Sample records for developing bimodal space

  1. Heatpipe power system and heatpipe bimodal system design and development options

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Poston, D. I.; Emrich, W. J., Jr.

    1997-01-01

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components operate within the existing databases. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module is being fabricated, and testing is scheduled to begin in November 1996. A successful test will provide high confidence that the HPS can achieve its predicted performance.

  2. Power Management and Distribution System Developed for Thermionic Power Converters

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  3. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  4. Options For Development of Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.

  5. Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.; hide

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.

  6. Development status of the heatpipe power and bimodal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.; Houts, Michael G.

    1999-01-01

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}« less

  7. Development status of the heatpipe power and bimodal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.; Houts, Michael G.; Emrich, William J. Jr.

    1999-01-22

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.« less

  8. Development status of the heatpipe power and bimodal systems

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Houts, Michael G.; Emrich, William J.

    1999-01-01

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.

  9. Bimodal metal micro-nanopowders for powder injection molding

    NASA Astrophysics Data System (ADS)

    Pervikov, Aleksandr; Rodkevich, Nikolay; Glazkova, Elena; Lerner, Marat

    2017-12-01

    The paper studies a bimodal metal powder composition designed to prepare feedstock for powder injection molding, as well as microstructure and porosity of sintered pats. Two kinds of metal powder compositions are used, in particular, a mixture of micro- and nanopowders and a bimodal powder prepared with dispersion of steel wire. The feedstock is prepared by mixing a bimodal metal powder composition with acetylacetone and paraffin wax. The microstructure of the debound parts is observed by scanning electron microscopy. The sintered parts are characterized by density measurements and metallographic analysis. The technique of the metal powder composition proves to affect the characteristics of sintered parts. Nanoparticles are shown in the interstitial spaces among the microparticles upon mixing micro- and nanopowders, but the regular distribution of nanoparticles on the surface of microparticles is observed in the bimodal powder providing the reduction of the porosity of sintered parts and increasing the density to the proper density of steel.

  10. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  11. Transfer learning for bimodal biometrics recognition

    NASA Astrophysics Data System (ADS)

    Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao

    2013-10-01

    Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.

  12. Modified prenatal sensory stimulation influences postnatal behavioral and perceptual responsiveness in bobwhite quail chicks (Colinus virginianus).

    PubMed

    Reynolds, Greg D; Lickliter, Robert

    2004-06-01

    Asynchronous bimodal stimulation during prenatal development elicits higher levels of behavioral and physiological arousal in precocial avian embryos than does unimodal sensory stimulation. To investigate whether the increased arousal associated with prenatal bimodal stimulation has enduring effects into postnatal development, bobwhite quail (Colinus virginianus) embryos received no supplemental stimulation, unimodal auditory stimulation, or bimodal (audiovisual) stimulation prior to hatching. Embryos exposed to concurrent bimodal stimulation demonstrated greater levels of behavioral activity and failed to use maternal visual cues to successfully direct species-specific perceptual preferences following hatching. These results provide initial evidence that asynchronous bimodal sensory stimulation during prenatal development can have enduring effects on early postnatal behavioral arousal and perceptual responsiveness and suggest that developmental limitations on prenatal sensory stimulation play an important role in the emergence of species-typical behavior.

  13. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.

    PubMed

    Lee, Min Kyung; Rich, Max H; Lee, Jonghwi; Kong, Hyunjoon

    2015-07-01

    Bioactive hydrogels have been extensively studied as a platform for 3D cell culture and tissue regeneration. One of the key desired design parameters is the ability to control spatial organization of biomolecules and cells and subsequent tissue in a 3D matrix. To this end, this study presents a simple but advanced method to spatially organize microchanneled, cell adherent gel blocks and non-adherent ones in a single construct. This hydrogel system was prepared by first fabricating a bimodal hydrogel in which the microscale, alginate gel blocks modified with cell adhesion peptides containing Arg-Gly-Asp sequence (RGD peptides), and those free of RGD peptides, were alternatingly presented. Then, anisotropically aligned microchannels were introduced by uniaxial freeze-drying of the bimodal hydrogel. The resulting gel system could drive bone marrow stromal cells to adhere to and differentiate into neuron and glial cells exclusively in microchannels of the alginate gel blocks modified with RGD peptides. Separately, the bimodal gel loaded with microparticles releasing vascular endothelial growth factor stimulated vascular growth solely into microchannels of the RGD-alginate gel blocks in vivo. These results were not attained by the bimodal hydrogel fabricated to present randomly oriented micropores. Overall, the bimodal gel system could regulate spatial organization of nerve-like tissue or blood vessels at sub-micrometer length scale. We believe that the hydrogel assembly demonstrated in this study will be highly useful in developing a better understanding of diverse cellular behaviors in 3D tissue and further improve quality of a wide array of engineered tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A new mechanistic approach for the further development of a population with established size bimodality

    USGS Publications Warehouse

    Heerman, Lisa; DeAngelis, Donald L.; Borcherding, Jost

    2017-01-01

    Usually, the origin of a within-cohort bimodal size distribution is assumed to be caused by initial size differences or by one discrete period of accelerated growth for one part of the population. The aim of this study was to determine if more continuous pathways exist allowing shifts from the small to the large fraction within a bimodal age-cohort. Therefore, a Eurasian perch population, which had already developed a bimodal size-distribution and had differential resource use of the two size-cohorts, was examined. Results revealed that formation of a bimodal size-distribution can be a continuous process. Perch from the small size-cohort were able to grow into the large size-cohort by feeding on macroinvertebrates not used by their conspecifics. The diet shifts were accompanied by morphological shape changes. Intra-specific competition seemed to trigger the development towards an increasing number of large individuals. A stage-structured matrix model confirmed these assumptions. The fact that bimodality can be a continuous process is important to consider for the understanding of ecological processes and links within ecosystems.

  15. A new mechanistic approach for the further development of a population with established size bimodality

    PubMed Central

    DeAngelis, Donald L.; Borcherding, Jost

    2017-01-01

    Usually, the origin of a within-cohort bimodal size distribution is assumed to be caused by initial size differences or by one discrete period of accelerated growth for one part of the population. The aim of this study was to determine if more continuous pathways exist allowing shifts from the small to the large fraction within a bimodal age-cohort. Therefore, a Eurasian perch population, which had already developed a bimodal size-distribution and had differential resource use of the two size-cohorts, was examined. Results revealed that formation of a bimodal size-distribution can be a continuous process. Perch from the small size-cohort were able to grow into the large size-cohort by feeding on macroinvertebrates not used by their conspecifics. The diet shifts were accompanied by morphological shape changes. Intra-specific competition seemed to trigger the development towards an increasing number of large individuals. A stage-structured matrix model confirmed these assumptions. The fact that bimodality can be a continuous process is important to consider for the understanding of ecological processes and links within ecosystems. PMID:28650963

  16. Using Latent Class Modeling to Detect Bimodality in Spacing Effect Data

    ERIC Educational Resources Information Center

    Verkoeijen, Peter P. J. L.; Bouwmeester, Samantha

    2008-01-01

    A recently proposed theory of the spacing effect [Raaijmakers, J. G. W. (2003). Spacing and repetition effects in human memory: application of the SAM model. "Cognitive Science," 27, 431-452.] suggests that the spacing effect is conditional on study-phase retrieval leading to two groups of students showing different magnitudes of the spacing…

  17. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  18. Children with dyslexia show a reduced processing benefit from bimodal speech information compared to their typically developing peers.

    PubMed

    Schaadt, Gesa; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Männel, Claudia

    2018-01-17

    During information processing, individuals benefit from bimodally presented input, as has been demonstrated for speech perception (i.e., printed letters and speech sounds) or the perception of emotional expressions (i.e., facial expression and voice tuning). While typically developing individuals show this bimodal benefit, school children with dyslexia do not. Currently, it is unknown whether the bimodal processing deficit in dyslexia also occurs for visual-auditory speech processing that is independent of reading and spelling acquisition (i.e., no letter-sound knowledge is required). Here, we tested school children with and without spelling problems on their bimodal perception of video-recorded mouth movements pronouncing syllables. We analyzed the event-related potential Mismatch Response (MMR) to visual-auditory speech information and compared this response to the MMR to monomodal speech information (i.e., auditory-only, visual-only). We found a reduced MMR with later onset to visual-auditory speech information in children with spelling problems compared to children without spelling problems. Moreover, when comparing bimodal and monomodal speech perception, we found that children without spelling problems showed significantly larger responses in the visual-auditory experiment compared to the visual-only response, whereas children with spelling problems did not. Our results suggest that children with dyslexia exhibit general difficulties in bimodal speech perception independently of letter-speech sound knowledge, as apparent in altered bimodal speech perception and lacking benefit from bimodal information. This general deficit in children with dyslexia may underlie the previously reported reduced bimodal benefit for letter-speech sound combinations and similar findings in emotion perception. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The Benefits of Residual Hair Cell Function for Speech and Music Perception in Pediatric Bimodal Cochlear Implant Listeners.

    PubMed

    Cheng, Xiaoting; Liu, Yangwenyi; Wang, Bing; Yuan, Yasheng; Galvin, John J; Fu, Qian-Jie; Shu, Yilai; Chen, Bing

    2018-01-01

    The aim of this study was to investigate the benefits of residual hair cell function for speech and music perception in bimodal pediatric Mandarin-speaking cochlear implant (CI) listeners. Speech and music performance was measured in 35 Mandarin-speaking pediatric CI users for unilateral (CI-only) and bimodal listening. Mandarin speech perception was measured for vowels, consonants, lexical tones, and sentences in quiet. Music perception was measured for melodic contour identification (MCI). Combined electric and acoustic hearing significantly improved MCI and Mandarin tone recognition performance, relative to CI-only performance. For MCI, performance was significantly better with bimodal listening for all semitone spacing conditions ( p < 0.05 in all cases). For tone recognition, bimodal performance was significantly better only for tone 2 (rising; p < 0.05). There were no significant differences between CI-only and CI + HA for vowel, consonant, or sentence recognition. The results suggest that combined electric and acoustic hearing can significantly improve perception of music and Mandarin tones in pediatric Mandarin-speaking CI patients. Music and lexical tone perception depends strongly on pitch perception, and the contralateral acoustic hearing coming from residual hair cell function provided pitch cues that are generally not well preserved in electric hearing.

  20. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution

    DOE PAGES

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...

    2017-02-24

    We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less

  1. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution.

    PubMed

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Tsai, De-Hao; Ilavsky, Jan

    2017-03-21

    We present an experimental study of the structural and dynamical properties of bimodal, micrometer-sized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular-weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXS-based X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5% and systematically increased the volume fraction of the small particles from 0 to 5% to evaluate their effects on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can be satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard-sphere potential when the size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles did not exhibit a significant variation with increasing volume fraction of the small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of the small particles. The dynamics of single-component large-particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate a strong dependence on the fraction of small particles. We also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with the theoretical predictions, which suggest that the complex mutual interactions between the large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.

  2. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.

    We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less

  3. Attention affects visual perceptual processing near the hand.

    PubMed

    Cosman, Joshua D; Vecera, Shaun P

    2010-09-01

    Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.

  4. Application of a simple power law for transport ratio with bimodal distributions of spherical grains under oscillatory forcing

    NASA Astrophysics Data System (ADS)

    Holway, Kevin; Thaxton, Christopher S.; Calantoni, Joseph

    2012-11-01

    Morphodynamic models of coastal evolution require relatively simple parameterizations of sediment transport for application over larger scales. Calantoni and Thaxton (2008) [6] presented a transport parameterization for bimodal distributions of coarse quartz grains derived from detailed boundary layer simulations for sheet flow and near sheet flow conditions. The simulation results, valid over a range of wave forcing conditions and large- to small-grain diameter ratios, were successfully parameterized with a simple power law that allows for the prediction of the transport rates of each size fraction. Here, we have applied the simple power law to a two-dimensional cellular automaton to simulate sheet flow transport. Model results are validated with experiments performed in the small oscillating flow tunnel (S-OFT) at the Naval Research Laboratory at Stennis Space Center, MS, in which sheet flow transport was generated with a bed composed of a bimodal distribution of non-cohesive grains. The work presented suggests that, under the conditions specified, algorithms that incorporate the power law may correctly reproduce laboratory bed surface measurements of bimodal sheet flow transport while inherently incorporating vertical mixing by size.

  5. Tumor-Targeting Multifunctional Rattle-Type Theranostic Nanoparticles for MRI/NIRF Bimodal Imaging and Delivery of Hydrophobic Drugs.

    PubMed

    Jiao, Yunfeng; Sun, Yangfei; Tang, Xiaoling; Ren, Qingguang; Yang, Wuli

    2015-04-24

    The development of theranostic systems capable of diagnosis, therapy, and target specificity is considerably significant for accomplishing personalized medicine. Here, a multifunctional rattle-type nanoparticle (MRTN) as an effective biological bimodal imaging and tumor-targeting delivery system is fabricated, and an enhanced loading ability of hydrophobic anticancer drug (paclitaxel) is also realized. The rattle structure with hydrophobic Fe3 O4 as the inner core and mesoporous silica as the shell is obtained by one-step templates removal process, and the size of interstitial hollow space can be easily adjusted. The Fe3 O4 core with hydrophobic poly(tert-butyl acrylate) (PTBA) chains on the surface is not only used as a magnetic resonance imaging (MRI) agent, but contributes to improving hydrophobic drug loading amount. Transferrin (Tf) and a near-infrared fluorescent dye (Cy 7) are successfully modified on the surface of the nanorattle to increase the ability of near-infrared fluorescence (NIRF) imaging and tumor-targeting specificity. In vivo studies show the selective accumulation of MRTN in tumor tissues by Tf-receptor-mediated endocytosis. More importantly, paclitaxel-loaded MRTN shows sustained release character and higher cytotoxicity than the free paclitaxel. This theranostic nanoparticle as an effective MRI/NIRF bimodal imaging probe and drug delivery system shows great potential in cancer diagnosis and therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bimodal behavior of post-measured entropy and one-way quantum deficit for two-qubit X states

    NASA Astrophysics Data System (ADS)

    Yurischev, Mikhail A.

    2018-01-01

    A method for calculating the one-way quantum deficit is developed. It involves a careful study of post-measured entropy shapes. We discovered that in some regions of X-state space the post-measured entropy \\tilde{S} as a function of measurement angle θ \\in [0,π /2] exhibits a bimodal behavior inside the open interval (0,π /2), i.e., it has two interior extrema: one minimum and one maximum. Furthermore, cases are found when the interior minimum of such a bimodal function \\tilde{S}(θ ) is less than that one at the endpoint θ =0 or π /2. This leads to the formation of a boundary between the phases of one-way quantum deficit via finite jumps of optimal measured angle from the endpoint to the interior minimum. Phase diagram is built up for a two-parameter family of X states. The subregions with variable optimal measured angle are around 1% of the total region, with their relative linear sizes achieving 17.5%, and the fidelity between the states of those subregions can be reduced to F=0.968. In addition, a correction to the one-way deficit due to the interior minimum can achieve 2.3%. Such conditions are favorable to detect the subregions with variable optimal measured angle of one-way quantum deficit in an experiment.

  7. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and usedmore » in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.« less

  8. MMP1 bimodal expression and differential response to inflammatory mediators is linked to promoter polymorphisms

    PubMed Central

    2011-01-01

    Background Identifying the functional importance of the millions of single nucleotide polymorphisms (SNPs) in the human genome is a difficult challenge. Therefore, a reverse strategy, which identifies functionally important SNPs by virtue of the bimodal abundance across the human population of the SNP-related mRNAs will be useful. Those mRNA transcripts that are expressed at two distinct abundances in proportion to SNP allele frequency may warrant further study. Matrix metalloproteinase 1 (MMP1) is important in both normal development and in numerous pathologies. Although much research has been conducted to investigate the expression of MMP1 in many different cell types and conditions, the regulation of its expression is still not fully understood. Results In this study, we used a novel but straightforward method based on agglomerative hierarchical clustering to identify bimodally expressed transcripts in human umbilical vein endothelial cell (HUVEC) microarray data from 15 individuals. We found that MMP1 mRNA abundance was bimodally distributed in un-treated HUVECs and showed a bimodal response to inflammatory mediator treatment. RT-PCR and MMP1 activity assays confirmed the bimodal regulation and DNA sequencing of 69 individuals identified an MMP1 gene promoter polymorphism that segregated precisely with the MMP1 bimodal expression. Chromatin immunoprecipation (ChIP) experiments indicated that the transcription factors (TFs) ETS1, ETS2 and GATA3, bind to the MMP1 promoter in the region of this polymorphism and may contribute to the bimodal expression. Conclusions We describe a simple method to identify putative bimodally expressed RNAs from transcriptome data that is effective yet easy for non-statisticans to understand and use. This method identified bimodal endothelial cell expression of MMP1, which appears to be biologically significant with implications for inflammatory disease. (271 Words) PMID:21244711

  9. The electric rail gun for space propulsion

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Barber, J. P.; Vahlberg, C. J.

    1981-01-01

    An analytic feasibility investigation of an electric propulsion concept for space application is described. In this concept, quasistatic thrust due to inertial reaction to repetitively accelerated pellets by an electric rail gun is used to propel a spacecraft. The study encompasses the major subsystems required in an electric rail gun propulsion system. The mass, performance, and configuration of each subsystem are described. Based on an analytic model of the system mass and performance, the electric rail gun mission performance as a reusable orbital transfer vehicle (OTV) is analyzed and compared to a 30 cm ion thruster system (BIMOD) and a chemical propulsion system (IUS) for payloads with masses of 1150 kg and 2300 kg. For system power levels in the range from 25 kW(e) to 100 kW(e) an electric rail gun OTV is more attractive than a BIMOD system for low Earth orbit to geosynchronous orbit transfer durations in the range from 20 to 120 days.

  10. Bimodal Nuclear Thermal Rocket Analysis Developments

    NASA Technical Reports Server (NTRS)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  11. 2003 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2004-01-01

    The following reports were included in the 2003 NASA Seal/Secondary Air System Workshop:Low Emissions Alternative Power (LEAP); Overview of NASA Glenn Seal Developments; NASA Ultra Efficient Engine Technology Project Overview; Development of Higher Temperature Abradable Seals for Industrial Gas Turbines; High Misalignment Carbon Seals for the Fan Drive Gear System Technologies; Compliant Foil Seal Investigations; Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts; Controls Considerations for Turbine Active Clearance Control; Non-Contacting Finger Seal Developments and Design Considerations; Effect of Flow-Induced Radial Load on Brush Seal/Rotor Contact Mechanics; Seal Developments at Flowserve Corporation; Investigations of High Pressure Acoustic Waves in Resonators With Seal-Like Features; Numerical Investigations of High Pressure Acoustic Waves in Resonators; Feltmetal Seal Material Through-Flow; "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions; High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles; Advanced Control Surface Seal Development for Future Space Vehicles; High Temperature Metallic Seal Development for Aero Propulsion and Gas Turbine Applications; and BrazeFoil Honeycomb.

  12. Language choice in bimodal bilingual development.

    PubMed

    Lillo-Martin, Diane; de Quadros, Ronice M; Chen Pichler, Deborah; Fieldsteel, Zoe

    2014-01-01

    Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children. Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending-expressions in both speech and sign simultaneously-an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children's language choices. This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult. Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant community language.

  13. Language choice in bimodal bilingual development

    PubMed Central

    Lillo-Martin, Diane; de Quadros, Ronice M.; Chen Pichler, Deborah; Fieldsteel, Zoe

    2014-01-01

    Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children. Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending—expressions in both speech and sign simultaneously—an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children's language choices. This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult. Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant community language. PMID:25368591

  14. Bimodal Bilingual Language Development of Hearing Children of Deaf Parents

    ERIC Educational Resources Information Center

    Hofmann, Kristin; Chilla, Solveig

    2015-01-01

    Adopting a bimodal bilingual language acquisition model, this qualitative case study is the first in Germany to investigate the spoken and sign language development of hearing children of deaf adults (codas). The spoken language competence of six codas within the age range of 3;10 to 6;4 is assessed by a series of standardised tests (SETK 3-5,…

  15. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. II. A TEST ON THE NONLINEARITY SCENARIO FOR COLOR BIMODALITY USING THE u-BAND COLORS: THE CASE OF M87 (NGC 4486)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Suk-Jin; Lee, Sang-Yoon; Kim, Hak-Sub

    2011-12-20

    The optical color distributions of globular clusters (GCs) in most large elliptical galaxies are bimodal. Based on the assumed linear relationship between GC colors and their metallicities, the bimodality has been taken as evidence of two GC subsystems with different metallicities in each galaxy and has led to a number of theories in the context of galaxy formation. More recent observations and modeling of GCs, however, suggests that the color-metallicity relations (CMRs) are inflected, and thus colors likely trace metallicities in a nonlinear manner. The nonlinearity could produce bimodal color distributions from a broad underlying metallicity spread, even if itmore » is unimodal. Despite the far-reaching implications, whether CMRs are nonlinear and whether the nonlinearity indeed causes the color bimodality are still open questions. Given that the spectroscopic refinement of CMRs is still very challenging, we here propose a new photometric technique to probe the possible nonlinear nature of CMRs. In essence, a color distribution of GCs is a 'projected' distribution of their metallicities. Since the form of CMRs hinges on which color is used, the shape of color distributions varies depending significantly on the colors. Among other optical colors, the u-band related colors (e.g., u - g and u - z) are theoretically predicted to exhibit significantly less inflected CMRs than other preferred CMRs (e.g., for g - z). As a case study, we performed the Hubble Space Telescope (HST)/WFPC2 archival u-band photometry for the M87 (NGC 4486) GC system with confirmed color bimodality. We show that the u-band color distributions are significantly different from that of g - z and consistent with our model predictions. With more u-band measurements, this method will support or rule out the nonlinear CMR scenario for the origin of GC color bimodality with high confidence. The HST/WFC3 observations in F336W for nearby large elliptical galaxies are highly anticipated in this regard.« less

  16. Emotional Perception of Music in Children With Bimodal Fitting and Unilateral Cochlear Implant.

    PubMed

    Shirvani, Sareh; Jafari, Zahra; Motasaddi Zarandi, Masoud; Jalaie, Shohre; Mohagheghi, Hamed; Tale, Mohammad Reza

    2016-06-01

    Biological, structural, and acoustical constraints faced by cochlear implant (CI) users can alter the perception of music. Bimodal fitting not only provides bilateral hearing but can also improve auditory skills. This study was conducted to assess the impact of this amplification style on the emotional perception of music among children with hearing loss (HL). Twenty-five children with congenital severe to profound HL and unilateral CIs, 20 children with bimodal fitting, and 30 children with normal hearing participated in this study. Their emotional perceptions of music were measured using a method where children indicated happy or sad feelings induced by music by pointing to pictures of faces showing these emotions. Children with bimodal fitting obtained significantly higher mean scores than children with unilateral CIs for both happy and sad music items and in overall test scores (P < .001). Both groups with HL obtained significantly lower scores than children with normal hearing (P < .001). Bimodal fitting results in a better emotional perception of music compared to unilateral CI. Given the influence of music in neurological and linguistic development and social interactions, it is important to evaluate the possible benefits of bimodal fitting prescriptions for individuals with unilateral CIs. © The Author(s) 2015.

  17. The Impact of Bimodal Bilingual Parental Input on the Communication and Language Development of a Young Deaf Child

    ERIC Educational Resources Information Center

    Levesque, Elizabeth; Brown, P. Margaret; Wigglesworth, Gillian

    2014-01-01

    This study explores the impact of bimodal bilingual parental input on the communication and language development of a young deaf child. The participants in this case study were a severe-to-profoundly deaf boy and his hearing parents, who were enrolled in a bilingual (English and Australian Sign Language) homebased early intervention programme. The…

  18. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    PubMed

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  19. A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Ian; Brown, Michael E., E-mail: iwong@caltech.edu

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population priormore » to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H{sub 2}S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H{sub 2}S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.« less

  20. Modeling of cytometry data in logarithmic space: When is a bimodal distribution not bimodal?

    PubMed

    Erez, Amir; Vogel, Robert; Mugler, Andrew; Belmonte, Andrew; Altan-Bonnet, Grégoire

    2018-02-16

    Recent efforts in systems immunology lead researchers to build quantitative models of cell activation and differentiation. One goal is to account for the distributions of proteins from single-cell measurements by flow cytometry or mass cytometry as readout of biological regulation. In that context, large cell-to-cell variability is often observed in biological quantities. We show here that these readouts, viewed in logarithmic scale may result in two easily-distinguishable modes, while the underlying distribution (in linear scale) is unimodal. We introduce a simple mathematical test to highlight this mismatch. We then dissect the flow of influence of cell-to-cell variability proposing a graphical model which motivates higher-dimensional analysis of the data. Finally we show how acquiring additional biological information can be used to reduce uncertainty introduced by cell-to-cell variability, helping to clarify whether the data is uni- or bimodal. This communication has cautionary implications for manual and automatic gating strategies, as well as clustering and modeling of single-cell measurements. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  1. PubMed

    de Quadros, Ronice Müller; Cruz, Carina Rebello; Pizzio, Aline Lemos

    2012-01-01

    This study compared the performance in phonological memory tasks of bimodal bilíngual hearing children (children of deaf parents) and deaf children with cochlear implant (children of deaf parents and hearing parents), with different contexts of access to Brazilian Sign Language (Libras). We used two tests: Portuguêse Pseudowords (Santos and Bueno, 2003) and Libras Pseudosigns (developed by researchers from Development Bimodal Bilíngual Project). Moreover, we included two control groups, one of deaf children, growing up with Libras, with deaf parents, and the other of hearing adults Codas, bimodal bilínguals, with deaf parents. In the analysis of the results, initially, in regard to the performance among the groups tested, it was found that the bimodal bilíngual children had higher scores in both tests. However, when we analyzed the performance of the deaf child with cochlear implant, with deaf parents, with full access to sign language, compared to the other children with cochlear implant, with restricted access to Libras, we found that this child has a similar performance to the Coda children. The cochlear-implanted children with restricted access to Libras, therefore with more access to Portuguêse, had lower scores in both tests, being the worst score for the Portuguêse test. The results shown that children with cochlear implant can have benefits when they have access to Libras, having similar performances to hearing bimodal bilíngual children.

  2. A theory of bimodal acceleration of pick up ions by compression solar wind turbulence under pressure balance

    DOE PAGES

    Zhang, Ming; Schlickeiser, Reinhard

    2012-08-22

    Recently, it was demonstrated that stochastic acceleration of particles going through a series of compressive plasma waves can be efficient and fast. It could be too fast so that the pressure built up by the accelerated particles may in turn modify the amplitude of waves to prevent the particles from having an exploding pressure. We call this condition pressure balance. In this paper, we take into account the fact that active acceleration of particles only occupies a limited volume of space due to a possible intermittent nature of plasma waves or turbulence. We also develop a bimodal acceleration theory thatmore » treats the populations of particles in the active and inactive acceleration regions separately and allows the two populations to exchange particles efficiently. We show that the system automatically produces a solution of v -5 steady state distribution for the accelerated particles, under the requirement of the pressure balance condition. It is found that the v -5 distribution is more robust and easier to achieve with a small volume of intense particle acceleration. These properties explain why the v -5 distribution is commonly observed in space. We apply our model to pickup ion propagation and acceleration throughout the entire heliosphere. These results can reproduce various observations in some great detail. We also found that this mechanism could be responsible for producing anomalous cosmic rays deep in the heliosheath.« less

  3. Comment on "Classification of aerosol properties derived from AERONET direct sun data" by Gobbi et al. (2007)

    NASA Astrophysics Data System (ADS)

    O'Neill, N. T.

    2010-10-01

    It is pointed out that the graphical, aerosol classification method of Gobbi et al. (2007) can be interpreted as a manifestation of fundamental analytical relations whose existance depends on the simple assumption that the optical effects of aerosols are essentially bimodal in nature. The families of contour lines in their "Ada" curvature space are essentially empirical and discretized illustrations of analytical parabolic forms in (α, α') space (the space formed by the continuously differentiable Angstrom exponent and its spectral derivative).

  4. The role of disappeared disturbances in driving the North American prairie-forest boundary

    NASA Astrophysics Data System (ADS)

    Heilman, K.; McLachlan, J. S.; Staver, A. C.

    2016-12-01

    Globally, transitions from savanna to forest are often characterized by abrupt changes in tree density that cannot be fully explained by climate and edaphic factors. In the tropics, fire-vegetation feedbacks drive a bimodal distribution in tree cover that leads to alternative forest and savanna stable states within the same climate space. In temperate North America, the pre-European settlement prairie-forest transition has also been hypothesized to be influenced by widespread fires (anthropogenic or natural). However, large scale evidence for fire disturbance feedbacks on tree density in the temperate zone is currently lacking. We investigate both the pre-European and modern tree density along the North American prairie-forest boundary. We hypothesized that the pre-European distribution of tree density was distinctly bimodal due to intact vegetation-disturbance feedbacks along the prairie-forest boundary before settlement, but that fragmentation and fire suppression has produced a modern prairie-forest boundary that is less abrupt and less bimodal. We estimated tree density from aggregated Public Land Survey (PLS) data collected before the time of European agricultural settlement in Minnesota, Wisconsin, Michigan, Indiana, and Illinois and compared PLS density distributions to tree density estimated from modern USFS Forest Inventory Analysis (FIA) data. PLS tree density follows a bimodal distribution that abruptly shifts from savanna to forest at the boundary. Only 15% of the variance in pre-settlement tree density is explained by historical Mean Annual Precipitation (MAP), suggesting that the bimodality may be due to internal feedbacks in the vegetation-disturbance system, rather than to the past underlying environmental gradient. On the modern landscape, MAP explains 6% of FIA tree density variance, and tree density is not bimodal. Regions that had low tree density savannas in the PLS era have significantly increased in tree density, suggesting that the disappearance of disturbances that accompanied agricultural settlement resulted in closed forests where savannas were once an alternative stable state (p < 0.01). Additionally, the once high tree density forests in the PLS have significantly declined in density, suggesting that logging has contributed to land cover change in North America.

  5. A photometric study of globular clusters observed by the APOGEE survey

    NASA Astrophysics Data System (ADS)

    Mészáros, Szabolcs; García-Hernández, D. A.; Cassisi, Santi; Monelli, Matteo; Szigeti, László; Dell'Agli, Flavia; Derekas, Alíz; Masseron, Thomas; Shetrone, Matthew; Stetson, Peter; Zamora, Olga

    2018-04-01

    In this paper, we describe the photometric and spectroscopic properties of multiple populations in seven northern globular clusters. In this study, we employ precise ground-based photometry from the private collection of Stetson, space photometry from the Hubble Space Telescope (HST), literature abundances of Na and O, and Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey abundances for Mg, Al, C, and N. Multiple populations are identified by their position in the CU, B, I -Vpseudo colour-magnitude diagram (pseudo-CMD) and confirmed with their chemical composition determined using abundances. We confirm the expectation from previous studies that the red giant branches (RGBs) in all seven clusters are split and the different branches have different chemical compositions. The Mg-Al anticorrelations were well explored by the APOGEE and Gaia-ESO surveys for most globular clusters, some clusters showing bimodal distributions, while others continuous distributions. Even though the structure (i.e. bimodal versus continuous) of Mg-Al can greatly vary, the Al-rich and Al-poor populations do not seem to have very different photometric properties, agreeing with theoretical calculations. There is no one-to-one correspondence between the Mg-Al anticorrelation shape (bimodal versus continuous) and the structure of the RGB seen in the HST pseudo-CMDs, with the HST photometric information usually implying more complex formation/evolution histories than the spectroscopic ones. We report on finding two second-generation horizontal branch (HB) stars in M5, and five second-generation asymptotic giant branch (AGB) stars in M92, which is the most metal-poor cluster to date in which second-generation AGB stars have been observed.

  6. Multimodal integration in rostral fastigial nucleus provides an estimate of body movement

    PubMed Central

    Brooks, Jessica X.; Cullen, Kathleen E.

    2012-01-01

    The ability to accurately control posture and perceive self motion and spatial orientation requires knowledge of both the motion of the head and body. However, while the vestibular sensors and nuclei directly encode head motion, no sensors directly encode body motion. Instead, the convergence of vestibular and neck proprioceptive inputs during self-motion is generally believed to underlie the ability to compute body motion. Here, we provide evidence that the brain explicitly computes an internal estimate of body motion at the level of single cerebellar neurons. Neuronal responses were recorded from the rostral fastigial nucleus, the most medial of the deep cerebellar nuclei, during whole-body, body-under-head, and head-on-body rotations. We found that approximately half of the neurons encoded the motion of the body-in-space, while the other half encoded the motion of the head-in-space in a manner similar to neurons in the vestibular nuclei. Notably, neurons encoding body motion responded to both vestibular and proprioceptive stimulation (accordingly termed bimodal neurons). In contrast, neurons encoding head motion were only sensitive to vestibular inputs (accordingly termed unimodal neurons). Comparison of the proprioceptive and vestibular responses of bimodal neurons further revealed similar tuning in response to changes in head-on-body position. We propose that the similarity in nonlinear processing of vestibular and proprioceptive signals underlies the accurate computation of body motion. Furthermore, the same neurons that encode body motion (i.e., bimodal neurons) most likely encode vestibular signals in a body referenced coordinate frame, since the integration of proprioceptive and vestibular information is required for both computations. PMID:19710303

  7. Quantifying Young's moduli of protein fibrils and particles with bimodal force spectroscopy.

    PubMed

    Gilbert, Jay; Charnley, Mirren; Cheng, Christopher; Reynolds, Nicholas P; Jones, Owen G

    2017-10-19

    Force spectroscopy is a means of obtaining mechanical information of individual nanometer-scale structures in composite materials, such as protein assemblies for use in consumer films or gels. As a recently developed force spectroscopy technique, bimodal force spectroscopy relates frequency shifts in cantilevers simultaneously excited at multiple frequencies to the elastic properties of the contacted material, yet its utility for quantitative characterization of biopolymer assemblies has been limited. In this study, a linear correlation between experimental frequency shift and Young's modulus of polymer films was used to calibrate bimodal force spectroscopy and quantify Young's modulus of two protein nanostructures: β-lactoglobulin fibrils and zein nanoparticles. Cross-sectional Young's modulus of protein fibrils was determined to be 1.6 GPa while the modulus of zein nanoparticles was determined as 854 MPa. Parallel measurement of β-lactoglobulin fibril by a competing pulsed-force technique found a higher cross-sectional Young's modulus, highlighting the importance of comparative calibration against known standards in both pulsed and bimodal force spectroscopies. These findings demonstrate a successful procedure for measuring mechanical properties of individual protein assemblies with potential use in biological or packaging applications using bimodal force spectroscopy.

  8. United States Air Force Graduate Student Summer Support Program (1987). Program Technical Report. Volume 1.

    DTIC Science & Technology

    1987-12-01

    developed for a large percentage of the participants in the Summer Faculty Research Program in 1979-1983 period through an AFOSR Minigrant Program . On 1...Analysis of a Bimodal Nuclear Rocket Core by Dav,, C. Carpenter ABSTRACT The framework for a general purpose finite element analysis code was developed ...to study the 2-D temperature distribution in a hot-channel S hexagonal fuel element in the core of a bimodal nuclear’ rocket. Prelim- inary thermal

  9. Comparing perceived auditory width to the visual image of a performing ensemble in contrasting bi-modal environmentsa)

    PubMed Central

    Valente, Daniel L.; Braasch, Jonas; Myrbeck, Shane A.

    2012-01-01

    Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audiovisual environment in which participants were instructed to make auditory width judgments in dynamic bi-modal settings. The results of these psychophysical tests suggest the importance of congruent audio visual presentation to the ecological interpretation of an auditory scene. Supporting data were accumulated in five rooms of ascending volumes and varying reverberation times. Participants were given an audiovisual matching test in which they were instructed to pan the auditory width of a performing ensemble to a varying set of audio and visual cues in rooms. Results show that both auditory and visual factors affect the collected responses and that the two sensory modalities coincide in distinct interactions. The greatest differences between the panned audio stimuli given a fixed visual width were found in the physical space with the largest volume and the greatest source distance. These results suggest, in this specific instance, a predominance of auditory cues in the spatial analysis of the bi-modal scene. PMID:22280585

  10. The Development of Bimodal Bilingualism: Implications for Linguistic Theory.

    PubMed

    Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen

    2016-01-01

    A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and 'transfer' as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair.

  11. The Development of Bimodal Bilingualism: Implications for Linguistic Theory

    PubMed Central

    Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen

    2017-01-01

    A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and ‘transfer’ as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair. PMID:28603576

  12. Early Bimodal Stimulation Benefits Language Acquisition for Children With Cochlear Implants.

    PubMed

    Moberly, Aaron C; Lowenstein, Joanna H; Nittrouer, Susan

    2016-01-01

    Adding a low-frequency acoustic signal to the cochlear implant (CI) signal (i.e., bimodal stimulation) for a period of time early in life improves language acquisition. Children must acquire sensitivity to the phonemic units of language to develop most language-related skills, including expressive vocabulary, working memory, and reading. Acquiring sensitivity to phonemic structure depends largely on having refined spectral (frequency) representations available in the signal, which does not happen with CIs alone. Combining the low-frequency acoustic signal available through hearing aids with the CI signal can enhance signal quality. A period with this bimodal stimulation has been shown to improve language skills in very young children. This study examined whether these benefits persist into childhood. Data were examined for 48 children with CIs implanted under age 3 years, participating in a longitudinal study. All children wore hearing aids before receiving a CI, but upon receiving a first CI, 24 children had at least 1 year of bimodal stimulation (Bimodal group), and 24 children had only electric stimulation subsequent to implantation (CI-only group). Measures of phonemic awareness were obtained at second and fourth grades, along with measures of expressive vocabulary, working memory, and reading. Children in the Bimodal group generally performed better on measures of phonemic awareness, and that advantage was reflected in other language measures. Having even a brief period of time early in life with combined electric-acoustic input provides benefits to language learning into childhood, likely because of the enhancement in spectral representations provided.

  13. A semi-empirical model relating micro structure to acoustic properties of bimodal porous material

    NASA Astrophysics Data System (ADS)

    Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine

    2015-01-01

    Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.

  14. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  15. Contribution of a contralateral hearing aid to perception of consonant voicing, intonation, and emotional state in adult cochlear implantees.

    PubMed

    Most, Tova; Gaon-Sivan, Gal; Shpak, Talma; Luntz, Michal

    2012-01-01

    Binaural hearing in cochlear implant (CI) users can be achieved either by bilateral implantation or bimodally with a contralateral hearing aid (HA). Binaural-bimodal hearing has the advantage of complementing the high-frequency electric information from the CI by low-frequency acoustic information from the HA. We examined the contribution of a contralateral HA in 25 adult implantees to their perception of fundamental frequency-cued speech characteristics (initial consonant voicing, intonation, and emotions). Testing with CI alone, HA alone, and bimodal hearing showed that all three characteristics were best perceived under the bimodal condition. Significant differences were recorded between bimodal and HA conditions in the initial voicing test, between bimodal and CI conditions in the intonation test, and between both bimodal and CI conditions and between bimodal and HA conditions in the emotion-in-speech test. These findings confirmed that such binaural-bimodal hearing enhances perception of these speech characteristics and suggest that implantees with residual hearing in the contralateral ear may benefit from a HA in that ear.

  16. Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli

    PubMed Central

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter

    2014-01-01

    Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947

  17. Measuring oxygen uptake in fishes with bimodal respiration.

    PubMed

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange. © 2015 The Fisheries Society of the British Isles.

  18. An optical/NIR survey of globular clusters in early-type galaxies. III. On the colour bimodality of globular cluster systems

    NASA Astrophysics Data System (ADS)

    Chies-Santos, A. L.; Larsen, S. S.; Cantiello, M.; Strader, J.; Kuntschner, H.; Wehner, E. M.; Brodie, J. P.

    2012-03-01

    Context. The interpretation that bimodal colour distributions of globular clusters (GCs) reflect bimodal metallicity distributions has been challenged. Non-linearities in the colour to metallicity conversions caused for example by the horizontal branch (HB) stars may be responsible for transforming a unimodal metallicity distribution into a bimodal (optical) colour distribution. Aims: We study optical/near-infrared (NIR) colour distributions of the GC systems in 14 E/S0 galaxies. Methods: We test whether the bimodal feature, generally present in optical colour distributions, remains in the optical/NIR ones. The latter colour combination is a better metallicity proxy than the former. We use KMM and GMM tests to quantify the probability that different colour distributions are better described by a bimodal, as opposed to a unimodal distribution. Results: We find that double-peaked colour distributions are more commonly seen in optical than in optical/NIR colours. For some of the galaxies where the optical (g - z) distribution is clearly bimodal, a bimodal distribution is not preferred over a unimodal one at a statistically significant level for the (g - K) and (z - K) distributions. The two most cluster-rich galaxies in our sample, NGC 4486 and NGC 4649, show some interesting differences. The (g - K) distribution of NGC 4649 is better described by a bimodal distribution, while this is true for the (g - K) distribution of NGC 4486 GCs only if restricted to a brighter sub-sample with small K-band errors (<0.05 mag). Formally, the K-band photometric errors cannot be responsible for blurring bimodal metallicity distributions to unimodal (g - K) colour distributions. However, simulations including the extra scatter in the colour-colour diagrams (not fully accounted for in the photometric errors) show that such scatter may contribute to the disappearance of bimodality in (g - K) for the full NGC 4486 sample. For the less cluster-rich galaxies results are inconclusive due to poorer statistics. Conclusions: A bimodal optical colour distribution is not necessarily an indication of an underlying bimodal metallicity distribution. Horizontal branch morphology may play an important role in shaping some of the optical GC colour distributions. However, we find tentative evidence that the (g - K) colour distributions remain bimodal in the two cluster-rich galaxies in our sample (NGC 4486 and NGC 4649) when restricted to clusters with small K-band photometric errors. This bimodality becomes less pronounced when including objects with larger errors, or for the (z - K) colour distributions. Deeper observations of large numbers of GCs will be required to reach more secure conclusions.

  19. Roles of factorial noise in inducing bimodal gene expression

    NASA Astrophysics Data System (ADS)

    Liu, Peijiang; Yuan, Zhanjiang; Huang, Lifang; Zhou, Tianshou

    2015-06-01

    Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.

  20. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases.

    PubMed

    Vilquin, A; Boudet, J F; Kellay, H

    2016-08-01

    Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a supersonic and a subsonic population) in the shock front, can be modified by adding a third subpopulation. Our experiments show that this additional population results from collisions between the supersonic and subsonic subpopulations. We propose a simple approach incorporating the role of this third intermediate population to model the measured probability distributions and apply it to granular shocks as well as shocks in molecular gases.

  1. Analysis of the Influence of Starting Materials and Processing Conditions on the Properties of W/Cu Alloys.

    PubMed

    Montealegre-Meléndez, Isabel; Arévalo, Cristina; Perez-Soriano, Eva M; Neubauer, Erich; Rubio-Escudero, Cristina; Kitzmantel, Michael

    2017-02-08

    In this work, a study of the influence of the starting materials and the processing time used to develop W/Cu alloys is carried out. Regarding powder metallurgy as a promising fabrication route, the difficulties in producing W/Cu alloys motivated us to investigate the influential factors on the final properties of the most industrially demanding alloys: 85-W/15-Cu, 80-W/20-Cu, and 75-W/25-Cu alloys. Two different tungsten powders with large variation among their particle size-fine (W f ) and coarse (W c ) powders-were used for the preparation of W/Cu alloys. Three weight ratios of fine and coarse (W f :W c ) tungsten particles were analyzed. These powders were labelled as "tungsten bimodal powders". The powder blends were consolidated by rapid sinter pressing (RSP) at 900 °C and 150 MPa, and were thus sintered and compacted simultaneously. The elemental powders and W/Cu alloys were studied by optical microscopy (OM) and scanning electron microscopy (SEM). Thermal conductivity, hardness, and densification were measured. Results showed that the synthesis of W/Cu using bimodal tungsten powders significantly affects the final alloy properties. The higher the tungsten content, the more noticeable the effect of the bimodal powder. The best bimodal W powder was the blend with 10 wt % of fine tungsten particles (10-W f :90-W c ). These specimens present good values of densification and hardness, and higher values of thermal conductivity than other bimodal mixtures.

  2. Analysis of the Influence of Starting Materials and Processing Conditions on the Properties of W/Cu Alloys

    PubMed Central

    Montealegre-Meléndez, Isabel; Arévalo, Cristina; Perez-Soriano, Eva M.; Neubauer, Erich; Rubio-Escudero, Cristina; Kitzmantel, Michael

    2017-01-01

    In this work, a study of the influence of the starting materials and the processing time used to develop W/Cu alloys is carried out. Regarding powder metallurgy as a promising fabrication route, the difficulties in producing W/Cu alloys motivated us to investigate the influential factors on the final properties of the most industrially demanding alloys: 85-W/15-Cu, 80-W/20-Cu, and 75-W/25-Cu alloys. Two different tungsten powders with large variation among their particle size—fine (Wf) and coarse (Wc) powders—were used for the preparation of W/Cu alloys. Three weight ratios of fine and coarse (Wf:Wc) tungsten particles were analyzed. These powders were labelled as “tungsten bimodal powders”. The powder blends were consolidated by rapid sinter pressing (RSP) at 900 °C and 150 MPa, and were thus sintered and compacted simultaneously. The elemental powders and W/Cu alloys were studied by optical microscopy (OM) and scanning electron microscopy (SEM). Thermal conductivity, hardness, and densification were measured. Results showed that the synthesis of W/Cu using bimodal tungsten powders significantly affects the final alloy properties. The higher the tungsten content, the more noticeable the effect of the bimodal powder. The best bimodal W powder was the blend with 10 wt % of fine tungsten particles (10-Wf:90-Wc). These specimens present good values of densification and hardness, and higher values of thermal conductivity than other bimodal mixtures. PMID:28772502

  3. The Effects of Acoustic Bandwidth on Simulated Bimodal Benefit in Children and Adults with Normal Hearing.

    PubMed

    Sheffield, Sterling W; Simha, Michelle; Jahn, Kelly N; Gifford, René H

    2016-01-01

    The primary purpose of this study was to examine the effect of acoustic bandwidth on bimodal benefit for speech recognition in normal-hearing children with a cochlear implant (CI) simulation in one ear and low-pass filtered stimuli in the contralateral ear. The effect of acoustic bandwidth on bimodal benefit in children was compared with the pattern of adults with normal hearing. Our hypothesis was that children would require a wider acoustic bandwidth than adults to (1) derive bimodal benefit, and (2) obtain asymptotic bimodal benefit. Nineteen children (6 to 12 years) and 10 adults with normal hearing participated in the study. Speech recognition was assessed via recorded sentences presented in a 20-talker babble. The AzBio female-talker sentences were used for the adults and the pediatric AzBio sentences (BabyBio) were used for the children. A CI simulation was presented to the right ear and low-pass filtered stimuli were presented to the left ear with the following cutoff frequencies: 250, 500, 750, 1000, and 1500 Hz. The primary findings were (1) adults achieved higher performance than children when presented with only low-pass filtered acoustic stimuli, (2) adults and children performed similarly in all the simulated CI and bimodal conditions, (3) children gained significant bimodal benefit with the addition of low-pass filtered speech at 250 Hz, and (4) unlike previous studies completed with adult bimodal patients, adults and children with normal hearing gained additional significant bimodal benefit with cutoff frequencies up to 1500 Hz with most of the additional benefit gained with energy below 750 Hz. Acoustic bandwidth effects on simulated bimodal benefit were similar in children and adults with normal hearing. Should the current results generalize to children with CIs, these results suggest pediatric CI recipients may derive significant benefit from minimal acoustic hearing (<250 Hz) in the nonimplanted ear and increasing benefit with broader bandwidth. Knowledge of the effect of acoustic bandwidth on bimodal benefit in children may help direct clinical decisions regarding a second CI, continued bimodal hearing, and even optimizing acoustic amplification for the nonimplanted ear.

  4. Influence of Grain Size Distribution on the Mechanical Behavior of Light Alloys in Wide Range of Strain Rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2015-06-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) Al 1560 aluminum and Ma2-1 magnesium alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution. This research carried out in 2014-2015 was supported by grant from ``The Tomsk State University Academic D.I. Mendeleev Fund Program''.

  5. Temporal Fine Structure Processing, Pitch, and Speech Perception in Adult Cochlear Implant Recipients.

    PubMed

    Dincer D'Alessandro, Hilal; Ballantyne, Deborah; Boyle, Patrick J; De Seta, Elio; DeVincentiis, Marco; Mancini, Patrizia

    2017-11-30

    The aim of the study was to investigate the link between temporal fine structure (TFS) processing, pitch, and speech perception performance in adult cochlear implant (CI) recipients, including bimodal listeners who may benefit better low-frequency (LF) temporal coding in the contralateral ear. The study participants were 43 adult CI recipients (23 unilateral, 6 bilateral, and 14 bimodal listeners). Two new LF pitch perception tests-harmonic intonation (HI) and disharmonic intonation (DI)-were used to evaluate TFS sensitivity. HI and DI were designed to estimate a difference limen for discrimination of tone changes based on harmonic or inharmonic pitch glides. Speech perception was assessed using the newly developed Italian Sentence Test with Adaptive Randomized Roving level (STARR) test where sentences relevant to everyday contexts were presented at low, medium, and high levels in a fluctuating background noise to estimate a speech reception threshold (SRT). Although TFS and STARR performances in the majority of CI recipients were much poorer than those of hearing people reported in the literature, a considerable intersubject variability was observed. For CI listeners, median just noticeable differences were 27.0 and 147.0 Hz for HI and DI, respectively. HI outcomes were significantly better than those for DI. Median STARR score was 14.8 dB. Better performers with speech reception thresholds less than 20 dB had a median score of 8.6 dB. A significant effect of age was observed for both HI/DI tests, suggesting that TFS sensitivity tended to worsen with increasing age. CI pure-tone thresholds and duration of profound deafness were significantly correlated with STARR performance. Bimodal users showed significantly better TFS and STARR performance for bimodal listening than for their CI-only condition. Median bimodal gains were 33.0 Hz for the HI test and 95.0 Hz for the DI test. DI outcomes in bimodal users revealed a significant correlation with unaided hearing thresholds for octave frequencies lower than 1000 Hz. Median STARR scores were 17.3 versus 8.1 dB for CI only and bimodal listening, respectively. STARR performance was significantly correlated with HI findings for CI listeners and with those of DI for bimodal listeners. LF pitch perception was found to be abnormal in the majority of adult CI recipients, confirming poor TFS processing of CIs. Similarly, the STARR findings reflected a common performance deterioration with the HI/DI tests, suggesting the cause probably being a lack of access to TFS information. Contralateral hearing aid users obtained a remarkable bimodal benefit for all tests. Such results highlighted the importance of TFS cues for challenging speech perception and the relevance to everyday listening conditions. HI/DI and STARR tests show promise for gaining insights into how TFS and speech perception are being limited and may guide the customization of CI program parameters and support the fine tuning of bimodal listening.

  6. Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razooky, Brandon S.; Cao, Youfang; Hansen, Maike M. K.

    Fundamental to biological decision-making is the ability to generate bimodal expression patterns where two alternate expression states simultaneously exist. Here in this study, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV’s fate decision between active replication and viral latency. We find that the HIV Tat protein manipulates the intrinsic toggling of HIV’s promoter, the LTR, to generate bimodal ON-OFF expression, and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-lengthmore » virus. Strikingly, computational analysis indicates that the Tat circuit’s non-cooperative ‘non-latching’ feedback architecture is optimized to slow the promoter’s toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that non-latching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean-expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV’s decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels.« less

  7. Bimodal benefits on objective and subjective outcomes for adult cochlear implant users.

    PubMed

    Heo, Ji-Hye; Lee, Jae-Hee; Lee, Won-Sang

    2013-09-01

    Given that only a few studies have focused on the bimodal benefits on objective and subjective outcomes and emphasized the importance of individual data, the present study aimed to measure the bimodal benefits on the objective and subjective outcomes for adults with cochlear implant. Fourteen listeners with bimodal devices were tested on the localization and recognition abilities using environmental sounds, 1-talker, and 2-talker speech materials. The localization ability was measured through an 8-loudspeaker array. For the recognition measures, listeners were asked to repeat the sentences or say the environmental sounds the listeners heard. As a subjective questionnaire, three domains of Korean-version of Speech, Spatial, Qualities of Hearing scale (K-SSQ) were used to explore any relationships between objective and subjective outcomes. Based on the group-mean data, the bimodal hearing enhanced both localization and recognition regardless of test material. However, the inter- and intra-subject variability appeared to be large across test materials for both localization and recognition abilities. Correlation analyses revealed that the relationships were not always consistent between the objective outcomes and the subjective self-reports with bimodal devices. Overall, this study supports significant bimodal advantages on localization and recognition measures, yet the large individual variability in bimodal benefits should be considered carefully for the clinical assessment as well as counseling. The discrepant relations between objective and subjective results suggest that the bimodal benefits in traditional localization or recognition measures might not necessarily correspond to the self-reported subjective advantages in everyday listening environments.

  8. Speech Recognition of Bimodal Cochlear Implant Recipients Using a Wireless Audio Streaming Accessory for the Telephone.

    PubMed

    Wolfe, Jace; Morais, Mila; Schafer, Erin

    2016-02-01

    The goals of the present investigation were (1) to evaluate recognition of recorded speech presented over a mobile telephone for a group of adult bimodal cochlear implant users, and (2) to measure the potential benefits of wireless hearing assistance technology (HAT) for mobile telephone speech recognition using bimodal stimulation (i.e., a cochlear implant in one ear and a hearing aid on the other ear). A three-by-two-way repeated measures design was used to evaluate mobile telephone sentence-recognition performance differences obtained in quiet and in noise with and without the wireless HAT accessory coupled to the hearing aid alone, CI sound processor alone, and in the bimodal condition. Outpatient cochlear implant clinic. Sixteen bimodal users with Nucleus 24, Freedom, CI512, or CI422 cochlear implants participated in this study. Performance was measured with and without the use of a wireless HAT for the telephone used with the hearing aid alone, CI alone, and bimodal condition. CNC word recognition in quiet and in noise with and without the use of a wireless HAT telephone accessory in the hearing aid alone, CI alone, and bimodal conditions. Results suggested that the bimodal condition gave significantly better speech recognition on the mobile telephone with the wireless HAT. A wireless HAT for the mobile telephone provides bimodal users with significant improvement in word recognition in quiet and in noise over the mobile telephone.

  9. BDVC (Bimodal Database of Violent Content): A database of violent audio and video

    NASA Astrophysics Data System (ADS)

    Rivera Martínez, Jose Luis; Mijes Cruz, Mario Humberto; Rodríguez Vázqu, Manuel Antonio; Rodríguez Espejo, Luis; Montoya Obeso, Abraham; García Vázquez, Mireya Saraí; Ramírez Acosta, Alejandro Álvaro

    2017-09-01

    Nowadays there is a trend towards the use of unimodal databases for multimedia content description, organization and retrieval applications of a single type of content like text, voice and images, instead bimodal databases allow to associate semantically two different types of content like audio-video, image-text, among others. The generation of a bimodal database of audio-video implies the creation of a connection between the multimedia content through the semantic relation that associates the actions of both types of information. This paper describes in detail the used characteristics and methodology for the creation of the bimodal database of violent content; the semantic relationship is stablished by the proposed concepts that describe the audiovisual information. The use of bimodal databases in applications related to the audiovisual content processing allows an increase in the semantic performance only and only if these applications process both type of content. This bimodal database counts with 580 audiovisual annotated segments, with a duration of 28 minutes, divided in 41 classes. Bimodal databases are a tool in the generation of applications for the semantic web.

  10. Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2017-01-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.

  11. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.

    PubMed

    Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit

    2007-02-01

    The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.

  12. Enhancing lineup identification accuracy: two codes are better than one.

    PubMed

    Melara, R D; DeWitt-Rickards, T S; O'Brien, T P

    1989-10-01

    Ways of improving identification accuracy were explored by comparing the conventional visual lineup with an auditory/visual lineup, one that paired color photographs with voice recordings. This bimodal lineup necessitated sequential presentation of lineup members; Experiment 1 showed that performance in sequential lineups was better than performance in traditional simultaneous lineups. In Experiments 2A and 2B unimodal and bimodal lineups were compared by using a multiple-lineup paradigm: Ss viewed 3 videotaped episodes depicting standard police procedures and were tested in 4 sequential lineups. Bimodal lineups were more diagnostic than either visual or auditory lineups alone. The bimodal lineup led to a 126% improvement in number of correct identifications over the conventional visual lineup, with no concomitant increase in number of false identifications. These results imply strongly that bimodal procedures should be adopted in real-world lineups. The nature of memorial processes underlying this bimodal advantage is discussed.

