recent developments in physical tools. Unlike standard genetic and pharmacological perturbation techniques-knockdown, overexpression, small molecule inhibition-that provide a basic on/off switching capability, these physical tools provide the capacity to control the spatial, temporal, and mechanical properties of the biological targets. Among the various physical cues, magnetism offers distinct advantages over light or electricity. Magnetic fields freely penetrate biological tissues and are already used for clinical applications. As one of the unique features, magnetic fields can be transformed into mechanical stimuli which can serve as a cue in regulating biological processes. However, their biological applications have been limited due to a lack of high-performance magnetism-to-mechanical force transducers with advanced spatiotemporal capabilities. In this Account, we present recent developments in magnetic nanotweezers (MNTs) as a useful tool for interrogating the spatiotemporal control of cells in living tissue. MNTs are composed of force-generating magnetic nanoparticles and field generators. Through proper design and the integration of individual components, MNTs deliver controlled mechanical stimulation to targeted biomolecules at any desired space and time. We first discuss about MNT configuration with different force-stimulation modes. By modulating geometry of the magnetic field generator, MNTs exert pulling, dipole-dipole attraction, and rotational forces to the target specifically and quantitatively. We discuss the key physical parameters determining force magnitude, which include magnetic field strength, magnetic field gradient, magnetic moment of the magnetic particle, as well as distance between the field generator and the particle. MNTs also can be used over a wide range of biological time scales. By simply adjusting the amplitude and phase of the applied current, MNTs based on electromagnets allow for dynamic control of the magnetic field from microseconds to hours. Chemical design and the nanoscale effects of magnetic particles are also essential for optimizing MNT performance. We discuss key strategies to develop magnetic nanoparticles with improved force-generation capabilities with a particular focus on the effects of size, shape, and composition of the nanoparticles. We then introduce various strategies and design considerations for target-specific biomechanical stimulations with MNTs. One-to-one particle-receptor engagement for delivering a defined force to the targeted receptor and the small size of the nanoparticles are important. Finally, we demonstrate the utility of MNTs for manipulating biological functions and activities with various spatial (single molecule/cell to organisms) and temporal resolution (microseconds to days). MNTs have the potential to be utilized in many exciting applications across diverse biological systems spanning from fundamental biology investigations of spatial and mechanical signaling dynamics at the single-cell and systems levels to in vivo therapeutic applications.

  9. Passive magnetic bearing for a horizontal shaft

    DOEpatents

    Post, Richard F.

    2003-12-02

    A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.

  10. Combining unique properties of dendrimers and magnetic nanoparticles towards cancer theranostics.

    PubMed

    Chandra, Sudeshna; Nigam, Saumya; Bahadur, Dhirendra

    2014-01-01

    Magnetic nanoparticles (MNPs) are a well explored class of nanomaterials, known for their high magnetization and biocompatibility thus finding their way in several biomedical applications viz., drug delivery, magnetic resonance imaging contrast agent, immunoassay, detoxification of biological fluids and cell separation, biosensing and hyperthermia. On other hand, dendrimers are a class of hyperbranched, mostly symmetrical polymers that originate from a central core with repetitive branching units, called monomers, thus forming a globular structure. Due to their structural properties and controlled size, dendrimers have emerged as an attractive material for biomedical applications particularly as carriers for therapeutic cargo. Of late, researchers have started attempting to combine the unique features of dendrimer chemistry with the versatile magnetic nanoparticles to provide a facile platform for enhanced therapeutics and biomedical applications. This review intends to present the advances made towards fabrication of dendrimer based magnetic nanoparticles with varied surface architecture and their contribution towards theranostics, particularly for cancer.

  11. Magnetic gates and guides for superconducting vortices

    DOE PAGES

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.; ...

    2017-04-04

    Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less

  12. Magnetic gates and guides for superconducting vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.

    Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less

  13. The neural correlates of beauty comparison

    PubMed Central

    Mussweiler, Thomas; Mullins, Paul; Linden, David E. J.

    2014-01-01

    Beauty is in the eye of the beholder. How attractive someone is perceived to be depends on the individual or cultural standards to which this person is compared. But although comparisons play a central role in the way people judge the appearance of others, the brain processes underlying attractiveness comparisons remain unknown. In the present experiment, we tested the hypothesis that attractiveness comparisons rely on the same cognitive and neural mechanisms as comparisons of simple nonsocial magnitudes such as size. We recorded brain activity with functional magnetic resonance imaging (fMRI) while participants compared the beauty or height of two women or two dogs. Our data support the hypothesis of a common process underlying these different types of comparisons. First, we demonstrate that the distance effect characteristic of nonsocial comparisons also holds for attractiveness comparisons. Behavioral results indicated, for all our comparisons, longer response times for near than far distances. Second, the neural correlates of these distance effects overlapped in a frontoparietal network known for its involvement in processing simple nonsocial quantities. These results provide evidence for overlapping processes in the comparison of physical attractiveness and nonsocial magnitudes. PMID:23508477

  14. The neural correlates of beauty comparison.

    PubMed

    Kedia, Gayannée; Mussweiler, Thomas; Mullins, Paul; Linden, David E J

    2014-05-01

    Beauty is in the eye of the beholder. How attractive someone is perceived to be depends on the individual or cultural standards to which this person is compared. But although comparisons play a central role in the way people judge the appearance of others, the brain processes underlying attractiveness comparisons remain unknown. In the present experiment, we tested the hypothesis that attractiveness comparisons rely on the same cognitive and neural mechanisms as comparisons of simple nonsocial magnitudes such as size. We recorded brain activity with functional magnetic resonance imaging (fMRI) while participants compared the beauty or height of two women or two dogs. Our data support the hypothesis of a common process underlying these different types of comparisons. First, we demonstrate that the distance effect characteristic of nonsocial comparisons also holds for attractiveness comparisons. Behavioral results indicated, for all our comparisons, longer response times for near than far distances. Second, the neural correlates of these distance effects overlapped in a frontoparietal network known for its involvement in processing simple nonsocial quantities. These results provide evidence for overlapping processes in the comparison of physical attractiveness and nonsocial magnitudes.

  15. Non-Maxwellian and magnetic field effects in complex plasma wakes★

    NASA Astrophysics Data System (ADS)

    Ludwig, Patrick; Jung, Hendrik; Kählert, Hanno; Joost, Jan-Philip; Greiner, Franko; Moldabekov, Zhandos; Carstensen, Jan; Sundar, Sita; Bonitz, Michael; Piel, Alexander

    2018-05-01

    In a streaming plasma, negatively charged dust particles create complex charge distributions on the downstream side of the particle, which are responsible for attractive forces between the like-charged particles. This wake phenomenon is studied by means of refined linear response theory and molecular dynamics simulations as well as in experiments. Particular attention is paid to non-Maxwellian velocity distributions that are found in the plasma sheath and to situations with strong magnetic fields, which are becoming increasingly important. Non-Maxwellian distributions and strong magnetic fields result in a substantial damping of the oscillatory wake potential. The interaction force in particle pairs is explored with the phase-resolved resonance method, which demonstrates the non-reciprocity of the interparticle forces in unmagnetized and magnetized systems.

  16. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili

    2018-03-01

    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  17. Itinerant fermions on a triangular lattice: Unconventional magnetism and other ordered states

    NASA Astrophysics Data System (ADS)

    Ye, Mengxing; Chubukov, Andrey V.

    2018-06-01

    We consider a system of 2D fermions on a triangular lattice with well separated electron and hole pockets of similar sizes, centered at certain high-symmetry points in the Brillouin zone. We first analyze Stoner-type spin-density-wave (SDW) magnetism. We show that SDW order is degenerate at the mean-field level. Beyond mean-field, the degeneracy is lifted and is either 120∘ "triangular" order (same as for localized spins), or a collinear order with antiferromagnetic spin arrangement on two-thirds of sites, and nonmagnetic on the rest of sites. We also study a time-reversal symmetric directional spin bond order, which emerges when some interactions are repulsive and some are attractive. We show that this order is also degenerate at a mean-field level, but beyond mean-field the degeneracy is again lifted. We next consider the evolution of a magnetic order in a magnetic field starting from an SDW state in zero field. We show that a field gives rise to a canting of an SDW spin configuration. In addition, it necessarily triggers the directional bond order, which, we argue, is linearly coupled to the SDW order in a finite field. We derive the corresponding term in the free energy. Finally, we consider the interplay between an SDW order and superconductivity and charge order. For this, we analyze the flow of the couplings within parquet renormalization group (pRG) scheme. We show that magnetism wins if all interactions are repulsive and there is little energy space for pRG to develop. However, if system parameters are such that pRG runs over a wide range of energies, the system may develop either superconductivity or an unconventional charge order, which breaks time-reversal symmetry.

  18. Publications on maglev technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, J.L.; Coffey, H.T.; Rote, D.M.

    1991-12-01

    Magnetically levitated passenger-transportation vehicles, using attractive and repulsive magnetic forces, are currently in the development or prototype-revenue stages in Japan and Germany. The basic principles of these technologies have been understood for several decades, but their practical applications awaited advances in high-power electronic devices, modern controls, superconducting magnets, and improvements in our transportation infrastructures. A considerable amount of work was devoted to magnetic-levitation (maglev) transportation system in the late 1960s and the 1970s. Detailed development was sustained primarily in Germany and Japan. This listing of publications was begun as the initial phase of a design study for a maglev developmentmore » facility sponsored by the State of Illinois. The listing has been continually updated under programs sponsored by the Federal Railroad Administration and the US Army Corps of Engineers. In 1991, the National Maglev Initiative issued 27 contracts for the study of technical issues related to maglev and four contracts for the definition of maglev systems. In December 1991, the Intermodal Surface Transportation Efficiency Act was enacted, mandating the development of a US-designed maglev system in a six-year period. This listing is offered as an aid to those working on these projects, to help them locate technical papers on relevant technologies. The design and installation of a maglev transportation system will require the efforts of workers in many disciplines, from electronics to economics to safety. Accordingly, the references have been grouped in 14 different sections to expedite review of the listing. In many case, the references are annotated to indicate the general content of the papers. Abstracts are not available. A list of information services from which the listed documents might be obtained and an author index are provided.« less

  19. Metal Amorphous Nanocomposite Soft Magnetic Material-Enabled High Power Density, Rare Earth Free Rotational Machines [Metal Amorphous Nanocomposite (MANC) Soft Magnetic Material (SMM) Enabled High Power Density, Rare Earth Free Rotational Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.

    Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less

  20. Metal Amorphous Nanocomposite Soft Magnetic Material-Enabled High Power Density, Rare Earth Free Rotational Machines [Metal Amorphous Nanocomposite (MANC) Soft Magnetic Material (SMM) Enabled High Power Density, Rare Earth Free Rotational Machines

    DOE PAGES

    Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.

    2018-02-27

    Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less

  1. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain

    PubMed Central

    Jankowiak-Siuda, Kamila; Rymarczyk, Krystyna; Żurawski, Łukasz; Jednoróg, Katarzyna; Marchewka, Artur

    2015-01-01

    Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI), and the anterior cingulate cortex (ACC). High empathy may lead people to undertake pro-social behavior. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutional cue, playing a role in the formation of interpersonal evaluation. The aim of the study was to determine how attractiveness affects the level of empathy both in relation to self-rated behavior and in terms of activation of specific empathy-related brain regions. Twenty-seven subjects (14 female and 13 male) were studied using functional magnetic resonance imaging (fMRI) method while they were watching short video scenes involving physically more and less attractive men and women who exhibited pain responses. In the absence of behavioral effects in compassion ratings, we observed stronger activation in empathic brain structures (ACC; AI) for less attractive men and for attractive women than for attractive men. Evolutionary psychology studies suggest that beauty is valued more highly in females than males, which might lead observers to empathize more strongly with the attractive woman than the men. Attractive mens’ faces are typically associated with enhanced masculine facial characteristics and are considered to possess fewer desirable personality traits compared with feminized faces. This could explain why more empathy was shown to less attractive men. In conclusion, the study showed that the attractiveness and sex of a model are important modulators of empathy for pain. PMID:26441569

  2. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain.

