Sample records for developing brain circuits

  1. Researchers Find Essential Brain Circuit in Visual Development

    MedlinePlus

    ... Release Monday, August 26, 2013 Researchers find essential brain circuit in visual development NIH-funded study could ... shows the connections from the eyes to the brain in a mouse. The right image shows the ...

  2. Development of brain-wide connectivity architecture in awake rats.

    PubMed

    Ma, Zilu; Ma, Yuncong; Zhang, Nanyin

    2018-08-01

    Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Mechanisms of interactive specialization and emergence of functional brain circuits supporting cognitive development in children

    NASA Astrophysics Data System (ADS)

    Battista, Christian; Evans, Tanya M.; Ngoon, Tricia J.; Chen, Tianwen; Chen, Lang; Kochalka, John; Menon, Vinod

    2018-01-01

    Cognitive development is thought to depend on the refinement and specialization of functional circuits over time, yet little is known about how this process unfolds over the course of childhood. Here we investigated growth trajectories of functional brain circuits and tested an interactive specialization model of neurocognitive development which posits that the refinement of task-related functional networks is driven by a shared history of co-activation between cortical regions. We tested this model in a longitudinal cohort of 30 children with behavioral and task-related functional brain imaging data at multiple time points spanning childhood and adolescence, focusing on the maturation of parietal circuits associated with numerical problem solving and learning. Hierarchical linear modeling revealed selective strengthening as well as weakening of functional brain circuits. Connectivity between parietal and prefrontal cortex decreased over time, while connectivity within posterior brain regions, including intra-hemispheric and inter-hemispheric parietal connectivity, as well as parietal connectivity with ventral temporal occipital cortex regions implicated in quantity manipulation and numerical symbol recognition, increased over time. Our study provides insights into the longitudinal maturation of functional circuits in the human brain and the mechanisms by which interactive specialization shapes children's cognitive development and learning.

  4. Resting-State Functional Connectivity in the Human Connectome Project: Current Status and Relevance to Understanding Psychopathology.

    PubMed

    Barch, Deanna M

    A key tenet of modern psychiatry is that psychiatric disorders arise from abnormalities in brain circuits that support human behavior. Our ability to examine hypotheses around circuit-level abnormalities in psychiatric disorders has been made possible by advances in human neuroimaging technologies. These advances have provided the basis for recent efforts to develop a more complex understanding of the function of brain circuits in health and of their relationship to behavior-providing, in turn, a foundation for our understanding of how disruptions in such circuits contribute to the development of psychiatric disorders. This review focuses on the use of resting-state functional connectivity MRI to assess brain circuits, on the advances generated by the Human Connectome Project, and on how these advances potentially contribute to understanding neural circuit dysfunction in psychopathology. The review gives particular attention to the methods developed by the Human Connectome Project that may be especially relevant to studies of psychopathology; it outlines some of the key findings about what constitutes a brain region; and it highlights new information about the nature and stability of brain circuits. Some of the Human Connectome Project's new findings particularly relevant to psychopathology-about neural circuits and their relationships to behavior-are also presented. The review ends by discussing the extension of Human Connectome Project methods across the lifespan and into manifest illness. Potential treatment implications are also considered.

  5. Tuning the developing brain to social signals of emotions

    PubMed Central

    Leppänen, Jukka M.; Nelson, Charles A.

    2010-01-01

    PREFACE Humans in diverse cultures develop a similar capacity to recognize the emotional signals of different facial expressions. This capacity is mediated by a brain network that involves emotion-related brain circuits and higher-level visual representation areas. Recent studies suggest that the key components of this network begin to emerge early in life. The studies also suggest that initial biases in emotion-related brain circuits and the early coupling of these circuits and cortical perceptual areas provides a foundation for a rapid acquisition of representations of those facial features that denote specific emotions. PMID:19050711

  6. Visible rodent brain-wide networks at single-neuron resolution

    PubMed Central

    Yuan, Jing; Gong, Hui; Li, Anan; Li, Xiangning; Chen, Shangbin; Zeng, Shaoqun; Luo, Qingming

    2015-01-01

    There are some unsolvable fundamental questions, such as cell type classification, neural circuit tracing and neurovascular coupling, though great progresses are being made in neuroscience. Because of the structural features of neurons and neural circuits, the solution of these questions needs us to break through the current technology of neuroanatomy for acquiring the exactly fine morphology of neuron and vessels and tracing long-distant circuit at axonal resolution in the whole brain of mammals. Combined with fast-developing labeling techniques, efficient whole-brain optical imaging technology emerging at the right moment presents a huge potential in the structure and function research of specific-function neuron and neural circuit. In this review, we summarize brain-wide optical tomography techniques, review the progress on visible brain neuronal/vascular networks benefit from these novel techniques, and prospect the future technical development. PMID:26074784

  7. Inter-progenitor pool wiring: An evolutionarily conserved strategy that expands neural circuit diversity.

    PubMed

    Suzuki, Takumi; Sato, Makoto

    2017-11-15

    Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    PubMed Central

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  9. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    PubMed

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  10. Reconfiguration of parietal circuits with cognitive tutoring in elementary school children

    PubMed Central

    Jolles, Dietsje; Supekar, Kaustubh; Richardson, Jennifer; Tenison, Caitlin; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Fuchs, Lynn; Menon, Vinod

    2016-01-01

    Cognitive development is shaped by brain plasticity during childhood, yet little is known about changes in large-scale functional circuits associated with learning in academically relevant cognitive domains such as mathematics. Here, we investigate plasticity of intrinsic brain circuits associated with one-on-one math tutoring and its relation to individual differences in children’s learning. We focused on functional circuits associated with the intraparietal sulcus (IPS) and angular gyrus (AG), cytoarchitectonically distinct subdivisions of the human parietal cortex with different roles in numerical cognition. Tutoring improved performance and strengthened IPS connectivity with the lateral prefrontal cortex, ventral temporal-occipital cortex, and hippocampus. Crucially, increased IPS connectivity was associated with individual performance gains, highlighting the behavioral significance of plasticity in IPS circuits. Tutoring-related changes in IPS connectivity were distinct from those of the adjacent AG, which did not predict performance gains. Our findings provide new insights into plasticity of functional brain circuits associated with the development of specialized cognitive skills in children. PMID:27618765

  11. Reconfiguration of parietal circuits with cognitive tutoring in elementary school children.

    PubMed

    Jolles, Dietsje; Supekar, Kaustubh; Richardson, Jennifer; Tenison, Caitlin; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Fuchs, Lynn; Menon, Vinod

    2016-10-01

    Cognitive development is shaped by brain plasticity during childhood, yet little is known about changes in large-scale functional circuits associated with learning in academically relevant cognitive domains such as mathematics. Here, we investigate plasticity of intrinsic brain circuits associated with one-on-one math tutoring and its relation to individual differences in children's learning. We focused on functional circuits associated with the intraparietal sulcus (IPS) and angular gyrus (AG), cytoarchitectonically distinct subdivisions of the human parietal cortex with different roles in numerical cognition. Tutoring improved performance and strengthened IPS connectivity with the lateral prefrontal cortex, ventral temporal-occipital cortex, and hippocampus. Crucially, increased IPS connectivity was associated with individual performance gains, highlighting the behavioral significance of plasticity in IPS circuits. Tutoring-related changes in IPS connectivity were distinct from those of the adjacent AG, which did not predict performance gains. Our findings provide new insights into plasticity of functional brain circuits associated with the development of specialized cognitive skills in children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders.

    PubMed

    O'Donnell, Cian; Gonçalves, J Tiago; Portera-Cailliau, Carlos; Sejnowski, Terrence J

    2017-10-11

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca 2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits.

  13. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders

    PubMed Central

    Gonçalves, J Tiago; Portera-Cailliau, Carlos

    2017-01-01

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits. PMID:29019321

  14. Brain/MINDS: brain-mapping project in Japan

    PubMed Central

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  15. Cell diversity and network dynamics in photosensitive human brain organoids

    PubMed Central

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z.; Sherwood, John L.; Yang, Sung Min; Berger, Daniel; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin; Boyden, Edward S.; Lichtman, Jeff; Williams, Ziv M.; McCarroll, Steven A.; Arlotta, Paola

    2017-01-01

    In vitro models of the developing brain such as 3D brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, it remains undefined what cells are generated within organoids and to what extent they recapitulate the regional complexity, cellular diversity, and circuit functionality of the brain. Here, we analyzed gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (over 9 months) enabling unprecedented levels of maturity including the formation of dendritic spines and of spontaneously-active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photoreceptor-like cells, which may offer ways to probe the functionality of human neuronal circuits using physiological sensory stimuli. PMID:28445462

  16. Cell diversity and network dynamics in photosensitive human brain organoids.

    PubMed

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z; Sherwood, John L; Min Yang, Sung; Berger, Daniel R; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin P; Boyden, Edward S; Lichtman, Jeff W; Williams, Ziv M; McCarroll, Steven A; Arlotta, Paola

    2017-05-04

    In vitro models of the developing brain such as three-dimensional brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, the cells generated within organoids and the extent to which they recapitulate the regional complexity, cellular diversity and circuit functionality of the brain remain undefined. Here we analyse gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (more than 9 months), allowing for the establishment of relatively mature features, including the formation of dendritic spines and spontaneously active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photosensitive cells, which may offer a way to probe the functionality of human neuronal circuits using physiological sensory stimuli.

  17. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury.

    PubMed

    Jantzie, L L; Getsy, P M; Firl, D J; Wilson, C G; Miller, R H; Robinson, S

    2014-07-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Influence of sex steroid hormones on the adolescent brain and behavior: An update

    PubMed Central

    Vigil, Pilar; del Río, Juan Pablo; Carrera, BÁrbara; ArÁnguiz, Florencia C.

    2016-01-01

    This review explains the main effects exerted by sex steroids and other hormones on the adolescent brain. During the transition from puberty to adolescence, these hormones participate in the organizational phenomena that structurally shape some brain circuits. In adulthood, this will propitiate some specific behavior as responses to the hormones now activating those neural circuits. Adolescence is, then, a critical “organizational window” for the brain to develop adequately, since steroid hormones perform important functions at this stage. For this reason, the adolescent years are very important for future behaviors in human beings. Changes that occur or fail to occur during adolescence will determine behaviors for the rest of one's lifetime. Consequently, understanding the link between adolescent behavior and brain development as influenced by sex steroids and other hormones and compounds is very important in order to interpret various psycho-affective pathologies. Lay Summary: The effect of steroid hormones on the development of the adolescent brain, and therefore, on adolescent behavior, is noticeable. This review presents their main activational and organizational effects. During the transition from puberty to adolescence, organizational phenomena triggered by steroids structurally affect the remodeling of brain circuits. Later in adulthood, these changes will be reflected in behavioral responses to such hormones. Adolescence can then be seen as a fundamental “organizational window” during which sex steroids and other hormones and compounds play relevant roles. The understanding of the relationship between adolescent behavior and the way hormones influence brain development help understand some psychological disorders. PMID:27833209

  19. Tracing Activity Across the Whole Brain Neural Network with Optogenetic Functional Magnetic Resonance Imaging

    PubMed Central

    Lee, Jin Hyung

    2011-01-01

    Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand cell-type specific activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by enabling causal tracing of activities arising from defined cell types and firing patterns across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism. PMID:22046160

  20. Fractionation of social brain circuits in autism spectrum disorders.

    PubMed

    Gotts, Stephen J; Simmons, W Kyle; Milbury, Lydia A; Wallace, Gregory L; Cox, Robert W; Martin, Alex

    2012-09-01

    Autism spectrum disorders are developmental disorders characterized by impairments in social and communication abilities and repetitive behaviours. Converging neuroscientific evidence has suggested that the neuropathology of autism spectrum disorders is widely distributed, involving impaired connectivity throughout the brain. Here, we evaluate the hypothesis that decreased connectivity in high-functioning adolescents with an autism spectrum disorder relative to typically developing adolescents is concentrated within domain-specific circuits that are specialized for social processing. Using a novel whole-brain connectivity approach in functional magnetic resonance imaging, we found that not only are decreases in connectivity most pronounced between regions of the social brain but also they are selective to connections between limbic-related brain regions involved in affective aspects of social processing from other parts of the social brain that support language and sensorimotor processes. This selective pattern was independently obtained for correlations with measures of social symptom severity, implying a fractionation of the social brain in autism spectrum disorders at the level of whole circuits.

  1. Fractionation of social brain circuits in autism spectrum disorders

    PubMed Central

    Simmons, W. Kyle; Milbury, Lydia A.; Wallace, Gregory L.; Cox, Robert W.; Martin, Alex

    2012-01-01

    Autism spectrum disorders are developmental disorders characterized by impairments in social and communication abilities and repetitive behaviours. Converging neuroscientific evidence has suggested that the neuropathology of autism spectrum disorders is widely distributed, involving impaired connectivity throughout the brain. Here, we evaluate the hypothesis that decreased connectivity in high-functioning adolescents with an autism spectrum disorder relative to typically developing adolescents is concentrated within domain-specific circuits that are specialized for social processing. Using a novel whole-brain connectivity approach in functional magnetic resonance imaging, we found that not only are decreases in connectivity most pronounced between regions of the social brain but also they are selective to connections between limbic-related brain regions involved in affective aspects of social processing from other parts of the social brain that support language and sensorimotor processes. This selective pattern was independently obtained for correlations with measures of social symptom severity, implying a fractionation of the social brain in autism spectrum disorders at the level of whole circuits. PMID:22791801

  2. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders.

    PubMed

    Reinhard, Sarah M; Razak, Khaleel; Ethell, Iryna M

    2015-01-01

    The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called 'critical periods.' MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer's disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders.

  3. Language and reading development in the brain today: neuromarkers and the case for prediction.

    PubMed

    Buchweitz, Augusto

    2016-01-01

    The goal of this article is to provide an account of language development in the brain using the new information about brain function gleaned from cognitive neuroscience. This account goes beyond describing the association between language and specific brain areas to advocate the possibility of predicting language outcomes using brain-imaging data. The goal is to address the current evidence about language development in the brain and prediction of language outcomes. Recent studies will be discussed in the light of the evidence generated for predicting language outcomes and using new methods of analysis of brain data. The present account of brain behavior will address: (1) the development of a hardwired brain circuit for spoken language; (2) the neural adaptation that follows reading instruction and fosters the "grafting" of visual processing areas of the brain onto the hardwired circuit of spoken language; and (3) the prediction of language development and the possibility of translational neuroscience. Brain imaging has allowed for the identification of neural indices (neuromarkers) that reflect typical and atypical language development; the possibility of predicting risk for language disorders has emerged. A mandate to develop a bridge between neuroscience and health and cognition-related outcomes may pave the way for translational neuroscience. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex.

    PubMed

    Oliva, Carlos; Soldano, Alessia; Mora, Natalia; De Geest, Natalie; Claeys, Annelies; Erfurth, Maria-Luise; Sierralta, Jimena; Ramaekers, Ariane; Dascenco, Dan; Ejsmont, Radoslaw K; Schmucker, Dietmar; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2016-10-24

    The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Differential vulnerability to adverse nutritional conditions in male and female rats: Modulatory role of estradiol during development.

    PubMed

    Pinos, Helena; Carrillo, Beatriz; Díaz, Francisca; Chowen, Julie A; Collado, Paloma

    2018-01-01

    Many studies have shown the importance of an adequate nutritional environment during development to optimally establish the neurohormonal circuits that regulate feeding behavior. Under- or over-nutrition during early stages of life can lead to alterations in the physiology and brain networks that control food intake, resulting in a greater vulnerability to suffer maladjustments in energy metabolism in adulthood. These alterations produced by under- or over-nourishment during development differ between males and females, as does the modulatory action that estradiol exerts on the alterations produced by malnutrition. Estradiol regulates metabolism and brain metabolic circuits through the same transcription factor pathway, STAT3, that leptin and ghrelin use to program feeding circuits. Although more research is needed to disentangle the actual role of estradiol during development on the programming of feeding circuits, a synergistic role together with leptin and/or ghrelin might be hypothesized. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders

    PubMed Central

    Reinhard, Sarah M.; Razak, Khaleel; Ethell, Iryna M.

    2015-01-01

    The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called ‘critical periods.’ MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer’s disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders. PMID:26283917

  7. Wired for behaviors: from development to function of innate limbic system circuitry

    PubMed Central

    Sokolowski, Katie; Corbin, Joshua G.

    2012-01-01

    The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional, or motivational salience, which includes innate behaviors such as mating, aggression, and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well-established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphic behaviors and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction. PMID:22557946

  8. Genetic dissection of neural circuits underlying sexually dimorphic social behaviours

    PubMed Central

    Bayless, Daniel W.; Shah, Nirao M.

    2016-01-01

    The unique hormonal, genetic and epigenetic environments of males and females during development and adulthood shape the neural circuitry of the brain. These differences in neural circuitry result in sex-typical displays of social behaviours such as mating and aggression. Like other neural circuits, those underlying sex-typical social behaviours weave through complex brain regions that control a variety of diverse behaviours. For this reason, the functional dissection of neural circuits underlying sex-typical social behaviours has proved to be difficult. However, molecularly discrete neuronal subpopulations can be identified in the heterogeneous brain regions that control sex-typical social behaviours. In addition, the actions of oestrogens and androgens produce sex differences in gene expression within these brain regions, thereby highlighting the neuronal subpopulations most likely to control sexually dimorphic social behaviours. These conditions permit the implementation of innovative genetic approaches that, in mammals, are most highly advanced in the laboratory mouse. Such approaches have greatly advanced our understanding of the functional significance of sexually dimorphic neural circuits in the brain. In this review, we discuss the neural circuitry of sex-typical social behaviours in mice while highlighting the genetic technical innovations that have advanced the field. PMID:26833830

  9. Effects of Anesthetics on Brain Circuit Formation

    PubMed Central

    Wagner, Meredith; Ryu, Yun Kyoung; Smith, Sarah C.; Mintz, C. David

    2014-01-01

    The results of several retrospective clinical studies suggest that exposure to anesthetic agents early in life is correlated with subsequent learning and behavioral disorders. While ongoing prospective clinical trials may help to clarify this association, they remain confounded by numerous factors. Thus, some of the most compelling data supporting the hypothesis that a relatively short anesthetic exposure can lead to a long-lasting change in brain function are derived from animal models. The mechanism by which such changes could occur remains incompletely understood. Early studies identified anesthetic-induced neuronal apoptosis as a possible mechanism of injury, and more recent work suggests that anesthetics may interfere with several critical processes in brain development. The function of the mature brain requires the presence of circuits, established during development, that perform the computations underlying learning and cognition. In this review we examine the mechanisms by which anesthetics could disrupt brain circuit formation, including effects on neuronal survival and neurogenesis, neurite growth and guidance, formation of synapses, and function of supporting cells. There is evidence that anesthetics can disrupt aspects of all of these processes, and further research is required to elucidate which are most relevant to pediatric anesthetic neurotoxicity. PMID:25144504

  10. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  11. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

    PubMed

    Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki

    2013-01-01

    Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance.

  12. Intergenerational neural mediators of early-life anxious temperament.

    PubMed

    Fox, Andrew S; Oler, Jonathan A; Shackman, Alexander J; Shelton, Steven E; Raveendran, Muthuswamy; McKay, D Reese; Converse, Alexander K; Alexander, Andrew; Davidson, Richard J; Blangero, John; Rogers, Jeffrey; Kalin, Ned H

    2015-07-21

    Understanding the heritability of neural systems linked to psychopathology is not sufficient to implicate them as intergenerational neural mediators. By closely examining how individual differences in neural phenotypes and psychopathology cosegregate as they fall through the family tree, we can identify the brain systems that underlie the parent-to-child transmission of psychopathology. Although research has identified genes and neural circuits that contribute to the risk of developing anxiety and depression, the specific neural systems that mediate the inborn risk for these debilitating disorders remain unknown. In a sample of 592 young rhesus monkeys that are part of an extended multigenerational pedigree, we demonstrate that metabolism within a tripartite prefrontal-limbic-midbrain circuit mediates some of the inborn risk for developing anxiety and depression. Importantly, although brain volume is highly heritable early in life, it is brain metabolism-not brain structure-that is the critical intermediary between genetics and the childhood risk to develop stress-related psychopathology.

  13. Pathological anxiety and function/dysfunction in the brain's fear/defense circuitry.

    PubMed

    Lang, Peter J; McTeague, Lisa M; Bradley, Margaret M

    2014-01-01

    Research from the University of Florida Center for the Study of Emotion and Attention aims to develop neurobiological measures that objectively discriminate among symptom patterns in patients with anxiety disorders. From this perspective, anxiety and mood pathologies are considered to be brain disorders, resulting from dysfunction and maladaptive plasticity in the neural circuits that determine fearful/defensive and appetitive/reward behavior (Insel et al., 2010). We review recent studies indicating that an enhanced probe startle reflex during the processing of fear memory cues (mediated by cortico-limbic circuitry and thus indicative of plastic brain changes), varies systematically in strength over a spectrum-wide dimension of anxiety pathology-across and within diagnoses-extending from strong focal fear reactions to a consistently blunted reaction in patients with more generalized anxiety and comorbid mood disorders. Preliminary studies with functional magnetic resonance imaging (fMRI) encourage the hypothesis that fear/defense circuit dysfunction covaries with this same dimension of psychopathology. Plans are described for an extended study of the brain's motivation circuitry in anxiety spectrum patients, with the aim of defining the specifics of circuit dysfunction in severe disorders. A sub-project explores the use of real-time fMRI feedback in circuit analysis and as a modality to up-regulate circuit function in the context of blunted affect.

  14. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit.

    PubMed

    Schwarz, Lindsay A; Miyamichi, Kazunari; Gao, Xiaojing J; Beier, Kevin T; Weissbourd, Brandon; DeLoach, Katherine E; Ren, Jing; Ibanes, Sandy; Malenka, Robert C; Kremer, Eric J; Luo, Liqun

    2015-08-06

    Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating. However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input-output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The 'tracing the relationship between input and output' method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input-output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern.

  15. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors

    PubMed Central

    Burbridge, Timothy J.; Xu, Hong-Ping; Ackman, James B.; Ge, Xinxin; Zhang, Yueyi; Ye, Mei-Jun; Zhou, Z. Jimmy; Xu, Jian; Contractor, Anis; Crair, Michael C.