  13. Bimodal Benefits on Objective and Subjective Outcomes for Adult Cochlear Implant Users

    PubMed Central

    Heo, Ji-Hye; Lee, Won-Sang

    2013-01-01

    Background and Objectives Given that only a few studies have focused on the bimodal benefits on objective and subjective outcomes and emphasized the importance of individual data, the present study aimed to measure the bimodal benefits on the objective and subjective outcomes for adults with cochlear implant. Subjects and Methods Fourteen listeners with bimodal devices were tested on the localization and recognition abilities using environmental sounds, 1-talker, and 2-talker speech materials. The localization ability was measured through an 8-loudspeaker array. For the recognition measures, listeners were asked to repeat the sentences or say the environmental sounds the listeners heard. As a subjective questionnaire, three domains of Korean-version of Speech, Spatial, Qualities of Hearing scale (K-SSQ) were used to explore any relationships between objective and subjective outcomes. Results Based on the group-mean data, the bimodal hearing enhanced both localization and recognition regardless of test material. However, the inter- and intra-subject variability appeared to be large across test materials for both localization and recognition abilities. Correlation analyses revealed that the relationships were not always consistent between the objective outcomes and the subjective self-reports with bimodal devices. Conclusions Overall, this study supports significant bimodal advantages on localization and recognition measures, yet the large individual variability in bimodal benefits should be considered carefully for the clinical assessment as well as counseling. The discrepant relations between objective and subjective results suggest that the bimodal benefits in traditional localization or recognition measures might not necessarily correspond to the self-reported subjective advantages in everyday listening environments. PMID:24653909

  14. Why do seif dunes meander?

    NASA Astrophysics Data System (ADS)

    Kryger, Mateusz; Bubenzer, Olaf; Parteli, Eric

    2017-04-01

    Seif dunes - which develop in the absence of vegetation and elongate in the resultant sand transport direction - are the prevailing dune type in many deserts of Earth and Mars and display a meandering shape that has challenged geomorphologists for decades. Understanding the factors controlling seif dune morphology may have impact for a broad range of scientific areas, in particular in the investigation of planetary wind regimes, as dune shape is primarily affected by wind directionality. Sand roses of areas hosting seif dunes display, in general, two main wind directions that form a divergence angle larger than 90˚ . Indeed, theory of dune formation predicts that longitudinal alignment of aeolian bedforms occurs under obtuse bimodal winds, a prediction that has been confirmed by field observations and numerical simulations of aeolian dunes, as well as by experiments on subaqueous bedforms. However, numerical simulations and water tank experiments performed under conditions of bimodal flows could never reproduce one of the most salient characteristics of the seif dune shape, which is its meandering. Instead, longitudinal dunes produced in such simulations and experiments display an unrealistic straight shape, which elongates into the resultant transport trend without developing the sinuous morphology of the seif dunes. Here we show, by means of morphodynamic modeling of aeolian sediment transport and dune formation under directionally varying flows, that the meandering shape of seif dunes can be explained by the action of subordinated sand-moving winds, which occur in addition to both main wind components of the bimodal wind. Because such subordinated winds - inherent to most measured sand roses of seif dune fields - are associated with transport rates much smaller than the sand flux values of the main bimodal wind components - they have been long thought to be negligible for dune shape. However, our simulations show that meandering may be caused by a single secondary wind component in the sand rose with transport rate of about 1/5 of the flux due to the bimodal wind components. To verify our model we calculate dune formation using the sand rose of the seif dune field in Bir Lahfan, Sinai, and find good quantitative agreement between the shape of seif dunes in this field and the dune morphology obtained in the simulations. Our simulations suggest that meandering seif dunes constitute a dune type produced by multimodal wind systems and cannot form under (strictly) bimodal wind regimes.

  15. Effect of Bimodal Grain Size Distribution on Scatter in Toughness

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Debalay; Strangwood, Martin; Davis, Claire

    2009-04-01

    Blunt-notch tests were performed at -160 °C to investigate the effect of a bimodal ferrite grain size distribution in steel on cleavage fracture toughness, by comparing local fracture stress values for heat-treated microstructures with uniformly fine, uniformly coarse, and bimodal grain structures. An analysis of fracture stress values indicates that bimodality can have a significant effect on toughness by generating high scatter in the fracture test results. Local cleavage fracture values were related to grain size distributions and it was shown that the largest grains in the microstructure, with an area percent greater than approximately 4 pct, gave rise to cleavage initiation. In the case of the bimodal grain size distribution, the large grains from both the “fine grain” and “coarse grain” population initiate cleavage; this spread in grain size values resulted in higher scatter in the fracture stress than in the unimodal distributions. The notch-bend test results have been used to explain the difference in scatter in the Charpy energies for the unimodal and bimodal ferrite grain size distributions of thermomechanically controlled rolled (TMCR) steel, in which the bimodal distribution showed higher scatter in the Charpy impact transition (IT) region.

  16. Bimodal Programming: A Survey of Current Clinical Practice.

    PubMed

    Siburt, Hannah W; Holmes, Alice E

    2015-06-01

    The purpose of this study was to determine the current clinical practice in approaches to bimodal programming in the United States. To be specific, if clinicians are recommending bimodal stimulation, who programs the hearing aid in the bimodal condition, and what method is used for programming the hearing aid? An 11-question online survey was created and sent via email to a comprehensive list of cochlear implant programming centers in the United States. The survey was sent to 360 recipients. Respondents in this study represented a diverse group of clinical settings (response rate: 26%). Results indicate little agreement about who programs the hearing aids, when they are programmed, and how they are programmed in the bimodal condition. Analysis of small versus large implant centers indicated small centers are less likely to add a device to the contralateral ear. Although a growing number of cochlear implant recipients choose to wear a hearing aid on the contralateral ear, there is inconsistency in the current clinical approach to bimodal programming. These survey results provide evidence of large variability in the current bimodal programming practices and indicate a need for more structured clinical recommendations and programming approaches.

  17. Top-down Processes in Simulated Electric-Acoustic Hearing: The Effect of Linguistic Context on Bimodal Benefit for Temporally Interrupted Speech

    PubMed Central

    Oh, Soo Hee; Donaldson, Gail S.; Kong, Ying-Yee

    2016-01-01

    Objectives Previous studies have documented the benefits of bimodal hearing as compared with a CI alone, but most have focused on the importance of bottom-up, low-frequency cues. The purpose of the present study was to evaluate the role of top-down processing in bimodal hearing by measuring the effect of sentence context on bimodal benefit for temporally interrupted sentences. It was hypothesized that low-frequency acoustic cues would facilitate the use of contextual information in the interrupted sentences, resulting in greater bimodal benefit for the higher context (CUNY) sentences than for the lower context (IEEE) sentences. Design Young normal-hearing listeners were tested in simulated bimodal listening conditions in which noise band vocoded sentences were presented to one ear with or without low-pass (LP) filtered speech or LP harmonic complexes (LPHCs) presented to the contralateral ear. Speech recognition scores were measured in three listening conditions: vocoder-alone, vocoder combined with LP speech, and vocoder combined with LPHCs. Temporally interrupted versions of the CUNY and IEEE sentences were used to assess listeners’ ability to fill in missing segments of speech by using top-down linguistic processing. Sentences were square-wave gated at a rate of 5 Hz with a 50 percent duty cycle. Three vocoder channel conditions were tested for each type of sentence (8, 12, and 16 channels for CUNY; 12, 16, and 32 channels for IEEE) and bimodal benefit was compared for similar amounts of spectral degradation (matched-channel comparisons) and similar ranges of baseline performance. Two gain measures, percentage-point gain and normalized gain, were examined. Results Significant effects of context on bimodal benefit were observed when LP speech was presented to the residual-hearing ear. For the matched-channel comparisons, CUNY sentences showed significantly higher normalized gains than IEEE sentences for both the 12-channel (20 points higher) and 16-channel (18 points higher) conditions. For the individual gain comparisons that used a similar range of baseline performance, CUNY sentences showed bimodal benefits that were significantly higher (7 percentage points, or 15 points normalized gain) than those for IEEE sentences. The bimodal benefits observed here for temporally interrupted speech were considerably smaller than those observed in an earlier study that used continuous speech (Kong et al., 2015). Further, unlike previous findings for continuous speech, no bimodal benefit was observed when LPHCs were presented to the LP ear. Conclusions Findings indicate that linguistic context has a significant influence on bimodal benefit for temporally interrupted speech and support the hypothesis that low-frequency acoustic information presented to the residual-hearing ear facilitates the use of top-down linguistic processing in bimodal hearing. However, bimodal benefit is reduced for temporally interrupted speech as compared to continuous speech, suggesting that listeners’ ability to restore missing speech information depends not only on top-down linguistic knowledge, but also on the quality of the bottom-up sensory input. PMID:27007220

  18. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    PubMed

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  19. The Globular Cluster System of the Coma cD Galaxy NGC 4874 from Hubble Space Telescope ACS and WFC3/IR Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Hyejeon; Blakeslee, John P.; Chies-Santos, Ana L.; Jee, M. James; Jensen, Joseph B.; Peng, Eric W.; Lee, Young-Wook

    2016-05-01

    We present new Hubble Space Telescope (HST) optical and near-infrared (NIR) photometry of the rich globular cluster (GC) system NGC 4874, the cD galaxy in the core of the Coma cluster (Abell 1656). NGC 4874 was observed with the HST Advanced Camera for Surveys in the F475W (g 475) and F814W (I 814) passbands and with the Wide Field Camera 3 IR Channel in F160W (H 160). The GCs in this field exhibit a bimodal optical color distribution with more than half of the GCs falling on the red side at g 475-I 814 > 1. Bimodality is also present, though less conspicuously, in the optical-NIR I 814-H 160 color. Consistent with past work, we find evidence for nonlinearity in the g 475-I 814 versus I 814-H 160 color-color relation. Our results thus underscore the need for understanding the detailed form of the color-metallicity relations in interpreting observational data on GC bimodality. We also find a very strong color-magnitude trend, or “blue tilt,” for the blue component of the optical color distribution of the NGC 4874 GC system. A similarly strong trend is present for the overall mean I 814-H 160 color as a function of magnitude; for M 814 < -10 mag, these trends imply a steep mass-metallicity scaling with Z\\propto {M}{{GC}}1.4+/- 0.4, but the scaling is not a simple power law and becomes much weaker at lower masses. As in other similar systems, the spatial distribution of the blue GCs is more extended than that of the red GCs, partly because of blue GCs associated with surrounding cluster galaxies. In addition, the center of the GC system is displaced by 4 ± 1 kpc toward the southwest from the luminosity center of NGC 4874, in the direction of NGC 4872. Finally, we remark on a dwarf elliptical galaxy with a noticeably asymmetrical GC distribution. Interestingly, this dwarf has a velocity of nearly -3000 km s-1 with respect to NGC 4874; we suggest it is on its first infall into the cluster core and is undergoing stripping of its GC system by the cluster potential. Based on observations with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute (STScI), which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with program #11712.

  20. Scaling Theory of Entanglement at the Many-Body Localization Transition.

    PubMed

    Dumitrescu, Philipp T; Vasseur, Romain; Potter, Andrew C

    2017-09-15

    We study the universal properties of eigenstate entanglement entropy across the transition between many-body localized (MBL) and thermal phases. We develop an improved real space renormalization group approach that enables numerical simulation of large system sizes and systematic extrapolation to the infinite system size limit. For systems smaller than the correlation length, the average entanglement follows a subthermal volume law, whose coefficient is a universal scaling function. The full distribution of entanglement follows a universal scaling form, and exhibits a bimodal structure that produces universal subleading power-law corrections to the leading volume law. For systems larger than the correlation length, the short interval entanglement exhibits a discontinuous jump at the transition from fully thermal volume law on the thermal side, to pure area law on the MBL side.

  1. The effects of intersensory redundancy on attention and memory: infants' long-term memory for orientation in audiovisual events.

    PubMed

    Flom, Ross; Bahrick, Lorraine E

    2010-03-01

    This research examined the effects of bimodal audiovisual and unimodal visual stimulation on infants' memory for the visual orientation of a moving toy hammer following a 5-min, 2-week, or 1-month retention interval. According to the intersensory redundancy hypothesis (L. E. Bahrick & R. Lickliter, 2000; L. E. Bahrick, R. Lickliter, & R. Flom, 2004) detection of and memory for nonredundantly specified properties, including the visual orientation of an event, are facilitated in unimodal stimulation and attenuated in bimodal stimulation in early development. Later in development, however, nonredundantly specified properties can be perceived and remembered in both multimodal and unimodal stimulation. The current study extended tests of these predictions to the domain of memory in infants of 3, 5, and 9 months of age. Consistent with predictions of the intersensory redundancy hypothesis, in unimodal stimulation, memory for visual orientation emerged by 5 months and remained stable across age, whereas in bimodal stimulation, memory did not emerge until 9 months of age. Memory for orientation was evident even after a 1-month delay and was expressed as a shifting preference, from novelty to null to familiarity, across increasing retention time, consistent with Bahrick and colleagues' four-phase model of attention. Together, these findings indicate that infant memory for nonredundantly specified properties of events is a consequence of selective attention to those event properties and is facilitated in unimodal stimulation. Memory for nonredundantly specified properties thus emerges in unimodal stimulation, is later extended to bimodal stimulation, and lasts across a period of at least 1 month.

  2. The reason for a Daly gap in magmatic series of large igneous provinces: geological and petrological evidences

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii; Bogina, Maria; Chistyakov, Alexeii

    2017-04-01

    One of the most important problems of magmatic petrology over the past century is a «Daly Gap» [Daly, 1914]. It describes the lack of intermediate compositions (i.e., andesite, trachyandesite) in volcanic provinces like ocean islands, LIPs, & arcs, giving rise to "bimodal" basalt-rhyolite, basalt-trachyte or basanite-phonolite suites (Menzies, 2016). At the same time, the origin of the bimodal distribution still remains unclear. Among models proposed to explain the origin of the bimodal series are liquid immiscibility (Charlier et al 2011), physico-chemical specifics of melts (Mungal, Martin,1995), high water content in a primary melt (Melekhova et al., 2012), influence of latent heat production (Nelson et al., 2011), appearance of differentiated transitional chambers with hawaiites below and trachytes on top (Ferla et al., 2006), etc. In this case, the bimodal series are characterized by similar geochemical and isotopic-geochemical features of mafic and sialic members. At the same time, some bimodal series are produced by melting of sialic crust over basaltic chambers (Philpottas and Ague, 2009). This results in the essentially different isotopic characteristics of mafic and sialic members, as exemplified by the bimodal rapakivi granites-anorthosite complexes (Ramo, 1991; Sharkov, 2010). In addition, the bimodal basalt-trachyte series are widely spread in oceanic islands where sialic crust is absent. Thus, it is generally accepted that two contrasting melts were formed in magma chambers beneath volcanoes. Such chambers survived as intrusions and are available for geological study and deciphering their role in the formation of the bimodal magmatic series. We discuss this problem by the example of alkali Fe-Ti basalts and trachytes usually developed in LIPs. Transitional magmatic chambers of such series are represented by bimodal syenite-gabbro intrusions, in particular, by the Elet'ozero intrusion (2086±30 Ma) in Northern Karelia (Russia). The intrusion intruded Archean granite-gneisses and, like syenite-gabbro intrusive complexes everywhere, was formed in two intrusive phases. The first phase is represented by mafic-ultramafic layered intrusion derived from alkali Fe-Ti basalt. The second phase is made up of alkali syenites, which are close in composition to alkali trachyte. At the same time, syenite and gabbro have close ɛNd(2080) (2.99 and 3.09, respectively). So, we faced the intrusive version of alkali basalt-trachyte series. We believe that neither crystallization differentiation, nor immiscible splitting, nor other within-chamber processes were responsible for a Daly Gap. The formation of the latter is rather related to the generation of two compositionally different independent partial melts from the same mantle plume head: (1) alkali Fe-Ti basalts derived from plume head owing to adiabatic melting, and (2) trachytes produced by incongruent melting of upper cooled margin of the head under the influence of fluids, which percolated from underlying adiabatic melting zone. The existence of primary trachyte melts is supported by the finds of "melt pockets" in mantle xenoliths in basalts.

  3. Secondary atomization in the combustion of electrostatic sprays

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1993-01-01

    The combustion of electrosprays in a laminar counterflow diffusion flame has been experimentally studied by measuring droplet size and velocity distributions and gas-phase temperature. Detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets 'interact' with the flame, the size distribution becomes bimodal. A secondary, sharp peak, in fact, develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than the parent ones. This fission is of electric nature and it occurs when the repulsion of electric charges overcomes the surface tension cohesive force ultimately leading to a disintegration into finer fragments at or about the so-called Rayleigh limit. We here report on the first observation in combustion environments of such 'explosions'. If, on the other hand, droplets enter the very high temperature region before exploding, there appears to be no evidence of bimodality in their size distribution. In this case, in fact, flame chemi-ions may neutralize the charge on the droplets and thus prevent disruption.

  4. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  5. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, P; Peng, Y; Sun, M

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI willmore » be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.« less

  6. Galex Lyman-alpha Emitters: Physical Properties, Luminosity Bimodality, And Morphologies.

    NASA Astrophysics Data System (ADS)

    Mallery, Ryan P.

    2010-01-01

    The Galaxy Evolution Explorer spectroscopic survey has uncovered a large statistically significant sample of Lyman-alpha emitters at z sim0.3. ACS imaging of these sources in the COSMOS and AEGIS deep fields reveals that these Lyman-alpha emitters consist of two distinct galaxy morphologies, face on spiral galaxies and compact starburst/merging systems. The morphology bimodality also results in a bimodal distribution of optical luminosity. A comparison between the UV photometry and MIPS 24 micron detections of these sources indicates that they are bluer, and have less dust extinction than similar star forming galaxies that lack Lyman-alpha detection. Our findings show how the global gas and dust distribution of star forming galaxies inhibits Lyman-alpha emission in star forming galaxies. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the CNES of France and the Korean Ministry of Science and Technology.

  7. The Bimodal Bilingual Brain: Effects of Sign Language Experience

    ERIC Educational Resources Information Center

    Emmorey, Karen; McCullough, Stephen

    2009-01-01

    Bimodal bilinguals are hearing individuals who know both a signed and a spoken language. Effects of bimodal bilingualism on behavior and brain organization are reviewed, and an fMRI investigation of the recognition of facial expressions by ASL-English bilinguals is reported. The fMRI results reveal separate effects of sign language and spoken…

  8. Bimodal Reading: Benefits of a Talking Computer for Average and Less Skilled Readers.

    ERIC Educational Resources Information Center

    Montali, Julie; Lewandowski, Lawrence

    1996-01-01

    Eighteen average readers and 18 less-skilled readers (grades 8 and 9) were presented with social studies and science passages via a computer either visually (on screen), auditorily (read by digitized voice), or bimodally (on screen, highlighted while being voiced). Less-skilled readers demonstrated comprehension in the bimodal condition equivalent…

  9. The Roles of Relative Linguistic Proficiency and Modality Switching in Language Switch Cost: Evidence from Chinese Visual Unimodal and Bimodal Bilinguals.

    PubMed

    Lu, Aitao; Wang, Lu; Guo, Yuyang; Zeng, Jiahong; Zheng, Dongping; Wang, Xiaolu; Shao, Yulan; Wang, Ruiming

    2017-09-01

    The current study investigated the mechanism of language switching in unbalanced visual unimodal bilinguals as well as balanced and unbalanced bimodal bilinguals during a picture naming task. All three groups exhibited significant switch costs across two languages, with symmetrical switch cost in balanced bimodal bilinguals and asymmetrical switch cost in unbalanced unimodal bilinguals and bimodal bilinguals. Moreover, the relative proficiency of the two languages but not their absolute proficiency had an effect on language switch cost. For the bimodal bilinguals the language switch cost also arose from modality switching. These findings suggest that the language switch cost might originate from multiple sources from both outside (e.g., modality switching) and inside (e.g., the relative proficiency of the two languages) the linguistic lexicon.

  10. Benefits for Voice Learning Caused by Concurrent Faces Develop over Time.

    PubMed

    Zäske, Romi; Mühl, Constanze; Schweinberger, Stefan R

    2015-01-01

    Recognition of personally familiar voices benefits from the concurrent presentation of the corresponding speakers' faces. This effect of audiovisual integration is most pronounced for voices combined with dynamic articulating faces. However, it is unclear if learning unfamiliar voices also benefits from audiovisual face-voice integration or, alternatively, is hampered by attentional capture of faces, i.e., "face-overshadowing". In six study-test cycles we compared the recognition of newly-learned voices following unimodal voice learning vs. bimodal face-voice learning with either static (Exp. 1) or dynamic articulating faces (Exp. 2). Voice recognition accuracies significantly increased for bimodal learning across study-test cycles while remaining stable for unimodal learning, as reflected in numerical costs of bimodal relative to unimodal voice learning in the first two study-test cycles and benefits in the last two cycles. This was independent of whether faces were static images (Exp. 1) or dynamic videos (Exp. 2). In both experiments, slower reaction times to voices previously studied with faces compared to voices only may result from visual search for faces during memory retrieval. A general decrease of reaction times across study-test cycles suggests facilitated recognition with more speaker repetitions. Overall, our data suggest two simultaneous and opposing mechanisms during bimodal face-voice learning: while attentional capture of faces may initially impede voice learning, audiovisual integration may facilitate it thereafter.

  11. Speech Recognition and Cognitive Skills in Bimodal Cochlear Implant Users

    ERIC Educational Resources Information Center

    Hua, Håkan; Johansson, Björn; Magnusson, Lennart; Lyxell, Björn; Ellis, Rachel J.

    2017-01-01

    Purpose: To examine the relation between speech recognition and cognitive skills in bimodal cochlear implant (CI) and hearing aid users. Method: Seventeen bimodal CI users (28-74 years) were recruited to the study. Speech recognition tests were carried out in quiet and in noise. The cognitive tests employed included the Reading Span Test and the…

  12. The Effectiveness of Bimodal Text Presentation for Poor Readers.

    ERIC Educational Resources Information Center

    Steele, Emily; And Others

    A study explored the effects of bimodal (concurrent auditory and visual stimulus modes) versus unimodal reading on 8 poor readers between the ages of 9 and 12 years. An alternating treatments design was used to compare student performance on 12 passages, 45 in each of 3 presentations modes: bimodal, visual, and auditory. Session measures included…

  13. Impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease patients.

    PubMed

    Simoes Loureiro, Isabelle; Lefebvre, Laurent

    2015-01-01

    The aim of this study was to generalize the positive impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease (AD) patients. In practice, the naming skills of healthy elderly persons improve when additional sensory signals are included. The hypothesis of this study was that the same influence would be observable in AD patients. Sixty elderly patients separated into three groups (healthy subjects, stage 1 AD patients, and stage 2 AD patients) were tested with a battery of naming tasks comprising three different modalities: a visual modality, an auditory modality, and a visual and auditory modality (bimodality). Our results reveal the positive influence of bimodality on the accuracy with which bimodal items are named (when compared with unimodal items) and their latency (when compared with unimodal auditory items). These results suggest that multisensory enrichment can improve lexical retrieval in AD patients.

  14. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  15. On-off intermittency and intermingledlike basins in a granular medium.

    PubMed

    Schmick, Malte; Goles, Eric; Markus, Mario

    2002-12-01

    Molecular dynamic simulations of a medium consisting of disks in a periodically tilted box yield two dynamic modes differing considerably in the total potential and kinetic energies of the disks. Depending on parameters, these modes display the following features: (i) hysteresis (coexistence of the two modes in phase space); (ii) intermingledlike basins of attraction (uncertainty exponent indistinguishable from zero); (iii) two-state on-off intermittency; and (iv) bimodal velocity distributions. Bifurcations are defined by a cross-shaped phase diagram.

  16. Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications

    NASA Astrophysics Data System (ADS)

    Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina

    This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.

  17. [What bimodal bilingual have to say about bilingual developing?

    PubMed

    de Quadros, Ronice Müller; Lillo-Martin, Diane; Pichler, Deborah Chen

    2013-07-01

    The goal of this work is to present what our research with hearing children from Deaf parents, acquiring Brazilian Sign Language (Libras) and Portuguese, and American Sign Language (ASL) and English (Lillo-Martin et. al. 2010) have to say about bilingual development. The data analyzed in this study is part of the database of spontaneous interactions collected longitudinally, alternating contexts of sign and spoken languages. Moreover, there is data from experimental studies with tests in both pairs of languages that is incorporated to the present study. A general view about previous studies related to bimodal bilingual acquisition with hearing children, from "deaf" parents, will be presented. Then, we will show some linguistics aspects of this kind of acquisition found in our study and discuss about bilingual acquisition.

  18. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite

    PubMed Central

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-01-01

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties. PMID:25265897

  19. Bimodal fibrous structures for tissue engineering: Fabrication, characterization and in vitro biocompatibility.

    PubMed

    Tiwari, Arjun Prasad; Joshi, Mahesh Kumar; Kim, Jeong In; Unnithan, Afeesh Rajan; Lee, Joshua; Park, Chan Hee; Kim, Cheol Sang

    2016-08-15

    We report for the first time a polycaprolactone-human serum albumin (PCL-HSA) membrane with bimodal structures comprised of spider-web-like nano-nets and conventional fibers via facile electro-spinning/netting (ESN) technique. Such unique controllable morphology was developed by electrospinning the blend solution of PCL (8wt% in HFIP 1,1,1,3,3,3,-Hexafluoro-2-propanol) and HSA (10wt% deionized water). The phase separation during electrospinning caused the formation of bimodal structure. Various processing factors such as applied voltage, feeding rate, and distance between nozzle tip and collector were found responsible for the formation and distribution of the nano-nets throughout the nanofibrous mesh. Field emission electron microscopy (FE-SEM) confirmed that the nano-nets were composed of interlinked nanowires with an ultrathin diameter (10-30nm). When compared with a pure PCL membrane, the membrane containing nano-nets was shown to have better support for cellular activities as determined by cell viability and attachment assays. These results revealed that the blending of albumin, a hydrophilic biomolecule, with PCL, a hydrophobic polymer, proves to be an outstanding approach to developing membranes with controlled spider-web-like nano-nets for tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Influence of Iron Oxide Particles on the Strength of Ball-Milled Iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D R; Syn, C K; Sherby, O D

    2005-12-07

    Detailed microstructural and mechanical property studies of ball-milled iron, in the powder and consolidated states, are reviewed and assessed. The analyses cover three and one-half orders of magnitude of grain size (from 6 nm to 20 mm) and focus on the influence of oxide particles on the strength. The study includes the early work of Koch and Yang, Kimura and Takaki and continues with the more recent work of Umemoto et al and Belyakov, Sakai et al. It is shown that the major contributors to strength are the nanooxide particles. These particles are created by adiabatic shear banding during ball-millingmore » leading to a bimodal distribution of particles. The predicted strength from particles, {sigma}{sub p}, is given by {sigma}{sub p} = B {center_dot} (D*{sub S}){sup -1/2} where D*{sub S} is the surface-to-surface interparticle spacing, and B = 395 MPa {center_dot} {micro}m{sup -1/2}. A model is proposed that accounts for the influence of the bimodal particle size distribution on strength.« less

  1. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul

    2013-05-10

    Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy ofmore » M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31's GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.« less

  2. Stratus Cloud Radiative Effects from Cloud Processed Bimodal CCN Distributions

    NASA Astrophysics Data System (ADS)

    Noble, S. R., Jr.; Hudson, J. G.

    2016-12-01

    Inability to understand cloud processes is a large component of climate uncertainty. Increases in cloud condensation nuclei (CCN) concentrations are known to increase cloud droplet number concentrations (Nc). This aerosol-cloud interaction (ACI) produces greater Nc at smaller sizes, which brightens clouds. A lesser understood ACI is cloud processing of CCN. This improves CCN that then more easily activate at lower cloud supersaturations (S). Bimodal CCN distributions thus ensue from these evaporated cloud droplets. Hudson et al. (2015) related CCN bimodality to Nc. In stratus clouds, bimodal CCN created greater Nc whereas in cumulus less Nc. Thus, CCN distribution shape influences cloud properties; microphysics and radiative properties. Measured uni- and bimodal CCN distributions were input into an adiabatic droplet growth model using various specified vertical wind speeds (W). Bimodal CCN produced greater Nc (Fig. 1a) and smaller mean diameters (MD; Fig. 1b) at lower W typical of stratus clouds (<70 cm/s). Improved CCN (low critical S) were more easily activated at the lower S of stratus from low W, thus, creating greater Nc. Competition for condensate thus reduced MD and drizzle. At greater W, typical of cumulus clouds (>70 cm/s), bimodal CCN made lower Nc with larger MD thus enhancing drizzle whereas unimodal CCN made greater Nc with smaller MD, thus reducing drizzle. Thus, theoretical predictions of Nc and MD for uni- and bimodal CCN agree with the sense of the observations. Radiative effects were determined using a cloud grown to a 250-meter thickness. Bimodal CCN at low W reduced cloud effective radius (re), made greater cloud optical thickness (COT), and made greater cloud albedo (Fig. 1c). At very low W changes were as much as +9% for albedo, +17% for COT, and -12% for re. Stratus clouds typically have low W and cover large areas. Thus, these changes in cloud radiative properties at low W impact climate. Stratus cloud susceptibility to CCN distribution thus requires further investigation to determine their impact on ACI. Hudson et al. (2015), JGRA, 120, 3436-3452.

  3. New vision solar system mission study: Use of space reactor bimodal system with microspacecraft to determine origin and evolution of the outer plants in the solar system

    NASA Technical Reports Server (NTRS)

    Mondt, Jack F.; Zubrin, Robert M.

    1996-01-01

    The vision for the future of the planetary exploration program includes the capability to deliver 'constellations' or 'fleets' of microspacecraft to a planetary destination. These fleets will act in a coordinated manner to gather science data from a variety of locations on or around the target body, thus providing detailed, global coverage without requiring development of a single large, complex and costly spacecraft. Such constellations of spacecraft, coupled with advanced information processing and visualization techniques and high-rate communications, could provide the basis for development of a 'virtual presence' in the solar system. A goal could be the near real-time delivery of planetary images and video to a wide variety of users in the general public and the science community. This will be a major step in making the solar system accessible to the public and will help make solar system exploration a part of the human experience on Earth.

  4. Molecular self assembly of mixed comb-like dextran surfactant polymers for SPR virus detection.

    PubMed

    Mai-Ngam, Katanchalee; Kiatpathomchai, Wansika; Arunrut, Narong; Sansatsadeekul, Jitlada

    2014-11-04

    The synthesis of two comb-like dextran surfactant polymers, that are different in their dextran molecular weight (MW) distribution and the presence of carboxylic groups, and their characterization are reported. A bimodal carboxylic dextran surfactant polymer consists of poly(vinyl amine) (PVAm) backbone with carboxyl higher MW dextran, non-functionalized lower MW dextran and hydrophobic hexyl branches; while a monomodal dextran surfactant polymer is PVAm grafted with non-functionalized lower MW dextran and hexyl branches. Layer formation of non-covalently attached dextran chains with bimodal MW distributions on a surface plasmon resonance (SPR) chip was investigated from the perspective of mixed physisorption of the bimodal and monomodal surfactant polymers. Separation distances between the carboxylic longer dextran side chains within the bimodal surfactant polymer and between the whole bimodal surfactant molecules on the chip surface could be well-controlled. SPR analysis of shrimp yellow head virus using our mixed surfactant chips showed dependence on synergetic adjustment of these separation distances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The Generation of the Distant Kuiper Belt by Planet Nine from an Initially Broad Perihelion Distribution

    NASA Astrophysics Data System (ADS)

    Khain, Tali; Batygin, Konstantin; Brown, Michael E.

    2018-04-01

    The observation that the orbits of long-period Kuiper Belt objects are anomalously clustered in physical space has recently prompted the Planet Nine hypothesis - the proposed existence of a distant and eccentric planetary member of our Solar System. Within the framework of this model, a Neptune-like perturber sculpts the orbital distribution of distant Kuiper Belt objects through a complex interplay of resonant and secular effects, such that the surviving orbits get organized into apsidally aligned and anti-aligned configurations with respect to Planet Nine's orbit. We present results on the role of Kuiper Belt initial conditions on the evolution of the outer Solar System using numerical simulations. Intriguingly, we find that the final perihelion distance distribution depends strongly on the primordial state of the system, and demonstrate that a bimodal structure corresponding to the existence of both aligned and anti-aligned clusters is only reproduced if the initial perihelion distribution is assumed to extend well beyond 36 AU. The bimodality in the final perihelion distance distribution is due to the permanently stable objects, with the lower perihelion peak corresponding to the anti-aligned orbits and the higher perihelion peak corresponding to the aligned orbits. We identify the mechanisms that enable the persistent stability of these objects and locate the regions of phase space in which they reside. The obtained results contextualize the Planet Nine hypothesis within the broader narrative of solar system formation, and offer further insight into the observational search for Planet Nine.

  6. Combining bimodal presentation schemes and buzz groups improves clinical reasoning and learning at morning report.

    PubMed

    Balslev, Thomas; Rasmussen, Astrid Bruun; Skajaa, Torjus; Nielsen, Jens Peter; Muijtjens, Arno; De Grave, Willem; Van Merriënboer, Jeroen

    2014-12-11

    Abstract Morning reports offer opportunities for intensive work-based learning. In this controlled study, we measured learning processes and outcomes with the report of paediatric emergency room patients. Twelve specialists and 12 residents were randomised into four groups and discussed the same two paediatric cases. The groups differed in their presentation modality (verbal only vs. verbal + text) and the use of buzz groups (with vs. without). The verbal interactions were analysed for clinical reasoning processes. Perceptions of learning and judgment of learning were reported in a questionnaire. Diagnostic accuracy was assessed by a 20-item multiple-choice test. Combined bimodal presentation and buzz groups increased the odds ratio of clinical reasoning to occur in the discussion of cases by a factor of 1.90 (p = 0.013), indicating superior reasoning for buzz groups working with bimodal materials. For specialists, a positive effect of bimodal presentation was found on perceptions of learning (p < 0.05), and for residents, a positive effect of buzz groups was found on judgment of learning (p < 0.005). A positive effect of bimodal presentation on diagnostic accuracy was noted in the specialists (p < 0.05). Combined bimodal presentation and buzz group discussion of emergency cases improves clinicians' clinical reasoning and learning.

  7. Influence of Controlled Cooling in Bimodal Scaffold Fabrication Using Polymers with Different Melting Temperatures.

    PubMed

    Lara-Padilla, Hernan; Mendoza-Buenrostro, Christian; Cardenas, Diego; Rodriguez-Garcia, Aida; Rodriguez, Ciro A

    2017-06-11

    The combination of different materials and capabilities to manufacture at several scales open new possibilities in scaffold design for bone regeneration. This work is focused on bimodal scaffolds that combine polylactic acid (PLA) melt extruded strands with polycaprolactone (PCL) electrospun fibers. This type of bimodal scaffold offers better mechanical properties, compared to the use of PCL for the extruded strands, and provides potential a means for controlled drug and/or growth factor delivery through the electrospun fibers. The technologies of fused deposition modeling (FDM) and electrospinning were combined to create 3D bimodal constructs. The system uses a controlled cooling system allowing the combination of polymers with different melting temperatures to generate integrated scaffold architecture. The thermoplastic polymers used in the FDM process enhance the mechanical properties of the bimodal scaffold and control the pore structure. Integrated layers of electrospun microfibers induce an increase of the surface area for cell culture purposes, as well as potential in situ controlled drug and/or growth factor delivery. The proposed bimodal scaffolds (PLA extruded strands and PCL electrospun fibers) show appropriate morphology and better mechanical properties when compared to the use of PCL extruded strands. On average, bimodal scaffolds with overall dimensions of 30 × 30 × 2.4 mm³ (strand diameter of 0.5 mm, strand stepover of 2.5 mm, pore size of 2 mm, and layer height of 0.3 mm) showed scaffold stiffness of 23.73 MPa and compression strength of 3.85 MPa. A cytotoxicity assay based human fibroblasts showed viability of the scaffold materials.

  8. Influence of Controlled Cooling in Bimodal Scaffold Fabrication Using Polymers with Different Melting Temperatures

    PubMed Central

    Lara-Padilla, Hernan; Mendoza-Buenrostro, Christian; Cardenas, Diego; Rodriguez-Garcia, Aida; Rodriguez, Ciro A.

    2017-01-01

    The combination of different materials and capabilities to manufacture at several scales open new possibilities in scaffold design for bone regeneration. This work is focused on bimodal scaffolds that combine polylactic acid (PLA) melt extruded strands with polycaprolactone (PCL) electrospun fibers. This type of bimodal scaffold offers better mechanical properties, compared to the use of PCL for the extruded strands, and provides potential a means for controlled drug and/or growth factor delivery through the electrospun fibers. The technologies of fused deposition modeling (FDM) and electrospinning were combined to create 3D bimodal constructs. The system uses a controlled cooling system allowing the combination of polymers with different melting temperatures to generate integrated scaffold architecture. The thermoplastic polymers used in the FDM process enhance the mechanical properties of the bimodal scaffold and control the pore structure. Integrated layers of electrospun microfibers induce an increase of the surface area for cell culture purposes, as well as potential in situ controlled drug and/or growth factor delivery. The proposed bimodal scaffolds (PLA extruded strands and PCL electrospun fibers) show appropriate morphology and better mechanical properties when compared to the use of PCL extruded strands. On average, bimodal scaffolds with overall dimensions of 30 × 30 × 2.4 mm3 (strand diameter of 0.5 mm, strand stepover of 2.5 mm, pore size of 2 mm, and layer height of 0.3 mm) showed scaffold stiffness of 23.73 MPa and compression strength of 3.85 MPa. A cytotoxicity assay based human fibroblasts showed viability of the scaffold materials. PMID:28773000

  9. Auditory, visual, and bimodal data link displays and how they support pilot performance.

    PubMed

    Steelman, Kelly S; Talleur, Donald; Carbonari, Ronald; Yamani, Yusuke; Nunes, Ashley; McCarley, Jason S

    2013-06-01

    The design of data link messaging systems to ensure optimal pilot performance requires empirical guidance. The current study examined the effects of display format (auditory, visual, or bimodal) and visual display position (adjacent to instrument panel or mounted on console) on pilot performance. Subjects performed five 20-min simulated single-pilot flights. During each flight, subjects received messages from a simulated air traffic controller. Messages were delivered visually, auditorily, or bimodally. Subjects were asked to read back each message aloud and then perform the instructed maneuver. Visual and bimodal displays engendered lower subjective workload and better altitude tracking than auditory displays. Readback times were shorter with the two unimodal visual formats than with any of the other three formats. Advantages for the unimodal visual format ranged in size from 2.8 s to 3.8 s relative to the bimodal upper left and auditory formats, respectively. Auditory displays allowed slightly more head-up time (3 to 3.5 seconds per minute) than either visual or bimodal displays. Position of the visual display had only modest effects on any measure. Combined with the results from previous studies by Helleberg and Wickens and Lancaster and Casali the current data favor visual and bimodal displays over auditory displays; unimodal auditory displays were favored by only one measure, head-up time, and only very modestly. Data evinced no statistically significant effects of visual display position on performance, suggesting that, contrary to expectations, the placement of a visual data link display may be of relatively little consequence to performance.

  10. Comparison of bimodal and bilateral cochlear implant users on speech recognition with competing talker, music perception, affective prosody discrimination, and talker identification.

    PubMed

    Cullington, Helen E; Zeng, Fan-Gang

    2011-02-01

    Despite excellent performance in speech recognition in quiet, most cochlear implant users have great difficulty with speech recognition in noise, music perception, identifying tone of voice, and discriminating different talkers. This may be partly due to the pitch coding in cochlear implant speech processing. Most current speech processing strategies use only the envelope information; the temporal fine structure is discarded. One way to improve electric pitch perception is to use residual acoustic hearing via a hearing aid on the nonimplanted ear (bimodal hearing). This study aimed to test the hypothesis that bimodal users would perform better than bilateral cochlear implant users on tasks requiring good pitch perception. Four pitch-related tasks were used. 1. Hearing in Noise Test (HINT) sentences spoken by a male talker with a competing female, male, or child talker. 2. Montreal Battery of Evaluation of Amusia. This is a music test with six subtests examining pitch, rhythm and timing perception, and musical memory. 3. Aprosodia Battery. This has five subtests evaluating aspects of affective prosody and recognition of sarcasm. 4. Talker identification using vowels spoken by 10 different talkers (three men, three women, two boys, and two girls). Bilateral cochlear implant users were chosen as the comparison group. Thirteen bimodal and 13 bilateral adult cochlear implant users were recruited; all had good speech perception in quiet. There were no significant differences between the mean scores of the bimodal and bilateral groups on any of the tests, although the bimodal group did perform better than the bilateral group on almost all tests. Performance on the different pitch-related tasks was not correlated, meaning that if a subject performed one task well they would not necessarily perform well on another. The correlation between the bimodal users' hearing threshold levels in the aided ear and their performance on these tasks was weak. Although the bimodal cochlear implant group performed better than the bilateral group on most parts of the four pitch-related tests, the differences were not statistically significant. The lack of correlation between test results shows that the tasks used are not simply providing a measure of pitch ability. Even if the bimodal users have better pitch perception, the real-world tasks used are reflecting more diverse skills than pitch. This research adds to the existing speech perception, language, and localization studies that show no significant difference between bimodal and bilateral cochlear implant users.

  11. Benefit and predictive factors for speech perception outcomes in pediatric bilateral cochlear implant recipients.

    PubMed

    Chang, Young-Soo; Hong, Sung Hwa; Kim, Eun Yeon; Choi, Ji Eun; Chung, Won-Ho; Cho, Yang-Sun; Moon, Il Joon

    2018-05-18

    Despite recent advancement in the prediction of cochlear implant outcome, the benefit of bilateral procedures compared to bimodal stimulation and how we predict speech perception outcomes of sequential bilateral cochlear implant based on bimodal auditory performance in children remain unclear. This investigation was performed: (1) to determine the benefit of sequential bilateral cochlear implant and (2) to identify the associated factors for the outcome of sequential bilateral cochlear implant. Observational and retrospective study. We retrospectively analyzed 29 patients with sequential cochlear implant following bimodal-fitting condition. Audiological evaluations were performed; the categories of auditory performance scores, speech perception with monosyllable and disyllables words, and the Korean version of Ling. Audiological evaluations were performed before sequential cochlear implant with the bimodal fitting condition (CI1+HA) and one year after the sequential cochlear implant with bilateral cochlear implant condition (CI1+CI2). The good Performance Group (GP) was defined as follows; 90% or higher in monosyllable and bisyllable tests with auditory-only condition or 20% or higher improvement of the scores with CI1+CI2. Age at first implantation, inter-implant interval, categories of auditory performance score, and various comorbidities were analyzed by logistic regression analysis. Compared to the CI1+HA, CI1+CI2 provided significant benefit in categories of auditory performance, speech perception, and Korean version of Ling results. Preoperative categories of auditory performance scores were the only associated factor for being GP (odds ratio=4.38, 95% confidence interval - 95%=1.07-17.93, p=0.04). The children with limited language development in bimodal condition should be considered as the sequential bilateral cochlear implant and preoperative categories of auditory performance score could be used as the predictor in speech perception after sequential cochlear implant. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris.

    PubMed

    Déaux, Éloïse C; Clarke, Jennifer A; Charrier, Isabelle

    2015-01-01

    Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function.

  13. On the Five-Moment Hamburger Maximum Entropy Reconstruction

    NASA Astrophysics Data System (ADS)

    Summy, D. P.; Pullin, D. I.

    2018-05-01

    We consider the Maximum Entropy Reconstruction (MER) as a solution to the five-moment truncated Hamburger moment problem in one dimension. In the case of five monomial moment constraints, the probability density function (PDF) of the MER takes the form of the exponential of a quartic polynomial. This implies a possible bimodal structure in regions of moment space. An analytical model is developed for the MER PDF applicable near a known singular line in a centered, two-component, third- and fourth-order moment (μ _3 , μ _4 ) space, consistent with the general problem of five moments. The model consists of the superposition of a perturbed, centered Gaussian PDF and a small-amplitude packet of PDF-density, called the outlying moment packet (OMP), sitting far from the mean. Asymptotic solutions are obtained which predict the shape of the perturbed Gaussian and both the amplitude and position on the real line of the OMP. The asymptotic solutions show that the presence of the OMP gives rise to an MER solution that is singular along a line in (μ _3 , μ _4 ) space emanating from, but not including, the point representing a standard normal distribution, or thermodynamic equilibrium. We use this analysis of the OMP to develop a numerical regularization of the MER, creating a procedure we call the Hybrid MER (HMER). Compared with the MER, the HMER is a significant improvement in terms of robustness and efficiency while preserving accuracy in its prediction of other important distribution features, such as higher order moments.

  14. Simulating bimodal tall fescue growth with a degree-day-based process-oriented plant model

    USDA-ARS?s Scientific Manuscript database

    Plant growth simulation models have a temperature response function driving development, with a base temperature and an optimum temperature defined. Such growth simulation models often function well when plant development rate shows a continuous change throughout the growing season. This approach ...

  15. A bimodal search strategy for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Olsen, E. T.; Tarter, J.

    1980-01-01

    The search strategy and resultant observational plan which was developed to carry out a comprehensive Search for Extraterrestrial Intelligence (SETI) over that portion of the electromagnetic spectrum known as the terrestrial microwave window is described. The limiting sensitivity achieved was parameterized and calculated for Deep Space Network antennas as well as several radio astronomy observatories. A brief description of the instrumentation to be employed in the search and the classes of signals to be looked for is given. One observational goal is to survey the entire sky over a wide range of frequency to a relatively constant flux level. This survey ensures that all potential life sites are observed to some limiting equivalent isotropic radiated power depending upon their distance. A second goal is to survey a set of potential transmission sites selected a priori to be especially promising, achieving very high sensitivity over a smaller range of frequency.

  16. Trans-species learning of cellular signaling systems with bimodal deep belief networks

    PubMed Central

    Chen, Lujia; Cai, Chunhui; Chen, Vicky; Lu, Xinghua

    2015-01-01

    Motivation: Model organisms play critical roles in biomedical research of human diseases and drug development. An imperative task is to translate information/knowledge acquired from model organisms to humans. In this study, we address a trans-species learning problem: predicting human cell responses to diverse stimuli, based on the responses of rat cells treated with the same stimuli. Results: We hypothesized that rat and human cells share a common signal-encoding mechanism but employ different proteins to transmit signals, and we developed a bimodal deep belief network and a semi-restricted bimodal deep belief network to represent the common encoding mechanism and perform trans-species learning. These ‘deep learning’ models include hierarchically organized latent variables capable of capturing the statistical structures in the observed proteomic data in a distributed fashion. The results show that the models significantly outperform two current state-of-the-art classification algorithms. Our study demonstrated the potential of using deep hierarchical models to simulate cellular signaling systems. Availability and implementation: The software is available at the following URL: http://pubreview.dbmi.pitt.edu/TransSpeciesDeepLearning/. The data are available through SBV IMPROVER website, https://www.sbvimprover.com/challenge-2/overview, upon publication of the report by the organizers. Contact: xinghua@pitt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25995230

  17. Trans-species learning of cellular signaling systems with bimodal deep belief networks.

    PubMed

    Chen, Lujia; Cai, Chunhui; Chen, Vicky; Lu, Xinghua

    2015-09-15

    Model organisms play critical roles in biomedical research of human diseases and drug development. An imperative task is to translate information/knowledge acquired from model organisms to humans. In this study, we address a trans-species learning problem: predicting human cell responses to diverse stimuli, based on the responses of rat cells treated with the same stimuli. We hypothesized that rat and human cells share a common signal-encoding mechanism but employ different proteins to transmit signals, and we developed a bimodal deep belief network and a semi-restricted bimodal deep belief network to represent the common encoding mechanism and perform trans-species learning. These 'deep learning' models include hierarchically organized latent variables capable of capturing the statistical structures in the observed proteomic data in a distributed fashion. The results show that the models significantly outperform two current state-of-the-art classification algorithms. Our study demonstrated the potential of using deep hierarchical models to simulate cellular signaling systems. The software is available at the following URL: http://pubreview.dbmi.pitt.edu/TransSpeciesDeepLearning/. The data are available through SBV IMPROVER website, https://www.sbvimprover.com/challenge-2/overview, upon publication of the report by the organizers. xinghua@pitt.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Words in the bilingual brain: an fNIRS brain imaging investigation of lexical processing in sign-speech bimodal bilinguals

    PubMed Central

    Kovelman, Ioulia; Shalinsky, Mark H.; Berens, Melody S.; Petitto, Laura-Ann

    2014-01-01

    Early bilingual exposure, especially exposure to two languages in different modalities such as speech and sign, can profoundly affect an individual's language, culture, and cognition. Here we explore the hypothesis that bimodal dual language exposure can also affect the brain's organization for language. These changes occur across brain regions universally important for language and parietal regions especially critical for sign language (Newman et al., 2002). We investigated three groups of participants (N = 29) that completed a word repetition task in American Sign Language (ASL) during fNIRS brain imaging. Those groups were (1) hearing ASL-English bimodal bilinguals (n = 5), (2) deaf ASL signers (n = 7), and (3) English monolinguals naïve to sign language (n = 17). The key finding of the present study is that bimodal bilinguals showed reduced activation in left parietal regions relative to deaf ASL signers when asked to use only ASL. In contrast, this group of bimodal signers showed greater activation in left temporo-parietal regions relative to English monolinguals when asked to switch between their two languages (Kovelman et al., 2009). Converging evidence now suggest that bimodal bilingual experience changes the brain bases of language, including the left temporo-parietal regions known to be critical for sign language processing (Emmorey et al., 2007). The results provide insight into the resilience and constraints of neural plasticity for language and bilingualism. PMID:25191247

  19. Generation of felsic rocks of bimodal volcanic suites from thinned and rifted continental margins: Geochemical and Nd, Sr, Pb-isotopic evidence from Haida Gwaii, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Dostal, Jaroslav; Hamilton, Tark S.; Shellnutt, J. Gregory

    2017-11-01

    The compositionally bimodal volcanic rocks of the Eocene-Miocene Masset Formation from Queen Charlotte basin, Haida Gwaii, British Columbia, Canada, underlie an area greater than 5000 km2 where their exposed sections are up to 1.6 km thick. The suite of mafic and felsic rocks (dacites and rhyolites) that erupted closely spaced in time, in both submarine and subaerial conditions, was associated with significant crustal extension and thin continental crust ( 19-24 km thick), with volcanism persisting for 35 Ma (from 46 to 11 Ma). Predominant mafic types (mafic:felsic 2:1) are moderately enriched mid-ocean-ridge-like basalts that were derived by a partial melting of a heterogeneous spinel peridotite source. Felsic rocks are plagioclase-phyric, two pyroxene-bearing, mainly peraluminous types which have Nd, Pb and Sr isotopic compositions overlapping those of basalts including high positive ƐNd(t) values (up to >+6). The chondrite-normalized REE patterns show light REE enrichment but flat heavy REE along with a variable negative Eu anomaly. Mineralogy, major and trace elements, Nd-Sr-Pb isotopic data and model calculations using MELTS are consistent with a derivation of felsic rocks from the basalts by fractional crystallization. The intercalation of basaltic and felsic rocks suggests the existence of separate, simultaneously active plumbing and feeder systems and relatively stable magma chamber(s) to generate large volumes of differentiated felsic magmas by fractional crystallization. The Masset rocks provide an example for the generation of felsic magmas of bimodal volcanic suites during rifting along a thinned continental margin. Appendix 1b Representative analyses of minerals of the Masset Formation felsic rocks

  20. A Comparison of Deterministic and Stochastic Modeling Approaches for Biochemical Reaction Systems: On Fixed Points, Means, and Modes.

    PubMed

    Hahl, Sayuri K; Kremling, Andreas

    2016-01-01

    In the mathematical modeling of biochemical reactions, a convenient standard approach is to use ordinary differential equations (ODEs) that follow the law of mass action. However, this deterministic ansatz is based on simplifications; in particular, it neglects noise, which is inherent to biological processes. In contrast, the stochasticity of reactions is captured in detail by the discrete chemical master equation (CME). Therefore, the CME is frequently applied to mesoscopic systems, where copy numbers of involved components are small and random fluctuations are thus significant. Here, we compare those two common modeling approaches, aiming at identifying parallels and discrepancies between deterministic variables and possible stochastic counterparts like the mean or modes of the state space probability distribution. To that end, a mathematically flexible reaction scheme of autoregulatory gene expression is translated into the corresponding ODE and CME formulations. We show that in the thermodynamic limit, deterministic stable fixed points usually correspond well to the modes in the stationary probability distribution. However, this connection might be disrupted in small systems. The discrepancies are characterized and systematically traced back to the magnitude of the stoichiometric coefficients and to the presence of nonlinear reactions. These factors are found to synergistically promote large and highly asymmetric fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal systems can emerge. This clearly challenges the role of ODE modeling in the description of cellular signaling and regulation, where some of the involved components usually occur in low copy numbers. Nevertheless, systems whose bimodality originates from deterministic bistability are found to sustain a more robust separation of the two states compared to bimodal, but monostable systems. In regulatory circuits that require precise coordination, ODE modeling is thus still expected to provide relevant indications on the underlying dynamics.

  1. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application.

    PubMed

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-22

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag + ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm 2 ) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s -1 heat-up rate at a low input power density.

  2. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application

    NASA Astrophysics Data System (ADS)

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-01

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.

  3. How birds direct impulse to minimize the energetic cost of foraging flight

    PubMed Central

    Chin, Diana D.; Lentink, David

    2017-01-01

    Birds frequently hop and fly between tree branches to forage. To determine the mechanical energy trade-offs of their bimodal locomotion, we rewarded four Pacific parrotlets with a seed for flying voluntarily between instrumented perches inside a new aerodynamic force platform. By integrating direct measurements of both leg and wing forces with kinematics in a bimodal long jump and flight model, we discovered that parrotlets direct their leg impulse to minimize the mechanical energy needed to forage over different distances and inclinations. The bimodal locomotion model further shows how even a small lift contribution from a single proto-wingbeat would have significantly lengthened the long jump of foraging arboreal dinosaurs. These avian bimodal locomotion strategies can also help robots traverse cluttered environments more effectively. PMID:28560342

  4. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris

    PubMed Central

    Déaux, Éloïse C.; Clarke, Jennifer A.; Charrier, Isabelle

    2015-01-01

    Evidence of animal multimodal signalling is widespread and compelling. Dogs’ aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs’ bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as ‘equivalent’ or ‘enhancing’ as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal’s function. PMID:26571266

  5. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.

    PubMed

    De Michele, Carlo; Accatino, Francesco

    2014-01-01

    Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.

  6. Towards an integrated optofluidic system for highly sensitive detection of antibiotics in seawater incorporating bimodal waveguide photonic biosensors and complex, active microfluidics

    NASA Astrophysics Data System (ADS)

    Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.

    2016-12-01

    We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.

  7. Sound Localization and Speech Perception in Noise of Pediatric Cochlear Implant Recipients: Bimodal Fitting Versus Bilateral Cochlear Implants.

    PubMed

    Choi, Ji Eun; Moon, Il Joon; Kim, Eun Yeon; Park, Hee-Sung; Kim, Byung Kil; Chung, Won-Ho; Cho, Yang-Sun; Brown, Carolyn J; Hong, Sung Hwa

    The aim of this study was to compare binaural performance of auditory localization task and speech perception in babble measure between children who use a cochlear implant (CI) in one ear and a hearing aid (HA) in the other (bimodal fitting) and those who use bilateral CIs. Thirteen children (mean age ± SD = 10 ± 2.9 years) with bilateral CIs and 19 children with bimodal fitting were recruited to participate. Sound localization was assessed using a 13-loudspeaker array in a quiet sound-treated booth. Speakers were placed in an arc from -90° azimuth to +90° azimuth (15° interval) in horizontal plane. To assess the accuracy of sound location identification, we calculated the absolute error in degrees between the target speaker and the response speaker during each trial. The mean absolute error was computed by dividing the sum of absolute errors by the total number of trials. We also calculated the hemifield identification score to reflect the accuracy of right/left discrimination. Speech-in-babble perception was also measured in the sound field using target speech presented from the front speaker. Eight-talker babble was presented in the following four different listening conditions: from the front speaker (0°), from one of the two side speakers (+90° or -90°), from both side speakers (±90°). Speech, spatial, and quality questionnaire was administered. When the two groups of children were directly compared with each other, there was no significant difference in localization accuracy ability or hemifield identification score under binaural condition. Performance in speech perception test was also similar to each other under most babble conditions. However, when the babble was from the first device side (CI side for children with bimodal stimulation or first CI side for children with bilateral CIs), speech understanding in babble by bilateral CI users was significantly better than that by bimodal listeners. Speech, spatial, and quality scores were comparable with each other between the two groups. Overall, the binaural performance was similar to each other between children who are fit with two CIs (CI + CI) and those who use bimodal stimulation (HA + CI) in most conditions. However, the bilateral CI group showed better speech perception than the bimodal CI group when babble was from the first device side (first CI side for bilateral CI users or CI side for bimodal listeners). Therefore, if bimodal performance is significantly below the mean bilateral CI performance on speech perception in babble, these results suggest that a child should be considered to transit from bimodal stimulation to bilateral CIs.

  8. Crossmodal attention switching: auditory dominance in temporal discrimination tasks.

    PubMed

    Lukas, Sarah; Philipp, Andrea M; Koch, Iring

    2014-11-01

    Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. How birds direct impulse to minimize the energetic cost of foraging flight

    NASA Astrophysics Data System (ADS)

    Chin, Diana; Lentink, David

    2017-11-01

    Foraging arboreal birds frequently hop and fly between branches by extending long-jumps with a few wingbeats. Their legs transfer impulse to the branch during takeoff and landing, and their wings transfer impulse to the air to support their bodyweight during flight. To determine the mechanical energy tradeoffs of this bimodal locomotion, we studied how Pacific parrotlets transfer impulse during voluntary perch-to-perch flights. We tested five foraging flight variations by varying the inclination and distance between instrumented perches inside a novel aerodynamic force platform. This setup enables direct, time-resolved in vivo measurements of both leg and wing forces, which we combined with high-speed kinematics to develop a new bimodal long-jump and flight model. The model demonstrates how parrotlets direct their leg impulse to minimize the mechanical energy needed for each flight, and further shows how even a single proto-wingbeat would have significantly lengthened the long-jump of foraging arboreal dinosaurs. By directing jumps and flapping their wings, both extant and ancestral birds could thus improve foraging effectiveness. Similarly, bimodal robots could also employ these locomotion strategies to traverse cluttered environments more effectively.

  10. Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo-alt-Bithiophene Based Polymer Thin Films.

    PubMed

    Xue, Guobiao; Zhao, Xikang; Qu, Ge; Xu, Tianbai; Gumyusenge, Aristide; Zhang, Zhuorui; Zhao, Yan; Diao, Ying; Li, Hanying; Mei, Jianguo

    2017-08-02

    The selection of side chains is important in design of conjugated polymers. It not only affects their intrinsic physical properties, but also has an impact on thin film morphologies. Recent reports suggested that a face-on/edge-on bimodal orientation observed in polymer thin films may be responsible for a three-dimensional (3D) charge transport and leads to dramatically improved mobility in donor-acceptor based conjugated polymers. To achieve a bimodal orientation in thin films has been seldom explored from the aspect of molecular design. Here, we demonstrate a design strategy involving the use of asymmetric side chains that enables an isoindigo-based polymer to adopt a distinct bimodal orientation, confirmed by the grazing incidence X-ray diffraction. As a result, the polymer presents an average high mobility of 3.8 ± 0.7 cm 2 V -1 s -1 with a maximum value of 5.1 cm 2 V -1 s -1 , in comparison with 0.47 and 0.51 cm 2 V -1 s -1 obtained from the two reference polymers. This study exemplifies a new strategy to develop the next generation polymers through understanding the property-structure relationship.