    PubMed

    Jankowiak-Siuda, Kamila; Rymarczyk, Krystyna; Żurawski, Łukasz; Jednoróg, Katarzyna; Marchewka, Artur

    2015-01-01

    Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI), and the anterior cingulate cortex (ACC). High empathy may lead people to undertake pro-social behavior. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutional cue, playing a role in the formation of interpersonal evaluation. The aim of the study was to determine how attractiveness affects the level of empathy both in relation to self-rated behavior and in terms of activation of specific empathy-related brain regions. Twenty-seven subjects (14 female and 13 male) were studied using functional magnetic resonance imaging (fMRI) method while they were watching short video scenes involving physically more and less attractive men and women who exhibited pain responses. In the absence of behavioral effects in compassion ratings, we observed stronger activation in empathic brain structures (ACC; AI) for less attractive men and for attractive women than for attractive men. Evolutionary psychology studies suggest that beauty is valued more highly in females than males, which might lead observers to empathize more strongly with the attractive woman than the men. Attractive mens' faces are typically associated with enhanced masculine facial characteristics and are considered to possess fewer desirable personality traits compared with feminized faces. This could explain why more empathy was shown to less attractive men. In conclusion, the study showed that the attractiveness and sex of a model are important modulators of empathy for pain.

  3. Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium.

    PubMed

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-10-18

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 µg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.

  4. Analytic solution of field distribution and demagnetization function of ideal hollow cylindrical field source

    NASA Astrophysics Data System (ADS)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-09-01

    The Halbach type hollow cylindrical permanent magnet array (HCPMA) is a volume compact and energy conserved field source, which have attracted intense interests in many practical applications. Here, using the complex variable integration method based on the Biot-Savart Law (including current distributions inside the body and on the surfaces of magnet), we derive analytical field solutions to an ideal multipole HCPMA in entire space including the interior of magnet. The analytic field expression inside the array material is used to construct an analytic demagnetization function, with which we can explain the origin of demagnetization phenomena in HCPMA by taking into account an ideal magnetic hysteresis loop with finite coercivity. These analytical field expressions and demagnetization functions provide deeper insight into the nature of such permanent magnet array systems and offer guidance in designing optimized array system.

  5. Experimental Investigation of Effectiveness of Magnetic Field on Food Freezing Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Toru; Takeuchi, Yuri; Masuda, Kazunori; Watanabe, Manabu; Shirakashi, Ryo; Fukuda, Yutaka; Tsuruta, Takaharu; Yamamoto, Kazutaka; Koga, Nobumitsu; Hiruma, Naoya; Ichioka, Jun; Takai, Kiyoshi

    Recently, several food refrigeration equipments that utilize magnetic field have attracted much attention from food production companies, consumers and mass media. However, the effectiveness of the freezers is not scientifically examined. Therefore, the effectiveness should be clarified by experiments or theoretical considerations. In this study, the effect of weak magnetic field (about 0.0005 T) on freezing process of several kinds of foods was investigated by using a specially designed freezer facilitated with magnetic field generator. The investigation included the comparison of freezing curves, drip amount, physicochemical evaluations on color and texture, observation of microstructure, and sensory evaluation. From the results of the control experiments, it can be concluded that weak magnetic field around 0.0005 T provided no significant difference on temperature history during freezing and on the qualities of frozen foods, within our experimental conditions.

  6. Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen

    PubMed Central

    Liu, Yuan; Tang, Nujiang; Wan, Xiangang; Feng, Qian; Li, Ming; Xu, Qinghua; Liu, Fuchi; Du, Youwei

    2013-01-01

    The long spin diffusion length makes graphene very attractive for novel spintronic devices, and thus has triggered a quest for integrating the charge and spin degrees of freedom. However, ideal graphene is intrinsic non-magnetic, due to a delocalized π bonding network. Therefore, synthesis of ferromagnetic graphene or its derivatives with high magnetization is urgent due to both fundamental and technological importance. Here we report that N-doping can be an effective route to obtain a very high magnetization of ca. 1.66 emu/g, and can make graphene oxide (GO) to be ferromagnetism with a Curie-temperature of 100.2 K. Clearly, our findings can offer the easy realization of ferromagnetic GO with high magnetization, therefore, push the way for potential applications in spintronic devices. PMID:23995236

  7. Tunnelling anisotropic magnetoresistance at La{sub 0.67}Sr{sub 0.33}MnO{sub 3}-graphene interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, L. C., E-mail: lee.phillips@cantab.net; Yan, W.; Kar-Narayan, S.

    2016-03-14

    Using ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} electrodes bridged by single-layer graphene, we observe magnetoresistive changes of ∼32–35 MΩ at 5 K. Magneto-optical Kerr effect microscopy at the same temperature reveals that the magnetoresistance arises from in-plane reorientations of electrode magnetization, evidencing tunnelling anisotropic magnetoresistance at the La{sub 0.67}Sr{sub 0.33}MnO{sub 3}-graphene interfaces. Large resistance switching without spin transport through the non-magnetic channel could be attractive for graphene-based magnetic-sensing applications.

  8. Nano Goes Magnetic to Attract Big Business

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Glenn Research Center has combined state-of-the-art electrical designs with complex, computer-aided analyses to develop some of today s most advanced power systems, in space and on Earth. The center s Power and On-Board Propulsion Technology Division is the brain behind many of these power systems. For space, this division builds technologies that help power the International Space Station, the Hubble Space Telescope, and Earth-orbiting satellites. For Earth, it has woven advanced aerospace power concepts into commercial energy applications that include solar and nuclear power generation, battery and fuel cell energy storage, communications and telecommunications satellites, cryocoolers, hybrid and electric vehicles, and heating and air-conditioning systems.

  9. A rotating superconducting solenoid for 100 kWh energy storage. [in space

    NASA Technical Reports Server (NTRS)

    Waynert, J.; Eyssa, Y. M.; Mcintosh, G. E.; Feng, Z.

    1985-01-01

    Two concentric superconducting solenoids, one rotating, the other stationary are analyzed for energy storage in space. Energy is transferred from the rotating mass through a shaft coupled to a motor-generator. The inner windings interact with the magnetic field of the outer solenoid to cancel the centrifugal and self-field forces of the flywheel rim. Current is induced in the inner solenoid thus requiring no separate power supply, while the current in the outer solenoid must vary with the angular velocity of the flywheel. The effect of the gap and scaling laws are developed. The efficiency in energy per unit mass is marginally attractive.

  10. Are rare-earth nanoparticles suitable for in vivo applications?

    PubMed

    Liu, Chunyan; Hou, Yi; Gao, Mingyuan

    2014-10-29

    Rare earth (RE) nanoparticles have attracted considerable attention due to their unique optical and magnetic properties associated with f-electrons. The recent accomplishments in RE nanoparticle synthesis have aroused great interest of scientists to further explore their biomedical applications. This Research News summarizes recent achievements in controlled synthesis of magnetic and luminescent RE nanoparticles, surface modification, and toxicity studies of RE nanomaterials, and highlights state-of-the-art in in vivo applications of RE nanoparticles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Evaluation of Civil Works Metal Structures

    DTIC Science & Technology

    1991-01-01

    can be per- formed at any time, as a spot check, or periodically. Liauid Penetrant Inspection (PT) 19. Aplication . Liquid penetrant testing (PT) is a...increases the inspection \\MAGNE TIC PARTICLESiA - CRACK- Figure 6. Crack in bar magnet attracting magnetic particles 14 particle mobility and enables the...923-9800 or (312) 474-5860 Service: IA, IL, IN, MI, WI LOUISIANA O.S.I. Mobile Lab, Inc. X-Ray Inspection, Inc. P. 0. Box 395 P. 0. Box 51651 Harvey

  12. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery.

    PubMed

    Nguyen, Dai Hai; Lee, Jung Seok; Choi, Jong Hoon; Park, Kyung Min; Lee, Yunki; Park, Ki Dong

    2016-04-15

    Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be readily controlled by varying the SPIO/PEG ratio in the assemblies, and also demonstrated significant improvement of the functional nanoparticles for theranostic systems; enhanced magnetic resonance, improved cellular uptake, and efficient PTX loading and sustained release at the desired time point. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Is Cheap Labor a Magnet for Capital?

    ERIC Educational Resources Information Center

    Hanson, John R., II

    1995-01-01

    Contends that it is widely believed that cheap labor in poor countries attracts foreign investors. Asserts that historical evidence indicates that past patterns of direct foreign investment in poor countries are inconsistent with the cheap-labor argument. Includes two figures and one table. (CFR)

  14. GMR sensors with linear and unhysteretic R(H) dependences

    NASA Astrophysics Data System (ADS)

    Stobiecki, F.; Szymański, B.; Luciński, T.; Dubowik, J.; Urbaniak, M.; Schmidt, M.; Röll, K.

    2004-05-01

    Magnetoresistance effect of Ni-Fe/Au/Co/Au sputtered multilayers was investigated. These new GMR structures, consisting of ferromagnetic layers with alternating in-plane (Ni-Fe) and out-of-plane (Co) magnetization configurations at remanence show magnetoresistive behavior attractive for some applications.

  15. A unique case of magnet ingestion with respect to presentation and management.

    PubMed

    Yalçin, Sule; Karnak, Ibrahim; Ekinci, Saniye; Senocak, Mehmet Emin

    2012-01-01

    Magnet ingestion may lead to serious complications with delay in diagnosis and treatment. The forceful attraction between magnets, with gastric and/or intestinal wall entrapped between them, can cause injury through pressure necrosis. The radiological appearance of more than one magnet on X-ray can be easily misinterpreted as belonging to only one rod-like radiopaque foreign body, even if the magnets are located in different parts of the gastrointestinal tract, thus delaying the management up to the onset of emergent surgical complications. A 17-month-old female with ingestion of a pair of magnets is presented, together with introduction of the clinical picture and therapeutic approach, which differed from the other previously reported cases. The ovoid shape of the magnets, their localization in the gastrointestinal tract (leading to entrapped gastric and intestinal wall between them), absence of any complication, and the therapeutic approach of endoscopic retrieval are the main distinguishing features of this case from those previously reported.

  16. Lens-free imaging of magnetic particles in DNA assays.

    PubMed

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  17. Kinetics of doublet formation in bicomponent magnetic suspensions: The role of the magnetic permeability anisotropy

    NASA Astrophysics Data System (ADS)

    Lopez-Lopez, M. T.; Nogueras-Lara, F.; Rodriguez-Arco, L.; Guigo, N.; Sbirrazzuoli, N.; Zubarev, A. Yu.; Lacis, S.; Kuzhir, P.

    2017-12-01

    Micron-sized particles (microbeads) dispersed in a suspension of magnetic nanoparticles, i.e., ferrofluids, can be assembled into different types of structures upon application of an external magnetic field. This paper is devoted to theoretical modeling of a relative motion of a pair of microbeads (either soft ferromagnetic or diamagnetic) in the ferrofluid under the action of applied uniform magnetic field which induces magnetic moments in the microbeads making them attracting to each other. The model is based on a point-dipole approximation for the magnetic interactions between microbeads mediated by the ferrofluid; however, the ferrofluid is considered to possess an anisotropic magnetic permeability thanks to field-induced structuring of its nanoparticles. The model is tested against experimental results and shows generally better agreement with experiments than the model considering isotropic magnetic permeability of ferrofluids. The results could be useful for understanding kinetics of aggregation of microbeads suspended in a ferrofluid. From a broader perspective, the present study is believed to contribute to a general understanding of particle behaviors in anisotropic media.