    2014-01-01

    SUMMARY The elaboration of nascent synaptic connections into highly ordered neural circuits is an integral feature of the developing vertebrate nervous system. In sensory systems, patterned spontaneous activity before the onset of sensation is thought to influence this process, but this conclusion remains controversial largely due to the inherent difficulty recording neural activity in early development. Here, we describe novel genetic and pharmacological manipulations of spontaneous retinal activity, assayed in vivo, that demonstrate a causal link between retinal waves and visual circuit refinement. We also report a de-coupling of downstream activity in retinorecipient regions of the developing brain after retinal wave disruption. Significantly, we show that the spatiotemporal characteristics of retinal waves affect the development of specific visual circuits. These results conclusively establish retinal waves as necessary and instructive for circuit refinement in the developing nervous system and reveal how neural circuits adjust to altered patterns of activity prior to experience. PMID:25466916

  16. Autism: A “Critical Period” Disorder?

    PubMed Central

    LeBlanc, Jocelyn J.; Fagiolini, Michela

    2011-01-01

    Cortical circuits in the brain are refined by experience during critical periods early in postnatal life. Critical periods are regulated by the balance of excitatory and inhibitory (E/I) neurotransmission in the brain during development. There is now increasing evidence of E/I imbalance in autism, a complex genetic neurodevelopmental disorder diagnosed by abnormal socialization, impaired communication, and repetitive behaviors or restricted interests. The underlying cause is still largely unknown and there is no fully effective treatment or cure. We propose that alteration of the expression and/or timing of critical period circuit refinement in primary sensory brain areas may significantly contribute to autistic phenotypes, including cognitive and behavioral impairments. Dissection of the cellular and molecular mechanisms governing well-established critical periods represents a powerful tool to identify new potential therapeutic targets to restore normal plasticity and function in affected neuronal circuits. PMID:21826280

  17. Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons

    PubMed Central

    Garcia, Isabella; Kim, Cynthia; Arenkiel, Benjamin R.

    2012-01-01

    The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons, now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs toward investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches. PMID:23264761

  18. Development Switch in Neural Circuitry Underlying Odor-Malaise Learning

    ERIC Educational Resources Information Center

    Lunday, Lauren; Miner, Cathrine; Roth, Tania L.; Sullivan, Regina M.; Shionoya, Kiseko; Moriceau, Stephanie

    2006-01-01

    Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and…

  19. Expansion microscopy: development and neuroscience applications.

    PubMed

    Karagiannis, Emmanouil D; Boyden, Edward S

    2018-06-01

    Many neuroscience questions center around understanding how the molecules and wiring in neural circuits mechanistically yield behavioral functions, or go awry in disease states. However, mapping the molecules and wiring of neurons across the large scales of neural circuits has posed a great challenge. We recently developed expansion microscopy (ExM), a process in which we physically magnify biological specimens such as brain circuits. We synthesize throughout preserved brain specimens a dense, even mesh of a swellable polymer such as sodium polyacrylate, anchoring key biomolecules such as proteins and nucleic acids to the polymer. After mechanical homogenization of the specimen-polymer composite, we add water, and the polymer swells, pulling biomolecules apart. Due to the larger separation between molecules, ordinary microscopes can then perform nanoscale resolution imaging. We here review the ExM technology as well as applications to the mapping of synapses, cells, and circuits, including deployment in species such as Drosophila, mouse, non-human primate, and human. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Rodent Zic Genes in Neural Network Wiring.

    PubMed

    Herrera, Eloísa

    2018-01-01

    The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.

  1. The serotonin receptor 7 and the structural plasticity of brain circuits

    PubMed Central

    Volpicelli, Floriana; Speranza, Luisa; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2014-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R) in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration. PMID:25309369

  2. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response.

    PubMed

    Naumann, Eva A; Fitzgerald, James E; Dunn, Timothy W; Rihel, Jason; Sompolinsky, Haim; Engert, Florian

    2016-11-03

    Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Tomasi, Dardo; Telang, Frank; Baler, Ruben

    2010-09-01

    Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsive behavior. The ability of addictive drugs to co-opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction.

  4. Amigo adhesion protein regulates development of neural circuits in zebrafish brain.

    PubMed

    Zhao, Xiang; Kuja-Panula, Juha; Sundvik, Maria; Chen, Yu-Chia; Aho, Vilma; Peltola, Marjaana A; Porkka-Heiskanen, Tarja; Panula, Pertti; Rauvala, Heikki

    2014-07-18

    The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Delineation of separate brain regions used for scientific versus engineering modes of thinking

    NASA Astrophysics Data System (ADS)

    Patterson, Clair C.

    1994-08-01

    Powerful, latent abilities for extreme sophistication in abstract rationalization as potential biological adaptive behavioral responses were installed entirely through accident and inadvertence by biological evolution in the Homo sapiens sapiens species of brain. These potentials were never used, either in precursor species as factors in evolutionary increase in hominid brain mass, nor in less sophisticated forms within social environments characterized by Hss tribal brain population densities. Those latent abilities for unnatural biological adaptive behavior were forced to become manifest in various ways by growths in sophistication of communication interactions engendered by large growths in brain population densities brought on by developments in agriculture at the onset of the Holocene. It is proposed that differences probably exist between regions of the Hss brain involved in utilitarian, engineering types of problem conceptualization-solving versus regions of the brain involved in nonutilitarian, artistic-scientific types of problem conceptualization-solving. Populations isolated on separate continents from diffusive contact and influence on cultural developments, and selected for comparison of developments during equivalent stages of technological and social sophistication in matching 4000 year periods, show, at the ends of those periods, marked differences in aesthetic attributes expressed in cosmogonies, music, and writing (nonutilitarian thinking related to science and art). On the other hand the two cultures show virtually identical developments in three major stages of metallurgical technologies (utilitarian thinking related to engineering). Such archaeological data suggest that utilitarian modes of thought may utilize combinations of neuronal circuits in brain regions that are conserved among tribal populations territorially separated from each other for tens of thousands of years. Such conservation may not be true for neuronal circuits involved in nonutilitarian modes of thought. It is postulated that neuronal circuits involved in nonutilitarian modes of thought are located in specific regions of the brain that are divergent features between populations that have been territorially separated for tens of thousands of years. Anatomical PET and NMRI studies of brains of modern descendants of these cultures are proposed that would seek to define these inferred differences through proper protocols of stimulation devised by those investigators.

  6. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses.

    PubMed

    Bonifazi, Paolo; Difato, Francesco; Massobrio, Paolo; Breschi, Gian L; Pasquale, Valentina; Levi, Timothée; Goldin, Miri; Bornat, Yannick; Tedesco, Mariateresa; Bisio, Marta; Kanner, Sivan; Galron, Ronit; Tessadori, Jacopo; Taverna, Stefano; Chiappalone, Michela

    2013-01-01

    Brain-machine interfaces (BMI) were born to control "actions from thoughts" in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI-a neuromorphic chip for brain repair-to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary "bottom-up" approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device. In this paper we present the overall strategy and focus on the different building blocks of our studies: (i) the experimental characterization and modeling of "finite size networks" which represent the smallest and most general self-organized circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions in neuronal networks and the whole brain preparation with special attention on the impact on the functional organization of the circuits; (iii) the first production of a neuromorphic chip able to implement a real-time model of neuronal networks. A dynamical characterization of the finite size circuits with single cell resolution is provided. A neural network model based on Izhikevich neurons was able to replicate the experimental observations. Changes in the dynamics of the neuronal circuits induced by optical and ischemic lesions are presented respectively for in vitro neuronal networks and for a whole brain preparation. Finally the implementation of a neuromorphic chip reproducing the network dynamics in quasi-real time (10 ns precision) is presented.

  7. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

    PubMed Central

    Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl

    2015-01-01

    Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662

  8. Developing a clinical translational neuroscience taxonomy for anxiety and mood disorder: protocol for the baseline-follow up Research domain criteria Anxiety and Depression ("RAD") project.

    PubMed

    Williams, Leanne M; Goldstein-Piekarski, Andrea N; Chowdhry, Nowreen; Grisanzio, Katherine A; Haug, Nancy A; Samara, Zoe; Etkin, Amit; O'Hara, Ruth; Schatzberg, Alan F; Suppes, Trisha; Yesavage, Jerome

    2016-03-15

    Understanding how brain circuit dysfunctions relate to specific symptoms offers promise for developing a brain-based taxonomy for classifying psychopathology, identifying targets for mechanistic studies and ultimately for guiding treatment choice. The goal of the Research Domain Criteria (RDoC) initiative of the National Institute of Mental Health is to accelerate the development of such neurobiological models of mental disorder independent of traditional diagnostic criteria. In our RDoC Anxiety and Depression ("RAD") project we focus trans-diagnostically on the spectrum of depression and anxiety psychopathology. Our aims are a) to use brain imaging to define cohesive dimensions defined by dysfunction of circuits involved in reactivity to and regulation of negatively valenced emotional stimulation and in cognitive control, b) to assess the relationships between these dimension and specific symptoms, behavioral performance and the real world capacity to function socially and at work and c) to assess the stability of brain-symptom-behavior-function relationships over time. Here we present the protocol for the "RAD" project, one of the first RDoC studies to use brain circuit functioning to define new dimensions of psychopathology. The RAD project follows baseline-follow up design. In line with RDoC principles we use a strategy for recruiting all clients who "walk through the door" of a large community mental health clinic as well as the surrounding community. The clinic attends to a broad spectrum of anxiety and mood-related symptoms. Participants are unmedicated and studied at baseline using a standardized battery of functional brain imaging, structural brain imaging and behavioral probes that assay constructs of threat reactivity, threat regulation and cognitive control. The battery also includes self-report measures of anxiety and mood symptoms, and social and occupational functioning. After baseline assessments, therapists in the clinic apply treatment planning as usual. Follow-up assessments are undertaken at 3 months, to establish the reliability of brain-based subgroups over time and to assess whether these subgroups predict real-world functional capacity over time. First enrollment was August 2013, and is ongoing. This project is designed to advance knowledge toward a neural circuit taxonomy for mental disorder. Data will be shared via the RDoC database for dissemination to the scientific community. The clinical translational neuroscience goals of the project are to develop brain-behavior profile reports for each individual participant and to refine these reports with therapist feedback. Reporting of results is expected from December 2016 onward. ClinicalTrials.gov Identifier: NCT02220309 . Registered: August 13, 2014.

  9. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS.

    PubMed

    Silva, Mauro Sb; Prescott, Melanie; Campbell, Rebecca E

    2018-04-05

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP-transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype.

  10. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS

    PubMed Central

    Silva, Mauro S.B.; Prescott, Melanie; Campbell, Rebecca E.

    2018-01-01

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP–transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype. PMID:29618656

  11. Genetic address book for retinal cell types.

    PubMed

    Siegert, Sandra; Scherf, Brigitte Gross; Del Punta, Karina; Didkovsky, Nick; Heintz, Nathaniel; Roska, Botond

    2009-09-01

    The mammalian brain is assembled from thousands of neuronal cell types that are organized in distinct circuits to perform behaviorally relevant computations. Transgenic mouse lines with selectively marked cell types would facilitate our ability to dissect functional components of complex circuits. We carried out a screen for cell type-specific green fluorescent protein expression in the retina using BAC transgenic mice from the GENSAT project. Among others, we identified mouse lines in which the inhibitory cell types of the night vision and directional selective circuit were selectively labeled. We quantified the stratification patterns to predict potential synaptic connectivity between marked cells of different lines and found that some of the lines enabled targeted recordings and imaging of cell types from developing or mature retinal circuits. Our results suggest the potential use of a stratification-based screening approach for characterizing neuronal circuitry in other layered brain structures, such as the neocortex.

  12. Social re-orientation and brain development: An expanded and updated view.

    PubMed

    Nelson, Eric E; Jarcho, Johanna M; Guyer, Amanda E

    2016-02-01

    Social development has been the focus of a great deal of neuroscience based research over the past decade. In this review, we focus on providing a framework for understanding how changes in facets of social development may correspond with changes in brain function. We argue that (1) distinct phases of social behavior emerge based on whether the organizing social force is the mother, peer play, peer integration, or romantic intimacy; (2) each phase is marked by a high degree of affect-driven motivation that elicits a distinct response in subcortical structures; (3) activity generated by these structures interacts with circuits in prefrontal cortex that guide executive functions, and occipital and temporal lobe circuits, which generate specific sensory and perceptual social representations. We propose that the direction, magnitude and duration of interaction among these affective, executive, and perceptual systems may relate to distinct sensitive periods across development that contribute to establishing long-term patterns of brain function and behavior. Published by Elsevier Ltd.

  13. Convergent synaptic and circuit substrates underlying autism genetic risks.

    PubMed

    McGee, Aaron; Li, Guohui; Lu, Zhongming; Qiu, Shenfeng

    2014-02-01

    There has been a surge of diagnosis of autism spectrum disorders (ASD) over the past decade. While large, high powered genome screening studies of children with ASD have identified numerous genetic risk factors, research efforts to understanding how each of these risk factors contributes to the development autism has met with limited success. Revealing the mechanisms by which these genetic risk factors affect brain development and predispose a child to autism requires mechanistic understanding of the neurobiological changes underlying this devastating group of developmental disorders at multifaceted molecular, cellular and system levels. It has been increasingly clear that the normal trajectory of neurodevelopment is compromised in autism, in multiple domains as much as aberrant neuronal production, growth, functional maturation, patterned connectivity, and balanced excitation and inhibition of brain networks. Many autism risk factors identified in humans have been now reconstituted in experimental mouse models to allow mechanistic interrogation of the biological role of the risk gene. Studies utilizing these mouse models have revealed that underlying the enormous heterogeneity of perturbed cellular events, mechanisms directing synaptic and circuit assembly may provide a unifying explanation for the pathophysiological changes and behavioral endophenotypes seen in autism, although synaptic perturbations are far from being the only alterations relevant for ASD. In this review, we discuss synaptic and circuit abnormalities obtained from several prevalent mouse models, particularly those reflecting syndromic forms of ASD that are caused by single gene perturbations. These compiled results reveal that ASD risk genes contribute to proper signaling of the developing gene networks that maintain synaptic and circuit homeostasis, which is fundamental to normal brain development.

  14. Plasticity in single neuron and circuit computations

    NASA Astrophysics Data System (ADS)

    Destexhe, Alain; Marder, Eve

    2004-10-01

    Plasticity in neural circuits can result from alterations in synaptic strength or connectivity, as well as from changes in the excitability of the neurons themselves. To better understand the role of plasticity in the brain, we need to establish how brain circuits work and the kinds of computations that different circuit structures achieve. By linking theoretical and experimental studies, we are beginning to reveal the consequences of plasticity mechanisms for network dynamics, in both simple invertebrate circuits and the complex circuits of mammalian cerebral cortex.

  15. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    PubMed Central

    Doll, Caleb A.; Broadie, Kendal

    2014-01-01

    Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model. PMID:24570656

  16. Approaching the biology of human parental attachment: brain imaging, oxytocin and coordinated assessments of mothers and fathers.

    PubMed

    Swain, J E; Kim, P; Spicer, J; Ho, S S; Dayton, C J; Elmadih, A; Abel, K M

    2014-09-11

    Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting enables the formation of each individual's first social bonds and critically shapes development. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce themes in the literature on parental brain circuits studied to date. Next, we present a thorough chronological review of state-of-the-art fMRI studies that probe the parental brain with a range of baby audio and visual stimuli. We also highlight the putative role of oxytocin and effects of psychopathology, as well as the most recent work on the paternal brain. Taken together, a new model emerges in which we propose that cortico-limbic networks interact to support parental brain responses to infants. These include circuitry for arousal/salience/motivation/reward, reflexive/instrumental caring, emotion response/regulation and integrative/complex cognitive processing. Maternal sensitivity and the quality of caregiving behavior are likely determined by the responsiveness of these circuits during early parent-infant experiences. The function of these circuits is modifiable by current and early-life experiences, hormonal and other factors. Severe deviation from the range of normal function in these systems is particularly associated with (maternal) mental illnesses - commonly, depression and anxiety, but also schizophrenia and bipolar disorder. Finally, we discuss the limits and extent to which brain imaging may broaden our understanding of the parental brain given our current model. Developments in the understanding of the parental brain may have profound implications for long-term outcomes in families across risk, resilience and possible interventions. This article is part of a Special Issue entitled Oxytocin and Social Behav. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    PubMed Central

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  18. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.

    PubMed

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.

  19. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder

    PubMed Central

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive. PMID:28018162

  20. Fluorescence lifetime images of different green fluorescent proteins in fly brain

    NASA Astrophysics Data System (ADS)

    Lai, Sih-Yu; Lin, Y. Y.; Chiang, A. S.; Huang, Y. C.

    2009-02-01

    The mechanisms of learning and memory are the most important functions in an animal brain. Investigating neuron circuits and network maps in a brain is the first step toward understanding memory and learning behavior. Since Drosophila brain is the major model for understanding brain functions, we measure the florescence lifetimes of different GFP-based reporters expressed in a fly brain. In this work, two Gal4 drivers, OK 107 and MZ 19 were used. Intracellular calcium ([Ca2+]) concentration is an importation indicator of neuronal activity. Therefore, several groups have developed GFP-based calcium sensors, among which G-CaMP is the most popular and reliable. The fluorescence intensity of G-CaMP will increase when it binds to calcium ion; however, individual variation from different animals prevents quantitative research. In this work, we found that the florescence lifetime of G-CaMP will shrink from 1.8 ns to 1.0 ns when binding to Ca2+. This finding can potentially help us to understand the neuron circuits by fluorescence lifetime imaging microscopy (FLIM). Channelrhodopsin-2 (ChR2) is a light-activated ion-channel protein on a neuron cell membrane. In this work, we express ChR2 and G-CaMP in a fly brain. Using a pulsed 470-nm laser to activate the neurons, we can also record the fluorescence lifetime changes in the structure. Hence, we can trace and manipulate a specific circuit in this animal. This method provides more flexibility in brain research.

  1. Studying brain-regulation of immunity with optogenetics and chemogenetics; A new experimental platform.

    PubMed

    Ben-Shaanan, Tamar; Schiller, Maya; Rolls, Asya

    2017-10-01

    The interactions between the brain and the immune system are bidirectional. Nevertheless, we have far greater understanding of how the immune system affects the brain than how the brain affects immunity. New technological developments such as optogenetics and chemogenetics (using DREADDs; Designer Receptors Exclusively Activated by Designer Drugs) can bridge this gap in our understanding, as they enable an unprecedented mechanistic and systemic analysis of the communication between the brain and the immune system. In this review, we discuss new experimental approaches for revealing neuronal circuits that can participate in regulation of immunity. In addition, we discuss methods, specifically optogenetics and chemogenetics, that enable targeted neuronal manipulation to reveal how different brain regions affect immunity. We describe how these techniques can be used as an experimental platform to address fundamental questions in psychoneuroimmunology and to understand how neuronal circuits associate with different psychological states can affect physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Physiology of Moral Maturity.

    ERIC Educational Resources Information Center

    Hemming, James

    1991-01-01

    Discusses an evolutionary approach to human morality. Emphasizes the rapid development of brain weight, neural circuits, and synaptic systems during early childhood. Concludes that the human brain has resources for generating responsible, caring behavior but must be nurtured and educated. Urges that moral training in a proper social climate be…

  3. Dynamical foundations of the neural circuit for bayesian decision making.

    PubMed

    Morita, Kenji

    2009-07-01

    On the basis of accumulating behavioral and neural evidences, it has recently been proposed that the brain neural circuits of humans and animals are equipped with several specific properties, which ensure that perceptual decision making implemented by the circuits can be nearly optimal in terms of Bayesian inference. Here, I introduce the basic ideas of such a proposal and discuss its implications from the standpoint of biophysical modeling developed in the framework of dynamical systems.

  4. Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques.

    PubMed

    Kilinc, Deniz; Demir, Alper

    2017-08-01

    The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.

  5. Phase Difference between Model Cortical Areas Determines Level of Information Transfer

    PubMed Central

    ter Wal, Marije; Tiesinga, Paul H.

    2017-01-01

    Communication between cortical sites is mediated by long-range synaptic connections. However, these connections are relatively static, while everyday cognitive tasks demand a fast and flexible routing of information in the brain. Synchronization of activity between distant cortical sites has been proposed as the mechanism underlying such a dynamic communication structure. Here, we study how oscillatory activity affects the excitability and input-output relation of local cortical circuits and how it alters the transmission of information between cortical circuits. To this end, we develop model circuits showing fast oscillations by the PING mechanism, of which the oscillatory characteristics can be altered. We identify conditions for synchronization between two brain circuits and show that the level of intercircuit coherence and the phase difference is set by the frequency difference between the intrinsic oscillations. We show that the susceptibility of the circuits to inputs, i.e., the degree of change in circuit output following input pulses, is not uniform throughout the oscillation period and that both firing rate, frequency and power are differentially modulated by inputs arriving at different phases. As a result, an appropriate phase difference between the circuits is critical for the susceptibility windows of the circuits in the network to align and for information to be efficiently transferred. We demonstrate that changes in synchrony and phase difference can be used to set up or abolish information transfer in a network of cortical circuits. PMID:28232796

  6. Frank Beach Award Winner: Steroids as Neuromodulators of Brain Circuits and Behavior

    PubMed Central

    Remage-Healey, Luke

    2014-01-01

    Neurons communicate primarily via action potentials that transmit information on the timescale of milliseconds. Neurons also integrate information via alterations in gene transcription and protein translation that are sustained for hours to days after initiation. Positioned between these two signaling timescales are the minute-by-minute actions of neuromodulators. Over the course of minutes, the classical neuromodulators (such as serotonin, dopamine, octopamine, and norepinephrine) can alter and/or stabilize neural circuit patterning as well as behavioral states. Neuromodulators allow many flexible outputs from neural circuits and can encode information content into the firing state of neural networks. The idea that steroid molecules can operate as genuine behavioral neuromodulators - synthesized by and acting within brain circuits on a minute-by-minute timescale - has gained traction in recent years. Evidence for brain steroid synthesis at synaptic terminals has converged with evidence for the rapid actions of brain-derived steroids on neural circuits and behavior. The general principle emerging from this work is that the production of steroid hormones within brain circuits can alter their functional connectivity and shift sensory representations by enhancing their information coding. Steroids produced in the brain can therefore change the information content of neuronal networks to rapidly modulate sensory experience and sensorimotor functions. PMID:25110187

  7. The State of the NIH BRAIN Initiative.

    PubMed

    Koroshetz, Walter; Gordon, Joshua; Adams, Amy; Beckel-Mitchener, Andrea; Churchill, James; Farber, Gregory; Freund, Michelle; Gnadt, Jim; Hsu, Nina; Langhals, Nicholas; Lisanby, Sarah; Liu, Guoying; Peng, Grace; Ramos, Khara; Steinmetz, Michael; Talley, Edmund; White, Samantha

    2018-06-19

    The BRAIN Initiative® arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system. As the Initiative enters its fifth year, NIH has supported over 500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual labs, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and NIH continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative. Copyright © 2018 the authors.