  11. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    PubMed Central

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  12. Bilingual processing of ASL-English code-blends: The consequences of accessing two lexical representations simultaneously

    PubMed Central

    Emmorey, Karen; Petrich, Jennifer; Gollan, Tamar H.

    2012-01-01

    Bilinguals who are fluent in American Sign Language (ASL) and English often produce code-blends - simultaneously articulating a sign and a word while conversing with other ASL-English bilinguals. To investigate the cognitive mechanisms underlying code-blend processing, we compared picture-naming times (Experiment 1) and semantic categorization times (Experiment 2) for code-blends versus ASL signs and English words produced alone. In production, code-blending did not slow lexical retrieval for ASL and actually facilitated access to low-frequency signs. However, code-blending delayed speech production because bimodal bilinguals synchronized English and ASL lexical onsets. In comprehension, code-blending speeded access to both languages. Bimodal bilinguals’ ability to produce code-blends without any cost to ASL implies that the language system either has (or can develop) a mechanism for switching off competition to allow simultaneous production of close competitors. Code-blend facilitation effects during comprehension likely reflect cross-linguistic (and cross-modal) integration at the phonological and/or semantic levels. The absence of any consistent processing costs for code-blending illustrates a surprising limitation on dual-task costs and may explain why bimodal bilinguals code-blend more often than they code-switch. PMID:22773886

  13. Bimodal imprint chips for peptide screening: integration of high-throughput sequencing by MS and affinity analyses by surface plasmon resonance imaging.

    PubMed

    Wang, Weizhi; Li, Menglin; Wei, Zewen; Wang, Zihua; Bu, Xiangli; Lai, Wenjia; Yang, Shu; Gong, He; Zheng, Hui; Wang, Yuqiao; Liu, Ying; Li, Qin; Fang, Qiaojun; Hu, Zhiyuan

    2014-04-15

    Peptide probes and drugs have widespread applications in disease diagnostics and therapy. The demand for peptides ligands with high affinity and high specificity toward various targets has surged in the biomedical field in recent years. The traditional peptide screening procedure involves selection, sequencing, and characterization steps, and each step is manual and tedious. Herein, we developed a bimodal imprint microarray system to embrace the whole peptide screening process. Silver-sputtered silicon chip fabricated with microwell array can trap and pattern the candidate peptide beads in a one-well-one-bead manner. Peptides on beads were photocleaved in situ. A portion of the peptide in each well was transferred to a gold-coated chip to print the peptide array for high-throughput affinity analyses by surface plasmon resonance imaging (SPRi), and the peptide left in the silver-sputtered chip was ready for in situ single bead sequencing by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Using the bimodal imprint chip system, affinity peptides toward AHA were efficiently screened out from the 7 × 10(4) peptide library. The method provides a solution for high efficiency peptide screening.

  14. Timing of seed dispersal generates a bimodal seed bank depth distribution

    USGS Publications Warehouse

    Espinar, J.L.; Thompson, K.; Garcia, L.V.

    2005-01-01

    The density of soil seed banks is normally highest at the soil surface and declines monotonically with depth. Sometimes, for a variety of reasons, peak density occurs below the surface but, except in severely disturbed soils, it is generally true that deeper seeds are older. In seasonally dry habitats that develop deep soil cracks during the dry season, it is possible that some seeds fall down cracks and rapidly become deeply buried. We investigated this possibility for three dominant clonal perennials (Scirpus maritimus, S. litoralis, and Juncus subulatus) in the Don??ana salt marsh, a nontidal marsh with a Mediterranean climate located in southwest Spain. Two species, which shed most of their seed during the dry season and have seeds with low buoyancy, had bimodal viable seed depth distributions, with peak densities at the surface and at 16-20 cm. A third species, which shed most seeds after soil cracks had closed and had seeds with high buoyancy, had viable seeds only in surface soil. Bimodal seed bank depth distributions may be relatively common in seasonally dry habitats with fine-textured soils, but their ecological significance has not been investigated.

  15. Study on movable fluid of low permeability reservoir with NMR technology

    NASA Astrophysics Data System (ADS)

    Wang, Hongqian; Li, Yajun; Gong, Houjian; Dong, Mingzhe

    2018-03-01

    Fluid mobility is an important factor affecting the development of low permeability reservoirs. The fluid mobility of 4 core samples obtained from the Shahejie group of Dongying Sag(China) is conducted using the nuclear magnetic resonance analysis technique. The main part of NMR T2 spectrum usually has two form: unimodal and bimodal. When the main part of T2 spectrum is bimodal, water in large pores flows out firstly, while water in small pores can't flow until the centrifugal force is large enough. When the main part of T2 spectrum is unimodal, the water in small pores is easier to flow out. The movable fluid percentage is mainly affected by the pore distribution, permeability and porosity.

  16. Perception of Sung Speech in Bimodal Cochlear Implant Users.

    PubMed

    Crew, Joseph D; Galvin, John J; Fu, Qian-Jie

    2016-11-11

    Combined use of a hearing aid (HA) and cochlear implant (CI) has been shown to improve CI users' speech and music performance. However, different hearing devices, test stimuli, and listening tasks may interact and obscure bimodal benefits. In this study, speech and music perception were measured in bimodal listeners for CI-only, HA-only, and CI + HA conditions, using the Sung Speech Corpus, a database of monosyllabic words produced at different fundamental frequencies. Sentence recognition was measured using sung speech in which pitch was held constant or varied across words, as well as for spoken speech. Melodic contour identification (MCI) was measured using sung speech in which the words were held constant or varied across notes. Results showed that sentence recognition was poorer with sung speech relative to spoken, with little difference between sung speech with a constant or variable pitch; mean performance was better with CI-only relative to HA-only, and best with CI + HA. MCI performance was better with constant words versus variable words; mean performance was better with HA-only than with CI-only and was best with CI + HA. Relative to CI-only, a strong bimodal benefit was observed for speech and music perception. Relative to the better ear, bimodal benefits remained strong for sentence recognition but were marginal for MCI. While variations in pitch and timbre may negatively affect CI users' speech and music perception, bimodal listening may partially compensate for these deficits. © The Author(s) 2016.

  17. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Lin; Sun Jihong, E-mail: jhsun@bjut.edu.cn; Li Yuzhen

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N{sub 2} adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f{sub t}=kt{sup n} was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing andmore » therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: > Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. > Loading and release profiles of aspirin in modified BMMs and MCM-41. > Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.« less

  18. The Generation of the Distant Kuiper Belt by Planet Nine from an Initially Broad Perihelion Distribution

    NASA Astrophysics Data System (ADS)

    Khain, Tali; Batygin, Konstantin; Brown, Michael E.

    2018-06-01

    The observation that the orbits of long-period Kuiper Belt objects (KBOs) are anomalously clustered in physical space has recently prompted the Planet Nine hypothesis—the proposed existence of a distant and eccentric planetary member of our solar system. Within the framework of this model, a Neptune-like perturber sculpts the orbital distribution of distant KBOs through a complex interplay of resonant and secular effects, such that in addition to perihelion-circulating objects, the surviving orbits get organized into apsidally aligned and anti-aligned configurations with respect to Planet Nine’s orbit. In this work, we investigate the role of Kuiper Belt initial conditions on the evolution of the outer solar system using numerical simulations. Intriguingly, we find that the final perihelion distance distribution depends strongly on the primordial state of the system, and we demonstrate that a bimodal structure corresponding to the existence of both aligned and anti-aligned clusters is only reproduced if the initial perihelion distribution is assumed to extend well beyond ∼36 au. The bimodality in the final perihelion distance distribution is due to the existence of permanently stable objects, with the lower perihelion peak corresponding to the anti-aligned orbits and the higher perihelion peak corresponding to the aligned orbits. We identify the mechanisms that enable the persistent stability of these objects and locate the regions of phase space in which they reside. The obtained results contextualize the Planet Nine hypothesis within the broader narrative of solar system formation and offer further insight into the observational search for Planet Nine.

  19. Development of Multisensory Spatial Integration and Perception in Humans

    ERIC Educational Resources Information Center

    Neil, Patricia A.; Chee-Ruiter, Christine; Scheier, Christian; Lewkowicz, David J.; Shimojo, Shinsuke

    2006-01-01

    Previous studies have shown that adults respond faster and more reliably to bimodal compared to unimodal localization cues. The current study investigated for the first time the development of audiovisual (A-V) integration in spatial localization behavior in infants between 1 and 10 months of age. We observed infants' head and eye movements in…

  20. Computational Aeroelastic Analysis of Ares Crew Launch Vehicle Bi-Modal Loading

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Chwalowski, Pawel

    2010-01-01

    A Reynolds averaged Navier-Stokes analysis, with and without dynamic aeroelastic effects, is presented for the Ares I-X launch vehicle at transonic Mach numbers and flight Reynolds numbers for two grid resolutions and two angles of attack. The purpose of the study is to quantify the force and moment increment imparted by the sudden transition from fully separated flow around the crew module - service module junction to that of the bi-modal flow state in which only part of the flow reattaches. The bi-modal flow phenomenon is of interest to the guidance, navigation and control community because it causes a discontinuous jump in forces and moments. Computations with a rigid structure at zero zero angle of attack indicate significant increases in normal force and pitching moment. Dynamic aeroelastic computations indicate the bi-modal flow state is insensitive to vehicle flexibility due to the resulting deflections imparting only very small changes in local angle of attack. At an angle of attack of 2.5deg, the magnitude of the pitching moment increment resulting from the bi-modal state nearly triples, while occurring at a slightly lower Mach number. Significant grid induced variations between the solutions indicate that further grid refinement is warranted.

  1. The Benefits of Bimodal Aiding on Extended Dimensions of Speech Perception: Intelligibility, Listening Effort, and Sound Quality

    PubMed Central

    Chalupper, Josef

    2017-01-01

    The benefits of combining a cochlear implant (CI) and a hearing aid (HA) in opposite ears on speech perception were examined in 15 adult unilateral CI recipients who regularly use a contralateral HA. A within-subjects design was carried out to assess speech intelligibility testing, listening effort ratings, and a sound quality questionnaire for the conditions CI alone, CIHA together, and HA alone when applicable. The primary outcome of bimodal benefit, defined as the difference between CIHA and CI, was statistically significant for speech intelligibility in quiet as well as for intelligibility in noise across tested spatial conditions. A reduction in effort on top of intelligibility at the highest tested signal-to-noise ratio was found. Moreover, the bimodal listening situation was rated to sound more voluminous, less tinny, and less unpleasant than CI alone. Listening effort and sound quality emerged as feasible and relevant measures to demonstrate bimodal benefit across a clinically representative range of bimodal users. These extended dimensions of speech perception can shed more light on the array of benefits provided by complementing a CI with a contralateral HA. PMID:28874096

  2. Photocatalytic Applications of Electrospun TiO2 Nanofibres Embedded with Bimodal Sized and Prismatic Gold Nanoparticles.

    PubMed

    Gopika, G; Asha, A M; Sivakumar, N; Balakrishnan, A; Nair, S V; Subramanian, K R V

    2015-09-01

    In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.

  3. Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task.

    PubMed

    Perronnet, Lorraine; Lécuyer, Anatole; Mano, Marsel; Bannier, Elise; Lotte, Fabien; Clerc, Maureen; Barillot, Christian

    2017-01-01

    Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D). Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback.

  4. Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task

    PubMed Central

    Perronnet, Lorraine; Lécuyer, Anatole; Mano, Marsel; Bannier, Elise; Lotte, Fabien; Clerc, Maureen; Barillot, Christian

    2017-01-01

    Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D). Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback. PMID:28473762

  5. Horizontal sound localization in cochlear implant users with a contralateral hearing aid.

    PubMed

    Veugen, Lidwien C E; Hendrikse, Maartje M E; van Wanrooij, Marc M; Agterberg, Martijn J H; Chalupper, Josef; Mens, Lucas H M; Snik, Ad F M; John van Opstal, A

    2016-06-01

    Interaural differences in sound arrival time (ITD) and in level (ILD) enable us to localize sounds in the horizontal plane, and can support source segregation and speech understanding in noisy environments. It is uncertain whether these cues are also available to hearing-impaired listeners who are bimodally fitted, i.e. with a cochlear implant (CI) and a contralateral hearing aid (HA). Here, we assessed sound localization behavior of fourteen bimodal listeners, all using the same Phonak HA and an Advanced Bionics CI processor, matched with respect to loudness growth. We aimed to determine the availability and contribution of binaural (ILDs, temporal fine structure and envelope ITDs) and monaural (loudness, spectral) cues to horizontal sound localization in bimodal listeners, by systematically varying the frequency band, level and envelope of the stimuli. The sound bandwidth had a strong effect on the localization bias of bimodal listeners, although localization performance was typically poor for all conditions. Responses could be systematically changed by adjusting the frequency range of the stimulus, or by simply switching the HA and CI on and off. Localization responses were largely biased to one side, typically the CI side for broadband and high-pass filtered sounds, and occasionally to the HA side for low-pass filtered sounds. HA-aided thresholds better than 45 dB HL in the frequency range of the stimulus appeared to be a prerequisite, but not a guarantee, for the ability to indicate sound source direction. We argue that bimodal sound localization is likely based on ILD cues, even at frequencies below 1500 Hz for which the natural ILDs are small. These cues are typically perturbed in bimodal listeners, leading to a biased localization percept of sounds. The high accuracy of some listeners could result from a combination of sufficient spectral overlap and loudness balance in bimodal hearing. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Amazonian forest-savanna bistability and human impact

    NASA Astrophysics Data System (ADS)

    Wuyts, Bert; Champneys, Alan R.; House, Joanna I.

    2017-05-01

    A bimodal distribution of tropical tree cover at intermediate precipitation levels has been presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data into those from human-unaffected areas and those from regions close to human-cultivated zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is significantly enhanced close to cultivated zones. Assuming higher logging rates closer to cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than bistability there is a predictable spatial boundary, a Maxwell point, that separates regions where forest and savanna states are naturally selected. While bimodality can hence be explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of bimodality remaining in the human-unaffected data indicates that there is still bistability, although on smaller scales than claimed previously.

  7. How the bimodal format of presentation affects working memory: an overview.

    PubMed

    Mastroberardino, Serena; Santangelo, Valerio; Botta, Fabiano; Marucci, Francesco S; Olivetti Belardinelli, Marta

    2008-03-01

    The best format in which information that has to be recalled is presented has been investigated in several studies, which focused on the impact of bimodal stimulation on working memory performance. An enhancement of participant's performance in terms of correct recall has been repeatedly found, when bimodal formats of presentation (i.e., audiovisual) were compared to unimodal formats (i.e, either visual or auditory), in providing implications for multimedial learning. Several theoretical frameworks have been suggested in order to account for the bimodal advantage, ranging from those emphasizing early stages of processing (such as automatic alerting effects or multisensory integration processes) to those centred on late stages of processing (as postulated by the dual coding theory). The aim of this paper is to review previous contributions to this topic, providing a comprehensive theoretical framework, which is updated by the latest empirical studies.

  8. On the self-organizing process of large scale shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Andrew P. L.; Kim, Eun-jin; Liu, Han-Li

    2013-09-15

    Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2Dmore » hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.« less

  9. Auditory-visual fusion in speech perception in children with cochlear implants

    PubMed Central

    Schorr, Efrat A.; Fox, Nathan A.; van Wassenhove, Virginie; Knudsen, Eric I.

    2005-01-01

    Speech, for most of us, is a bimodal percept whenever we both hear the voice and see the lip movements of a speaker. Children who are born deaf never have this bimodal experience. We tested children who had been deaf from birth and who subsequently received cochlear implants for their ability to fuse the auditory information provided by their implants with visual information about lip movements for speech perception. For most of the children with implants (92%), perception was dominated by vision when visual and auditory speech information conflicted. For some, bimodal fusion was strong and consistent, demonstrating a remarkable plasticity in their ability to form auditory-visual associations despite the atypical stimulation provided by implants. The likelihood of consistent auditory-visual fusion declined with age at implant beyond 2.5 years, suggesting a sensitive period for bimodal integration in speech perception. PMID:16339316

  10. Evolution of twinning in extruded AZ31 alloy with bimodal grain structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcés, G., E-mail: ggarces@cenim.csic.es

    2017-04-15

    Twinning in extruded AZ31 alloy with a bimodal grain structure is studied under compression along the extrusion direction. This study has combined in-situ measurements during the compression tests by Synchrotron Radiation Diffraction and Acoustic Emission techniques and the evaluation of the microstructure and texture in post-mortem compression samples deformed at different strains. The microstructure of the alloy is characterized by the coexistence of large areas of fine dynamic recrystallized grains and coarse non-recrystallized grains elongated along extrusion direction. Twinning occurs initially in large elongated grains before the macroscopic yield stress which is controlled by the twinning in equiaxed dynamically recrystallizedmore » grains. - Highlights: • The AZ31 extruded at low temperature exhibits a bimodal grains structure. • Twinning takes place before macroscopic yielding in coarse non-DRXed grains. • DRXed grains controls the beginning of plasticity in magnesium alloys with bimodal grain structure.« less

  11. Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Grunewald, E.; Knight, R.

    2008-12-01

    The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over which heterogeneous pores are encountered in bimodal grain packs of pure quartz (long T2S) and hematite (short T2S). The scale of heterogeneity is varied by changing the mean grain size and relative mineral concentrations. When the mean grain size is small and the mineral concentrations are comparable, the T2-distribution is roughly monomodal indicating strong pore coupling. As the grain size is increased or the mineral concentrations are made increasingly uneven, the T2- distribution develops a bimodal character, more representative of the actual distribution of pore types. Numerical simulations of measurements in both experiment groups allow us to more closely investigate how the relaxing magnetization evolves in both time and space. Collectively, these experiments provide important insights into the effects of pore coupling on NMR measurements in heterogeneous systems and contribute to our ultimate goal of improving the interpretation of these data in complex near-surface sediments.

  12. Human turnover dynamics during sleep: statistical behavior and its modeling.

    PubMed

    Yoneyama, Mitsuru; Okuma, Yasuyuki; Utsumi, Hiroya; Terashi, Hiroo; Mitoma, Hiroshi

    2014-03-01

    Turnover is a typical intermittent body movement while asleep. Exploring its behavior may provide insights into the mechanisms and management of sleep. However, little is understood about the dynamic nature of turnover in healthy humans and how it can be modified in disease. Here we present a detailed analysis of turnover signals that are collected by accelerometry from healthy elderly subjects and age-matched patients with neurodegenerative disorders such as Parkinson's disease. In healthy subjects, the time intervals between consecutive turnover events exhibit a well-separated bimodal distribution with one mode at ⩽10 s and the other at ⩾100 s, whereas such bimodality tends to disappear in neurodegenerative patients. The discovery of bimodality and fine temporal structures (⩽10 s) is a contribution that is not revealed by conventional sleep recordings with less time resolution (≈30 s). Moreover, we estimate the scaling exponent of the interval fluctuations, which also shows a clear difference between healthy subjects and patients. We incorporate these experimental results into a computational model of human decision making. A decision is to be made at each simulation step between two choices: to keep on sleeping or to make a turnover, the selection of which is determined dynamically by comparing a pair of random numbers assigned to each choice. This decision is weighted by a single parameter that reflects the depth of sleep. The resulting simulated behavior accurately replicates many aspects of observed turnover patterns, including the appearance or disappearance of bimodality and leads to several predictions, suggesting that the depth parameter may be useful as a quantitative measure for differentiating between normal and pathological sleep. These findings have significant clinical implications and may pave the way for the development of practical sleep assessment technologies.

  13. Human turnover dynamics during sleep: Statistical behavior and its modeling

    NASA Astrophysics Data System (ADS)

    Yoneyama, Mitsuru; Okuma, Yasuyuki; Utsumi, Hiroya; Terashi, Hiroo; Mitoma, Hiroshi

    2014-03-01

    Turnover is a typical intermittent body movement while asleep. Exploring its behavior may provide insights into the mechanisms and management of sleep. However, little is understood about the dynamic nature of turnover in healthy humans and how it can be modified in disease. Here we present a detailed analysis of turnover signals that are collected by accelerometry from healthy elderly subjects and age-matched patients with neurodegenerative disorders such as Parkinson's disease. In healthy subjects, the time intervals between consecutive turnover events exhibit a well-separated bimodal distribution with one mode at ⩽10 s and the other at ⩾100 s, whereas such bimodality tends to disappear in neurodegenerative patients. The discovery of bimodality and fine temporal structures (⩽10 s) is a contribution that is not revealed by conventional sleep recordings with less time resolution (≈30 s). Moreover, we estimate the scaling exponent of the interval fluctuations, which also shows a clear difference between healthy subjects and patients. We incorporate these experimental results into a computational model of human decision making. A decision is to be made at each simulation step between two choices: to keep on sleeping or to make a turnover, the selection of which is determined dynamically by comparing a pair of random numbers assigned to each choice. This decision is weighted by a single parameter that reflects the depth of sleep. The resulting simulated behavior accurately replicates many aspects of observed turnover patterns, including the appearance or disappearance of bimodality and leads to several predictions, suggesting that the depth parameter may be useful as a quantitative measure for differentiating between normal and pathological sleep. These findings have significant clinical implications and may pave the way for the development of practical sleep assessment technologies.

  14. Neural correlates of audiotactile phonetic processing in early-blind readers: an fMRI study.

    PubMed

    Pishnamazi, Morteza; Nojaba, Yasaman; Ganjgahi, Habib; Amousoltani, Asie; Oghabian, Mohammad Ali

    2016-05-01

    Reading is a multisensory function that relies on arbitrary associations between auditory speech sounds and symbols from a second modality. Studies of bimodal phonetic perception have mostly investigated the integration of visual letters and speech sounds. Blind readers perform an analogous task by using tactile Braille letters instead of visual letters. The neural underpinnings of audiotactile phonetic processing have not been studied before. We used functional magnetic resonance imaging to reveal the neural correlates of audiotactile phonetic processing in 16 early-blind Braille readers. Braille letters and corresponding speech sounds were presented in unimodal, and congruent/incongruent bimodal configurations. We also used a behavioral task to measure the speed of blind readers in identifying letters presented via tactile and/or auditory modalities. Reaction times for tactile stimuli were faster. The reaction times for bimodal stimuli were equal to those for the slower auditory-only stimuli. fMRI analyses revealed the convergence of unimodal auditory and unimodal tactile responses in areas of the right precentral gyrus and bilateral crus I of the cerebellum. The left and right planum temporale fulfilled the 'max criterion' for bimodal integration, but activities of these areas were not sensitive to the phonetical congruency between sounds and Braille letters. Nevertheless, congruency effects were found in regions of frontal lobe and cerebellum. Our findings suggest that, unlike sighted readers who are assumed to have amodal phonetic representations, blind readers probably process letters and sounds separately. We discuss that this distinction might be due to mal-development of multisensory neural circuits in early blinds or it might be due to inherent differences between Braille and print reading mechanisms.

  15. Magnetically engineered SnO2 quantum dots as a bimodal agent for optical and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Dutta, Dipa; Gupta, Jagriti; Thakur, Dinbandhu; Bahadur, Dhirendra

    2017-12-01

    Combining more than one imaging technique into a single system can outweigh the limitations of conventional imaging techniques. Pairing optically active quantum dots (QDs) with superparamagnetic MRI agent is an adorable way to develop probes for bimodal imaging. Tiny SnO2 quantum dot embedded iron oxide (IO) nanocomposite (SQD-IO) is synthesized. This combines the superparamagnetic property of IO nanoparticles (NPs) and special optical properties of SnO2 QDs, and is explored as a bimodal imaging agent. Morphological studies of the nanocomposite reveal that 3 nm tiny SnO2 QDs are embedded in ~30 nm γ-Fe2O3 NPs. The SQD-IO preserves the intrinsic superparamagnetic behaviour of its constituent IO NPs with a magnetization ~21.4 emu g-1 measured at an applied field of 20k Oe. The emission colour of the nanocomposite is tuned by simply varying the excitation wavelength. The centre of the emission band shifts from 570 to 600 nm as the excitation alters from 488 to 535 nm. The cytotoxicity assessment indicates that the nanocomposite is suitable for its in vitro use. Transverse proton relaxivity (141 mM-1 s-1) of the nanocomposite is higher than the widely used negative contrast agent Feridex (R2  =  98.3 mM-1 s-1). The confocal laser scanning microscope images give evidence of the cellular uptake behaviour of SQD-IO in HeLa cells and it is seen that QDs retain their optical properties within the intracellular environment. The high R2 value for MRI and the tunable florescence images of HeLa cells essentially establish SQD-IO as a potential probe for bimodal imaging.

  16. Bimodal emotion congruency is critical to preverbal infants' abstract rule learning.

    PubMed

    Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei

    2016-05-01

    Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of the shapes alone (circle-triangle-circle) or auditory presentation of the syllables (la-ba-la) alone. However, the mechanisms and constraints for this bimodal learning facilitation are still unknown. In this study, we used audio-visual relation congruency between bimodal stimulation to disentangle possible facilitation sources. We exposed 8- to 10-month-old infants to an AAB sequence consisting of visual faces with affective expressions and/or auditory voices conveying emotions. Our results showed that infants were able to distinguish the learned AAB rule from other novel rules under bimodal stimulation when the affects in audio and visual stimuli were congruently paired (Experiments 1A and 2A). Infants failed to acquire the same rule when audio-visual stimuli were incongruently matched (Experiment 2B) and when only the visual (Experiment 1B) or the audio (Experiment 1C) stimuli were presented. Our results highlight that bimodal facilitation in infant rule learning is not only dependent on better statistical probability and redundant sensory information, but also the relational congruency of audio-visual information. A video abstract of this article can be viewed at https://m.youtube.com/watch?v=KYTyjH1k9RQ. © 2015 John Wiley & Sons Ltd.

  17. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus

    PubMed Central

    Koehler, Seth D.; Shore, Susan E.

    2015-01-01

    Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit. PMID:26289461

  18. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2016-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of zero-gravity (0-g) experienced by cosmonauts and astronauts during their approximately 0.5 to 1.2 year long stays in low Earth orbit (LEO). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity (AG) spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced bimodal nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (Isp) capability of approximately 900 s-twice that of today's best chemical rockets. The AG/MTV concepts using conventional Nuclear Thermal Propulsion (NTP) carry twin cylindrical International Space Station (ISS)- type habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own closed secondary helium(He)-xenon (Xe) gas loop and Brayton Rotating Unit (BRU) that can generate 10s of kilowatts (kWe) of spacecraft electrical power during the mission coast phase eliminating the need for large PVAs. A single inflatable TransHab-type habitation module is also used with multiple vertical floors oriented radial to the MTV spin axis. The BNTR MTV's geometry-long and linear-is naturally compatible with AG operation. By rotating the vehicle about its center-of-mass (CM) and perpendicular to its flight vector at approximately 3.0 to 5.2 rpm, a centrifugal force and AG environment corresponding to approximately 0.38 to 1.0 g can be established to help maintain crew fitness out to Mars and back. Vehicles using NTP/ Bimodal Nuclear Thermal Propulsion (BNTP) can more readily accommodate the heavier payload mass and increased RCS propellant loading associated with AG operation, and can travel faster to and from Mars thereby reducing the crew's exposure to galactic cosmic radiation and solar flares. Mission scenario descriptions, key vehicle features and operational characteristics for each propulsion option are presented using the lift capability and payload volumes estimated for the Space Launch System (SLS)-1B and followon Heavy Lift Vehicle (HLV).

  19. Bimodal SLD Ice Accretion on a NACA 0012 Airfoil Model

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark; Tsao, Jen-Ching; King-Steen, Laura

    2016-01-01

    This presentation describes the results of ice accretion measurements on a NACA 0012 airfoil model, from the NASA Icing Research Tunnel, using an icing cloud composed of a bimodal distribution of Supercooled Large Droplets. The data consists of photographs, laser scans of the ice surface, and measurements of the mass of ice for each icing condition. The results of ice shapes accumulated as a result of exposure to an icing cloud with a bimodal droplet distribution were compared to the ice shapes resulting from an equivalent cloud composed of a droplet distribution with a standard bell curve shape.

  20. Nonlinear processing of a multicomponent communication signal by combination-sensitive neurons in the anuran inferior colliculus.

    PubMed

    Lee, Norman; Schrode, Katrina M; Bee, Mark A

    2017-09-01

    Diverse animals communicate using multicomponent signals. How a receiver's central nervous system integrates multiple signal components remains largely unknown. We investigated how female green treefrogs (Hyla cinerea) integrate the multiple spectral components present in male advertisement calls. Typical calls have a bimodal spectrum consisting of formant-like low-frequency (~0.9 kHz) and high-frequency (~2.7 kHz) components that are transduced by different sensory organs in the inner ear. In behavioral experiments, only bimodal calls reliably elicited phonotaxis in no-choice tests, and they were selectively chosen over unimodal calls in two-alternative choice tests. Single neurons in the inferior colliculus of awake, passively listening subjects were classified as combination-insensitive units (27.9%) or combination-sensitive units (72.1%) based on patterns of relative responses to the same bimodal and unimodal calls. Combination-insensitive units responded similarly to the bimodal call and one or both unimodal calls. In contrast, combination-sensitive units exhibited both linear responses (i.e., linear summation) and, more commonly, nonlinear responses (e.g., facilitation, compressive summation, or suppression) to the spectral combination in the bimodal call. These results are consistent with the hypothesis that nonlinearities play potentially critical roles in spectral integration and in the neural processing of multicomponent communication signals.

  1. mocca code for star cluster simulations - VI. Bimodal spatial distribution of blue stragglers

    NASA Astrophysics Data System (ADS)

    Hypki, Arkadiusz; Giersz, Mirek

    2017-11-01

    The paper presents an analysis of formation mechanism and properties of spatial distributions of blue stragglers in evolving globular clusters, based on numerical simulations done with the mocca code. First, there are presented N-body and mocca simulations which try to reproduce the simulations presented by Ferraro et al. (2012). Then, we show the agreement between N-body and the mocca code. Finally, we discuss the formation process of the bimodal distribution. We report that we could not reproduce simulations from Ferraro et al. (2012). Moreover, we show that the so-called bimodal spatial distribution of blue stragglers is a very transient feature. It is formed for one snapshot in time and it can easily vanish in the next one. Moreover, we show that the radius of avoidance proposed by Ferraro et al. (2012) goes out of sync with the apparent minimum of the bimodal distribution after about two half-mass relaxation times (without finding out what is the reason for that). This finding creates a real challenge for the dynamical clock, which uses this radius to determine the dynamical age of globular clusters. Additionally, the paper discusses a few important problems concerning the apparent visibilities of the bimodal distributions, which have to be taken into account while studying the spatial distributions of blue stragglers.

  2. On the role of extrinsic noise in microRNA-mediated bimodal gene expression

    PubMed Central

    2018-01-01

    Several studies highlighted the relevance of extrinsic noise in shaping cell decision making and differentiation in molecular networks. Bimodal distributions of gene expression levels provide experimental evidence of phenotypic differentiation, where the modes of the distribution often correspond to different physiological states of the system. We theoretically address the presence of bimodal phenotypes in the context of microRNA (miRNA)-mediated regulation. MiRNAs are small noncoding RNA molecules that downregulate the expression of their target mRNAs. The nature of this interaction is titrative and induces a threshold effect: below a given target transcription rate almost no mRNAs are free and available for translation. We investigate the effect of extrinsic noise on the system by introducing a fluctuating miRNA-transcription rate. We find that the presence of extrinsic noise favours the presence of bimodal target distributions which can be observed for a wider range of parameters compared to the case with intrinsic noise only and for lower miRNA-target interaction strength. Our results suggest that combining threshold-inducing interactions with extrinsic noise provides a simple and robust mechanism for obtaining bimodal populations without requiring fine tuning. Furthermore, we characterise the protein distribution’s dependence on protein half-life. PMID:29664903

  3. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    PubMed Central

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco

    2016-01-01

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style. PMID:26758742

  4. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface.

    PubMed

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco

    2016-01-13

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  5. Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo- alt -Bithiophene Based Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Guobiao; Zhao, Xikang; Qu, Ge

    The selection of side chains is important in design of conjugated polymers. It not only affects their intrinsic physical properties, but also has an impact on thin film morphologies. Recent reports suggested that a face-on/edge-on bimodal orientation observed in polymer thin films may be responsible for a three-dimensional (3D) charge transport and leads to dramatically improved mobility in donor–acceptor based conjugated polymers. To achieve a bimodal orientation in thin films has been seldom explored from the aspect of molecular design. Here, we demonstrate a design strategy involving the use of asymmetric side chains that enables an isoindigo-based polymer to adoptmore » a distinct bimodal orientation, confirmed by the grazing incidence X-ray diffraction. As a result, the polymer presents an average high mobility of 3.8 ± 0.7 cm2 V–1 s–1 with a maximum value of 5.1 cm2 V–1 s–1, in comparison with 0.47 and 0.51 cm2 V–1 s–1 obtained from the two reference polymers. This study exemplifies a new strategy to develop the next generation polymers through understanding the property-structure relationship.« less

  6. Complexity Induced Anisotropic Bimodal Intermittent Turbulence in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin

    2004-01-01

    The "physics of complexity" in space plasmas is the central theme of this exposition. It is demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from the plasma resonances can be the source for the coexistence of nonpropagating spatiotemporal fluctuations and propagating modes. Non-Gaussian probability distribution functions of the intermittent fluctuations from direct numerical simulations are obtained and discussed. Power spectra and local intermittency measures using the wavelet analyses are presented to display the spottiness of the small-scale turbulent fluctuations and the non-uniformity of coarse-grained dissipation that can lead to magnetic topological reconfigurations. The technique of the dynamic renormalization group is applied to the study of the scaling properties of such type of multiscale fluctuations. Charged particle interactions with both the propagating and nonpropagating portions of the intermittent turbulence are also described.

  7. High temperature fuel/emitter system for advanced thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-01

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  8. Oil-film-parameter investigation

    NASA Technical Reports Server (NTRS)

    Kingsbury, E. P.

    1972-01-01

    A counter rotating fixture was designed and built to measure starved EHD film thicknesses. Some good geometry glass races were obtained. A theoretical analysis of starvation was made. Measurements of retainer stability during bimode torque disturbances were made. The most common form of bimode was related to stability of retainer cock.

  9. Adaptive elimination of synchronization in coupled oscillator

    NASA Astrophysics Data System (ADS)

    Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei

    2017-08-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.

  10. Laser diffraction of acicular particles: practical applications

    NASA Astrophysics Data System (ADS)

    Scott, David M.; Matsuyama, Tatsushi

    2014-08-01

    Commercial laser diffraction instruments are widely used to measure particle size distribution (PSD), but the results are distorted for non-spherical (acicular) particles often encountered in practical applications. Consequently the distribution, which is reported in terms of equivalent spherical diameter, requires interpretation. For rod-like and plate-like particles, the PSD tends to be bi-modal, with the two modal sizes closely related to the median length and width, or width and thickness, of the particles. Furthermore, it is found that the bi-modal PSD for at least one instrument can typically be approximated by a bi-lognormal distribution. By fitting such a function to the reported distribution, one may extract quantitative information useful for process or product development. This approach is illustrated by examples of such measurement on industrial samples of polymer particles, crystals, bacteria, and clays.

  11. Investigation of heterogeneous asymmetric dihydroxylation over OsO{sub 4}-(QN){sub 2}PHAL catalysts of functionalized bimodal mesoporous silica with ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Shenjie; Sun, Jihong, E-mail: jhsun@bjut.edu.cn; Li, Yuzhen

    2011-08-15

    Highlights: {yields} Functionalized bimodal mesoporous silica with MTMSPIm{sup +}Cl{sup -}. {yields} Mesoporous catalyst immobilized with OsO{sub 4}-(QN){sub 2}PHAL. {yields} Catalysts for asymmetric dihydroxylation reaction with high yield and enatioselectivity. {yields} Recyclable catalysts. -- Abstract: A novel synthesis of the functionalized bimodal mesoporous silica with ionic liquid (FBMMs) was performed. After grafting 1-methyl-3-(trimethoxysilyl)propylimidazolium chloride onto the surface of bimodal mesoporous silicas, 1,4-bis(9-O-quininyl)phthalazine ((QN){sub 2}-PHAL) and K{sub 2}Os(OH){sub 4}.2H{sub 2}O were immobilized onto the modified FBMMs by adsorption or ionic exchange methods, and then, the asymmetric dihydroxylation reaction was carried out by using solid catalysts. Techniques such as X-ray diffraction, Fourier Transformmore » Infrared spectroscopy, N{sub 2} adsorption and desorption were employed to characterize their structure and properties. The results showed that the mesoporous ordering degree of bimodal mesoporous silica decreased after functionalization and immobilization of OsO{sub 4}-(QN){sub 2}PHAL. Being very effective in asymmetric dihydroxylation with high yield and enantioselectivity, the prepared heterogeneous solid catalyst could be recycled for five times with little loss of enantioselectivity, with comparison of those results obtained in homophase system. Moreover, the effect of Osmium catalyst on asymmetric dihydroxylation was investigated.« less

  12. Detecting rare, abnormally large grains by x-ray diffraction

    DOE PAGES

    Boyce, Brad L.; Furnish, Timothy Allen; Padilla, H. A.; ...

    2015-07-16

    Bimodal grain structures are common in many alloys, arising from a number of different causes including incomplete recrystallization and abnormal grain growth. These bimodal grain structures have important technological implications, such as the well-known Goss texture which is now a cornerstone for electrical steels. Yet our ability to detect bimodal grain distributions is largely confined to brute force cross-sectional metallography. The present study presents a new method for rapid detection of unusually large grains embedded in a sea of much finer grains. Traditional X-ray diffraction-based grain size measurement techniques such as Scherrer, Williamson–Hall, or Warren–Averbach rely on peak breadth andmore » shape to extract information regarding the average crystallite size. However, these line broadening techniques are not well suited to identify a very small fraction of abnormally large grains. The present method utilizes statistically anomalous intensity spikes in the Bragg peak to identify regions where abnormally large grains are contributing to diffraction. This needle-in-a-haystack technique is demonstrated on a nanocrystalline Ni–Fe alloy which has undergone fatigue-induced abnormal grain growth. In this demonstration, the technique readily identifies a few large grains that occupy <0.00001 % of the interrogation volume. Finally, while the technique is demonstrated in the current study on nanocrystalline metal, it would likely apply to any bimodal polycrystal including ultrafine grained and fine microcrystalline materials with sufficiently distinct bimodal grain statistics.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William

    Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less

  14. Deaf Children's Bimodal Bilingualism and Education

    ERIC Educational Resources Information Center

    Swanwick, Ruth

    2016-01-01

    This paper provides an overview of the research into deaf children's bilingualism and bilingual education through a synthesis of studies published over the last 15 years. This review brings together the linguistic and pedagogical work on bimodal bilingualism to inform educational practice. The first section of the review provides a synthesis of…

  15. Intersensory Redundancy Educates Selective Attention in Bobwhite Quail Embryos

    ERIC Educational Resources Information Center

    Lickliter, Robert; Bahrick, Lorraine E.; Markham, Rebecca G.

    2006-01-01

    We assessed whether exposure to amodal properties in bimodal stimulation (e.g. rhythm, rate, duration) could educate attention to amodal properties in subsequent unimodal stimulation during prenatal development. Bobwhite quail embryos were exposed to an individual bobwhite maternal call under several experimental and control conditions during the…

  16. Effects of resource-dependent cannibalism on population size distribution and individual life history in a case-bearing caddisfly

    PubMed Central

    Okuda, Noboru

    2018-01-01

    Resource availability often determines the intensity of cannibalism, which has a considerable effect on population size distribution and individual life history. Larvae of the caddisfly Psilotreta kisoensis build portable cases from sedimentary sands and often display cannibalism. For this species, the availability of preferable case material is a critical factor that affects larval fitness, and material is locally variable depending on the underlying geology. In this study, we investigated how sand quality as a case material determines cannibalism frequency among larvae and, in turn, how the differential cannibalism frequency affects the body-size distribution and voltinism. Rearing experiments within a cohort revealed that a bimodal size distribution developed regardless of material quality. However, as the preferable material became abundant, the proportion of larger to smaller individuals increased. Consecutive experiments suggested that smaller larvae were more frequently cannibalized by larger ones and excluded from the population when preferable smooth material was abundant. This frequent cannibalism resulted in a bimodal size distribution with a significantly higher proportion of larger compared to smaller individuals. The size-dependent cannibalism was significantly suppressed when the larvae were raised in an environment with a scarcity of the preferable case material. This is probably because larvae cannot enjoy the benefit of rapid growth by cannibalism due to the difficulties in enlarging their case. At low cannibalism the growth of smaller individuals was stunted, and this was probably due to risk of cannibalism by larger individuals. This growth reduction in small individuals led to a bimodal size-distribution but with a lower proportion of larger to smaller individuals compared to at high cannibalism. A field study in two streams showed a similar size distribution of larvae as was found in the rearing experiment. The bimodal ratio has consequences for life history, since a size-bimodal population causes a cohort splitting: only larvae that were fully grown at 1 year had a univoltine life cycle, whereas larvae with a stunted growth continued their larval life for another year (semivoltine). This study suggests that availability of preferable case building material is an important factor that affects cannibalism, which in turn affects larval population size structure and cohort splitting. PMID:29466375

  17. Time shift in slope failure prediction between unimodal and bimodal modeling approaches

    NASA Astrophysics Data System (ADS)

    Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente

    2016-04-01

    Together with the need to use more appropriate mathematical expressions for describing hydro-mechanical soil processes, a challenge issue relates to the need of considering the effects induced by terrain heterogeneities on the physical mechanisms, taking into account the implications of the heterogeneities in affecting time-dependent hydro-mechanical variables, would improve the prediction capacities of models, such as the ones used in early warning systems. The presence of the heterogeneities in partially-saturated slopes results in irregular propagation of the moisture and suction front. To mathematically represent the "dual-implication" generally induced by the heterogeneities in describing the hydraulic terrain behavior, several bimodal hydraulic models have been presented in literature and replaced the conventional sigmoidal/unimodal functions; this presupposes that the scale of the macrostructure is comparable with the local scale (Darcy scale), thus the Richards' model can be assumed adequate to mathematically reproduce the processes. The purpose of this work is to focus on the differences in simulating flow infiltration processes and slope stability conditions originated from preliminary choices of hydraulic models and contextually between different approaches to evaluate the factor of safety (FoS). In particular, the results of two approaches are compared. The first one includes the conventional expression of the FoS under saturated conditions and the widespread used hydraulic model of van Genuchten-Mualem. The second approach includes a generalized FoS equation for infinite-slope model under variably saturated soil conditions (Lu and Godt, 2008) and the bimodal Romano et al.'s (2011) functions to describe the hydraulic response. The extension of the above mentioned approach to the bimodal context is based on an analytical method to assess the effects of the hydraulic properties on soil shear developed integrating a bimodal lognormal hydraulic function within the Bishop stress theory framework (Ciervo et al., 2015). The proposed work tends to emphasize how a more accurate slope stability analysis that accounts dual-structure could be useful to reach a more accurate definition of the stability conditions. The effects in practical analysis may be significant. The highlighted discrepancies between the different approaches in describing the timing processes and strength contribution due to capillary forces may entail no negligible differences in slope stability predictions, especially in those cases where the possibility of a failure in unsaturated terrains is contemplated.

  18. Effects of resource-dependent cannibalism on population size distribution and individual life history in a case-bearing caddisfly.

    PubMed

    Okano, Jun-Ichi; Okuda, Noboru

    2018-01-01

    Resource availability often determines the intensity of cannibalism, which has a considerable effect on population size distribution and individual life history. Larvae of the caddisfly Psilotreta kisoensis build portable cases from sedimentary sands and often display cannibalism. For this species, the availability of preferable case material is a critical factor that affects larval fitness, and material is locally variable depending on the underlying geology. In this study, we investigated how sand quality as a case material determines cannibalism frequency among larvae and, in turn, how the differential cannibalism frequency affects the body-size distribution and voltinism. Rearing experiments within a cohort revealed that a bimodal size distribution developed regardless of material quality. However, as the preferable material became abundant, the proportion of larger to smaller individuals increased. Consecutive experiments suggested that smaller larvae were more frequently cannibalized by larger ones and excluded from the population when preferable smooth material was abundant. This frequent cannibalism resulted in a bimodal size distribution with a significantly higher proportion of larger compared to smaller individuals. The size-dependent cannibalism was significantly suppressed when the larvae were raised in an environment with a scarcity of the preferable case material. This is probably because larvae cannot enjoy the benefit of rapid growth by cannibalism due to the difficulties in enlarging their case. At low cannibalism the growth of smaller individuals was stunted, and this was probably due to risk of cannibalism by larger individuals. This growth reduction in small individuals led to a bimodal size-distribution but with a lower proportion of larger to smaller individuals compared to at high cannibalism. A field study in two streams showed a similar size distribution of larvae as was found in the rearing experiment. The bimodal ratio has consequences for life history, since a size-bimodal population causes a cohort splitting: only larvae that were fully grown at 1 year had a univoltine life cycle, whereas larvae with a stunted growth continued their larval life for another year (semivoltine). This study suggests that availability of preferable case building material is an important factor that affects cannibalism, which in turn affects larval population size structure and cohort splitting.

  19. Landing periodicity of the mosquito Aedes aegypti in Trinidad in relation to the timing of insecticidal space-spraying.

    PubMed

    Chadee, D D

    1988-04-01

    Diel landing periodicity (biting cycle) of domestic Aedes aegypti (L.) in Trinidad, West Indies, was monitored using human bait during January-August 1980. The periodicity of females was predominantly diurnal (95.2% arriving during daylight or twilight) and bimodal, with consistent peaks at 06.00-07.00 and 17.00-18.00 hours. The diel periodicities at indoor and outdoor sites were virtually identical. Larger numbers of adults were collected outside than inside houses. It is recommended that the time of insecticidal ULV adulticiding should coincide with peaks in landing periodicity of the Ae.aegypti adults.

  20. Mixed Poisson distributions in exact solutions of stochastic autoregulation models.

    PubMed

    Iyer-Biswas, Srividya; Jayaprakash, C

    2014-11-01

    In this paper we study the interplay between stochastic gene expression and system design using simple stochastic models of autoactivation and autoinhibition. Using the Poisson representation, a technique whose particular usefulness in the context of nonlinear gene regulation models we elucidate, we find exact results for these feedback models in the steady state. Further, we exploit this representation to analyze the parameter spaces of each model, determine which dimensionless combinations of rates are the shape determinants for each distribution, and thus demarcate where in the parameter space qualitatively different behaviors arise. These behaviors include power-law-tailed distributions, bimodal distributions, and sub-Poisson distributions. We also show how these distribution shapes change when the strength of the feedback is tuned. Using our results, we reexamine how well the autoinhibition and autoactivation models serve their conventionally assumed roles as paradigms for noise suppression and noise exploitation, respectively.

  1. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration.

    PubMed

    Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin

    2015-11-01

    Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Best Practices for Building a Bimodal/Bilingual Child Language Corpus

    PubMed Central

    PICHLER, DEBORAH CHEN; HOCHGESANG, JULIE A.; LILLO-MARTIN, DIANE; REYNOLDS, WANETTE; DE QUADROS, RONICE MÜLLER

    2017-01-01

    This article addresses the special challenges associated with collecting longitudinal samples of the spontaneous sign language and spoken language production by young bimodal bilingual children. We discuss the methods used in our study of children in the United States and Brazil. Since one of our goals is to observe both sign language and speech, as well as any language mixing, it is important for us to address issues of language choice and techniques for directing the child participant toward primary use of the target language in each session. Suggestions and guidelines for achieving this in effective yet respectful ways are presented. We are especially dependent on the participation, flexibility, and direction of our participant children’s parents, who work with us to elicit samples that are genuinely representative of their children’s linguistic abilities. We illustrate our procedures for training parents and other interlocutors in data-collection sessions. In return for their generous participation in our research, we address parents’ questions and concerns about language development, especially in bimodal bilingual contexts. We take very seriously the need to negotiate with participants regarding their expectations for the use of the data they provide, and we abide by their wishes in this matter. The strategies presented here improve the quality of the investigations we can conduct by making the experiences of the participant families as pleasant as possible. PMID:28736476

  3. Study of grain structure evolution during annealing of a twin-roll-cast Mg alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, A.; Department of Metallurgical Engineering and Materials Science, IIT Bombay; Department of Materials Engineering, Monash University

    2016-04-15

    The evolution of microstructure under static annealing was studied for mid-thickness section of a twin-roll-cast (TRC) magnesium alloy. Annealing was performed at 300 °C and 500 °C for different times. Microstructural evolution was quantitatively analyzed, from optical micrographs, using grain path envelope analysis. Additional information from electron backscatter diffraction (EBSD) was used for addressing the possible mechanism(s). It was found that the TRC structure had a bimodal grain size, which was preserved even after annealing at 300 °C. However, the annealing at 500 °C led to a unimodal grain size. This difference in the grain size distribution created a contrastingmore » behavior in the normalized standard deviations. This was primarily attributed to a competition between recovery and recrystallization, and their respective dominance at 300° and 500 °C. A deformation induced recrystallization recovery (DIRR) model was proposed. The proposed model could successfully address the experimental microstructural evolution. - Highlights: • Annealing of twin roll cast (TRC) magnesium alloy was done at temperatures of 300 °C and 500 °C. • TRC had bimodal structure. Bimodality preserved for annealing at 300 °C. Annealing at 500 °C led to unimodal structure. • Grain evolution was described based on the competition between recovery and recrystallization. • Deformation induced recrystallization recovery (DIRR) mechanistic model was developed.« less

  4. Multisensory Cues Capture Spatial Attention Regardless of Perceptual Load

    ERIC Educational Resources Information Center

    Santangelo, Valerio; Spence, Charles

    2007-01-01

    We compared the ability of auditory, visual, and audiovisual (bimodal) exogenous cues to capture visuo-spatial attention under conditions of no load versus high perceptual load. Participants had to discriminate the elevation (up vs. down) of visual targets preceded by either unimodal or bimodal cues under conditions of high perceptual load (in…

  5. The Bi-Modal Organization: Balancing Autopoiesis and Fluid Social Networks for Sustainability

    ERIC Educational Resources Information Center

    Smith, Peter A. C.; Sharicz, Carol Ann

    2013-01-01

    Purpose: The purpose of this paper is to assist an organization to restructure as a bi-modal organization in order to achieve sustainability in today's highly complex business world. Design/methodology/approach: The paper is conceptual and is based on relevant literature and the authors' research and practice. Findings: Although fluid…

  6. Design and validation of a bimodal MRI-optics endoluminal probe for colorectal cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ramgolam, A.; Sablong, R.; Saint-Jalmes, H.; Beuf, O.

    2009-07-01

    In the light of the bimodal technical innovations put forward in the diagnosis of early stage colorectal cancer, we present a preliminary study based on a first prototype of a high Resolution MRI-Optics probe along with the first tests carried out and the results obtained.

  7. Cross-Frequency Integration for Consonant and Vowel Identification in Bimodal Hearing

    ERIC Educational Resources Information Center

    Kong, Ying-Yee; Braida, Louis D.

    2011-01-01

    Purpose: Improved speech recognition in binaurally combined acoustic-electric stimulation (otherwise known as "bimodal hearing") could arise when listeners integrate speech cues from the acoustic and electric hearing. The aims of this study were (a) to identify speech cues extracted in electric hearing and residual acoustic hearing in the…

  8. Thermal decomposition behavior of nano/micro bimodal feedstock with different solids loading

    NASA Astrophysics Data System (ADS)

    Oh, Joo Won; Lee, Won Sik; Park, Seong Jin

    2018-01-01

    Debinding is one of the most critical processes for powder injection molding. The parts in debinding process are vulnerable to defect formation, and long processing time of debinding decreases production rate of whole process. In order to determine the optimal condition for debinding process, decomposition behavior of feedstock should be understood. Since nano powder affects the decomposition behavior of feedstock, nano powder effect needs to be investigated for nano/micro bimodal feedstock. In this research, nano powder effect on decomposition behavior of nano/micro bimodal feedstock has been studied. Bimodal powders were fabricated with different ratios of nano powder, and the critical solids loading of each powder was measured by torque rheometer. Three different feedstocks were fabricated for each powder depending on solids loading condition. Thermogravimetric analysis (TGA) experiment was carried out to analyze the thermal decomposition behavior of the feedstocks, and decomposition activation energy was calculated. The result indicated nano powder showed limited effect on feedstocks in lower solids loading condition than optimal range. Whereas, it highly influenced the decomposition behavior in optimal solids loading condition by causing polymer chain scission with high viscosity.

  9. A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering

    PubMed Central

    Liu, L. H.; Yang, C.; Kang, L. M.; Qu, S. G.; Li, X. Q.; Zhang, W. W.; Chen, W. P.; Li, Y. Y.; Li, P. J.; Zhang, L. C.

    2016-01-01

    It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications. PMID:27029858

  10. Perception of suprasegmental speech features via bimodal stimulation: cochlear implant on one ear and hearing aid on the other.

    PubMed

    Most, Tova; Harel, Tamar; Shpak, Talma; Luntz, Michal

    2011-04-01

    The purpose of the study was to evaluate the contribution of acoustic hearing to the perception of suprasegmental features by adults who use a cochlear implant (CI) and a hearing aid (HA) in opposite ears. 23 adults participated in this study. Perception of suprasegmental features-intonation, syllable stress, and word emphasis-was assessed. All tests were administered in 2 conditions: CI alone and CI + HA (bimodal). Scores were significantly higher in the bimodal condition in comparison to scores in CI alone for all 3 tests. In both conditions, there was great variability among the individual participants. Significant negative correlations emerged between perception of suprasegmental features and the unaided pure-tone average of the contralateral ear to the CI. This study found a significant bimodal advantage for perception of all suprasegmental features, most probably due to the better low-frequency acoustic hearing that is provided by the HA. Outcomes suggest that in cases of residual hearing in the contralateral ear to the implanted ear, HA use should be encouraged.

  11. On the joint bimodality of temperature and moisture near stratocumulus cloud tops

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1983-01-01

    The observed distributions of the thermodynamic variables near stratocumulus top are highly bimodal. Two simple models of sub-grid fractional cloudiness motivated by this observed bimodality are examined. In both models, certain low order moments of two independent, moist-conservative thermodynamic variables are assumed to be known. The first model is based on the assumption of two discrete populations of parcels: a warm-day population and a cool-moist population. If only the first and second moments are assumed to be known, the number of unknowns exceeds the number of independent equations. If the third moments are assumed to be known as well, the number of independent equations exceeds the number of unknowns. The second model is based on the assumption of a continuous joint bimodal distribution of parcels, obtained as the weighted sum of two binormal distributions. For this model, the third moments are used to obtain 9 independent nonlinear algebraic equations in 11 unknowns. Two additional equations are needed to determine the covariance within the two subpopulations. In case these two internal covariance vanish, the system of equations can be solved analytically.

  12. Bimodal Bilinguals Co-activate Both Languages during Spoken Comprehension

    PubMed Central

    Shook, Anthony; Marian, Viorica

    2012-01-01

    Bilinguals have been shown to activate their two languages in parallel, and this process can often be attributed to overlap in input between the two languages. The present study examines whether two languages that do not overlap in input structure, and that have distinct phonological systems, such as American Sign Language (ASL) and English, are also activated in parallel. Hearing ASL-English bimodal bilinguals’ and English monolinguals’ eye-movements were recorded during a visual world paradigm, in which participants were instructed, in English, to select objects from a display. In critical trials, the target item appeared with a competing item that overlapped with the target in ASL phonology. Bimodal bilinguals looked more at competing items than at phonologically unrelated items, and looked more at competing items relative to monolinguals, indicating activation of the sign-language during spoken English comprehension. The findings suggest that language co-activation is not modality specific, and provide insight into the mechanisms that may underlie cross-modal language co-activation in bimodal bilinguals, including the role that top-down and lateral connections between levels of processing may play in language comprehension. PMID:22770677

  13. Data Mining of Chemogenomics Data Using Bi-Modal PLS Methods and Chemical Interpretation for Molecular Design.

    PubMed

    Hasegawa, Kiyoshi; Funatsu, Kimito

    2014-12-01

    Chemogenomics is a new strategy in drug discovery for interrogating all molecules capable of interacting with all biological targets. Because of the almost infinite number of drug-like organic molecules, bench-based experimental chemogenomics methods are not generally feasible. Several in silico chemogenomics models have therefore been developed for high-throughput screening of large numbers of drug candidate compounds and target proteins. In previous studies, we described two novel bi-modal PLS approaches. These methods provide a significant advantage in that they enable direct connections to be made between biological activities and ligand and protein descriptors. In this special issue, we review these two PLS-based approaches using two different chemogenomics datasets for illustration. We then compare the predictive and interpretive performance of the two methods using the same congeneric data set. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Conventions for sign and speech transcription of child bimodal bilingual corpora in ELAN.

    PubMed

    Chen Pichler, Deborah; Hochgesang, Julie A; Lillo-Martin, Diane; de Quadros, Ronice Müller

    2010-01-01

    This article extends current methodologies for the linguistic analysis of sign language acquisition to cases of bimodal bilingual acquisition. Using ELAN, we are transcribing longitudinal spontaneous production data from hearing children of Deaf parents who are learning either American Sign Language (ASL) and American English (AE), or Brazilian Sign Language (Libras, also referred to as Língua de Sinais Brasileira/LSB in some texts) and Brazilian Portuguese (BP). Our goal is to construct corpora that can be mined for a wide range of investigations on various topics in acquisition. Thus, it is important that we maintain consistency in transcription for both signed and spoken languages. This article documents our transcription conventions, including the principles behind our approach. Using this document, other researchers can chose to follow similar conventions or develop new ones using our suggestions as a starting point.