  18. Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Lianmin; Su, Delong; Wang, Zhaofang

    A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previouslymore » similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.« less

  19. Current-limiting challenges for all-spin logic devices

    PubMed Central

    Su, Li; Zhang, Youguang; Klein, Jacques-Olivier; Zhang, Yue; Bournel, Arnaud; Fert, Albert; Zhao, Weisheng

    2015-01-01

    All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. First, ASLD with perpendicular magnetic anisotropy (PMA) nano-magnet is proposed to reduce the critical current (Ic0). Most important, the spin transport efficiency can be enhanced by analyzing the device structure, dimension, contact resistance as well as material parameters. Furthermore, breakdown current density (JBR) of spin channel is studied for the upper current limitation. As a result, we can deduce current-limiting conditions and estimate energy dissipation. Based on the model, we demonstrate ASLD with different structures and channel materials (graphene and copper). Asymmetric structure is found to be the optimal option for current limitations. Copper channel outperforms graphene in term of energy but seriously suffers from breakdown current limit. By exploring the current limit and performance tradeoffs, the optimization of ASLD is also discussed. This benchmarking model of ASLD opens up new prospects for design and implementation of future spintronics applications. PMID:26449410

  20. Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current

    NASA Astrophysics Data System (ADS)

    Loreto, R. P.; Moura-Melo, W. A.; Pereira, A. R.; Zhang, X.; Zhou, Y.; Ezawa, M.; de Araujo, C. I. L.

    2018-06-01

    With the recent proposition of skyrmion utilization in racetrack memories at room temperature, skyrmionics has become a very attractive field. However, for the stability of skyrmions, it is essential to incorporate the Dzyaloshinskii-Moriya interaction (DMI) and the out-of-plane magnetic field into the system. In this work, we explore a system without these interactions. First, we propose a controlled way for the creation of magnetic skyrmions and skyrmioniums imprinted on a ferromagnetic nanotrack via a nanopatterned nanodisk with the magnetic vortex state. Then we investigate the detachment of the imprinted spin textures from the underneath of the nanodisk, as well as its transport by the spin-transfer torque imposed by spin-polarized current pulses applied in the nanotrack. A prominent feature of the moving imprinted spin texture is that its topological number Q is oscillating around the averaged value of Q = 0 as if it is a resonant state between the skyrmions with Q = ± 1 and the bubble with Q = 0 . We may call it a resonant magnetic soliton (RMS). A RMS moves along a straight line since it is free from the skyrmion Hall effect. In our studied device, the same electrodes are employed to realize the imprinted spin texture detachment and its transport. In addition, we have investigated the interaction between the RMS and a magnetic tunnel junction sensor, where the passing of the RMS in the nanotrack can be well detected. Our results would be useful for the development of novel spintronic devices based on moveable spin textures.

  1. Spectral Analysis of Non-ideal MRI Modes: The Effect of Hall Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohandas, Gopakumar; Pessah, Martin E., E-mail: gopakumar@nbi.ku.dk, E-mail: mpessah@nbi.ku.dk

    The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the polarization properties of the oscillatory modes under the combined influence of themore » Coriolis and Hall effects. We also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and find very good agreement with the results derived from linear theory. Because the modes under consideration are also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may have significant implications for the nonlinear evolution in some regions of protoplanetary disks.« less

  2. Evaluation of magnetic resonance imaging issues for a wirelessly powered lead used for epidural, spinal cord stimulation.

    PubMed

    Shellock, Frank G; Audet-Griffin, Annabelle J

    2014-06-01

    The objective of this investigation was to evaluate magnetic resonance imaging (MRI) issues (magnetic field interactions, MRI-related heating, and artifacts) for a wirelessly powered lead used for spinal cord stimulation (SCS). A newly developed, wirelessly powered lead (Freedom-4, Stimwave Technologies Inc., Scottsdale, AZ, USA) underwent evaluation for magnetic field interactions (translational attraction and torque) at 3 Tesla, MRI-related heating at 1.5 Tesla/64 MHz and 3 Tesla/128 MHz, and artifacts at 3 Tesla using standardized techniques. MRI-related heating tests were conducted by placing the lead in a gelled-saline-filled phantom and performing MRI procedures using relatively high levels of radiofrequency energy. Artifacts were characterized using T1-weighted, spin echo (SE), and gradient echo (GRE) pulse sequences. The lead exhibited minor magnetic field interactions (2 degree deflection angle and no torque). Heating was not substantial under 1.5 Tesla/64 MHz (highest temperature change, 2.3°C) and 3 Tesla/128 MHz (highest temperature change, 2.2°C) MRI conditions. Artifacts were moderate in size relative to the size and shape of the lead. These findings demonstrated that it is acceptable for a patient with this wirelessly powered lead used for SCS to undergo MRI under the conditions utilized in this investigation and according to other necessary guidelines. Artifacts seen on magnetic resonance images may pose possible problems if the area of interest is in the same area or close to this lead. © 2013 International Neuromodulation Society.

  3. Magnetically controllable Pickering emulsion prepared by a reduced graphene oxide-iron oxide composite.

    PubMed

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Lee, Wei-der

    2015-01-15

    Pickering emulsions stabilized by graphene oxide (GO) have attracted much attention owing to the unique 2-D structure and amphiphilic surface properties of GO. On the other hand, investigations on reduced GO (RGO) to prepare Pickering emulsions are still limited, especially for water-in-oil (W/O) emulsions. Considering growing interests for directing Pickering emulsions to a specific location, it is necessary to embed Pickering emulsions with responsiveness upon external driving forces such as magnetic fields. To that end, we developed magnetically responsive RGO (denoted as "MRGO") and used MRGO to prepare W/O Pickering emulsions. MRGO was synthesized by decorating iron oxide nanoparticles on the surface of RGO and characterized by SEM, EDS, TEM, FT-IR, Raman, XRD and SQUID. MRGO Pickering emulsion (MRGO-PE) was prepared by suspending MRGO sheets in dodecane and mixing with water vigorously. The amount of MRGO added to prepare MRGO-PE is related to the size distribution of the droplets of MRGO-PE and the relationship can be well-described using a mass balance model. The motion of droplets of MRGO-PE under an external magnetic field is demonstrated. We also investigated the adsorptive property of MRGO-PE by evaluating the removal of Nile Red dye from dodecane. The results shows that the dye removal by MRGO-PE is not just achieved by MRGO layer of MRGO-PE but also by water encapsulated by MRGO. Owing to their magnetic property, MRGO-PE can be utilized as a magnetically-controlled carrier which can preserve and transport to specific locations certain compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Design and Development of a Prototype Permanent Magnet for Focusing/Defocusing for Electron-Ion Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Bob

    Electron-ion colliders (EIC) have been identified as an ideal tool to study the next frontier of nuclear physics – the gluon force that holds the building blocks of matter together, and which is a fundamental component of the theory of Quantum Chromodynamics (QCD). Future electron-ion colliders under consideration can be based on the Energy Recovery Linac (ERL) architecture. The beam lines for this architecture could be built of the newly developed Non-Scaling Fixed Field Alternating Gradient (NS FFAG) structure, so that they can transfer multiple energies within the same aperture. This structure allows for the use of compact, economical quadupolemore » permanent magnets. In this SBIR, we propose to design and to manufacture prototype quadrupole permanent magnets of focusing/defocusing combined function for use in this beam line. For our SBIR project, we proposed to design and build the focusing/defocusing quadrupole with a gradient strength of 50 T/m and with a beam gap of 16mm. The proposed permanent magnet material is SmCo because of its higher radiation resistance as compared to NdBFe2. The use of permanent magnets will reduce the overall cost. For Phase I, we took a recent design by Dr. Dejan Trbojevic, and reran Tosca code on the design to optimize the iron yoke with respect to the thickness of SmCo. We then fabricated one prototype focusing/defocusing combined function quadruple and measured field quality dG/Go. Our plan for Phase II is that, based on our Phase I prototype experience, we shall improve the design and fabricate a production quadruple, and design and incorporate coils for skew dipoles and normal quadrupole correctors, etc. In addition, we shall fabricate enough quadrupoles for one cell. The development of quadrupole permanent magnets is of fundamental importance for there application in the future electron-ion colliders. This accelerator structure will also advance the development of muon accelerators and allow for the development of compact, simplified, less expensive proton accelerators which will promote their use in areas such as proton cancer therapy, and for high-power proton drivers for tritium and neutron production, waste transmutation, driving a sub-critical nuclear reactor to produce energy, cargo contain inspection, and radioisotope production. Proton cancer therapy has been identified as a particularly attractive and viable commercial application for the immediate future.« less

  5. The influence of magnetic fields on the wake field and stopping power of an ion-beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan

    2015-09-15

    We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions ofmore » moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.« less

  6. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    PubMed

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.

  7. Simulation of Field Dependence of Critical Current Densities of Bulk High Tc Superconducting Materials regarding Thermally Activated Flux Motion

    NASA Astrophysics Data System (ADS)

    Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.

    2017-07-01

    In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.

  8. Magnetic and electric fields induce directional response in Steinernema carpocapsae

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic nematode species respond directionally to various cues including electrical stimuli. For example, in prior research Steinernema carpocapsae was shown to be attracted to an electrical current that was applied to an agar dish. Thus, we hypothesized that these nematodes may use elect...

  9. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  10. Selfbound quantum droplets

    NASA Astrophysics Data System (ADS)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  11. Magnetic nanofibers with core (Fe 3O 4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Sung, Yun Kyung; Ahn, Byung Wook; Kang, Tae Jin

    2012-03-01

    One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers.

  12. Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study

    PubMed Central

    Shen, Hui; Chau, Desmond K. P.; Su, Jianpo; Zeng, Ling-Li; Jiang, Weixiong; He, Jufang; Fan, Jintu; Hu, Dewen

    2016-01-01

    Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions. PMID:27779211

  13. Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study.

    PubMed

    Shen, Hui; Chau, Desmond K P; Su, Jianpo; Zeng, Ling-Li; Jiang, Weixiong; He, Jufang; Fan, Jintu; Hu, Dewen

    2016-10-25

    Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions.

  14. Large magnetic field-induced work output in a NiMnGa seven-layered modulated martensite

    NASA Astrophysics Data System (ADS)

    Pagounis, E.; Szczerba, M. J.; Chulist, R.; Laufenberg, M.

    2015-10-01

    We report the performance of a Ni-Mn-Ga single crystal with a seven-layered lattice modulation (14M martensite), demonstrating large actuation work output driven by an external magnetic field. A magnetic field-induced strain of 11.2%, a twinning stress of 0.64 MPa, and a magneto-crystalline anisotropy energy of 195 kJ/m3 are measured at room temperature, which exceed the best results reported in Ni-Mn-Ga 14M martensites. The produced magnetically induced work output of about 70 kJ/m3 makes the material attractive for actuator applications. Detailed XRD investigation reveals that the studied 14M martensite is stress-induced. With increasing compression stress, the stress-induced intermartensitic transformation sequence 10M → 14M → NM was demonstrated.

  15. Binary black hole in a double magnetic monopole field

    NASA Astrophysics Data System (ADS)

    Rodriguez, Maria J.

    2018-01-01

    Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.