  8. Targeting circuits

    PubMed Central

    Rajasethupathy, Priyamvada; Ferenczi, Emily; Deisseroth, Karl

    2017-01-01

    Current optogenetic methodology enables precise inhibition or excitation of neural circuits, spanning timescales as needed from the acute (milliseconds) to the chronic (many days or more), for experimental modulation of network activity and animal behavior. Such broad temporal versatility, unique to optogenetic control, is particularly powerful when combined with brain activity measurements that span both acute and chronic timescales as well. This enables, for instance, the study of adaptive circuit dynamics across the intact brain, and tuning interventions to match activity patterns naturally observed during behavior in the same individual. Although the impact of this approach has been greater on basic research than on clinical translation, it is natural to ask if specific neural circuit activity patterns discovered to be involved in controlling adaptive or maladaptive behaviors could become targets for treatment of neuropsychiatric diseases. Here we consider the landscape of such ideas related to therapeutic targeting of circuit dynamics, taking note of developments not only in optical but also in ultrasonic, magnetic, and thermal methods. We note the recent emergence of first-in-kind optogenetically-guided clinical outcomes, as well as opportunities related to the integration of interventions and readouts spanning diverse circuit-physiology, molecular, and behavioral modalities. PMID:27104976

  9. Analog Integrated Circuit Design for Spike Time Dependent Encoder and Reservoir in Reservoir Computing Processors

    DTIC Science & Technology

    2018-01-01

    14. ABSTRACT The objective of this effort was to: (a) develop novel and fundamental methodologies for data representation using hardware-based spike...Distribution Unlimited. 1 1.0 SUMMARY This effort is a critical part of an overall program to develop novel and fundamental methodologies for data...to fabrication a dynamic-reservoir circuit that utilizes sensory encoding methodologies similar to those employed in biological brains. Inspired

  10. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.

    PubMed

    Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie

    2018-05-09

    Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.

  11. Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch.

    PubMed

    Agate, Robert J; Grisham, William; Wade, Juli; Mann, Suzanne; Wingfield, John; Schanen, Carolyn; Palotie, Aarno; Arnold, Arthur P

    2003-04-15

    In mammals and birds, sex differences in brain function and disease are thought to derive exclusively from sex differences in gonadal hormone secretions. For example, testosterone in male mammals acts during fetal and neonatal life to cause masculine neural development. However, male and female brain cells also differ in genetic sex; thus, sex chromosome genes acting within cells could contribute to sex differences in cell function. We analyzed the sexual phenotype of the brain of a rare gynandromorphic finch in which the right half of the brain was genetically male and the left half genetically female. The neural song circuit on the right had a more masculine phenotype than that on the left. Because both halves of the brain were exposed to a common gonadal hormone environment, the lateral differences indicate that the genetic sex of brain cells contributes to the process of sexual differentiation. Because both sides of the song circuit were more masculine than that of females, diffusible factors such as hormones of gonadal or neural origin also likely played a role in sexual differentiation.

  12. Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development

    PubMed Central

    Özel, Mehmet Neset; Langen, Marion; Hassan, Bassem A; Hiesinger, P Robin

    2015-01-01

    Filopodial dynamics are thought to control growth cone guidance, but the types and roles of growth cone dynamics underlying neural circuit assembly in a living brain are largely unknown. To address this issue, we have developed long-term, continuous, fast and high-resolution imaging of growth cone dynamics from axon growth to synapse formation in cultured Drosophila brains. Using R7 photoreceptor neurons as a model we show that >90% of the growth cone filopodia exhibit fast, stochastic dynamics that persist despite ongoing stepwise layer formation. Correspondingly, R7 growth cones stabilize early and change their final position by passive dislocation. N-Cadherin controls both fast filopodial dynamics and growth cone stabilization. Surprisingly, loss of N-Cadherin causes no primary targeting defects, but destabilizes R7 growth cones to jump between correct and incorrect layers. Hence, growth cone dynamics can influence wiring specificity without a direct role in target recognition and implement simple rules during circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.10721.001 PMID:26512889

  13. Neuropeptide Signaling Networks and Brain Circuit Plasticity.

    PubMed

    McClard, Cynthia K; Arenkiel, Benjamin R

    2018-01-01

    The brain is a remarkable network of circuits dedicated to sensory integration, perception, and response. The computational power of the brain is estimated to dwarf that of most modern supercomputers, but perhaps its most fascinating capability is to structurally refine itself in response to experience. In the language of computers, the brain is loaded with programs that encode when and how to alter its own hardware. This programmed "plasticity" is a critical mechanism by which the brain shapes behavior to adapt to changing environments. The expansive array of molecular commands that help execute this programming is beginning to emerge. Notably, several neuropeptide transmitters, previously best characterized for their roles in hypothalamic endocrine regulation, have increasingly been recognized for mediating activity-dependent refinement of local brain circuits. Here, we discuss recent discoveries that reveal how local signaling by corticotropin-releasing hormone reshapes mouse olfactory bulb circuits in response to activity and further explore how other local neuropeptide networks may function toward similar ends.

  14. Role of Non-Neuronal Cells in Body Weight and Appetite Control

    PubMed Central

    Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Argente, Jesús; Chowen, Julie A.

    2015-01-01

    The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control. PMID:25859240

  15. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour

    PubMed Central

    Zhu, Xiao-Na; Liu, Xian-Dong; Sun, Suya; Zhuang, Hanyi; Yang, Jing-Yu; Henkemeyer, Mark; Xu, Nan-Jie

    2016-01-01

    Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period. PMID:27008987

  16. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour.

    PubMed

    Zhu, Xiao-Na; Liu, Xian-Dong; Sun, Suya; Zhuang, Hanyi; Yang, Jing-Yu; Henkemeyer, Mark; Xu, Nan-Jie

    2016-03-24

    Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period.

  17. Emotion and the motivational brain

    PubMed Central

    Lang, Peter J.; Bradley, Margaret M.

    2013-01-01

    Psychophysiological and neuroscience studies of emotional processing undertaken by investigators at the University of Florida Laboratory of the Center for the Study of Emotion and Attention (CSEA) are reviewed, with a focus on reflex reactions, neural structures and functional circuits that mediate emotional expression. The theoretical view shared among the investigators is that expressed emotions are founded on motivational circuits in the brain that developed early in evolutionary history to ensure the survival of individuals and their progeny. These circuits react to appetitive and aversive environmental and memorial cues, mediating appetitive and defensive reflexes that tune sensory systems and mobilize the organism for action and underly negative and positive affects. The research reviewed here assesses the reflex physiology of emotion, both autonomic and somatic, studying affects evoked in picture perception, memory imagery, and in the context of tangible reward and punishment, and using the electroencephalograph (EEG) and functional magnetic resonance imaging (fMRI), explores the brain’s motivational circuits that determine human emotion. PMID:19879918

  18. Biomarkers for Success: Using Neuroimaging to Predict Relapse and Develop Brain Stimulation Treatments for Cocaine-Dependent Individuals.

    PubMed

    Hanlon, C A; Dowdle, L T; Jones, J L

    2016-01-01

    Cocaine dependence is one of the most difficult substance use disorders to treat. While the powerful effects of cocaine use on behavior were documented in the 19th century, it was not until the late 20th century that we realized cocaine use was affecting brain tissue and function. Following a brief introduction (Section 1), this chapter will summarize our current knowledge regarding alterations in neural circuit function typically observed in chronic cocaine users (Section 2) and highlight an emerging body of literature which suggests that pretreatment limbic circuit activity may be a reliable predictor of clinical outcomes among individuals seeking treatment for cocaine (Section 3). Finally, as the field of addiction research strives to translate this neuroimaging data into something clinically meaningful, we will highlight several new brain stimulation approaches which utilize functional brain imaging data to design noninvasive brain stimulation interventions for individuals seeking treatment for substance dependence disorders (Section 4). © 2016 Elsevier Inc. All rights reserved.

  19. "The developmental and functional logic of neuronal circuits": commentary on the Kavli Prize in Neuroscience.

    PubMed

    Glover, J C

    2009-11-10

    The first Kavli Prize in Neuroscience recognizes a confluence of career achievements that together provide a fundamental understanding of how brain and spinal cord circuits are assembled during development and function in the adult. The members of the Kavli Neuroscience Prize Committee have decided to reward three scientists (Sten Grillner, Thomas Jessell, and Pasko Rakic) jointly "for discoveries on the developmental and functional logic of neuronal circuits". Pasko Rakic performed groundbreaking studies of the developing cerebral cortex, including the discovery of how radial glia guide the neuronal migration that establishes cortical layers and for the radial unit hypothesis and its implications for cortical connectivity and evolution. Thomas Jessell discovered molecular principles governing the specification and patterning of different neuron types and the development of their synaptic interconnection into sensorimotor circuits. Sten Grillner elucidated principles of network organization in the vertebrate locomotor central pattern generator, along with its command systems and sensory and higher order control. The discoveries of Rakic, Jessell and Grillner provide a framework for how neurons obtain their identities and ultimate locations, establish appropriate connections with each other, and how the resultant neuronal networks operate. Their work has significantly advanced our understanding of brain development and function and created new opportunities for the treatment of neurological disorders. Each has pioneered an important area of neuroscience research and left a legacy of exceptional scientific achievement, insight, communication, mentoring and leadership.

  20. Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca2+ signaling

    PubMed Central

    Agrawal, Tarjani; Hasan, Gaiti

    2015-01-01

    The final identity of a differentiated neuron is determined by multiple signaling events, including activity dependent calcium transients. Non-canonical Frizzled2 (Fz2) signaling generates calcium transients that determine neuronal polarity, neuronal migration, and synapse assembly in the developing vertebrate brain. Here, we demonstrate a requirement for Fz2/Ca2+ signaling in determining the final differentiated state of a set of central brain dopaminergic neurons in Drosophila, referred to as the protocerebral anterior medial (PAM) cluster. Knockdown or inhibition of Fz2/Ca2+ signaling during maturation of the flight circuit in pupae reduces Tyrosine Hydroxylase (TH) expression in the PAM neurons and affects maintenance of flight. Thus, we demonstrate that Fz2/Ca2+ transients during development serve as a pre-requisite for normal adult behavior. Our results support a neural mechanism where PAM neuron send projections to the α' and β' lobes of a higher brain centre, the mushroom body, and function in dopaminergic re-inforcement of flight. DOI: http://dx.doi.org/10.7554/eLife.07046.001 PMID:25955970

  1. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing.

    PubMed

    Murakami, Tatsuya C; Mano, Tomoyuki; Saikawa, Shu; Horiguchi, Shuhei A; Shigeta, Daichi; Baba, Kousuke; Sekiya, Hiroshi; Shimizu, Yoshihiro; Tanaka, Kenji F; Kiyonari, Hiroshi; Iino, Masamitsu; Mochizuki, Hideki; Tainaka, Kazuki; Ueda, Hiroki R

    2018-04-01

    A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Wang, G.; Volkow, N.D.

    Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsivemore » behavior. The ability of addictive drugs to co-opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction.« less

  3. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse.

    PubMed

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor.

  4. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse

    PubMed Central

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor. PMID:29479302

  5. 512-Channel and 13-Region Simultaneous Recordings Coupled with Optogenetic Manipulation in Freely Behaving Mice

    PubMed Central

    Xie, Kun; Fox, Grace E.; Liu, Jun; Tsien, Joe Z.

    2016-01-01

    The development of technologies capable of recording both single-unit activity and local field potentials (LFPs) over a wide range of brain circuits in freely behaving animals is the key to constructing brain activity maps. Although mice are the most popular mammalian genetic model, in vivo neural recording has been traditionally limited to smaller channel count and fewer brain structures because of the mouse’s small size and thin skull. Here, we describe a 512-channel tetrode system that allows us to record simultaneously over a dozen cortical and subcortical structures in behaving mice. This new technique offers two major advantages – namely, the ultra-low cost and the do-it-yourself flexibility for targeting any combination of many brain areas. We show the successful recordings of both single units and LFPs from 13 distinct neural circuits of the mouse brain, including subregions of the anterior cingulate cortices, retrosplenial cortices, somatosensory cortices, secondary auditory cortex, hippocampal CA1, dentate gyrus, subiculum, lateral entorhinal cortex, perirhinal cortex, and prelimbic cortex. This 512-channel system can also be combined with Cre-lox neurogenetics and optogenetics to further examine interactions between genes, cell types, and circuit dynamics across a wide range of brain structures. Finally, we demonstrate that complex stimuli – such as an earthquake and fear-inducing foot-shock – trigger firing changes in all of the 13 brain regions recorded, supporting the notion that neural code is highly distributed. In addition, we show that localized optogenetic manipulation in any given brain region could disrupt network oscillations and caused changes in single-unit firing patterns in a brain-wide manner, thereby raising the cautionary note of the interpretation of optogenetically manipulated behaviors. PMID:27378865

  6. Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia

    PubMed Central

    Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y.; Ievins, Aiva; McLean, Merritt A.; Niell, Cristopher M.; Chau, Vann; Wong, Peter K. H.; Glass, Hannah C.; Sullivan, Joseph

    2015-01-01

    Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a “precritical period” of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic–ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia–ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral, and language disabilities that limit academic achievement and well-being. Limited progress has been made to develop therapies that improve neurologic outcomes. The overall objective of this study is to understand the effect of early brain injury on activity-dependent brain development and cortical plasticity to develop new treatments that will optimize repair and recovery after brain injury. PMID:26311776

  7. Nanotools for Neuroscience and Brain Activity Mapping

    PubMed Central

    Alivisatos, A. Paul; Andrews, Anne M.; Boyden, Edward S.; Chun, Miyoung; Church, George M.; Deisseroth, Karl; Donoghue, John P.; Fraser, Scott E.; Lippincott-Schwartz, Jennifer; Looger, Loren L.; Masmanidis, Sotiris; McEuen, Paul L.; Nurmikko, Arto V.; Park, Hongkun; Peterka, Darcy S.; Reid, Clay; Roukes, Michael L.; Scherer, Axel; Schnitzer, Mark; Sejnowski, Terrence J.; Shepard, Kenneth L.; Tsao, Doris; Turrigiano, Gina; Weiss, Paul S.; Xu, Chris; Yuste, Rafael; Zhuang, Xiaowei

    2013-01-01

    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function. PMID:23514423

  8. Infant phantom head circuit board for EEG head phantom and pediatric brain simulation

    NASA Astrophysics Data System (ADS)

    Almohsen, Safa

    The infant's skull differs from an adult skull because of the characteristic features of the human skull during early development. The fontanels and the conductivity of the infant skull influence surface currents, generated by neurons, which underlie electroencephalography (EEG) signals. An electric circuit was built to power a set of simulated neural sources for an infant brain activity simulator. Also, in the simulator, three phantom tissues were created using saline solution plus Agarose gel to mimic the conductivity of each layer in the head [scalp, skull brain]. The conductivity measurement was accomplished by two different techniques: using the four points' measurement technique, and a conductivity meter. Test results showed that the optimized phantom tissues had appropriate conductivities to simulate each tissue layer to fabricate a physical head phantom. In this case, the best results should be achieved by testing the electrical neural circuit with the sample physical model to generate simulated EEG data and use that to solve both the forward and the inverse problems for the purpose of localizing the neural sources in the head phantom.

  9. Systems neuroscience in Drosophila: Conceptual and technical advantages.

    PubMed

    Kazama, H

    2015-06-18

    The fruit fly Drosophila melanogaster is ideally suited for investigating the neural circuit basis of behavior. Due to the simplicity and genetic tractability of the fly brain, neurons and circuits are identifiable across animals. Additionally, a large set of transgenic lines has been developed with the aim of specifically labeling small subsets of neurons and manipulating them in sophisticated ways. Electrophysiology and imaging can be applied in behaving individuals to examine the computations performed by each neuron, and even the entire population of relevant neurons in a particular region, because of the small size of the brain. Moreover, a rich repertoire of behaviors that can be studied is expanding to include those requiring cognitive abilities. Thus, the fly brain is an attractive system in which to explore both computations and mechanisms underlying behavior at levels spanning from genes through neurons to circuits. This review summarizes the advantages Drosophila offers in achieving this objective. A recent neurophysiology study on olfactory behavior is also introduced to demonstrate the effectiveness of these advantages. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System

    PubMed Central

    Thompson, Christopher K.

    2016-01-01

    Thyroid hormone (TH) regulates many cellular events underlying perinatal brain development in vertebrates. Whether and how TH regulates brain development when neural circuits are first forming is less clear. Furthermore, although the molecular mechanisms that impose spatiotemporal constraints on TH action in the brain have been described, the effects of local TH signaling are poorly understood. We determined the effects of manipulating TH signaling on development of the optic tectum in stage 46–49 Xenopus laevis tadpoles. Global TH treatment caused large-scale morphological effects in tadpoles, including changes in brain morphology and increased tectal cell proliferation. Either increasing or decreasing endogenous TH signaling in tectum, by combining targeted DIO3 knockdown and methimazole, led to corresponding changes in tectal cell proliferation. Local increases in TH, accomplished by injecting suspensions of tri-iodothyronine (T3) in coconut oil into the midbrain ventricle or into the eye, selectively increased tectal or retinal cell proliferation, respectively. In vivo time-lapse imaging demonstrated that local TH first increased tectal progenitor cell proliferation, expanding the progenitor pool, and subsequently increased neuronal differentiation. Local T3 also dramatically increased dendritic arbor growth in neurons that had already reached a growth plateau. The time-lapse data indicate that the same cells are differentially sensitive to T3 at different time points. Finally, TH increased expression of genes pertaining to proliferation and neuronal differentiation. These experiments indicate that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting cell proliferation and differentiation and by acting on neurons to increase dendritic arbor elaboration. SIGNIFICANCE STATEMENT Thyroid hormone (TH) is a critical regulator of perinatal brain development in vertebrates. Abnormal TH signaling in early pregnancy is associated with significant cognitive deficits in humans; however, it is difficult to probe the function of TH in early brain development in mammals because of the inaccessibility of the fetal brain in the uterine environment and the challenge of disambiguating maternal versus fetal contributions of TH. The external development of tadpoles allows manipulation and direct observation of the molecular and cellular mechanisms underlying TH's effects on brain development in ways not possible in mammals. We find that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting neural progenitor cell proliferation and differentiation and by acting on neurons to enhance dendritic arbor elaboration. PMID:27707971

  11. Habenula Circuit Development: Past, Present, and Future

    PubMed Central

    Beretta, Carlo A.; Dross, Nicolas; Guiterrez-Triana, Jose A.; Ryu, Soojin; Carl, Matthias

    2012-01-01

    The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left–right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development. PMID:22536170

  12. Habenula circuit development: past, present, and future.

    PubMed

    Beretta, Carlo A; Dross, Nicolas; Guiterrez-Triana, Jose A; Ryu, Soojin; Carl, Matthias

    2012-01-01

    The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left-right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development.

  13. The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas.

    PubMed

    Ecker, Joseph R; Geschwind, Daniel H; Kriegstein, Arnold R; Ngai, John; Osten, Pavel; Polioudakis, Damon; Regev, Aviv; Sestan, Nenad; Wickersham, Ian R; Zeng, Hongkui

    2017-11-01

    A comprehensive characterization of neuronal cell types, their distributions, and patterns of connectivity is critical for understanding the properties of neural circuits and how they generate behaviors. Here we review the experiences of the BRAIN Initiative Cell Census Consortium, ten pilot projects funded by the U.S. BRAIN Initiative, in developing, validating, and scaling up emerging genomic and anatomical mapping technologies for creating a complete inventory of neuronal cell types and their connections in multiple species and during development. These projects lay the foundation for a larger and longer-term effort to generate whole-brain cell atlases in species including mice and humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Aging with a traumatic brain injury: Could behavioral morbidities and endocrine symptoms be influenced by microglial priming?

    PubMed

    Ziebell, Jenna M; Rowe, Rachel K; Muccigrosso, Megan M; Reddaway, Jack T; Adelson, P David; Godbout, Jonathan P; Lifshitz, Jonathan

    2017-01-01

    A myriad of factors influence the developmental and aging process and impact health and life span. Mounting evidence indicates that brain injury, even moderate injury, can lead to lifetime of physical and mental health symptoms. Therefore, the purpose of this mini-review is to discuss how recovery from traumatic brain injury (TBI) depends on age-at-injury and how aging with a TBI affects long-term recovery. TBI initiates pathophysiological processes that dismantle circuits in the brain. In response, reparative and restorative processes reorganize circuits to overcome the injury-induced damage. The extent of circuit dismantling and subsequent reorganization depends as much on the initial injury parameters as other contributing factors, such as genetics and age. Age-at-injury influences the way the brain is able to repair itself, as a result of developmental status, extent of cellular senescence, and injury-induced inflammation. Moreover, endocrine dysfunction can occur with TBI. Depending on the age of the individual at the time of injury, endocrine dysfunction may disrupt growth, puberty, influence social behaviors, and possibly alter the inflammatory response. In turn, activation of microglia, the brain's immune cells, after injury may continue to fuel endocrine dysfunction. With age, the immune system develops and microglia become primed to subsequent challenges. Sustained inflammation and microglial activation can continue for weeks to months post-injury. This prolonged inflammation can influence developmental processes, behavioral performance and age-related decline. Overall, brain injury may influence the aging process and expedite glial and neuronal alterations that impact mental health. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Understand the cogs to understand cognition.