  15. Conventions for sign and speech transcription of child bimodal bilingual corpora in ELAN

    PubMed Central

    Chen Pichler, Deborah; Hochgesang, Julie A.; Lillo-Martin, Diane; de Quadros, Ronice Müller

    2011-01-01

    This article extends current methodologies for the linguistic analysis of sign language acquisition to cases of bimodal bilingual acquisition. Using ELAN, we are transcribing longitudinal spontaneous production data from hearing children of Deaf parents who are learning either American Sign Language (ASL) and American English (AE), or Brazilian Sign Language (Libras, also referred to as Língua de Sinais Brasileira/LSB in some texts) and Brazilian Portuguese (BP). Our goal is to construct corpora that can be mined for a wide range of investigations on various topics in acquisition. Thus, it is important that we maintain consistency in transcription for both signed and spoken languages. This article documents our transcription conventions, including the principles behind our approach. Using this document, other researchers can chose to follow similar conventions or develop new ones using our suggestions as a starting point. PMID:21625371

  16. Grid of Supergiant B[e] Models from HDUST Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Carciofi, A. C.

    2012-12-01

    By using the Monte Carlo radiative transfer code HDUST (developed by A. C. Carciofi and J..E. Bjorkman) we have built a grid of models for stars presenting the B[e] phenomenon and a bimodal outflowing envelope. The models are particularly adapted to the study of B[e] supergiants and FS CMa type stars. The adopted physical parameters of the calculated models make the grid well adapted to interpret high angular and high spectral observations, in particular spectro-interferometric data from ESO-VLTI instruments AMBER (near-IR at low and medium spectral resolution) and MIDI (mid-IR at low spectral resolution). The grid models include, for example, a central B star with different effective temperatures, a gas (hydrogen) and silicate dust circumstellar envelope with a bimodal mass loss presenting dust in the denser equatorial regions. The HDUST grid models were pre-calculated using the high performance parallel computing facility Mésocentre SIGAMM, located at OCA, France.

  17. Evolution of Pinatubo aerosol near 19 km altitude over western North America

    NASA Technical Reports Server (NTRS)

    Goodman, Jindra; Snetsinger, K. G.; Pueschel, R. F.; Ferry, G. V.; Verma, S.

    1994-01-01

    Stratospheric aerosols, collected near 19 km altitude on wire impactors over western North America from August 20, 1991 to May 11, 1993, show strong influence of the June 1991 Mt. Pinatubo eruption. Lognormal size distributions are bimodal; each of the mode radii increases and reaches maximum value at about 15 months after eruption. The second (large particle) mode becomes well developed then, and about 40% of the droplets are larger than 0.4 micron radius. The eruption of Mt. Spurr (Alaska) may also have contributed to this. Sulfate mass loading decays exponentially (e-folding 216 days), similar to El Chichon. Silicates are present in samples only immediately after eruption. Two years after eruption, sulfate mass loading is about 0.4 micrograms/cu m, about an order of magnitude higher than background pre-volcanic values. Aerosol size distributions are still bimodal with a very well-defined large droplet mode.

  18. Charge-induced secondary atomization in diffusion flames of electrostatic sprays

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1994-01-01

    The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.

  19. The 30-centimeter ion thrust subsystem design manual

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The principal characteristics of the 30-centimeter ion propulsion thrust subsystem technology that was developed to satisfy the propulsion needs of future planetary and early orbital missions are described. Functional requirements and descriptions, interface and performance requirements, and physical characteristics of the hardware are described at the thrust subsystem, BIMOD engine system, and component level.

  20. The "Why" and "How" of an ASL/English Bimodal Bilingual Program

    ERIC Educational Resources Information Center

    Nussbaum, Debra Berlin; Scott, Susanne; Simms, Laurene E.

    2012-01-01

    During the past few years, the teachers and staff at Kendall Demonstration Elementary School (KDES) have reviewed research to identify factors that positively impact language development for deaf and hard of hearing children, and established language and communication practices to reflect what they have learned. Based on the research, which…

  1. Visual Influences on Speech Perception in Children with Autism

    ERIC Educational Resources Information Center

    Iarocci, Grace; Rombough, Adrienne; Yager, Jodi; Weeks, Daniel J.; Chua, Romeo

    2010-01-01

    The bimodal perception of speech sounds was examined in children with autism as compared to mental age--matched typically developing (TD) children. A computer task was employed wherein only the mouth region of the face was displayed and children reported what they heard or saw when presented with consonant-vowel sounds in unimodal auditory…

  2. DEVELOPMENT OF THE CONCEPT OF THE BIMODAL DISTRIBUTION OF PARTICLES: A PERSONAL HISTORY

    EPA Science Inventory

    The author was hired by EPA in 1971 to head the new Aerosol Research Section (ARS), the first EPA unit devoted to research on atmospheric aerosols. At that time the existing paradigm was that the atmospheric aerosol distribution was monomodal , the mass mean diameter was one mic...

  3. [Application of anoptomagnetic probe Gd-DO3A-EA-FITC in imaging and analyzing the brain interstitial space].

    PubMed

    Li, Y Q; Sheng, Y; Liang, L; Zhao, Y; Li, H Y; Bai, N; Wang, T; Yuan, L; Han, H B

    2018-04-18

    To investigate the application of the optical magnetic bimodal molecular probe Gd-DO3A-ethylthiouret-fluorescein isothiocyanate (Gd -DO3A-EA-FITC) in brain tissue imaging and brain interstitial space (ISS). In the study, 24 male SD rats were randomly divided into 3 groups, including magnetic probe group (n=6), optical probe group (n=6) and optical magnetic bimodal probe group (n=12), then the optical magnetic bimodal probe group was divided equally into magnetic probe subgroup (n=6) and optical probe subgroup (n=6). Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, the probes including gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA), fluorescein isothiocyanate (FITC) and Gd-DO3A-EA-FITC of 2 μL (10 mmol/L) were injected into the caudate nucleus respectively, magnetic resonance imaging (MRI) was performed in the magnetic probe group and magnetic probe subgroup to image the dynamic diffusion and distribution of the probes in the brain ISS, a self-developed brain ISS image processing system was used to measure the diffusion coefficient, clearance, volume fraction and half-time in these two groups. Laser scanning confocal microscope (LSCM) was performed in vitro in the optical probe group and optical probe subgroup for fluorescence imaging at the time points 2 hours after the injection of the probe, and the distribution in the oblique sagittal slice was compared with the result of the first two groups. For the magnetic probe group and magnetic probe subgroup, there were the same imaging results between the probes of Gd-DTPA and Gd-DO3A-EA-FITC. The diffusion parameters of Gd-DTPA and Gd-DO3A-EA-FITC were as follows: the average diffusion coefficients [(3.31±0.11)×10 -4 mm 2 /s vs. (3.37±0.15)×10 -4 mm 2 /s, t=0.942, P=0.360], the clearance [(3.04±0.37) mmol/L vs. (2.90±0.51) mmol/L, t=0.640, P=0.531], the volume fractions (17.18%±0.14% vs. 17.31%±0.15%, t=1.961, P=0.068), the half-time [(86.58±3.31) min vs. (84.61±2.38) min, t=1.412, P=0.177], the diffusion areas [(23.25±0.68) mm 2 vs. (22.71±1.00) mm 2 , t=1.100, P=0.297]. The statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant. Moreover, for the optical probe group and optical probe subgroup, the diffusion area of Gd-DO3A-EA-FITC [(22.61±1.16) mm 2 ] was slightly larger than that of FITC [(22.10±1.29) mm 2 ], the statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant (t=0.713, P=0.492). Gd-DO3A-EA-FITC shows the same imaging results as the traditional GD-DTPA, and it can be used in measuring brain ISS.

  4. Deaf Parents of Cochlear-Implanted Children: Beliefs on Bimodal Bilingualism

    ERIC Educational Resources Information Center

    Mitchiner, Julie Cantrell

    2015-01-01

    This study investigated 17 Deaf families in North America with cochlear-implanted children about their attitudes, beliefs, and practices on bimodal bilingualism (defined as using both a visual/manual language and an aural/oral language) in American Sign Language (ASL) and English. A survey and follow-up interviews with 8 families were conducted.…

  5. Bimodal Emotion Congruency Is Critical to Preverbal Infants' Abstract Rule Learning

    ERIC Educational Resources Information Center

    Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei

    2016-01-01

    Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of…

  6. Perception of Consonants in Reverberation and Noise by Adults Fitted with Bimodal Devices

    ERIC Educational Resources Information Center

    Mason, Michelle; Kokkinakis, Kostas

    2014-01-01

    Purpose: The purpose of this study was to evaluate the contribution of a contralateral hearing aid to the perception of consonants, in terms of voicing, manner, and place-of-articulation cues in reverberation and noise by adult cochlear implantees aided by bimodal fittings. Method: Eight postlingually deafened adult cochlear implant (CI) listeners…

  7. Enhancing magnetorheological effect using bimodal suspensions in the single-multidomain limit

    NASA Astrophysics Data System (ADS)

    Morillas, José R.; Bombard, Antonio J. F.; de Vicente, Juan

    2018-07-01

    We demonstrate a new route to enhance the magnetorheological effect using bimodal suspensions in the single-multidomain limit. Experimental results are satisfactorily compared to 3D finite element method simulations. The physical reason behind this enhancement is the coating of the larger particles by the smaller ones due to the remnant magnetization of the latter.

  8. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.
    Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...

  9. Effects of Removing Low-Frequency Electric Information on Speech Perception with Bimodal Hearing

    ERIC Educational Resources Information Center

    Fowler, Jennifer R.; Eggleston, Jessica L.; Reavis, Kelly M.; McMillan, Garnett P.; Reiss, Lina A. J.

    2016-01-01

    Purpose: The objective was to determine whether speech perception could be improved for bimodal listeners (those using a cochlear implant [CI] in one ear and hearing aid in the contralateral ear) by removing low-frequency information provided by the CI, thereby reducing acoustic-electric overlap. Method: Subjects were adult CI subjects with at…

  10. A bimodal biometric identification system

    NASA Astrophysics Data System (ADS)

    Laghari, Mohammad S.; Khuwaja, Gulzar A.

    2013-03-01

    Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. Physicals are related to the shape of the body. Behavioral are related to the behavior of a person. However, biometric authentication systems suffer from imprecision and difficulty in person recognition due to a number of reasons and no single biometrics is expected to effectively satisfy the requirements of all verification and/or identification applications. Bimodal biometric systems are expected to be more reliable due to the presence of two pieces of evidence and also be able to meet the severe performance requirements imposed by various applications. This paper presents a neural network based bimodal biometric identification system by using human face and handwritten signature features.

  11. MSFC Director Todd May and Deputy Director Jody Singer address M

    NASA Image and Video Library

    2017-09-26

    At a Sept. 26 all-hands meeting, NASA Marshall Space Flight Center Director Todd May highlights some of the key moments from Vice President Mike Pence's visit to Marshall Sept. 25. "I'd like to thank all the people that prepared for the vice president's visit. I think it was a great day for the center," said May. "We were able to talk to him about NASA's Space Launch System as well as some other projects. As the chairman of the U.S. Space Council, he is going to be very influential in space policy and I think this was a great opportunity for us." May also commented on the nomination of U.S. Rep. Jim Bridenstine, President Donald Trump's selection for NASA Administrator, and spoke about continuing to advance Marshall's Plan to Thrive – a strategic management agenda that focuses on human capital, organizational efficiency and bi-modal operations. Marshall Deputy Director Jody Singer updated the workforce on the results of the recent employee viewpoint survey. Singer also provided an overview of NASA's outreach during the Aug. 21 total solar eclipse, mentoring opportunities and the activities associated with the ongoing Safety Week 2017.

  12. Recent improvements in hydrometeor sampling using airborne holography

    NASA Astrophysics Data System (ADS)

    Stith, J. L.; Bansemer, A.; Glienke, S.; Shaw, R. A.; Aquino, J.; Fugal, J. P.

    2017-12-01

    Airborne digital holography provides a new technique to study the sizes, shapes and locations of hydrometeors. Airborne holographic cameras are able to capture more optical information than traditional airborne hydrometeor instruments, which allows for more detailed information, such as the location and shape of individual hydrometeors over a relatively wide range of sizes. These cameras can be housed in an anti-shattering probe arm configuration, which minimizes the effects of probe tip shattering. Holographic imagery, with its three dimensional view of hydrometeor spacing, is also well suited to detecting shattering events when present. A major problem with digital holographic techniques has been the amount of machine time and human analysis involved in analyzing holographic data. Here, we present some recent examples showing how holographic analysis can improve our measurements of liquid and ice particles and we describe a format we have developed for routine archiving of Holographic data, so that processed results can be utilized more routinely by a wider group of investigators. We present a side-by-side comparison of the imagery obtained from holographic reconstruction of ice particles from a holographic camera (HOLODEC) with imagery from a 3VCPI instrument, which utilizes a tube-based sampling geometry. Both instruments were carried on the NSF/NCAR GV aircraft. In a second application of holographic imaging, we compare measurements of cloud droplets from a Cloud Droplet Probe (CDP) with simultaneous measurements from HOLODEC. In some cloud regions the CDP data exhibits a bimodal size distribution, while the more local data from HOLODEC suggests that two mono-modal size distributions are present in the cloud and that the bimodality observed in the CDP is due to the averaging length. Thus, the holographic techniques have the potential to improve our understanding of the warm rain process in future airborne field campaigns. The development of this instrument has been a university and national lab collaboration. Progress in automating the processing techniques has now reached a stage where processed data can be made readily available, so that holographic data from a field campaign can be utilized by a wider group of investigators.

  13. Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution

    USGS Publications Warehouse

    Dillard, Leslie A.; Essaid, Hedeff I.; Herkelrath, William N.

    1997-01-01

    Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal lognormally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.

  14. Comparative transcriptome analysis between aquatic and aerial breathing organs of Channa argus to reveal the genetic basis underlying bimodal respiration.

    PubMed

    Jiang, Yanliang; Feng, Shuaisheng; Xu, Jian; Zhang, Songhao; Li, Shangqi; Sun, Xiaoqing; Xu, Peng

    2016-10-01

    Aerial breathing in fish was an important adaption for successful survival in hypoxic water. All aerial breathing fish are bimodal breathers. It is intriguing that they can obtain oxygen from both air and water. However, the genetic basis underlying bimodal breathing has not been extensively studied. In this study, we performed next-generation sequencing on a bimodal breathing fish, the Northern snakehead, Channa argus, and generated a transcriptome profiling of C. argus. A total of 53,591 microsatellites and 26,378 SNPs were identified and classified. A Ka/Ks analysis of the unigenes indicated that 63 genes were under strong positive selection. Furthermore, the transcriptomes from the aquatic breathing organ (gill) and the aerial breathing organ (suprabranchial chamber) were sequenced and compared, and the results showed 1,966 genes up-regulated in the gill and 2,727 genes up-regulated in the suprabranchial chamber. A gene pathway analysis concluded that four functional categories were significant, of which angiogenesis and elastic fibre formation were up-regulated in the suprabranchial chamber, indicating that the aerial breathing organ may be more efficient for gas exchange due to its highly vascularized and elastic structure. In contrast, ion uptake and transport and acid-base balance were up-regulated in the gill, indicating that the aquatic breathing organ functions in ion homeostasis and acid-base balance, in addition to breathing. Understanding the genetic mechanism underlying bimodal breathing will shed light on the initiation and importance of aerial breathing in the evolution of vertebrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2004-01-01

    The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.

  16. Song Recognition by Young Children with Cochlear Implants: Comparison between Unilateral, Bilateral, and Bimodal Users

    ERIC Educational Resources Information Center

    Bartov, Tamar; Most, Tova

    2014-01-01

    Purpose: To examine song identification by preschoolers with normal hearing (NH) versus preschoolers with cochlear implants (CIs). Method: Participants included 45 children ages 3;8-7;3 (years;months): 12 with NH and 33 with CIs, including 10 with unilateral CI, 14 with bilateral CIs, and 9 bimodal users (CI-HA) with unilateral CI and…

  17. Teleporting a state inside a single bimodal high-Q cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pires, Geisa; Baseia, B.; Avelar, A.T.

    2005-06-15

    We discuss a simplified scheme to teleport a state from one mode to another of the same bimodal cavity, with these two modes having distinct frequencies and orthogonal polarizations. The scheme employs two two-level (Rydberg) atoms plus classical fields (Ramsey zones) and selective atomic state detectors. The result has potential use for the manipulation of quantum information processing.

  18. Contribution of a Contralateral Hearing Aid to Perception of Consonant Voicing, Intonation, and Emotional State in Adult Cochlear Implantees

    ERIC Educational Resources Information Center

    Most, Tova; Gaon-Sivan, Gal; Shpak, Talma; Luntz, Michal

    2012-01-01

    Binaural hearing in cochlear implant (CI) users can be achieved either by bilateral implantation or bimodally with a contralateral hearing aid (HA). Binaural-bimodal hearing has the advantage of complementing the high-frequency electric information from the CI by low-frequency acoustic information from the HA. We examined the contribution of a…

  19. Head Shadow, Squelch, and Summation Effects with an Energetic or Informational Masker in Bilateral and Bimodal CI Users

    ERIC Educational Resources Information Center

    Pyschny, Verena; Landwehr, Markus; Hahn, Moritz; Lang-Roth, Ruth; Walger, Martin; Meister, Hartmut

    2014-01-01

    Purpose: The objective of the study was to investigate the influence of noise (energetic) and speech (energetic plus informational) maskers on the head shadow (HS), squelch (SQ), and binaural summation (SU) effect in bilateral and bimodal cochlear implant (CI) users. Method: Speech recognition was measured in the presence of either a competing…

  20. Parallel Bimodal Bilingual Acquisition: A Hearing Child Mediated in a Deaf Family

    ERIC Educational Resources Information Center

    Cramér-Wolrath, Emelie

    2013-01-01

    The aim of this longitudinal case study was to describe bimodal and bilingual acquisition in a hearing child, Hugo, especially the role his Deaf family played in his linguistic education. Video observations of the family interactions were conducted from the time Hugo was 10 months of age until he was 40 months old. The family language was Swedish…

  1. Altering Practices to Include Bimodal-Bilingual (ASL-Spoken English) Programming at a Small School for the Deaf in Canada

    ERIC Educational Resources Information Center

    Priestley, Karen; Enns, Charlotte; Arbuckle, Shauna

    2018-01-01

    Bimodal-bilingual programs are emerging as one way to meet broader needs and provide expanded language, educational and social-emotional opportunities for students who are deaf and hard of hearing (Marschark, M., Tang, G. & Knoors, H. (Eds). (2014). "Bilingualism and Bilingual Deaf Education." New York, NY: Oxford University Press;…

  2. The role of temperature in reported chickenpox cases from 2000 to 2011 in Japan.

    PubMed

    Harigane, K; Sumi, A; Mise, K; Kobayashi, N

    2015-09-01

    Annual periodicities of reported chickenpox cases have been observed in several countries. Of these, Japan has reported a two-peaked, bimodal annual cycle of reported chickenpox cases. This study investigated the possible underlying association of the bimodal cycle observed in the surveillance data of reported chickenpox cases with the meteorological factors of temperature, relative humidity and rainfall. A time-series analysis consisting of the maximum entropy method spectral analysis and the least squares method was applied to the chickenpox data and meteorological data of 47 prefectures in Japan. In all of the power spectral densities for the 47 prefectures, the spectral lines were observed at the frequency positions corresponding to the 1-year and 6-month cycles. The optimum least squares fitting (LSF) curves calculated with the 1-year and 6-month cycles explained the underlying variation of the chickenpox data. The LSF curves reproduced the bimodal and unimodal cycles that were clearly observed in northern and southern Japan, respectively. The data suggest that the second peaks in the bimodal cycles in the reported chickenpox cases in Japan occurred at a temperature of approximately 8·5 °C.

  3. Advantage of bimodal fitting in prosody perception for children using a cochlear implant and a hearing aid.

    PubMed

    Straatman, L V; Rietveld, A C M; Beijen, J; Mylanus, E A M; Mens, L H M

    2010-10-01

    Cochlear implants are largely unable to encode voice pitch information, which hampers the perception of some prosodic cues, such as intonation. This study investigated whether children with a cochlear implant in one ear were better able to detect differences in intonation when a hearing aid was added in the other ear ("bimodal fitting"). Fourteen children with normal hearing and 19 children with bimodal fitting participated in two experiments. The first experiment assessed the just noticeable difference in F0, by presenting listeners with a naturally produced bisyllabic utterance with an artificially manipulated pitch accent. The second experiment assessed the ability to distinguish between questions and affirmations in Dutch words, again by using artificial manipulation of F0. For the implanted group, performance significantly improved in each experiment when the hearing aid was added. However, even with a hearing aid, the implanted group required exaggerated F0 excursions to perceive a pitch accent and to identify a question. These exaggerated excursions are close to the maximum excursions typically used by Dutch speakers. Nevertheless, the results of this study showed that compared to the implant only condition, bimodal fitting improved the perception of intonation.

  4. Design and characterization of a cough simulator.

    PubMed

    Zhang, Bo; Zhu, Chao; Ji, Zhiming; Lin, Chao-Hsin

    2017-02-23

    Expiratory droplets from human coughing have always been considered as potential carriers of pathogens, responsible for respiratory infectious disease transmission. To study the transmission of disease by human coughing, a transient repeatable cough simulator has been designed and built. Cough droplets are generated by different mechanisms, such as the breaking of mucus, condensation and high-speed atomization from different depths of the respiratory tract. These mechanisms in coughing produce droplets of different sizes, represented by a bimodal distribution of 'fine' and 'coarse' droplets. A cough simulator is hence designed to generate transient sprays with such bimodal characteristics. It consists of a pressurized gas tank, a nebulizer and an ejector, connected in series, which are controlled by computerized solenoid valves. The bimodal droplet size distribution is characterized for the coarse droplets and fine droplets, by fibrous collection and laser diffraction, respectively. The measured size distributions of coarse and fine droplets are reasonably represented by the Rosin-Rammler and log-normal distributions in probability density function, which leads to a bimodal distribution. To assess the hydrodynamic consequences of coughing including droplet vaporization and polydispersion, a Lagrangian model of droplet trajectories is established, with its ambient flow field predetermined from a computational fluid dynamics simulation.

  5. Audition dominates vision in duration perception irrespective of salience, attention, and temporal discriminability

    PubMed Central

    Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2014-01-01

    Whereas the visual modality tends to dominate over the auditory modality in bimodal spatial perception, the auditory modality tends to dominate over the visual modality in bimodal temporal perception. Recent results suggest that the visual modality dominates bimodal spatial perception because spatial discriminability is typically greater for the visual than auditory modality; accordingly, visual dominance is eliminated or reversed when visual-spatial discriminability is reduced by degrading visual stimuli to be equivalent or inferior to auditory spatial discriminability. Thus, for spatial perception, the modality that provides greater discriminability dominates. Here we ask whether auditory dominance in duration perception is similarly explained by factors that influence the relative quality of auditory and visual signals. In contrast to the spatial results, the auditory modality dominated over the visual modality in bimodal duration perception even when the auditory signal was clearly weaker, when the auditory signal was ignored (i.e., the visual signal was selectively attended), and when the temporal discriminability was equivalent for the auditory and visual signals. Thus, unlike spatial perception where the modality carrying more discriminable signals dominates, duration perception seems to be mandatorily linked to auditory processing under most circumstances. PMID:24806403

  6. Laboratory Experiments of Sand Ripples with Bimodal Size Distributions Under Asymmetric Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Landry, B. J.

    2010-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the troughs. Preliminary quantitative results illuminate variations in equilibrium ripple geometry, ripple migration rates, and transition time scales between equilibrium states, all as functions of the sediment size mixture and flow forcing.

  7. The Development of Infant Discrimination of Affect in Multimodal and Unimodal Stimulation: The Role of Intersensory Redundancy

    ERIC Educational Resources Information Center

    Flom, Ross; Bahrick, Lorraine E.

    2007-01-01

    This research examined the developmental course of infants' ability to perceive affect in bimodal (audiovisual) and unimodal (auditory and visual) displays of a woman speaking. According to the intersensory redundancy hypothesis (L. E. Bahrick, R. Lickliter, & R. Flom, 2004), detection of amodal properties is facilitated in multimodal stimulation…

  8. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization.

    PubMed

    Li, He; Xu, Bo; He, Jianghao; Liu, Xiaoming; Gao, Wei; Mu, Ying

    2015-12-04

    A series of zirconium-based porous coordination polymers (PCPs) containing FI catalysts in the frameworks have been developed and studied as catalysts for ethylene polymerization. These PCPs exhibit good catalytic activities and long life times, producing polyethylenes with high molecular weights and bimodal molecular weight distribution in the form of particles.

  9. Phenol-formaldehyde carbon with ordered/disordered bimodal mesoporous structure as high-performance electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Cai, Tingwei; Zhou, Min; Han, Guangshuai; Guan, Shiyou

    2013-11-01

    A novel phenol-formaldehyde carbon with ordered/disordered bimodal mesoporous structure is synthesized by the facile evaporation induced self-assembly strategy under a basic aqueous condition with SiO2 particles as template. The prepared bimodal mesoporous carbons (BMCs) are composed of ordered mesoporous and disordered mesoporous with diameter of about 3.5 nm and 7.0 nm, respectively. They can be employed as supercapacitor electrodes in H2SO4 aqueous electrolyte after the simple acid-treatment. BMC exhibits an exceptional specific capacitance of 344 F g-1 at the current density of 0.1 A g-1, although it has a relatively low surface area of 722 m2 g-1. And the BMC electrode displays an excellent cycling stability over 10,000 cycles.

  10. A novel broadband bi-mode active frequency selective surface

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Gao, Jinsong; Xu, Nianxi; Shan, Dongzhi; Song, Naitao

    2017-05-01

    A novel broadband bi-mode active frequency selective surface (AFSS) is presented in this paper. The proposed structure is composed of a periodic array of convoluted square patches and Jerusalem Crosses. According to simulation results, the frequency response of AFSS definitely exhibits a mode switch feature between band-pass and band-stop modes when the diodes stay in ON and OFF states. In order to apply a uniform bias to each PIN diode, an ingenious biasing network based on the extension of Wheatstone bridge is adopted in prototype AFSS. The test results are in good agreement with the simulation results. A further physical mechanism of the bi-mode AFSS is shown by contrasting the distribution of electric field on the AFSS patterns for the two working states.

  11. Computational and Experimental Studies of Microstructure-Scale Porosity in Metallic Fuels for Improved Gas Swelling Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mllett, Paul; McDeavitt, Sean; Deo, Chaitanya

    This proposal will investigate the stability of bimodal pore size distributions in metallic uranium and uranium-zirconium alloys during sintering and re-sintering annealing treatments. The project will utilize both computational and experimental approaches. The computational approach includes both Molecular Dynamics simulations to determine the self-diffusion coefficients in pure U and U-Zr alloys in single crystals, grain boundaries, and free surfaces, as well as calculations of grain boundary and free surface interfacial energies. Phase-field simulations using MOOSE will be conducted to study pore and grain structure evolution in microstructures with bimodal pore size distributions. Experiments will also be performed to validate themore » simulations, and measure the time-dependent densification of bimodal porous compacts.« less

  12. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0043: Deformation and Texture Development During Hot Working of Titanium

    DTIC Science & Technology

    2008-04-01

    Hot Working of Titanium 5a. CONTRACT NUMBER F33615-03-D-5801-0043 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61202F 6 . AUTHOR(S) A.A...micrographs and thus to correlate microstructural features and texture data [3- 6 ]. For instance, Germain, et al. [3, 4 ] linked local orientations...microstructures can be developed in alpha/beta titanium alloys by TMP [2- 4 ], namely, fully lamellar, fully equiaxed, and duplex (bi-modal). A mixture

  13. Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: Record of slab breakoff that triggered ca. 108-113 Ma magmatism in the western Qiangtang terrane

    NASA Astrophysics Data System (ADS)

    Wei, Shao-gang; Tang, Ju-xing; Song, Yang; Liu, Zhi-bo; Feng, Jun; Li, Yan-bo

    2017-05-01

    We report new zircon U-Pb ages and Hf isotope compositions, and whole-rock major and trace element and Sr-Nd isotope data for the Meiriqiecuo Formation (MF) bimodal volcanic rocks collected from the Duolong Cu mining district (DCMD) in the western Qiangtang terrane (QT), western Tibet. These data provide important constraints on the petrogenetic evolution and geodynamic setting of Early Cretaceous magmatism in the DCMD. The MF bimodal volcanic rocks are mainly basaltic andesite and andesite, with subordinate rhyolite. Four mafic samples yielded zircon U-Pb ages of ca. 108.2-113.0 Ma, and one silicic sample has an age of 109.3 ± 2.2 Ma, indicating that the mafic and silicic eruptions were contemporaneous. The MF bimodal volcanic rocks belong to the medium-K calc-alkaline to shoshonite series. The rocks show arc-type affinities characterized by significant enrichment in light rare earth (LaN/YbN = 7.74-12.60) and large-ion lithophile elements (Rb, Cs, K, and Pb), but depletions in the high-field-strength elements (Nb, Ta, and Ti), which geochemically resemble Andean arc basalts. Therefore, the MF bimodal volcanic rocks were likely emplaced at an Andean-type active continental margin and represent an Early Cretaceous magmatic arc that was located at the western QT margin. Moreover, the mafic volcanic rocks have high initial Sr isotopic ratios (0.705269-0.705413) and negative εNd(t) values of -1.5 to -0.6 compared with the silicic volcanic rocks ((87Sr/86Sr)i = 0.704770-0.704903; εNd(t) = +1.2 to +1.3). Zircons from silicic samples have significantly higher εHf(t) values (+11.6 to +15.5) and predominantly lower Paleoproterozoic Hf crustal model ages (TDMC = 180-428 Ma) than the mafic samples, which have variable εHf(t) values of +3.4 to +13.0 and TDMC ages of 346-952 Ma. These results indicate that the mafic and silicic end-members of the MF bimodal suite were generated from mantle and crustal sources, respectively. The basaltic andesite and andesite may have been derived from mantle enriched by the metasomatism of subducted fluids, whereas the rhyolite could have been derived by partial melting of mafic juvenile crust that originated from an older and more depleted mantle. In light of the geochemical characteristics and field relationships, we propose that breakoff of the Bangong-Nujiang oceanic lithosphere was responsible for the generation and emplacement of the MF bimodal volcanic rocks. The fact that the MF bimodal volcanic arc magmatism was active at ca. 108-113 Ma indicates that it was associated with closure of the Bangong-Nujiang Ocean via an arc-arc "soft" collision during the Early Cretaceous.

  14. The high-mass end of the red sequence at z ~ 0.55 from SDSS-III/BOSS: completeness, bimodality and luminosity function

    DOE PAGES

    Montero-Dorta, Antonio D.; Bolton, Adam S.; Brownstein, Joel R.; ...

    2016-06-09

    The history of the expanding universe is encoded in the large-scale distribution of galaxies throughout space. By mapping out the three-dimensional locations of millions of galaxies with powerful telescopes, we can directly measure this expansion history. When interpreted using Einstein's theory of gravity, this expansion history lets us infer the contents of the universe, including the amount and nature of "dark energy", an as-yet unexplained energy density associated with the empty vacuum of space. However, to make these measurements and inferences accurately, we must understand and control for a large number of experimental effects. This paper develops a novel methodmore » for large cosmological galaxy surveys, and applies it to data from the "BOSS" experiment of the Third Sloan Digital Sky Survey. This method enables an accurate statistical characterization of the "completeness" of the BOSS experiment: the probability that a given galaxy at a given place in the universe is actually detected and successfully measured. It also enables the accurate determination of the underlying demographics of the galaxy population being studied by the experiment. These two ingredients can then be used to make a more accurate comparison between the results of the experiment and the theoretical models that predict the observable effects of dark energy.« less

  15. Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO 2 Flooding

    DOE PAGES

    Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William; ...

    2016-12-13

    Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less

  16. Bimodal TiO2 Contents of Mare Basalts at Apollo and Luna Sites and Implications for TiO2 Derived from Clementine Spectral Reflectance

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.

    2001-01-01

    A revised algorithm to estimate Ti contents of mare regions centered on Apollo and Luna sites shows a bimodal distribution, consistent with mare-basalt sample data. A global TiO2 map shows abundant intermediate TiO2 basalts in western Procellarum. Additional information is contained in the original extended abstract.

  17. Not all space is created equal: distribution of free space and its influence on heat-stress and the limpet Patelloida latistrigata.

    PubMed

    Lathlean, Justin A

    2014-12-01

    For most marine benthic communities unoccupied primary substrata, or free space, is considered the principle limiting resource. Substratum temperatures, desiccation rates and hydrodynamic characteristics of free space, however, may vary depending on patch size and isolation and therefore potentially influence biotic processes. This paper investigates the relationship between small-scale changes in the availability and configuration of free space, heat stress and abundance of the small rocky intertidal gastropod Patelloida latistrigata within southeastern Australia. Using infrared thermography I show that heat stress of rocky intertidal communities increased linearly with increasing amounts of free space on three neighbouring shores during four separate sampling intervals from October 2009 to January 2010. Abundances of P. latistrigata generally declined with increasing availability of free space and the associated increases in heat stress. An experimental manipulation that altered the configuration but not the availability of free space demonstrated that both heat stress and P. latistrigata abundance are not affected by small-scale changes in the configuration of free space. The small-scale distribution of P. latistrigata, however, was significantly influenced by differences in the configuration of free space with limpets displaying bimodal distributions within areas characterised by unevenly distributed free space. Since the distribution of Patelloida varies depending on the configuration of free space but thermal properties at the scale of individual limpets do not then we might expect Patelloida to be responding to changes in other abiotic factors, such as hydrodynamic forces and desiccation rates, which may change with the configuration of free space. This study highlights the dynamic and usually unexamined relationship between abiotic stress and the availability and acquisition of resources by marine benthic invertebrates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The effect of crystal shape, size and bimodality on the maximum packing and the rheology of crystal bearing magma

    NASA Astrophysics Data System (ADS)

    Moitra, Pranabendu; Gonnermann, Helge

    2014-05-01

    Magma often contains crystals of various shapes and sizes. We present experimental results on the effect of the shape- and size-distribution of solid particles on the rheological properties of solid-liquid suspensions, which are hydrodynamically analogous to crystal-bearing magmas. The suspensions were comprised of either a single particle shape and size (unimodal) or a mixture of two different particle shapes and sizes (bimodal). For each type of suspension we characterized the dry maximum packing fraction of the particle mixture using the tap density method. We then systematically varied the total volume fraction of particles in the suspension, as well as the relative proportion of the two different particle types in the bimodal suspensions. For each of the resultant mixtures (suspensions) we performed controlled shear stress experiments using a rotational rheometer in parallel-plate geometry spanning 4 orders of magnitude in shear stress. The resultant data curves of shear stress as a function of shear rate were fitted using a Herschel-Bulkley rheological model. We find that the dry maximum packing decreases with increasing particle aspect ratio (ar) and decreasing particle size ratio (Λ). The highest dry maximum packing was obtained at 60-75% volume of larger particles for bimodal spherical particle mixture. Normalized consistency, Kr, defined as the ratio of the consistency of the suspension and the viscosity of the suspending liquid, was fitted using a Krieger-Dougherty model as a function of the total solid volume fraction (φ). The maximum packing fractions (φm) obtained from the shear experimental data fitting of the unimodal suspensions were similar in magnitude with the dry maximum packing fractions of the unimodal particles. Subsequently, we used the dry maximum packing fractions of the bimodal particle mixtures to fit Kr as a function of φ for the bimodal suspensions. We find that Kr increases rapidly for suspensions with larger ar and smaller Λ. We also find that both the apparent yield stress and the shear thinning behavior of the suspensions increase with increasing ar and become significant at φ/φm ≥ 0.4.

  19. Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models

    PubMed Central

    Grün, Sonja; Helias, Moritz

    2017-01-01

    Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition. PMID:28968396

  20. Habitat Association and Seasonality in a Mosaic and Bimodal Hybrid Zone between Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae)

    PubMed Central

    Tatsuta, Haruki; Butlin, Roger K.

    2012-01-01

    Understanding why some hybrid zones are bimodal and others unimodal can aid in identifying barriers to gene exchange following secondary contact. The hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi contains a mix of allopatric parental populations and inter-mingled bimodal and unimodal sympatric populations, and provides an ideal system to examine the roles of local selection and gene flow between populations in maintaining bimodality. However, it is first necessary to confirm, over a larger spatial scale, previously identified associations between population composition and season and habitat. Here we use cline-fitting of one morphological and one song trait along two valley transects, and intervening mountains, to confirm previously identified habitat associations (mountain versus valley) and seasonal changes in population composition. As expected from previous findings of studies on a smaller spatial scale, C. jacobsi dominated mountain habitats and mixed populations dominated valleys, and C. brunneus became more prevalent in August. Controlling for habitat and incorporating into the analysis seasonal changes in cline parameters and the standard errors of parental trait values revealed wider clines than previous studies (best estimates of 6.4 to 24.5 km in our study versus 2.8 to 4.7 km in previous studies) and increased percentage of trait variance explained (52.7% and 61.5% for transects 1 and 2 respectively, versus 17.6%). Revealing such strong and consistent patterns within a complex hybrid zone will allow more focused examination of the causes of variation in bimodality in mixed populations, in particular the roles of local selection versus habitat heterogeneity and gene flow between differentiated populations. PMID:22675485

  1. Distributional Learning of Lexical Tones: A Comparison of Attended vs. Unattended Listening.

    PubMed

    Ong, Jia Hoong; Burnham, Denis; Escudero, Paola

    2015-01-01

    This study examines whether non-tone language listeners can acquire lexical tone categories distributionally and whether attention in the training phase modulates the effect of distributional learning. Native Australian English listeners were trained on a Thai lexical tone minimal pair and their performance was assessed using a discrimination task before and after training. During Training, participants either heard a Unimodal distribution that would induce a single central category, which should hinder their discrimination of that minimal pair, or a Bimodal distribution that would induce two separate categories that should facilitate their discrimination. The participants either heard the distribution passively (Experiments 1A and 1B) or performed a cover task during training designed to encourage auditory attention to the entire distribution (Experiment 2). In passive listening (Experiments 1A and 1B), results indicated no effect of distributional learning: the Bimodal group did not outperform the Unimodal group in discriminating the Thai tone minimal pairs. Moreover, both Unimodal and Bimodal groups improved above chance on most test aspects from Pretest to Posttest. However, when participants' auditory attention was encouraged using the cover task (Experiment 2), distributional learning was found: the Bimodal group outperformed the Unimodal group on a novel test syllable minimal pair at Posttest relative to at Pretest. Furthermore, the Bimodal group showed above-chance improvement from Pretest to Posttest on three test aspects, while the Unimodal group only showed above-chance improvement on one test aspect. These results suggest that non-tone language listeners are able to learn lexical tones distributionally but only when auditory attention is encouraged in the acquisition phase. This implies that distributional learning of lexical tones is more readily induced when participants attend carefully during training, presumably because they are better able to compute the relevant statistics of the distribution.

  2. Distributional Learning of Lexical Tones: A Comparison of Attended vs. Unattended Listening

    PubMed Central

    Ong, Jia Hoong; Burnham, Denis; Escudero, Paola

    2015-01-01

    This study examines whether non-tone language listeners can acquire lexical tone categories distributionally and whether attention in the training phase modulates the effect of distributional learning. Native Australian English listeners were trained on a Thai lexical tone minimal pair and their performance was assessed using a discrimination task before and after training. During Training, participants either heard a Unimodal distribution that would induce a single central category, which should hinder their discrimination of that minimal pair, or a Bimodal distribution that would induce two separate categories that should facilitate their discrimination. The participants either heard the distribution passively (Experiments 1A and 1B) or performed a cover task during training designed to encourage auditory attention to the entire distribution (Experiment 2). In passive listening (Experiments 1A and 1B), results indicated no effect of distributional learning: the Bimodal group did not outperform the Unimodal group in discriminating the Thai tone minimal pairs. Moreover, both Unimodal and Bimodal groups improved above chance on most test aspects from Pretest to Posttest. However, when participants’ auditory attention was encouraged using the cover task (Experiment 2), distributional learning was found: the Bimodal group outperformed the Unimodal group on a novel test syllable minimal pair at Posttest relative to at Pretest. Furthermore, the Bimodal group showed above-chance improvement from Pretest to Posttest on three test aspects, while the Unimodal group only showed above-chance improvement on one test aspect. These results suggest that non-tone language listeners are able to learn lexical tones distributionally but only when auditory attention is encouraged in the acquisition phase. This implies that distributional learning of lexical tones is more readily induced when participants attend carefully during training, presumably because they are better able to compute the relevant statistics of the distribution. PMID:26214002

  3. Bimodal Formation Time Distribution for Infall Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.

    2018-04-01

    We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.

  4. How bilingualism protects the brain from aging: Insights from bimodal bilinguals.

    PubMed

    Li, Le; Abutalebi, Jubin; Emmorey, Karen; Gong, Gaolang; Yan, Xin; Feng, Xiaoxia; Zou, Lijuan; Ding, Guosheng

    2017-08-01

    Bilingual experience can delay cognitive decline during aging. A general hypothesis is that the executive control system of bilinguals faces an increased load due to controlling two languages, and this increased load results in a more "tuned brain" that eventually creates a neural reserve. Here we explored whether such a neuroprotective effect is independent of language modality, i.e., not limited to bilinguals who speak two languages but also occurs for bilinguals who use a spoken and a signed language. We addressed this issue by comparing bimodal bilinguals to monolinguals in order to detect age-induced structural brain changes and to determine whether we can detect the same beneficial effects on brain structure, in terms of preservation of gray matter volume (GMV), for bimodal bilinguals as has been reported for unimodal bilinguals. Our GMV analyses revealed a significant interaction effect of age × group in the bilateral anterior temporal lobes, left hippocampus/amygdala, and left insula where bimodal bilinguals showed slight GMV increases while monolinguals showed significant age-induced GMV decreases. We further found through cortical surface-based measurements that this effect was present for surface area and not for cortical thickness. Moreover, to further explore the hypothesis that overall bilingualism provides neuroprotection, we carried out a direct comparison of GMV, extracted from the brain regions reported above, between bimodal bilinguals, unimodal bilinguals, and monolinguals. Bilinguals, regardless of language modality, exhibited higher GMV compared to monolinguals. This finding highlights the general beneficial effects provided by experience handling two language systems, whether signed or spoken. Hum Brain Mapp 38:4109-4124, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models.

    PubMed

    Rostami, Vahid; Porta Mana, PierGianLuca; Grün, Sonja; Helias, Moritz

    2017-10-01

    Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition.

  6. Hydrologic Process Parameterization of Electrical Resistivity Imaging of Solute Plumes Using POD McMC

    NASA Astrophysics Data System (ADS)

    Awatey, M. T.; Irving, J.; Oware, E. K.

    2016-12-01

    Markov chain Monte Carlo (McMC) inversion frameworks are becoming increasingly popular in geophysics due to their ability to recover multiple equally plausible geologic features that honor the limited noisy measurements. Standard McMC methods, however, become computationally intractable with increasing dimensionality of the problem, for example, when working with spatially distributed geophysical parameter fields. We present a McMC approach based on a sparse proper orthogonal decomposition (POD) model parameterization that implicitly incorporates the physics of the underlying process. First, we generate training images (TIs) via Monte Carlo simulations of the target process constrained to a conceptual model. We then apply POD to construct basis vectors from the TIs. A small number of basis vectors can represent most of the variability in the TIs, leading to dimensionality reduction. A projection of the starting model into the reduced basis space generates the starting POD coefficients. At each iteration, only coefficients within a specified sampling window are resimulated assuming a Gaussian prior. The sampling window grows at a specified rate as the number of iteration progresses starting from the coefficients corresponding to the highest ranked basis to those of the least informative basis. We found this gradual increment in the sampling window to be more stable compared to resampling all the coefficients right from the first iteration. We demonstrate the performance of the algorithm with both synthetic and lab-scale electrical resistivity imaging of saline tracer experiments, employing the same set of basis vectors for all inversions. We consider two scenarios of unimodal and bimodal plumes. The unimodal plume is consistent with the hypothesis underlying the generation of the TIs whereas bimodality in plume morphology was not theorized. We show that uncertainty quantification using McMC can proceed in the reduced dimensionality space while accounting for the physics of the underlying process.

  7. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  8. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usui, Fumihiko; Hasegawa, Sunao; Matsuhara, Hideo

    We present an analysis of the albedo properties of main belt asteroids (MBAs) detected by the All-Sky Survey of the infrared astronomical satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the standard thermal model, using inputs of infrared fluxes and absolute magnitudes measured at optical wavelengths. MBAs, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06-3.27 AU, except for the near-Earth asteroids. AcuA provides a complete data set of all MBAsmore » brighter than the absolute magnitude of H < 10.3, which corresponds to the diameter of d > 20 km. We confirmed that the albedo distribution of the MBAs is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. The bimodal distribution in each group consists of low-albedo components in C-type asteroids and high-albedo components in S-type asteroids. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite of the albedo transition process like space weathering, the heliocentric distribution of the mean albedo of asteroids in each taxonomic type is nearly flat. The mean albedo of the total, on the other hand, gradually decreases with an increase in semimajor axis. This can be explained by the compositional ratio of taxonomic types; that is, the proportion of dark asteroids such as C- and D-types increases, while that of bright asteroids such as S-type decreases, with increasing heliocentric distance. The heliocentric distributions of X-subclasses: E-, M-, and P-types, which can be divided based on albedo values, are also examined. P-types, which are the major component in X-types, are distributed throughout the main belt regions, and the abundance of P-types increases beyond 3 AU. This distribution is similar to that of C- or D-types.« less

  10. Datation U_Pb : âge de mise en place du magmatisme bimodal des Jebilet centrales (chaîne Varisque, Maroc). Implications géodynamiquesU_Pb dating: emplacement age of the bimodal magmatism of central Jebilet (Variscan Belt, Morocco). Geodynamic implications

    NASA Astrophysics Data System (ADS)

    Essaifi, Abderrahim; Potrel, Alain; Capdevila, Ramon; Lagarde, Jean-Louis

    2003-01-01

    The bimodal magmatism of central Jebilet is dated to 330.5 +0.68-0.83 Ma by UPb dating on zircons. This age, similar to that of the syntectonic Jebilet cordierite-bearing granitoids, corresponds to the age of the local major tectonometamorphic event. The syntectonic plutonism of the Jebilet massif, composed of tholeiitic, alkaline, and peraluminous calc-alkaline series, is variegated. Magmas emplacement was favoured by the local extension induced by the motion along the western boundary of the Carboniferous basins of the Moroccan Meseta. The Jebilet massif exemplifies the activation of various magmas sources during an episode of continental convergence and crustal wrenching.

  11. Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model.

    PubMed

    Solares, Santiago D

    2014-01-01

    This paper presents computational simulations of single-mode and bimodal atomic force microscopy (AFM) with particular focus on the viscoelastic interactions occurring during tip-sample impact. The surface is modeled by using a standard linear solid model, which is the simplest system that can reproduce creep compliance and stress relaxation, which are fundamental behaviors exhibited by viscoelastic surfaces. The relaxation of the surface in combination with the complexities of bimodal tip-sample impacts gives rise to unique dynamic behaviors that have important consequences with regards to the acquisition of quantitative relationships between the sample properties and the AFM observables. The physics of the tip-sample interactions and its effect on the observables are illustrated and discussed, and a brief research outlook on viscoelasticity measurement with intermittent-contact AFM is provided.

  12. Factoring handedness data: II. Geschwind's multidimensional hypothesis.

    PubMed

    Messinger, H B; Messinger, M I

    1996-06-01

    The challenge in this journal by Peters and Murphy to the validity of two published factor analyses of handedness data because of bimodality was dealt with in Part I by identifying measures to normalize the handedness item distributions. A new survey using Oldfield's questionnaire format had 38 bell-shaped (unimodal) handedness-item distributions and 11 that were only marginally bimodal out of the 55 items used in Geschwind's 1986 study. Yet they were still non-normal and the factor analysis was unsatisfactory; bimodality is not the only problem. By choosing a transformation for each item that was optimal as assessed by D'Agostino's K2 statistic, all but two items could be normalized. Seven factors were derived that showed high congruence between maximum likelihood and principal components extractions before and after varimax rotation. Geschwind's assertion that handedness is not unidimensional is therefore supported.

  13. A Novel Method of Extraction of Blend Component Structure from SANS Measurements of Homopolymer Bimodal Blends.

    PubMed

    Smerdova, Olga; Graham, Richard S; Gasser, Urs; Hutchings, Lian R; De Focatiis, Davide S A

    2014-05-01

    A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with [Formula: see text]. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. [Formula: see text].

  14. A Cross-Linguistic Study of the Development of Gesture and Speech in Zulu and French Oral Narratives

    ERIC Educational Resources Information Center

    Nicolas, Ramona Kunene; Guidetti, Michele; Colletta, Jean-Marc

    2017-01-01

    The present study reports on a developmental and cross-linguistic study of oral narratives produced by speakers of Zulu (a Bantu language) and French (a Romance language). Specifically, we focus on oral narrative performance as a bimodal (i.e., linguistic and gestural) behaviour during the late language acquisition phase. We analyzed seventy-two…

  15. The Effect of BBC World Clips with and without Subtitles on Intermediate EFL Learners' Vocabulary Development

    ERIC Educational Resources Information Center

    Sirmandi, Effat Heidari; Sardareh, Sedigheh Abbasnasab

    2016-01-01

    This study was conducted to investigate the effect of bimodal subtitled films on vocabulary learning among Iranian EFL learners. To achieve this purpose, 60 male and female intermediate learners who were studying English as a Foreign Language (EFL) in Pardis Memar Institiute in Bandar Abbas, Iran, participated in this study. A standard proficiency…

  16. THE BIMODAL DISTRIBUTION: DEVELOPMENT OF THE CONCEPT OF FINE AND COARSE PARTICLES AS SEPARATE AND DISTINCT COMPONENTS OF AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    In the early 1970s, it was understood that combustion particles were formed mostly in sizes below 1 um diameter, and windblown dust was suspended in sizes mostly above 1 um diameter. However, particle size distribution was thought of as a single mode. Particles were thought to f...

  17. Analysis of Methods for Determining High Cycle Fatigue Strength of a Material With Investigation of Ti-6Al-4V Gigacycle Fatigue Behavior

    DTIC Science & Technology

    2005-10-01

    al [77]). 44 Figure 17. Schematic illustration of bimodal S-N behavior (from Mughrabi [54]). The work of these researchers and others has...62 Braam and van der Zwaag Correction ............................................................ 63 Fang et al Approach...Figure 16. Conceptual S-N curves using the concept of a bimodal model (from Shiozawa et al [77

  18. Superthermal photon bunching in terms of simple probability distributions

    NASA Astrophysics Data System (ADS)

    Lettau, T.; Leymann, H. A. M.; Melcher, B.; Wiersig, J.

    2018-05-01

    We analyze the second-order photon autocorrelation function g(2 ) with respect to the photon probability distribution and discuss the generic features of a distribution that results in superthermal photon bunching [g(2 )(0 ) >2 ]. Superthermal photon bunching has been reported for a number of optical microcavity systems that exhibit processes such as superradiance or mode competition. We show that a superthermal photon number distribution cannot be constructed from the principle of maximum entropy if only the intensity and the second-order autocorrelation are given. However, for bimodal systems, an unbiased superthermal distribution can be constructed from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode distributions by a mixture of a thermal and a lasinglike state and thus reveal a generic mechanism in the photon probability distribution responsible for creating superthermal photon bunching. We relate our general considerations to a physical system, i.e., a (single-emitter) bimodal laser, and show that its statistics can be approximated and understood within our proposed model. Furthermore, the excellent agreement of the statistics of the bimodal laser and our model reveals that the bimodal laser is an ideal source of bunched photons, in the sense that it can generate statistics that contain no other features but the superthermal bunching.

  19. Self-assembly of magnetic nanoclusters in diamond-like carbon by diffusion processes enhanced by collision cascades

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Williams, G. V. M.; Hübner, R.; Vajandar, S.; Osipowicz, T.; Heinig, K.-H.; Becker, H.-W.; Markwitz, A.

    2017-04-01

    Mono-energetic cobalt implantation into hydrogenated diamond-like carbon at room temperature results in a bimodal distribution of implanted atoms without any thermal treatment. The ˜100 nm thin films were synthesised by mass selective ion beam deposition. The films were implanted with cobalt at an energy of 30 keV and an ion current density of ˜5 μA cm-2. Simulations suggest the implantation profile to be single Gaussian with a projected range of ˜37 nm. High resolution Rutherford backscattering measurements reveal that a bimodal distribution evolves from a single near-Gaussian distribution as the fluence increases from 1.2 to 7 × 1016 cm-2. Cross-sectional transmission electron microscopy further reveals that the implanted atoms cluster into nanoparticles. At high implantation doses, the nanoparticles assemble primarily in two bands: one near the surface with nanoparticle diameters of up to 5 nm and the other beyond the projected range with ˜2 nm nanoparticles. The bimodal distribution along with the nanoparticle formation is explained with diffusion enhanced by energy deposited during collision cascades, relaxation of thermal spikes, and defects formed during ion implantation. This unique distribution of magnetic nanoparticles with the bimodal size and range is of significant interest to magnetic semiconductor and sensor applications.

  20. Does bimodal stimulus presentation increase ERP components usable in BCIs?

    NASA Astrophysics Data System (ADS)

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.

    2012-08-01

    Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.

  1. Two Color Populations of Kuiper Belt and Centaur Objects and the Smaller Orbital Inclinations of Red Centaur Objects

    NASA Astrophysics Data System (ADS)

    Tegler, S. C.; Romanishin, W.; Consolmagno, G. J.; J., S.

    2016-12-01

    We present new optical colors for 28 Kuiper Belt objects (KBOs) and 35 Centaur objects measured with the 1.8 m Vatican Advanced Technology Telescope and the 4.3 m Discovery Channel Telescope. By combining these new colors with our previously published colors, we increase the sample size of our survey to 154 objects. Our survey is unique in that the uncertainties in our color measurements are less than half the uncertainties in the color measurements reported by other researchers in the literature. Small uncertainties are essential for discerning between a unimodal and a bimodal distribution of colors for these objects as well as detecting correlations between colors and orbital elements. From our survey, it appears red Centaurs have a broader color distribution than gray Centaurs. We find red Centaurs have a smaller orbital inclination angle distribution than gray Centaurs at the 99.3% confidence level. Furthermore, we find that our entire sample of KBOs and Centaurs exhibits bimodal colors at the 99.4 % confidence level. KBOs and Centaurs with H V > 7.0 have bimodal colors at the 99.96% confidence level and KBOs with H V < 6.0 have bimodal colors at the 96% confidence level.

  2. Rapid quantitative chemical mapping of surfaces with sub-2 nm resolution

    NASA Astrophysics Data System (ADS)

    Lai, Chia-Yun; Perri, Saverio; Santos, Sergio; Garcia, Ricardo; Chiesa, Matteo

    2016-05-01

    We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems.We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00496b

  3. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus.

    PubMed

    García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina; Lopez, Daniel

    2017-09-12

    A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus , which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureus teichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.

  4. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus

    PubMed Central

    García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina

    2017-01-01

    A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. PMID:28893374

  5. When vision is not an option: children's integration of auditory and haptic information is suboptimal.

    PubMed

    Petrini, Karin; Remark, Alicia; Smith, Louise; Nardini, Marko

    2014-05-01

    When visual information is available, human adults, but not children, have been shown to reduce sensory uncertainty by taking a weighted average of sensory cues. In the absence of reliable visual information (e.g. extremely dark environment, visual disorders), the use of other information is vital. Here we ask how humans combine haptic and auditory information from childhood. In the first experiment, adults and children aged 5 to 11 years judged the relative sizes of two objects in auditory, haptic, and non-conflicting bimodal conditions. In , different groups of adults and children were tested in non-conflicting and conflicting bimodal conditions. In , adults reduced sensory uncertainty by integrating the cues optimally, while children did not. In , adults and children used similar weighting strategies to solve audio-haptic conflict. These results suggest that, in the absence of visual information, optimal integration of cues for discrimination of object size develops late in childhood. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  6. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  7. Application of a novel new multispectral nanoparticle tracking technique

    NASA Astrophysics Data System (ADS)

    McElfresh, Cameron; Harrington, Tyler; Vecchio, Kenneth S.

    2018-06-01

    Fast, reliable, and accurate particle size analysis techniques must meet the demands of evolving industrial and academic research in areas of functionalized nanoparticle synthesis, advanced materials development, and other nanoscale enabled technologies. In this study a new multispectral particle tracking analysis (m-PTA) technique enabled by the ViewSizer™ 3000 (MANTA Instruments, USA) was evaluated using solutions of monomodal and multimodal gold and polystyrene latex nanoparticles, as well as a spark eroded polydisperse 316L stainless steel nanopowder, and large (non-Brownian) borosilicate particles. It was found that m-PTA performed comparably to the DLS in evaluation of monomodal particle size distributions. When measuring bimodal, trimodal and polydisperse solutions, the m-PTA technique overwhelmingly outperformed traditional dynamic light scattering (DLS) in both peak detection and relative particle concentration analysis. It was also observed that the m-PTA technique is less susceptible to large particle overexpression errors. The ViewSizer™ 3000 was also found to be successful in accurately evaluating sizes and concentrations of monomodal and bimodal sinking borosilicate particles.

  8. Development of iron-doped silicon nanoparticles as bimodal imaging agents.

    PubMed

    Singh, Mani P; Atkins, Tonya M; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y; Kauzlarich, Susan M

    2012-06-26

    We demonstrate the synthesis of water-soluble allylamine-terminated Fe-doped Si (Si(xFe)) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single-source iron-containing precursor, Na(4)Si(4) with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH(4)Br to produce hydrogen-terminated Si(xFe) nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy indicates that the average particle diameter is ∼3.0 ± 1.0 nm. The Si(5Fe) nanoparticles show strong photoluminescence quantum yield in water (∼10%) with significant T(2) contrast (r(2)/r(1) value of 4.31). Electron paramagnetic resonance and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity.

  9. Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale.