  16. Poly(dl)lactic acid/polyglycolic acid/iron and poly(dl)lactic acid/polyglycolic acid/samarium cobalt composites for use as a delivery mechanism for magnetically directed chondrogenesis

    NASA Astrophysics Data System (ADS)

    Oppermann, Dean Alan

    Magnetically directed chondrogenesis (MDC) is a fundamental approach to articular cartilage repair. In MDC a magnet is implanted into the subchondral trabecular bone underlying a cartilage defect and used to attract chondrocytes, magnetically tagged with Fe nanoparticles, to the defect site. Pilot studies by Halpern, Crimp and Grande, using solid neodymium (Nd) magnets, indicated optimistic results by producing a hyaline-like articular cartilage after 8 weeks implantation. Since solid Nd magnets introduce long-term biocompatibility issues, the focus of this dissertation was to develop P(dl)A/PGA/Fe and P(dl)A/PGA/SmCo 5 implants for use in MDC. The effect of implant porosity, implant composition and magnetic material (Fe or SmCo5) on the initial and degraded magnetic properties were evaluated. The biocompatibility of P(dl)A/PGA/Fe implants were investigated by implantation into New Zealand white rabbits for 8 weeks. The effect of hydrogen peroxide (H2O2) and ethylene oxide (EO) sterilization techniques on the molecular weight and chemical structure of P(dl)A/PGA polymers were evaluated using gel permeation chromatography and Fourier transform infrared spectroscopy. The effect of implant morphology, size and number on the von Mises stress in the trabecular bone surrounding the implant was evaluated using a finite element model. In general, SmCo5 implants resulted in higher magnetic fields initially and after 8 weeks of degradation than comparable Fe implants. Increases in magnetic field strength were achieved by increasing the volume fraction of magnetic material and by increasing the PGA concentration. The magnetic field strength degradation rate decreased with increases in volume fraction of magnetic material and increases in PLA concentration. Implantation studies indicated that 50/50 P(dl)A/PGA were more bioactive than 75/25 P(dl)A/PGA with an increased cellular response that is specific to bone growth. The compressive strength and elastic modulus of porous implants were comparable to trabecular bone, and the compressive strength and elastic modulus of solid implants was higher than trabecular bone but less than cortical bone. Finite element modeling showed that the implantation of solid and porous P(dl)A/PGA/Fe implants did not significantly increase the von Mises stress concentration adjacent to the implant. The von Mises stress surrounding porous implants was higher than the solid implants which predicts faster bone remodeling. Comparing single implants to multiple implants indicated a significant decrease in von Mises stress between the implants. This would predict bone resorption in that area. H2O2 sterilization resulted in a gradual decrease in the molecular weight of P(dl)A/PGA polymers that was a result of hydrolytic scission of the ester bonds present between the individual monomers. The polymers were less affected by EO sterilization with only the 75/25 P(dl)A/PGA, indicating a decrease in molecular weight. From these results, it was concluded that solid 50/50 P(dl)A/PGA/SmCo 5 implants that span the entire width of the cartilage defect should be used to optimize the attraction potential and bioactivity of the implant. Also ethylene oxide, which caused less premature implant degradation, should be used for sterilization.

  17. Casimir effect for perfect electromagnetic conductors (PEMCs): a sum rule for attractive/repulsive forces

    NASA Astrophysics Data System (ADS)

    Rode, Stefan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-04-01

    We discuss the Casimir effect for boundary conditions involving perfect electromagnetic conductors, which interpolate between perfect electric conductors and perfect magnetic conductors. Based on the corresponding reciprocal Green’s tensor we construct the Green’s tensor for two perfectly reflecting plates with magnetoelectric coupling (non-reciprocal media) within the framework of macroscopic quantum electrodynamics. We calculate the Casimir force between two arbitrary perfect electromagnetic conductor plates, resulting in a universal analytic expression that connects the attractive Casimir force with the repulsive Boyer force. We relate the results to a duality symmetry of electromagnetism.

  18. Integrated on-chip inductors with electroplated magnetic yokes (invited)

    NASA Astrophysics Data System (ADS)

    Wang, Naigang; O'Sullivan, Eugene J.; Herget, Philipp; Rajendran, Bipin; Krupp, Leslie E.; Romankiw, Lubomyr T.; Webb, Bucknell C.; Fontana, Robert; Duch, Elizabeth A.; Joseph, Eric A.; Brown, Stephen L.; Hu, Xiaolin; Decad, Gary M.; Sturcken, Noah; Shepard, Kenneth L.; Gallagher, William J.

    2012-04-01

    Thin-film ferromagnetic inductors show great potential as the energy storage element for integrated circuits containing on-chip power management. In order to achieve the high energy storage required for power management, on-chip inductors require relatively thick magnetic yoke materials (several microns or more), which can be readily deposited by electroplating through a photoresist mask as demonstrated in this paper, the yoke material of choice being Ni45Fe55, whose properties of relatively high moment and electrical resistivity make it an attractive model yoke material for inductors. Inductors were designed with a variety of yoke geometries, and included both single-turn and multi-turn coil designs, which were fabricated on 200 mm silicon wafers in a CMOS back-end-of-line (BEOL) facility. Each inductor consisted of electroplated copper coils enclosed by the electroplated Ni45Fe55 yokes; aspects of the fabrication of the inductors are discussed. Magnetic properties of the electroplated yoke materials are described, including high frequency permeability measurements. The inductance of 2-turn coil inductors, for example, was enhanced up to about 6 times over the air core equivalent, with an inductance density of 130 nH/mm2 being achieved. The resistance of these non-laminated inductors was relatively large at high frequency due to magnetic and eddy current losses but is expected to improve as the yoke material/structure is further optimized, making electroplated yoke-containing inductors attractive for dc-dc power converters.

  19. Out-of-equilibrium dynamics and extended textures of topological defects in spin ice

    NASA Astrophysics Data System (ADS)

    Udagawa, M.; Jaubert, L. D. C.; Castelnovo, C.; Moessner, R.

    2016-09-01

    Memory effects have been observed across a wide range of geometrically frustrated magnetic materials, possibly including Pr2Ir2O7 where a spontaneous Hall effect has been observed. Frustrated magnets are also famous for the emergence of topological defects. Here we explore how the interaction between these defects can be responsible for a rich diversity of out-of-equilibrium dynamics, dominated by topological bottlenecks and multiscale energy barriers. Our model is an extension of the spinice model on the pyrochlore lattice, where farther-neighbor spin interactions give rise to a nearest-neighbor coupling between topological defects. This coupling can be chosen to be "unnatural" or not, i.e., attractive or repulsive between defects carrying the same topological charge. After applying a field quench, our model supports, for example, long-lived magnetization plateaux, and allows for the metastability of a "fragmented" spin liquid, an unconventional phase of matter where long-range order co-exists with a spin liquid. Perhaps most strikingly, the attraction between same-sign charges produces clusters of these defects in equilibrium, whose stability is due to a combination of energy and topological barriers. These clusters may take the form of a "jellyfish" spin texture, centered on a hexagonal ring with branches of arbitrary length. The ring carries a clockwise or counterclockwise circular flow of magnetization. This emergent toroidal degrees of freedom provide a possibility for time-reversal symmetry breaking with potential relevance to the spontaneous Hall effect observed in Pr2Ir2O7 .

  20. Development of high resolution NMR spectroscopy as a structural tool

    NASA Astrophysics Data System (ADS)

    Feeney, James

    1992-06-01

    The discovery of the nuclear magnetic resonance (NMR) phenomenon and its development and exploitation as a scientific tool provide an excellent basis for a case-study for examining the factors which control the evolution of scientific techniques. Since the detection of the NMR phenomenon and the subsequent rapid discovery of all the important NMR spectral parameters in the late 1940s, the method has emerged as one of the most powerful techniques for determining structures of molecules in solution and for analysis of complex mixtures. The method has made a dramatic impact on the development of structural chemistry over the last 30 years and is now one of the key techniques in this area. Support for NMR instrumentation attracts a dominant slice of public funding in most scientifically developed countries. The technique is an excellent example of how instrumentation and technology have revolutionised structural chemistry and it is worth exploring how it has been developed so successfully. Clearly its wide range of application and the relatively direct connection between the NMR data and molecular structure has created a major market for the instrumentation. This has provided several competing manufacturers with the incentive to develop better and better instruments. Understanding the complexity of the basics of NMR spectroscopy has been an ongoing challenge attracting the attention of physicists. The well-organised specialist NMR literature and regular scientific meetings have ensured rapid exploitation of any theoretical advances that have a practical relevance. In parallel, the commercial development of the technology has allowed the fruits of such theoretical advances to be enjoyed by the wider scientific community.

  1. Investigation of mechanical field weakening of axial flux permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  2. Magnetic resonance image compression using scalar-vector quantization

    NASA Astrophysics Data System (ADS)

    Mohsenian, Nader; Shahri, Homayoun

    1995-12-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.

  3. Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption.

    PubMed

    Bilad, M R; Discart, V; Vandamme, D; Foubert, I; Muylaert, K; Vankelecom, Ivo F J

    2013-06-01

    This study was performed to investigate the effectiveness of submerged microfiltration to harvest both a marine diatom Phaeodactylum tricornutum and a Chlorella vulgaris in a recently developed magnetically induced membrane vibrating (MMV) system. We assess the filtration performance by conducting the improved flux step method (IFM), fed-batch concentration filtrations and membrane fouling autopsy using two lab-made membranes with different porosity. The full-scale energy consumption was also estimated. Overall results suggest that the MMV offers a good fouling control and the process was proven to be economically attractive. By combining the membrane filtration (15× concentration) with centrifugation to reach a final concentration of 25% w/v, the energy consumption to harvest P. tricornutum and C. vulgaris was, respectively, as low as 0.84 and 0.77kWh/m(3), corresponding to 1.46 and 1.39 kWh/kg of the harvested biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Zhao, G. P.; Fangohr, Hans; Liu, J. Ping; Xia, W. X.; Xia, J.; Morvan, F. J.

    2015-01-01

    Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.

  5. Kinetic profile of amyloid formation in the presence of an aromatic inhibitor by nuclear magnetic resonance.

    PubMed

    Liu, Gai; Gaines, Jennifer C; Robbins, Kevin J; Lazo, Noel D

    2012-10-11

    The self-assembly of amyloid proteins into β-sheet rich assemblies is associated with human amyloidoses including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. An attractive therapeutic strategy therefore is to develop small molecules that would inhibit protein self-assembly. Natural polyphenols are potential inhibitors of β-sheet formation. How these compounds affect the kinetics of self-assembly studied by thioflavin T (ThT) fluorescence is not understood primarily because their presence interferes with ThT fluorescence. Here, we show that by plotting peak intensities from nuclear magnetic resonance (NMR) against incubation time, kinetic profiles in the presence of the polyphenol can be obtained from which kinetic parameters of self-assembly can be easily determined. In applying this technique to the self-assembly of the islet amyloid polypeptide in the presence of curcumin, a biphenolic compound found in turmeric, we show that the kinetic profile is atypical in that it shows a prenucleation period during which there is no observable decrease in NMR peak intensities.

  6. Perpendicular magnetic anisotropy in Mn2CoAl thin film

    NASA Astrophysics Data System (ADS)

    Sun, N. Y.; Zhang, Y. Q.; Fu, H. R.; Che, W. R.; You, C. Y.; Shan, R.

    2016-01-01

    Heusler compound Mn2CoAl (MCA) is attracting more attentions due to many novel properties, such as high resistance, semiconducting behavior and suggestion as a spin-gapless material with a low magnetic moment. In this work, Mn2CoAl epitaxial thin film was prepared on MgO(100) substrate by magnetron sputtering. The transport property of the film exhibits a semiconducting-like behavior. Moreover, our research reveals that perpendicular magnetic anisotropy (PMA) can be induced in very thin Mn2CoAl films resulting from Mn-O and Co-O bonding at Mn2CoAl/MgO interface, which coincides with a recent theoretical prediction. PMA and low saturation magnetic moment could lead to large spin-transfer torque with low current density in principle, and thus our work may bring some unanticipated Heusler compounds into spintronics topics such as the domain wall motion and the current-induced magnetization reversal.