    PubMed

    Marblestone, Adam H; Wayne, Greg; Kording, Konrad P

    2017-01-01

    Lake et al. suggest that current AI systems lack the inductive biases that enable human learning. However, Lake et al.'s proposed biases may not directly map onto mechanisms in the developing brain. A convergence of fields may soon create a correspondence between biological neural circuits and optimization in structured architectures, allowing us to systematically dissect how brains learn.

  16. Brain Hyper-Connectivity and Operation-Specific Deficits during Arithmetic Problem Solving in Children with Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2015-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who…

  17. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  18. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses.

    PubMed

    Hall, Kelley D; Lifshitz, Jonathan

    2010-04-06

    Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity. Copyright 2010 Elsevier B.V. All rights reserved.

  19. The Cerebellum and Neurodevelopmental Disorders.

    PubMed

    Stoodley, Catherine J

    2016-02-01

    Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit-hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior.

  20. The cerebellum and neurodevelopmental disorders

    PubMed Central

    Stoodley, Catherine J.

    2015-01-01

    Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior. PMID:26298473

  1. Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction.

    PubMed

    Pitel, Anne Lise; Segobin, Shailendra H; Ritz, Ludivine; Eustache, Francis; Beaunieux, Hélène

    2015-07-01

    Two brain networks are particularly affected by the harmful effect of chronic and excessive alcohol consumption: the circuit of Papez and the frontocerebellar circuit, in both of which the thalamus plays a key role. Shrinkage of the thalamus is more severe in alcoholics with Korsakoff's syndrome (KS) than in those without neurological complication (AL). In accordance with the gradient effect of thalamic abnormalities between AL and KS, the pattern of brain dysfunction in the Papez's circuit results in anterograde amnesia in KS and only mild-to-moderate episodic memory disorders in AL. On the opposite, dysfunction of the frontocerebellar circuit results in a similar pattern of working memory and executive deficits in the AL and KS. Several hypotheses, mutually compatible, can be drawn to explain that the severe thalamic shrinkage observed in KS has different consequences in the neuropsychological profile associated with the two brain networks. Copyright © 2014. Published by Elsevier Ltd.

  2. Unbalanced neuronal circuits in addiction.

    PubMed

    Volkow, Nora D; Wang, Gen-Jack; Tomasi, Dardo; Baler, Ruben D

    2013-08-01

    Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it. Published by Elsevier Ltd.

  3. Attention-Deficit Hyperactivity Disorder.

    ERIC Educational Resources Information Center

    Barkley, Russell A.

    1998-01-01

    Attention deficit hyperactivity disorder (ADHD) may arise when key brain circuits do not develop properly, perhaps due to an altered gene or genes. Describes ADHD in detail and introduces a psychological model of ADHD. (ASK)

  4. Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells.

    PubMed

    Chittajallu, R; Wester, J C; Craig, M T; Barksdale, E; Yuan, X Q; Akgül, G; Fang, C; Collins, D; Hunt, S; Pelkey, K A; McBain, C J

    2017-07-28

    Appropriate integration of GABAergic interneurons into nascent cortical circuits is critical for ensuring normal information processing within the brain. Network and cognitive deficits associated with neurological disorders, such as schizophrenia, that result from NMDA receptor-hypofunction have been mainly attributed to dysfunction of parvalbumin-expressing interneurons that paradoxically express low levels of synaptic NMDA receptors. Here, we reveal that throughout postnatal development, thalamic, and entorhinal cortical inputs onto hippocampal neurogliaform cells are characterized by a large NMDA receptor-mediated component. This NMDA receptor-signaling is prerequisite for developmental programs ultimately responsible for the appropriate long-range AMPAR-mediated recruitment of neurogliaform cells. In contrast, AMPAR-mediated input at local Schaffer-collateral synapses on neurogliaform cells remains normal following NMDA receptor-ablation. These afferent specific deficits potentially impact neurogliaform cell mediated inhibition within the hippocampus and our findings reveal circuit loci implicating this relatively understudied interneuron subtype in the etiology of neurodevelopmental disorders characterized by NMDA receptor-hypofunction.Proper brain function depends on the correct assembly of excitatory and inhibitory neurons into neural circuits. Here the authors show that during early postnatal development in mice, NMDAR signaling via activity of long-range synaptic inputs onto neurogliaform cells is required for their appropriate integration into the hippocampal circuitry.

  5. Brain reflections: A circuit-based framework for understanding information processing and cognitive control.

    PubMed

    Gratton, Gabriele

    2018-03-01

    Here, I propose a view of the architecture of the human information processing system, and of how it can be adapted to changing task demands (which is the hallmark of cognitive control). This view is informed by an interpretation of brain activity as reflecting the excitability level of neural representations, encoding not only stimuli and temporal contexts, but also action plans and task goals. The proposed cognitive architecture includes three types of circuits: open circuits, involved in feed-forward processing such as that connecting stimuli with responses and characterized by brief, transient brain activity; and two types of closed circuits, positive feedback circuits (characterized by sustained, high-frequency oscillatory activity), which help select and maintain representations, and negative feedback circuits (characterized by brief, low-frequency oscillatory bursts), which are instead associated with changes in representations. Feed-forward activity is primarily responsible for the spread of activation along the information processing system. Oscillatory activity, instead, controls this spread. Sustained oscillatory activity due to both local cortical circuits (gamma) and longer corticothalamic circuits (alpha and beta) allows for the selection of individuated representations. Through the interaction of these circuits, it also allows for the preservation of representations across different temporal spans (sensory and working memory) and their spread across the brain. In contrast, brief bursts of oscillatory activity, generated by novel and/or conflicting information, lead to the interruption of sustained oscillatory activity and promote the generation of new representations. I discuss how this framework can account for a number of psychological and behavioral phenomena. © 2017 Society for Psychophysiological Research.

  6. An Integrative Neuroscience Framework for the Treatment of Chronic Pain: From Cellular Alterations to Behavior.

    PubMed

    Greenwald, Jess D; Shafritz, Keith M

    2018-01-01

    Chronic pain can result from many pain syndromes including complex regional pain syndrome (CRPS), phantom limb pain and chronic low back pain, among others. On a molecular level, chronic pain syndromes arise from hypersensitization within the dorsal horn of the spinal cord, a process known as central sensitization. Central sensitization involves an upregulation of ionotropic and metabotropic glutamate receptors (mGluRs) similar to that of long-term potentiation (LTP). Regions of the brain in which LTP occurs, such as the amygdala and hippocampus, are implicated in fear- and memory-related brain circuity. Chronic pain dramatically influences patient quality of life. Individuals with chronic pain may develop pain-related anxiety and pain-related fear. The syndrome also alters functional connectivity in the default-mode network (DMN) and salience network. On a cellular/molecular level, central sensitization may be reversed through degradative glutamate receptor pathways. This, however, rarely happens. Instead, cortical brain regions may serve in a top-down regulatory capacity for the maintenance or alleviation of pain. Specifically, the medial prefrontal cortex (mPFC), which plays a critical role in fear-related brain circuits, the DMN, and salience network may be the driving forces in this process. On a cellular level, the mPFC may form new neural circuits through LTP that may cause extinction of pre-existing pain pathways found within fear-related brain circuits, the DMN, and salience network. In order to promote new LTP connections between the mPFC and other key brain structures, such as the amygdala and insula, we propose a holistic rehabilitation program including cognitive behavioral therapy (CBT) and revolving around: (1) cognitive reappraisals; (2) mindfulness meditation; and (3) functional rehabilitation. Unlike current medical interventions focusing upon pain-relieving medications, we do not believe that chronic pain treatment should focus on reversing the effects of central sensitization. Instead, we propose here that it is critical to focus on non-invasive efforts to promote new neural circuits originating from the mPFC.

  7. Oxytocin modulation of neural circuits for social behavior.

    PubMed

    Marlin, Bianca J; Froemke, Robert C

    2017-02-01

    Oxytocin is a hypothalamic neuropeptide that has gained attention for the effects on social behavior. Recent findings shed new light on the mechanisms of oxytocin in synaptic plasticity and adaptively modifying neural circuits for social interactions such as conspecific recognition, pair bonding, and maternal care. Here, we review several of these newer studies on oxytocin in the context of previous findings, with an emphasis on social behavior and circuit plasticity in various brain regions shown to be enriched for oxytocin receptors. We provide a framework that highlights current circuit-level mechanisms underlying the widespread action of oxytocin. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 169-189, 2017. © 2016 Wiley Periodicals, Inc.

  8. Cocaine-Induced Neurodevelopmental Deficits and Underlying Mechanisms

    PubMed Central

    Martin, Melissa M.; Graham, Devon L.; McCarthy, Deirdre M.; Bhide, Pradeep G.; Stanwood, Gregg D.

    2017-01-01

    Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. PMID:27345015

  9. Neuroscience Literacy: "Brain Tells" as Signals of Brain Dysfunction Affecting Daily Life.

    PubMed

    Royeen, Charlotte B; Brašić, James R; Dvorak, Leah; Provoziak-O'Brien, Casey; Sethi, Chetna; Ahmad, S Omar

    2016-01-01

    The structures and circuits of the central and the peripheral nervous systems provide the basis for thinking, speaking, experiencing sensations, and performing perceptual and motor activities in daily life. Healthy people experience normal functioning without giving brain functions a second thought, while dysfunction of the neural circuits may lead to marked impairments in cognition, communication, sensory awareness, and performing perceptual and motor tasks. Neuroscience literacy provides the knowledge to associate the deficits observed in patients with the underlying deficits in the structures and circuits of the nervous system. The purpose of this paper is to begin the conversation in this area via a neuroscience literacy model of "Brain Tells," defined as stereotypical or observable behaviors often associated with brain dysfunction. Occupational therapists and other allied health professionals should be alert for the signs of "Brain Tells" that may be early warning signs of brain pathology. We also suggest that neuroscience literacy be emphasized in training provided to public safety workers, teachers, caregivers, and health care professionals at all levels.

  10. Brain Stimulation Studies of Social Norm Compliance: Implications for Personality Disorders?

    PubMed

    Ruff, Christian C

    2018-01-01

    Several personality disorders involve pathological behaviors that violate social norms, commonly held expectations about what ought to be done in specific situations. These symptoms usually emerge early in development, are persistent and hard to treat, and are often ego-syntonic. Here I present some recent brain stimulation studies suggesting that pathological changes in different aspects of norm-compliant behavior reflect dysfunctions of brain circuits involving distinct prefrontal brain areas. One set of studies shows that transcranial direct current stimulation of the right lateral prefrontal cortex changes the behavioral sensitivity to social incentives for norm-compliant behavior. Crucially, social norm compliance in response to such incentives could even be increased during excitatory stimulation, demonstrating that the affected neural process is a biological prerequisite for appropriate reaction to social signals that trigger norm compliance. In another set of studies, we show that stimulation of a different (more dorsal) part of the right prefrontal cortex enhances honesty in a realistic setting where participants had the opportunity to cheat for real monetary gains. Interestingly, these stimulation-induced increases in both socially cued or purely voluntary norm compliance were not linked to changes in other aspects of decision- making (such as risk or impatience), and they did not reflect changes in beliefs about what is appropriate behavior. These results suggest that disorders of distinct brain circuits may causally underlie egosyntotic changes in norm-compliant behavior. This raises the tantalizing possibility that pathologies of norm-compliant behavior may be ameliorated by interventions targeting the function of these brain circuits. © 2018 S. Karger AG, Basel.

  11. Reconfigurable visible nanophotonic switch for optogenetic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mohanty, Aseema; Li, Qian; Tadayon, Mohammad Amin; Bhatt, Gaurang R.; Cardenas, Jaime; Miller, Steven A.; Kepecs, Adam; Lipson, Michal

    2017-02-01

    High spatiotemporal resolution deep-brain optical excitation for optogenetics would enable activation of specific neural populations and in-depth study of neural circuits. Conventionally, a single fiber is used to flood light into a large area of the brain with limited resolution. The scalability of silicon photonics could enable neural excitation over large areas with single-cell resolution similar to electrical probes. However, active control of these optical circuits has yet to be demonstrated for optogenetics. Here we demonstrate the first active integrated optical switch for neural excitation at 473 nm, enabling control of multiple beams for deep-brain neural stimulation. Using a silicon nitride waveguide platform, we develop a cascaded Mach-Zehnder interferometer (MZI) network located outside the brain to direct light to 8 different grating emitters located at the tip of the neural probe. We use integrated platinum microheaters to induce a local thermo-optic phase shift in the MZI to control the switch output. We measure an ON/OFF extinction ratio of >8dB for a single switch and a switching speed of 20 microseconds. We characterize the optical output of the switch by imaging its excitation of fluorescent dye. Finally, we demonstrate in vivo single-neuron optical activation from different grating emitters using a fully packaged device inserted into a mouse brain. Directly activated neurons showed robust spike firing activities with low first-spike latency and small jitter. Active switching on a nanophotonic platform is necessary for eventually controlling highly-multiplexed reconfigurable optical circuits, enabling high-resolution optical stimulation in deep-brain regions.

  12. Removing brakes on adult brain plasticity: from molecular to behavioral interventions

    PubMed Central

    Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K.

    2010-01-01

    Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these “brakes” are structural, such as peri-neuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects. PMID:21068299

  13. Oxytocin: parallel processing in the social brain?

    PubMed

    Dölen, Gül

    2015-06-01

    Early studies attempting to disentangle the network complexity of the brain exploited the accessibility of sensory receptive fields to reveal circuits made up of synapses connected both in series and in parallel. More recently, extension of this organisational principle beyond the sensory systems has been made possible by the advent of modern molecular, viral and optogenetic approaches. Here, evidence supporting parallel processing of social behaviours mediated by oxytocin is reviewed. Understanding oxytocinergic signalling from this perspective has significant implications for the design of oxytocin-based therapeutic interventions aimed at disorders such as autism, where disrupted social function is a core clinical feature. Moreover, identification of opportunities for novel technology development will require a better appreciation of the complexity of the circuit-level organisation of the social brain. © 2015 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  14. Mosaic analysis of gene function in postnatal mouse brain development by using virus-based Cre recombination.

    PubMed

    Gibson, Daniel A; Ma, Le

    2011-08-01

    Normal brain function relies not only on embryonic development when major neuronal pathways are established, but also on postnatal development when neural circuits are matured and refined. Misregulation at this stage may lead to neurological and psychiatric disorders such as autism and schizophrenia. Many genes have been studied in the prenatal brain and found crucial to many developmental processes. However, their function in the postnatal brain is largely unknown, partly because their deletion in mice often leads to lethality during neonatal development, and partly because their requirement in early development hampers the postnatal analysis. To overcome these obstacles, floxed alleles of these genes are currently being generated in mice. When combined with transgenic alleles that express Cre recombinase in specific cell types, conditional deletion can be achieved to study gene function in the postnatal brain. However, this method requires additional alleles and extra time (3-6 months) to generate the mice with appropriate genotypes, thereby limiting the expansion of the genetic analysis to a large scale in the mouse brain. Here we demonstrate a complementary approach that uses virally-expressed Cre to study these floxed alleles rapidly and systematically in postnatal brain development. By injecting recombinant adeno-associated viruses (rAAVs) encoding Cre into the neonatal brain, we are able to delete the gene of interest in different regions of the brain. By controlling the viral titer and coexpressing a fluorescent protein marker, we can simultaneously achieve mosaic gene inactivation and sparse neuronal labeling. This method bypasses the requirement of many genes in early development, and allows us to study their cell autonomous function in many critical processes in postnatal brain development, including axonal and dendritic growth, branching, and tiling, as well as synapse formation and refinement. This method has been used successfully in our own lab (unpublished results) and others, and can be extended to other viruses, such as lentivirus, as well as to the expression of shRNA or dominant active proteins. Furthermore, by combining this technique with electrophysiology as well as recently-developed optical imaging tools, this method provides a new strategy to study how genetic pathways influence neural circuit development and function in mice and rats.

  15. Brain Reward Circuits in Morphine Addiction

    PubMed Central

    Kim, Juhwan; Ham, Suji; Hong, Heeok; Moon, Changjong; Im, Heh-In

    2016-01-01

    Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate’s innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences. PMID:27506251

  16. The BRAIN Initiative: developing technology to catalyse neuroscience discovery.

    PubMed

    Jorgenson, Lyric A; Newsome, William T; Anderson, David J; Bargmann, Cornelia I; Brown, Emery N; Deisseroth, Karl; Donoghue, John P; Hudson, Kathy L; Ling, Geoffrey S F; MacLeish, Peter R; Marder, Eve; Normann, Richard A; Sanes, Joshua R; Schnitzer, Mark J; Sejnowski, Terrence J; Tank, David W; Tsien, Roger Y; Ugurbil, Kamil; Wingfield, John C

    2015-05-19

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions.

  17. The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    PubMed Central

    Jorgenson, Lyric A.; Newsome, William T.; Anderson, David J.; Bargmann, Cornelia I.; Brown, Emery N.; Deisseroth, Karl; Donoghue, John P.; Hudson, Kathy L.; Ling, Geoffrey S. F.; MacLeish, Peter R.; Marder, Eve; Normann, Richard A.; Sanes, Joshua R.; Schnitzer, Mark J.; Sejnowski, Terrence J.; Tank, David W.; Tsien, Roger Y.; Ugurbil, Kamil; Wingfield, John C.

    2015-01-01

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions. PMID:25823863

  18. Brain repair after stroke—a novel neurological model

    PubMed Central

    Small, Steven L.; Buccino, Giovanni; Solodkin, Ana

    2017-01-01

    Following stroke, patients are commonly left with debilitating motor and speech impairments. This article reviews the state of the art in neurological repair for stroke and proposes a new model for the future. We suggest that stroke treatment—from the time of the ictus itself to living with the consequences—must be fundamentally neurological, from limiting the extent of injury at the outset, to repairing the consequent damage. Our model links brain and behaviour by targeting brain circuits, and we illustrate the model though action observation treatment, which aims to enhance brain network connectivity. The model is based on the assumptions that the mechanisms of neural repair inherently involve cellular and circuit plasticity, that brain plasticity is a synaptic phenomenon that is largely stimulus-dependent, and that brain repair required both physical and behavioural interventions that are tailored to reorganize specific brain circuits. We review current approaches to brain repair after stroke and present our new model, and discuss the biological foundations, rationales, and data to support our novel approach to upper-extremity and language rehabilitation. We believe that by enhancing plasticity at the level of brain network interactions, this neurological model for brain repair could ultimately lead to a cure for stroke. PMID:24217509

  19. Short circuit in deep brain stimulation.

    PubMed

    Samura, Kazuhiro; Miyagi, Yasushi; Okamoto, Tsuyoshi; Hayami, Takehito; Kishimoto, Junji; Katano, Mitsuo; Kamikaseda, Kazufumi

    2012-11-01

    The authors undertook this study to investigate the incidence, cause, and clinical influence of short circuits in patients treated with deep brain stimulation (DBS). After the incidental identification of a short circuit during routine follow-up, the authors initiated a policy at their institution of routinely evaluating both therapeutic impedance and system impendence at every outpatient DBS follow-up visit, irrespective of the presence of symptoms suggesting possible system malfunction. This study represents a report of their findings after 1 year of this policy. Implanted DBS leads exhibiting short circuits were identified in 7 patients (8.9% of the patients seen for outpatient follow-up examinations during the 12-month study period). The mean duration from DBS lead implantation to the discovery of the short circuit was 64.7 months. The symptoms revealing short circuits included the wearing off of therapeutic effect, apraxia of eyelid opening, or dysarthria in 6 patients with Parkinson disease (PD), and dystonia deterioration in 1 patient with generalized dystonia. All DBS leads with short circuits had been anchored to the cranium using titanium miniplates. Altering electrode settings resulted in clinical improvement in the 2 PD cases in which patients had specific symptoms of short circuits (2.5%) but not in the other 4 cases. The patient with dystonia underwent repositioning and replacement of a lead because the previous lead was located too anteriorly, but did not experience symptom improvement. In contrast to the sudden loss of clinical efficacy of DBS caused by an open circuit, short circuits may arise due to a gradual decrease in impedance, causing the insidious development of neurological symptoms via limited or extended potential fields as well as shortened battery longevity. The incidence of short circuits in DBS may be higher than previously thought, especially in cases in which DBS leads are anchored with miniplates. The circuit impedance of DBS should be routinely checked, even after a long history of DBS therapy, especially in cases of miniplate anchoring.

  20. From Contextual Fear to a Dynamic View of Memory Systems

    PubMed Central

    Fanselow, Michael S

    2009-01-01

    The brain does not learn and remember in a unitary fashion. Rather, different circuits specialize in certain classes of problems and encode different types of information. Damage to one of these systems typically results in amnesia only for the form of memory that is the affected region's specialty. How does the brain allocate a specific category of memory to a particular circuit? This question has received little attention. The currently dominant view, Multiple Memory Systems Theory, assumes that such abilities are hard-wired. Using fear conditioning as a paradigmatic case, I propose an alternative model in which mnemonic processing is allocated to specific circuits through a dynamic process. Potential circuits compete to form memories with the most efficient circuits emerging as winners. However, alternate circuits compensate when these “primary” circuits are compromised. PMID:19939724

  1. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  2. The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders

    PubMed Central

    Berridge, Kent C.; Ho, Chao-Yi; Richard, Jocelyn M.; DiFeliceantonio, Alexandra G.

    2010-01-01

    What we eat, when and how much, all are influenced by brain reward mechanisms that generate ‘liking’ and ‘wanting’ for foods. As a corollary, dysfunction in reward circuits might contribute to the recent rise of obesity and eating disorders. Here we assess brain mechanisms known to generate ‘liking’ and ‘wanting’ for foods, and evaluate their interaction with regulatory mechanisms of hunger and satiety, relevant to clinical issues. ‘Liking’ mechanisms include hedonic circuits that connect together cubic-millimeter hotspots in forebrain limbic structures such as nucleus accumbens and ventral pallidum (where opioid/endocannabinoid/orexin signals can amplify sensory pleasure). ‘Wanting’ mechanisms include larger opioid networks in nucleus accumbens, striatum, and amygdala that extend beyond the hedonic hotspots, as well as mesolimbic dopamine systems, and corticolimbic glutamate signals that interact with those systems. We focus on ways in which these brain reward circuits might participate in obesity or in eating disorders. PMID:20388498

  3. The human parental brain: In vivo neuroimaging

    PubMed Central

    Swain, James E.