    PubMed

    Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2015-10-01

    It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, north-central Nevada

    USGS Publications Warehouse

    John, D.A.; Hofstra, A.H.; Fleck, R.J.; Brummer, J.E.; Saderholm, E.C.

    2003-01-01

    The Mule Canyon mine exploited shallow, low-sulfidation, epithermal Au-Ag deposits that lie near the west side of the Northern Nevada rift in northern Lander County, Nevada. Mule Canyon consists of six small deposits that contained premining reserves of about 8.2 Mt at an average grade of 3.81 g Au/tonne. It is an uncommon mafic end member of low-sulfidation Au-Ag deposits associated with tholeiitic bimodal basalt-rhyolite magmatism. The ore is hosted by a basalt-andesite eruptive center that formed between about 16.4 to 15.8 Ma during early mafic eruptions related to regionally extensive bimodal magmatism. Hydrothermal alteration and Au-Ag ores formed at about 15.6 Ma and were tightly controlled by north-northwest- to north-striking high-angle fault and breccia zones developed during rifting, emplacement of mafic dikes, and eruption of mafic lava flows. Hydrothermal alteration assemblages are zoned outward from fluid conduits in the sequence silica-adularia, adularia-smectite, smectite (intermediate argillic), and smectite-carbonate (propylitic). All alteration types contain abundant pyrite and/or marcasite ?? arsenopyrite. Field relations indicate that silica-adularia alteration is superimposed on argillic and propylitic alteration. Little or no steam-heated acid-sulfate alteration is present, probably the result of a near-surface water table during hydrothermal alteration and ore deposition. Two distinct ore types are present at Mule Canyon: early replacement and later open-space filling. Replacement ores consist of disseminated and vesicle-filling pyrite, marcasite, and arsenopyrite in argillically altered or weakly silicified rocks. Ore minerals consist of Au-bearing arsenopyrite and arsenian pyrite overgrowths on earlier-formed pyrite and marcasite. Open-space filling ores include narrow stockwork quartz-adularia veins, banded and crustiform opaline and chalcedonic silica-adularia veins, silica-adularia cemented breccias, and sparse carbonate-pyrite and/or marcasite veins. Ore minerals consist mostly of electrum and Ag sulfide and selenide minerals, with minor to major amounts of pyrite, marcasite, and arsenopyrite, and local stibnite. Both types of ores have similar geochemical signatures, characterized by high Au, Ag, As, Sb, and Se contents, locally high Hg, Mo, Tl, and W contents, and low Cu, Pb, and Zn contents. Stable isotope data indicate that ore fluids consisted dominantly of meteoric water that evolved by deep circulation through Paleozoic sedimentary rocks at low water/rock ratios (about 1) and high temperatures (>200??C). Calculated isotopic compositions of ore fluids are ??18OH2O = -3 to -7 per mil, ??DH2O = -107 to -124 per mil, ??13CCO2 = 0 to -6 per mil, and ??34SH2S = -3 to +8 per mil. The ore fluids obtained much of their H2S and CO2 and probably scavenged ore metals and trace elements from the Paleozoic sedimentary rocks. Some H2S and CO2 may have been derived from degassing Miocene magmas. Mule Canyon formed at shallow depths, probably about 100 m below the paleosurface. Ore fluids were dilute, nearly neutral in pH, reduced, H2S-rich, and CO2-bearing. Peak temperatures in ore zones reached 230?? to 265??C at nearly lithostatic pressures when some crystalline quartz ?? adularia precipitated, but most ore formed at temperatures <200??C at near hydrostatic pressures and was accompanied by precipitation of opaline and chalcedonic silica ?? adularia ?? calcite and dolomite. Deposition of gold in As-rich overgrowths on pyrite and/or marcasite in disseminated ores occurred owing to decreasing H2S in the ore fluids resulting from sulfidation reactions. Later electrum and Ag selenide precipitation in open spaces occurred owing to boiling, loss of H2S to the vapor phase, and cooling. Mule Canyon is similar to most other low-sulfidation Au-Ag deposits associated with Miocene tholeiitic bimodal basalt-rhyolite magmatism in the Great Basin, such as Sleeper, Midas, and Buckhorn. Major differences at Mule Canyon are

  11. The Medial Ventrothalamic Circuitry: Cells Implicated in a Bimodal Network

    PubMed Central

    Vega-Zuniga, Tomas; Trost, Dominik; Schicker, Katrin; Bogner, Eva M.; Luksch, Harald

    2018-01-01

    Previous avian thalamic studies have shown that the medial ventral thalamus is composed of several nuclei located close to the lateral wall of the third ventricle. Although the general connectivity is known, detailed morphology and connectivity pattern in some regions are still elusive. Here, using the intracellular filling technique in the chicken, we focused on two neural structures, namely, the retinorecipient neuropil of the n. geniculatus lateralis pars ventralis (GLv), and the adjacent n. intercalatus thalami (ICT). We found that the GLv-ne cells showed two different neuronal types: projection cells and horizontal interneurons. The projection cells showed variable morphologies and dendritic arborizations with axons that targeted the n. lentiformis mesencephali (LM), griseum tectale (GT), ICT, n. principalis precommissuralis (PPC), and optic tectum (TeO). The horizontal cells showed a widespread mediolateral neural process throughout the retinorecipient GLv-ne. The ICT cells, on the other hand, had multipolar somata with wide dendritic fields that extended toward the lamina interna of the GLv, and a projection pattern that targeted the n. laminaris precommissuralis (LPC). Together, these results elucidate the rich complexity of the connectivity pattern so far described between the GLv, ICT, pretectum, and tectum. Interestingly, the implication of some of these neural structures in visuomotor and somatosensory roles strongly suggests that the GLv and ICT are part of a bimodal circuit that may be involved in the generation/modulation of saccades, gaze control, and space perception. PMID:29479309

  12. Observations of plan-view sand ripple behavior and spectral wave climate on the inner shelf of San Pedro Bay, California

    USGS Publications Warehouse

    Xu, J. P.

    2005-01-01

    Concurrent video images of sand ripples and current meter measurements of directional wave spectra are analyzed to study the relations between waves and wave-generated sand ripples. The data were collected on the inner shelf off Huntington Beach, California, at 15 m water depth, where the sea floor is comprised of well-sorted very fine sands (D50=92 ??m), during the winter of 2002. The wave climate, which was controlled by southerly swells (12-18 s period) and westerly wind waves (5-10 s period), included three wave types: (A) uni-modal, swells only; (B) bi-modal, swells dominant; and (C) bi-modal, wind-wave dominant. Each wave type has distinct relations with the plan-view shapes of ripples that are classified into five types: (1) sharp-crested, two-dimensional (2-D) ripples; (2) sharp-crested, brick-pattern, 3-D ripples; (3) bifurcated, 3-D ripples; (4) round-crested, shallow, 3-D ripples; and (5) flat bed. The ripple spacing is very small and varies between 4.5 and 7.5 cm. These ripples are anorbital as ripples in many field studies. Ripple orientation is only correlated with wave directions during strong storms (wave type C). In a poly-modal, multi-directional spectral wave environment, the use of the peak parameters (frequency, direction), a common practice when spectral wave measurements are unavailable, may lead to significant errors in boundary layer and sediment transport calculations. ?? 2004 Elsevier Ltd. All rights reserved.

  13. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele

    2017-12-01

    In this work maximum entropy distributions in the space of steady states of metabolic networks are considered upon constraining the first and second moments of the growth rate. Coexistence of fast and slow phenotypes, with bimodal flux distributions, emerges upon considering control on the average growth (optimization) and its fluctuations (heterogeneity). This is applied to the carbon catabolic core of Escherichia coli where it quantifies the metabolic activity of slow growing phenotypes and it provides a quantitative map with metabolic fluxes, opening the possibility to detect coexistence from flux data. A preliminary analysis on data for E. coli cultures in standard conditions shows degeneracy for the inferred parameters that extend in the coexistence region.

  14. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion (Briefing Charts)

    DTIC Science & Technology

    2014-07-01

    applications • Mentioned as a potential buffer / storage material for TPVs • Brief mentions in the solar thermal literature...Charts 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Experimental Investigation of Latent Heat Thermal Energy Storage for 5a. CONTRACT...NUMBER In-House Bi-Modal Solar Thermal Propulsion 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew R. Gilpin, David B. Scharfe

  15. Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case.

    PubMed

    Ebeling, Daniel; Solares, Santiago D

    2013-01-01

    We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in which the higher eigenmode is driven with constant frequency and constant excitation amplitude. General as well as particular characteristics of the different driving schemes are highlighted from theoretical and experimental points of view, revealing the advantages and disadvantages of each. This study provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way.

  16. Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model

    PubMed Central

    2014-01-01

    Summary This paper presents computational simulations of single-mode and bimodal atomic force microscopy (AFM) with particular focus on the viscoelastic interactions occurring during tip–sample impact. The surface is modeled by using a standard linear solid model, which is the simplest system that can reproduce creep compliance and stress relaxation, which are fundamental behaviors exhibited by viscoelastic surfaces. The relaxation of the surface in combination with the complexities of bimodal tip–sample impacts gives rise to unique dynamic behaviors that have important consequences with regards to the acquisition of quantitative relationships between the sample properties and the AFM observables. The physics of the tip–sample interactions and its effect on the observables are illustrated and discussed, and a brief research outlook on viscoelasticity measurement with intermittent-contact AFM is provided. PMID:25383277

  17. Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs.

    PubMed

    Shahrousvand, Ehsan; Shahrousvand, Mohsen; Ghollasi, Marzieh; Seyedjafari, Ehsan; Jouibari, Iman Sahebi; Babaei, Amir; Salimi, Ali

    2017-09-01

    Biocompatible and biodegradable polyurethanes (PUs) based on polycaprolactone diol (PCL) were prepared and filled with cellulose nanowhiskers (CNWs) obtained from wastepaper. The incorporated polyurethane nanocomposites were used to prepare foamed scaffolds with bimodal cell sizes through solvent casting/particulate leaching method. Sodium chloride and sugar porogens were also prepared to fabricate the scaffolds. The mechanical and thermal properties of PU/CNW nanocomposites were investigated. Incorporation of different CNWs resulted in various structures with tunable mechanical properties and biodegradability. All bimodal foam nanocomposites were biodegradable and also non-cytotoxic as revealed by MTT assay using SNL fibroblast cell line. PU/CNW foam scaffolds were used for osteogenic differentiation of human mesenchymal stem cells (hMSCs). Based on the results, such PU/CNW nanocomposites could support proliferation and osteogenic differentiation of hMSCs in three-dimensional synthetic extracellular matrix (ECM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Elaboration of austenitic stainless steel samples with bimodal grain size distributions and investigation of their mechanical behavior

    NASA Astrophysics Data System (ADS)

    Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.

    2017-10-01

    Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.

  19. BLUE STRAGGLER EVOLUTION CAUGHT IN THE ACT IN THE LARGE MAGELLANIC CLOUD GLOBULAR CLUSTER HODGE 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Chengyuan; De Grijs, Richard; Liu Xiangkun

    High-resolution Hubble Space Telescope imaging observations show that the radial distribution of the field-decontaminated sample of 162 'blue straggler' stars (BSs) in the 11.7{sup +0.2}{sub -0.1} Gyr old Large Magellanic Cloud cluster Hodge 11 exhibits a clear bimodality. In combination with their distinct loci in color-magnitude space, this offers new evidence in support of theoretical expectations that suggest different BS formation channels as a function of stellar density. In the cluster's color-magnitude diagram, the BSs in the inner 15'' (roughly corresponding to the cluster's core radius) are located more closely to the theoretical sequence resulting from stellar collisions, while thosemore » in the periphery (at radii between 85'' and 100'') are preferentially found in the region expected to contain objects formed through binary mass transfer or coalescence. In addition, the objects' distribution in color-magnitude space provides us with the rare opportunity in an extragalactic environment to quantify the evolution of the cluster's collisionally induced BS population and the likely period that has elapsed since their formation epoch, which we estimate to have occurred {approx}4-5 Gyr ago.« less

  20. Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.

    2018-06-01

    Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.

  1. Geochronology, Geochemistry and Tectonics of Subduction-Related Late Triassic Rift Basins in Northern Chile (24º-26ºS).

    NASA Astrophysics Data System (ADS)

    Espinoza, M. E.; Oliveros, V.; Celis, C.

    2016-12-01

    As plate-tectonic processes ultimately control the location, initiation, and evolution of sedimentary basins, the study of these is crucial to understand the geodynamic framework of a specific period. In northern Chile, Late Triassic depocenters crop out along the Coastal Cordillera and Precordillera. These basins have been typically associated to a continental rifting unrelated to subduction prior to the Andean orogeny. In this work, we characterize these basins and present field and analytical data suggesting the development of these basins during an active subduction system. U-Pb geochronology show the opening of these basins probably during the Anisian-Carnian (>233 Ma) with the deposition of highly mature sediments in fluvial systems, followed by the initiation of the volcanism and associated fluvial-alluvial redeposition. Furthermore, a continental (fluvial and lacustrine) deposition and its transition to shallow marine facies are recorded during the Norian to Raethian (212-200 Ma), contemporaneous with the development of acidic volcanic centers. The sedimentary provenance evidence a main detrital supply of Early Permian age ( 297-283 Ma) corresponding to volcanic and plutonic basement rocks and a minor supply close to 478 Ma related to the exhumed Famatinian arc to the east. Geochemical results from volcanic products present in the basins show a typical subduction signal (calc-alkaline trend, low HFS/LILE ratio and Nb-Ta negative anomalies), while petrography indicate a wide compositional variation more than a bimodal distribution. These basins present half-graben geometries with the recognition of structural highs separating local depocenters. Kinematic analyses carried in synrift extensional faults show a bimodal distribution of the maximum strain axes from a NE-SW to a subordinate NW-SE direction of elongation. This bimodality could be related to the co-existence of two competing strain directions associated to the breakup of Pangea and the presence of a subducting slab. These results integrates the magmatic, sedimentary and tectonic record pointing to a subduction-related extensional basin model developed over a continental substratum. The recognition of this ancient examples are important to understand an actual underrepresented basin setting.

  2. Evidence for a bimodal distribution in human communication.

    PubMed

    Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2010-11-02

    Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc.

  3. Evidence for a bimodal distribution in human communication

    PubMed Central

    Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2010-01-01

    Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc. PMID:20959414

  4. Nonlinear Color–Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sooyoung; Yoon, Suk-Jin, E-mail: sjyoon0691@yonsei.ac.kr

    Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line indexmore » versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.« less

  5. Two Color Populations of Kuiper Belt and Centaur Objects

    NASA Astrophysics Data System (ADS)

    Tegler, Stephen C.; Romanishin, William; Consolmagno, Guy

    2016-10-01

    We present new optical colors for 64 Kuiper belt objects (KBOs) and Centaur objects measured with the 1.8-meter Vatican Advanced Technology Telescope (VATT) and the 4.3-meter Discovery Channel Telescope (DCT). By combining these new colors with our previously published colors, we increase the sample size of our survey to 154 objects. Our survey is unique in that the uncertainties in our color measurements are less than half the uncertainties in the color measurements reported by other researchers in the literature. Small uncertainties are essential for discerning between a unimodal and a bimodal distribution of colors for these objects as well as detecting correlations between colors and orbital elements. From our survey, it appears red Centaurs have a broader color distribution than grey Centaurs. We find red Centaurs have a smaller orbital inclination angle distribution than grey Centaurs at the 99.3% confidence level. Furthermore, we find that our entire sample of KBOs and Centaurs exhibits bimodal colors at the 99.4% confidence level. KBOs and Centaurs with HV > 7.0 have bimodal colors at the 99.96% confidence level and KBOs with HV < 6.0 have bimodal colors at the 96.3% confidence level.We are grateful to the NASA Solar System Observations Program for support, NAU for joining the Discovery Channel Telescope Partnership, and the Vatican Observatory for the consistent allocation of telescope time over the last 12 years of this project.

  6. Age bimodality in the central region of pseudo-bulges in S0 galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.

  7. Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy

    NASA Astrophysics Data System (ADS)

    Mallik, S.; Das Gupta, S.; Chaudhuri, G.

    2016-04-01

    This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.

  8. Contralateral Bimodal Stimulation: A Way to Enhance Speech Performance in Arabic-Speaking Cochlear Implant Patients.

    PubMed

    Abdeltawwab, Mohamed M; Khater, Ahmed; El-Anwar, Mohammad W

    2016-01-01

    The combination of acoustic and electric stimulation as a way to enhance speech recognition performance in cochlear implant (CI) users has generated considerable interest in the recent years. The purpose of this study was to evaluate the bimodal advantage of the FS4 speech processing strategy in combination with hearing aids (HA) as a means to improve low-frequency resolution in CI patients. Nineteen postlingual CI adults were selected to participate in this study. All patients wore implants on one side and HA on the contralateral side with residual hearing. Monosyllabic word recognition, speech in noise, and emotion and talker identification were assessed using CI with fine structure processing/FS4 and high-definition continuous interleaved sampling strategies, HA alone, and a combination of CI and HA. The bimodal stimulation showed improvement in speech performance and emotion identification for the question/statement/order tasks, which was statistically significant compared to patients with CI alone, but there were no significant statistical differences in intragender talker discrimination and emotion identification for the happy/angry/neutral tasks. The poorest performance was obtained with HA only, and it was statistically significant compared to the other modalities. The bimodal stimulation showed enhanced speech performance in CI patients, and it improves the limitations provided by electric or acoustic stimulation alone. © 2016 S. Karger AG, Basel.

  9. Heatpipe space power and propulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-07-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS) that provides power only, and the Heatpipe Bimodal System (HBS) that provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, greatly facilitating system fabrication and handling. Third, full electrically heated system testing is possible, with minimal operations required to replace the heaters with fuel and ready the system for launch. Fourth, the systemsmore » are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single point failures during power mode operation. Eighth, fuel burnup rate is quite low to help ensure greater than 10-year system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, a full ground nuclear test is not needed, and development costs will be low. The baseline HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of about 500 kg. The unicouple thermoelectric converters have a hot shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program, demonstrating an operational lifetime of decades. At higher thermal power, the same core can produce over 10 kWe using thermoelectric converters, and over 50 kWe using advanced power conversion systems.« less

  10. Stochastic models for regulatory networks of the genetic toggle switch.

    PubMed

    Tian, Tianhai; Burrage, Kevin

    2006-05-30

    Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

  11. Stochastic models for regulatory networks of the genetic toggle switch

    PubMed Central

    Tian, Tianhai; Burrage, Kevin

    2006-01-01

    Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks. PMID:16714385

  12. Development and validation of a biologically realistic tissue-mimicking material for photoacoustics and other bimodal optical-acoustic modalities

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2017-03-01

    Recent years have seen rapid development of hybrid optical-acoustic imaging modalities with broad applications in research and clinical imaging, including photoacoustic tomography (PAT), photoacoustic microscopy, and ultrasound-modulated optical tomography. Tissue-mimicking phantoms are an important tool for objectively and quantitatively simulating in vivo imaging system performance. However, no standard tissue phantoms exist for such systems. One major challenge is the development of tissue-mimicking materials (TMMs) that are both highly stable and possess biologically realistic properties. To address this need, we have explored the use of various formulations of PVC plastisol (PVCP) based on varying mixtures of several liquid plasticizers. We developed a custom PVCP formulation with optical absorption and scattering coefficients, speed of sound, and acoustic attenuation that are tunable and tissue-relevant. This TMM can simulate different tissue compositions and offers greater mechanical strength than hydrogels. Optical properties of PVCP samples with varying composition were characterized using integrating sphere spectrophotometry and the inverse adding-doubling method. Acoustic properties were determined using a broadband pulse-transmission technique. To demonstrate the utility of this bimodal TMM, we constructed an image quality phantom designed to enable quantitative evaluation of PAT spatial resolution. The phantom was imaged using a custom combined PAT-ultrasound imaging system. Results indicated that this more biologically realistic TMM produced performance trends not captured in simpler liquid phantoms. In the future, this TMM may be broadly utilized for performance evaluation of optical, acoustic, and hybrid optical-acoustic imaging systems.

  13. A Manpower Comparison of Three U.S. Navies: The Current Fleet, a Projected 313 Ship Fleet, and a More Distributed Bimodal Alternative

    DTIC Science & Technology

    2009-09-01

    Large, Medium-speed, Roll-on/Roll-off Ships T- AKR ,” 2009) The ships can support humanitarian missions as well. LMSRs normally have a crew size of 26...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A MANPOWER...COMPARISON OF THREE U. S. NAVIES: THE CURRENT FLEET, A PROJECTED 313 SHIP FLEET, AND A MORE DISTRIBUTED BIMODAL ALTERNATIVE by Juan L. Carrasco

  14. Bimodal MR-PET agent for quantitative pH imaging

    PubMed Central

    Frullano, Luca; Catana, Ciprian; Benner, Thomas; Sherry, A. Dean; Caravan, Peter

    2010-01-01

    Activatable or “smart” magnetic resonance contrast agents have relaxivities that depend on environmental factors such as pH or enzymatic activity, but the MR signal depends on relaxivity and agent concentration – two unknowns. A bimodal approach, incorporating a positron emitter, solves this problem. Simultaneous positron emission tomography (PET) and MR imaging with the biomodal, pH-responsive MR-PET agent GdDOTA-4AMP-F allows direct determination of both concentration (PET) and T1 (MRI), and hence pH. PMID:20191650

  15. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound.

    PubMed

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura

    2012-10-01

    We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.

  16. Parametric Weight Study of Cryogenic Metallic Tanks for the ``Bimodal'' NTR Mars Vehicle Concept

    NASA Astrophysics Data System (ADS)

    Kosareo, Daniel N.; Roche, Joseph M.

    2006-01-01

    A parametric weight assessment of large cryogenic metallic tanks was conducted using the design optimization capabilities in the ANSYS ® finite element analysis code. This analysis was performed to support the sizing of a ``bimodal'' nuclear thermal rocket (NTR) Mars vehicle concept developed at the NASA Glenn Research Center. The tank design study was driven by two load conditions: an in-line, ``Shuttle-derived'' heavy-lift launch with the tanks filled and pressurized, and a burst-test pressure. The main tank structural arrangement is a state-of-the art metallic construction which uses an aluminum-lithium alloy stiffened internally with a ring and stringer framework. The tanks must carry liquid hydrogen in separate launches to orbit where all vehicle components will dock and mate. All tank designs stayed within the available mass and payload volume limits of both the in-line heavy lift and Shuttle derived launch vehicles. Weight trends were developed over a range of tank lengths with varying stiffener cross-sections and tank wall thicknesses. The object of this parametric study was to verify that the proper mass was allocated for the tanks in the overall vehicle sizing model. This paper summarizes the tank weights over a range of tank lengths.

  17. Recognition and localization of speech by adult cochlear implant recipients wearing a digital hearing aid in the nonimplanted ear (bimodal hearing).

    PubMed

    Potts, Lisa G; Skinner, Margaret W; Litovsky, Ruth A; Strube, Michael J; Kuk, Francis

    2009-06-01

    The use of bilateral amplification is now common clinical practice for hearing aid users but not for cochlear implant recipients. In the past, most cochlear implant recipients were implanted in one ear and wore only a monaural cochlear implant processor. There has been recent interest in benefits arising from bilateral stimulation that may be present for cochlear implant recipients. One option for bilateral stimulation is the use of a cochlear implant in one ear and a hearing aid in the opposite nonimplanted ear (bimodal hearing). This study evaluated the effect of wearing a cochlear implant in one ear and a digital hearing aid in the opposite ear on speech recognition and localization. A repeated-measures correlational study was completed. Nineteen adult Cochlear Nucleus 24 implant recipients participated in the study. The participants were fit with a Widex Senso Vita 38 hearing aid to achieve maximum audibility and comfort within their dynamic range. Soundfield thresholds, loudness growth, speech recognition, localization, and subjective questionnaires were obtained six-eight weeks after the hearing aid fitting. Testing was completed in three conditions: hearing aid only, cochlear implant only, and cochlear implant and hearing aid (bimodal). All tests were repeated four weeks after the first test session. Repeated-measures analysis of variance was used to analyze the data. Significant effects were further examined using pairwise comparison of means or in the case of continuous moderators, regression analyses. The speech-recognition and localization tasks were unique, in that a speech stimulus presented from a variety of roaming azimuths (140 degree loudspeaker array) was used. Performance in the bimodal condition was significantly better for speech recognition and localization compared to the cochlear implant-only and hearing aid-only conditions. Performance was also different between these conditions when the location (i.e., side of the loudspeaker array that presented the word) was analyzed. In the bimodal condition, the speech-recognition and localization tasks were equal regardless of which side of the loudspeaker array presented the word, while performance was significantly poorer for the monaural conditions (hearing aid only and cochlear implant only) when the words were presented on the side with no stimulation. Binaural loudness summation of 1-3 dB was seen in soundfield thresholds and loudness growth in the bimodal condition. Measures of the audibility of sound with the hearing aid, including unaided thresholds, soundfield thresholds, and the Speech Intelligibility Index, were significant moderators of speech recognition and localization. Based on the questionnaire responses, participants showed a strong preference for bimodal stimulation. These findings suggest that a well-fit digital hearing aid worn in conjunction with a cochlear implant is beneficial to speech recognition and localization. The dynamic test procedures used in this study illustrate the importance of bilateral hearing for locating, identifying, and switching attention between multiple speakers. It is recommended that unilateral cochlear implant recipients, with measurable unaided hearing thresholds, be fit with a hearing aid.

  18. Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, western United States: Characteristics, distribution, and relationship to Magmatism

    USGS Publications Warehouse

    John, D.A.

    2001-01-01

    Numerous important Miocene and early Pliocene epithermal Au-Ag deposits are present in the northern Great Basin. Most deposits are spatially and temporally related to two magmatic assemblages: bimodal basalt-rhyolite and western andesite. These magmatic assemblages are petrogenetic suites that reflect variations in tectonic environment of magma generation. The bimodal assemblage is a K-rich tholeiitic series formed during continental rifting. Rocks in the bimodal assemblage consist mostly of basalt to andesite and rhyolite compositions that generally contain anhydrous and reduced mineral assemblages (e.g., quartz + fayalite rhyolites). Eruptive forms include mafic lava flows, dikes, cinder and/or spatter cones, shield volcanoes, silicic flows, domes, and ash-flow calderas. Fe-Ti oxide barometry indicates oxygen fugacities between the magnetite-wustite and fayalite-magnetite-quartz oxygen buffers for this magmatic assemblage. The western andesite assemblage is a high K calc-alkaline series that formed a continental-margin are related to subduction of oceanic crust beneath the western coast of North America. In the northern Great Basin, most of the western andesite assemblage was erupted in the Walker Lane belt, a zone of transtension and strike-slip faulting. The western andesite assemblage consists of stratovolcanoes, dome fields, and subvolcanic plutons, mostly of andesite and dacite composition. Biotite and hornblende phenocrysts are abundant in these rocks. Oxygen fugacities of the western andesite assemblage magmas were between the nickel-nickel oxide and hematite-magnetite buffers, about two to four orders of magnitude greater than magmas of the bimodal assemblage. Numerous low-sulfidation Au-Ag deposits in the bimodal assemblage include deposits in the Midas (Ken Snyder), Sleeper, DeLamar, Mule Canyon, Buckhorn, National, Hog Ranch, Ivanhoe, and Jarbidge districts; high-sulfidation gold and porphyry copper-gold deposits are absent. Both high- and low-sulfidation gold-silver and porphyry copper-gold deposits are affiliated with the western andesite assemblage and include the Comstock Lode, Tonopah, Goldfield, Aurora, Bodie, Paradise Peak, and Rawhide deposits. Low-sulfidation Au-Ag deposits in the bimodal assemblage formed under relatively low oxygen and sulfur fugacities and have generally low total base metal (Cu + Pb + Zn) contents, low Ag/Au ratios, and notably high selenide mineral contents compared to temporally equivalent low-sulfidation deposits in the western andesite assemblage. Petrologic studies suggest that these differences may reflect variations in the magmatic-tectonic settings of the associated magmatic assemblages-deposits in the western andesite assemblage formed from oxidized, water-rich, subduction-related calc-alkaline magmas, whereas deposits in the bimodal assemblage were associated with reduced, water-poor tholeiitic magmas derived from the lithospheric mantle during continental extension. The contrasting types and characteristics of epithermal deposits and their affinities with associated igneous rocks suggest that a genetic relationship is present between these Au-Ag deposits and their temporally associated magmatism, although available data do not prove this relationship for most low-sulfidation deposits.

  19. The future of subalpine forests in the Southern Rocky Mountains: Trajectories for Pinus aristata genetic lineages

    PubMed Central

    2018-01-01

    Like many other high elevation alpine tree species, Rocky Mountain bristlecone pine (Pinus aristata Engelm.) may be particularly vulnerable to climate change. To evaluate its potential vulnerability to shifts in climate, we defined the suitable climate space for each of four genetic lineages of bristlecone pine and for other subalpine tree species in close proximity to bristlecone pine forests. Measuring changes in the suitable climate space for lineage groups is an important step beyond models that assume species are genetically homogenous. The suitable climate space for bristlecone pine in the year 2090 is projected to decline by 74% and the proportional distribution of suitable climate space for genetic lineages shifts toward those associated with warmer and wetter conditions. The 2090 climate space for bristlecone pine exhibits a bimodal distribution along an elevation gradient, presumably due to the persistence of the climate space in the Southern Rocky Mountains and exclusion at mid-elevations by conditions that favor the climate space of other species. These shifts have implications for changes in fire regimes, vulnerability to pest and pathogens, and altered carbon dynamics across the southern Rockies, which may reduce the likelihood of bristlecone pine trees achieving exceptional longevity in the future. The persistence and expansion of climate space for southern bristlecone pine genetic lineage groups in 2090 suggests that these sources may be the least vulnerable in the future. While these lineages may be more likely to persist and therefore present opportunities for proactive management (e.g., assisted migration) to maintain subalpine forest ecosystem services in a warmer world, our findings also imply heighted conservation concern for vulnerable northern lineages facing range contractions. PMID:29554097

  20. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy.

    PubMed

    Vajpai, Sanjay Kumar; Sawangrat, Choncharoen; Yamaguchi, Osamu; Ciuca, Octav Paul; Ameyama, Kei

    2016-01-01

    In the present work, Co-Cr-Mo alloy compacts with a unique bimodal microstructural design, harmonic structure design, were successfully prepared via a powder metallurgy route consisting of controlled mechanical milling of pre-alloyed powders followed by spark plasma sintering. The harmonic structured Co-Cr-Mo alloy with bimodal grain size distribution exhibited relatively higher strength together with higher ductility as compared to the coarse-grained specimens. The harmonic Co-Cr-Mo alloy exhibited a very complex deformation behavior wherein it was found that the higher strength and the high retained ductility are derived from fine-grained shell and coarse-grained core regions, respectively. Finally, it was observed that the peculiar spatial/topological arrangement of stronger fine-grained and ductile coarse-grained regions in the harmonic structure promotes uniformity of strain distribution, leading to improved mechanical properties by suppressing the localized plastic deformation during straining. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A long-term epigenetic memory switch controls bacterial virulence bimodality

    PubMed Central

    Ronin, Irine; Katsowich, Naama; Rosenshine, Ilan; Balaban, Nathalie Q

    2017-01-01

    When pathogens enter the host, sensing of environmental cues activates the expression of virulence genes. Opposite transition of pathogens from activating to non-activating conditions is poorly understood. Interestingly, variability in the expression of virulence genes upon infection enhances colonization. In order to systematically detect the role of phenotypic variability in enteropathogenic E. coli (EPEC), an important human pathogen, both in virulence activating and non-activating conditions, we employed the ScanLag methodology. The analysis revealed a bimodal growth rate. Mathematical modeling combined with experimental analysis showed that this bimodality is mediated by a hysteretic memory-switch that results in the stable co-existence of non-virulent and hyper-virulent subpopulations, even after many generations of growth in non-activating conditions. We identified the per operon as the key component of the hysteretic switch. This unique hysteretic memory switch may result in persistent infection and enhanced host-to-host spreading. DOI: http://dx.doi.org/10.7554/eLife.19599.001 PMID:28178445

  2. Magnetorheological behavior of magnetoactive elastomers filled with bimodal iron and magnetite particles

    NASA Astrophysics Data System (ADS)

    Sorokin, Vladislav V.; Stepanov, Gennady V.; Shamonin, Mikhail; Monkman, Gareth J.; Kramarenko, Elena Yu

    2017-03-01

    Magnetoactive elastomers (MAE) based on soft silicone matrices, filled with various proportions of large diameter (approximately 50 μm) iron and small diameter (approximately 0.5 μm) magnetite particles are synthesized. Their rheological behavior in homogeneous magnetic fields up to 600 mT is studied in detail. The addition of small magnetite particles facilitates fabrication of uniformly distributed magnetic elastomer composites by preventing aggregation and sedimentation of large particles during curing. It is shown that using the proposed bimodal filler particles it is possible to tailor various magnetorheological (MR) properties which can be useful for different target applications. In particular, either absolute or relative magnetorheological effects can be tuned. The value of the damping factor as well as the range of deformation amplitudes for the linear viscoelastic regime can be chosen. The interdependencies between different MR properties of bimodal MAEs are considered. The results are discussed in the model framework of particle network formation under the simultaneous influence of external magnetic fields and mechanical deformation.

  3. Human fatigue expression recognition through image-based dynamic multi-information and bimodal deep learning

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Zengcai; Wang, Xiaojin; Qi, Yazhou; Liu, Qing; Zhang, Guoxin

    2016-09-01

    Human fatigue is an important cause of traffic accidents. To improve the safety of transportation, we propose, in this paper, a framework for fatigue expression recognition using image-based facial dynamic multi-information and a bimodal deep neural network. First, the landmark of face region and the texture of eye region, which complement each other in fatigue expression recognition, are extracted from facial image sequences captured by a single camera. Then, two stacked autoencoder neural networks are trained for landmark and texture, respectively. Finally, the two trained neural networks are combined by learning a joint layer on top of them to construct a bimodal deep neural network. The model can be used to extract a unified representation that fuses landmark and texture modalities together and classify fatigue expressions accurately. The proposed system is tested on a human fatigue dataset obtained from an actual driving environment. The experimental results demonstrate that the proposed method performs stably and robustly, and that the average accuracy achieves 96.2%.

  4. Implicit co-activation of American Sign Language in deaf readers: An ERP study.

    PubMed

    Meade, Gabriela; Midgley, Katherine J; Sevcikova Sehyr, Zed; Holcomb, Phillip J; Emmorey, Karen

    2017-07-01

    In an implicit phonological priming paradigm, deaf bimodal bilinguals made semantic relatedness decisions for pairs of English words. Half of the semantically unrelated pairs had phonologically related translations in American Sign Language (ASL). As in previous studies with unimodal bilinguals, targets in pairs with phonologically related translations elicited smaller negativities than targets in pairs with phonologically unrelated translations within the N400 window. This suggests that the same lexicosemantic mechanism underlies implicit co-activation of a non-target language, irrespective of language modality. In contrast to unimodal bilingual studies that find no behavioral effects, we observed phonological interference, indicating that bimodal bilinguals may not suppress the non-target language as robustly. Further, there was a subset of bilinguals who were aware of the ASL manipulation (determined by debrief), and they exhibited an effect of ASL phonology in a later time window (700-900ms). Overall, these results indicate modality-independent language co-activation that persists longer for bimodal bilinguals. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst.

    PubMed

    Witoon, Thongthai; Bumrungsalee, Sittisut; Vathavanichkul, Peerawut; Palitsakun, Supaphorn; Saisriyoot, Maythee; Faungnawakij, Kajornsak

    2014-03-01

    Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325μm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions

    NASA Astrophysics Data System (ADS)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza

    2006-01-01

    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  7. Fighting Hepatitis B in North Korea: Feasibility of a Bi-modal Prevention Strategy

    PubMed Central

    Stich, August

    2015-01-01

    In North Korea, the prevalence of hepatitis B is high due to natural factors, gaps in vaccination, and the lack of antiviral treatment. Aid projects are urgently needed, however impeded by North Korea's political and economical situation and isolation. The feasibility of a joint North Korean and German humanitarian hepatitis B prevention program was assessed. Part 1: Hepatitis B vaccination catch-up campaign. Part 2: Implementation of endoscopic ligation of esophageal varices (EVL) by trainings in Germany and North Korea. By vaccinating 7 million children between 2010 and 2012, the hepatitis B vaccination gap was closed. Coverage of 99.23% was reached. A total of 11 hepatitis B-induced liver cirrhosis patients (mean age 41.1 yr) with severe esophageal varices and previous bleedings were successfully treated by EVL without major complications. A clinical standard operating procedure, a feedback system and a follow-up plan were developed. The bi-modal preventive strategy was implemented successfully. Parts of the project can serve as an example for other low-income countries, however its general transferability is limited due to the special circumstances in North Korea. PMID:26539001

  8. Bimodal exciton-plasmon light sources controlled by local charge carrier injection.

    PubMed

    Merino, Pablo; Rosławska, Anna; Große, Christoph; Leon, Christopher C; Kuhnke, Klaus; Kern, Klaus

    2018-05-01

    Electrical charges can generate photon emission in nanoscale quantum systems by two independent mechanisms. First, radiative recombination of pairs of oppositely charged carriers generates sharp excitonic lines. Second, coupling between currents and collective charge oscillations results in broad plasmonic bands. Both luminescence modes can be simultaneously generated upon charge carrier injection into thin C 60 crystallites placed in the plasmonic nanocavity of a scanning tunneling microscope (STM). Using the sharp tip of the STM as a subnanometer-precise local electrode, we show that the two types of electroluminescence are induced by two separate charge transport channels. Holes injected into the valence band promote exciton generation, whereas electrons extracted from the conduction band cause plasmonic luminescence. The different dynamics of the two mechanisms permit controlling their relative contribution in the combined bimodal emission. Exciton recombination prevails for low charge injection rates, whereas plasmon decay outshines for high tunneling currents. The continuous transition between both regimes is described by a rate model characterizing emission dynamics on the nanoscale. Our work provides the basis for developing blended exciton-plasmon light sources with advanced functionalities.

  9. Fighting Hepatitis B in North Korea: Feasibility of a Bi-modal Prevention Strategy.

    PubMed

    Unnewehr, Markus; Stich, August

    2015-11-01

    In North Korea, the prevalence of hepatitis B is high due to natural factors, gaps in vaccination, and the lack of antiviral treatment. Aid projects are urgently needed, however impeded by North Korea's political and economical situation and isolation. The feasibility of a joint North Korean and German humanitarian hepatitis B prevention program was assessed. Part 1: Hepatitis B vaccination catch-up campaign. Part 2: Implementation of endoscopic ligation of esophageal varices (EVL) by trainings in Germany and North Korea. By vaccinating 7 million children between 2010 and 2012, the hepatitis B vaccination gap was closed. Coverage of 99.23% was reached. A total of 11 hepatitis B-induced liver cirrhosis patients (mean age 41.1 yr) with severe esophageal varices and previous bleedings were successfully treated by EVL without major complications. A clinical standard operating procedure, a feedback system and a follow-up plan were developed. The bi-modal preventive strategy was implemented successfully. Parts of the project can serve as an example for other low-income countries, however its general transferability is limited due to the special circumstances in North Korea.

  10. Limiting similarity and functional diversity along environmental gradients

    USGS Publications Warehouse

    Schwilk, D.W.; Ackerly, D.D.

    2005-01-01

    Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche-structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one-dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally-mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche-assembly generate a bimodal distribution of species residence times ('transient' and 'resident') under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U-shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly. ??2005 Blackwell Publishing Ltd/CNRS.

  11. Optimal Audiovisual Integration in the Ventriloquism Effect But Pervasive Deficits in Unisensory Spatial Localization in Amblyopia.

    PubMed

    Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F

    2018-01-01

    Classically understood as a deficit in spatial vision, amblyopia is increasingly recognized to also impair audiovisual multisensory processing. Studies to date, however, have not determined whether the audiovisual abnormalities reflect a failure of multisensory integration, or an optimal strategy in the face of unisensory impairment. We use the ventriloquism effect and the maximum-likelihood estimation (MLE) model of optimal integration to investigate integration of audiovisual spatial information in amblyopia. Participants with unilateral amblyopia (n = 14; mean age 28.8 years; 7 anisometropic, 3 strabismic, 4 mixed mechanism) and visually normal controls (n = 16, mean age 29.2 years) localized brief unimodal auditory, unimodal visual, and bimodal (audiovisual) stimuli during binocular viewing using a location discrimination task. A subset of bimodal trials involved the ventriloquism effect, an illusion in which auditory and visual stimuli originating from different locations are perceived as originating from a single location. Localization precision and bias were determined by psychometric curve fitting, and the observed parameters were compared with predictions from the MLE model. Spatial localization precision was significantly reduced in the amblyopia group compared with the control group for unimodal visual, unimodal auditory, and bimodal stimuli. Analyses of localization precision and bias for bimodal stimuli showed no significant deviations from the MLE model in either the amblyopia group or the control group. Despite pervasive deficits in localization precision for visual, auditory, and audiovisual stimuli, audiovisual integration remains intact and optimal in unilateral amblyopia.

  12. Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness.

    PubMed

    Li, Qing; Bohin, Natacha; Wen, Tiffany; Ng, Victor; Magee, Jeffrey; Chen, Shann-Ching; Shannon, Kevin; Morrison, Sean J

    2013-12-05

    'Pre-leukaemic' mutations are thought to promote clonal expansion of haematopoietic stem cells (HSCs) by increasing self-renewal and competitiveness; however, mutations that increase HSC proliferation tend to reduce competitiveness and self-renewal potential, raising the question of how a mutant HSC can sustainably outcompete wild-type HSCs. Activating mutations in NRAS are prevalent in human myeloproliferative neoplasms and leukaemia. Here we show that a single allele of oncogenic Nras(G12D) increases HSC proliferation but also increases reconstituting and self-renewal potential upon serial transplantation in irradiated mice, all prior to leukaemia initiation. Nras(G12D) also confers long-term self-renewal potential to multipotent progenitors. To explore the mechanism by which Nras(G12D) promotes HSC proliferation and self-renewal, we assessed cell-cycle kinetics using H2B-GFP label retention and 5-bromodeoxyuridine (BrdU) incorporation. Nras(G12D) had a bimodal effect on HSCs, increasing the frequency with which some HSCs divide and reducing the frequency with which others divide. This mirrored bimodal effects on reconstituting potential, as rarely dividing Nras(G12D) HSCs outcompeted wild-type HSCs, whereas frequently dividing Nras(G12D) HSCs did not. Nras(G12D) caused these effects by promoting STAT5 signalling, inducing different transcriptional responses in different subsets of HSCs. One signal can therefore increase HSC proliferation, competitiveness and self-renewal through bimodal effects on HSC gene expression, cycling and reconstituting potential.

  13. Bimodal Aldosterone Distribution in Low-Renin Hypertension

    PubMed Central

    2013-01-01

    BACKGROUND In low-renin hypertension (LRH), serum aldosterone levels are higher in those subjects with primary aldosteronism and may be lower in those with non-aldosterone mineralocorticoid excess or primary renal sodium retention. We investigated the hypothesis that the frequency distribution of aldosterone in LRH is bimodal. METHODS Of the 3,532 attendees at the sixth examination cycle of the Framingham Offspring Study, 1,831 were included in this cross-sectional analysis after we excluded those with conditions or taking medications such as antihypertensive drugs that might affect renin or aldosterone. RESULTS Three hundred three subjects (17%) had untreated hypertension (SBP ≥140mm Hg or DBP ≥90mm Hg). LRH, defined as plasma renin ≤5 mU/L, was present in 93 of those 303 hypertensive subjects (31%). Aldosterone values were adjusted statistically for age, sex, and the urinary sodium/creatinine ratio. In the subjects with LRH, the adjusted aldosterone distribution was bimodal (dip test for unimodality, P = 0.008). The adjusted aldosterone distribution was unimodal in the normal subjects (P = 0.98) and in the hypertensive subjects with normal plasma renin (P = 0.94). CONCLUSIONS In this community-based sample of white subjects, those with low-renin hypertension had a bimodal adjusted aldosterone distribution. Subjects with normal-renin hypertension and subjects with normal blood pressure had unimodal adjusted aldosterone distributions. These findings suggest 2 pathophysiological variants of LRH, one that is aldosterone-dependent and one that is non-aldosterone-dependent. PMID:23757402

  14. LN2 spray droplet size measurement via ensemble diffraction technique

    NASA Technical Reports Server (NTRS)

    Saiyed, N. H.; Jurns, J.; Chato, David J.

    1991-01-01

    The size of subcooled liquified nitrogen droplets are measured with a 5 mW He-Ne laser as a function of pressure difference (delta P) across flat spray and full cone pressure atomizing nozzles. For delta P's of 3 to 30 psid, the spray sauter mean diameter (SMD) ranged between 250 to 50 microns. The pressure range tested is representative of those expected during cryogenic fluid transfer operations in space. The droplet sizes from the flat spray nozzles were greater than those from the full cone nozzle. A power function of the form, SMD varies as delta P(exp a), describes the spray SMD as a function of the delta P very well. The values of a were -0.36 for the flat spray and -0.87 for the full cone. The reduced dependence of the flat spray SMD on the delta P was probably because of: (1) the absence of a swirler that generates turbulence within the nozzle to enhance atomization, and (2) a possible increase in shearing stress resulting from the delayed atomization due to the absence of turbulence. The nitrogen quality, up to 1.5 percent is based on isenthalpic expansion, did not have a distinct and measurable effect on the spray SMD. Both bimodal and monomodal droplet size population distributions were measured. In the bimodal distribution, the frequency of the first mode was much greater than the frequency of the second mode. Also, the frequency of the second mode was low enough such that a monomodal approximation probably would give reasonable results.

  15. STAR CLUSTERS IN M31. II. OLD CLUSTER METALLICITIES AND AGES FROM HECTOSPEC DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Nelson; Schiavon, Ricardo; Morrison, Heather

    2011-02-15

    We present new high signal-to-noise spectroscopic data on the M31 globular cluster (GC) system, obtained with the Hectospec multifiber spectrograph on the 6.5 m MMT. More than 300 clusters have been observed at a resolution of 5 A and with a median S/N of 75 per A, providing velocities with a median uncertainty of 6 km s{sup -1}. The primary focus of this paper is the determination of mean cluster metallicities, ages, and reddenings. Metallicities were estimated using a calibration of Lick indices with [Fe/H] provided by Galactic GCs. These match well the metallicities of 24 M31 clusters determined frommore » Hubble Space Telescope color-magnitude diagrams, the differences having an rms of 0.2 dex. The metallicity distribution is not generally bimodal, in strong distinction with the bimodal Galactic globular distribution. Rather, the M31 distribution shows a broad peak, centered at [Fe/H] = -1, possibly with minor peaks at [Fe/H] = -1.4, -0.7, and -0.2, suggesting that the cluster systems of M31 and the Milky Way had different formation histories. Ages for clusters with [Fe/H] > - 1 were determined using the automatic stellar population analysis program EZ{sub A}ges. We find no evidence for massive clusters in M31 with intermediate ages, those between 2 and 6 Gyr. Moreover, we find that the mean ages of the old GCs are remarkably constant over about a decade in metallicity (-0.95{approx}< [Fe/H] {approx}<0.0).« less

  16. The 1845 Hekla eruption: Grain-size characteristics of a tephra layer

    NASA Astrophysics Data System (ADS)

    Gudnason, Jonas; Thordarson, Thor; Houghton, Bruce F.; Larsen, Gudrun

    2018-01-01

    The 1845 eruption is commonly viewed as a typical Hekla eruption. It is a key event in the eruptive history of the volcano, as it is one of the best documented Hekla eruptions, in terms of contemporary accounts and observations. The eruption started on 2 September 1845 with an intense, hour long explosive Plinian phase that passed into effusive activity, ending on the 16 March 1846. The amount of tephra produced in the opening phase was 0.13 km3/7.5 × 1010 kg. The total grain-size distribution of the deposit is bimodal with a dominant coarse mode at - 2.5 φ (5.6 mm) and a broad finer mode at 3 to 4.5 φ (0.125 to 0.045 mm). At individual sites, the grain-size distribution of the tephra from the Plinian opening phase is also commonly (not always) bimodal. Deconvolved grain-size distributions exhibit distinctly different sedimentation patterns of the coarse and fine subpopulations. The lapilli-dominated subpopulation fines rapidly with transport, while the ash-dominated subpopulation shows less changes with distance, indicating premature sedimentation of fines by aggregation from the 1845 volcanic plume. Tephra deposition was to the ESE of the volcano from a 19 km (a.s.l.) high eruption plume. The plume front travelled at speeds of 16-19 m s- 1. Reports of ash deposition onto ships near the Faroe and Shetland Islands, 700 to 1100 km away from Hekla, demonstrate that even moderate-sized Hekla eruptions can affect very large parts of European air-space.

  17. Predictive spectroscopy and chemical imaging based on novel optical systems

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew Paul

    1998-10-01

    This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first-order spectroscopic images, bivariate first-order spectroscopic images, and multivariate first-order spectroscopic images of the temporal development of laser-induced plumes are presented and interpreted. Reconstructed chemical images generated using bivariate and trivariate wavelength techniques, bimodal and trimodal PCA methods, and bimodal and trimodal ITTFA approaches are also included.

  18. Hypercrosslinked phenolic polymers with well developed mesoporous frameworks

    DOE PAGES

    Zhang, Jinshui; Qiao, Zhenan -An; Mahurin, Shannon Mark; ...

    2015-02-12

    A soft chemistry synthetic strategy based on a Friedel Crafts alkylation reaction is developed for the textural engineering of phenolic resin (PR) with a robust mesoporous framework to avoid serious framework shrinkage and maximize retention of organic functional moieties. By taking advantage of the structural benefits of molecular bridges, the resultant sample maintains a bimodal micro-mesoporous architecture with well-preserved organic functional groups, which is effective for carbon capture. Furthermore, this soft chemistry synthetic protocol can be further extended to nanotexture other aromatic-based polymers with robust frameworks.

  19. Observation and analysis of aerosol optical properties and aerosol growth in two New Year celebrations in Manila Observatory (14.64N, 127.07E)

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Bautista, D. L. B.; Miranda, J. P.

    2016-12-01

    Aerosol optical properties and growth were measured during 2014 and 2016 New Year celebrations at Manila Observatory, Philippines. Measurements were done using a USB2000 spectrometer from 22:00 of 31 December 2013 to 03:00 of 01 January 2014 and from 18:00 of 31 December 2015 to 05:30 01 January 2016. A xenon lamp was used as a light source 150m from the spectrometer. Fireworks and firecrackers were the main sources of aerosols during these festivities. Data were collected every 60s and 10s for 2014 and 2016 respectively. The aerosol volume size distribution was derived using the parametric inversion method proposed by Kaijser (1983). The method is performed by selecting 8 wavelengths from 387.30nm to 600.00nm. The reference intensities were obtained when firework activities were considerably low and the air was assumed to be relatively clean. Using Mie theory and assuming that the volume size distribution is a linear combination of 33 bimodal lognormal distribution functions with geometric mean radii between 0.003um and 1.2um, a least-square minimization process was implemented between measured optical depths and computed optical depths. The 2016 New Year distribution showed mostly a unimodal size distribution (mean radius = 0.3um) from 23:00 to 05:30 (Fig. 1a). The mean Angstrom coefficient value during the same time interval was approximately 0.75. This could be attributed to a constant RH (100%) during this time interval. A bimodal distribution was observed when RH value was 94% from 18:30 to 21:30. The transition to a unimodal distribution was observed at 21:00 when the RH value changes from 94% to 100%. In contrast to the 2016 New Year celebration, the 2014 size distribution was bimodal from 23:30 to 02:30 (Fig 1b). The bimodal distribution is the result of firework activities before New Year. Aerosol growth was evident when the size distribution became unimodal after 02:30 (mean radius = 1.1um). The mean Angstrom coefficient, when the size distribution is unimodal, was around 0.5 and this could be attributed to increasing RH from 78% to 88% during this time interval. The two New Year celebrations showed different patterns of aerosols growth. Aerosols produced at high RH tend to be unimodal while aerosols produced at low RH tend to have a bimodal distribution. As RH increased, the bimodal distribution became unimodal.

  20. Space-time properties of wind-waves: a new look at directional wave distributions

    NASA Astrophysics Data System (ADS)

    Leckler, Fabien; Ardhuin, Fabrice; Benetazzo, Alvise; Fedele, Francesco; Bergamasco, Filippo; Dulov, Vladimir

    2014-05-01

    Few accurate observed directional wave spectra are available in the literature at spatial scales ranging between 0.5 and 5.0 m. These intermediate wave scales, relevant for air-sea fluxes and remote sensing are also expected to feed back on the dominant wave properties through wave generation. These wave scales can be prolifically investigated using the well-known optical stereo methods that provides, from a couple of synchronized images, instantaneous representation of wave elevations over a given sea surface. Thus, two stereo systems (the so-called Wave Acquisition Stereo Systems, WASS) were deployed on top of the deep-water platform at Katsiveli, in the Black Sea, in September 2011 and 2013. From image pairs taken by the couple of synchronized high-resolution cameras, ocean surfaces have been reconstructed by stereo-triangulation. Here we analyze sea states corresponding to mean wind speeds of 11 to 14 m/s, and young wave ages of 0.35 to 0.42, associated to significant wave heights of 0.3 to 0.55m. As a result, four 12 Hz time evolutions of sea surface elevation maps with areas about 10 x 10 m2 have been obtained for sequence durations ranging between 15 and 30 minutes, and carefully validated with nearby capacitance wave gauges. The evolving free surfaces elevations were processed into frequency-wavenumber-direction 3D spectra. We found that wave energy chiefly follows the dispersion relation up to frequency of 1.6Hz and wavenumber of 10 rad/m, corresponding to wavelength of about 0.5 m. These spectra also depict well the energy contribution from non-linear waves, which is quantified and compared to theory. A strong bi-modality of the linear spectra was also observed, with the angle of the two maxima separated by about 160 degrees. Furthermore, spectra also exhibit the bimodality of the non-linear part. Integrated over positive frequencies to obtain wavenumber spectra unambiguous in direction, the bimodality of the spectra is partially hidden by the energy from second order waves, in particular from wave harmonics of the peak waves. However, the obtained spreading functions and integrals question the isotropy of the spectrum at high frequencies, generally assumed to explain deep water pressure measurement.

  1. Hyperthermal Carbon Dioxide Interactions with Self-Assembled Monolayer Surfaces

    DTIC Science & Technology

    2013-09-08

    comparison of the scattering behavior from the liquid and semi-solid surfaces to allow new insight into the pivotal initial step in gas -surface reaction...scattering dynamics of atoms and molecules on liquid and SAM surfaces, in order to deepen the understanding of gas -surface interactions at liquid and... gas - liquid and gas -SAM interface have developed a basic picture of the gas -surface collision dynamics. The previous experiments showed a bimodal

  2. Accuracy of a teleported trapped field state inside a single bimodal cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiros, Iara P. de; Cardoso, W. B.; Souza, Simone

    2007-09-15

    We propose a simplified scheme to teleport a superposition of coherent states from one mode to another of the same bimodal lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity that can be achieved, demonstrating accurate teleportation if the mean photon number of each mode is at most 1.5. Our scheme applies as well for teleportation of coherent states from one mode of a cavity to another mode of a second cavity, when both cavities are embedded in a common reservoir.

  3. Bond layer for a solid oxide fuel cell, and related processes and devices

    DOEpatents

    Wu, Jian; Striker, Todd-Michael; Renou, Stephane; Gaunt, Simon William

    2017-03-21

    An electrically-conductive layer of material having a composition comprising lanthanum and strontium is described. The material is characterized by a microstructure having bimodal porosity. Another concept in this disclosure relates to a solid oxide fuel cell attached to at least one cathode interconnect by a cathode bond layer. The bond layer includes a microstructure having bimodal porosity. A fuel cell stack which incorporates at least one of the cathode bond layers is also described herein, along with related processes for forming the cathode bond layer.

  4. The effect of alumina particles on the microstructural and mechanical properties of copper foams fabricated by space-holder method

    NASA Astrophysics Data System (ADS)

    Salvo, C.; Aguilar, C.; Lascano, S.; Pérez, L.; López, M.; Mangalaraja, R. V.

    2018-05-01

    The copper foam is an interesting field of research because of its several advantages as an engineering material. Powder metallurgy presents an alternative route to obtain a porous structure with high strength to weight ratio and functional properties. The viability of processing copper foam separately with two different space-holders such as ammonium hydrogen carbonate (NH4HCO3) and sodium chloride (NaCl) of 50 vol% was studied. The green compacts obtained under 200 MPa were sintered at different cycles for the complete removal of space-holder. The sintered foams were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and uniaxial testing machine (UTM) to study their structural features and compressive strength, respectively. The results showed that NaCl particles were the best alternative to obtain a porous structure, hence two different sizes (1 and 0.01 μm) of alumina (Al2O3) particles with 2, 4 and 6 vol% were used to fabricate copper foams. As a result, a bimodal structure consisting of macro and micropores with a highly interconnected porosity was achieved. In addition, the smaller size alumina particles promoted a higher density of pores, however, the compressive strength was reduced for the higher volume fraction of alumina particles.

  5. JPL's role in the SETI program

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1986-01-01

    The goal of the JPL SETI Team is to develop the strategies and the instrumentation required to carry out an effective, yet affordable, SETI Microwave Observing Program. The primary responsibility for JPL is the development and implementation of the Sky Survey component of the bimodal search program recommended by the SETI Science Working Group (NASA Technical Paper 2244, 1983). JPL is also responsible for the design and implementation of microwave analog instrumentation (including antenna feed systems, low noise RF amplifiers, antenna monitor and control interfaces, etc.) to cover the microwave window for the Sky Survey and the Target Search observations. The primary site for the current SETI Field Test activity is the Venus Station of the Goldstone Deep Space Communication Complex. A SETI controller was constructed and installed so that pre-programmed and real time SETI monitor and control data can be sent to and from the station controller. This unit will be interfaced with the MCSA. A SETI Hardware Handbook was prepared to describe the various systems that will be used by the project at the Venus Station; the handbook is frequently being expanded and updated. The 65,000 channel FFT Spectrum analyzer in the RFI Surveillance System was modified to permit operation with variable resolutions (300 Hz to less than 1 Hz) and with real-time accumulation, which will enhance the capability of the system for testing Sky Survey search strategies and signal detection algorithms.