  7. A case of child death caused by intestinal volvulus following magnetic toy ingestion.

    PubMed

    Olczak, Mieszko; Skrzypek, Ewa

    2015-05-01

    An 8-year boy was admitted to the ER of one of Warsaw's pediatric hospitals with a history of having bloody vomiting the day before. During admission the boy collapsed and lost consciousness. CPR was unsuccessful. On medico-legal autopsy, two foreign objects (small magnetic spheres--0.5 cm in diameter) were found in two different places in the small and large intestines and were notably attracted magnetically one to another. A loop of approximately 1-m length with features of small intestinal hemorrhagic necrosis and small intestinal mechanical obstruction was found. The cause of death was intestinal volvulus and small intestinal mechanical obstruction caused by ingestion of foreign objects (two neodymium magnets). Most likely these small magnetic spheres were part of a popular toy, the safety of which, lately, has been widely discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium

    PubMed Central

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-01-01

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 μg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water. PMID:23202034

  9. Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems

    NASA Astrophysics Data System (ADS)

    Dean, J.; Bryan, M. T.; Schrefl, T.; Allwood, D. A.

    2011-01-01

    Artificial multiferroic systems, which combine piezoelectric and piezomagnetic materials, offer novel methods of controlling material properties. Here, we use combined structural and magnetic finite element models to show how localized strains in a piezoelectric film coupled to a piezomagnetic nanowire can attract and pin magnetic domain walls. Synchronous switching of addressable contacts enables the controlled movement of pinning sites, and hence domain walls, in the nanowire without applied magnetic field or spin-polarized current, irrespective of domain wall structure. Conversely, domain wall-induced strain in the piezomagnetic material induces a local potential difference in the piezoelectric, providing a mechanism for sensing domain walls. This approach overcomes the problems in magnetic nanowire memories of domain wall structure-dependent behavior and high power consumption. Nonvolatile random access or shift register memories based on these effects can achieve storage densities >1 Gbit/In2, sub-10 ns switching times, and power consumption <100 keV per operation.

  10. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  11. Thermodynamics of emergent magnetic charge screening in artificial spin ice

    DOE PAGES

    Farhan, Alan; Scholl, Andreas; Petersen, Charlotte F.; ...

    2016-09-01

    Electric charge screening is a fundamental principle governing the behaviour in a variety of systems in nature. Through reconfiguration of the local environment, the Coulomb attraction between electric charges is decreased, leading, for example, to the creation of polaron states in solids or hydration shells around proteins in water. Here, we directly visualize the real-time creation and decay of screened magnetic charge configurations in a two-dimensional artificial spin ice system, the dipolar dice lattice. By comparing the temperature dependent occurrence of screened and unscreened emergent magnetic charge defects, we determine that screened magnetic charges are indeed a result of localmore » energy reduction and appear as a transient minimum energy state before the system relaxes towards the predicted ground state. These results highlight the important role of emergent magnetic charges in artificial spin ice, giving rise to screened charge excitations and the emergence of exotic low-temperature configurations.« less

  12. Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Wu, Jin; Kottapalli, Ajay Giri Prakash; Chen, Di; Yang, Zhuoqing; Ding, Guifu; Lye, Sun Woh; Miao, Jianmin

    2017-12-01

    This paper reports a fully-integrated, batch-fabricated electromagnetic actuator which features micro-patterned NdFeB magnets. The entire actuator is fabricated through MEMS-compatible laminated surface micromachining technology, eliminating the requirement for further component assembly processes. The fabrication strategy allowed the entire volume of the actuator to be reduced to a small size of 2.5 × 2.5 × 2 mm3, which is one of the smallest NdFeB-based electromagnetic actuators demonstrated to date. The magnetic properties of NdFeB thin films are further investigated and optimized using different types of lithographically-defined micromolds. By altering the direction of the input current, actuating displacements of approximately ±10 μm are achieved during both the attraction and the repulsion operations. This work demonstrates the viability and compatibility of using polymer-bonded magnets for magnetic MEMS applications.

  13. Simultaneous imaging of strain waves and induced magnetization dynamics at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Macia, Ferran; Foerster, Michael; Statuto, Nahuel; Finizio, Simone; Hernandez-Minguez, Alberto; Lendinez, Sergi; Santos, Paulo V.; Fontcuberta, Josep; Hernandez, Joan Manel; Klaui, Mathias; Aballe, Lucia

    The magnetoelastic effect or inverse magnetostriction-the change of magnetic properties by elastic deformation or strain-is often a key coupling mechanism in multiferroic heterostructures and nanocomposites. It has lately attracted considerable interest as a possible approach for controlling magnetization by electric fields (instead of current) in future devices with low power consumption. However, many experiments addressing the magnetoelastic effect are performed at slow speeds, often using materials and conditions which are impractical or too expensive for device integration. Here, we have studied the effect of the dynamic strain accompanying a surface acoustic wave on magnetic nanostructures. We have simultaneously imaged the temporal evolution of both strain waves and magnetization dynamics of nanostructures at the picosecond timescale. Our experimental technique, based on X-ray microscopy, is versatile and provides a pathway to the study of strain-induced effects at the nanoscale.

  14. Design and analysis of a plane vibration-based electromagnetic generator using a magnetic spring and ferrofluid

    NASA Astrophysics Data System (ADS)

    Wang, Siqi; Li, Decai

    2015-09-01

    This paper describes the design and characterization of a plane vibration-based electromagnetic generator that is capable of converting low-frequency vibration energy into electrical energy. A magnetic spring is formed by a magnetic attractive force between fixed and movable permanent magnets. The ferrofluid is employed on the bottom of the movable permanent magnet to suspend it and reduce the mechanical damping as a fluid lubricant. When the electromagnetic generator with a ferrofluid of 0.3 g was operated under a resonance condition, the output power reached 0.27 mW, and the power density of the electromagnetic generator was 5.68 µW/cm2. The electromagnetic generator was also used to harvest energy from human motion. The measured average load powers of the electromagnetic generator from human waist motion were 0.835 mW and 1.3 mW during walking and jogging, respectively.

  15. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Alexander, E-mail: ahubbard@amnh.org

    The meteoritical record shows both iron partitioning and tungsten isotopic partitioning between the matrix and chondrules. Tungsten is not abundant enough to have driven its own isotopic partitioning, but if tungsten were correlated with iron then ferromagnetic interaction grains could help explain both observations. We derive a practical parameterization for the increase in particle–particle collision rates caused by mutually attracting particle magnetic dipole moments. While the appropriate magnetic parameters remain uncertain, we show that ambient magnetic fields in protoplanetary disks are expected to be strong enough to magnetize iron metal bearing dust grains sufficiently to drive large increases in theirmore » collision rates. Such increased collision rates between iron-metal-rich grains could help preserve primordial iron and W isotopic inhomogeneities, and would help explain why the meteoritical record shows their partitioning in the solar nebula. The importance of magnetic interactions for larger grains whose growth is balanced by fragmentation is less clear and will require future laboratory or numerical studies.« less

  17. Thermodynamics of emergent magnetic charge screening in artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farhan, Alan; Scholl, Andreas; Petersen, Charlotte F.

    Electric charge screening is a fundamental principle governing the behaviour in a variety of systems in nature. Through reconfiguration of the local environment, the Coulomb attraction between electric charges is decreased, leading, for example, to the creation of polaron states in solids or hydration shells around proteins in water. Here, we directly visualize the real-time creation and decay of screened magnetic charge configurations in a two-dimensional artificial spin ice system, the dipolar dice lattice. By comparing the temperature dependent occurrence of screened and unscreened emergent magnetic charge defects, we determine that screened magnetic charges are indeed a result of localmore » energy reduction and appear as a transient minimum energy state before the system relaxes towards the predicted ground state. These results highlight the important role of emergent magnetic charges in artificial spin ice, giving rise to screened charge excitations and the emergence of exotic low-temperature configurations.« less

  18. Solid Electrolyte Materials for use in Lithium-water Primary Batteries And the Synthesis and Characterization of Lanthanide Orthoferrite Magnetic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cook, Clifford Corlin

    This thesis was developed in two parts with the overall goals of this work being (1) synthesize and develop solid electrolyte materials for use in a lithium-water battery and (2) synthesize and characterize ternary magnetic nanomaterials. Lithium metal in combination with water is a highly attractive power source due to its high specific energy. Because of the vigorous nature of the reaction between lithium and water, many obstacles must be overcome in order to harness the energy that this system is capable of producing. Parasitic reactions must be controlled so as not to passivate the lithium or consume it totally. In addition, production of hydrogen gas that accompanies both the electrochemical and parasitic reactions can present a serious challenge. As a result it is difficult to maintain high voltage and control the current density in these systems. In order to overcome these obstacles we have developed composite membranes of various lithium-ion conducting solid electrolytes and polymers. Lithium-ion conducting solid electrolytes are known to achieve ionic conductance as high as 10-3 S/cm2. Utilizing these materials in conjunction with polymers, we have created hydrophobic membranes that allow us to limit the parasitic reactions and maintain low cell impedance. Lanthanide orthoferrite materials are technologically important classes of magnetic materials. They have found application in magneto-optical devices as well as in magnetic recording devices. We have explored the syntheses and magnetic properties of nanocrystalline materials. The synthesis of the nanomaterials was done by co-reduction of lanthanide, Ln3+, and iron, Fe 3+, cations with alkalide solution producing the Ln-Fe alloy of the desired stoichiometry. Removal of the byproducts and oxidization of the alloy was accomplished by washing the product with aerated water. Presented herein, several nanoscale lanthanide orthoferrite materials (LnFeO3, Ln = Gd, Tb, Er, Tm, Sm, Dy, Ho, and La) have been prepared. The products have been characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and magnetic properties characterized by use of a Superconducting Quantum Interference Device (SQUID).

  19. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    NASA Astrophysics Data System (ADS)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-07-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator.

  20. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films.

    PubMed

    Belabbes, Abderrezak; Bihlmayer, Gustav; Blügel, Stefan; Manchon, Aurélien

    2016-04-22

    The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases.

  1. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films

    PubMed Central

    Belabbes, Abderrezak; Bihlmayer, Gustav; Blügel, Stefan; Manchon, Aurélien

    2016-01-01

    The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases. PMID:27103448

  2. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass.

    PubMed

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-12-08

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co 28.6 Fe 12.4 Ta 4.3 B 8.7 O 46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm 2  V -1  s -1 . Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.

  3. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass

    PubMed Central

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-an; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-01-01

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V−1 s−1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. PMID:27929059

  4. Optical Fiber-Based MR-Compatible Sensors for Medical Applications: An Overview

    PubMed Central

    Taffoni, Fabrizio; Formica, Domenico; Saccomandi, Paola; Di Pino, Giovanni; Schena, Emiliano

    2013-01-01

    During last decades, Magnetic Resonance (MR)—compatible sensors based on different techniques have been developed due to growing demand for application in medicine. There are several technological solutions to design MR-compatible sensors, among them, the one based on optical fibers presents several attractive features. The high elasticity and small size allow designing miniaturized fiber optic sensors (FOS) with metrological characteristics (e.g., accuracy, sensitivity, zero drift, and frequency response) adequate for most common medical applications; the immunity from electromagnetic interference and the absence of electrical connection to the patient make FOS suitable to be used in high electromagnetic field and intrinsically safer than conventional technologies. These two features further heightened the potential role of FOS in medicine making them especially attractive for application in MRI. This paper provides an overview of MR-compatible FOS, focusing on the sensors employed for measuring physical parameters in medicine (i.e., temperature, force, torque, strain, and position). The working principles of the most promising FOS are reviewed in terms of their relevant advantages and disadvantages, together with their applications in medicine. PMID:24145918

  5. Isotope labeling of proteins in insect cells.

    PubMed

    Skora, Lukasz; Shrestha, Binesh; Gossert, Alvar D

    2015-01-01

    Protein targets of contemporary research are often membrane proteins, multiprotein complexes, secreted proteins, or other proteins of human origin. These are difficult to express in the standard expression host used for most nuclear magnetic resonance (NMR) studies, Escherichia coli. Insect cells represent an attractive alternative, since they have become a well-established expression system and simple solutions have been developed for generation of viruses to efficiently introduce the target protein DNA into cells. Insect cells enable production of a larger fraction of the human proteome in a properly folded way than bacteria, as insect cells have a very similar set of cytosolic chaperones and a closely related secretory pathway. Here, the limited and defined glycosylation pattern that insect cells produce is an advantage for structural biology studies. For these reasons, insect cells have been established as the most widely used eukaryotic expression host for crystallographic studies. In the past decade, significant advancements have enabled amino acid type-specific as well as uniform isotope labeling of proteins in insect cells, turning them into an attractive expression host for NMR studies. © 2015 Elsevier Inc. All rights reserved.