    2015-01-01

    Interacting parenting thoughts and behaviors, supported by key brain circuits, critically shape human infants’ current and future behavior. Indeed, the parent–infant relationship provides infants with their first social environment, forming templates for what they can expect from others, how to interact with them and ultimately how they go on to themselves to be parents. This review concentrates on magnetic resonance imaging experiments of the human parent brain, which link brain physiology with parental thoughts and behaviors. After reviewing brain imaging techniques, certain social cognitive and affective concepts are reviewed, including empathy and trust—likely critical to parenting. Following that is a thorough study-by-study review of the state-of-the-art with respect to human neuroimaging studies of the parental brain—from parent brain responses to salient infant stimuli, including emotionally charged baby cries and brief visual stimuli to the latest structural brain studies. Taken together, this research suggests that networks of highly conserved hypothalamic–midbrain–limbic–paralimbic–cortical circuits act in concert to support parental brain responses to infants, including circuits for limbic emotion response and regulation. Thus, a model is presented in which infant stimuli activate sensory analysis brain regions, affect corticolimbic limbic circuits that regulate emotional response, motivation and reward related to their infant, ultimately organizing parenting impulses, thoughts and emotions into coordinated behaviors as a map for future studies. Finally, future directions towards integrated understanding of the brain basis of human parenting are outlined with profound implications for understanding and contributing to long term parent and infant mental health. PMID:21036196

  4. Epigenetic Influences on Brain Development and Plasticity

    PubMed Central

    Fagiolini, Michela; Jensen, Catherine L.; Champagne, Frances A.

    2009-01-01

    A fine interplay exists between sensory experience and innate genetic programs leading to the sculpting of neuronal circuits during early brain development. Recent evidence suggests that the dynamic regulation of gene expression through epigenetic mechanisms is at the interface between environmental stimuli and long-lasting molecular, cellular and complex behavioral phenotypes acquired during periods of developmental plasticity. Understanding these mechanisms may give insight into the formation of critical periods and provide new strategies for increasing plasticity and adaptive change in adulthood. PMID:19545993

  5. A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution.

    PubMed

    Ardid, Salva; Wang, Xiao-Jing

    2013-12-11

    A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.

  6. Dynamics of Gut-Brain Communication Underlying Hunger.

    PubMed

    Beutler, Lisa R; Chen, Yiming; Ahn, Jamie S; Lin, Yen-Chu; Essner, Rachel A; Knight, Zachary A

    2017-10-11

    Communication between the gut and brain is critical for homeostasis, but how this communication is represented in the dynamics of feeding circuits is unknown. Here we describe nutritional regulation of key neurons that control hunger in vivo. We show that intragastric nutrient infusion rapidly and durably inhibits hunger-promoting AgRP neurons in awake, behaving mice. This inhibition is proportional to the number of calories infused but surprisingly independent of macronutrient identity or nutritional state. We show that three gastrointestinal signals-serotonin, CCK, and PYY-are necessary or sufficient for these effects. In contrast, the hormone leptin has no acute effect on dynamics of these circuits or their sensory regulation but instead induces a slow modulation that develops over hours and is required for inhibition of feeding. These findings reveal how layers of visceral signals operating on distinct timescales converge on hypothalamic feeding circuits to generate a central representation of energy balance. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases

    PubMed Central

    Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265

  8. The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity

    PubMed Central

    DeFelipe, Javier

    2011-01-01

    The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of microcircuits with a similar basic structure, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective. PMID:21647212

  9. Neurotrophic actions of dopamine on the development of a serotonergic feeding circuit in Drosophila melanogaster

    PubMed Central

    2012-01-01

    Background In the fruit fly, Drosophila melanogaster, serotonin functions both as a neurotransmitter to regulate larval feeding, and in the development of the stomatogastric feeding circuit. There is an inverse relationship between neuronal serotonin levels during late embryogenesis and the complexity of the serotonergic fibers projecting from the larval brain to the foregut, which correlate with perturbations in feeding, the functional output of the circuit. Dopamine does not modulate larval feeding, and dopaminergic fibers do not innervate the larval foregut. Since dopamine can function in central nervous system development, separate from its role as a neurotransmitter, the role of neuronal dopamine was assessed on the development, and mature function, of the 5-HT larval feeding circuit. Results Both decreased and increased neuronal dopamine levels in late embryogenesis during development of this circuit result in depressed levels of larval feeding. Perturbations in neuronal dopamine during this developmental period also result in greater branch complexity of the serotonergic fibers innervating the gut, as well as increased size and number of the serotonin-containing vesicles along the neurite length. This neurotrophic action for dopamine is modulated by the D2 dopamine receptor expressed during late embryogenesis in central 5-HT neurons. Animals carrying transgenic RNAi constructs to knock down both dopamine and serotonin synthesis in the central nervous system display normal feeding and fiber architecture. However, disparate levels of neuronal dopamine and serotonin during development of the circuit result in abnormal gut fiber architecture and feeding behavior. Conclusions These results suggest that dopamine can exert a direct trophic influence on the development of a specific neural circuit, and that dopamine and serotonin may interact with each other to generate the neural architecture necessary for normal function of the circuit. PMID:22413901

  10. Analyzing the dynamics of brain circuits with temperature: design and implementation of a miniature thermoelectric device.

    PubMed

    Aronov, Dmitriy; Fee, Michale S

    2011-04-15

    Traditional lesion or inactivation methods are useful for determining if a given brain area is involved in the generation of a behavior, but not for determining if circuit dynamics in that area control the timing of the behavior. In contrast, localized mild cooling or heating of a brain area alters the speed of neuronal and circuit dynamics and can reveal the role of that area in the control of timing. It has been shown that miniaturized solid-state heat pumps based on the Peltier effect can be useful for analyzing brain dynamics in small freely behaving animals (Long and Fee, 2008). Here we present a theoretical analysis of these devices and a procedure for optimizing their design. We describe the construction and implementation of one device for cooling surface brain areas, such as cortex, and another device for cooling deep brain regions. We also present measurements of the magnitude and localization of the brain temperature changes produced by these two devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Voltage imaging to understand connections and functions of neuronal circuits.

    PubMed

    Antic, Srdjan D; Empson, Ruth M; Knöpfel, Thomas

    2016-07-01

    Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. Copyright © 2016 the American Physiological Society.

  12. Voltage imaging to understand connections and functions of neuronal circuits

    PubMed Central

    Antic, Srdjan D.; Empson, Ruth M.

    2016-01-01

    Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. PMID:27075539

  13. Birdsong and the neural production of steroids

    PubMed Central

    Remage-Healey, Luke; London, Sarah E.; Schinger, Barney A.

    2009-01-01

    The forebrain circuits involved in singing and audition (the ‘song system’) in songbirds exhibit a remarkable capacity to synthesize and respond to steroid hormones. This review considers how local brain steroid production impacts the development, sexual differentiation, and activity of song system circuitry. The songbird forebrain contains all of the enzymes necessary for the de novo synthesis of steroids - including neuroestrogens - from cholesterol. Steroid production enzymes are found in neuronal cell bodies, but they are also expressed in pre-synaptic terminals in the song system, indicating a novel mode of brain steroid delivery to local circuits. The song system expresses nuclear hormone receptors, consistent with local action of brain-derived steroids. Local steroid production also occurs in brain regions that do not express nuclear hormone receptors, suggesting a non-classical mode-of-action. Recent evidence indicates that local steroid levels can change rapidly within the forebrain, in a manner similar to traditional neuromodulators. Lastly, we consider growing evidence for modulatory interactions between brain-derived steroids and neurotransmitter/neuropeptide networks within the song system. Songbirds have therefore emerged as a rich and powerful model system to explore the neural and neurochemical regulation of social behavior. PMID:19589382

  14. The opportunities and challenges of large-scale molecular approaches to songbird neurobiology

    PubMed Central

    Mello, C.V.; Clayton, D.F.

    2014-01-01

    High-through put methods for analyzing genome structure and function are having a large impact in song-bird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects. PMID:25280907

  15. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution.

    PubMed

    Chiang, Ann-Shyn; Lin, Chih-Yung; Chuang, Chao-Chun; Chang, Hsiu-Ming; Hsieh, Chang-Huain; Yeh, Chang-Wei; Shih, Chi-Tin; Wu, Jian-Jheng; Wang, Guo-Tzau; Chen, Yung-Chang; Wu, Cheng-Chi; Chen, Guan-Yu; Ching, Yu-Tai; Lee, Ping-Chang; Lin, Chih-Yang; Lin, Hui-Hao; Wu, Chia-Chou; Hsu, Hao-Wei; Huang, Yun-Ann; Chen, Jing-Yi; Chiang, Hsin-Jung; Lu, Chun-Fang; Ni, Ru-Fen; Yeh, Chao-Yuan; Hwang, Jenn-Kang

    2011-01-11

    Animal behavior is governed by the activity of interconnected brain circuits. Comprehensive brain wiring maps are thus needed in order to formulate hypotheses about information flow and also to guide genetic manipulations aimed at understanding how genes and circuits orchestrate complex behaviors. To assemble this map, we deconstructed the adult Drosophila brain into approximately 16,000 single neurons and reconstructed them into a common standardized framework to produce a virtual fly brain. We have constructed a mesoscopic map and found that it consists of 41 local processing units (LPUs), six hubs, and 58 tracts covering the whole Drosophila brain. Despite individual local variation, the architecture of the Drosophila brain shows invariance for both the aggregation of local neurons (LNs) within specific LPUs and for the connectivity of projection neurons (PNs) between the same set of LPUs. An open-access image database, named FlyCircuit, has been constructed for online data archiving, mining, analysis, and three-dimensional visualization of all single neurons, brain-wide LPUs, their wiring diagrams, and neural tracts. We found that the Drosophila brain is assembled from families of multiple LPUs and their interconnections. This provides an essential first step in the analysis of information processing within and between neurons in a complete brain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The circuit architecture of whole brains at the mesoscopic scale.

    PubMed

    Mitra, Partha P

    2014-09-17

    Vertebrate brains of even moderate size are composed of astronomically large numbers of neurons and show a great degree of individual variability at the microscopic scale. This variation is presumably the result of phenotypic plasticity and individual experience. At a larger scale, however, relatively stable species-typical spatial patterns are observed in neuronal architecture, e.g., the spatial distributions of somata and axonal projection patterns, probably the result of a genetically encoded developmental program. The mesoscopic scale of analysis of brain architecture is the transitional point between a microscopic scale where individual variation is prominent and the macroscopic level where a stable, species-typical neural architecture is observed. The empirical existence of this scale, implicit in neuroanatomical atlases, combined with advances in computational resources, makes studying the circuit architecture of entire brains a practical task. A methodology has previously been proposed that employs a shotgun-like grid-based approach to systematically cover entire brain volumes with injections of neuronal tracers. This methodology is being employed to obtain mesoscale circuit maps in mouse and should be applicable to other vertebrate taxa. The resulting large data sets raise issues of data representation, analysis, and interpretation, which must be resolved. Even for data representation the challenges are nontrivial: the conventional approach using regional connectivity matrices fails to capture the collateral branching patterns of projection neurons. Future success of this promising research enterprise depends on the integration of previous neuroanatomical knowledge, partly through the development of suitable computational tools that encapsulate such expertise. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Grand Research Plan for Neural Circuits of Emotion and Memory--current status of neural circuit studies in China.

    PubMed

    Zhu, Yuan-Gui; Cao, He-Qi; Dong, Er-Dan

    2013-02-01

    During recent years, major advances have been made in neuroscience, i.e., asynchronous release, three-dimensional structural data sets, saliency maps, magnesium in brain research, and new functional roles of long non-coding RNAs. Especially, the development of optogenetic technology provides access to important information about relevant neural circuits by allowing the activation of specific neurons in awake mammals and directly observing the resulting behavior. The Grand Research Plan for Neural Circuits of Emotion and Memory was launched by the National Natural Science Foundation of China. It takes emotion and memory as its main objects, making the best use of cutting-edge technologies from medical science, life science and information science. In this paper, we outline the current status of neural circuit studies in China and the technologies and methodologies being applied, as well as studies related to the impairments of emotion and memory. In this phase, we are making efforts to repair the current deficiencies by making adjustments, mainly involving four aspects of core scientific issues to investigate these circuits at multiple levels. Five research directions have been taken to solve important scientific problems while the Grand Research Plan is implemented. Future research into this area will be multimodal, incorporating a range of methods and sciences into each project. Addressing these issues will ensure a bright future, major discoveries, and a higher level of treatment for all affected by debilitating brain illnesses.

  18. Neuromodulation: Selected approaches and challenges

    PubMed Central

    Parpura, Vladimir; Silva, Gabriel A.; Tass, Peter A.; Bennet, Kevin E.; Meyyappan, Meyya; Koehne, Jessica; Lee, Kendall H.; Andrews, Russell J.

    2012-01-01

    The brain operates through complex interactions in the flow of information and signal processing within neural networks. The “wiring” of such networks, being neuronal or glial, can physically and/or functionally go rogue in various pathological states. Neuromodulation, as a multidisciplinary venture, attempts to correct such faulty nets. In this review, selected approaches and challenges in neuromoduation are discussed. The use of water-dispersible carbon nanotubes have proven effective in modulation of neurite outgrowth in culture as well as in aiding regeneration after spinal cord injury in vivo. Studying neural circuits using computational biology and analytical engineering approaches brings to light geometrical mapping of dynamics within neural networks, much needed information for stimulation interventions in medical practice. Indeed, sophisticated desynchronization approaches used for brain stimulation have been successful in coaxing “misfiring” neuronal circuits to resume productive firing patterns in various human disorders. Devices have been developed for the real time measurement of various neurotransmitters as well as electrical activity in the human brain during electrical deep brain stimulation. Such devices can establish the dynamics of electrochemical changes in the brain during stimulation. With increasing application of nanomaterials in devices for electrical and chemical recording and stimulating in the brain, the era of cellular, and even intracellular, precision neuromodulation will soon be upon us. PMID:23190025

  19. Lighting up the brain's reward circuitry.

    PubMed

    Lobo, Mary Kay

    2012-07-01

    The brain's reward circuit is critical for mediating natural reward behaviors including food, sex, and social interaction. Drugs of abuse take over this circuit and produce persistent molecular and cellular alterations in the brain regions and their neural circuitry that make up the reward pathway. Recent use of optogenetic technologies has provided novel insights into the functional and molecular role of the circuitry and cell subtypes within these circuits that constitute this pathway. This perspective will address the current and future use of light-activated proteins, including those involved in modulating neuronal activity, cellular signaling, and molecular properties in the neural circuitry mediating rewarding stimuli and maladaptive responses to drugs of abuse. © 2012 New York Academy of Sciences.

  20. The autism associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain

    PubMed Central

    Peng, Yun; Lu, Zhongming; Li, Guohui; Piechowicz, Mariel; Anderson, Miranda; Uddin, Yasin; Wu, Jie; Qiu, Shenfeng

    2015-01-01

    The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which plays a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization, and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD. PMID:26728565

  1. Brain-mapping projects using the common marmoset.

    PubMed

    Okano, Hideyuki; Mitra, Partha

    2015-04-01

    Globally, there is an increasing interest in brain-mapping projects, including the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative project in the USA, the Human Brain Project (HBP) in Europe, and the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) project in Japan. These projects aim to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain. Brain/MINDS is focused on structural and functional mapping of the common marmoset (Callithrix jacchus) brain. This non-human primate has numerous advantages for brain mapping, including a well-developed frontal cortex and a compact brain size, as well as the availability of transgenic technologies. In the present review article, we discuss strategies for structural and functional mapping of the marmoset brain and the relation of the common marmoset to other animals models. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Brain Embodiment of Syntax and Grammar: Discrete Combinatorial Mechanisms Spelt Out in Neuronal Circuits

    ERIC Educational Resources Information Center

    Pulvermuller, Friedemann

    2010-01-01

    Neuroscience has greatly improved our understanding of the brain basis of abstract lexical and semantic processes. The neuronal devices underlying words and concepts are distributed neuronal assemblies reaching into sensory and motor systems of the cortex and, at the cognitive level, information binding in such widely dispersed circuits is…

  3. The maternal brain and its plasticity in humans

    PubMed Central

    Kim, Pilyoung; Strathearn, Lane; Swain, James E.

    2015-01-01

    Early mother-infant relationships play important roles in infants’ optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers’ brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  4. Genes and Social Behavior

    PubMed Central

    Robinson, Gene E.; Fernald, Russell D.; Clayton, David F.

    2011-01-01

    What specific genes and regulatory sequences contribute to the organization and functioning of brain circuits that support social behavior? How does social experience interact with information in the genome to modulate these brain circuits? Here we address these questions by highlighting progress that has been made in identifying and understanding two key “vectors of influence” that link genes, brain, and social behavior: 1) social information alters gene readout in the brain to influence behavior; and 2) genetic variation influences brain function and social behavior. We also briefly discuss how evolutionary changes in genomic elements influence social behavior and outline prospects for a systems biology of social behavior. PMID:18988841

  5. High on food: the interaction between the neural circuits for feeding and for reward.

    PubMed

    Liu, Jing-Jing; Mukherjee, Diptendu; Haritan, Doron; Ignatowska-Jankowska, Bogna; Liu, Ji; Citri, Ami; Pang, Zhiping P

    2015-04-01

    Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.

  6. Development of a Compact Rectenna for Wireless Powering of a Head-Mountable Deep Brain Stimulation Device.

    PubMed

    Hosain, M D Kamal; Kouzani, Abbas Z; Tye, Susannah J; Abulseoud, Osama A; Amiet, Andrew; Galehdar, Amir; Kaynak, Akif; Berk, Michael

    2014-01-01

    Design of a rectangular spiral planar inverted-F antenna (PIFA) at 915 MHz for wireless power transmission applications is proposed. The antenna and rectifying circuitry form a rectenna, which can produce dc power from a distant radio frequency energy transmitter. The generated dc power is used to operate a low-power deep brain stimulation pulse generator. The proposed antenna has the dimensions of 10 mm [Formula: see text]12.5 mm [Formula: see text]1.5 mm and resonance frequency of 915 MHz with a measured bandwidth of 15 MHz at return loss of [Formula: see text]. A dielectric substrate of FR-4 of [Formula: see text] and [Formula: see text] with thickness of 1.5 mm is used for both antenna and rectifier circuit simulation and fabrication because of its availability and low cost. An L-section impedance matching circuit is used between the PIFA and voltage doubler rectifier. The impedance matching circuit also works as a low-pass filter for elimination of higher order harmonics. Maximum dc voltage at the rectenna output is 7.5 V in free space and this rectenna can drive a deep brain stimulation pulse generator at a distance of 30 cm from a radio frequency energy transmitter, which transmits power of 26.77 dBm.

  7. Neuromodulation interventions for addictive disorders: challenges, promise, and roadmap for future research.

    PubMed

    Spagnolo, Primavera A; Goldman, David

    2017-05-01

    Addictive disorders are a major public health concern, associated with high relapse rates, significant disability and substantial mortality. Unfortunately, current interventions are only modestly effective. Preclinical studies as well as human neuroimaging studies have provided strong evidence that the observable behaviours that characterize the addiction phenotype, such as compulsive drug consumption, impaired self-control, and behavioural inflexibility, reflect underlying dysregulation and malfunction in specific neural circuits. These developments have been accompanied by advances in neuromodulation interventions, both invasive as deep brain stimulation, and non-invasive such as repetitive transcranial magnetic stimulation and transcranial direct current stimulation. These interventions appear particularly promising as they may not only allow us to probe affected brain circuits in addictive disorders, but also seem to have unique therapeutic applications to directly target and remodel impaired circuits. However, the available literature is still relatively small and sparse, and the long-term safety and efficacy of these interventions need to be confirmed. Here we review the literature on the use of neuromodulation in addictive disorders to highlight progress limitations with the aim to suggest future directions for this field. Published by Oxford University Press on behalf of the Guarantors of Brain 2016. This work is written by US Government employees and is in the public domain in the United States.

  8. Micro- and nano-technologies to probe the mechano-biology of the brain.

    PubMed

    Tay, Andy; Schweizer, Felix E; Di Carlo, Dino

    2016-05-24

    Biomechanical forces have been demonstrated to influence a plethora of neuronal functions across scales including gene expression, mechano-sensitive ion channels, neurite outgrowth and folding of the cortices in the brain. However, the detailed roles biomechanical forces may play in brain development and disorders has seen limited study, partly due to a lack of effective methods to probe the mechano-biology of the brain. Current techniques to apply biomechanical forces on neurons often suffer from low throughput and poor spatiotemporal resolution. On the other hand, newly developed micro- and nano-technologies can overcome these aforementioned limitations and offer advantages such as lower cost and possibility of non-invasive control of neuronal circuits. This review compares the range of conventional, micro- and nano-technological techniques that have been developed and how they have been or can be used to understand the effect of biomechanical forces on neuronal development and homeostasis.

  9. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  10. Micropower circuits for bidirectional wireless telemetry in neural recording applications.

    PubMed

    Neihart, Nathan M; Harrison, Reid R

    2005-11-01

    State-of-the art neural recording systems require electronics allowing for transcutaneous, bidirectional data transfer. As these circuits will be implanted near the brain, they must be small and low power. We have developed micropower integrated circuits for recovering clock and data signals over a transcutaneous power link. The data recovery circuit produces a digital data signal from an ac power waveform that has been amplitude modulated. We have also developed an FM transmitter with the lowest power dissipation reported for biosignal telemetry. The FM transmitter consists of a low-noise biopotential amplifier and a voltage controlled oscillator used to transmit amplified neural signals at a frequency near 433 MHz. All circuits were fabricated in a standard 0.5-microm CMOS VLSI process. The resulting chip is powered through a wireless inductive link. The power consumption of the clock and data recovery circuits is measured to be 129 microW; the power consumption of the transmitter is measured to be 465 microW when using an external surface mount inductor. Using a parasitic antenna less than 2 mm long, a received power level was measured to be -59.73 dBm at a distance of one meter.