  6. Prognostic Factors and Decision Tree for Long-term Survival in Metastatic Uveal Melanoma.

    PubMed

    Lorenzo, Daniel; Ochoa, María; Piulats, Josep Maria; Gutiérrez, Cristina; Arias, Luis; Català, Jaum; Grau, María; Peñafiel, Judith; Cobos, Estefanía; Garcia-Bru, Pere; Rubio, Marcos Javier; Padrón-Pérez, Noel; Dias, Bruno; Pera, Joan; Caminal, Josep Maria

    2017-12-04

    The purpose of this study was to demonstrate the existence of a bimodal survival pattern in metastatic uveal melanoma. Secondary aims were to identify the characteristics and prognostic factors associated with long-term survival and to develop a clinical decision tree. The medical records of 99 metastatic uveal melanoma patients were retrospectively reviewed. Patients were classified as either short (≤ 12 months) or long-term survivors (> 12 months) based on a graphical interpretation of the survival curve after diagnosis of the first metastatic lesion. Ophthalmic and oncological characteristics were assessed in both groups. Of the 99 patients, 62 (62.6%) were classified as short-term survivors, and 37 (37.4%) as long-term survivors. The multivariate analysis identified the following predictors of long-term survival: age ≤ 65 years (p=0.012) and unaltered serum lactate dehydrogenase levels (p=0.018); additionally, the size (smaller vs. larger) of the largest liver metastasis showed a trend towards significance (p=0.063). Based on the variables significantly associated with long-term survival, we developed a decision tree to facilitate clinical decision-making. The findings of this study demonstrate the existence of a bimodal survival pattern in patients with metastatic uveal melanoma. The presence of certain clinical characteristics at diagnosis of distant disease is associated with long-term survival. A decision tree was developed to facilitate clinical decision-making and to counsel patients about the expected course of disease.

  7. Statistical learning of speech sounds is most robust during the period of perceptual attunement.

    PubMed

    Liu, Liquan; Kager, René

    2017-12-01

    Although statistical learning has been shown to be a domain-general mechanism, its constraints, such as its interactions with perceptual development, are less well understood and discussed. This study is among the first to investigate the distributional learning of lexical pitch in non-tone-language-learning infants, exploring its interaction with language-specific perceptual attunement during the first 2years after birth. A total of 88 normally developing Dutch infants of 5, 11, and 14months were tested via a distributional learning paradigm and were familiarized on a unimodal or bimodal distribution of high-level versus high-falling tones in Mandarin Chinese. After familiarization, they were tested on a tonal contrast that shared equal distributional information in either modality. At 5months, infants in both conditions discriminated the contrast, whereas 11-month-olds showed discrimination only in the bimodal condition. By 14months, infants failed to discriminate the contrast in either condition. Results indicate interplay between infants' long-term linguistic experience throughout development and short-term distributional learning during the experiment, and they suggest that the influence of tonal distributional learning varies along the perceptual attunement trajectory, such that opportunities for distributional learning effects appear to be constrained in the beginning and at the end of perceptual attunement. The current study contributes to previous research by demonstrating an effect of age on learning from distributional cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Recognition and Localization of Speech by Adult Cochlear Implant Recipients Wearing a Digital Hearing Aid in the Nonimplanted Ear (Bimodal Hearing)

    PubMed Central

    Potts, Lisa G.; Skinner, Margaret W.; Litovsky, Ruth A.; Strube, Michael J; Kuk, Francis

    2010-01-01

    Background The use of bilateral amplification is now common clinical practice for hearing aid users but not for cochlear implant recipients. In the past, most cochlear implant recipients were implanted in one ear and wore only a monaural cochlear implant processor. There has been recent interest in benefits arising from bilateral stimulation that may be present for cochlear implant recipients. One option for bilateral stimulation is the use of a cochlear implant in one ear and a hearing aid in the opposite nonimplanted ear (bimodal hearing). Purpose This study evaluated the effect of wearing a cochlear implant in one ear and a digital hearing aid in the opposite ear on speech recognition and localization. Research Design A repeated-measures correlational study was completed. Study Sample Nineteen adult Cochlear Nucleus 24 implant recipients participated in the study. Intervention The participants were fit with a Widex Senso Vita 38 hearing aid to achieve maximum audibility and comfort within their dynamic range. Data Collection and Analysis Soundfield thresholds, loudness growth, speech recognition, localization, and subjective questionnaires were obtained six–eight weeks after the hearing aid fitting. Testing was completed in three conditions: hearing aid only, cochlear implant only, and cochlear implant and hearing aid (bimodal). All tests were repeated four weeks after the first test session. Repeated-measures analysis of variance was used to analyze the data. Significant effects were further examined using pairwise comparison of means or in the case of continuous moderators, regression analyses. The speech-recognition and localization tasks were unique, in that a speech stimulus presented from a variety of roaming azimuths (140 degree loudspeaker array) was used. Results Performance in the bimodal condition was significantly better for speech recognition and localization compared to the cochlear implant–only and hearing aid–only conditions. Performance was also different between these conditions when the location (i.e., side of the loudspeaker array that presented the word) was analyzed. In the bimodal condition, the speech-recognition and localization tasks were equal regardless of which side of the loudspeaker array presented the word, while performance was significantly poorer for the monaural conditions (hearing aid only and cochlear implant only) when the words were presented on the side with no stimulation. Binaural loudness summation of 1–3 dB was seen in soundfield thresholds and loudness growth in the bimodal condition. Measures of the audibility of sound with the hearing aid, including unaided thresholds, soundfield thresholds, and the Speech Intelligibility Index, were significant moderators of speech recognition and localization. Based on the questionnaire responses, participants showed a strong preference for bimodal stimulation. Conclusions These findings suggest that a well-fit digital hearing aid worn in conjunction with a cochlear implant is beneficial to speech recognition and localization. The dynamic test procedures used in this study illustrate the importance of bilateral hearing for locating, identifying, and switching attention between multiple speakers. It is recommended that unilateral cochlear implant recipients, with measurable unaided hearing thresholds, be fit with a hearing aid. PMID:19594084

  9. Expression and localization of the vascular endothelial growth factor and changes of microvessel density during hair follicle development of Liaoning cashmere goats.

    PubMed

    Zhang, Q L; Li, J P; Li, Y M; Chang, Q; Chen, Y; Jiang, H Z; Zhao, Z H; Guo, D

    2013-12-10

    Vascular endothelial growth factors (VEGFs) play important roles in neovascularization, tissue development, and angiogenesis. In this study, changes in VEGF expression patterns and microvessel density (MVD), and their correlations, were investigated during hair follicle development in epidermal appendages of Liaoning cashmere goats. Polyclonal antibodies to VEGF and microvessels were used for monthly immunohistochemical examinations of normal skin specimens from adult female goats for one year. VEGF was expressed in the hair bulb of primary and secondary hair follicles, the outer and inner root sheaths, sebaceous glands (ductal and secretory portions), eccrine sweat glands (ductal and secretory portions), and the epidermis. Abundant expression of VEGF was observed in the follicular basement membrane zone surrounding the bulb matrix and in ductal and secretory portions of eccrine sweat glands. The change in VEGFs in primary hair follicles showed a bimodal pattern, with the first peak observed from March to May, and the second in August. Maximal expression in secondary hair follicles occurred in May and August. Therefore, VEGF expression in primary and secondary hair follicles is synchronized throughout the year, and is correlated to hair development. In the later telogen and anagen phases, VEGF expression was higher in the secondary, compared to the primary, hair follicle. Changes in MVD also showed a bimodal pattern with peaks in May and August. VEGF expression and MVD showed moderate and strongly positive correlation in the primary and secondary hair follicles, respectively. Therefore, MVD and VEGF are closely related to the processes involved in hair cycle regulation.

  10. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats

    PubMed Central

    Fontanini, Alfredo

    2017-01-01

    The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. SIGNIFICANCE STATEMENT Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli; however, no study has examined the single-unit responses to intraoral odorant presentation. Here we found that neurons in gustatory cortex can respond either exclusively to tastants, exclusively to odorants, or to both (bimodal). Several differences exist between these groups' responses; notably, bimodal neurons code palatability significantly better than unimodal neurons. This group of neurons might represent a substrate for how odorants gain the quality of tastants. PMID:28077705

  11. Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids.

    PubMed

    Sidoli, Pauline; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Baran, Nicole

    2016-07-01

    The transport of pesticides to groundwater is assumed to be impacted by flow processes and geochemical interactions occurring in the vadose zone. In this study, the transport of S-metolachlor (SMOC) and its two metabolites ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) in vadose zone materials of a glaciofluvial aquifer is studied at laboratory scale. Column experiments are used to study the leaching of a conservative tracer (bromide) and SMOC, MESA and MOXA under unsaturated conditions in two lithofacies, a bimodal gravel (Gcm,b) and a sand (S-x). Tracer experiments showed water fractionation into mobile and immobile compartments more pronounced in bimodal gravel columns. In both lithofacies columns, SMOC outflow is delayed (retardation factor>2) and mass balance reveals depletion (mass balance of 0.59 and 0.77 in bimodal gravel and sand, respectively). However, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. SMOC transport is characterized by non-equilibrium sorption and sink term in both bimodal gravel and sand columns. Batch experiments carried out using agitation times consistent with column water residence times confirmed a time-dependence of SMOC sorption and high adsorption rates (>80%) of applied concentrations. Desorption experiments confirm the irreversibility of a major part of the SMOC adsorption onto particles, corresponding to the sink term in columns. In the bimodal gravel column, SMOC adsorption occurs mainly on reactive particles in contact with mobile water because of flow regionalization whereas in the sand column, there is pesticide diffusion to the immobile water. Such results clearly show that sorption mechanisms in the vadose zone solids below the soil are both solute and contact-time-dependent and are impacted by hydrodynamic conditions. The more rapid transport of MESA and MOXA to the aquifer would be controlled mainly by water flow through the unsaturated zone whereas SMOC transport is retarded by sorption processes within the vadose zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The perception of stress and intonation in children with a cochlear implant and a hearing aid.

    PubMed

    Hegarty, Lauren; Faulkner, Andrew

    2013-11-01

    This study investigated whether low frequency information from a hearing aid improved the perception of stress and intonation by English-speaking children with cochlear implants. As pitch information is limited for cochlear implant users, this study also investigated if users rely more on the cues of duration and amplitude to perceive stress and intonation. Nine children with bimodal stimulation (cochlear implant and hearing aid) participated in two experiments. The first measured the just audible change in F0 (pitch) and amplitude for a speech-like word 'baba'. The second experiment examined the children's ability to identify focus in natural and manipulated sentences. Overall, group results did not show a bimodal advantage in perceiving stress and intonation. However, the children were significantly better at perceiving focus in sentences with natural speech compared with manipulated speech in both the CI and bimodal conditions. The results suggest that in the absence of pitch cues, amplitude and duration cues are used to perceive stress and intonation. However, the majority of children only perceived amplitude changes greater than the changes typically found in speech, implying duration cues were the most valuable. Taken together the findings suggest that for children with cochlear implants, cues to F0 may not be essential for prosody perception and in the absence of cues to F0 and amplitude, duration may offer an alternative cue. Although a bimodal advantage was not demonstrated for all participants, it is recommended that if clinically appropriate, a contralateral hearing aid is fitted and trialled to exploit any residual hearing.

  13. Directional spectra of hurricane-generated waves in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hu, Kelin; Chen, Qin

    2011-10-01

    Hurricane-induced directional wave spectra in the Gulf of Mexico are investigated based on the measurements collected at 12 buoys during 7 hurricane events in recent years. Focusing on hurricane-generated wave spectra, we only consider the wave measurements at the buoys within eight times the radius of the hurricane maximum wind speed (Rmax) from the hurricane center. A series of numerical experiments using a third-generation spectral wave prediction model were carried out to gain insight into the mechanism controlling the directional and frequency distributions of hurricane wave energy. It is found that hurricane wave spectra are almost swell-dominated except for the right-rear quadrant of a hurricane with respect to the forward direction, where the local strong winds control the spectra. Despite the complexity of a hurricane wind field, most of the spectra are mono-modal, similar to those under fetch-limited, unidirectional winds. However, bi-modal spectra were also found in both measurements and model results. Four types of bi-modal spectra have been observed. Type I happens far away (>6 × Rmax) from a hurricane. Type II is bi-modal in frequency with significant differences in direction. It happens in the two left quadrants when the direction of hurricane winds deviates considerably from the swell direction. Type III is bi-modal in frequency in almost the same wave direction with two close peaks. It occurs when the energy of locally-generated wind-sea is only partially transferred to the swell energy by non-linear wave-wave interactions. Type IV was observed in shallow waters owing to coastal effects.

  14. Semantic congruency and the (reversed) Colavita effect in children and adults.

    PubMed

    Wille, Claudia; Ebersbach, Mirjam

    2016-01-01

    When presented with auditory, visual, or bimodal audiovisual stimuli in a discrimination task, adults tend to ignore the auditory component in bimodal stimuli and respond to the visual component only (i.e., Colavita visual dominance effect). The same is true for older children, whereas young children are dominated by the auditory component of bimodal audiovisual stimuli. This suggests a change of sensory dominance during childhood. The aim of the current study was to investigate, in three experimental conditions, whether children and adults show sensory dominance when presented with complex semantic stimuli and whether this dominance can be modulated by stimulus characteristics such as semantic (in)congruency, frequency of bimodal trials, and color information. Semantic (in)congruency did not affect the magnitude of the auditory dominance effect in 6-year-olds or the visual dominance effect in adults, but it was a modulating factor of the visual dominance in 9-year-olds (Conditions 1 and 2). Furthermore, the absence of color information (Condition 3) did not affect auditory dominance in 6-year-olds and hardly affected visual dominance in adults, whereas the visual dominance in 9-year-olds disappeared. Our results suggest that (a) sensory dominance in children and adults is not restricted to simple lights and sounds, as used in previous research, but can be extended to semantically meaningful stimuli and that (b) sensory dominance is more robust in 6-year-olds and adults than in 9-year-olds, implying a transitional stage around this age. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. ROTATING STARS FROM KEPLER OBSERVED WITH GAIA DR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, James R. A.

    2017-01-20

    Astrometric data from the recent Gaia Data Release 1 have been matched against the sample of stars from Kepler with known rotation periods. A total of 1299 bright rotating stars were recovered from the subset of Gaia sources with good astrometric solutions, most with temperatures above 5000 K. From these sources, 894 were selected as lying near the main sequence using their absolute G -band magnitudes. These main-sequence stars show a bimodality in their rotation period distribution, centered roughly around a 600 Myr rotation isochrone. This feature matches the bimodal period distribution found in cooler stars with Kepler , butmore » was previously undetected for solar-type stars due to sample contamination by subgiants. A tenuous connection between the rotation period and total proper motion is found, suggesting that the period bimodality is due to the age distribution of stars within ∼300 pc of the Sun, rather than a phase of rapid angular momentum loss. This work emphasizes the unique power for understanding stellar populations that is created by combining temporal monitoring from Kepler with astrometric data from Gaia .« less

  16. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  17. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers

    NASA Astrophysics Data System (ADS)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-01

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm2 was demonstrated.

  18. Are star formation rates of galaxies bimodal?

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  19. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxiang; Zeng, Zhigang; Chen, Shuai; Wang, Xiaoyuan; Yin, Xuebo

    2018-06-01

    In the middle Okinawa Trough (MOT), rhyolites have been typically considered as products of crystallization differentiation of basaltic magma as a feature of bimodal volcanism. However, the evidence is insufficient. This paper compared chemical trends of volcanic rocks from the MOT with fractional crystallization simulation models and experimental results and utilized trace element modeling combined with Rayleigh fractionation calculations to re-examine fractional crystallization processes in generating rhyolites. Both qualitative and quantitative studies indicate that andesites, rather than rhyolites, originate by fractional crystallization from basalts in the MOT. Furthermore, we established two batch-melting models for the MOT rhyolites and proposed that type 1 rhyolites are produced by remelting of andesites with amphiboles in the residue, while type 2 rhyolites are derived from remelting of andesites without residual amphiboles. It is difficult to produce melts with a SiO2 content ranging from 62% to 68% either by magmatic differentiation from basalts or by remelting of andesites, and this difficulty might help account for the compositional gap (Daly gap) for bimodal volcanism in the Okinawa Trough.

  20. Moving from spatially segregated to transparent motion: a modelling approach

    PubMed Central

    Durant, Szonya; Donoso-Barrera, Alejandra; Tan, Sovira; Johnston, Alan

    2005-01-01

    Motion transparency, in which patterns of moving elements group together to give the impression of lacy overlapping surfaces, provides an important challenge to models of motion perception. It has been suggested that we perceive transparent motion when the shape of the velocity histogram of the stimulus is bimodal. To investigate this further, random-dot kinematogram motion sequences were created to simulate segregated (perceptually spatially separated) and transparent (perceptually overlapping) motion. The motion sequences were analysed using the multi-channel gradient model (McGM) to obtain the speed and direction at every pixel of each frame of the motion sequences. The velocity histograms obtained were found to be quantitatively similar and all were bimodal. However, the spatial and temporal properties of the velocity field differed between segregated and transparent stimuli. Transparent stimuli produced patches of rightward and leftward motion that varied in location over time. This demonstrates that we can successfully differentiate between these two types of motion on the basis of the time varying local velocity field. However, the percept of motion transparency cannot be based simply on the presence of a bimodal velocity histogram. PMID:17148338

  1. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    PubMed

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  2. Trade-offs in sensitivity and sampling depth in bimodal atomic force microscopy and comparison to the trimodal case

    PubMed Central

    Eslami, Babak; Ebeling, Daniel

    2014-01-01

    Summary This paper presents experiments on Nafion® proton exchange membranes and numerical simulations illustrating the trade-offs between the optimization of compositional contrast and the modulation of tip indentation depth in bimodal atomic force microscopy (AFM). We focus on the original bimodal AFM method, which uses amplitude modulation to acquire the topography through the first cantilever eigenmode, and drives a higher eigenmode in open-loop to perform compositional mapping. This method is attractive due to its relative simplicity, robustness and commercial availability. We show that this technique offers the capability to modulate tip indentation depth, in addition to providing sample topography and material property contrast, although there are important competing effects between the optimization of sensitivity and the control of indentation depth, both of which strongly influence the contrast quality. Furthermore, we demonstrate that the two eigenmodes can be highly coupled in practice, especially when highly repulsive imaging conditions are used. Finally, we also offer a comparison with a previously reported trimodal AFM method, where the above competing effects are minimized. PMID:25161847

  3. Affective and physiological correlates of the perception of unimodal and bimodal emotional stimuli.

    PubMed

    Rosa, Pedro J; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Gamito, Pedro

    2017-08-01

    Despite the multisensory nature of perception, previous research on emotions has been focused on unimodal emotional cues with visual stimuli. To the best of our knowledge, there is no evidence on the extent to which incongruent emotional cues from visual and auditory sensory channels affect pupil size. To investigate the effects of audiovisual emotional information perception on the physiological and affective response, but also to determine the impact of mismatched cues in emotional perception on these physiological indexes. Pupil size, electrodermal activity and affective subjective responses were recorded while 30 participants were exposed to visual and auditory stimuli with varied emotional content in three different experimental conditions: pictures and sounds presented alone (unimodal), emotionally matched audio-visual stimuli (bimodal congruent) and emotionally mismatched audio-visual stimuli (bimodal incongruent). The data revealed no effect of emotional incongruence on physiological and affective responses. On the other hand, pupil size covaried with skin conductance response (SCR), but the subjective experience was partially dissociated from autonomic responses. Emotional stimuli are able to trigger physiological responses regardless of valence, sensory modality or level of emotional congruence.

  4. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging.

    PubMed

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G

    2015-08-19

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.

  5. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  6. Bimodal spectroscopic evaluation of ultra violet-irradiated mouse skin inflammatory and precancerous stages: instrumentation, spectral feature extraction/selection and classification (k-NN, LDA and SVM)

    NASA Astrophysics Data System (ADS)

    Díaz-Ayil, G.; Amouroux, M.; Blondel, W. C. P. M.; Bourg-Heckly, G.; Leroux, A.; Guillemin, F.; Granjon, Y.

    2009-07-01

    This paper deals with the development and application of in vivo spatially-resolved bimodal spectroscopy (AutoFluorescence AF and Diffuse Reflectance DR), to discriminate various stages of skin precancer in a preclinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A programmable instrumentation was developed for acquiring AF emission spectra using 7 excitation wavelengths: 360, 368, 390, 400, 410, 420 and 430 nm, and DR spectra in the 390-720 nm wavelength range. After various steps of intensity spectra preprocessing (filtering, spectral correction and intensity normalization), several sets of spectral characteristics were extracted and selected based on their discrimination power statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of sensitivity (Se) and specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibers distances and of the numbers of principal components, such that: Se and Sp ≈ 100% when discriminating CH vs. others; Sp ≈ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ≈ 74% and Se ≈ 63%for AH vs. D.

  7. Exposure of xenopus laevis tadpoles to cadmium reveals concentration-dependent bimodal effects on growth and monotonic effects on development and thyroid gland activity

    USGS Publications Warehouse

    Sharma, Bibek; Patino, R.

    2008-01-01

    Xenopus laevis were exposed to 0-855 ??g cadmium (Cd)/l (measured concentrations) in FETAX medium from fertilization to 47 days postfertilization. Measurements included embryonic survival and, at 47 days, tadpole survival, snout-vent length, tail length, total length, hindlimb length, weight, Nieuwkoop-Faber (NF) stage of development, initiation of metamorphic climax (??? NF 58), and thyroid follicle cell height. Embryonic and larval survival were unaffected by Cd. Relative to control tadpoles, reduced tail and total length were observed at 0.1- 8 and at 855 ??g Cd/l; and reduced snout-vent length, hindlimb length, and weight were observed at 0.1-1 and at 855 ??g Cd/l. Mean stage of development and rate of initiation of climax were unaffected by Cd at 0-84 ??g/l; however, none of the tadpoles exposed to 855 ??g Cd/l progressed beyond mid-premetamorphosis (NF 51). Thyroid glands with fully formed follicles were observed in all tadpoles ??? NF 49 examined. Follicle cell height was unaffected by Cd at 0-84 ??g/l but it was reduced at 855 ??g/l; in the latter, cell height was reduced even when compared with NF 49-51 tadpoles pooled from the 0 to 84 ??g Cd/l groups. In conclusion, (1) Cd affected tadpole growth in a bimodal pattern with the first and second inhibitory modes at concentrations below and above 84 ??g Cd/l, respectively; (2) exposure to high Cd concentrations (855 ??g/l) reduced thyroid activity and arrested tadpole development at mid-premetamorphosis; and (3) unlike its effect on growth, Cd inhibited tadpole development and thyroid function in a seemingly monotonic pattern.

  8. The route to chaos for the Kuramoto-Sivashinsky equation

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.; Smyrlis, Yiorgos

    1990-01-01

    The results of extensive numerical experiments of the spatially periodic initial value problem for the Kuramoto-Sivashinsky equation. This paper is concerned with the asymptotic nonlinear dynamics at the dissipation parameter decreases and spatio-temporal chaos sets in. To this end the initial condition is taken to be the same for all numerical experiments (a single sine wave is used) and the large time evolution of the system is followed numerically. Numerous computations were performed to establish the existence of windows, in parameter space, in which the solution has the following characteristics as the viscosity is decreased: a steady fully modal attractor to a steady bimodal attractor to another steady fully modal attractor to a steady trimodal attractor to a periodic attractor, to another steady fully modal attractor, to another periodic attractor, to a steady tetramodal attractor, to another periodic attractor having a full sequence of period-doublings (in parameter space) to chaos. Numerous solutions are presented which provide conclusive evidence of the period-doubling cascades which precede chaos for this infinite-dimensional dynamical system. These results permit a computation of the length of subwindows which in turn provide an estimate for their successive ratios as the cascade develops. A calculation based on the numerical results is also presented to show that the period doubling sequences found here for the Kuramoto-Sivashinsky equation, are in complete agreement with Feigenbaum's universal constant of 4,669201609... . Some preliminary work shows several other windows following the first chaotic one including periodic, chaotic, and a steady octamodal window; however, the windows shrink significantly in size to enable concrete quantitative conclusions to be made.

  9. A pore-size classification for peat bogs derived from unsaturated hydraulic properties

    NASA Astrophysics Data System (ADS)

    Weber, Tobias Karl David; Iden, Sascha Christian; Durner, Wolfgang

    2017-12-01

    In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP) were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten-Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD) that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of > 300, 300-30, and 30-10 µm, respectively.

  10. Teleportation of entangled states without Bell-state measurement via a two-photon process

    NASA Astrophysics Data System (ADS)

    dSouza, A. D.; Cardoso, W. B.; Avelar, A. T.; Baseia, B.

    2011-02-01

    In this letter we propose a scheme using a two-photon process to teleport an entangled field state of a bimodal cavity to another one without Bell-state measurement. The quantum information is stored in a zero- and two-photon entangled state. This scheme requires two three-level atoms in a ladder configuration, two bimodal cavities, and selective atomic detectors. The fidelity and success probability do not depend on the coefficients of the state to be teleported. For convenient choices of interaction times, the teleportation occurs with fidelity close to the unity.

  11. Dynamic processes at stress promoters regulate the bimodal expression of HOG response genes

    PubMed Central

    2011-01-01

    Osmotic stress triggers the activation of the HOG (high osmolarity glycerol) pathway in Saccharomyces cerevisiae. This signaling cascade culminates in the activation of the MAPK (mitogen-activated protein kinase) Hog1. Quantitative single cell measurements revealed a discrepancy between kinase- and transcriptional activities of Hog1. While kinase activity increases proportionally to stress stimulus, gene expression is inhibited under low stress conditions. Interestingly, a slow stochastic gene activation process is responsible for setting a tunable threshold for gene expression under basal or low stress conditions, which generates a bimodal expression pattern at intermediate stress levels. PMID:22446531

  12. Generating macroscopic chaos in a network of globally coupled phase oscillators

    PubMed Central

    So, Paul; Barreto, Ernest

    2011-01-01

    We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case. PMID:21974662

  13. Visual-auditory integration during speech imitation in autism.

    PubMed

    Williams, Justin H G; Massaro, Dominic W; Peel, Natalie J; Bosseler, Alexis; Suddendorf, Thomas

    2004-01-01

    Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training.

  14. Touchdown to take-off: at the interface of flight and surface locomotion

    PubMed Central

    2017-01-01

    Small aerial robots are limited to short mission times because aerodynamic and energy conversion efficiency diminish with scale. One way to extend mission times is to perch, as biological flyers do. Beyond perching, small robot flyers benefit from manoeuvring on surfaces for a diverse set of tasks, including exploration, inspection and collection of samples. These opportunities have prompted an interest in bimodal aerial and surface locomotion on both engineered and natural surfaces. To accomplish such novel robot behaviours, recent efforts have included advancing our understanding of the aerodynamics of surface approach and take-off, the contact dynamics of perching and attachment and making surface locomotion more efficient and robust. While current aerial robots show promise, flying animals, including insects, bats and birds, far surpass them in versatility, reliability and robustness. The maximal size of both perching animals and robots is limited by scaling laws for both adhesion and claw-based surface attachment. Biomechanists can use the current variety of specialized robots as inspiration for probing unknown aspects of bimodal animal locomotion. Similarly, the pitch-up landing manoeuvres and surface attachment techniques of animals can offer an evolutionary design guide for developing robots that perch on more diverse and complex surfaces. PMID:28163884

  15. Optical spectroscopy combined with high-resolution magnetic resonance imaging for digestive wall assessment: endoluminal bimodal probe conception and characterization in vitro, on organic sample and in vivo on a rabbit

    NASA Astrophysics Data System (ADS)

    Ramgolam, Anoop; Sablong, Raphaël; Lafarge, Lionel; Saint-Jalmes, Hervé; Beuf, Olivier

    2011-11-01

    Colorectal cancer is a major health issue worldwide. Conventional white light endoscopy (WLE) coupled to histology is considered as the gold standard today and is the most widespread technique used for colorectal cancer diagnosis. However, during the early stages, colorectal cancer is very often characterized by flat adenomas which develop just underneath the mucosal surface. The use of WLE, which is heavily based on the detection of morphological changes, becomes quite delicate due to subtle or quasi-invisible morphological changes of the colonic lining. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where high spatial resolution MRI is combined with autofluorescence and reflectance spectroscopy in a bimodal endoluminal probe to extract morphological data and biochemical information, respectively. The design and conception of the endoluminal probe are detailed and the promising preliminary results obtained in vitro (home-built phantom containing eosin and rhodamine B), on an organic sample (the kiwi fruit) and in vivo on a rabbit are presented and discussed.

  16. Multi-Mode Cavity Accelerator Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10 -7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2ndmore » harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E sur max< 260 MV/m and pulsed surface heating ΔT max< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.« less

  17. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    PubMed Central

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  18. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy.

    PubMed

    Choi, H Y; Kim, W J

    2015-11-01

    The combination of solid solution heat treatments and severe plastic deformation by high-ratio differential speed rolling (HRDSR) resulted in the formation of an ultrafine-grained microstructure with high thermal stability in a Mg-5Zn-0.5Zr (ZK60) alloy. When the precipitate particle distribution was uniform in the matrix, the internal stresses and dislocation density could be effectively removed without significant grain growth during the annealing treatment (after HRDSR), leading to enhancement of corrosion resistance. When the particle distribution was non-uniform, rapid grain growth occurred in local areas where the particle density was low during annealing, leading to development of a bimodal grain size distribution. The bimodal grain size distribution accelerated corrosion by forming a galvanic corrosion couple between the fine-grained and coarse-grained regions. The HRDSR-processed ZK60 alloy with high thermal stability exhibited high corrosion resistance, high strength and high ductility, and excellent superplasticity, which allow the fabrication of biodegradable magnesium devices with complicated designs that have a high mechanical integrity throughout the service life in the human body. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A Computational Method to Quantify Fly Circadian Activity.

    PubMed

    Lazopulo, Andrey; Syed, Sheyum

    2017-10-28

    In most animals and plants, circadian clocks orchestrate behavioral and molecular processes and synchronize them to the daily light-dark cycle. Fundamental mechanisms that underlie this temporal control are widely studied using the fruit fly Drosophila melanogaster as a model organism. In flies, the clock is typically studied by analyzing multiday locomotor recording. Such a recording shows a complex bimodal pattern with two peaks of activity: a morning peak that happens around dawn, and an evening peak that happens around dusk. These two peaks together form a waveform that is very different from sinusoidal oscillations observed in clock genes, suggesting that mechanisms in addition to the clock have profound effects in producing the observed patterns in behavioral data. Here we provide instructions on using a recently developed computational method that mathematically describes temporal patterns in fly activity. The method fits activity data with a model waveform that consists of four exponential terms and nine independent parameters that fully describe the shape and size of the morning and evening peaks of activity. The extracted parameters can help elucidate the kinetic mechanisms of substrates that underlie the commonly observed bimodal activity patterns in fly locomotor rhythms.

  20. Deflection and Distortion of CME internal magnetic flux rope due to the interaction with a structured solar wind

    NASA Astrophysics Data System (ADS)

    Shiota, D.; Iju, T.; Hayashi, K.; Fujiki, K.; Tokumaru, M.; Kusano, K.

    2016-12-01

    CMEs are the most violent driver of geospace disturbances, and therefore their arrival to the Earth position is an important factor in space weather forecast. The dynamics of CME propagation is strongly affected by the interaction with background solar wind. To understand the interaction between a CME and background solar wind, we performed three-dimensional MHD simulations of the propagation of a CME with internal twisted magnetic flux rope into a structured bimodal solar wind. We compared three different cases in which an identical CME is launched into an identical bimodal solar wind but the launch dates of the CME are different. Each position relative to the boundary between slow and fast solar winds becomes almost in the slow wind stream region, almost in the fast wind stream region, or in vicinity of the boundary of the fast and slow solar wind stream (that grows to CIR). It is found that the CME is most distorted and deflected eastward in the case near the CIR, in contrast to the other two cases. The maximum strength of southward magnetic field at the Earth position is also highest in the case near CIR. The results are interpreted that the dynamic pressure gradient due to the back reaction from pushing the ahead slow wind stream and due to the collision behind fast wind stream hinders the expansion of the CME internal flux rope into the direction of the solar wind velocity gradient. As a result, the expansion into the direction to the velocity gradient is slightly enhanced and results in the enhanced deflection and distortion of the CME and its internal flux rope. These results support the pileup accident hypothesis proposed by Kataoka et al. (2015) to form unexpectedly geoeffective solar wind structure.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Jonathan R.; Rhode, Katherine L., E-mail: jhargis@astro.indiana.edu, E-mail: rhode@astro.indiana.edu

    This paper presents results from wide-field imaging of the globular cluster (GC) systems of five intermediate-luminosity (M{sub V} {approx} -21 to -22) early-type galaxies. The aim is to accurately quantify the global properties of the GC systems by measuring them out to large radii. We obtained BVR imaging of four lenticular galaxies (NGC 5866, NGC 4762, NGC 4754, NGC 3384) and one elliptical galaxy (NGC 5813) using the KPNO 4 m telescope and Mosaic imager and traced the GC population to projected galactocentric radii ranging from {approx}20 kpc to 120 kpc. We combine our imaging with Hubble Space Telescope datamore » to measure the GC surface density close to the galaxy center. We calculate the total number of GCs (N{sub GC}) from the integrated radial profile and find N{sub GC} = 340 {+-} 80 for NGC 5866, N{sub GC} = 2900 {+-} 400 for NGC 5813, N{sub GC} = 270 {+-} 30 for NGC 4762, N{sub GC} = 115 {+-} 15 for NGC 4754, and N{sub GC} = 120 {+-} 30 for NGC 3384. The measured GC specific frequencies are S{sub N} between 0.6 and 3.6 and T in the range 0.9-4.2. These values are consistent with the mean specific frequencies for the galaxies' morphological types found by our survey and other published data. Three galaxies (NGC 5866, NGC 5813, and NGC 4762) had sufficient numbers of GC candidates to investigate color bimodality and color gradients in the GC systems. NGC 5813 shows strong evidence (>3{sigma}) for bimodality and a B - R color gradient resulting from a more centrally concentrated red (metal-rich) GC subpopulation. We find no evidence for statistically significant color gradients in the other two galaxies.« less

  2. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    NASA Technical Reports Server (NTRS)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  3. Lyman Limit Absorbers in GALEX Spectra

    NASA Astrophysics Data System (ADS)

    Williger, Gerard M.; Haberzettl, Lutz G.; Ribaudo, Joseph; Kuchner, Marc J.; Burchett, Joseph; Clowes, Roger G.; Lauroesch, James T.; Mills, Brianna; Borden, Jeremy

    2018-01-01

    We describe the method and early results for crowdsourcing a search for low-redshift partial and complete Lyman Limit Systems (pLLSs and LLSs) in the GALEX spectral archive. LLSs have been found in large numbers at z>3 and traced to lower redshift through a relatively small number of QSO spectra from spaced-based telescopes. From a sample of 44 pLLSs and 11 LLSs at 0.1 = -0.32 +/- 0.07 and the low-metallicity portion centered at <[X/H]> = -1.87 +/- 0.11.The GALEX spectral archive offers a vast dataset potentially containing hundreds of LLSs, which may be leveraged to search for such a bimodality and track its evolution within the unconstrained near-UV gap at 1

  4. Matching Automatic Gain Control Across Devices in Bimodal Cochlear Implant Users.

    PubMed

    Veugen, Lidwien C E; Chalupper, Josef; Snik, Ad F M; Opstal, A John van; Mens, Lucas H M

    2016-01-01

    The purpose of this study was to improve bimodal benefit in listeners using a cochlear implant (CI) and a hearing aid (HA) in contralateral ears, by matching the time constants and the number of compression channels of the automatic gain control (AGC) of the HA to the CI. Equivalent AGC was hypothesized to support a balanced loudness for dynamically changing signals like speech and improve bimodal benefit for speech understanding in quiet and with noise presented from the side(s) at 90 degree. Fifteen subjects participated in the study, all using the same Advanced Bionics Harmony CI processor and HA (Phonak Naida S IX UP). In a 3-visit crossover design with 4 weeks between sessions, performance was measured using a HA with a standard AGC (syllabic multichannel compression with 1 ms attack time and 50 ms release time) or an AGC that was adjusted to match that of the CI processor (dual AGC broadband compression, 3 and 240 msec attack time, 80 and 1500 msec release time). In all devices, the AGC was activated above the threshold of 63 dB SPL. The authors balanced loudness across the devices for soft and loud input sounds in 3 frequency bands (0 to 548, 548 to 1000, and >1000 Hz). Speech understanding was tested in free field in quiet and in noise for three spatial speaker configurations, with target speech always presented from the front. Single-talker noise was either presented from the CI side or the HA side, or uncorrelated stationary speech-weighted noise or single-talker noise was presented from both sides. Questionnaires were administered to assess differences in perception between the two bimodal fittings. Significant bimodal benefit over the CI alone was only found for the AGC-matched HA for the speech tests with single-talker noise. Compared with the standard HA, matched AGC characteristics significantly improved speech understanding in single-talker noise by 1.9 dB when noise was presented from the HA side. AGC matching increased bimodal benefit insignificantly by 0.6 dB when noise was presented from the CI implanted side, or by 0.8 (single-talker noise) and 1.1 dB (stationary noise) in the more complex configurations with two simultaneous maskers from both sides. In questionnaires, subjects rated the AGC-matched HA higher than the standard HA for understanding of one person in quiet and in noise, and for the quality of sounds. Listening to a slightly raised voice, subjects indicated increased listening comfort with matched AGCs. At the end of the study, 9 of 15 subjects preferred to take home the AGC-matched HA, 1 preferred the standard HA and 5 subjects had no preference. For bimodal listening, the AGC-matched HA outperformed the standard HA in speech understanding in noise tasks using a single competing talker and it was favored in questionnaires and in a subjective preference test. When noise was presented from the HA side, AGC matching resulted in a 1.9 dB SNR additional benefit, even though the HA was at the least favorable SNR side in this speaker configuration. Our results possibly suggest better binaural processing for matched AGCs.

  5. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Chen, Xi; Chai, Ran; Xing, Chengfen; Li, Huanrong; Yin, Xue-Bo

    2016-07-01

    A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn2+, and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging.A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn2+, and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03129c

  6. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction

    PubMed Central

    Wright, Rachel L.; Spurgeon, Laura C.; Elliott, Mark T.

    2014-01-01

    Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task—correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself. PMID:25309397

  7. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction.

    PubMed

    Wright, Rachel L; Elliott, Mark T

    2014-01-01

    Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task-correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself.

  8. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    USGS Publications Warehouse

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  9. The evolution of pattern camouflage strategies in waterfowl and game birds.

    PubMed

    Marshall, Kate L A; Gluckman, Thanh-Lan

    2015-05-01

    Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions ("bimodal" patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a "sit and hide" strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution.

  10. Monaural or binaural sound deprivation in postlingual hearing loss: Cochlear implant in the worse ear.

    PubMed

    Canale, Andrea; Dalmasso, Giulia; Dagna, Federico; Lacilla, Michelangelo; Montuschi, Carla; Rosa, Rosalba Di; Albera, Roberto

    2016-08-01

    To determine whether speech recognition scores (SRS) differ between adults with long-term auditory deprivation in the implanted ear and adults who received cochlear implant (CI) in the nonsound-deprived ear, either for hearing aid-assisted or due to rapidly deteriorating hearing loss. Retrospective study. Speech recognition scores at evaluations (3 and 14 months postimplantation) conducted with CI alone at 60-dB sound pressure level intensity were compared in 15 patients (4 with bilateral severe hearing loss; 11 with asymmetric hearing loss, 7 of which had contralateral hearing aid), all with long-term auditory deprivation (mean duration 16.9 years) (group A), and in 15 other patients with postlingual hearing loss (10 symmetric, 5 asymmetric with bimodal stimulation) (controls, group B). Comparison of mean percentage of correctly recognized words on speech audiometry at 3 and 14 months showed improvement within each group (P < 0.05). Between-group comparison showed no significant difference at 3 (P = 0.17) or 14 months (P = 0.46). Comparison of SRSs in group A (bimodal stimulation [n = 7] and binaural sound deprivation [n = 4]) versus group B showed no significant differences at 3 (bimodal stimulation P = 0.16; binaural sound deprivation P = 0.19) or 14 months (bimodal stimulation P = 0.14; binaural sound deprivation P = 0.82). Speech recognition scores in monaural and binaural sound-deprived ears did not significantly differ from ears with unilateral cochlear implantation in nonsound-deprived ears when tested with CI alone. Improvement in the implanted worse ear indicates that it could be a potential candidate ear for cochlear implantation even when sound deprived. 4. Laryngoscope, 126:1905-1910, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Texture studies of hot compressed near alpha titanium alloy (IMI 834) at 1000°C with different strain rates

    NASA Astrophysics Data System (ADS)

    Kodli, B. K.; Saxena, K. K.; Dey, S. R.; Pancholi, V.; Bhattacharjee, A.

    2015-04-01

    IMI 834 Titanium alloy is a near alpha (hcp) titanium alloy used for high temperature applications with the service temperature up to 600°C. Generally, this alloy is widely used in gas turbine engine applications such as low pressure compressor discs. For these applications, good fatigue and creep properties are required, which have been noticed better in a bimodal microstructure, containing 15-20% volume fraction of primary alpha grains (αp) and remaining bcc beta (β) grains transformed secondary alpha laths (αs). The bimodal microstructure is achieved during processing of IMI 834 in the high temperature α+β region. The major issue of bimodal IMI 834 during utilization is its poor dwell fatigue life time caused by textured macrozones. Textured macrozone is the spatial accumulation of similar oriented grains in the microstructure generated during hot processing in the high temperature α+β region. Textured macrozone can be mitigated by controlling the hot deformation with certain strain rate under stable plastic conditions having β grains undergoing dynamic recrystallization. Hence, a comprehensive study is required to understand the deformation behavior of α and β grains at different strain rates in that region. Hot compression tests up to 5°% strain of the samples are performed with five different strain rates i.e. 10-3 s-1, 10-2 s-1, 10-1 s-1, 1 s-1 and 10 s-1 at 1000°C using Gleeble 3800. The resultant bimodal microstructure and the texture studies of primary alpha grains (αp) and secondary alpha laths (αs) are carried out using scanning electron microscopy (SEM)-electron back scattered diffraction (EBSD) method.

  12. Acid-base and ion balance in fishes with bimodal respiration.

    PubMed

    Shartau, R B; Brauner, C J

    2014-03-01

    The evolution of air breathing during the Devonian provided early fishes with bimodal respiration with a stable O2 supply from air. This was, however, probably associated with challenges and trade-offs in terms of acid-base balance and ionoregulation due to reduced gill:water interaction and changes in gill morphology associated with air breathing. While many aspects of acid-base and ionoregulation in air-breathing fishes are similar to water breathers, the specific cellular and molecular mechanisms involved remain largely unstudied. In general, reduced ionic permeability appears to be an important adaptation in the few bimodal fishes investigated but it is not known if this is a general characteristic. The kidney appears to play an important role in minimizing ion loss to the freshwater environment in the few species investigated, and while ion uptake across the gut is probably important, it has been largely unexplored. In general, air breathing in facultative air-breathing fishes is associated with an acid-base disturbance, resulting in an increased partial pressure of arterial CO2 and a reduction in extracellular pH (pHE ); however, several fishes appear to be capable of tightly regulating tissue intracellular pH (pHI ), despite a large sustained reduction in pHE , a trait termed preferential pHI regulation. Further studies are needed to determine whether preferential pHI regulation is a general trait among bimodal fishes and if this confers reduced sensitivity to acid-base disturbances, including those induced by hypercarbia, exhaustive exercise and hypoxia or anoxia. Additionally, elucidating the cellular and molecular mechanisms may yield insight into whether preferential pHI regulation is a trait ultimately associated with the early evolution of air breathing in vertebrates. © 2014 The Fisheries Society of the British Isles.

  13. β-Adrenergic regulation of a novel isoform of NCX: sequence and expression of shark heart NCX in human kidney cells

    PubMed Central

    Janowski, Einsley; Day, Regina; Kraev, Alexander; Roder, John C.; Cleemann, Lars; Morad, Martin

    2009-01-01

    The function, regulation, and molecular structure of the cardiac Na+/Ca2+ exchangers (NCXs) vary significantly among vertebrates. We previously reported that β-adrenergic suppression of amphibian cardiac NCX1.1 is associated with specific molecular motifs. Here we investigated the bimodal, cAMP-dependent regulation of spiny dogfish shark (Squalus acanthias) cardiac NCX, exploring the effects of molecular structure, host cell environment, and ionic milieu. The shark cardiac NCX sequence (GenBank accession no. DQ 068478) revealed two novel proline/alanine-rich amino acid insertions. Wild-type and mutant shark NCXs were cloned and expressed in mammalian cells (HEK-293 and FlpIn-293), where their activities were measured as Ni2+-sensitive Ca2+ fluxes (fluo 4) and membrane (Na+/Ca2+ exchange) currents evoked by changes in extracellular Na+ concentration and/or membrane potential. Regardless of Ca2+ buffering, β-adrenergic stimulation of cloned wild-type shark NCX consistently produced bimodal regulation (defined as differential regulation of Ca2+-efflux and -influx pathways), with suppression of the Ca2+-influx mode and either no change or enhancement of the Ca2+-efflux mode, closely resembling results from parallel experiments with native shark cardiomyocytes. In contrast, mutant shark NCX, with deletion of the novel region 2 insertion, produced equal suppression of the inward and outward currents and Ca2+ fluxes, thereby abolishing the bimodal nature of the regulation. Control experiments with nontransfected and dog cardiac NCX-expressing cells showed no cAMP regulation. We conclude that bimodal β-adrenergic regulation is retained in cloned shark NCX and is dependent on the shark's unique molecular motifs. PMID:19395557

  14. Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Aydin, Faruk; Schmitt, Axel K.; Siebel, Wolfgang; Sönmez, Mustafa; Ersoy, Yalçın; Lermi, Abdurrahman; Dirik, Kadir; Duncan, Robert

    2014-11-01

    The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr-Nd-Pb and δ18O isotopes) and geochronological (U-Pb zircon and Ar-Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Niğde Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038-0.7053) and felsic (0.7040-0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinshui; Qiao, Zhenan -An; Mahurin, Shannon Mark

    A soft chemistry synthetic strategy based on a Friedel Crafts alkylation reaction is developed for the textural engineering of phenolic resin (PR) with a robust mesoporous framework to avoid serious framework shrinkage and maximize retention of organic functional moieties. By taking advantage of the structural benefits of molecular bridges, the resultant sample maintains a bimodal micro-mesoporous architecture with well-preserved organic functional groups, which is effective for carbon capture. Furthermore, this soft chemistry synthetic protocol can be further extended to nanotexture other aromatic-based polymers with robust frameworks.

  16. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  17. Modality-Driven Classification and Visualization of Ensemble Variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald

    Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no informationmore » about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. We apply a similar method to time-varying ensembles to illustrate the relationship between peak variance and bimodal or multimodal behavior. These classification schemes enable a deeper understanding of the behavior of the ensemble members by distinguishing between distributions that can be described by a single tendency and distributions which reflect divergent trends in the ensemble.« less

  18. Laboratory Observations of Sand Ripple Evolution in a Small Oscillatory Flow Tunnel

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Palmsten, M. L.; Chu, J.; Landry, B. J.; Penko, A.

    2014-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Six different monochromatic oscillatory forcings, three with velocity asymmetry and three without, were used to investigate sand ripple dynamics using a unimodal grain size distribution with D50=0.65 mm. The experiments represent an extension of previous work using bimodal grain size distributions. A DSLR camera with a 180-degree fisheye lens collected images of the sediment bed profile every 2 seconds to resolve changes in ripple geometries and migration rates resulting from the different flow conditions for over 127 hours (229,388 images). Matlab © algorithms undistorted the fisheye images and quantified the ripple geometries, wavelengths, heights, and migration rates as a function of flow forcing. The mobility number was kept nearly constant by increasing and decreasing the semi-excursion amplitude and the wave frequency, respectively. We observed distinct changes in ripple geometry and migration rate for the pair of oscillatory forcings having nearly identical mobility numbers. The results suggested that the commonly used mobility number might not be appropriate to characterize ripple geometry or migration rates.

  19. [Alternative stable states in coastal intertidal wetland ecosystems of Yangtze estuary, China].

    PubMed

    Li, Hui; Yuan, Lin; Zhang, Li Quan; Li, Wei; Li, Shi Hua; Zhao, Zhi Yuan

    2017-01-01

    Alternative stable states phenomenon widely exists in a variety of ecosystems and is closely related to ecosystem health and sustainable development. Although alternative stable states research has become the focus and hotspot of the ecology researches, only a few empirical evidences supported its behavior and mechanisms in coastal wetland ecosystems up to now. In our study, ta-king the intertidal wetland ecosystem in Chongming Dongtan Nature Reserve as study area, we aimed to: 1) test the existence of alternative stable states based on judgment conditions (bimodal characteristic and threshold effect) and determine the relative stable state types; 2) explore the formation mechanisms of alternative stable states by monitoring hydrological conditions, sediment accretion dynamics as well as vegetation growth parameters and analyzing the positive feedbacks between saltmarsh vegetation and sedimentary geomorphology. Our results showed that: 1) Normalized difference vegetation index (NDVI) frequentness distribution revealed obvious bimodality at saltmarsh pioneer zone. Propagule biomass threshold limited the establishment of plant patches representing the "saltmarsh" state. The presence of bimodality and biomass threshold demonstrated there are "mudflat" stable state and "saltmarsh" stable state with distinct structure and function in intertidal wetland ecosystem. 2) Current velocities, turbidities and direction perpendicular to the vegetation zone were the most important factors responsible for the sediments rapid accretion at saltmarsh pioneer zone in spring and summer. Sediments accretion significantly promoted the growth of saltmarsh plant. The positive feedbacks between plant growth and sediments accretion resulted in the formation of alternative stable states. 3) The expansion pattern of saltmarshes in the Chongming Dongtan intertidal wetland ecosystem also suggested that increases of sediments accretion could trigger the formation of "mudflat" stable state and "saltmarsh" stable state on landscape scale. The results from this study could enrich regime shift mechanisms researches and provide the scientific supports for coastal zone protection, restoration and comprehensive management, which could have important theoretical and practical meaning.

  20. Mechanisms of ripple migration on a natural sand bed under waves

    NASA Astrophysics Data System (ADS)

    Carlson, E.; Foster, D. L.

    2016-02-01

    In nearshore environments, the wave bottom boundary layer is of particular importance to bedform migration and evolution as it is the location of energy transfer from the water column to the bed. This effort examines the mechanisms responsible for bedform evolution and migration. In a field scale laboratory study, sand ripple dynamics were measured using particle image velocimetry. Both monotonic (T = 4 s, 8 s), bimodal (wave pair T = 3.7, 4.3 s), and solitary wave cases were examined. Bedform states included orbital and anorbital rippled beds with wavelengths ranging from 5 to 15 cm. During cases of moderately high energy, time series of instantaneous ripple migration rates oscillated with the same frequency as the surface waves. The oscillatory ripple migration signature was asymmetric, with higher amplitudes during onshore directed movement. This asymmetry leads to a net onshore migration, ranging from 0.1 to 0.6 cm/min in the wave conditions mentioned. The cyclic motion of the ripple field was compared to concomitant transfer mechanisms affecting the boundary layer dynamics including: bed shear stress, coherent structure generation, and free stream velocity. Coherent structures were identified using the swirling strength criterion, and were present during each half wave developing in the ripple troughs. Two estimates of bed shear stress were made: 1) Meyer-Peter Muller method using the bed migration to determine the necessary stress and 2) double averaging of the velocity field and partitioning into components of stress, following the methods of Rodriguez-Abudo and Foster (2014). Peak ripple migration rates occurred during strengthening onshore flow, which coincides with peak bed shear stresses and the onset of coherent structure formation. Higher energy bimodal wave groups caused periods of high suspension which were coincident with peak onshore migrations, during the low velocity periods of the bimodal forcing the bed did not migrate.

  1. Self-assembly of bimodal particles inside emulsion droplets

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Yi, Gi-Ra; Yang, Seung-Man; Kim, Young-Kuk; Choi, Chul-Jin

    2010-08-01

    Colloidal dispersion of bimodal particles were self-organized inside water-in-oil emulsion droplets by evaporationdriven self-assembly method. After droplet shrinkage by heating the complex fluid system, small numbers of microspheres were packed into minimal second moment clusters, which are partially coated with silica nanospheres, resulting in the generation of patchy particles. The patchy particles in this study possess potential applications for selfassembly of non-isotropic particles such as dimmers or tetramers for colloidal photonic crystals with diamond lattice structures. The composite micro-clusters of amidine polystyrene microspheres and titania nanoparticles were also generated by evaporation-driven self-assembly to fabricate nonspherical hollow micro-particles made of titania shell.

  2. The ferroan-anorthositic suite and the extent of primordial lunar melting

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Kallemeyn, Gregory W.

    1992-01-01

    The Apollo highlands rock collection includes more than 100 'pristine' fragments that survived the intense meteoritic bombardment of the ancient lunar crust with unmixed, endogenously igneous compositions. The geochemical anomaly manifested by the 'ferroan-anorthositic suite' (FAS) appears to reflect a geochemical, and probably also a genetic, bimodality among the ancient lunar cumulates. Early models that purported to account for this bimodality as a product of a single magma have been discredited. The model of the present paper implies that the Mg-suite rocks formed by a comparatively normal variety of basaltic fractional crystallization (FC) shortly after the era of magma ocean (MO) crystallization and FAS genesis.

  3. Voltage controlled Bi-mode resistive switching effects in MnO2 based devices

    NASA Astrophysics Data System (ADS)

    Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.

    2018-01-01

    In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.

  4. Ice-Templated Bimodal-Porous Silver Nanowire/PDMS Nanocomposites for Stretchable Conductor.

    PubMed

    Oh, Jae Young; Lee, Dongju; Hong, Soon Hyung

    2018-06-27

    A three-dimensional (3D) bimodal-porous silver nanowire (AgNW) nanostructure with superior electrical properties is fabricated by freeze drying of AgNW aqueous dispersion with macrosized ice spheres for bimodal-porous structure. The ice sphere dispersed AgNW solution yields a 3D AgNW network at the surface of ice sphere and formation of macropores by removal of ice sphere during freeze-drying process. The resulting nanostructures exhibit excellent electrical properties due to their low electrical percolation threshold by the formation of macropores, which results in an efficient and dense 3D AgNW network with a small amount of AgNWs. The highly conductive and stretchable AgNW/poly(dimethylsiloxane) (PDMS) nanocomposites are made by impregnating the 3D porous conductive network with highly stretchable poly(dimethylsiloxane) (PDMS) matrix. The AgNW/PDMS nanocomposites exhibit a high conductivity of 42 S/cm with addition of relatively small amount of 2 wt %. The high conductivity is retained when stretched up to 120% elongation even after 100 stretching-releasing cycles. Due to high electrical conductivity and superior stretchability of AgNW/PDMS nanocomposites, these are expected to be used in stretchable electronic devices.

  5. How to Build a Hybrid Neurofeedback Platform Combining EEG and fMRI

    PubMed Central

    Mano, Marsel; Lécuyer, Anatole; Bannier, Elise; Perronnet, Lorraine; Noorzadeh, Saman; Barillot, Christian

    2017-01-01

    Multimodal neurofeedback estimates brain activity using information acquired with more than one neurosignal measurement technology. In this paper we describe how to set up and use a hybrid platform based on simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), then we illustrate how to use it for conducting bimodal neurofeedback experiments. The paper is intended for those willing to build a multimodal neurofeedback system, to guide them through the different steps of the design, setup, and experimental applications, and help them choose a suitable hardware and software configuration. Furthermore, it reports practical information from bimodal neurofeedback experiments conducted in our lab. The platform presented here has a modular parallel processing architecture that promotes real-time signal processing performance and simple future addition and/or replacement of processing modules. Various unimodal and bimodal neurofeedback experiments conducted in our lab showed high performance and accuracy. Currently, the platform is able to provide neurofeedback based on electroencephalography and functional magnetic resonance imaging, but the architecture and the working principles described here are valid for any other combination of two or more real-time brain activity measurement technologies. PMID:28377691

  6. A continuous record of tectonic evolution from 3.5 Ga to 2.6 Ga in Swaziland and northern Natal

    NASA Technical Reports Server (NTRS)

    Hunter, D. R.; Wilson, A. H.; Versfeld, J. A.; Allen, A. R.; Smith, R. G.; Sleigh, D. W. W.; Groenewald, P. B.; Chutter, G. M.; Preston, V. A.

    1986-01-01

    The approx. 3.5 Ga-old bimodal suite underlying an extensive area in southwestern Swaziland comprises the oldest-dated sialic rocks in the Kaapvaal structural province. The suite consists of leucocratic, layered tonalitic-trondhjemitic gneisses and amphibolites characterized by the effects of repeated high strains. This suite is considered to represent a sialic basement on which metavolcanic and metasedimentary rocks, now preserved as scattered greenstone remnants, accumulated. Direct evidence to confirm this temporal relationship is lacking, but structural data from the Dwalile, Assegaai and Commondale areas indicate that (1) the bimodal gneisses experienced a complex structural history prior to the first recognizable deformation in the supracrustal rocks (i.e., D1 in the supracrustals is equivalent to Dn + 1 in the gneisses) and (2) scattered remnants of the Dwalile rocks infolded with the bimodal suite structurally overlie the gneisses and are preserved in synformal keels. Significant proportions of metaquartzites and metapelites are present in the Assegaai greenstone sequence, the presence of which implies the existence of felsic crust in the source area from which these sediments were derived, a conclusion that is consistent with the structural data.