  6. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  7. One-Pot Synthesis of Fe3O4@PS@P(AEMH-FITC) Magnetic Fluorescent Nanocomposites for Bimodal Imaging.

    PubMed

    Wang, Xuandong; Liu, Huiyu; Jun, Ren; Fu, Changhui; Li, Linlin; Li, Tianlong; Tang, Fangqiong; Meng, Xianwei

    2016-03-01

    Magnetic fluorescent nanocomposites have attracted much attention because of their merging magnetic and fluorescent properties for biomedical application. However, the procedure of synthesis of magnetic fluorescent nanocomposites is always complicated. In addition, the properties of fluorescent component could be easily influenced by magnetic component, retaining both of the magnetic and fluorescent properties into one single nanoparticle considered to be a significant challenge. Herein, we report one-pot method to synthesize multifunctional magnetic fluorescent Fe3O4@PS@P(AEMH-FITC) nanocomposites for bimodal imaging. The asprepared Fe3O4@PS@P(AEMH-FITC) nanocomposites with well-define spherical core/shell structure were stable properties. Moreover, the Fe3O4@PS@P(AEMH-FITC) nanocomposites displayed efficient fluorescent and magnetic properties, respectively. Meanwhile, the magnetic resonance imaging (MRI) and HePG2 cancer cell fluorescent images experiment results suggested that Fe3O4@PS@P(AEMH-FITC) nanocomposites could be used as MRI contrast agents and Fluorescence Imaging (FLI) agents for bioimaging application. Our investigation paves a facile avenue for synthesized magnetic fluorescent nanostructures with well biocompatibility for potential bioimaging application in MRI and FLI.

  8. Livermore's 2004 R&D 100 Awards: Magnetically Levitated Train Takes Flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2005-09-20

    the 1960s, transportation industry planners have sought an energy-efficient design for a train that can glide through air at speeds up to 500 kilometers per hour. This type of train, called a magnetically levitated (maglev) train, is thought to be a viable solution to meet the nation's growing need for intercity and urban transportation networks. However, despite some promising developments, unresolved concerns with the operation and safety of maglev trains has prevented the transition from demonstration model to commercial development. Inductrack, a maglev system originally conceived by Livermore physicist Richard Post, is designed to address these issues. Post's work onmore » Inductrack began with funding from Livermore's Laboratory Directed Research and Development Program, and in 2003, the technology was licensed to General Atomics (GA) in San Diego for train and transit system applications. This year, members of the Livermore-GA team received an R&D 100 Award for Inductrack's development. Inductrack uses permanent magnets to produce the magnetic fields that levitate the train and provides economic and operational advantages over other maglev systems. It can be adapted to both high-speed and urban-speed environments. In the event of a power failure, the train slows gradually until it comes to rest on its auxiliary wheels. The maintenance requirements for Inductrack are also lower than they are for other systems, plus it has a short turning radius and is designed for quiet operation. Previous designs for maglev systems did not offer the energy efficiency or safety protections that are in the Inductrack design. Electromagnetic systems (EMS) use powered electromagnets to levitate the train. However, these systems are based on magnetic attraction rather than repulsion and thus are inherently unstable. In EMS trains, the levitation gap--the separation between the magnet pole faces and the iron rail--is only about 10 millimeters and, during operation, must be maintained to within {+-}1 millimeter. Position sensors and electronic feedback systems are required to control the magnetic current and to compensate for the inherent instability. This requirement, plus the onboard source of emergency power required to ensure operational safety during a sudden power loss, increases the complexity of EMS trains. In contrast, in electrodynamic systems (EDS), large superconducting magnet coils mounted on the sides of the train generate high-intensity magnetic field poles. Interaction of the current between the coils and the track levitates the train. At operating speeds (above a liftoff speed of about 100 kilometers per hour), the magnetic levitation force balances the weight of the car at a stable position. EDS trains do not require the feedback control systems that EMS trains use to stabilize levitation. However, the superconducting magnetic coils must be kept at temperatures of only 5 kelvins, so costly electrically powered cryogenic equipment is required. Also, passengers, especially those with pacemakers, must be shielded from the high magnetic fields generated by the superconductors.« less

  9. Elementary Aharonov-Bohm system in three space dimensions: Quantum attraction with no classical force

    NASA Astrophysics Data System (ADS)

    Goldhaber, Alfred; Requist, Ryan

    2003-07-01

    As a consequence of the Aharonov-Bohm effect, there is a quantum-induced attraction between a charged particle and a rigid, impenetrable hoop made from an arbitrarily thin tube containing a superconductor quantum of magnetic flux. This is remarkable because in classical physics there is no force between the two objects, and quantum-mechanical effects (associated with uncertainty-principle energy) generally are repulsive rather than attractive. For an incident spinless charged particle in a P wave (in a configuration with total angular momentum zero) we verify a resonance just above threshold using the Kohn variational principle in its S-matrix form. Even if optimistic choices of parameters describing a model system with these properties were feasible, the temperature required to observe the resonance would be far lower than has yet been attained in the laboratory.

  10. An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor.

    PubMed

    Li, Fuquan; Kosel, Jürgen

    2014-09-15

    Magneto-resistive biosensors have been found to be useful because of their high sensitivity, low cost, small size, and direct electrical output. They use super-paramagnetic beads to label a biological target and detect it via sensing the stray field. In this paper, we report a new setup for magnetic biosensors, replacing the conventional "sandwich" concept with an electromagnetic trap. We demonstrate the capability of the biosensor in the detection of E. coli. The trap is formed by a current-carrying microwire that attracts the magnetic beads into a sensing space on top of a tunnel magneto-resistive sensor. The sensor signal depends on the number of beads in the sensing space, which depends on the size of the beads. This enables the detection of biological targets, because such targets increase the volume of the beads. Experiments were carried out with a 6 µm wide microwire, which attracted the magnetic beads from a distance of 60 μm, when a current of 30 mA was applied. A sensing space of 30 µm in length and 6 µm in width was defined by the magnetic sensor. The results showed that individual E. coli bacterium inside the sensing space could be detected using super-paramagnetic beads that are 2.8 µm in diameter. The electromagnetic trap setup greatly simplifies the device and reduces the detection process to two steps: (i) mixing the bacteria with magnetic beads and (ii) applying the sample solution to the sensor for measurement, which can be accomplished within about 30 min with a sample volume in the µl range. This setup also ensures that the biosensor can be cleaned easily and re-used immediately. The presented setup is readily integrated on chips via standard microfabrication techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Magnetic resonance imaging of pediatric lung parenchyma, airways, vasculature, ventilation, and perfusion: state of the art.

    PubMed

    Liszewski, Mark C; Hersman, F William; Altes, Talissa A; Ohno, Yoshiharu; Ciet, Pierluigi; Warfield, Simon K; Lee, Edward Y

    2013-07-01

    Magnetic resonance (MR) imaging is a noninvasive imaging modality, particularly attractive for pediatric patients given its lack of ionizing radiation. Despite many advantages, the physical properties of the lung (inherent low signal-to-noise ratio, magnetic susceptibility differences at lung-air interfaces, and respiratory and cardiac motion) have posed technical challenges that have limited the use of MR imaging in the evaluation of thoracic disease in the past. However, recent advances in MR imaging techniques have overcome many of these challenges. This article discusses these advances in MR imaging techniques and their potential role in the evaluation of thoracic disorders in pediatric patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Magnetic nanoparticles-loaded Physarum polycephalum: Directed growth and particles distribution.

    PubMed

    Dimonte, Alice; Cifarelli, Angelica; Berzina, Tatiana; Chiesi, Valentina; Ferro, Patrizia; Besagni, Tullo; Albertini, Franca; Adamatzky, Andrew; Erokhin, Victor

    2014-11-06

    Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P. polycephalum, together with simplicity of its handling and culturing, make it a priceless substrate for designing novel sensing, computing and actuating architectures in living amorphous biological substrate. We demonstrate that, by loading Physarum with magnetic particles and positioning it in a magnetic field, we can, in principle, impose analog control procedures to precisely route active growing zones of slime mold and shape topology of its protoplasmic networks.

  13. Magnetic Nanoparticles-Loaded Physarum polycephalum: Directed Growth and Particles Distribution.

    PubMed

    Dimonte, Alice; Cifarelli, Angelica; Berzina, Tatiana; Chiesi, Valentina; Ferro, Patrizia; Besagni, Tullo; Albertini, Franca; Adamatzky, Andrew; Erokhin, Victor

    2015-12-01

    Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P. polycephalum, together with simplicity of its handling and culturing, make it a priceless substrate for designing novel sensing, computing and actuating architectures in living amorphous biological substrate. We demonstrate that, by loading Physarum with magnetic particles and positioning it in a magnetic field, we can, in principle, impose analog control procedures to precisely route active growing zones of slime mold and shape topology of its protoplasmic networks.

  14. Animal Magnetism: Metaphoric Cues Alter Perceptions of Romantic Partners and Relationships

    PubMed Central

    Hirsch, Kelly A.; Schlegel, Rebecca J.

    2016-01-01

    The psychological state of love is difficult to define, and we often rely on metaphors to communicate about this state and its constituent experiences. Commonly, these metaphors liken love to a physical force—it sweeps us off our feet, causes sparks to fly, and ignites flames of passion. Even the use of “attraction” to refer to romantic interest, commonplace in both popular and scholarly discourse, implies a force propelling two objects together. The present research examined the effects of exposing participants to a physical force (magnetism) on subsequent judgments of romantic outcomes. Across two studies, participants exposed to magnets reported greater levels of satisfaction, attraction, intimacy, and commitment. PMID:27227965

  15. Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks.

    PubMed

    Cardoso, Thiago M G; de Souza, Fabrício R; Garcia, Paulo T; Rabelo, Denilson; Henry, Charles S; Coltro, Wendell K T

    2017-06-29

    Simple methods have been developed for fabricating microfluidic paper-based analytical devices (μPADs) but few of these devices can be used with organic solvents and/or aqueous solutions containing surfactants. This study describes a simple fabrication strategy for μPADs that uses readily available scholar glue to create the hydrophobic flow barriers that are resistant to surfactants and organic solvents. Microfluidic structures were defined by magnetic masks designed with either neodymium magnets or magnetic sheets to define the patter, and structures were created by spraying an aqueous solution of glue on the paper surface. The glue-coated paper was then exposed to UV/Vis light for cross-linking to maximize chemical resistance. Examples of microzone arrays and microfluidic devices are demonstrated. μPADs fabricated with scholar glue retained their barriers when used with surfactants, organic solvents, and strong/weak acids and bases unlike common wax-printed barriers. Paper microzones and microfluidic devices were successfully used for colorimetric assays of clinically relevant analytes commonly detected in urinalysis to demonstrate the low background of the barrier material and generally applicability to sensing. The proposed fabrication method is attractive for both its ability to be used with diverse chemistries and the low cost and simplicity of the materials and process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Applications of remanent supermirror polarizers

    NASA Astrophysics Data System (ADS)

    Böni, P.; Clemens, D.; Kumar, M. Senthil; Pappas, C.