  11. Neuroelectronics and modeling of electrical signals for monitoring and control of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Chintakuntla, Ritesh R.; Abraham, Jose K.; Varadan, Vijay K.

    2009-03-01

    The brain and the human nervous system are perhaps the most researched but least understood components of the human body. This is so because of the complex nature of its working and the high density of functions. The monitoring of neural signals could help one better understand the working of the brain and newer recording and monitoring methods have been developed ever since it was discovered that the brain communicates internally by means of electrical pulses. Neuroelectronics is the field which deals with the interface between electronics or semiconductors to living neurons. This includes monitoring of electrical activity from the brain as well as the development of feedback devices for stimulation of parts of the brain for treatment of disorders. In this paper these electrical signals are modeled through a nano/microelectrode arrays based on the electronic equivalent model using Cadence PSD 15.0. The results were compared with those previously published models such as Kupfmuller and Jenik's model, McGrogan's Neuron Model which are based on the Hodgkin and Huxley model. We have developed and equivalent circuit model using discrete passive components to simulate the electrical activity of the neurons. The simulated circuit can be easily be modified by adding some more ionic channels and the results can be used to predict necessary external stimulus needed for stimulation of neurons affected by the Parkinson's disease (PD). Implementing such a model in PD patients could predict the necessary voltages required for the electrical stimulation of the sub-thalamus region for the control tremor motion.

  12. Increased Global Interaction Across Functional Brain Modules During Cognitive Emotion Regulation.

    PubMed

    Brandl, Felix; Mulej Bratec, Satja; Xie, Xiyao; Wohlschläger, Afra M; Riedl, Valentin; Meng, Chun; Sorg, Christian

    2017-07-13

    Cognitive emotion regulation (CER) enables humans to flexibly modulate their emotions. While local theories of CER neurobiology suggest interactions between specialized local brain circuits underlying CER, e.g., in subparts of amygdala and medial prefrontal cortices (mPFC), global theories hypothesize global interaction increases among larger functional brain modules comprising local circuits. We tested the global CER hypothesis using graph-based whole-brain network analysis of functional MRI data during aversive emotional processing with and without CER. During CER, global between-module interaction across stable functional network modules increased. Global interaction increase was particularly driven by subregions of amygdala and cuneus-nodes of highest nodal participation-that overlapped with CER-specific local activations, and by mPFC and posterior cingulate as relevant connector hubs. Results provide evidence for the global nature of human CER, complementing functional specialization of embedded local brain circuits during successful CER. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Complexity and Competition in Appetitive and Aversive Neural Circuits

    PubMed Central

    Barberini, Crista L.; Morrison, Sara E.; Saez, Alex; Lau, Brian; Salzman, C. Daniel

    2012-01-01

    Decision-making often involves using sensory cues to predict possible rewarding or punishing reinforcement outcomes before selecting a course of action. Recent work has revealed complexity in how the brain learns to predict rewards and punishments. Analysis of neural signaling during and after learning in the amygdala and orbitofrontal cortex, two brain areas that process appetitive and aversive stimuli, reveals a dynamic relationship between appetitive and aversive circuits. Specifically, the relationship between signaling in appetitive and aversive circuits in these areas shifts as a function of learning. Furthermore, although appetitive and aversive circuits may often drive opposite behaviors – approaching or avoiding reinforcement depending upon its valence – these circuits can also drive similar behaviors, such as enhanced arousal or attention; these processes also may influence choice behavior. These data highlight the formidable challenges ahead in dissecting how appetitive and aversive neural circuits interact to produce a complex and nuanced range of behaviors. PMID:23189037

  14. Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain

    PubMed Central

    Tennant, Kelly A.; Taylor, Stephanie L.; White, Emily R.; Brown, Craig E.

    2017-01-01

    To regain sensorimotor functions after stroke, surviving neural circuits must reorganize and form new connections. Although the thalamus is critical for processing and relaying sensory information to the cortex, little is known about how stroke affects the structure and function of these connections, or whether a therapeutic approach targeting these circuits can improve recovery. Here we reveal with in vivo calcium imaging that stroke in somatosensory cortex dampens the excitability of surviving thalamocortical circuits. Given this deficit, we hypothesized that chronic transcranial window optogenetic stimulation of thalamocortical axons could facilitate recovery. Using two-photon imaging, we show that optogenetic stimulation promotes the formation of new and stable thalamocortical synaptic boutons, without impacting axon branch dynamics. Stimulation also enhances the recovery of somatosensory cortical circuit function and forepaw sensorimotor abilities. These results demonstrate that an optogenetic approach can rewire thalamocortical circuits and restore function in the damaged brain. PMID:28643802

  15. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain

    PubMed Central

    Kim, Christina K; Yang, Samuel J; Pichamoorthy, Nandini; Young, Noah P; Kauvar, Isaac; Jennings, Joshua H; Lerner, Talia N; Berndt, Andre; Lee, Soo Yeun; Ramakrishnan, Charu; Davidson, Thomas J; Inoue, Masatoshi; Bito, Haruhiko; Deisseroth, Karl

    2017-01-01

    Real-time activity measurements from multiple specific cell populations and projections are likely to be important for understanding the brain as a dynamical system. Here we developed frame-projected independent-fiber photometry (FIP), which we used to record fluorescence activity signals from many brain regions simultaneously in freely behaving mice. We explored the versatility of the FIP microscope by quantifying real-time activity relationships among many brain regions during social behavior, simultaneously recording activity along multiple axonal pathways during sensory experience, performing simultaneous two-color activity recording, and applying optical perturbation tuned to elicit dynamics that match naturally occurring patterns observed during behavior. PMID:26878381

  16. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection

    PubMed Central

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is important as it necessarily precedes the derivation and deployment of more efficacious treatments. PMID:28928987

  17. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection.

    PubMed

    Phillips, Cristy

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is important as it necessarily precedes the derivation and deployment of more efficacious treatments.

  18. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    PubMed Central

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  19. From a meso- to micro-scale connectome: array tomography and mGRASP

    PubMed Central

    Rah, Jong-Cheol; Feng, Linqing; Druckmann, Shaul; Lee, Hojin; Kim, Jinhyun

    2015-01-01

    Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT) and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP) can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing), combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors. PMID:26089781

  20. Cognitive Developmental Biology: History, Process and Fortune's Wheel

    ERIC Educational Resources Information Center

    Balaban, Evan

    2006-01-01

    Biological contributions to cognitive development continue to be conceived predominantly along deterministic lines, with proponents of different positions arguing about the preponderance of gene-based versus experience-based influences that organize brain circuits irreversibly during prenatal or early postnatal life, and evolutionary influences…

  1. Striatal Circuits as a Common Node for Autism Pathophysiology

    PubMed Central

    Fuccillo, Marc V.

    2016-01-01

    Autism spectrum disorders (ASD) are characterized by two seemingly unrelated symptom domains—deficits in social interactions and restrictive, repetitive patterns of behavioral output. Whether the diverse nature of ASD symptomatology represents distributed dysfunction of brain networks or abnormalities within specific neural circuits is unclear. Striatal dysfunction is postulated to underlie the repetitive motor behaviors seen in ASD, and neurological and brain-imaging studies have supported this assumption. However, as our appreciation of striatal function expands to include regulation of behavioral flexibility, motivational state, goal-directed learning, and attention, we consider whether alterations in striatal physiology are a central node mediating a range of autism-associated behaviors, including social and cognitive deficits that are hallmarks of the disease. This review investigates multiple genetic mouse models of ASD to explore whether abnormalities in striatal circuits constitute a common pathophysiological mechanism in the development of autism-related behaviors. Despite the heterogeneity of genetic insult investigated, numerous genetic ASD models display alterations in the structure and function of striatal circuits, as well as abnormal behaviors including repetitive grooming, stereotypic motor routines, deficits in social interaction and decision-making. Comparative analysis in rodents provides a unique opportunity to leverage growing genetic association data to reveal canonical neural circuits whose dysfunction directly contributes to discrete aspects of ASD symptomatology. The description of such circuits could provide both organizing principles for understanding the complex genetic etiology of ASD as well as novel treatment routes. Furthermore, this focus on striatal mechanisms of behavioral regulation may also prove useful for exploring the pathogenesis of other neuropsychiatric diseases, which display overlapping behavioral deficits with ASD. PMID:26903795

  2. MRI/DTI of the Brain Stem Reveals Reversible and Irreversible Disruption of the Baroreflex Neural Circuits: Clinical Implications

    PubMed Central

    Su, Chia-Hao; Tsai, Ching-Yi; Chang, Alice Y.W.; Chan, Julie Y.H.; Chan, Samuel H.H.

    2016-01-01

    Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows. PMID:27162554

  3. MRI/DTI of the Brain Stem Reveals Reversible and Irreversible Disruption of the Baroreflex Neural Circuits: Clinical Implications.

    PubMed

    Su, Chia-Hao; Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2016-01-01

    Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows.

  4. Differences in Callosal and Forniceal Diffusion between Patients with and without Postconcussive Migraine.

    PubMed

    Alhilali, L M; Delic, J; Fakhran, S

    2017-04-01

    Posttraumatic migraines are common after mild traumatic brain injury. The purpose of this study was to determine if a specific axonal injury pattern underlies posttraumatic migraines after mild traumatic brain injury utilizing Tract-Based Spatial Statistics analysis of diffusion tensor imaging. DTI was performed in 58 patients with mild traumatic brain injury with posttraumatic migraines. Controls consisted of 17 patients with mild traumatic brain injury without posttraumatic migraines. Fractional anisotropy and diffusivity maps were generated to measure white matter integrity and were evaluated by using Tract-Based Spatial Statistics regression analysis with a general linear model. DTI findings were correlated with symptom severity, neurocognitive test scores, and time to recovery with the Pearson correlation coefficient. Patients with mild traumatic brain injury with posttraumatic migraines were not significantly different from controls in terms of age, sex, type of injury, or neurocognitive test performance. Patients with posttraumatic migraines had higher initial symptom severity ( P = .01) than controls. Compared with controls, patients with mild traumatic brain injury with posttraumatic migraines had decreased fractional anisotropy in the corpus callosum ( P = .03) and fornix/septohippocampal circuit ( P = .045). Injury to the fornix/septohippocampal circuit correlated with decreased visual memory ( r = 0.325, P = .01). Injury to corpus callosum trended toward inverse correlation with recovery ( r = -0.260, P = .05). Injuries to the corpus callosum and fornix/septohippocampal circuit were seen in patients with mild traumatic brain injury with posttraumatic migraines, with injuries in the fornix/septohippocampal circuit correlating with decreased performance on neurocognitive testing. © 2017 by American Journal of Neuroradiology.

  5. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism.

    PubMed

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène; Pitel, Anne L

    2016-09-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez's circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and (18)F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez's circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez's circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. © The Author(s) 2015.

  6. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism

    PubMed Central

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène

    2015-01-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez’s circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and 18F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez’s circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez’s circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. PMID:26661206

  7. Understanding in an instant: neurophysiological evidence for mechanistic language circuits in the brain.

    PubMed

    Pulvermüller, Friedemann; Shtyrov, Yury; Hauk, Olaf

    2009-08-01

    How long does it take the human mind to grasp the idea when hearing or reading a sentence? Neurophysiological methods looking directly at the time course of brain activity indexes of comprehension are critical for finding the answer to this question. As the dominant cognitive approaches, models of serial/cascaded and parallel processing, make conflicting predictions on the time course of psycholinguistic information access, they can be tested using neurophysiological brain activation recorded in MEG and EEG experiments. Seriality and cascading of lexical, semantic and syntactic processes receives support from late (latency approximately 1/2s) sequential neurophysiological responses, especially N400 and P600. However, parallelism is substantiated by early near-simultaneous brain indexes of a range of psycholinguistic processes, up to the level of semantic access and context integration, emerging already 100-250ms after critical stimulus information is present. Crucially, however, there are reliable latency differences of 20-50ms between early cortical area activations reflecting lexical, semantic and syntactic processes, which are left unexplained by current serial and parallel brain models of language. We here offer a mechanistic model grounded in cortical nerve cell circuits that builds upon neuroanatomical and neurophysiological knowledge and explains both near-simultaneous activations and fine-grained delays. A key concept is that of discrete distributed cortical circuits with specific inter-area topographies. The full activation, or ignition, of specifically distributed binding circuits explains the near-simultaneity of early neurophysiological indexes of lexical, syntactic and semantic processing. Activity spreading within circuits determined by between-area conduction delays accounts for comprehension-related regional activation differences in the millisecond range.

  8. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis.

    PubMed

    Kight, Katherine E; McCarthy, Margaret M

    2014-12-01

    Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. All-optical mapping of barrel cortex circuits based on simultaneous voltage-sensitive dye imaging and channelrhodopsin-mediated photostimulation

    PubMed Central

    Lo, Shun Qiang; Koh, Dawn X. P.; Sng, Judy C. G.; Augustine, George J.

    2015-01-01

    Abstract. We describe an experimental approach that uses light to both control and detect neuronal activity in mouse barrel cortex slices: blue light patterned by a digital micromirror array system allowed us to photostimulate specific layers and columns, while a red-shifted voltage-sensitive dye was used to map out large-scale circuit activity. We demonstrate that such all-optical mapping can interrogate various circuits in somatosensory cortex by sequentially activating different layers and columns. Further, mapping in slices from whisker-deprived mice demonstrated that chronic sensory deprivation did not significantly alter feedforward inhibition driven by layer 5 pyramidal neurons. Further development of voltage-sensitive optical probes should allow this all-optical mapping approach to become an important and high-throughput tool for mapping circuit interactions in the brain. PMID:26158003

  10. Temporal Loss of Tsc1: Neural Development and Brain Disease in Tuberous Sclerosis

    DTIC Science & Technology

    2013-06-01

    2001). The thalamus has also been linked to the autism component in human TS (Asano et al., 2001) and is poised to play an important role in brain...and Autism -related Disorders. June 10-15, 2012, Stonehill College, MA. Normand E, Browning C, Machan JT, Voelcker B, Zervas M (2012) The deletion of...Foundation Autism Research Initiative Annual RFA (2013) Linking genetic mosaicism, neural circuit abnormalities and behavior. Simons Foundation Autism

  11. The Effect of Herrmann Whole Brain Teaching Method on Students' Understanding of Simple Electric Circuits

    ERIC Educational Resources Information Center

    Bawaneh, Ali Khalid Ali; Nurulazam Md Zain, Ahmad; Salmiza, Saleh

    2011-01-01

    The purpose of this study was to investigate the effect of Herrmann Whole Brain Teaching Method over conventional teaching method on eight graders in their understanding of simple electric circuits in Jordan. Participants (N = 273 students; M = 139, F = 134) were randomly selected from Bani Kenanah region-North of Jordan and randomly assigned to…

  12. The endogenous opioid system: a common substrate in drug addiction.

    PubMed

    Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael

    2010-05-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.

  13. The functional significance of newly born neurons integrated into olfactory bulb circuits.

    PubMed

    Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-01-01

    The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.

  14. The functional significance of newly born neurons integrated into olfactory bulb circuits

    PubMed Central

    Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-01-01

    The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons. PMID:24904263

  15. Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly

    PubMed Central

    Appler, Jessica M.; Goodrich, Lisa V.

    2011-01-01

    Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain. PMID:21232575

  16. Neural circuits underlying mother’s voice perception predict social communication abilities in children

    PubMed Central

    Abrams, Daniel A.; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M.; Baker, Amanda E.; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod

    2016-01-01

    The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child’s life is mother's voice: Infants discriminate their mother’s voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother’s voice or whether this brain activity is related to children’s social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother’s voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother’s voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired. PMID:27185915

  17. Neural circuits underlying mother's voice perception predict social communication abilities in children.

    PubMed

    Abrams, Daniel A; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M; Baker, Amanda E; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod

    2016-05-31

    The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child's life is mother's voice: Infants discriminate their mother's voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother's voice or whether this brain activity is related to children's social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother's voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother's voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired.

  18. Vision Drives Correlated Activity without Patterned Spontaneous Activity in Developing Xenopus Retina

    PubMed Central

    Demas, James A.; Payne, Hannah; Cline, Hollis T.

    2011-01-01

    Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABAA receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement. PMID:21312343

  19. Functional Disturbances Within Frontostriatal Circuits Across Multiple Childhood Psychopathologies

    PubMed Central

    Marsh, Rachel; Maia, Tiago V.; Peterson, Bradley S.

    2009-01-01

    Objective Neuroimaging studies of healthy individuals inform us about the normative maturation of the frontostriatal circuits that subserve self-regulatory control processes. Findings from these studies can be used as a reference frame against which to compare the aberrant development of these processes in individuals across a wide range of childhood psychopathologies. Method The authors reviewed extensive neuroimaging evidence for the presence of abnormalities in frontostriatal circuits in children and adults with Tourette’s syndrome and obsessive-compulsive disorder (OCD) as well as a more limited number of imaging studies of adolescents and adults with anorexia nervosa or bulimia nervosa that, together, implicate dysregulation of frontostriatal control systems in the pathogenesis of these eating disorders. Results The presence of an impaired capacity for self-regulatory control that derives from abnormal development of frontostriatal circuits likely interacts in similar ways with normally occurring somatic sensations and motor urges, intrusive thoughts, sensations of hunger, and preoccupation with body shape and weight to contribute, respectively, to the development of the tics of Tourette’s syndrome, the obsessions of OCD, the binge eating behaviors of bulimia, and the self-starvation of anorexia. Conclusions Analogous brain mechanisms in parallel frontostriatal circuits, or even in differing portions of the same frontostriatal circuit, may underlie the differing behavioral disturbances in these multiple disorders, although further research is needed to confirm this hypothesis. PMID:19448188

  20. The search of "canonical" explanations for the cerebral cortex.

    PubMed

    Plebe, Alessio

    2018-06-15

    This paper addresses a fundamental line of research in neuroscience: the identification of a putative neural processing core of the cerebral cortex, often claimed to be "canonical". This "canonical" core would be shared by the entire cortex, and would explain why it is so powerful and diversified in tasks and functions, yet so uniform in architecture. The purpose of this paper is to analyze the search for canonical explanations over the past 40 years, discussing the theoretical frameworks informing this research. It will highlight a bias that, in my opinion, has limited the success of this research project, that of overlooking the dimension of cortical development. The earliest explanation of the cerebral cortex as canonical was attempted by David Marr, deriving putative cortical circuits from general mathematical laws, loosely following a deductive-nomological account. Although Marr's theory turned out to be incorrect, one of its merits was to have put the issue of cortical circuit development at the top of his agenda. This aspect has been largely neglected in much of the research on canonical models that has followed. Models proposed in the 1980s were conceived as mechanistic. They identified a small number of components that interacted as a basic circuit, with each component defined as a function. More recent models have been presented as idealized canonical computations, distinct from mechanistic explanations, due to the lack of identifiable cortical components. Currently, the entire enterprise of coming up with a single canonical explanation has been criticized as being misguided, and the premise of the uniformity of the cortex has been strongly challenged. This debate is analyzed here. The legacy of the canonical circuit concept is reflected in both positive and negative ways in recent large-scale brain projects, such as the Human Brain Project. One positive aspect is that these projects might achieve the aim of producing detailed simulations of cortical electrical activity, a negative one regards whether they will be able to find ways of simulating how circuits actually develop.

  1. Brain representations for acquiring and recalling visual-motor adaptations

    PubMed Central

    Bédard, Patrick; Sanes, Jerome N.

    2014-01-01

    Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall has less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events. PMID:25019676

  2. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis.

    PubMed

    Castilla-Ortega, Estela; Serrano, Antonia; Blanco, Eduardo; Araos, Pedro; Suárez, Juan; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-07-01

    Cocaine addiction is a chronic brain disease in which the drug seeking habits and profound cognitive, emotional and motivational alterations emerge from drug-induced neuroadaptations on a vulnerable brain. Therefore, a 'cocaine addiction brain circuit' has been described to explain this disorder. Studies in both cocaine patients and rodents reveal the hippocampus as a main node in the cocaine addiction circuit. The contribution of the hippocampus to cocaine craving and the associated memories is essential to understand the chronic relapsing nature of addiction, which is the main obstacle for the recovery. Interestingly, the hippocampus holds a particular form of plasticity that is rare in the adult brain: the ability to generate new functional neurons. There is an active scientific debate on the contributions of these new neurons to the addicted brain. This review focuses on the potential role(s) of adult hippocampal neurogenesis (AHN) in cocaine addiction. Although the current evidence primarily originates from animal research, these preclinical studies support AHN as a relevant component for the hippocampal effects of cocaine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer’s Disease

    PubMed Central

    Dulla, Chris G.; Coulter, Douglas A.; Ziburkus, Jokubas

    2015-01-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer’s disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. PMID:25948650

  4. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease.

    PubMed

    Dulla, Chris G; Coulter, Douglas A; Ziburkus, Jokubas

    2016-06-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. © The Author(s) 2015.

  5. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    PubMed

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  6. Too Important to Ignore: A Post-Intentional Phenomenological Investigation of Teaching Pre-Service Early Childhood Teachers about Infants and Toddlers

    ERIC Educational Resources Information Center

    Pearson, Jolene A.

    2016-01-01

    A watershed of knowledge about how very young children learn and develop has been revealed through the science of child development. The science of child development has demonstrated that immediately from birth, babies need supportive relationships and responsive environments in order to build strong brain circuits and lay the foundations for both…

  7. A Translational Neuroscience Approach to Understanding the Development of Social Anxiety Disorder and its Pathophysiology

    PubMed Central

    Fox, Andrew S.; Kalin, Ned H.