  7. Discrepant visual speech facilitates covert selective listening in "cocktail party" conditions.

    PubMed

    Williams, Jason A

    2012-06-01

    The presence of congruent visual speech information facilitates the identification of auditory speech, while the addition of incongruent visual speech information often impairs accuracy. This latter arrangement occurs naturally when one is being directly addressed in conversation but listens to a different speaker. Under these conditions, performance may diminish since: (a) one is bereft of the facilitative effects of the corresponding lip motion and (b) one becomes subject to visual distortion by incongruent visual speech; by contrast, speech intelligibility may be improved due to (c) bimodal localization of the central unattended stimulus. Participants were exposed to centrally presented visual and auditory speech while attending to a peripheral speech stream. In some trials, the lip movements of the central visual stimulus matched the unattended speech stream; in others, the lip movements matched the attended peripheral speech. Accuracy for the peripheral stimulus was nearly one standard deviation greater with incongruent visual information, compared to the congruent condition which provided bimodal pattern recognition cues. Likely, the bimodal localization of the central stimulus further differentiated the stimuli and thus facilitated intelligibility. Results are discussed with regard to similar findings in an investigation of the ventriloquist effect, and the relative strength of localization and speech cues in covert listening.

  8. Selection of higher eigenmode amplitude based on dissipated power and virial contrast in bimodal atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Alfredo J.; Eslami, Babak; López-Guerra, Enrique A.

    2014-09-14

    This paper explores the effect of the amplitude ratio of the higher to the fundamental eigenmode in bimodal atomic force microscopy (AFM) on the phase contrast and the dissipated power contrast of the higher eigenmode. We explore the optimization of the amplitude ratio in order to maximize the type of contrast that is most relevant to the particular study. Specifically, we show that the trends in the contrast range behave differently for different quantities, especially the dissipated power and the phase, with the former being more meaningful than the latter (a similar analysis can be carried out using the virial,more » for which we also provide a brief example). Our work is based on numerical simulations using two different conservative-dissipative tip-sample models, including the standard linear solid and the combination of a dissipation coefficient with a conservative model, as well as experimental images of thin film Nafion{sup ®} proton exchange polymers. We focus on the original bimodal AFM method, where the higher eigenmode is driven with constant amplitude and frequency (i.e., in “open loop”).« less

  9. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.

    PubMed

    Samuelsen, Chad L; Fontanini, Alfredo

    2017-01-11

    The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli; however, no study has examined the single-unit responses to intraoral odorant presentation. Here we found that neurons in gustatory cortex can respond either exclusively to tastants, exclusively to odorants, or to both (bimodal). Several differences exist between these groups' responses; notably, bimodal neurons code palatability significantly better than unimodal neurons. This group of neurons might represent a substrate for how odorants gain the quality of tastants. Copyright © 2017 the authors 0270-6474/17/370244-14$15.00/0.

  10. 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry of the Neogene bimodal volcanism in the Yükselen area, NW Konya (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Gençoğlu Korkmaz, Gülin; Asan, Kürşad; Kurt, Hüseyin; Morgan, Ganerød

    2017-05-01

    Bimodal volcanic suites occur in both orogenic and anorogenic geotectonic settings. Although their formation can be attributed to either fractional crystallization from basaltic parents to felsic derivatives or partial melting of different sources, the origin of bimodal suites is still unclear. By reporting mineral chemistry, 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry data, this study aims to investigate the genesis of bimodal basalt-dacite association from the Yükselen area located on the northern end of the Sulutas Volcanic Complex (Konya, Central Anatolia). The Yükselen area volcanic rocks are represented by basaltic lava flows, and dacitic dome with enclaves and pyroclastics. Basaltic flows and pyroclastic rocks are interlayered with the Neogene fluvio-lacustrine sedimentary units, while dacitic rocks cut the pre-Neogene basement in the area. A biotite separation from dacites yielded 40Ar/39Ar plateau age of 16.11 ± 0.18 Ma. On the other hand, a whole rock sample from basalts gave two plateau ages of 16.45 ± 0.76 Ma and 22.37 ± 0.65 Ma for the first steps and next steps, respectively. The investigated basalts are sodic alkaline, and characterized by ocean island basalt (OIB)-like anorogenic geochemical signatures. However, dacites are calc-alkaline and metaluminous, and carry geochemical signatures of orogenic adakites. Sr-Nd-Pb isotopic systematics suggest that the basalts were derived from an asthenospheric mantle source enriched by recycled crustal rocks. The dacites show more enriched Sr and Pb ratios and more depleted Nd ones relative to the basalts, which at the first glance might be attributed to crustal contamination of the associated basalts. However, trace element features of the dacites rule out cogenetic relationship between the two rock types, and point to an origin by melting of lower crust. On the other hand, enclaves share several elemental and isotopic characteristics with the dacites, and appear to be fragments of sub-volcanic intrusions closely related to the dacitic host magma. Based on the obtained geochemical data combined with the published geological and geophysical data, the investigated bimodal volcanic activity can be explained by slab break-off process in the convergence system between the African and Anatolian plates.

  11. Earthquake Declustering via a Nearest-Neighbor Approach in Space-Time-Magnitude Domain

    NASA Astrophysics Data System (ADS)

    Zaliapin, I. V.; Ben-Zion, Y.

    2016-12-01

    We propose a new method for earthquake declustering based on nearest-neighbor analysis of earthquakes in space-time-magnitude domain. The nearest-neighbor approach was recently applied to a variety of seismological problems that validate the general utility of the technique and reveal the existence of several different robust types of earthquake clusters. Notably, it was demonstrated that clustering associated with the largest earthquakes is statistically different from that of small-to-medium events. In particular, the characteristic bimodality of the nearest-neighbor distances that helps separating clustered and background events is often violated after the largest earthquakes in their vicinity, which is dominated by triggered events. This prevents using a simple threshold between the two modes of the nearest-neighbor distance distribution for declustering. The current study resolves this problem hence extending the nearest-neighbor approach to the problem of earthquake declustering. The proposed technique is applied to seismicity of different areas in California (San Jacinto, Coso, Salton Sea, Parkfield, Ventura, Mojave, etc.), as well as to the global seismicity, to demonstrate its stability and efficiency in treating various clustering types. The results are compared with those of alternative declustering methods.

  12. Topography on a subcellular scale modulates cellular adhesions and actin stress fiber dynamics in tumor associated fibroblasts

    NASA Astrophysics Data System (ADS)

    Azatov, Mikheil; Sun, Xiaoyu; Suberi, Alexandra; Fourkas, John T.; Upadhyaya, Arpita

    2017-12-01

    Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.

  13. Stagewise cognitive development: an application of catastrophe theory.

    PubMed

    van der Maas, H L; Molenaar, P C

    1992-07-01

    In this article an overview is given of traditional methodological approaches to stagewise cognitive developmental research. These approaches are evaluated and integrated on the basis of catastrophe theory. In particular, catastrophe theory specifies a set of common criteria for testing the discontinuity hypothesis proposed by Piaget. Separate criteria correspond to distinct methods used in cognitive developmental research. Such criteria are, for instance, the detection of spurts in development, bimodality of test scores, and increased variability of responses during transitional periods. When a genuine stage transition is present, these criteria are expected to be satisfied. A revised catastrophe model accommodating these criteria is proposed for the stage transition in cognitive development from the preoperational to the concrete operational stage.

  14. Heatpipe space power and propulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1996-03-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS), which provides power only; and the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, which greatly facilitates system fabrication and handling. Third, full electrically heated system testing of all modes is possible, with minimal operations required to replace the heaters with fuel and to ready the systemmore » for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single-point failures during power mode operation. Eighth, the fuel burnup rate is quite low to help ensure {approx_gt}10-yr system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, full ground nuclear test is not needed, and development costs will be low. One design for a low-power HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of {approximately}500 kg. The unicouple thermoelectric converters have a hot-shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program and has demonstrated an operational lifetime of decades. A core with a larger number of smaller modules (same overall size) can be used to provide up to 500 kWt to a power conversion subsystem, and a slightly larger core using a higher heatpipe to fuel ratio can provide {approx_gt}1 MWt. (Abstract Truncated)« less

  15. Heatpipe space power and propulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-12-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: The Heatpipe Power System (HPS), which provides power only; and the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, which greatly facilitates system fabrication and handling. Third, full electrically heated system testing of all modes is possible, with minimal operations required to replace the heaters with fuel and to ready the systemmore » for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single-point failures during power mode operation. Eighth, the fuel burnup rate is quite low to help ensure >10-yr system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, full ground nuclear test is not needed, and development costs will be low. One design for a low-power HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of {approximately}500 kg. The unicouple thermoelectric converters have a hot-shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program and has demonstrated an operational lifetime of decades. A core with a larger number of smaller modules (same overall size) can be used to provide up to 500 kWt to a power conversion subsystem, and a slightly larger core using a higher heatpipe to fuel ratio can provide >1 MWt.« less

  16. Double photoionization of propylene oxide: A coincidence study of the ejection of a pair of valence-shell electrons

    NASA Astrophysics Data System (ADS)

    Falcinelli, Stefano; Vecchiocattivi, Franco; Alagia, Michele; Schio, Luca; Richter, Robert; Stranges, Stefano; Catone, Daniele; Arruda, Manuela S.; Mendes, Luiz A. V.; Palazzetti, Federico; Aquilanti, Vincenzo; Pirani, Fernando

    2018-03-01

    Propylene oxide, a favorite target of experimental and theoretical studies of circular dichroism, was recently discovered in interstellar space, further amplifying the attention to its role in the current debate on protobiological homochirality. In the present work, a photoelectron-photoion-photoion coincidence technique, using an ion-imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV energy range, permits us (i) to observe six double ionization fragmentation channels, their relative yields being accounted for about two-thirds by the couple (C2H4+, CH2O+) and one-fifth by (C2H3+, CH3O+); (ii) to measure thresholds for their openings as a function of photon energy; and (iii) to unravel a pronounced bimodality for a kinetic-energy-released distribution, fingerprint of competitive non-adiabatic mechanisms.

  17. From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems

    NASA Astrophysics Data System (ADS)

    Hamze, Firas; Jacob, Darryl C.; Ochoa, Andrew J.; Perera, Dilina; Wang, Wenlong; Katzgraber, Helmut G.

    2018-04-01

    We present a methodology for generating Ising Hamiltonians of tunable complexity and with a priori known ground states based on a decomposition of the model graph into edge-disjoint subgraphs. The idea is illustrated with a spin-glass model defined on a cubic lattice, where subproblems, whose couplers are restricted to the two values {-1 ,+1 } , are specified on unit cubes and are parametrized by their local degeneracy. The construction is shown to be equivalent to a type of three-dimensional constraint-satisfaction problem known as the tiling puzzle. By varying the proportions of subproblem types, the Hamiltonian can span a dramatic range of typical computational complexity, from fairly easy to many orders of magnitude more difficult than prototypical bimodal and Gaussian spin glasses in three space dimensions. We corroborate this behavior via experiments with different algorithms and discuss generalizations and extensions to different types of graphs.

  18. Statistical time-dependent model for the interstellar gas

    NASA Technical Reports Server (NTRS)

    Gerola, H.; Kafatos, M.; Mccray, R.

    1974-01-01

    We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.

  19. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition.

    PubMed

    Shen, Yi; Lua, Aik Chong

    2016-01-15

    A new type of porous carbon with an interconnected trimodal pore system is synthesized by a nanocasting method using nanoparticulated bimodal micro-mesoporous silica particles as the template. The synthesized template and carbon material are characterized using transmission electron microscopy (TEM), field emission electron scanning microscopy (FESEM) and nitrogen adsorption-desorption test. The synthesized carbon material has an extremely high surface area, a large pore volume and an interconnected pore structure, which could provide abundant active sites and space for chemical reactions and minimize the diffusion resistance of the reactants. The resulting carbon is used as the catalyst for hydrogen production by the thermal decomposition of methane. The catalytic results show that the as-synthesized carbon in this study produces much higher methane conversion and hydrogen yield than the commercial carbon materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Distributions of recent gullies on hillslopes with different slopes and aspects in the Black Soil Region of Northeast China.

    PubMed

    Wang, Dichen; Fan, Haoming; Fan, Xiangguo

    2017-09-17

    Gully erosion is an important environmental problem worldwide and the main process by which water and soil losses occur in the Black Soil Region (BSR) of Northeast China. At the end of 2012, 295,663 gullies were present in this region. However, few studies have examined the gullies of the Black Soil Region as a whole. Studying the distribution of recent gullies can reveal the pattern of gully distribution and can help predict their spatial development according to the soil and water conservation regionalization of China. This study examines the recorded gullies in the BSR of Northeast China, which is included in the first census of water resources in China and in six sub-regions of the soil and water conservation regionalization of China. Specifically, digital elevation model (DEM) data are combined with data on gullies occurring on hillslopes with different slopes and aspects to study the distribution of these features. The results illustrate that gully density, developing gully density, and the proportion of cutting land initially increase with increasing slope up to some threshold value, then decrease as the slope increases further. The patterns of stable gullies are divided into unimodal and bimodal types. Three patterns of gully intensity are identified. The areas and lengths of gullies are larger on sunny slopes, but larger numbers of gullies are present on shaded slopes. In addition, more space is available for gully development in the Hulun Buir hilly and plain sub-region and the Changbai Mountain-Wanda Mountain sub-region than in the other sub-regions.

  1. Velocity selection for ultracold atoms using mazer action in a bimodal cavity

    NASA Astrophysics Data System (ADS)

    Irshad, Afshan; Qamar, Sajid; Qamar, Shahid

    2010-01-01

    In this paper, we discuss the velocity selection of ultracold three-level atoms in Λ configuration using a mazer. Our model is the same as discussed by Arun et al. [R. Arun, G.S. Agarwal, M.O. Scully, H. Walther, Phys. Rev. A 62 (2000) 023809] for mazer action in a bimodal cavity. We show that the initial Maxwellian velocity distribution of ultracold atoms can be narrowed due to the presence of resonances in the transmission through dressed-state potential. When the atoms are initially prepared in one of the two lower atomic states then significantly better velocity selectivity is obtained due to the presence of dark states.

  2. Bimodal spatial distribution of macular pigment: evidence of a gender relationship

    NASA Astrophysics Data System (ADS)

    Delori, François C.; Goger, Douglas G.; Keilhauer, Claudia; Salvetti, Paola; Staurenghi, Giovanni

    2006-03-01

    The spatial distribution of the optical density of the human macular pigment measured by two-wavelength autofluorescence imaging exhibits in over half of the subjects an annulus of higher density superimposed on a central exponential-like distribution. This annulus is located at about 0.7° from the fovea. Women have broader distributions than men, and they are more likely to exhibit this bimodal distribution. Maxwell's spot reported by subjects matches the measured distribution of their pigment. Evidence that the shape of the foveal depression may be gender related leads us to hypothesize that differences in macular pigment distribution are related to anatomical differences in the shape of the foveal depression.

  3. Characterization of thermoplastic polyimide NEW-TPI

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Reddy, R. M.

    1991-01-01

    Thermal and rheological properties of a commercial thermoplastic polyimide, NEW-TPI, were characterized. The as-received material possesses initially a transient crystallite form with a bimodal distribution in peak melting temperatures. After the meltings of the initial crystallite structures, the sample can be recrystallized by various thermal treatments. A bimodal or single-modal melting peak distribution is formed for annealing temperatures below or above 360 C, respectively. The recrystallized crystallinities are all transient in nature. The polymers are unable to be recrystallized after being subjected to elevated temperature annealing above 450 C. The recrystallization mechanism was postulated, and a simple kinetics model was found to describe the behavior satisfactorily under conditions of prolonged thermal annealing.

  4. Thermal induced carrier's transfer in bimodal size distribution InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Ilahi, B.; Alshehri, K.; Madhar, N. A.; Sfaxi, L.; Maaref, H.

    2018-06-01

    This work reports on the investigation of the thermal induced carriers' transfer mechanism in vertically stacked bimodal size distribution InAs/GaAs quantum dots (QD). A model treating the QD as a localized states ensemble (LSE) has been employed to fit the atypical temperature dependence of the photoluminescence (PL) emission energies and linewidth. The results suggest that thermally activated carriers transfer within the large size QD family occurs through the neighboring smaller size QD as an intermediate channel before direct carriers redistribution. The obtained activation energy suggests also the possible contribution of the wetting layer (WL) continuum states as a second mediator channel for carriers transfer.

  5. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-12-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR / Earth return vehicle (ERV). It also allows the crew to travel to and from Mars on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixture ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two Magnum launches.

  6. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion. Revised Dec. 1998

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR / Earth return vehicle (ERV). It also allows the crew to travel to and from Mars on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixture ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two Magnum launches.

  7. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1998-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (Isp-850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately equal 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible, A family of modular "bimodal" NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, "zero-boiloff" liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR/ERV. It also allows the crew to travel to and from Mar on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixutre ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the lift capability of two Magnum launches.

  8. Red-Sea rift magmatism near Al Lith, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Pallister, J.S.

    1986-01-01

    A model of poly-baric mantle-melt derivation, producing several alkalinesubalkaline cycles, best explains magmatism in the Red Sea region. Differences in the depths and dynamics of mantle-melt extraction and transport brought about through changes in crust and mantle structure as the rift and paar developed may account for the transition from mixed alkaline-subalkaline bimodal magmatism of the pre-20 Ma rift basin to exclusively subalkaline (tholeiitic) magmatism at the Red Sea spreading axis and to predominantly alkali basalt volcanism within the Arabian Shield.

  9. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles weremore » prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.« less

  10. The spatial reliability of task-irrelevant sounds modulates bimodal audiovisual integration: An event-related potential study.

    PubMed

    Li, Qi; Yu, Hongtao; Wu, Yan; Gao, Ning

    2016-08-26

    The integration of multiple sensory inputs is essential for perception of the external world. The spatial factor is a fundamental property of multisensory audiovisual integration. Previous studies of the spatial constraints on bimodal audiovisual integration have mainly focused on the spatial congruity of audiovisual information. However, the effect of spatial reliability within audiovisual information on bimodal audiovisual integration remains unclear. In this study, we used event-related potentials (ERPs) to examine the effect of spatial reliability of task-irrelevant sounds on audiovisual integration. Three relevant ERP components emerged: the first at 140-200ms over a wide central area, the second at 280-320ms over the fronto-central area, and a third at 380-440ms over the parieto-occipital area. Our results demonstrate that ERP amplitudes elicited by audiovisual stimuli with reliable spatial relationships are larger than those elicited by stimuli with inconsistent spatial relationships. In addition, we hypothesized that spatial reliability within an audiovisual stimulus enhances feedback projections to the primary visual cortex from multisensory integration regions. Overall, our findings suggest that the spatial linking of visual and auditory information depends on spatial reliability within an audiovisual stimulus and occurs at a relatively late stage of processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties

    PubMed Central

    Janjic, Jelena M.; Shao, Pin; Zhang, Shaojuan; Yang, Xun; Patel, Sravan K.; Bai, Mingfeng

    2014-01-01

    Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, 19F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance. PMID:24674463

  12. Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties.

    PubMed

    Janjic, Jelena M; Shao, Pin; Zhang, Shaojuan; Yang, Xun; Patel, Sravan K; Bai, Mingfeng

    2014-06-01

    Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, (19)F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Rapid learning of visual ensembles.

    PubMed

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2017-02-01

    We recently demonstrated that observers are capable of encoding not only summary statistics, such as mean and variance of stimulus ensembles, but also the shape of the ensembles. Here, for the first time, we show the learning dynamics of this process, investigate the possible priors for the distribution shape, and demonstrate that observers are able to learn more complex distributions, such as bimodal ones. We used speeding and slowing of response times between trials (intertrial priming) in visual search for an oddly oriented line to assess internal models of distractor distributions. Experiment 1 demonstrates that two repetitions are sufficient for enabling learning of the shape of uniform distractor distributions. In Experiment 2, we compared Gaussian and uniform distractor distributions, finding that following only two repetitions Gaussian distributions are represented differently than uniform ones. Experiment 3 further showed that when distractor distributions are bimodal (with a 30° distance between two uniform intervals), observers initially treat them as uniform, and only with further repetitions do they begin to treat the distributions as bimodal. In sum, observers do not have strong initial priors for distribution shapes and quickly learn simple ones but have the ability to adjust their representations to more complex feature distributions as information accumulates with further repetitions of the same distractor distribution.

  14. Infants' response to the audible and visible properties of the human face: II. Discrimination of differences between singing and adult-directed speech.

    PubMed

    Lewkowicz, D J

    1998-05-01

    Human infants' responsiveness to the audible and visible features of human faces was studied by habituating them to a person speaking a prepared script in an adult-directed manner and then administering a series of separate test trials where a person could be seen, heard, or seen and heard singing. When habituated to a female person speaking in an adult-directed manner and tested with a singing female 4, 6, and 8-month-old infants responded to the audible, visible, and bimodal changes, whereas 3-month-old infants only responded to the visual and bimodal changes. In contrast, when habituated to a male person speaking in an adult-directed manner and tested with a singing female, all age groups discriminated all three types of changes. These findings demonstrate that infants are responsive to differences between low- and high-prosody content inherent in both the facial and vocal characteristics of the human face and that, whereas responsiveness to the visible and bimodal features associated with differences between adult-directed speech and singing is present as early as 3 months of age, responsiveness to the audible features emerges between 3 and 4 months of age depending on whether gender differences are present as well.

  15. Characterizations of particle size distribution of the droplets exhaled by sneeze

    PubMed Central

    Han, Z. Y.; Weng, W. G.; Huang, Q. Y.

    2013-01-01

    This work focuses on the size distribution of sneeze droplets exhaled immediately at mouth. Twenty healthy subjects participated in the experiment and 44 sneezes were measured by using a laser particle size analyser. Two types of distributions are observed: unimodal and bimodal. For each sneeze, the droplets exhaled at different time in the sneeze duration have the same distribution characteristics with good time stability. The volume-based size distributions of sneeze droplets can be represented by a lognormal distribution function, and the relationship between the distribution parameters and the physiological characteristics of the subjects are studied by using linear regression analysis. The geometric mean of the droplet size of all the subjects is 360.1 µm for unimodal distribution and 74.4 µm for bimodal distribution with geometric standard deviations of 1.5 and 1.7, respectively. For the two peaks of the bimodal distribution, the geometric mean (the geometric standard deviation) is 386.2 µm (1.8) for peak 1 and 72.0 µm (1.5) for peak 2. The influences of the measurement method, the limitations of the instrument, the evaporation effects of the droplets, the differences of biological dynamic mechanism and characteristics between sneeze and other respiratory activities are also discussed. PMID:24026469

  16. Facial Expression Enhances Emotion Perception Compared to Vocal Prosody: Behavioral and fMRI Studies.

    PubMed

    Zhang, Heming; Chen, Xuhai; Chen, Shengdong; Li, Yansong; Chen, Changming; Long, Quanshan; Yuan, Jiajin

    2018-05-09

    Facial and vocal expressions are essential modalities mediating the perception of emotion and social communication. Nonetheless, currently little is known about how emotion perception and its neural substrates differ across facial expression and vocal prosody. To clarify this issue, functional MRI scans were acquired in Study 1, in which participants were asked to discriminate the valence of emotional expression (angry, happy or neutral) from facial, vocal, or bimodal stimuli. In Study 2, we used an affective priming task (unimodal materials as primers and bimodal materials as target) and participants were asked to rate the intensity, valence, and arousal of the targets. Study 1 showed higher accuracy and shorter response latencies in the facial than in the vocal modality for a happy expression. Whole-brain analysis showed enhanced activation during facial compared to vocal emotions in the inferior temporal-occipital regions. Region of interest analysis showed a higher percentage signal change for facial than for vocal anger in the superior temporal sulcus. Study 2 showed that facial relative to vocal priming of anger had a greater influence on perceived emotion for bimodal targets, irrespective of the target valence. These findings suggest that facial expression is associated with enhanced emotion perception compared to equivalent vocal prosodies.

  17. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg−Zn−Mn alloy processed by high strain rate rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jimiao; Song, Min

    2016-11-15

    The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that themore » high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.« less

  18. Molecular and functional definition of the developing human striatum.

    PubMed

    Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena

    2014-12-01

    The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.

  19. Expression of lactate transporters MCT1, MCT2 and CD147 in the red blood cells of three horse breeds: Finnhorse, Standardbred and Thoroughbred.

    PubMed

    Mykkänen, A K; Pösö, A R; McGowan, C M; McKane, S A

    2010-11-01

    In exercising horses, up to 50% of blood lactate is taken up into red blood cells (RBCs). Lactate transporter proteins MCT1, MCT2 and CD147 (an ancillary protein for MCT1) are expressed in the equine RBC membrane. In Standardbreds (SB), lactate transport activity is bimodally distributed and correlates with the amount of MCT1 and CD147. About 75% of SB studied have high lactate transport activity in RBCs. In other breeds, the distribution of lactate transport activity is unknown. To study whether similar bimodal distribution of MCT1 and CD147 is present also in the racing Finnhorse (FH) and Thoroughbred (TB) as in the SB and to study the distribution of MCT2 in all 3 breeds and to determine if there is a connection between MCT expression and performance markers in TB racehorses. Venous blood samples were taken from 118 FHs, 98 TBs and 44 SBs. Red blood cell membranes were purified and MCT1, MCT2 and CD147 measured by western blot. The amount of transporters was compared with TB performance markers. In TBs, the distribution of MCT1 was bimodal and in all breeds distribution of MCT2 unimodal. The amount of CD147 was clearly bimodal in FH and SB, with 85 and 82% expressing high amounts of CD147. In TBs, 88% had high expression of CD147 and 11% low expression, but one horse showed intermediate expression not apparent in FH or SB. Performance markers did not correlate with the amount of MCT1, MCT2 or CD147. High lactate transport activity was present in all 3 racing breeds, with the greatest proportion in the TB, followed by the racing FH, then SB. There was no significant statistical correlation found between lactate transporters in RBC membrane and markers of racing performance in the TB. © 2010 EVJ Ltd.

  20. Sequence variations and two levels of MCT1 and CD147 expression in red blood cells and gluteus muscle of horses.

    PubMed

    Koho, N M; Mykkänen, A K; Reeben, M; Raekallio, M R; Ilves, M; Pösö, A R

    2012-01-01

    MCT1-CD147 complex is the prime lactate transporter in mammalian plasma membranes. In equine red blood cells (RBCs), activity of the complex and expression of MCT1 and CD147 is bimodal; high in 70% and low in 30%. We studied whether sequence variations contribute to the bimodal expression of MCT1 and CD147. Samples of blood and cremaster muscle were collected in connection of castration from 24 horses. Additional gluteus muscle samples were collected from 15 Standardbreds of which seven were known to express low amounts of CD147 in RBCs. The cDNA of MCT1 and CD147 together with a promoter region of CD147 was sequenced. The amounts of MCT1 and CD147 expressed in RBC and muscle membranes were measured by Western blot and mRNA levels in muscles by qPCR. MCT1 and CD147 were expressed in 20 castrates, and in four only were traces found. Sequence variations found in MCT1 were not linked to MCT1 expression. In CD147 linked heterozygous single nucleotide polymorphisms (SNPs) 389A>G (Met(125)Val) and 990C>T (3'-UTR) were associated to low expression of CD147. Also a mutation 168A>G (Ile(51)Val) in CD147 was associated to low MCT1 and CD147 expression. Low MCT1 and CD147 mRNA levels in gluteus were found in Standardbreds with low CD147 expression in RBCs. The results suggest that sequence variations affect the expression level of CD147, but do not explain its bimodality. The levels of MCT1 and CD147 mRNA correlated with the expression of CD147 and suggest that bimodality of their expression is regulated at transcriptional level. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The geochemical nature of the Archean Ancient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T.

    1978-01-01

    The Ancient Gneiss Complex (AGC) of Swaziland, an Archean gray gneiss complex, lies southeast and south of the Barberton greenstone belt and includes the most structurally complex and highly metamorphosed portions of the eastern Kaapvaal craton. The AGC is not precisely dated but apparently is older than 3.4 Ga. The AGC consists of three major units: (a) a bimodal suite of closely interlayered siliceous, low-K gneisses and metabasalt; (b) homogeneous tonalite gneiss; and (c) interlayered siliceous microcline gneiss, metabasalt, and minor metasedimentary rocks - termed the metamorphite suite. A geologically younger gabbro-diorite-tonalite-trondhjemite suite, the Granodiorite Suite, is spatially associated with the AGC and intrusive into it. The bimodal suite consists largely of two types of low-K siliceous gneiss: one has SiO2 14%, low Rb/Sr ratios, and depleted heavy rare earth elements (REE's); the other has SiO2 > 75%, Al2O3 < 13%, high Rb/Sr ratios, and relatively abundant REE's except for negative Eu anomalies. The interlayered metabasalt ranges from komatiitic to tholeiitic compositions. Lenses of quartz monzonitic gneiss of K2O/Na2O close to 1 form a minor part of the bimodal suite. Tonalitic to trondhjemitic migmatite locally is abundant and has major-element abundances similar to those of non-migmatitic varieties. The siliceous gneisses of the metamorphic suite show low Al2O, K2O/Na2O ratios of about 1, high Rb/Sr ratios, moderate REE abundances and negative Eu anomalies. K/Rb ratios of siliceous gneisses of the bimodal suite are very low (???130); of the tonalitic gneiss, low (???225); of the siliceous gneiss of the metamorphite suite, moderate (???300); and of the Granodiorite Suite, high (???400). Rocks of the AGC differ geochemically in several ways from the siliceous volcanic and hypabyssal rocks of the Upper Onverwacht Group and from the diapirs of tonalite and trondhjemite that intrude the Swaziland Group. ?? 1978.

  2. Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells

    PubMed Central

    Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael

    2014-01-01

    Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%–17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome. PMID:25032992

  3. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    USGS Publications Warehouse

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and calc-alkaline lava flows overlying the CRBG across the northern and central parts of the LOEA. The Day 2 field route migrates to southern parts of the LOEA, where rocks of the CRBG are associated in space and time with lesser known and more complex silicic volcanic stratigraphy associated with middle Miocene, large-volume, bimodal basalt-rhyolite vent complexes. Key stops will provide a broad overview of the structure and stratigraphy of the middle Miocene Mahogany Mountain caldera and middle to late Miocene calc-alkaline lavas of the Owyhee basalt. Stops on Day 3 will progress westward from the eastern margin of the LOEA, examining a transition linking the Columbia River Basalt-Yellowstone province with a northwestward-younging magmatic trend of silicic volcanism that underlies the High Lava Plains of eastern Oregon. Initial field stops on Day 3 will examine key outcrops demonstrating the intercalated nature of middle Miocene tholeiitic CRBG flood basalts, prominent ash-flow tuffs, and “Snake River-type” large-volume rhyolite lava flows exposed along the Malheur River. Subsequent stops on Day 3 will focus upon the volcanic stratigraphy northeast of the town of Burns, which includes regional middle to late Miocene ash-flow tuffs, and lava flows assigned to the Strawberry Volcanics. The return route to Portland on Day 4 traverses across the western axis of the Blue Mountains, highlighting exposures of the widespread, middle Miocene Dinner Creek Tuff and aspects of Picture Gorge Basalt flows and northwest-trending feeder dikes situated in the central part of the CRBG province.

  4. Development of a global model for atmospheric backscatter at CO2 wavelengths

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P. H.; Farrukh, U.; Deepak, A.; Patterson, E. M.

    1986-01-01

    The variation of the aerosol backscattering at 10.6 micrometers within the free troposphere was investigated and a model to describe this variation was developed. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets used were obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series, and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained that describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season.

  5. Bimodal and multimodal plant biomass particle mixtures

    DOEpatents

    Dooley, James H.

    2013-07-09

    An industrial feedstock of plant biomass particles having fibers aligned in a grain, wherein the particles are individually characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L, wherein the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces, and wherein the particles in the feedstock are collectively characterized by having a bimodal or multimodal size distribution.

  6. Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson

    NASA Astrophysics Data System (ADS)

    Stefanis, N. G.; Pimikov, A. V.

    2016-01-01

    Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized ρ-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson-Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.

  7. Possibility of star (pyramid) dune development in the area of bimodal wind regime

    NASA Astrophysics Data System (ADS)

    Biejat, K.

    2012-04-01

    Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star dunes located in E and W parts of the erg allow inferring that there must have been differences in supply of the aeolian sand. Eastern slopes of compound star dunes developed in the W part of the erg are inclined 10-15°. This shows that significant delivery of the sand must have occurred also from NE. Eastern slopes of compound star dunes located in the E part of the erg are inclined 20-30°. It can be therefore inferred that they have functioned mainly as lee slopes and the sand was delivery from SW. This proves that location of the dunes within the erg plays a significant role in shaping wind directions responsible for delivery of the sand. Orientation of subsidiary arms does not show any relationship with general wind regime, which leads to conclusion that the subsidiary arms develop due to local diversified regime of nearsurface wind flow. This is governed by barriers such as the star dunes themselves and not by other topographic obstacles.

  8. A proposed mechanism for the formation of spherical vivianite crystal aggregates in sediments

    USGS Publications Warehouse

    Zelibor, J.L.; Senftle, F.E.; Reinhardt, J.L.

    1988-01-01

    Vivianite [Fe3(PO4)2??8H2O] is often found in the form of nodules composed of spherical aggregates of crystals. Crystallization of vivianite in agar gels of various concentrations yield crystal aggregates (nodules) that have spherical morphology and a bimodal size distribution. The aggregates were formed under both biotic and abiotic conditions. When special redox cells fitted with electrodes were used, more perfect spherical structures were formed when the electrodes were shorted than when they were on open circuit. In nature, vivianite nodules generally are found in sediments or clays that are gelatinous, often caused by the presence of organic debris. A model consistent with experimental observations and based on the dynamics of gels is proposed to explain a possible origin of nodular vivianite. To maintain iron and phosphate concentrations in sedimentary pore spaces filled with gel-like organic debris, the electric field spanning the aerobic-anerobic zones in the upper sediments may be an important driving force in addition to diffusion. It is suggested that the combination of the gel medium in the pore spaces and the natural electric field in the upper sediments could be contributing causes to explain the spherical aggregates of vivianite crystals found in nature. ?? 1988.

  9. Dissecting the actin cortex density and membrane-cortex distance in living cells by super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Clausen, M. P.; Colin-York, H.; Schneider, F.; Eggeling, C.; Fritzsche, M.

    2017-02-01

    Nanoscale spacing between the plasma membrane and the underlying cortical actin cytoskeleton profoundly modulates cellular morphology, mechanics, and function. Measuring this distance has been a key challenge in cell biology. Current methods for dissecting the nanoscale spacing either limit themselves to complex survey design using fixed samples or rely on diffraction-limited fluorescence imaging whose spatial resolution is insufficient to quantify distances on the nanoscale. Using dual-color super-resolution STED (stimulated-emission-depletion) microscopy, we here overcome this challenge and accurately measure the density distribution of the cortical actin cytoskeleton and the distance between the actin cortex and the membrane in live Jurkat T-cells. We found an asymmetric cortical actin density distribution with a mean width of 230 (+105/-125) nm. The spatial distances measured between the maximum density peaks of the cortex and the membrane were bi-modally distributed with mean values of 50  ±  15 nm and 120  ±  40 nm, respectively. Taken together with the finite width of the cortex, our results suggest that in some regions the cortical actin is closer than 10 nm to the membrane and a maximum of 20 nm in others.

  10. Investigation of dielectric breakdown in silica-epoxy nanocomposites using designed interfaces.

    PubMed

    Bell, Michael; Krentz, Timothy; Keith Nelson, J; Schadler, Linda; Wu, Ke; Breneman, Curt; Zhao, Su; Hillborg, Henrik; Benicewicz, Brian

    2017-06-01

    Adding nano-sized fillers to epoxy has proven to be an effective method for improving dielectric breakdown strength (DBS). Evidence suggests that dispersion state, as well as chemistry at the filler-matrix interface can play a crucial role in property enhancement. Herein we investigate the contribution of both filler dispersion and surface chemistry on the AC dielectric breakdown strength of silica-epoxy nanocomposites. Ligand engineering was used to synthesize bimodal ligands onto 15nm silica nanoparticles consisting of long epoxy compatible, poly(glycidyl methacrylate) (PGMA) chains, and short, π-conjugated, electroactive surface ligands. Surface initiated RAFT polymerization was used to synthesize multiple graft densities of PGMA chains, ultimately controlling the dispersion of the filler. Thiophene, anthracene, and terthiophene were employed as π-conjugated surface ligands that act as electron traps to mitigate avalanche breakdown. Investigation of the synthesized multifunctional nanoparticles was effective in defining the maximum particle spacing or free space length (L f ) that still leads to property enhancement, as well as giving insight into the effects of varying the electronic nature of the molecules at the interface on breakdown strength. Optimization of the investigated variables was shown to increase the AC dielectric breakdown strength of epoxy composites as much as 34% with only 2wt% silica loading. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Chemically-dissected Rotation Curves of the Galactic Bulge from Hubble Space Telescope Proper Motions on the Main Sequence

    NASA Astrophysics Data System (ADS)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Gennaro, Mario; Brown, Thomas M.; Avila, Roberto J.; Rich, R. Michael; Debattista, Victor P.

    2018-01-01

    We report results from a pilot study using archival Hubble Space Telescope imaging observations in seven filters over a multi-year time-baseline to probe the co-dependence of chemical abundance and kinematics, using proper motion-based rotation curves selected on relative metallicity. With spectroscopic studies suggesting the metallicity distribution of the Bulge may be bimodal, we follow a data-driven approach to classify stars as belonging to metal-rich or metal-poor ends of the observed relative photometric metallicity distribution, with classification implemented using standard unsupervised learning techniques. We detect clear differences in both slope and amplitude of the proper motion-based rotation curve as traced by the more “metal-rich” and “metal-poor” samples. The sense of the discrepancy is qualitatively in agreement both with recent observational and theoretical indications; the “metal-poor” sample does indeed show a weaker rotation signature.This is the first study to dissect the proper motion rotation curve of the Bulge by chemical abundance using main-sequence targets, which are orders of magnitude more common on the sky than bright giants. These techniques thus offer a pencil-beam complement to wide-field studies that use more traditional tracer populations.

  12. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode

    PubMed Central

    Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon

    2016-01-01

    Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0–1 μm and 1–12 μm. These ranges can be attributed to different pore formation mechanisms. PMID:27456201

  13. Ordered mesoporous crystalline gamma-Al2O3 with variable architecture and porosity from a single hard template.

    PubMed

    Wu, Zhangxiong; Li, Qiang; Feng, Dan; Webley, Paul A; Zhao, Dongyuan

    2010-09-01

    In this paper, an efficient route is developed for controllable synthesis of ordered mesoporous alumina (OMA) materials with variable pore architectures and high mesoporosity, as well as crystalline framework. The route is based on the nanocasting pathway with bimodal mesoporous carbon as the hard template. In contrast to conventional reports, we first realize the possibility of creating two ordered mesopore architectures by using a single carbon hard template obtained from organic-organic self-assembly, which is also the first time such carbon materials are adopted to replicate ordered mesoporous materials. The mesopore architecture and surface property of the carbon template are rationally designed in order to obtain ordered alumina mesostructures. We found that the key factors rely on the unique bimodal mesopore architecture and surface functionalization of the carbon hard template. Namely, the bimodal mesopores (2.3 and 5.9 nm) and the surface functionalities make it possible to selectively load alumina into the small mesopores dominantly and/or with a layer of alumina coated on the inner surface of the large primary mesopores with different thicknesses until full loading is achieved. Thus, OMA materials with variable pore architectures (similar and reverse mesostructures relative to the carbon template) and controllable mesoporosity in a wide range are achieved. Meanwhile, in situ ammonia hydrolysis for conversion of the metal precursor to its hydroxide is helpful for easy crystallization (as low as approximately 500 degrees C). Well-crystallized alumina frameworks composed of gamma-Al(2)O(3) nanocrystals with sizes of 6-7 nm are obtained after burning out the carbon template at 600 degrees C, which is advantageous over soft-templated aluminas. The effects of synthesis factors are demonstrated and discussed relative to control experiments. Furthermore, our method is versatile enough to be used for general synthesis of other important but difficult-to-synthesize mesoporous metal oxides, such as magnesium oxide. We believe that the fundamentals in this research will provide new insights for rational synthesis of ordered mesoporous materials.

  14. Altering Practices to Include Bimodal-bilingual (ASL-Spoken English) Programming at a Small School for the Deaf in Canada.

    PubMed

    Priestley, Karen; Enns, Charlotte; Arbuckle, Shauna

    2018-01-01

    Bimodal-bilingual programs are emerging as one way to meet broader needs and provide expanded language, educational and social-emotional opportunities for students who are deaf and hard of hearing (Marschark, M., Tang, G. & Knoors, H. (Eds). (2014). Bilingualism and bilingual Deaf education. New York, NY: Oxford University Press; Paludneviciene & Harris, R. (2011). Impact of cochlear implants on the deaf community. In Paludneviciene, R. & Leigh, I. (Eds.), Cochlear implants evolving perspectives (pp. 3-19). Washington, DC: Gallaudet University Press). However, there is limited research on students' spoken language development, signed language growth, academic outcomes or the social-emotional factors associated with these programs (Marschark, M., Tang, G. & Knoors, H. (Eds). (2014). Bilingualism and bilingual Deaf education. New York, NY: Oxford University Press; Nussbaum, D & Scott, S. (2011). The cochlear implant education center: Perspectives on effective educational practices. In Paludneviciene, R. & Leigh, I. (Eds.) Cochlear implants evolving perspectives (pp. 175-205). Washington, DC: Gallaudet University Press. The cochlear implant education center: Perspectives on effective educational practices. In Paludnevicience & Leigh (Eds). Cochlear implants evolving perspectives (pp. 175-205). Washington, DC: Gallaudet University Press; Spencer, P. & Marschark, M. (Eds.) (2010). Evidence-based practice in educating deaf and hard-of-hearing students. New York, NY: Oxford University Press). The purpose of this case study was to look at formal and informal student outcomes as well as staff and parent perceptions during the first 3 years of implementing a bimodal-bilingual (ASL and spoken English) program within an ASL milieu at a small school for the deaf. Speech and language assessment results for five students were analyzed over a 3-year period and indicated that the students made significant positive gains in all areas, although results were variable. Staff and parent survey responses indicated primarily positive perceptions of the program. Some staff identified ongoing challenges with balancing signed and spoken language use. Many parents responded with strong emotions, some stating that the program was "life-changing" for their children/families. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. High temperature latent heat thermal energy storage to augment solar thermal propulsion for microsatellites

    NASA Astrophysics Data System (ADS)

    Gilpin, Matthew R.

    Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling technology for the platform. The use of silicon and boron as high temperature latent heat thermal energy storage materials has been in the background of solar thermal research for decades without a substantial investigation. This is despite a broad agreement in the literature about the performance benefits obtainable from a latent heat mechanisms which provides a high energy storage density and quasi-isothermal heat release at high temperature. In this work, an experimental approach was taken to uncover the practical concerns associated specifically with applying silicon as an energy storage material. A new solar furnace was built and characterized enabling the creation of molten silicon in the laboratory. These tests have demonstrated the basic feasibility of a molten silicon based thermal energy storage system and have highlighted asymmetric heat transfer as well as silicon expansion damage to be the primary engineering concerns for the technology. For cylindrical geometries, it has been shown that reduced fill factors can prevent damage to graphite walled silicon containers at the expense of decreased energy storage density. Concurrent with experimental testing, a cooling model was written using the "enthalpy method" to calculate the phase change process and predict test section performance. Despite a simplistic phase change model, and experimentally demonstrated complexities of the freezing process, results coincided with experimental data. It is thus possible to capture essential system behaviors of a latent heat thermal energy storage system even with low fidelity freezing kinetics modeling allowing the use of standard tools to obtain reasonable results. Finally, a technological road map is provided listing extant technological concerns and potential solutions. Improvements in container design and an increased understanding of convective coupling efficiency will ultimately enable both high temperature latent heat thermal energy storage and a new class of high performance bi-modal solar thermal spacecraft.

  16. Outcomes of Brood Parasite–Host Interactions Mediated by Egg Matching: Common Cuckoos Cuculus canorus versus Fringilla Finches

    PubMed Central

    Vikan, Johan Reinert; Fossøy, Frode; Huhta, Esa; Moksnes, Arne; Røskaft, Eivin; Stokke, Bård Gunnar

    2011-01-01

    Background Antagonistic species often interact via matching of phenotypes, and interactions between brood parasitic common cuckoos (Cuculus canorus) and their hosts constitute classic examples. The outcome of a parasitic event is often determined by the match between host and cuckoo eggs, giving rise to potentially strong associations between fitness and egg phenotype. Yet, empirical efforts aiming to document and understand the resulting evolutionary outcomes are in short supply. Methods/Principal Findings We used avian color space models to analyze patterns of egg color variation within and between the cuckoo and two closely related hosts, the nomadic brambling (Fringilla montifringilla) and the site fidelic chaffinch (F. coelebs). We found that there is pronounced opportunity for disruptive selection on brambling egg coloration. The corresponding cuckoo host race has evolved egg colors that maximize fitness in both sympatric and allopatric brambling populations. By contrast, the chaffinch has a more bimodal egg color distribution consistent with the evolutionary direction predicted for the brambling. Whereas the brambling and its cuckoo host race show little geographical variation in their egg color distributions, the chaffinch's distribution becomes increasingly dissimilar to the brambling's distribution towards the core area of the brambling cuckoo host race. Conclusion High rates of brambling gene flow is likely to cool down coevolutionary hot spots by cancelling out the selection imposed by a patchily distributed cuckoo host race, thereby promoting a matching equilibrium. By contrast, the site fidelic chaffinch is more likely to respond to selection from adapting cuckoos, resulting in a markedly more bimodal egg color distribution. The geographic variation in the chaffinch's egg color distribution could reflect a historical gradient in parasitism pressure. Finally, marked cuckoo egg polymorphisms are unlikely to evolve in these systems unless the hosts evolve even more exquisite egg recognition capabilities than currently possessed. PMID:21559400

  17. THE MILKY WAY HAS NO DISTINCT THICK DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovy, Jo; Rix, Hans-Walter; Hogg, David W., E-mail: bovy@ias.edu

    2012-06-01

    Different stellar sub-populations of the Milky Way's stellar disk are known to have different vertical scale heights, their thickness increasing with age. Using SEGUE spectroscopic survey data, we have recently shown that mono-abundance sub-populations, defined in the [{alpha}/Fe]-[Fe/H] space, are well described by single-exponential spatial-density profiles in both the radial and the vertical direction; therefore, any star of a given abundance is clearly associated with a sub-population of scale height h{sub z} . Here, we work out how to determine the stellar surface-mass density contributions at the solar radius R{sub 0} of each such sub-population, accounting for the survey selectionmore » function, and for the fraction of the stellar population mass that is reflected in the spectroscopic target stars given populations of different abundances and their presumed age distributions. Taken together, this enables us to derive {Sigma}{sub R{sub 0}}(h{sub z}), the surface-mass contributions of stellar populations with scale height h{sub z} . Surprisingly, we find no hint of a thin-thick disk bi-modality in this mass-weighted scale-height distribution, but a smoothly decreasing function, approximately {Sigma}{sub R{sub 0}}(h{sub z}){proportional_to} exp(-h{sub z}), from h{sub z} Almost-Equal-To 200 pc to h{sub z} Almost-Equal-To 1 kpc. As h{sub z} is ultimately the structurally defining property of a thin or thick disk, this shows clearly that the Milky Way has a continuous and monotonic distribution of disk thicknesses: there is no 'thick disk' sensibly characterized as a distinct component. We discuss how our result is consistent with evidence for seeming bi-modality in purely geometric disk decompositions or chemical abundances analyses. We constrain the total visible stellar surface-mass density at the solar radius to be {Sigma}{sub R{sub 0}}* = 30 {+-} 1 M{sub Sun} pc{sup -2}.« less

  18. GLOBULAR CLUSTER SYSTEMS OF SPIRAL AND S0 GALAXIES: RESULTS FROM WIYN IMAGING OF NGC 1023, NGC 1055, NGC 7332, AND NGC 7339

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L., E-mail: youngmd@indiana.edu, E-mail: jlwind@astro.indiana.edu, E-mail: rhode@astro.indiana.edu

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to helpmore » characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.« less

  19. Cropland land surface phenology and seasonality in East Africa: Ethiopia, Tanzania, and South Sudan

    NASA Astrophysics Data System (ADS)

    Alemu, W. G.; Henebry, G. M.

    2015-12-01

    Most people in East Africa depend on rainfed agriculture. Rainfall in the region has been decreasing recently and is highly variable in space and time leading to high food insecurity. A comprehensive understanding of the regional cropland dynamics is therefore needed. Land surface phenology and land surface seasonality have important roles in monitoring cropland dynamics in a region with sparse coverage of in situ climatic and biophysical observations. However, commonly used optical satellite data are often degraded by cloud cover, aerosols, and dust and they are restricted to daytime observations. Here we used near-daily passive microwave (PM) data at 25 km spatial resolution from a series of microwave radiometers—AMSR-E, FengYun3B/MWRI, AMSR2—to study cropland dynamics for 2003-2013 in three important grain production areas of East Africa: Ethiopia, Tanzania, and South Sudan. PM data can be collected through clouds and at night. Based on Google Earth imagery, we identified several cropland areas corresponding to PM grid cells. Rainfall from TRMM and atmospheric water vapor (V) from PM data displayed temporal patterns that were unimodal in Ethiopia and South Sudan, but bimodal in Tanzania. We fitted convex quadratic models to link growing season increments of V and vegetation optical depth (VOD) to accumulated V (AV). The models yielded high coefficients of determination (r2 ≥0.8) and phenometrics calculated from the parameter coefficients. Peak rainfall lagged peak V, but preceded peak VOD. Growing degree-days (GDD), calculated from the PM air temperature data, displayed a weaker bimodal seasonality in which the lowest values occurred during the peak rainy season, due to the cooling effect of latent heat flux and coupled with higher reflection of insolation by the cloud deck. V as a function of GDD displays quasi-periodic behavior. Drier sites in the region displayed larger (smaller) intra-annual dynamic range of V (GDD) compared to the moister sites.

  20. Hydrologic Process Regularization for Improved Geoelectrical Monitoring of a Lab-Scale Saline Tracer Experiment

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.

    2016-12-01

    Regularization stabilizes the geophysical imaging problem resulting from sparse and noisy measurements that render solutions unstable and non-unique. Conventional regularization constraints are, however, independent of the physics of the underlying process and often produce smoothed-out tomograms with mass underestimation. Cascaded time-lapse (CTL) is a widely used reconstruction technique for monitoring wherein a tomogram obtained from the background dataset is employed as starting model for the inversion of subsequent time-lapse datasets. In contrast, a proper orthogonal decomposition (POD)-constrained inversion framework enforces physics-based regularization based upon prior understanding of the expected evolution of state variables. The physics-based constraints are represented in the form of POD basis vectors. The basis vectors are constructed from numerically generated training images (TIs) that mimic the desired process. The target can be reconstructed from a small number of selected basis vectors, hence, there is a reduction in the number of inversion parameters compared to the full dimensional space. The inversion involves finding the optimal combination of the selected basis vectors conditioned on the geophysical measurements. We apply the algorithm to 2-D lab-scale saline transport experiments with electrical resistivity (ER) monitoring. We consider two transport scenarios with one and two mass injection points evolving into unimodal and bimodal plume morphologies, respectively. The unimodal plume is consistent with the assumptions underlying the generation of the TIs, whereas bimodality in plume morphology was not conceptualized. We compare difference tomograms retrieved from POD with those obtained from CTL. Qualitative comparisons of the difference tomograms with images of their corresponding dye plumes suggest that POD recovered more compact plumes in contrast to those of CTL. While mass recovery generally deteriorated with increasing number of time-steps, POD outperformed CTL in terms of mass recovery accuracy rates. POD is computationally superior requiring only 2.5 mins to complete each inversion compared to 3 hours for CTL to do the same.

  1. Modality-specific effects on crosstalk in task switching: evidence from modality compatibility using bimodal stimulation.

    PubMed

    Stephan, Denise Nadine; Koch, Iring

    2016-11-01

    The present study was aimed at examining modality-specific influences in task switching. To this end, participants switched either between modality compatible tasks (auditory-vocal and visual-manual) or incompatible spatial discrimination tasks (auditory-manual and visual-vocal). In addition, auditory and visual stimuli were presented simultaneously (i.e., bimodally) in each trial, so that selective attention was required to process the task-relevant stimulus. The inclusion of bimodal stimuli enabled us to assess congruence effects as a converging measure of increased between-task interference. The tasks followed a pre-instructed sequence of double alternations (AABB), so that no explicit task cues were required. The results show that switching between two modality incompatible tasks increases both switch costs and congruence effects compared to switching between two modality compatible tasks. The finding of increased congruence effects in modality incompatible tasks supports our explanation in terms of ideomotor "backward" linkages between anticipated response effects and the stimuli that called for this response in the first place. According to this generalized ideomotor idea, the modality match between response effects and stimuli would prime selection of a response in the compatible modality. This priming would cause increased difficulties to ignore the competing stimulus and hence increases the congruence effect. Moreover, performance would be hindered when switching between modality incompatible tasks and facilitated when switching between modality compatible tasks.

  2. Spatio-Temporal Variability of Summer Precipitation in Mexico under the Influence of the MJO, with Emphasis on the Bimodal Pattern

    NASA Astrophysics Data System (ADS)

    Perdigón, J.; Romero-Centeno, R.; Barrett, B.; Ordoñez-Perez, P.

    2017-12-01

    In many regions of Mexico, precipitation occurs in a very well defined annual cycle with peaks in May-June and September-October and a relative minimum in the middle of the rainy season known as the midsummer drought (MSD). The MJO is the most important mode of intraseasonal variability in the tropics, and, although some studies have shown its evident influence on summer precipitation in Mexico, its role in modulating the bimodal pattern of the summer precipitation cycle is still an open question. The spatio-temporal variability of summer precipitation in Mexico is analyzed through composite analysis according to the phases of the MJO, using the very high resolution CHIRPS precipitation data base and gridded data from the CFSR reanalysis to analyzing the MJO influence on the atmospheric circulation over Mexico and its adjacent basins. In general, during MJO phases 8-2 (4-6) rainfall is above-normal (below-normal), although, in some cases, the summer rainfall patterns during the same phase present considerable differences. The atmospheric circulation shows low (high) troposphere southwesterly (northeasterly) wind anomalies in southern Mexico under wetter conditions compared with climatological patterns, while the inverse pattern is observed under drier conditions. Composite anomalies of several variables also agreed well with those rainfall anomalies. Finally, a MJO complete cycle that reinforces (weakens) the bimodal pattern of summer rainfall in Mexico was found.

  3. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-07-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  4. Curve fitting of the corporate recovery rates: the comparison of Beta distribution estimation and kernel density estimation.

    PubMed

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.

  5. Curve Fitting of the Corporate Recovery Rates: The Comparison of Beta Distribution Estimation and Kernel Density Estimation

    PubMed Central

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558

  6. On the Bimodality of ENSO Cycle Extremes

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1999-01-01

    On the basis of sea surface temperature in the Nino 3.4 region (5 deg N-5 deg S, 120 deg- 170 deg W) during the interval of 1950-1997, Kevin Trenberth previously has identified some 16 El Nino and 10 La Nina, these 26 events representing the extremes of the quasi-periodic El Nino-Southern Oscillation (ENSO) cycle. Runs testing shows that the duration and recurrence period associated with these extremes vary randomly, as does the sequencing of the extremes. Hence, the frequency of occurrence of these events during the 1990s, especially, for El Nino should not be construed as being significantly different from that of previous epochs. Additionally, the distribution of duration for both El Nino and La Nina looks bimodal, consisting of two preferred modes - about 8 and 16 months in length for El Nino and about 9 and 18 months in length for La Nina. Likewise, the distribution of recurrence period, especially, for El Nino looks bimodal, consisting of two preferred modes - about 21 and 50 months in length. Scatter plots of the recurrence period versus duration for El Nino strongly suggest preferential associations between them, linking shorter (longer) duration with shorter (longer) recurrence period. Because the last known onset of El Nino occurred in April 1997 and the event was of longer than average duration, one infers that the onset of the next expected El Nino will not occur until February 2000 or later.

  7. Tactile stimulation and hemispheric asymmetries modulate auditory perception and neural responses in primary auditory cortex.

    PubMed

    Hoefer, M; Tyll, S; Kanowski, M; Brosch, M; Schoenfeld, M A; Heinze, H-J; Noesselt, T

    2013-10-01

    Although multisensory integration has been an important area of recent research, most studies focused on audiovisual integration. Importantly, however, the combination of audition and touch can guide our behavior as effectively which we studied here using psychophysics and functional magnetic resonance imaging (fMRI). We tested whether task-irrelevant tactile stimuli would enhance auditory detection, and whether hemispheric asymmetries would modulate these audiotactile benefits using lateralized sounds. Spatially aligned task-irrelevant tactile stimuli could occur either synchronously or asynchronously with the sounds. Auditory detection was enhanced by non-informative synchronous and asynchronous tactile stimuli, if presented on the left side. Elevated fMRI-signals to left-sided synchronous bimodal stimulation were found in primary auditory cortex (A1). Adjacent regions (planum temporale, PT) expressed enhanced BOLD-responses for synchronous and asynchronous left-sided bimodal conditions. Additional connectivity analyses seeded in right-hemispheric A1 and PT for both bimodal conditions showed enhanced connectivity with right-hemispheric thalamic, somatosensory and multisensory areas that scaled with subjects' performance. Our results indicate that functional asymmetries interact with audiotactile interplay which can be observed for left-lateralized stimulation in the right hemisphere. There, audiotactile interplay recruits a functional network of unisensory cortices, and the strength of these functional network connections is directly related to subjects' perceptual sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.

    PubMed

    Potdar, Alka A; Jeon, Junhwan; Weaver, Alissa M; Quaranta, Vito; Cummings, Peter T

    2010-03-10

    Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.

  9. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  10. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-03-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  11. Fitting recommendations and clinical benefit associated with use of the NAL-NL2 hearing-aid prescription in Nucleus cochlear implant recipients.