    1999-06-01

    Recent developments in sputtering techniques allow the fabrication of multilayers with a high degree of perfection over large areas. We show, that using reactive sputtering, it is possible to adjust the index of refraction for neutrons, ni, of the individual layers. This property is particularly important for polarizing mirrors, where nnm for the non-magnetic layers can be matched to nm of the magnetic layers such that neutrons for one spin-eigenstate are not reflected by the coating, whereas the reflectivity is high for the other spin-eigenstate. In addition, by using anisotropic sputtering conditions it is possible to orient the easy axis of magnetization within the plane of the mirrors in any particular direction resulting in a simultaneous appearance of a pronounced remanence and coercivity. Remanent polarizers can be used as broad band spin selectors at continuous and in particular at pulsed neutron sources thus eliminating the need of spin flippers, whose performance depends on the wavelength of the neutrons and is often strongly influenced by stray magnetic fields from the sample environment. The possibility to operate remanent supermirrors in arbitrary small fields leads to attractive applications of polarizing devices in low field environments such as they occur in neutron-spin-echo or in spin selective neutron guides. We present applications, where several tasks like polarizing, focusing and spin selection are performed in one single device thus reducing the problem of phase space matching between different neutron optical components.

  17. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    PubMed

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  18. Numerical simulation of an experimental analogue of a planetary magnetosphere

    NASA Astrophysics Data System (ADS)

    Liao, Andy Sha; Li, Shule; Hartigan, Patrick; Graham, Peter; Fiksel, Gennady; Frank, Adam; Foster, John; Kuranz, Carolyn

    2015-12-01

    Recent improvements to the Omega Laser Facility's magneto-inertial fusion electrical discharge system (MIFEDS) have made it possible to generate strong enough magnetic fields in the laboratory to begin to address the physics of magnetized astrophysical flows. Here, we adapt the MHD code AstroBEAR to create 2D numerical models of an experimental analogue of a planetary magnetosphere. We track the secular evolution of the magnetosphere analogue and we show that the magnetospheric components such as the magnetopause, magnetosheath, and bow shock, should all be observable in experimental optical band thermal bremsstrahlung emissivity maps, assuming equilibrium charge state distributions of the plasma. When the magnetosphere analogue nears the steady state, the mid-plane altitude of the magnetopause from the wire surface scales as the one-half power of the ratio of the magnetic pressure at the surface of the free wire to the ram pressure of an unobstructed wind; the mid-plane thickness of the magnetosheath is directly related to the radius of the magnetopause. This behavior conforms to Chapman and Ferraro's theory of planetary magnetospheres. Although the radial dependence of the magnetic field strength differs between the case of a current-carrying wire and a typical planetary object, the major morphological features that develop when a supersonic flow passes either system are identical. Hence, this experimental concept is an attractive one for studying the dynamics of planetary magnetospheres in a controlled environment.

  19. Magnetic field oscillations of the critical current in long ballistic graphene Josephson junctions

    NASA Astrophysics Data System (ADS)

    Rakyta, Péter; Kormányos, Andor; Cserti, József

    2016-06-01

    We study the Josephson current in long ballistic superconductor-monolayer graphene-superconductor junctions. As a first step, we have developed an efficient computational approach to calculate the Josephson current in tight-binding systems. This approach can be particularly useful in the long-junction limit, which has hitherto attracted less theoretical interest but has recently become experimentally relevant. We use this computational approach to study the dependence of the critical current on the junction geometry, doping level, and an applied perpendicular magnetic field B . In zero magnetic field we find a good qualitative agreement with the recent experiment of M. Ben Shalom et al. [Nat. Phys. 12, 318 (2016), 10.1038/nphys3592] for the length dependence of the critical current. For highly doped samples our numerical calculations show a broad agreement with the results of the quasiclassical formalism. In this case the critical current exhibits Fraunhofer-like oscillations as a function of B . However, for lower doping levels, where the cyclotron orbit becomes comparable to the characteristic geometrical length scales of the system, deviations from the results of the quasiclassical formalism appear. We argue that due to the exceptional tunability and long mean free path of graphene systems a new regime can be explored where geometrical and dynamical effects are equally important to understand the magnetic field dependence of the critical current.

  20. ALE meta-analysis on facial judgments of trustworthiness and attractiveness.

    PubMed

    Bzdok, D; Langner, R; Caspers, S; Kurth, F; Habel, U; Zilles, K; Laird, A; Eickhoff, Simon B

    2011-01-01

    Faces convey a multitude of information in social interaction, among which are trustworthiness and attractiveness. Humans process and evaluate these two dimensions very quickly due to their great adaptive importance. Trustworthiness evaluation is crucial for modulating behavior toward strangers; attractiveness evaluation is a crucial factor for mate selection, possibly providing cues for reproductive success. As both dimensions rapidly guide social behavior, this study tests the hypothesis that both judgments may be subserved by overlapping brain networks. To this end, we conducted an activation likelihood estimation meta-analysis on 16 functional magnetic resonance imaging studies pertaining to facial judgments of trustworthiness and attractiveness. Throughout combined, individual, and conjunction analyses on those two facial judgments, we observed consistent maxima in the amygdala which corroborates our initial hypothesis. This finding supports the contemporary paradigm shift extending the amygdala's role from dominantly processing negative emotional stimuli to processing socially relevant ones. We speculate that the amygdala filters sensory information with evolutionarily conserved relevance. Our data suggest that such a role includes not only "fight-or-flight" decisions but also social behaviors with longer term pay-off schedules, e.g., trustworthiness and attractiveness evaluation. © Springer-Verlag 2010

  1. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  2. Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect.

    PubMed

    Zheng, Rui; Wang, Sheng; Tian, Ye; Jiang, Xinguo; Fu, Deliang; Shen, Shun; Yang, Wuli

    2015-07-29

    Recently, photothermal therapy (PTT) that utilizes photothermal conversion (PTC) agents to ablate cancer under near-infrared (NIR) irradiation has attracted a growing amount of attention because of its excellent therapeutic efficacy and improved target selectivity. Therefore, exploring novel PTC agents with an outstanding photothermal effect is a current research focus. Herein, we reported a polydopamine-coated magnetic composite particle with an enhanced PTC effect, which was synthesized simply through coating polydopamine (PDA) on the surface of magnetic Fe3O4 particles. Compared with magnetic Fe3O4 particles and PDA nanospheres, the core-shell nanomaterials exhibited an increased NIR absorption, and thus, an enhanced photothermal effect was obtained. We demonstrated the in vitro and in vivo effects of the photothermal therapy using our composite particles and their ability as a contrast agent in the T2-weighted magnetic resonance imaging. These results indicated that the multifunctional composite particles with enhanced photothermal effect are superior to magnetic Fe3O4 particles and PDA nanospheres alone.

  3. Active magnetic bearings: As applied to centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-01-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  4. Active magnetic bearings: As applied to centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-05-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  5. Magnetically Driven Swimming of Nanoscale Colloidal Assemblies

    NASA Astrophysics Data System (ADS)

    Breidenich, Jennifer; Benkoski, Jason; Baird, Lance; Deacon, Ryan; Land, H. Bruce; Hayes, Allen; Keng, Pei; Pyun, Jeffrey

    2009-03-01

    At microscopic length scales, locomotion can only be generated through asymmetric conformation changes, such as the undulating flagellum employed by protozoa. This simple yet elegant design is optimized according to the dueling needs of miniaturization and the fluid dynamics of the low Reynolds number environment. In this study, we fabricate nanoscale colloidal assemblies that mimic the head + tail structure of flagellates. The assemblies consist of two types of magnetic colloids: 25 nm polystyrene-coated Co nanoparticles, and 250 nm polyethylene glycol coated magnetite nanoparticles. When mixed together in N-dimethylformamide, the Co nanoparticles assemble into flexible, segmented chains ranging in length from 1 - 5 μm. These chains then attach at one end to the larger magnetic beads due to magnetic attraction. This head + tail structure aligns with an external uniform magnetic field and is actuated by an oscillating transverse field. We examine the effects of Co nanoparticle concentration, magnetite bead concentration, magnetic field strength, and oscillation frequency on the formation of swimmers and the speed of locomotion.

  6. Fabrication of redox-responsive magnetic protein microcapsules from hen egg white by the sonochemical method.

    PubMed

    Zhong, Shuangling; Cui, Xuejun; Tian, Fangyuan

    2015-01-01

    Redox-responsive magnetic protein microcapsules with Fe3O4 magnetic nanoparticles (MNPs) encapsulated inside have been obtained using a facile, cost-effective and fast sonochemical method from hen egg white proteins. Such prepared redox-responsive magnetic hen egg white protein microcapsules (MHEWPMCs) could be easily manipulated to do magnetic-guided targeting delivery. The synchronous loading of the hydrophobic dye Coumarin 6 as a model of drug into MHEWPMCs was readily achieved during the fabrication of MHEWPMCs by dissolving them into the oil phase before ultrasonication. TEM images indicated that Fe3O4 MNPs were encapsulated in MHEWPMCs. Confocal laser scanning microscopic images indicated that the dye was distributed evenly in the MHEWPMCs and no leakage of dye from the MHEWPMCs was observed due to the protection of protein shells. The MHEWPMCs are potential candidates as attractive carriers for drug targeting delivery and stimuli-responsive release due to their magnetic and redox responsiveness of the disulfide in the microcapsule shells.

  7. Micromagnetic Architectures for On-chip Microparticle Transport

    NASA Astrophysics Data System (ADS)

    Ouk, Minae; Beach, Geoffrey S. D.

    2015-03-01

    Superparamagnetic microbeads (SBs) are widely used to capture and manipulate biological entities in a fluid environment. Chip-based magnetic actuation provides a means to transport SBs in lab-on-a-chip devices. This is usually accomplished using the stray field from patterned magnetic microstructures, or domain walls in magnetic nanowires. Magnetic anti-dot arrays are particularly attractive due to the high-gradient stray fields from their partial domain wall structures. Here we use a self-assembly method to create magnetic anti-dot arrays in Co films, and describe the motion of SBs across the surface by a rotating field. We find a critical field-rotation frequency beyond which bead motion ceases and a critical threshold for both the in-plane and out-of-plane field components that must be exceeded for bead motion to occur. We show that these field thresholds are bead size dependent, and can thus be used to digitally separate magnetic beads in multi-bead populations. Hence these large-area structures can be used to combine long distance transport with novel functionalities.

  8. Size-tunable silicon/iron oxide hybrid nanoparticles with fluorescence, superparamagnetism, and biocompatibility.

    PubMed

    Sato, Keisuke; Yokosuka, Shinobu; Takigami, Yasunori; Hirakuri, Kenji; Fujioka, Kouki; Manome, Yoshinobu; Sukegawa, Hiroaki; Iwai, Hideo; Fukata, Naoki

    2011-11-23

    Magnetic/fluorescent composite materials have become one of the most important tools in the imaging modality in vivo using magnetic resonance imaging (MRI) monitoring and fluorescence optical imaging. We report herein on a simplified procedure to synthesize hybrid nanoparticles (HNPs) that combine silicon and magnetic iron oxides consisting of magnetite (Fe(3)O(4)) and maghemite (γ-Fe(2)O(3)). Intriguingly, our unique synthetic approach can control magnetic and optical behaviors by reducing the particle size, demonstrating that the HNPs with the mean diameter of 3.0 nm exhibit superparamagnetic behavior and green fluorescence in an aqueous solution, ambient air, and a cellular environment, whereas the HNPs with the mean diameter more than 5.0 nm indicate ferromagnetic behavior without fluorescence. Additionally, both HNPs with different diameters possess excellent magnetic responsivity for external applied magnetic field and good biocompatibility due to the low cytotoxicity. Our biocompatible HNPs with the superparamagnetism can provide an attractive approach for diagnostic imaging system in vivo.