    2014-01-01

    This review brings together recent research from molecular, neural circuit, animal model, and human studies to understand the neurodevelopmental mechanisms underlying Social Anxiety Disorder (SAD). SAD is common, debilitating, and often leads to further psychopathology. Numerous studies demonstrate that extremely behaviorally inhibited and temperamentally anxious young children are at marked risk to develop SAD. Recent work in human and nonhuman primates has identified a distributed brain network that underlies early-life anxiety including: central nucleus of the amygdala, anterior hippocampus and orbitofrontal cortex. Moreover, studies in nonhuman primates demonstrate that alterations in this circuit are trait-like in that they are stable over time and across contexts. Importantly, the components of this circuit are differentially influenced by heritable and environmental factors and specific lesion studies demonstrate a causal role for multiple components of the circuit. Molecular studies in rodents and primates are pointing to disrupted neurodevelopmental and neuroplastic processes within critical components of the early-life dispositional anxiety neural circuit. The possibility of identifying an early-life at-risk phenotype, along with an understanding of its neurobiology, provides an unusual opportunity to conceptualize novel preventive intervention strategies aimed at reducing the suffering of anxious children and preventing them from developing further psychopathology. PMID:25157566

  8. A translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology.

    PubMed

    Fox, Andrew S; Kalin, Ned H

    2014-11-01

    This review brings together recent research from molecular, neural circuit, animal model, and human studies to help understand the neurodevelopmental mechanisms underlying social anxiety disorder. Social anxiety disorder is common and debilitating, and it often leads to further psychopathology. Numerous studies have demonstrated that extremely behaviorally inhibited and temperamentally anxious young children are at marked risk of developing social anxiety disorder. Recent work in human and nonhuman primates has identified a distributed brain network that underlies early-life anxiety including the central nucleus of the amygdala, the anterior hippocampus, and the orbitofrontal cortex. Studies in nonhuman primates have demonstrated that alterations in this circuit are trait-like in that they are stable over time and across contexts. Notably, the components of this circuit are differentially influenced by heritable and environmental factors, and specific lesion studies have demonstrated a causal role for multiple components of the circuit. Molecular studies in rodents and primates point to disrupted neurodevelopmental and neuroplastic processes within critical components of the early-life dispositional anxiety neural circuit. The possibility of identifying an early-life at-risk phenotype, along with an understanding of its neurobiology, provides an unusual opportunity to conceptualize novel preventive intervention strategies aimed at reducing the suffering of anxious children and preventing them from developing further psychopathology.

  9. Beyond Molecular Codes: Simple Rules to Wire Complex Brains

    PubMed Central

    Hassan, Bassem A.; Hiesinger, P. Robin

    2015-01-01

    Summary Molecular codes, like postal zip codes, are generally considered a robust way to ensure the specificity of neuronal target selection. However, a code capable of unambiguously generating complex neural circuits is difficult to conceive. Here, we re-examine the notion of molecular codes in the light of developmental algorithms. We explore how molecules and mechanisms that have been considered part of a code may alternatively implement simple pattern formation rules sufficient to ensure wiring specificity in neural circuits. This analysis delineates a pattern-based framework for circuit construction that may contribute to our understanding of brain wiring. PMID:26451480

  10. Brain Magnetic Resonance Spectroscopy in Tourette's Disorder

    ERIC Educational Resources Information Center

    DeVito, Timothy J.; Drost, Dick J.; Pavlosky, William; Neufeld, Richard W.J.; Rajakumar, Nagalingam; McKinlay, B. Duncan; Williamson, Peter C.; Nicolson, Rob

    2005-01-01

    Objective: Although abnormalities of neural circuits involving the cortex, striatum, and thalamus are hypothesized to underlie Tourette's disorder, the neuronal abnormalities within components of these circuits are unknown. The purpose of this study was to examine the cellular neurochemistry within these circuits in Tourette's disorder using…

  11. Modeling neural circuits in Parkinson's disease.

    PubMed

    Psiha, Maria; Vlamos, Panayiotis

    2015-01-01

    Parkinson's disease (PD) is caused by abnormal neural activity of the basal ganglia which are connected to the cerebral cortex in the brain surface through complex neural circuits. For a better understanding of the pathophysiological mechanisms of PD, it is important to identify the underlying PD neural circuits, and to pinpoint the precise nature of the crucial aberrations in these circuits. In this paper, the general architecture of a hybrid Multilayer Perceptron (MLP) network for modeling the neural circuits in PD is presented. The main idea of the proposed approach is to divide the parkinsonian neural circuitry system into three discrete subsystems: the external stimuli subsystem, the life-threatening events subsystem, and the basal ganglia subsystem. The proposed model, which includes the key roles of brain neural circuit in PD, is based on both feed-back and feed-forward neural networks. Specifically, a three-layer MLP neural network with feedback in the second layer was designed. The feedback in the second layer of this model simulates the dopamine modulatory effect of compacta on striatum.

  12. Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT)

    PubMed Central

    Huang, Ting-hao; Niesman, Peter; Arasu, Deepshika; Lee, Donghyung; De La Cruz, Aubrie L; Callejas, Antuca; Hong, Elizabeth J

    2017-01-01

    Understanding the computations that take place in brain circuits requires identifying how neurons in those circuits are connected to one another. We describe a technique called TRACT (TRAnsneuronal Control of Transcription) based on ligand-induced intramembrane proteolysis to reveal monosynaptic connections arising from genetically labeled neurons of interest. In this strategy, neurons expressing an artificial ligand (‘donor’ neurons) bind to and activate a genetically-engineered artificial receptor on their synaptic partners (‘receiver’ neurons). Upon ligand-receptor binding at synapses the receptor is cleaved in its transmembrane domain and releases a protein fragment that activates transcription in the synaptic partners. Using TRACT in Drosophila we have confirmed the connectivity between olfactory receptor neurons and their postsynaptic targets, and have discovered potential new connections between neurons in the circadian circuit. Our results demonstrate that the TRACT method can be used to investigate the connectivity of neuronal circuits in the brain. PMID:29231171

  13. Non-invasive Brain Stimulation: Probing Intracortical Circuits and Improving Cognition in the Aging Brain

    PubMed Central

    Gomes-Osman, Joyce; Indahlastari, Aprinda; Fried, Peter J.; Cabral, Danylo L. F.; Rice, Jordyn; Nissim, Nicole R.; Aksu, Serkan; McLaren, Molly E.; Woods, Adam J.

    2018-01-01

    The impact of cognitive aging on brain function and structure is complex, and the relationship between aging-related structural changes and cognitive function are not fully understood. Physiological and pathological changes to the aging brain are highly variable, making it difficult to estimate a cognitive trajectory with which to monitor the conversion to cognitive decline. Beyond the information on the structural and functional consequences of cognitive aging gained from brain imaging and neuropsychological studies, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can enable stimulation of the human brain in vivo, offering useful insights into the functional integrity of intracortical circuits using electrophysiology and neuromodulation. TMS measurements can be used to identify and monitor changes in cortical reactivity, the integrity of inhibitory and excitatory intracortical circuits, the mechanisms of long-term potentiation (LTP)/depression-like plasticity and central cholinergic function. Repetitive TMS and tDCS can be used to modulate neuronal excitability and enhance cortical function, and thus offer a potential means to slow or reverse cognitive decline. This review will summarize and critically appraise relevant literature regarding the use of TMS and tDCS to probe cortical areas affected by the aging brain, and as potential therapeutic tools to improve cognitive function in the aging population. Challenges arising from intra-individual differences, limited reproducibility, and methodological differences will be discussed.

  14. The sleeping brain as a complex system.

    PubMed

    Olbrich, Eckehard; Achermann, Peter; Wennekers, Thomas

    2011-10-13

    'Complexity science' is a rapidly developing research direction with applications in a multitude of fields that study complex systems consisting of a number of nonlinear elements with interesting dynamics and mutual interactions. This Theme Issue 'The complexity of sleep' aims at fostering the application of complexity science to sleep research, because the brain in its different sleep stages adopts different global states that express distinct activity patterns in large and complex networks of neural circuits. This introduction discusses the contributions collected in the present Theme Issue. We highlight the potential and challenges of a complex systems approach to develop an understanding of the brain in general and the sleeping brain in particular. Basically, we focus on two topics: the complex networks approach to understand the changes in the functional connectivity of the brain during sleep, and the complex dynamics of sleep, including sleep regulation. We hope that this Theme Issue will stimulate and intensify the interdisciplinary communication to advance our understanding of the complex dynamics of the brain that underlies sleep and consciousness.

  15. Integrated circuits and molecular components for stress and feeding: implications for eating disorders

    PubMed Central

    Hardaway, J. A.; Crowley, N. A.; Bulik, C. M.; Kash, T. L.

    2015-01-01

    Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders. PMID:25366309

  16. The Short Circuit Model of Reading.

    ERIC Educational Resources Information Center

    Lueers, Nancy M.

    The name "short circuit" has been given to this model because, in many ways, it adequately describes what happens bioelectrically in the brain. The "short-circuiting" factors include linguistic, sociocultural, attitudinal and motivational, neurological, perceptual, and cognitive factors. Research is reviewed on ways in which each one affects any…

  17. Synaptogenesis and heritable aspects of executive attention.

    PubMed

    Fossella, John A; Sommer, Tobias; Fan, Jin; Pfaff, Don; Posner, Michael I

    2003-01-01

    In humans, changes in brain structure and function can be measured non-invasively during postnatal development. In animals, advanced optical imaging measures can track the formation of synapses during learning and behavior. With the recent progress in these technologies, it is appropriate to begin to assess how the physiological processes of synapse, circuit, and neural network formation relate to the process of cognitive development. Of particular interest is the development of executive function, which develops more gradually in humans. One approach that has shown promise is molecular genetics. The completion of the human genome project and the human genome diversity project make it straightforward to ask whether variation in a particular gene correlates with variation in behavior, brain structure, brain activity, or all of the above. Strategies that unify the wealth of biochemical knowledge pertaining to synapse formation with the functional measures of brain structure and activity may lead to new insights in developmental cognitive psychology. Copyright 2003 Wiley-Liss, Inc.

  18. A cortical circuit for voluntary laryngeal control: Implications for the evolution language.

    PubMed

    Hickok, Gregory

    2017-02-01

    The development of voluntary laryngeal control has been argued to be a key innovation in the evolution of language. Part of the evidence for this hypothesis comes from neuroscience. For example, comparative research has shown that humans have direct cortical innervation of motor neurons controlling the larynx, whereas nonhuman primates do not. Research on cortical motor control circuits has shown that the frontal lobe cortical motor system does not work alone; it is dependent on sensory feedback control circuits. Thus, the human brain must have evolved not only the required efferent motor pathway but also the cortical circuit for controlling those efferent signals. To fill this gap, I propose a link between the evolution of laryngeal control and neuroscience research on the human dorsal auditory-motor speech stream. Specifically, I argue that the dorsal stream Spt (Sylvian parietal-temporal) circuit evolved in step with the direct cortico-laryngeal control pathway and together represented a key advance in the evolution of speech. I suggest that a cortical laryngeal control circuit may play an important role in language by providing a prosodic frame for speech planning.

  19. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    PubMed Central

    Bennett, James E. M.; Bair, Wyeth

    2015-01-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. PMID:26308406

  20. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity.

    PubMed

    Bennett, James E M; Bair, Wyeth

    2015-08-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli.

  1. Two cell circuits of oriented adult hippocampal neurons on self-assembled monolayers for use in the study of neuronal communication in a defined system.

    PubMed

    Edwards, Darin; Stancescu, Maria; Molnar, Peter; Hickman, James J

    2013-08-21

    In this study, we demonstrate the directed formation of small circuits of electrically active, synaptically connected neurons derived from the hippocampus of adult rats through the use of engineered chemically modified culture surfaces that orient the polarity of the neuronal processes. Although synaptogenesis, synaptic communication, synaptic plasticity, and brain disease pathophysiology can be studied using brain slice or dissociated embryonic neuronal culture systems, the complex elements found in neuronal synapses makes specific studies difficult in these random cultures. The study of synaptic transmission in mature adult neurons and factors affecting synaptic transmission are generally studied in organotypic cultures, in brain slices, or in vivo. However, engineered neuronal networks would allow these studies to be performed instead on simple functional neuronal circuits derived from adult brain tissue. Photolithographic patterned self-assembled monolayers (SAMs) were used to create the two-cell "bidirectional polarity" circuit patterns. This pattern consisted of a cell permissive SAM, N-1[3-(trimethoxysilyl)propyl] diethylenetriamine (DETA), and was composed of two 25 μm somal adhesion sites connected with 5 μm lines acting as surface cues for guided axonal and dendritic regeneration. Surrounding the DETA pattern was a background of a non-cell-permissive poly(ethylene glycol) (PEG) SAM. Adult hippocampal neurons were first cultured on coverslips coated with DETA monolayers and were later passaged onto the PEG-DETA bidirectional polarity patterns in serum-free medium. These neurons followed surface cues, attaching and regenerating only along the DETA substrate to form small engineered neuronal circuits. These circuits were stable for more than 21 days in vitro (DIV), during which synaptic connectivity was evaluated using basic electrophysiological methods.

  2. Somatic and vicarious pain are represented by dissociable multivariate brain patterns

    PubMed Central

    Krishnan, Anjali; Woo, Choong-Wan; Chang, Luke J; Ruzic, Luka; Gu, Xiaosi; López-Solà, Marina; Jackson, Philip L; Pujol, Jesús; Fan, Jin; Wager, Tor D

    2016-01-01

    Understanding how humans represent others’ pain is critical for understanding pro-social behavior. ‘Shared experience’ theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others’ suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling others’ pain, and present new, more specific, brain targets for studying pain empathy. DOI: http://dx.doi.org/10.7554/eLife.15166.001 PMID:27296895

  3. Spatiotemporal Imaging of Glutamate-Induced Biophotonic Activities and Transmission in Neural Circuits

    PubMed Central

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca2+. We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural information. PMID:24454909

  4. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits.

    PubMed

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca(2+). We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural information.

  5. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation

    PubMed Central

    Macpherson, Lindsey J.; Zaharieva, Emanuela E.; Kearney, Patrick J.; Alpert, Michael H.; Lin, Tzu-Yang; Turan, Zeynep; Lee, Chi-Hon; Gallio, Marco

    2015-01-01

    Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system. PMID:26635273

  6. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice

    PubMed Central

    Montgomery, Kate L; Yeh, Alexander J; Ho, John S; Tsao, Vivien; Iyer, Shrivats Mohan; Grosenick, Logan; Ferenczi, Emily A; Tanabe, Yuji; Deisseroth, Karl; Delp, Scott L; Poon, Ada S Y

    2017-01-01

    To enable sophisticated optogenetic manipulation of neural circuits throughout the nervous system with limited disruption of animal behavior, light-delivery systems beyond fiber optic tethering and large, head-mounted wireless receivers are desirable. We report the development of an easy-to-construct, implantable wireless optogenetic device. Our smallest version (20 mg, 10 mm3) is two orders of magnitude smaller than previously reported wireless optogenetic systems, allowing the entire device to be implanted subcutaneously. With a radio-frequency (RF) power source and controller, this implant produces sufficient light power for optogenetic stimulation with minimal tissue heating (<1 °C). We show how three adaptations of the implant allow for untethered optogenetic control throughout the nervous system (brain, spinal cord and peripheral nerve endings) of behaving mice. This technology opens the door for optogenetic experiments in which animals are able to behave naturally with optogenetic manipulation of both central and peripheral targets. PMID:26280330

  7. Critical brain circuits at the intersection between stress and learning.

    PubMed

    Bangasser, Debra A; Shors, Tracey J

    2010-07-01

    The effects of stressful life experience on learning are pervasive and vary greatly both within and between individuals. It is therefore unlikely that any one mechanism will underlie these complicated processes. Nonetheless, without identifying the necessary and sufficient circuitry, no complete mechanism or set of mechanisms can be identified. In this review, we provide two anatomical frameworks through which stressful life experience can influence processes related to learning and memory. In the first, stressful experience releases stress hormones, primarily from the adrenals, which directly impact brain areas engaged in learning. In the second, stressful experience indirectly alters the circuits used in learning via intermediary brain regions. Importantly, these intermediary brain regions are not integral to the stress response or learning itself, but rather link the consequences of a stressful experience with circuits used to learn associations. As reviewed, the existing literature provides support for both frameworks, with somewhat more support for the first but sufficient evidence for the latter which involves intermediary structures. Once we determine the circumstances that engage each framework and identify which one is most predominant, we can begin to focus our efforts on describing the neuronal and hormonal mechanisms that operate within these circuits to influence cognitive processes after stressful life experience.

  8. Late development of cue integration is linked to sensory fusion in cortex.

    PubMed

    Dekker, Tessa M; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I; Welchman, Andrew E; Nardini, Marko

    2015-11-02

    Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3-5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7-9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6-12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3-5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Late Development of Cue Integration Is Linked to Sensory Fusion in Cortex

    PubMed Central

    Dekker, Tessa M.; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I.; Welchman, Andrew E.; Nardini, Marko

    2015-01-01

    Summary Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3, 4, 5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7, 8, 9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6–12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3, 4, 5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. PMID:26480841

  10. Development switch in neural circuitry underlying odor-malaise learning.

    PubMed

    Shionoya, Kiseko; Moriceau, Stephanie; Lunday, Lauren; Miner, Cathrine; Roth, Tania L; Sullivan, Regina M

    2006-01-01

    Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.

  11. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  12. The neural circuits of innate fear: detection, integration, action, and memorization

    PubMed Central

    Silva, Bianca A.; Gross, Cornelius T.

    2016-01-01

    How fear is represented in the brain has generated a lot of research attention, not only because fear increases the chances for survival when appropriately expressed but also because it can lead to anxiety and stress-related disorders when inadequately processed. In this review, we summarize recent progress in the understanding of the neural circuits processing innate fear in rodents. We propose that these circuits are contained within three main functional units in the brain: a detection unit, responsible for gathering sensory information signaling the presence of a threat; an integration unit, responsible for incorporating the various sensory information and recruiting downstream effectors; and an output unit, in charge of initiating appropriate bodily and behavioral responses to the threatful stimulus. In parallel, the experience of innate fear also instructs a learning process leading to the memorization of the fearful event. Interestingly, while the detection, integration, and output units processing acute fear responses to different threats tend to be harbored in distinct brain circuits, memory encoding of these threats seems to rely on a shared learning system. PMID:27634145

  13. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.

  14. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract

    PubMed Central

    Sun, Chengsan; Hummler, Edith

    2017-01-01

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747

  15. Application for the Drosophila ventral nerve cord standard in neuronal circuit reconstruction and in-depth analysis of mutant morphology.

    PubMed

    Boerner, Jana; Godenschwege, Tanja Angela

    2010-09-01

    The Drosophila standard brain has been a useful tool that provides information about position and size of different brain structures within a wild-type brain and allows the comparison of imaging data that were collected from individual preparations. Therefore the standard can be used to reveal and visualize differences of brain regions between wild-type and mutant brains and can provide spatial description of single neurons within the nervous system. Recently the standard brain was complemented by the generation of a ventral nerve cord (VNC) standard. Here the authors have registered the major components of a simple neuronal circuit, the Giant Fiber System (GFS), into this standard. The authors show that they can also virtually reconstruct the well-characterized synaptic contact of the Giant Fiber with its motorneuronal target when they register the individual neurons from different preparations into the VNC standard. In addition to the potential application for the standard thorax in neuronal circuit reconstruction, the authors show that it is a useful tool for in-depth analysis of mutant morphology of single neurons. The authors find quantitative and qualitative differences when they compared the Giant Fibers of two different neuroglian alleles, nrg(849) and nrg(G00305), using the averaged wild-type GFS in the standard VNC as a reference.

  16. A Distributed Network for Social Cognition Enriched for Oxytocin Receptors

    PubMed Central

    Mitre, Mariela; Marlin, Bianca J.; Schiavo, Jennifer K.; Morina, Egzona; Norden, Samantha E.; Hackett, Troy A.; Aoki, Chiye J.

    2016-01-01

    Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent–infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior. PMID:26911697

  17. Tryptophan circuit in fatigue: From blood to brain and cognition.

    PubMed

    Yamashita, Masatoshi; Yamamoto, Takanobu

    2017-11-15

    Brain tryptophan and its neuroactive metabolites play key roles in central fatigue. However, previous brain function analysis targets may have included both glia and neurons together. Here, we clarified the fatigue-cognitive circuit of the central-peripheral linkage, including the role of glial-neuronal interaction in cognition. Using a rat model of central fatigue induced by chronic sleep disorder (CFSD), we isolated presynaptic terminals and oligodendrocytes. Results showed that compared to control group, presynaptic levels of tryptophan, kynurenine, and kynurenic acid, but not serotonin, in the CFSD group were higher in the hypothalamus and hippocampus. Moreover, CFSD group had higher oligodendrocytic levels of tryptophan, and impaired spatial cognitive memory accuracy and increased hyperactivity and impulsivity. These findings suggest that dynamic change in glial-neuronal interactions within the hypothalamus-hippocampal circuit causes central fatigue, and increased tryptophan-kynurenic acid pathway activity in this circuit causes reduced cognitive function. Additionally, CFSD group had 1.5 times higher plasma levels of tryptophan and kynurenine. Furthermore, in rats undergoing intraperitoneal administration of kynurenine (100mg/kg) versus vehicle, kynurenine-treated rats showed enhanced production of kynurenic acid in the hippocampus, with suppressed recall of retained spatial cognitive memory. The study revealed that uptake of periphery-derived kynurenine and tryptophan into the brain enhances kynurenic acid production in the brain, and the three factors produce amplification effect involved in the role of central-peripheral linkage in central fatigue, triggering cognitive dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.

    PubMed

    Feierstein, C E; Portugues, R; Orger, M B

    2015-06-18

    In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal. Copyright © 2014. Published by Elsevier Ltd.

  19. Seeing Circuits Assemble

    PubMed Central

    Lichtman, Jeff W.; Smith, Stephen J.

    2009-01-01

    Developmental neurobiology has been greatly invigorated by a recent string of breakthroughs in molecular biology and optical physics that permit direct in vivo observation of neural circuit assembly. The imaging done thus far suggests that as brains are built, a significant amount of unbuilding is also occurring. We offer the view that this tumult is the result of the intersecting behaviors of the many single-celled creatures (i.e., neurons, glia, and progenitors) that inhabit brains. New tools will certainly be needed if we wish to monitor the myriad cooperative and competitive interactions at play in the cellular society that builds brains. PMID:18995818

  20. Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.

    PubMed

    Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P

    2017-12-13

    A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.

  1. Circuit to Construct Mapping: A Mathematical Tool for Assisting the Diagnosis and Treatment in Major Depressive Disorder

    PubMed Central

    Bielczyk, Natalia Z.; Buitelaar, Jan K.; Glennon, Jeffrey C.; Tiesinga, Paul H. E.