    PubMed

    English, Ruth; Plant, Kerrie; Maciejczyk, Michael; Cowan, Robert

    2016-01-01

    For a group of cochlear implant recipients, who use hearing aids in the contralateral ear, the benefit of NAL-NL2 relative to a recipients' own prescription was assessed. Whether there was a preferred frequency response and/or gain deviation from NAL-NL2 was then investigated. Speech recognition and self-reported ratings of benefit were examined for the recipients' own prescription compared to the NAL-NL2 prescription, in the bimodal and hearing-aid alone conditions. Paired-comparison of hearing-aid frequency response was conducted with default NAL-NL2 and two variants, a low frequency boost or cut. Using a loudness balancing procedure, the hearing-aid gain required to achieve equal loudness between the devices was measured. Sixteen adults with post-lingual hearing loss. A 22% increase in group median word score in quiet with use of NAL-NL2 in the hearing-aid alone condition. In the bimodal condition there was no improvement with NAL-NL2. Default NAL-NL2 frequency response was preferred by 67% of participants. For 56% of participants, the preferred gain to achieve loudness balance across bimodal devices was within 5-dB of prescribed values. The NAL-NL2 prescription provides a high level of clinical performance, and an acceptable frequency response and gain for most participants.

  12. Automated Image Analysis of HER2 Fluorescence In Situ Hybridization to Refine Definitions of Genetic Heterogeneity in Breast Cancer Tissue

    PubMed Central

    Radziuviene, Gedmante; Rasmusson, Allan; Augulis, Renaldas; Lesciute-Krilaviciene, Daiva; Laurinaviciene, Aida; Clim, Eduard

    2017-01-01

    Human epidermal growth factor receptor 2 gene- (HER2-) targeted therapy for breast cancer relies primarily on HER2 overexpression established by immunohistochemistry (IHC) with borderline cases being further tested for amplification by fluorescence in situ hybridization (FISH). Manual interpretation of HER2 FISH is based on a limited number of cells and rather complex definitions of equivocal, polysomic, and genetically heterogeneous (GH) cases. Image analysis (IA) can extract high-capacity data and potentially improve HER2 testing in borderline cases. We investigated statistically derived indicators of HER2 heterogeneity in HER2 FISH data obtained by automated IA of 50 IHC borderline (2+) cases of invasive ductal breast carcinoma. Overall, IA significantly underestimated the conventional HER2, CEP17 counts, and HER2/CEP17 ratio; however, it collected more amplified cells in some cases below the lower limit of GH definition by manual procedure. Indicators for amplification, polysomy, and bimodality were extracted by factor analysis and allowed clustering of the tumors into amplified, nonamplified, and equivocal/polysomy categories. The bimodality indicator provided independent cell diversity characteristics for all clusters. Tumors classified as bimodal only partially coincided with the conventional GH heterogeneity category. We conclude that automated high-capacity nonselective tumor cell assay can generate evidence-based HER2 intratumor heterogeneity indicators to refine GH definitions. PMID:28752092

  13. Automated Image Analysis of HER2 Fluorescence In Situ Hybridization to Refine Definitions of Genetic Heterogeneity in Breast Cancer Tissue.

    PubMed

    Radziuviene, Gedmante; Rasmusson, Allan; Augulis, Renaldas; Lesciute-Krilaviciene, Daiva; Laurinaviciene, Aida; Clim, Eduard; Laurinavicius, Arvydas

    2017-01-01

    Human epidermal growth factor receptor 2 gene- (HER2-) targeted therapy for breast cancer relies primarily on HER2 overexpression established by immunohistochemistry (IHC) with borderline cases being further tested for amplification by fluorescence in situ hybridization (FISH). Manual interpretation of HER2 FISH is based on a limited number of cells and rather complex definitions of equivocal, polysomic, and genetically heterogeneous (GH) cases. Image analysis (IA) can extract high-capacity data and potentially improve HER2 testing in borderline cases. We investigated statistically derived indicators of HER2 heterogeneity in HER2 FISH data obtained by automated IA of 50 IHC borderline (2+) cases of invasive ductal breast carcinoma. Overall, IA significantly underestimated the conventional HER2, CEP17 counts, and HER2/CEP17 ratio; however, it collected more amplified cells in some cases below the lower limit of GH definition by manual procedure. Indicators for amplification, polysomy, and bimodality were extracted by factor analysis and allowed clustering of the tumors into amplified, nonamplified, and equivocal/polysomy categories. The bimodality indicator provided independent cell diversity characteristics for all clusters. Tumors classified as bimodal only partially coincided with the conventional GH heterogeneity category. We conclude that automated high-capacity nonselective tumor cell assay can generate evidence-based HER2 intratumor heterogeneity indicators to refine GH definitions.

  14. Visuotactile interaction even in far sagittal space in older adults with decreased gait and balance functions.

    PubMed

    Teramoto, Wataru; Honda, Keito; Furuta, Kento; Sekiyama, Kaoru

    2017-08-01

    Spatial proximity of signals from different sensory modalities is known to be a crucial factor in facilitating efficient multisensory processing in young adults. However, recent studies have demonstrated that older adults exhibit strong visuotactile interactions even when the visual stimuli were presented in a spatially disparate position from a tactile stimulus. This suggests that visuotactile peripersonal space differs between older and younger adults. In the present study, we investigated to what extent peripersonal space expands in the sagittal direction and whether this expansion was linked to the decline in sensorimotor functions in older adults. Vibrotactile stimuli were delivered either to the left or right index finger, while visual stimuli were presented at a distance of 5 cm (near), 37.5 cm (middle), or 70 cm (far) from each finger. The participants had to respond rapidly to a randomized sequence of unimodal (visual or tactile) and simultaneous visuotactile targets (i.e., a redundant target paradigm). Sensorimotor functions were independently assessed by the Timed Up and Go (TUG) and postural stability tests. Results showed that reaction times to the visuotactile bimodal stimuli were significantly faster than those to the unimodal stimuli, irrespective of age group [younger adults: 22.0 ± 0.6 years, older adults: 75.0 ± 3.3 years (mean ± SD)] and target distance. Of importance, a race model analysis revealed that the co-activation model (i.e., visuotactile multisensory integrative process) is supported in the far condition especially for older adults with relatively poor performance on the TUG or postural stability tests. These results suggest that aging can change visuotactile peripersonal space and that it may be closely linked to declines in sensorimotor functions related to gait and balance in older adults.

  15. Surface engineered antifouling optomagnetic SPIONs for bimodal targeted imaging of pancreatic cancer cells

    PubMed Central

    Wang, Xiaohui; Xing, Xiaohong; Zhang, Bingbo; Liu, Fengjun; Cheng, Yingsheng; Shi, Donglu

    2014-01-01

    Targeted imaging contrast agents for early pancreatic ductal adenocarcinoma diagnosis was developed using superparamagnetic iron oxide nanoparticles (SPIONs). For phase transfer of SPIONs, the hydrophobic SPIONs are first treated with tetrafluoroborate and then capped by bovine serum albumin (BSA) via ligand exchange. It was experimentally found that nitrosyl tetrafluoroborate pretreatment and proper structures of molecules are essential to the effective surface functionalization of SPIONs. Nonspecific binding was found to be significantly reduced by BSA surface functionalized hydrophobic SPIONs (BSA·SPIONs). The BSA·SPIONs were monodispersed with an average size of approximately 18.0 nm and stable in a wide pH range and various ionic strengths even after 7 days of storage. The longitudinal and transverse proton relaxation rate (r1, r2) values of the BSA·SPIONs were determined to be 11.6 and 154.2 s−1 per mM of Fe3+ respectively. The r2/r1 ratio of 13.3 ensured its application as the T2-weighted magnetic resonance imaging contrast agents. When conjugated with near-infrared fluorescent dye and monoclonal antibody, the dyeBSA·SPION-monoclonal antibody bioconjugates showed excellent targeting capability with minimal nonspecific binding in the bimodal imaging of pancreatic cancer cells. The experimental approach is facile, environmentally benign, and straightforward, which presents great promise in early cancer diagnosis. PMID:24741308

  16. Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound.

    PubMed

    Gerling, Marco; Zhao, Ying; Nania, Salvatore; Norberg, K Jessica; Verbeke, Caroline S; Englert, Benjamin; Kuiper, Raoul V; Bergström, Asa; Hassan, Moustapha; Neesse, Albrecht; Löhr, J Matthias; Heuchel, Rainer L

    2014-01-01

    In preclinical cancer studies, non-invasive functional imaging has become an important tool to assess tumor development and therapeutic effects. Tumor hypoxia is closely associated with tumor aggressiveness and is therefore a key parameter to be monitored. Recently, photoacoustic (PA) imaging with inherently co-registered high-frequency ultrasound (US) has reached preclinical applicability, allowing parallel collection of anatomical and functional information. Dual-wavelength PA imaging can be used to quantify tissue oxygen saturation based on the absorbance spectrum differences between hemoglobin and deoxyhemoglobin. A new bi-modal PA/US system for small animal imaging was employed to test feasibility and reliability of dual-wavelength PA for measuring relative tissue oxygenation. Murine models of pancreatic and colon cancer were imaged, and differences in tissue oxygenation were compared to immunohistochemistry for hypoxia in the corresponding tissue regions. Functional studies proved feasibility and reliability of oxygenation detection in murine tissue in vivo. Tumor models exhibited different levels of hypoxia in localized regions, which positively correlated with immunohistochemical staining for hypoxia. Contrast-enhanced imaging yielded complementary information on tissue perfusion using the same system. Bimodal PA/US imaging can be utilized to reliably detect hypoxic tumor regions in murine tumor models, thus providing the possibility to collect anatomical and functional information on tumor growth and treatment response live in longitudinal preclinical studies.

  17. Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen

    2016-11-01

    Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.

  18. Community assembly of the worm gut microbiome

    NASA Astrophysics Data System (ADS)

    Gore, Jeff

    It has become increasingly clear that human health is strongly influenced by the bacteria that live within the gut, known collectively as the gut microbiome. This complex community varies tremendously between individuals, but understanding the sources that lead to this heterogeneity is challenging. To address this challenge, we are using a bottom-up approach to develop a predictive understanding of how the microbiome assembles and functions within a simple and experimentally tractable gut, the gut of the worm C. elegans. We have found that stochastic community assembly in the C. elegansintestine is sufficient to produce strong inter-worm heterogeneity in community composition. When worms are fed with two neutrally-competing fluorescently labeled bacterial strains, we observe stochastically-driven bimodality in community composition, where approximately half of the worms are dominated by each bacterial strain. A simple model incorporating stochastic colonization suggests that heterogeneity between worms is driven by the low rate at which bacteria successfully establish new intestinal colonies. We can increase this rate experimentally by feeding worms at high bacterial density; in these conditions the bimodality disappears. We have also characterized all pairwise interspecies competitions among a set of eleven bacterial species, illuminating the rules governing interspecies community assembly. These results demonstrate the potential importance of stochastic processes in bacterial community formation and suggest a role for C. elegans as a model system for ecology of host-associated communities.

  19. An integral nuclear power and propulsion system concept

    NASA Astrophysics Data System (ADS)

    Choong, Phillip T.; Teofilo, Vincent L.; Begg, Lester L.; Dunn, Charles; Otting, William

    An integral space power concept provides both the electrical power and propulsion from a common heat source and offers superior performance capabilities over conventional orbital insertion using chemical propulsion systems. This paper describes a hybrid (bimodal) system concept based on a proven, inherently safe solid fuel form for the high temperature reactor core operation and rugged planar thermionic energy converter for long-life steady state electric power production combined with NERVA-based rocket technology for propulsion. The integral system is capable of long-life power operation and multiple propulsion operations. At an optimal thrust level, the integral system can maintain the minimal delta-V requirement while minimizing the orbital transfer time. A trade study comparing the overall benefits in placing large payloads to GEO with the nuclear electric propulsion option shows superiority of nuclear thermal propulsion. The resulting savings in orbital transfer time and the substantial reduction of overall lift requirement enables the use of low-cost launchers for several near-term military satellite missions.

  20. Bionomics of Anopheles subpictus (Diptera: Culicidae) in a Malaria Endemic Area, Southeastern Iran.

    PubMed

    Nejati, Jalil; Saghafipour, Abedin; Vatandoost, Hassan; Moosa-Kazemi, Seyed Hassan; Motevalli Haghi, Afsaneh; Sanei-Dehkordi, Alireza

    2018-06-04

    Anopheles subpictus Grassi is considered a secondary malaria vector in parts of Asia. The current study determined some ecological and bionomical characteristics of this species in southeastern Iran. The temporal patterns of abundance, resting behavior, blood feeding activity, host selection, adult susceptibility to insecticides and larval habitats were investigated. Most adults were collected by pyrethrum space-spray collection, followed by pit shelters and outlet window traps, respectively. The abdominal condition index of gravid to blood fed females resting outdoors was more than one, thereby showing exophilic resting behavior. Only 25% of engorged females tested positive for human blood, even though most of the samples were collected from houses. The host seeking activity of An. subpictus was bimodal with peaks at 22-2300 h and 03-0400 h. Also, the relative abundance showed peaks in March and December. The results of susceptibility tests showed a resistance of field strains to DDT. Future studies are needed to investigate the possible role of this species in malaria transmission in southeastern Iran.

  1. Interferometric space-mode multiplexing based on binary phase plates and refractive phase shifters.

    PubMed

    Liñares, Jesús; Prieto-Blanco, Xesús; Moreno, Vicente; Montero-Orille, Carlos; Mouriz, Dolores; Nistal, María C; Barral, David

    2017-05-15

    A Mach-Zehnder interferometer (MZI) that includes in an arm either a reflective image inverter or a Gouy phase shifter (RGPS) can (de)multiplex many types of modes of a few mode fiber without fundamental loss. The use of RGPSs in combination with binary phase plates for multiplexing purposes is studied for the first time, showing that the particular RGPS that shifts π the odd modes only multiplexes accurately low order modes. To overcome such a restriction, we present a new exact refractive image inverter, more compact and flexible than its reflective counterpart. Moreover, we show that these interferometers remove or reduce the crosstalk that the binary phase plates could introduce between the multiplexed modes. Finally, an experimental analysis of a MZI with both an approximated and an exact refractive image inverter is presented for the case of a bimodal multiplexing. Likewise, it is proven experimentally that a RGPS that shifts π/2 demultiplexes two odd modes which can not be achieved by any image inverter.

  2. Bimodal star formation - Constraints from the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, J.

    1987-01-01

    The chemical evolution resulting from a simple model of bimodal star formulation is investigated, using constraints from the solar neighborhood to set the parameters of the initial mass function and star formation rate. The two modes are an exclusively massive star mode, which forms stars at an exponentially declining rate, and a mode which contains stars of all masses and has a constant star formation rate. Satisfactory agreement with the age-metallicity relation for the thin disk and with the metallicity structure of the thin-disk and spheroid stars is possible only for a small range of parameter values. The preferred model offers a resolution to several of the long-standing problems of galactic chemical evolution, including explanations of the age-metallicity relation, the gas consumption time scale, and the stellar cumulative metallicity distributions.

  3. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.

    2010-06-10

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km s{sup -1}) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR{sub UV}, of the total star formation rate, SFR{sub TOTAL}. We use Spitzer MIPS 24 {mu}m photometry to estimate SFR{sub IR}, the component of SFR{sub TOTAL} that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR{sub TOTAL} estimates for all HCG galaxies. We obtainmore » total stellar mass, M {sub *}, estimates by means of Two Micron All Sky Survey K{sub s} -band luminosities, and use them to calculate specific star formation rates, SSFR {identical_to} SFR{sub TOTAL}/M {sub *}. SSFR values show a clear and significant bimodality, with a gap between low ({approx}<3.2 x 10{sup -11} yr{sup -1}) and high-SSFR ({approx_gt}1.2 x 10{sup -10} yr{sup -1}) systems. We compare this bimodality to the previously discovered bimodality in {alpha}{sub IRAC}, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 {mu}m data for these galaxies. We find that all galaxies with {alpha}{sub IRAC} {<=} 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and {alpha}{sub IRAC} bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total galaxy luminosity and (2) are not strongly interacting and largely isolated. This selection eliminates mostly low-luminosity dwarfs and galaxies with some degree of peculiarity, providing a substantially improved, quiescent control sample. Unlike HCG galaxies, galaxies in the comparison SINGS subsample are continuously distributed both in SSFR and {alpha}{sub IRAC}, although they show ranges in SFR{sub TOTAL} values, morphologies and stellar masses similar to those for HCG systems. We test the SSFR bimodality against a number of uncertainties, and find that these can only lead to its further enhancement. Excluding galaxies belonging to HCGs with three giant galaxies (triplets) leaves both the SSFR and the {alpha}{sub IRAC} bimodality completely unaffected. We interpret these results as further evidence that an environment characterized by high galaxy number densities and low galaxy velocity dispersions, such as the one found in compact groups, plays a key role in accelerating galaxy evolution by enhancing star formation processes in galaxies and favoring a fast transition to quiescence.« less

  4. Ultraviolet+Infrared Star Formation Rates: Hickson Compact Groups with Swift and SPitzer

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Johnson, K. E.; Gronwall, C.; Immler, S.; Reines, A. E.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km/s) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000A) photometry to estimate the dust-unobscured component, SFR(sub uv), of the total star formation rate, SFR(sub TOTAL). We use Spitzer MIPS 24 micron photometry to estimate SFR(sub IR), the component of SFR(sub TOTAL) that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR(sub TOTAL) estimates for all HCG galaxies. We obtain total stellar mass, M(sub *) estimates by means of Two Micron All Sky Survey K(sub s)-band luminosities, and use them to calculate specific star formation rates, SSFR is identical with SFR(sub TOTAL)/ M (sub *). SSFR values show a clear and significant bimodality, with a gap between low (approximately <3.2 x 10(exp -11) / yr) and high-SSFR (approximately > 1.2 x lO)exp -10)/yr) systems. We compare this bimodality to the previously discovered bimodality in alpha-IRAC, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 micron data for these galaxies. We find that all galaxies with alpha-IRAC <= 0 (> 0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/SO galaxies are in the low-SSFR locus, while 22 out of 24 spirals / irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and alpha-IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total galaxy luminosity and (2) are not strongly interacting and largely isolated. This selection eliminates mostly low-luminosity dwarfs and galaxies with some degree of peculiarity, providing a substantially improved, quiescent control sample. Unlike HCG galaxies, galaxies in the comparison SINGS subsample are continuously distributed both in SSFR and alpha-IRAC, although they show ranges in SFR(sub TOTAL) values, morphologies and stellar masses similar to those for HCG systems. We test the SSFR bimodality against a number of uncertainties, and find that these can only lead to its further enhancement. Excluding galaxies belonging to HCGs with three giant galaxies (triplets) leaves both the SSFR and the alpha-IRAC bimodality completely unaffected. We interpret these results as further evidence that an environment characterized by high galaxy number densities and low galaxy velocity dispersions, such as the one found in compact groups, plays a key role in accelerating galaxy evolution by enhancing star formation processes in galaxies and favoring a fast transition to quiescence.

  5. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet

    NASA Astrophysics Data System (ADS)

    Liu, De-Liang; Shi, Ren-Deng; Ding, Lin; Zou, Hai-Bo

    2018-01-01

    This study deals with arc-type and subsequent bimodal volcanic rocks interbedded with (late) Cretaceous sedimentary formations near Gaize, central Tibet that shed new light on the Tethyan evolution along the Bangong-Nujiang suture. Unit I consists of trachyandesites interbedded with fine-grained sandstone, slate, and limestone. Zircon dating on a trachyandesite sample yields a 206Pb/238U age of 99 ± 1 Ma. The trachyandesites are characterized by strong enrichment in LILE but depletion in HFSE, low zircon saturation temperatures (TZr = 642-727 °C), and high oxygen fugacity (Δ FMQ = - 0.67-0.73), indicating their arc affinities. Unit II comprises a bimodal basalt-rhyolite suite interbedded with coarse-grained sandstone and conglomerate. Zircon dating on two rhyolitic samples yield 206Pb/238U ages of 97.1-87.0 Ma. In contrast with Unit I trachyandesites, Unit II basalts and rhyolites exhibit OIB-like trace element patterns, high temperatures (T = 1298-1379 °C for basalts, TZr = 855-930 °C for rhyolites), and low oxygen fugacity (Δ FMQ = - 3.37 - 0.43), suggesting that Unit II bimodal volcanic rocks probably formed in an extensional setting. The Sr-Nd isotopes of both Unit I (87Sr/86Sri = 0.7052-0.7074, εNd(t) = - 2.21-1.02) and Unit II (87Sr/86Sri = 0.7057-0.7098, εNd(t) = - 3.22-0.88) rocks are similar to mantle-wedge-derived volcanic rocks within the southern Qiangtang block. The parental magma of Unit I trachyandesites was formed by fluid induced melting of the mantle wedge above the subducted Bangong-Nujiang Tethyan slab, and contaminated by crustal materials during MASH process within a deep crustal hot zone; and Unit II bimodal volcanic rocks were derived by melting of upwelling asthenosphere and a mildly metasomatized mantle wedge during the Lhasa-Qiangtang collision. We propose that the transition from the Bangong-Nujiang Tethyan subduction to the Lhasa-Qiangtang collision occurred during the Late Cretaceous in central Tibet.

  6. Geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) constraints on Quaternary bimodal volcanism of the Nigde Volcanic Complex (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Aydin, F.; Siebel, W.; Uysal, I.; Ersoy, E. Y.; Schmitt, A. K.; Sönmez, M.; Duncan, R.

    2012-04-01

    The Nigde Volcanic Complex (NVC) is a major Late Neogene-Quaternary volcanic centre within the Cappadocian Volcanic Province of Central Anatolia. The Late Neogene evolution of the NVC generally initiated with the eruption of extensive andesitic-dacitic lavas and pyroclastic flow deposits, and minor basaltic lavas. This stage was followed by a Quaternary bimodal magma suite which forms Na-alkaline/transitional basaltic and high-K calc-alkaline to alkaline silicic volcanic rocks. In this study, we present new geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) data for the bimodal volcanic suite within the NVC. Recent data suggest that the eruption of this suite took place ranges between ~650 and ~220 ka (Middle-Late Pleistocene). Silicic rocks consisting of rhyolite and associated pumice-rich pyroclastic fall out and surge deposits define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5127), and show virtually no difference in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of the silicic (0.704-0.705) and basaltic rocks (0.703-0.705) are rather similar reflecting a common source. The most mafic sample from basaltic rocks related to monogenetic cones is characterized by 87Sr/86Sr = 0.704, 143Nd/144Nd = 0.5127, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68. These values suggest a moderately depleted signature of the mantle source. The geochronological and geochemical data suggest that NVC silicic and basaltic rocks are genetically closely related to each other. Mantle derived differentiated basaltic melts which experienced low degree of crustal assimilation are suggested to be the parent melt of the rhyolites. Further investigations will focus on the spatial and temporal evolution of Quaternary bimodal magma suite in the NVC and the genetic relation between silicic and basaltic rocks through detailed oxygen isotope analysis and (U-Th)/He zircon geochronology.

  7. Trends and outcomes in the use of surgery and radiation for the treatment of locally advanced esophageal cancer: a propensity score adjusted analysis of the surveillance, epidemiology, and end results registry from 1998 to 2008.

    PubMed

    Worni, M; Castleberry, A W; Gloor, B; Pietrobon, R; Haney, J C; D'Amico, T A; Akushevich, I; Berry, M F

    2014-01-01

    We examined outcomes and trends in surgery and radiation use for patients with locally advanced esophageal cancer, for whom optimal treatment isn't clear. Trends in surgery and radiation for patients with T1-T3N1M0 squamous cell or adenocarcinoma of the mid or distal esophagus in the Surveillance, Epidemiology, and End Results database from 1998 to 2008 were analyzed using generalized linear models including year as predictor; Surveillance, Epidemiology, and End Results doesn't record chemotherapy data. Local treatment was unimodal if patients had only surgery or radiation and bimodal if they had both. Five-year cancer-specific survival (CSS) and overall survival (OS) were analyzed using propensity-score adjusted Cox proportional-hazard models. Overall 5-year survival for the 3295 patients identified (mean age 65.1 years, standard deviation 11.0) was 18.9% (95% confidence interval: 17.3-20.7). Local treatment was bimodal for 1274 (38.7%) and unimodal for 2021 (61.3%) patients; 1325 (40.2%) had radiation alone and 696 (21.1%) underwent only surgery. The use of bimodal therapy (32.8-42.5%, P = 0.01) and radiation alone (29.3-44.5%, P < 0.001) increased significantly from 1998 to 2008. Bimodal therapy predicted improved CSS (hazard ratios [HR]: 0.68, P < 0.001) and OS (HR: 0.58, P < 0.001) compared with unimodal therapy. For the first 7 months (before survival curve crossing), CSS after radiation therapy alone was similar to surgery alone (HR: 0.86, P = 0.12) while OS was worse for surgery only (HR: 0.70, P = 0.001). However, worse CSS (HR: 1.43, P < 0.001) and OS (HR: 1.46, P < 0.001) after that initial timeframe were found for radiation therapy only. The use of radiation to treat locally advanced mid and distal esophageal cancers increased from 1998 to 2008. Survival was best when both surgery and radiation were used. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  8. Effects of Inter- and Intra-aggregate Pore Space on the Soil-Gas Diffusivity Behavior in Unsaturated, Undisturbed Volcanic Ash Soils

    NASA Astrophysics Data System (ADS)

    Resurreccion, A. C.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2006-12-01

    Volcanic ash soils (Andisols) have a unique dual porosity structure that results in good drainage and high soil- water retention. Despite of the complicated and highly developed soil structure, recent studies have reported a simple, highly linear relation between the soil-gas diffusion coefficient, Dp, and the soil-air content, ɛ, for several Japanese Andisols. In this study, we explain the linear Dp(ɛ) behavior from the effects of the inter- and intra-aggregate pore-size distributions. We couple the bimodal van Genuchten soil-water retention model with a general Dp(ɛ) model, ɛ^{X}, allowing the tortuosity- connectivity factor X to vary with pF (= log(-ψ; the soil-water matric potential in cm H2O)). Measured data suggest that the tortuosity-connectivity parameter X is at the minimum at pF 3 (where X ~ 2, following Buckingham, 1904), equal to the water retention point where a separation of inter- and intra-aggregate effects on Dp is observed. At pF < 3, the X values increased as pF decreased because of inactive/remote air-filled pore space entrapped by the inter-connected water films between inter-aggregate pore spaces. At pF > 3, X increased to a high value at very dry conditions due to remote air-filled space inside the intra-aggregate pores. By combining the complex dual porosity soil-water retention model with the power- law gas diffusivity model using a parabolic X(pF) function, the surprisingly simple linear behavior of Dp with ɛ was captured while the variation of Dp with pF followed a dual s-shaped curve similar to the water retention curve. A simple linear model to predict Dp(ɛ) is suggested, with slope C and threshold soil-air content, ɛth, calculated from the power-law model ɛ^{X} at pF 2 (near field capacity) and at pF 4.1 (near wilting point) using the same X value (= 2.3) at both pF in agreement with measured data. This linear Dp(ɛ) model performed better, especially at dry conditions, compared to the traditionally-used predictive models when tested against several independent Andisol datasets from literature.

  9. Public awareness, behaviours and attitudes towards domestic wastewater treatment systems in the Republic of Ireland

    NASA Astrophysics Data System (ADS)

    Naughton, O.; Hynds, P. D.

    2014-10-01

    Numerous studies have highlighted and quantified the role of domestic wastewater treatment systems (DWWTSs) as significant sources of human-specific aquatic contaminants in both developed and developing regions, particularly with respect to private and municipal groundwater supplies. However, from a socio-hydrological perspective, little work has focused on these systems and the potential environmental and human burden posed. This is of particular relevance in the Republic of Ireland, where approximately one third of the population is serviced by DWWTSs. The objective of the current study was to examine levels of awareness and subsequent behavioural tendencies among owners and users of DWWTSs in the Republic of Ireland, particularly in light of recent and future (national and EU) legislative amendments. Structured questionnaires were completed bi-modally with 1106 Irish respondents. Analysis identified a number of significant knowledge gaps which currently exist among DWWTS users in Ireland. These were associated with environmentally inadvisable behavioural practises, potentially leading to increased contamination vulnerability and subsequently, increased human exposure to waterborne contaminants. Household water supply type was significantly associated with DWWTS threat acknowledgement (p = 0.014), with unregulated private groundwater users exhibited the lowest awareness of DWWTS as a potential source of aquatic contaminants despite being the group at greatest risk. A bi-modal clustering approach was employed, with respondents found to fall into one of three distinct “attitudinal” clusters. Future engagement strategies should strive to provide guidance regarding the role of people and their activities within the hydrological cycle. The current study reinforces this conclusion, while providing evidence-based recommendations regarding provision of demographically focused educational strategies; these will further increase environmental policy compliance, and in so doing, decrease the human health and environmental contamination burden posed by DWWTSs.

  10. LiDAR as an Exploration Tool

    DOE Data Explorer

    Boschmann, D.; Diles, J.; Clarno, J.; Meigs, A.; Walsh, P.

    2011-01-01

    Using LiDAR to identify structural and volcanic evolution of a Miocene-Pleistocene age bimodal volcanic complex and implications for geothermal potential. The file includes an updated geologic map, methods, and preliminary results.

  11. Rheology and Extrusion of Cement-Fly Ashes Pastes

    NASA Astrophysics Data System (ADS)

    Micaelli, F.; Lanos, C.; Levita, G.

    2008-07-01

    The addition of fly ashes in cement pastes is tested to optimize the forming of cement based material by extrusion. Two sizes of fly ashes grains are examinated. The rheology of concentrated suspensions of ashes mixes is studied with a parallel plates rheometer. In stationary flow state, tested suspensions viscosities are satisfactorily described by the Krieger-Dougherty model. An "overlapped grain" suspensions model able to describe the bimodal suspensions behaviour is proposed. For higher values of solid volume fraction, Bingham viscoplastic behaviour is identified. Results showed that the plastic viscosity and plastic yield values present minimal values for the same optimal formulation of bimodal mixes. The rheological study is extended to more concentrated systems using an extruder. Finally it is observed that the addition of 30% vol. of optimized ashes mix determined a significant reduction of required extrusion load.

  12. Sex identification in female crayfish is bimodal

    NASA Astrophysics Data System (ADS)

    Aquiloni, Laura; Massolo, Alessandro; Gherardi, Francesca

    2009-01-01

    Sex identification has been studied in several species of crustacean decapods but only seldom was the role of multimodality investigated in a systematic fashion. Here, we analyse the effect of single/combined chemical and visual stimuli on the ability of the crayfish Procambarus clarkii to identify the sex of a conspecific during mating interactions. Our results show that crayfish respond to the offered stimuli depending on their sex. While males rely on olfaction alone for sex identification, females require the combination of olfaction and vision to do so. In the latter, chemical and visual stimuli act as non-redundant signal components that possibly enhance the female ability to discriminate potential mates in the crowded social context experienced during mating period. This is one of the few clear examples in invertebrates of non-redundancy in a bimodal communication system.

  13. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system.

    PubMed

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-11

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing.

  14. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system

    PubMed Central

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-01

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing. PMID:26750557

  15. Core-satellite species hypothesis and native versus exotic species in secondary succession

    USGS Publications Warehouse

    Martinez, Kelsey A.; Gibson, David J.; Middleton, Beth A.

    2015-01-01

    A number of hypotheses exist to explain species’ distributions in a landscape, but these hypotheses are not frequently utilized to explain the differences in native and exotic species distributions. The core-satellite species (CSS) hypothesis predicts species occupancy will be bimodally distributed, i.e., many species will be common and many species will be rare, but does not explicitly consider exotic species distributions. The parallel dynamics (PD) hypothesis predicts that regional occurrence patterns of exotic species will be similar to native species. Together, the CSS and PD hypotheses may increase our understanding of exotic species’ distribution relative to natives. We selected an old field undergoing secondary succession to study the CSS and PD hypotheses in conjunction with each other. The ratio of exotic to native species (richness and abundance) was observed through 17 years of secondary succession. We predicted species would be bimodally distributed and that exotic:native species ratios would remain steady or decrease through time under frequent disturbance. In contrast to the CSS and PD hypotheses, native species occupancies were not bimodally distributed at the site, but exotic species were. The exotic:native species ratios for both richness (E:Nrichness) and abundance (E:Ncover) generally decreased or remained constant throughout supporting the PD hypothesis. Our results suggest exotic species exhibit metapopulation structure in old field landscapes, but that metapopulation structures of native species are disrupted, perhaps because these species are dispersal limited in the fragmented landscape.

  16. The origin of diverse α-element abundances in galaxy discs

    NASA Astrophysics Data System (ADS)

    Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu

    2018-07-01

    Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption time-scale of gas accreted in the earlier episode suppresses its enrichment with iron synthesized by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 per cent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.

  17. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus

    NASA Astrophysics Data System (ADS)

    Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

  18. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus.

    PubMed

    Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species-the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

  19. The origin of diverse α-element abundances in galaxy discs

    NASA Astrophysics Data System (ADS)

    Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu

    2018-04-01

    Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption timescale of gas accreted in the earlier episode suppresses its enrichment with iron synthesised by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 percent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically-rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.

  20. Relationship between fatigue, perfectionism, and functional dysphonia.

    PubMed

    O'Hara, James; Miller, Tracey; Carding, Paul; Wilson, Janet; Deary, Vincent

    2011-06-01

    Increased levels of fatigue and perfectionism were noted during evaluation of cognitive behavioral therapy for the treatment of functional dysphonia. The investigators thus aimed to explore levels of general fatigue and perfectionism in patients with functional dysphonia and controls. Case-control study. Teaching hospital, United Kingdom. Patients recruited through speech therapy were asked to recruit a friend as a control, of the same sex and within 5 years of their age. An 11-point fatigue questionnaire, previously validated on a normal population, was analyzed using both Likert (0123) and bimodal (0011) systems, with a score greater than 4 on the bimodal system implying substantial fatigue. A 35-point perfectionism questionnaire was also completed and analyzed for "healthy" and "unhealthy" perfectionist traits. There were 75 cases and 62 controls. The mean fatigue score in patients with functional dysphonia was 17.0 and 14.4 for the controls (Likert, P = .009). Under the bimodal scoring system, the mean fatigue scores in functional dysphonia (5.10) and controls (3.01) were also significantly different (P = .003). The mean perfectionism scores were 98.9 for patients with functional dysphonia and 91.2 for controls (P = 0.043). To the investigators' knowledge, this is the first substantial report that fatigue and perfectionism scores are significantly elevated in functional dysphonia. Functional dysphonia is shown to be analogous to other medically unexplained physical symptoms that are also marked by generic somatopsychic distress and for which multiple factors are implicated in their onset and maintenance. This has implications for both research and treatment.

  1. Nociceptive sensations evoked from 'spots' in the skin by mild cooling and heating.

    PubMed

    Green, Barry G; Roman, Carolyn; Schoen, Kate; Collins, Hannah

    2008-03-01

    It was recently found that nociceptive sensations (stinging, pricking, or burning) can be evoked by cooling or heating the skin to innocuous temperatures (e.g., 29 and 37 degrees C). Here, we show that this low-threshold thermal nociception (LTN) can be traced to sensitive 'spots' in the skin equivalent to classically defined warm spots and cold spots. Because earlier work had shown that LTN is inhibited by simply touching a thermode to the skin, a spatial search procedure was devised that minimized tactile stimulation by sliding small thermodes (16 and 1mm(2)) set to 28 or 36 degrees C slowly across the lubricated skin of the forearm. The procedure uncovered three types of temperature-sensitive sites (thermal, bimodal, and nociceptive) that contained one or more thermal, nociceptive, or (rarely) bimodal spots. Repeated testing indicated that bimodal and nociceptive sites were less stable over time than thermal sites, and that mechanical contact differentially inhibited nociceptive sensations. Intensity ratings collected over a range of temperatures showed that LTN increased monotonically on heat-sensitive sites but not on cold-sensitive sites. These results provide psychophysical evidence that stimulation from primary afferent fibers with thresholds in the range of warm fibers and cold fibers is relayed to the pain pathway. However, the labile nature of LTN implies that these low-threshold nociceptive inputs are subject to inhibitory controls. The implications of these findings for the roles of putative temperature receptors and nociceptors in innocuous thermoreception and thermal pain are discussed.

  2. Distributional Vowel Training Is Less Effective for Adults than for Infants. A Study Using the Mismatch Response

    PubMed Central

    Wanrooij, Karin; Boersma, Paul; van Zuijen, Titia L.

    2014-01-01

    Distributional learning of speech sounds (i.e., learning from simple exposure to frequency distributions of speech sounds in the environment) has been observed in the lab repeatedly in both infants and adults. The current study is the first attempt to examine whether the capacity for using the mechanism is different in adults than in infants. To this end, a previous event-related potential study that had shown distributional learning of the English vowel contrast /æ/∼/ε/ in 2-to-3-month old Dutch infants was repeated with Dutch adults. Specifically, the adults were exposed to either a bimodal distribution that suggested the existence of the two vowels (as appropriate in English), or to a unimodal distribution that did not (as appropriate in Dutch). After exposure the participants were tested on their discrimination of a representative [æ] and a representative [ε], in an oddball paradigm for measuring mismatch responses (MMRs). Bimodally trained adults did not have a significantly larger MMR amplitude, and hence did not show significantly better neural discrimination of the test vowels, than unimodally trained adults. A direct comparison between the normalized MMR amplitudes of the adults with those of the previously tested infants showed that within a reasonable range of normalization parameters, the bimodal advantage is reliably smaller in adults than in infants, indicating that distributional learning is a weaker mechanism for learning speech sounds in adults (if it exists in that group at all) than in infants. PMID:25289935

  3. Investigation of Biomass Burning Aerosol Hygroscopicity Using a New Tandem Differential Mobility Analyzer and New Inversion Routine.

    NASA Astrophysics Data System (ADS)

    Oxford, C. R.; Williams, B. J.

    2017-12-01

    Biomass burning aerosol (BBA) constitutes a significant fraction of atmospheric aerosol and impacts health, visibility, and radiative forcing. The nature and scale of these impacts are influenced by the size distribution of the aerosol. Hygroscopicity governs the water content of an aerosol at elevated relative humidity, and thus determines the size distribution of the hydrated aerosol. Characterization of BBA during the second Fire Lab At Missoula Experiment (FLAME-II) determined that BBA with high inorganic concentrations did not have a single hygroscopicity, but exhibited a bimodal nature. Mechanisms contributing to this bimodality could include condensation of hygrophilic inorganics, release of hygrophobic soot aerosol, presence of non-spherical morphologies, and condensation of volatile organic compounds with low hygroscopicity. Conclusions from FLAME-II attribute the bimodality to externally mixed BBA at a given diameter. Other authors, using different fuels, attribute differences in BBA hygroscopicity to non-spherical morphologies. We measured the hygroscopicity of BBA emitted from the burning of grasses obtained from western Montana in a laboratory burn chamber. The investigation used a newly built Tandem Differential Mobility Analyzer (TDMA) and a Scanning Mobility Particle Sizer together with a new TDMA inversion routine specifically designed for the analysis of multi-charged phenomena. Additionally, we used Transmission Electron Microscopy (TEM) to assess particle morphology. Outputs from the inversion routine along with images from TEM were used to evaluate reasons for hygroscopicity dependence on mobility diameter.

  4. Rats Display a Robust Bimodal Preference Profile for Sucralose

    PubMed Central

    Loney, Gregory C.; Torregrossa, Ann-Marie; Smith, James C.; Sclafani, Anthony

    2011-01-01

    Female Sprague–Dawley rats display considerable variability in their preference for the artificial sweetener sucralose over water. While some rats can be classified as sucralose preferrers (SP), as they prefer sucralose across a broad range of concentrations, others can be classified as sucralose avoiders (SA), as they avoid sucralose at concentrations above 0.1 g/L. Here, we expand on a previous report of this phenomenon by demonstrating, in a series of 2-bottle 24-h preference tests involving water and an ascending series of sucralose concentrations, that this variability in sucralose preference is robust across sex, stage of the estrous cycle, and 2 rat strains (Long–Evans and Sprague–Dawley). In a second experiment involving a large sample of rats (n = 50), we established that the ratio of SP to SA is approximately 35–65%. This bimodal behavioral response to sucralose appears to be driven by taste because rats display a similar bimodal licking response to a range of sucralose solutions presented during brief-access tests. Finally, we have shown that sucralose avoidance is extremely robust as 23-h water-deprived SA continue to avoid sucralose in 1-h single-bottle intake tests. Based on their reduced licking responses to sucralose during brief-access (taste driven) tests, and the fact that their distaste for sucralose cannot be overcome by the motivation to rehydrate, we conclude that SA detect a negative taste quality of sucralose that SP are relatively insensitive to. PMID:21653913

  5. Learning and inference using complex generative models in a spatial localization task.

    PubMed

    Bejjanki, Vikranth R; Knill, David C; Aslin, Richard N

    2016-01-01

    A large body of research has established that, under relatively simple task conditions, human observers integrate uncertain sensory information with learned prior knowledge in an approximately Bayes-optimal manner. However, in many natural tasks, observers must perform this sensory-plus-prior integration when the underlying generative model of the environment consists of multiple causes. Here we ask if the Bayes-optimal integration seen with simple tasks also applies to such natural tasks when the generative model is more complex, or whether observers rely instead on a less efficient set of heuristics that approximate ideal performance. Participants localized a "hidden" target whose position on a touch screen was sampled from a location-contingent bimodal generative model with different variances around each mode. Over repeated exposure to this task, participants learned the a priori locations of the target (i.e., the bimodal generative model), and integrated this learned knowledge with uncertain sensory information on a trial-by-trial basis in a manner consistent with the predictions of Bayes-optimal behavior. In particular, participants rapidly learned the locations of the two modes of the generative model, but the relative variances of the modes were learned much more slowly. Taken together, our results suggest that human performance in a more complex localization task, which requires the integration of sensory information with learned knowledge of a bimodal generative model, is consistent with the predictions of Bayes-optimal behavior, but involves a much longer time-course than in simpler tasks.

  6. The synthesis and application of pillared clays prepared from charge reduced montmorillonite

    NASA Astrophysics Data System (ADS)

    Engwall, Erik Edwin

    The synthesis of pillared interlayered clays (PILCs) makes use of the cation exchange capacity (CEC) of clay minerals to prop their structures open with large hydroxy-metal cations. Homo-ionic Ca-Montmorillonite with a CEC of 83.9 meq/100 g has been partially exchanged with varied amounts of Li+ and heated to 200°C for 24 hours. These have been used to produce Zr and Al PILCs making use of ethanol/water synthesis solutions to overcome the hydrophobic nature of the clay. For the Zr-PILC system, the d(001) spacings determined by x-ray diffraction (XRD) were relatively constant at 19.0--20.1 A with respect to changing the unpillared CEC. The Zr-PILCs had type I isotherms for argon at 87 K and for benzene, p-xylene and 1,3,5-trimethylbenzene adsorption at 30°C. Several Al-PILC synthesis procedures were evaluated and all produced materials whose adsorption capacity decreased with decreasing unpillared CEC. This reduction in adsorption capacity with unpillared CEC could be partially overcome by the combined use of ethanol/water pillaring solutions with ethanol/water washing. Previously unreported d(001) values in the range of 26.8 to 29.8 A were observed in Al-PILCs and were often bimodal with the expected values of about 18 A. These larger d(001) values were most prevalent at lower CEC values, if pillaring conditions favored the formation of polymeric species other than the Keggin cation. A new micropore size distribution model was developed to better understand PILC pore structure. The new model was compared to the Horvath and Kawazoe (1983) model (HK) and the Cheng and Yang (1994) model (CY) using argon adsorption at 87 K on Zr and Al-PILCs. The interlayer spacings determined by XRD for the test PILCs were 9.5 and 8.5 A for Zr and Al-PILCs respectively. Pore sizes predicted by the new model were 7.5 and 7.3 A for Zr and Al-PILCs respectively. The new model consistently predicts values that are closer to the interlayer spacing than either the HK or CY models. The new model showed little change in pore size with changes in unpillared CEC for the Zr-PILC system. These results indicate that the limiting dimension in the PILC pore system is the inter-layer spacing and not the inter-pillar spacing. (Abstract shortened by UMI.)

  7. Epoxy and Silicone Optical Nanocomposites Filled with Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tao, Peng

    Polymer nanocomposites, as a technologically important class of materials, exhibit diverse functional properties, and are used for applications ranging from structural and biomedical to electronic and optical. The properties of polymer nanocomposites are determined, in part, by the chemical composition of the polymer matrix and the nanofillers. Their properties are also sensitive to the geometry and size of the nanofillers, and to spatial distribution of the fillers. Control of the nanoparticle size and dispersion within a given polymer provides opportunities to tailor and optimize the properties of nanocomposites for specific application. For optical applications such as encapsulation of light emitting diodes (LEDs), polymer nanocomposites filled with homogeneously dispersed nanoparticles would endow the polymer encapsulant with new functionality without sacrificing optical transparency. To this end, this thesis focuses on developing a simple and versatile approach towards the fabrication of epoxy and silicone transparent nanocomposites using matrix compatible chain-grafted nanoparticles as fillers, and studying the optical properties of the nanocomposites. The surface chemistry and grafted polymer chain design have been shown to play an important role in determining the dispersion state of the grafted nanoparticles and hence the final optical properties of the nanocomposites. To prepare transparent epoxy nanocomposites, poly (glycidyl methacrylate) (PGMA) chains were grafted onto the optical nanoparticle surfaces via a combined phosphate ligand exchange process and azide-alkyne "click" chemistry. The dispersion behavior of PGMA-grafted nanoparticles within the epoxy matrix was investigated by systematically varying the grafting density and grafted chain length. It was found that within the small molecular weight epoxy resins, the dispersion states are more sensitive to the grafting density than the molecular weight of grafted chains. With high grafting densities, the grafted PGMA brushes effectively screen the van der Waals attraction between the particles, and homogenous nanoparticle dispersions of grafted nanoparticles were obtained. Transparent high refractive index TiO2/epoxy thin film and bulk nancomposites were obtained by dispersing PGMA brushes-grafted TiO2 nanoparticles into a commercial epoxy matrix. The refractive index of the nanocomposites showed a linear dependence on the volume fraction of TiO2 nanoparticles and the optical transparency could be generally described by the Rayleigh scattering model. This powerful dispersing technique was further employed to make visibly transparent, UV/IR blocking ITO/epoxy nanocomposites which can be easily applied onto glass and plastic substrates as energy saving optical coating materials. To produce transparent silicone nanocomposites, we directly coupled phosphate-terminated PDMS chains onto the optical nanoparticle surface. It was observed that the mono-modal PDMS-grafted particles usually formed agglomerates within silicone matrices, whereas the bimodal PDMS-grafted particles were able to be individually dispersed even within high molecular weight matrices. Transparent high refractive index bulk TiO2/silicone nanocomposites were successfully prepared by filling with bimodal PDMS-grafted TiO2 nanoparticles. Furthermore, we used the PDMS-grafted TiO2/silicone nanocomposite as a model system to create a methodology to predict and control the dispersion behavior of grafted nanoparticles. The good agreement between experimental observation of dispersion of mono-modal and bimodal grafted particles and theoretical prediction would better guide future experiments and lead to predictability in polymer composite design. Finally, the bimodal grafted chain design was implemented in the preparation of transparent and luminescent CdSe/silicone nanocomposites with potential application as non-scattering light conversion materials for LEDs. The homogeneous dispersion of bimodal PDMS-grafted CdSe quantum dots not only minimizes the transparency loss due to scattering, but also benefits the uniformity and long-term stability of photoluminescence of the nanocomposites.

  8. Crystallography of rare galactic honeycomb structure near supernova 1987a

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1994-01-01

    Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.

  9. Transcription, intercellular variability and correlated random walk.

    PubMed

    Müller, Johannes; Kuttler, Christina; Hense, Burkhard A; Zeiser, Stefan; Liebscher, Volkmar

    2008-11-01

    We develop a simple model for the random distribution of a gene product. It is assumed that the only source of variance is due to switching transcription on and off by a random process. Under the condition that the transition rates between on and off are constant we find that the amount of mRNA follows a scaled Beta distribution. Additionally, a simple positive feedback loop is considered. The simplicity of the model allows for an explicit solution also in this setting. These findings in turn allow, e.g., for easy parameter scans. We find that bistable behavior translates into bimodal distributions. These theoretical findings are in line with experimental results.

  10. Lifestyle modification and progressive renal failure.

    PubMed

    Ritz, Eberhard; Schwenger, Vedat

    2005-08-01

    There is increasing evidence that lifestyle factors impact on the risk of developing chronic kidney disease (CKD) and the risk of progression of CKD. Equally important is the consideration that patients with CKD are more likely to die from cardiovascular disease than to reach the stage of end-stage renal failure. It is advantageous that manoeuvres that interfere with progression at the same time also reduce the risk of cardiovascular events. Lifestyle factors that aggravate progression include, among others, smoking, obesity and dietary salt intake. Alcohol consumption, according to some preliminary information, has a bimodal relationship to cardiovascular risk and progression, with moderate consumption being protective.

  11. The continuum fusion theory of signal detection applied to a bi-modal fusion problem

    NASA Astrophysics Data System (ADS)

    Schaum, A.

    2011-05-01

    A new formalism has been developed that produces detection algorithms for model-based problems, in which one or more parameter values is unknown. Continuum Fusion can be used to generate different flavors of algorithm for any composite hypothesis testing problem. The methodology is defined by a fusion logic that can be translated into max/min conditions. Here it is applied to a simple sensor fusion model, but one for which the generalized likelihood ratio test is intractable. By contrast, a fusion-based response to the same problem can be devised that is solvable in closed form and represents a good approximation to the GLR test.

  12. Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor.

    PubMed

    González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M

    2017-01-01

    A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10 -8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm -2 , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL -1 range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The One-Pot Directed Assembly of Cylinder-Forming Block Copolymer on Adjacent Chemical Patterns for Bimodal Patterning.

    PubMed

    Chang, Tzu-Hsuan; Xiong, Shisheng; Liu, Chi-Chun; Liu, Dong; Nealey, Paul F; Ma, Zhenqiang

    2017-09-01

    The direct self-assembly of cylinder-forming poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) block copolymer is successfully assembled into two orientations, according to the underlying guiding pattern in different areas. Lying-down and perpendicular cylinders are formed, respectively, depending on the design of chemical pattern: sparse line/space pattern or hexagonal dot array. The first chemical pattern composed of prepatterned cross-linked polystyrene (XPS) line/space structure has a period (L S ) equal to twice the intercylinder period of the block copolymer (L 0 ). The PS-b-PMMA thin film on the prepared chemical template after thermal annealing forms a lying-down cylinder morphology when the width of the PS strips is less than the width of PS block in the PS-b-PMMA block copolymer. The morphology is only applicable at the discrete thickness of the PS-b-PMMA film. In addition to forming the lying-down cylinders directly on the XPS guiding pattern, the cylinder-forming block copolymer can also be assembled in a perpendicular way on the second guiding pattern (the hexagonal dot array). The block copolymer films are registered into two orientations in a single directed self-assembly process. The features of the assembled patterns are successfully transferred down to the silicon oxide substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Segmentation of Pollen Tube Growth Videos Using Dynamic Bi-Modal Fusion and Seam Carving.

    PubMed

    Tambo, Asongu L; Bhanu, Bir

    2016-05-01

    The growth of pollen tubes is of significant interest in plant cell biology, as it provides an understanding of internal cell dynamics that affect observable structural characteristics such as cell diameter, length, and growth rate. However, these parameters can only be measured in experimental videos if the complete shape of the cell is known. The challenge is to accurately obtain the cell boundary in noisy video images. Usually, these measurements are performed by a scientist who manually draws regions-of-interest on the images displayed on a computer screen. In this paper, a new automated technique is presented for boundary detection by fusing fluorescence and brightfield images, and a new efficient method of obtaining the final cell boundary through the process of Seam Carving is proposed. This approach takes advantage of the nature of the fusion process and also the shape of the pollen tube to efficiently search for the optimal cell boundary. In video segmentation, the first two frames are used to initialize the segmentation process by creating a search space based on a parametric model of the cell shape. Updates to the search space are performed based on the location of past segmentations and a prediction of the next segmentation.Experimental results show comparable accuracy to a previous method, but significant decrease in processing time. This has the potential for real time applications in pollen tube microscopy.

  15. Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.

    1974-01-01

    Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.

  16. Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy.

    PubMed

    Sahu, Abhishek; Lee, Jong Hyun; Lee, Hye Gyeong; Jeong, Yong Yeon; Tae, Giyoong

    2016-08-28

    Developing novel nanotheranostic agent using only clinically approved materials is highly desirable and challenging. In this study, we combined three clinically approved materials, Prussian blue (PB), serum albumin (BSA), and indocyanine green (ICG), by a simple and biocompatible method to prepare a multifunctional theranostic PB-BSA-ICG nanoparticle. The multifunctional nanoparticle system could provide dual mode magnetic resonance (MR) and near infrared (NIR) fluorescence imaging as well as combined photothermal and photodynamic (PTT-PDT) therapy in response to a single NIR laser. This nanoparticle showed an excellent stability in physiological solutions and could suppress the photo-instability of ICG. In the absence of light, the nanoparticles showed no cytotoxicity, but significant cell death was induced through combined PTT-PDT effect after irradiation with NIR laser light. A high tumor accumulation and minimal nonspecific uptake by other major organs of PB-BSA-ICG nanoparticle were observed in vivo, analyzed by T1-weighted MR and NIR fluorescence bimodal imaging in tumor xenograft mice after intravenous injection. The nanoparticles efficiently suppressed the tumor growth through combinatorial phototherapy with no tumor recurrence upon a single NIR laser irradiation. These results demonstrated that PB-BSA-ICG is potentially an interesting nanotheranostic agent for imaging guided cancer therapy by overcoming the limitations of each technology and enhancing the therapeutic efficiency as well as reducing side effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Superior voice recognition in a patient with acquired prosopagnosia and object agnosia.

    PubMed

    Hoover, Adria E N; Démonet, Jean-François; Steeves, Jennifer K E

    2010-11-01

    Anecdotally, it has been reported that individuals with acquired prosopagnosia compensate for their inability to recognize faces by using other person identity cues such as hair, gait or the voice. Are they therefore superior at the use of non-face cues, specifically voices, to person identity? Here, we empirically measure person and object identity recognition in a patient with acquired prosopagnosia and object agnosia. We quantify person identity (face and voice) and object identity (car and horn) recognition for visual, auditory, and bimodal (visual and auditory) stimuli. The patient is unable to recognize faces or cars, consistent with his prosopagnosia and object agnosia, respectively. He is perfectly able to recognize people's voices and car horns and bimodal stimuli. These data show a reverse shift in the typical weighting of visual over auditory information for audiovisual stimuli in a compromised visual recognition system. Moreover, the patient shows selectively superior voice recognition compared to the controls revealing that two different stimulus domains, persons and objects, may not be equally affected by sensory adaptation effects. This also implies that person and object identity recognition are processed in separate pathways. These data demonstrate that an individual with acquired prosopagnosia and object agnosia can compensate for the visual impairment and become quite skilled at using spared aspects of sensory processing. In the case of acquired prosopagnosia it is advantageous to develop a superior use of voices for person identity recognition in everyday life. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. [An analysis of code-switching phenomenon in bimodal bilinguals (Libras and Portuguese).

    PubMed

    de Sousa, Aline Nunes; de Quadros, Ronice Müller

    2012-01-01

    An interesting linguistic phenomenon that happens in the interaction among bilingual people is code-switching. In this paper, we are investigating code-switching among oral Brazilian Portuguese and Brazilian Sign Language - Libras, in a same enunciative chain, with the goal of identifying and analyzing the use of code-switching in the speech of a child and an adult (both hearing from deaf parents), interacting in an intermodal bilingual context, with deaf and hearing interlocutors. Code-switching in languages, in this case, occurs when a person stops to speak in Portuguese and he/she alternates to sign. This present research is a starting study, with qualitative analysis of data. Our corpus is composed of nine sections of interactions in Libras and oral Portuguese, recorded in video, part of the Bimodal Bilingual Development Project from UFSC. The data shows that adult and child's characteristics of code-switching seem to have similarities and differences. The adult seems to switch more worried about the course of the interaction. On the other hand, the child did not seem to use code-switching for specific pragmatic reasons. In regard to the switching extension, it is noted that both the child and the adult used more than one word sentences. The role of the interlocutors seems to be decisive in the interactions investigated here - especially for the adult, since the child is still acquiring awareness about the role of the interlocutor in an interaction.

  19. Polarization models of filamentary molecular clouds.

    NASA Astrophysics Data System (ADS)

    Carlqvist, P.; Kristen, H.

    1997-08-01

    We study numerically the linear polarization and extinction of light from background stars in three types of models of elongated molecular clouds by following the development of the Stokes parameters. The clouds are assumed to be of cylindrical shape and penetrated by a helical magnetic field {vec}(B). In the first two models we study only the relative magnitude of the polarization assuming that the polarization is proportional to Bmu^, where primarily μ=2. Provided there is no background/foreground polarization present we find from the cylindrically symmetric Model I that the angle of polarization has a bimodal character with the polarization being either parallel with or perpendicular to the axis of the filament. For some magnetic-field geometries both angles may exist in one and the same filament. It is concluded that it is not a straightforward task to find the magnetic-field-line pattern from the polarization pattern. If a background/foreground polarization exists or, as in Model II, the filament is not cylindrically symmetric, the bimodal character of the angle of polarization is lost. By means of Model III we have, using semi-empirical methods based on the Davis-Greenstein mechanism, estimated the absolute degree of polarization in the filamentary molecular cloud L204. It is found that the polarization produced by the model is much less than the polarization observed. We therefore conclude that most of the polarization measured in the L204 cloud is not produced in the cloud itself but is constituted by a large-scale background/foreground polarization.

  20. Haloing in bimodal magnetic colloids: The role of field-induced phase separation

    NASA Astrophysics Data System (ADS)

    Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Suloeva, L.; Zubarev, A.

    2012-07-01

    If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter10.1039/c0sm00261e 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters—the initial nanoparticle concentration (φ0) and the magnetic-to-thermal energy ratio (α)—and the three accumulation regimes are mapped onto a α-φ0 phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems.

Top