  9. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE PAGES

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung; ...

    2017-05-24

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  10. Magnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Wu, Mitchell B. (Inventor); Harwell, William D. (Inventor)

    1988-01-01

    A magnetic attachment mechanism adapted for interfacing with the manipulator arm of a remote manipulator system and comprising a pair of permanent magnets of rare earth material are arranged in a stator-rotor relationship. The rotor magnet is journalled for rotation about its longitudinal axis between pole plates of the stator magnet, each of which includes an adhering surface. In a first rotary position corresponding to the ON condition, each of the poles of the rotor magnet is closely adjacent to a stator magnet pole plate of like polarity whereby the respective magnet fields are additive for producing a strong magnetic field emanating from the adhering surfaces for attracting a ferrous magnetic plate, or the like, affixed to the payload. When the rotor magnet is rotated to a second position corresponding to the OFF condition, each of the poles of the rotor magnet is disposed closely adjacent to a pole plate of unlike polarity whereby the magnetic fields of the magnets are in cancelling relationship at the adhering surfaces, which permits the release of a payload. An actuator for selectively rotating the rotor magnet between the ON and OFF positions is provided for interfacing and connecting the magnetic attachment mechanism with a manipulator arm. For affecting an optimal rigidized attachment the payload is provided with guide means cooperable with guide means on the housing of the mechanism for directing adhering surfaces of the polar plates to the ferrous plate.

  11. Spin electronic magnetic sensor based on functional oxides for medical imaging

    NASA Astrophysics Data System (ADS)

    Solignac, A.; Kurij, G.; Guerrero, R.; Agnus, G.; Maroutian, T.; Fermon, C.; Pannetier-Lecoeur, M.; Lecoeur, Ph.

    2015-09-01

    To detect magnetic signals coming from the body, in particular those produced by the electrical activity of the heart or of the brain, the development of ultrasensitive sensors is required. In this regard, magnetoresistive sensors, stemming from spin electronics, are very promising devices. For example, tunnel magnetoresistance (TMR) junctions based on MgO tunnel barrier have a high sensitivity. Nevertheless, TMR also often have high level of noise. Full spin polarized materials like manganite La0.67Sr0.33MnO3 (LSMO) are attractive alternative candidates to develop such sensors because LSMO exhibits a very low 1/f noise when grown on single crystals, and a TMR response has been observed with values up to 2000%. This kind of tunnel junctions, when combined with a high Tc superconductor loop, opens up possibilities to develop full oxide structures working at liquid nitrogen temperature and suitable for medical imaging. In this work, we investigated on LSMO-based tunnel junctions the parameters controlling the overall system performances, including not only the TMR ratio, but also the pinning of the reference layer and the noise floor. We especially focused on studying the effects of the quality of the barrier, the interface and the electrode, by playing with materials and growth conditions.

  12. Reconnection in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    1999-01-01

    Analyzing the qualitative three-dimensional magnetic structure of a plasmoid, we were led to reconsider the concept of magnetic reconnection from a general point of view. The properties of relatively simple magnetic field models provide a strong preference for one of two definitions of magnetic reconnection that exist in the literature. Any concept of magnetic reconnection defined in terms of magnetic topology seems naturally restricted to cases where the magnetic field vanishes somewhere in the nonideal (diffusion) region. The main part of this paper is concerned with magnetic reconnection in nonvanishing magnetic fields (finite-B reconnection), which has attracted less attention in the past. We show that the electric field component parallel to the magnetic field plays a crucial physical role in finite-B reconnection, and we present two theorems involving the former. The first states a necessary and sufficient condition on the parallel electric field for global reconnection to occur. Here the term "global" means the generic case where the breakdown of magnetic connection occurs for plasma elements that stay outside the nonideal region. The second theorem relates the change of magnetic helicity to the parallel electric field for cases where the electric field vanishes at large distances. That these results provide new insight into three-dimensional reconnection processes is illustrated in terms of the plasmoid configuration, which was our starting point.

  13. Physics of the infrared spectrum

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Jennings, Donald E.; Jefferies, John; Lindsey, Charles

    1991-01-01

    The IR bandpass is attractive for solar magnetic field studies in virtue of the proportionality to wavelength of the ratio of Zeeman splitting to line width. The large Zeeman splitting and optical thinness of the 12-micron observations render them especially useful for vector magnetic field derivations. The IR continuum, and many IR spectral lines, are formed in LTE and are useful in studies of the temperature structure of the solar atmosphere from the deepest observable photospheric layers to chromospheric altitudes. The far-IR continuum is an excellent thermometer for the upper photosphere and chromosphere.

  14. The comparative study of bulk magneto-phonon and magnetic polaritons of lateral antiferromagnetic superlattices for potential THz applications

    NASA Astrophysics Data System (ADS)

    Ta, Jin-Xing; Han, Yu; Lan, Cheng

    2016-02-01

    Bulk magneto-phonon and magnetic polaritons of lateral antiferromagnetic superlattices for potential THz applications have been investigated in the framework of the effective medium theory. The dispersion relations applied for the system are displayed. In contrast with lateral FeF2/SiO2 superlattice, some fascinating polariton modes with negative group velocity signifying photonic band gap scenarios and attractive optical properties are observed from the numerical results presented with the example, lateral FeF2/TlBr superlattice.

  15. Pharmacological Stress Cardiovascular Magnetic Resonance

    PubMed Central

    Chotenimitkhun, Runyawan; Hundley, W. Gregory

    2013-01-01

    Over the past decade, cardiovascular magnetic resonance (CMR) has evolved into a cardiac stress testing modality that can be used to diagnose myocardial ischemia using intravenous dobutamine or vasodilator perfusion agents such as adenosine or dipyridamole. Because CMR produces high-resolution tomographic images of the human heart in multiple imaging planes, it has become a highly attractive noninvasive testing modality for those suspected of having myocardial ischemia. The purpose of this article is to review the clinical, diagnostic, and prognostic utility of stress CMR testing for patients with (or suspected of having) coronary artery disease. PMID:21566427

  16. Carboxyl-functionalized nanoparticles with magnetic core and mesopore carbon shell as adsorbents for the removal of heavy metal ions from aqueous solution.

    PubMed

    Wang, Hui; Yu, Yi-Fei; Chen, Qian-Wang; Cheng, Kai

    2011-01-21

    This communication demonstrates superparamagnetic nanosized particles with a magnetic core and a porous carbon shell (thickness of 11 nm), which can remove 97% of Pb(2+) ions from an acidic aqueous solution at a Pb(2+) ion concentration of 100 mg L(-1). It is suggested that a weak electrostatic force of attraction between the heavy metal ions and the nanoparticles and the heavy metal ions adsorption on the mesopore carbon shell contribute most to the superior removal property.

  17. Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions.

    PubMed

    Prigiobbe, Valentina; Ko, Saebom; Huh, Chun; Bryant, Steven L

    2015-06-01

    In this paper, we present settling experiments and mathematical modeling to study the magnetic separation of superparamagnetic iron-oxide nanoparticles (SPIONs) from a brine. The experiments were performed using SPIONs suspensions of concentration between 3 and 202g/L dispersed in water and separated from the liquid under the effect of a permanent magnet. A 1D model was developed in the framework of the sedimentation theory with a conservation law for SPIONs and a mass flux function based on the Newton's law for motion in a magnetic field. The model describes both the hindering effect of suspension concentration (n) during settling due to particle collisions and the increase in settling rate due to the attraction of the SPIONs towards the magnet. The flux function was derived from the settling experiments and the numerical model validated against the analytical solution and the experimental data. Suspensions of SPIONs were of 2.8cm initial height, placed on a magnet, and monitored continuously with a digital camera. Applying a magnetic field of 0.5T of polarization, the SPION's velocity was of approximately 3·10(-5)m/s close to the magnet and decreases of two orders of magnitude across the domain. The process was characterized initially by a classical sedimentation behavior, i.e., an upper interface between the clear water and the suspension slowly moving towards the magnet and a lower interface between the sediment layer and the suspension moving away from the magnet. Subsequently, a rapid separation of nanoparticle occured suggesting a non-classical settling phenomenon induced by magnetic forces which favor particle aggregation and therefore faster settling. The rate of settling decreased with n and an optimal condition for fast separation was found for an initial n of 120g/L. The model agrees well with the measurements in the early stage of the settling, but it fails to describe the upper interface movement during the later stage, probably because of particle aggregation induced by magnetization which is not accounted for in the model. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Romantic love: a mammalian brain system for mate choice

    PubMed Central

    Fisher, Helen E; Aron, Arthur; Brown, Lucy L

    2006-01-01

    Mammals and birds regularly express mate preferences and make mate choices. Data on mate choice among mammals suggest that this behavioural ‘attraction system’ is associated with dopaminergic reward pathways in the brain. It has been proposed that intense romantic love, a human cross-cultural universal, is a developed form of this attraction system. To begin to determine the neural mechanisms associated with romantic attraction in humans, we used functional magnetic resonance imaging (fMRI) to study 17 people who were intensely ‘in love’. Activation specific to the beloved occurred in the brainstem right ventral tegmental area and right postero-dorsal body of the caudate nucleus. These and other results suggest that dopaminergic reward and motivation pathways contribute to aspects of romantic love. We also used fMRI to study 15 men and women who had just been rejected in love. Preliminary analysis showed activity specific to the beloved in related regions of the reward system associated with monetary gambling for uncertain large gains and losses, and in regions of the lateral orbitofrontal cortex associated with theory of mind, obsessive/compulsive behaviours and controlling anger. These data contribute to our view that romantic love is one of the three primary brain systems that evolved in avian and mammalian species to direct reproduction. The sex drive evolved to motivate individuals to seek a range of mating partners; attraction evolved to motivate individuals to prefer and pursue specific partners; and attachment evolved to motivate individuals to remain together long enough to complete species-specific parenting duties. These three behavioural repertoires appear to be based on brain systems that are largely distinct yet interrelated, and they interact in specific ways to orchestrate reproduction, using both hormones and monoamines. Romantic attraction in humans and its antecedent in other mammalian species play a primary role: this neural mechanism motivates individuals to focus their courtship energy on specific others, thereby conserving valuable time and metabolic energy, and facilitating mate choice. PMID:17118931

  19. Personal and Impersonal Stimuli Differentially Engage Brain Networks during Moral Reasoning

    ERIC Educational Resources Information Center

    Xue, Shao-Wei; Wang, Yan; Tang, Yi-Yuan

    2013-01-01

    Moral decision making has recently attracted considerable attention as a core feature of all human endeavors. Previous functional magnetic resonance imaging studies about moral judgment have identified brain areas associated with cognitive or emotional engagement. Here, we applied graph theory-based network analysis of event-related potentials…

  20. Nickel Curie Point Engine

    ERIC Educational Resources Information Center

    Chiaverina, Chris; Lisensky, George

    2014-01-01

    Ferromagnetic materials such as nickel, iron, or cobalt lose the electron alignment that makes them attracted to a magnet when sufficient thermal energy is added. The temperature at which this change occurs is called the "Curie temperature," or "Curie point." Nickel has a Curie point of 627 K, so a candle flame is a sufficient…

Top