    2015-01-01

    Major depressive disorder (MDD) is a serious condition with a lifetime prevalence exceeding 16% worldwide. MDD is a heterogeneous disorder that involves multiple behavioral symptoms on the one hand and multiple neuronal circuits on the other hand. In this review, we integrate the literature on cognitive and physiological biomarkers of MDD with the insights derived from mathematical models of brain networks, especially models that can be used for fMRI datasets. We refer to the recent NIH research domain criteria initiative, in which a concept of “constructs” as functional units of mental disorders is introduced. Constructs are biomarkers present at multiple levels of brain functioning – cognition, genetics, brain anatomy, and neurophysiology. In this review, we propose a new approach which we called circuit to construct mapping (CCM), which aims to characterize causal relations between the underlying network dynamics (as the cause) and the constructs referring to the clinical symptoms of MDD (as the effect). CCM involves extracting diagnostic categories from behavioral data, linking circuits that are causal to these categories with use of clinical neuroimaging data, and modeling the dynamics of the emerging circuits with attractor dynamics in order to provide new, neuroimaging-related biomarkers for MDD. The CCM approach optimizes the clinical diagnosis and patient stratification. It also addresses the recent demand for linking circuits to behavior, and provides a new insight into clinical treatment by investigating the dynamics of neuronal circuits underneath cognitive dimensions of MDD. CCM can serve as a new regime toward personalized medicine, assisting the diagnosis and treatment of MDD. PMID:25767450

  2. Toward an Integration of Deep Learning and Neuroscience

    PubMed Central

    Marblestone, Adam H.; Wayne, Greg; Kording, Konrad P.

    2016-01-01

    Neuroscience has focused on the detailed implementation of computation, studying neural codes, dynamics and circuits. In machine learning, however, artificial neural networks tend to eschew precisely designed codes, dynamics or circuits in favor of brute force optimization of a cost function, often using simple and relatively uniform initial architectures. Two recent developments have emerged within machine learning that create an opportunity to connect these seemingly divergent perspectives. First, structured architectures are used, including dedicated systems for attention, recursion and various forms of short- and long-term memory storage. Second, cost functions and training procedures have become more complex and are varied across layers and over time. Here we think about the brain in terms of these ideas. We hypothesize that (1) the brain optimizes cost functions, (2) the cost functions are diverse and differ across brain locations and over development, and (3) optimization operates within a pre-structured architecture matched to the computational problems posed by behavior. In support of these hypotheses, we argue that a range of implementations of credit assignment through multiple layers of neurons are compatible with our current knowledge of neural circuitry, and that the brain's specialized systems can be interpreted as enabling efficient optimization for specific problem classes. Such a heterogeneously optimized system, enabled by a series of interacting cost functions, serves to make learning data-efficient and precisely targeted to the needs of the organism. We suggest directions by which neuroscience could seek to refine and test these hypotheses. PMID:27683554

  3. Dynamic variation in forebrain estradiol levels during song learning

    PubMed Central

    Chao, Andrew; Paon, Ashley; Remage-Healey, Luke

    2014-01-01

    Estrogens shape brain circuits during development, and the capacity to synthesize estrogens locally has consequences for both sexual differentiation and the acute modulation of circuits during early learning. A recently-optimized method to detect and quantify fluctuations in brain estrogens in vivo provides a direct means to explore how brain estrogen production contributes to both differentiation and neuromodulation during development. Here, we use this method to test the hypothesis that neuroestrogens are sexually-differentiated as well as dynamically responsive to song tutoring (via passive video/audio playback) during the period of song learning in juvenile zebra finches. Our results show that baseline neuroestradiol levels in the caudal forebrain do not differ between males and females during an early critical masculinization window. Instead, we observe a prominent difference between males and females in baseline neuroestradiol that emerges during the subadult stage as animals approach sexual maturity. Second, we observe that fluctuating neuroestradiol levels during periods of passive song tutoring exhibit a markedly different profile in juveniles as compared to adults. Specifically, neuroestrogens in the caudal forebrain are elevated following (rather than during) tutor song exposure in both juvenile males and females, suggesting an important role for the early consolidation of tutor song memories. These results further reveal a circadian influence on the fluctuations in local neuroestrogens during sensory/cognitive tasks. Taken together, these findings uncover several unexpected features of brain estrogen synthesis in juvenile animals that may have implications for secondary masculinization as well as the consolidation of recent sensory experiences. PMID:25205304

  4. Alzheimer's disease Braak Stage progressions: reexamined and redefined as Borrelia infection transmission through neural circuits.

    PubMed

    MacDonald, Alan B

    2007-01-01

    Brain structure in health is a dynamic energized equation incorporating chemistry, neuronal structure, and circuitry components. The chemistry "piece" is represented by multiple neurotransmitters such as Acetylcholine, Serotonin, and Dopamine. The neuronal structure "piece" incorporates synapses and their connections. And finally circuits of neurons establish "architectural blueprints" of anatomic wiring diagrams of the higher order of brain neuron organizations. In Alzheimer's disease, there are progressive losses in all of these components. Brain structure crumbles. The deterioration in Alzheimer's is ordered, reproducible, and stepwise. Drs. Braak and Braak have described stages in the Alzheimer disease continuum. "Progressions" through Braak Stages benchmark "Regressions" in Cognitive function. Under the microscope, the Stages of Braak commence in brain regions near to the hippocampus, and over time, like a tsunami wave of destruction, overturn healthy brain regions, with neurofibrillary tangle damaged neurons "marching" through the temporal lobe, neocortex and occipital cortex. In effect the destruction ascends from the limbic regions to progressively destroy the higher brain centers. Rabies infection also "begins low and finishes high" in its wave of destruction of brain tissue. Herpes Zoster infections offer the paradigm of clinical latency of infection inside of nerves before the "marching commences". Varicella Zoster virus enters neurons in the pediatric years. Dormant virus remains inside the neurons for 50-80 years, tissue damage late in life (shingles) demonstrates the "march of the infection" down neural pathways (dermatomes) as linear areas of painful blisters loaded with virus from a childhood infection. Amalgamation of Zoster with Rabies models produces a hybrid model to explain all of the Braak Stages of Alzheimer's disease under a new paradigm, namely "Alzheimer's neuroborreliosis" in which latent Borrelia infections ascend neural circuits through the hippocampus to the higher brain centers, creating a trail of neurofibrillary tangle injured neurons in neural circuits of cholinergic neurons by transsynaptic transmission of infection from nerve to nerve.

  5. Circuit Models and Experimental Noise Measurements of Micropipette Amplifiers for Extracellular Neural Recordings from Live Animals

    PubMed Central

    Chen, Chang Hao; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Klug, Achim; Lei, Tim C.

    2014-01-01

    Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments. PMID:25133158

  6. Alterations in Striatal Circuits Underlying Addiction-Like Behaviors.

    PubMed

    Kim, Hyun Jin; Lee, Joo Han; Yun, Kyunghwa; Kim, Joung-Hun

    2017-06-30

    Drug addiction is a severe psychiatric disorder characterized by the compulsive pursuit of drugs of abuse despite potential adverse consequences. Although several decades of studies have revealed that psychostimulant use can result in extensive alterations of neural circuits and physiology, no effective therapeutic strategies or medicines for drug addiction currently exist. Changes in neuronal connectivity and regulation occurring after repeated drug exposure contribute to addiction-like behaviors in animal models. Among the involved brain areas, including those of the reward system, the striatum is the major area of convergence for glutamate, GABA, and dopamine transmission, and this brain region potentially determines stereotyped behaviors. Although the physiological consequences of striatal neurons after drug exposure have been relatively well documented, it remains to be clarified how changes in striatal connectivity underlie and modulate the expression of addiction-like behaviors. Understanding how striatal circuits contribute to addiction-like behaviors may lead to the development of strategies that successfully attenuate drug-induced behavioral changes. In this review, we summarize the results of recent studies that have examined striatal circuitry and pathway-specific alterations leading to addiction-like behaviors to provide an updated framework for future investigations.

  7. Working Memory and Decision-Making in a Frontoparietal Circuit Model

    PubMed Central

    2017-01-01

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental “building blocks” of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. PMID:29114071

  8. Working Memory and Decision-Making in a Frontoparietal Circuit Model.

    PubMed

    Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing

    2017-12-13

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. Copyright © 2017 the authors 0270-6474/17/3712167-20$15.00/0.

  9. Brain-derived neurotrophic factor and addiction: Pathological versus therapeutic effects on drug seeking

    PubMed Central

    Barker, Jacqueline M.; Taylor, Jane R.; De Vries, Taco J.; Peters, Jamie

    2015-01-01

    Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural circuits are responsible for storing and executing drug-procuring motor programs, whereas other neural circuits are responsible for the active suppression of these “seeking” systems. These seeking-circuits are established as associations are formed between drug-associated cues and the conditioned responses they elicit. Such conditioned responses (e.g. drug seeking) can be diminished either through a passive weakening of seeking-circuits or an active suppression of those circuits through extinction. Extinction learning occurs when the association between cues and drug are violated, for example, by cue exposure without the drug present. Cue exposure therapy has been proposed as a therapeutic avenue for the treatment of addictions. Here we explore the role of BDNF in extinction circuits, compared to seeking-circuits that “incubate” over prolonged withdrawal periods. We begin by discussing the role of BDNF in extinction memory for fear and cocaine-seeking behaviors, where extinction circuits overlap in infralimbic prefrontal cortex (PFC). We highlight the ability of estrogen to promote BDNF-like effects in hippocampal–prefrontal circuits and consider the role of sex differences in extinction and incubation of drug-seeking behaviors. Finally, we examine how opiates and alcohol “break the mold” in terms of BDNF function in extinction circuits. PMID:25451116

  10. Optogenetic mapping of brain circuitry

    NASA Astrophysics Data System (ADS)

    Augustine, George J.; Berglund, Ken; Gill, Harin; Hoffmann, Carolin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Molly; Lo, Daniel; Nakajima, Ryuichi; Park, Min Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In

    2012-10-01

    Studies of the brain promise to be revolutionized by new experimental strategies that harness the combined power of optical techniques and genetics. We have mapped the circuitry of the mouse brain by using both optogenetic actuators that control neuronal activity and optogenetic sensors that detect neuronal activity. Using the light-activated cation channel, channelrhodopsin-2, to locally photostimulate neurons allows high-speed mapping of local and long-range circuitry. For example, with this approach we have mapped local circuits in the cerebral cortex, cerebellum and many other brain regions. Using the fluorescent sensor for chloride ions, Clomeleon, allows imaging of the spatial and temporal dimensions of inhibitory circuits in the brain. This approach allows imaging of both conventional "phasic" synaptic inhibition as well as unconventional "tonic" inhibition. The combined use of light to both control and monitor neural activity creates unprecedented opportunities to explore brain function, screen pharmaceutical agents, and potentially to use light to ameliorate psychiatric and neurological disorders.

  11. Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity.

    PubMed

    Haberl, Matthias G; Ginger, Melanie; Frick, Andreas

    2017-01-01

    Current large-scale approaches in neuroscience aim to unravel the complete connectivity map of specific neuronal circuits, or even the entire brain. This emerging research discipline has been termed connectomics. Recombinant glycoprotein-deleted rabies virus (RABV ∆G) has become an important tool for the investigation of neuronal connectivity in the brains of a variety of species. Neuronal infection with even a single RABV ∆G particle results in high-level transgene expression, revealing the fine-detailed morphology of all neuronal features-including dendritic spines, axonal processes, and boutons-on a brain-wide scale. This labeling is eminently suitable for subsequent post-hoc morphological analysis, such as semiautomated reconstruction in 3D. Here we describe the use of a recently developed anterograde RABV ∆G variant together with a retrograde RABV ∆G for the investigation of projections both to, and from, a particular brain region. In addition to the automated reconstruction of a dendritic tree, we also give as an example the volume measurements of axonal boutons following RABV ∆G-mediated fluorescent marker expression. In conclusion RABV ∆G variants expressing a combination of markers and/or tools for stimulating/monitoring neuronal activity, used together with genetic or behavioral animal models, promise important insights in the structure-function relationship of neural circuits.

  12. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry

    PubMed Central

    Pomeranz, Lisa E.; Ekstrand, Mats I.; Latcha, Kaamashri N.; Smith, Gregory A.; Enquist, Lynn W.

    2017-01-01

    The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits. SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits. PMID:28283558

  13. Integrated circuits and molecular components for stress and feeding: implications for eating disorders.

    PubMed

    Hardaway, J A; Crowley, N A; Bulik, C M; Kash, T L

    2015-01-01

    Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Ultrasonic modulation of neural circuit activity.

    PubMed

    Tyler, William J; Lani, Shane W; Hwang, Grace M

    2018-06-01

    Ultrasound (US) is recognized for its use in medical imaging as a diagnostic tool. As an acoustic energy source, US has become increasingly appreciated over the past decade for its ability to non-invasively modulate cellular activity including neuronal activity. Data obtained from a host of experimental models has shown that low-intensity US can reversibly modulate the physiological activity of neurons in peripheral nerves, spinal cord, and intact brain circuits. Experimental evidence indicates that acoustic pressures exerted by US act, in part, on mechanosensitive ion channels to modulate activity. While the precise mechanisms of action enabling US to both stimulate and suppress neuronal activity remain to be clarified, there are several advantages conferred by the physics of US that make it an appealing option for neuromodulation. For example, it can be focused with millimeter spatial resolutions through skull bone to deep-brain regions. By increasing our engineering capability to leverage such physical advantages while growing our understanding of how US affects neuronal function, the development of a new generation of non-invasive neurotechnology can be developed using ultrasonic methods. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: A theoretical review of the evidence and future directions for clinical translation

    PubMed Central

    Williams, Leanne M

    2016-01-01

    Complex emotional, cognitive and self-reflective functions rely on the activation and connectivity of large-scale neural circuits. These circuits offer a relevant scale of focus for conceptualizing a taxonomy for depression and anxiety based on specific profiles (or biotypes) of neural circuit dysfunction. Here, the theoretical review first outlined the current consensus as to what constitutes the organization of large-scale circuits in the human brain identified using parcellation and meta-analysis. The focus is on neural circuits implicated in resting reflection (“default mode”), detection of “salience”, affective processing (“threat” and “reward”), “attention” and “cognitive control”. Next, the current evidence regarding which type of dysfunctions in these circuits characterize depression and anxiety disorders was reviewed, with an emphasis on published meta-analyses and reviews of circuit dysfunctions that have been identified in at least two well-powered case:control studies. Grounded in the review of these topics, a conceptual framework is proposed for considering neural circuit-defined “biotypes”. In this framework, biotypes are defined by profiles of extent of dysfunction on each large-scale circuit. The clinical implications of a biotype approach for guiding classification and treatment of depression and anxiety is considered. Future research directions will develop the validity and clinical utility of a neural circuit biotype model that spans diagnostic categories and helps to translate neuroscience into clinical practice in the real world. PMID:27653321

  16. mTOR regulates brain morphogenesis by mediating GSK3 signaling

    PubMed Central

    Ka, Minhan; Condorelli, Gianluigi; Woodgett, James R.; Kim, Woo-Yang

    2014-01-01

    Balanced control of neural progenitor maintenance and neuron production is crucial in establishing functional neural circuits during brain development, and abnormalities in this process are implicated in many neurological diseases. However, the regulatory mechanisms of neural progenitor homeostasis remain poorly understood. Here, we show that mammalian target of rapamycin (mTOR) is required for maintaining neural progenitor pools and plays a key role in mediating glycogen synthase kinase 3 (GSK3) signaling during brain development. First, we generated and characterized conditional mutant mice exhibiting deletion of mTOR in neural progenitors and neurons in the developing brain using Nestin-cre and Nex-cre lines, respectively. The elimination of mTOR resulted in abnormal cell cycle progression of neural progenitors in the developing brain and thereby disruption of progenitor self-renewal. Accordingly, production of intermediate progenitors and postmitotic neurons were markedly suppressed. Next, we discovered that GSK3, a master regulator of neural progenitors, interacts with mTOR and controls its activity in cortical progenitors. Finally, we found that inactivation of mTOR activity suppresses the abnormal proliferation of neural progenitors induced by GSK3 deletion. Our findings reveal that the interaction between mTOR and GSK3 signaling plays an essential role in dynamic homeostasis of neural progenitors during brain development. PMID:25273085

  17. Gustatory and reward brain circuits in the control of food intake

    PubMed Central

    Oliveira-Maia, Albino J.; Roberts, Craig D.; Simon, Sidney A.; Nicolelis, Miguel A.L.

    2012-01-01

    Gustation is a multisensory process allowing for the selection of nutrients and the rejection of irritating and/or toxic compounds. Since obesity is a highly prevalent condition that is critically dependent on food intake and energy expenditure, a deeper understanding of gustatory processing is an important objective in biomedical research. Recent findings have provided evidence that central gustatory processes are distributed across several cortical and sub-cortical brain areas. Furthermore, these gustatory sensory circuits are closely related to the circuits that process reward. Here, we present an overview of the activation and connectivity between central gustatory and reward areas. Moreover, and given the limitations in number and effectiveness of treatments currently available for overweight patients, we discuss the possibility of modulating neuronal activity in these circuits as an alternative in the treatment of obesity. PMID:21197607

  18. Structural and functional maturation of the developing primate brain.

    PubMed

    Levitt, Pat

    2003-10-01

    Descriptive studies have established that the developmental events responsible for the assembly of neural systems and circuitry are conserved across mammalian species. However, primates are unique regarding the time during which histogenesis occurs and the extended postnatal period during which myelination of pathways and circuitry formation occur and are then subsequently modified, particularly in the cerebral cortex. As in lower mammals, the framework for subcortical-cortical connectivity in primates is established before midgestation and already begins to remodel before birth. Association systems, responsible for modulating intracortical circuits that integrate information across functional domains, also form before birth, but their growth and reorganization extend into puberty. There are substantial differences across species in the patterns of development of specific neurochemical systems. The complexity is even greater when considering that the development of any particular cellular component may differ among cortical areas in the same primate species. Developmental and behavioral neurobiologists, psychologists, and pediatricians are challenged with understanding how functional maturation relates to the evolving anatomical organization of the human brain during childhood, and moreover, how genetic and environmental perturbations affect the adaptive changes exhibited by neural circuits in response to developmental disruption.

  19. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    PubMed Central

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  20. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    PubMed

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  1. Tangential migration of corridor guidepost neurons contributes to anxiety circuits.

    PubMed

    Tinterri, Andrea; Deck, Marie; Keita, Maryama; Mailhes, Caroline; Rubin, Anna Noren; Kessaris, Nicoletta; Lokmane, Ludmilla; Bielle, Franck; Garel, Sonia

    2018-02-15

    In mammals, thalamic axons are guided internally toward their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis, which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits. © 2017 Wiley Periodicals, Inc.

  2. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  3. How environment and genes shape the adolescent brain.

    PubMed

    Paus, Tomáš

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". This review provides a conceptual framework for the study of factors--in our genes and environment--that shape the adolescent brain. I start by pointing out that brain phenotypes obtained with magnetic resonance imaging are complex traits reflecting the interplay of genes and the environment. In some cases, variations in the structural phenotypes observed during adolescence have their origin in the pre-natal or early post-natal periods. I then emphasize the bidirectional nature of brain-behavior relationships observed during this period of human development, where function may be more likely to influence structure rather than vice versa. In the main part of this article, I review our ongoing work on the influence of gonadal hormones on the adolescent brain. I also discuss the importance of social context and brain plasticity on shaping the relevant neural circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A structural and a functional aspect of stable information processing by the brain

    PubMed Central

    2007-01-01

    Brain is an expert in producing the same output from a particular set of inputs, even from a very noisy environment. In this article a model of neural circuit in the brain has been proposed which is composed of cyclic sub-circuits. A big loop has been defined to be consisting of a feed forward path from the sensory neurons to the highest processing area of the brain and feed back paths from that region back up to close to the same sensory neurons. It has been mathematically shown how some smaller cycles can amplify signal. A big loop processes information by contrast and amplify principle. How a pair of presynaptic and postsynaptic neurons can be identified by an exact synchronization detection method has also been mentioned. It has been assumed that the spike train coming out of a firing neuron encodes all the information produced by it as output. It is possible to extract this information over a period of time by Fourier transforms. The Fourier coefficients arranged in a vector form will uniquely represent the neural spike train over a period of time. The information emanating out of all the neurons in a given neural circuit over a period of time can be represented by a collection of points in a multidimensional vector space. This cluster of points represents the functional or behavioral form of the neural circuit. It has been proposed that a particular cluster of vectors as the representation of a new behavior is chosen by the brain interactively with respect to the memory stored in that circuit and the amount of emotion involved. It has been proposed that in this situation a Coulomb force like expression governs the dynamics of functioning of the circuit and stability of the system is reached at the minimum of all the minima of a potential function derived from the force like expression. The calculations have been done with respect to a pseudometric defined in a multidimensional vector space. PMID:19003500

  5. Possible Explanation for Cancer in Rats due to Cell Phone Radio Frequency Radiation

    NASA Astrophysics Data System (ADS)

    Feldman, Bernard J.

    Very recently, the National Toxicology Program reported a correlation between exposure to whole body 900 MHz radio frequency radiation and cancer in the brains and hearts of Sprague Dawley male rats. Assuming that the National Toxicology Program is statistically significant, I propose the following explanation for these results. The neurons around the brain and heart form closed electrical circuits and, following Faraday's Law, 900 MHz radio frequency radiation induces 900 MHz electrical currents in these neural circuits. In turn, these 900 MHz currents in the neural circuits generate sufficient localized heat in the neural cells to shift the equilibrium concentration of carcinogenic radicals to higher levels and thus, to higher incidences of cancer.

  6. GRAPES-Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain.

    PubMed

    Martin, Alex

    2016-08-01

    In this article, I discuss some of the latest functional neuroimaging findings on the organization of object concepts in the human brain. I argue that these data provide strong support for viewing concepts as the products of highly interactive neural circuits grounded in the action, perception, and emotion systems. The nodes of these circuits are defined by regions representing specific object properties (e.g., form, color, and motion) and thus are property-specific, rather than strictly modality-specific. How these circuits are modified by external and internal environmental demands, the distinction between representational content and format, and the grounding of abstract social concepts are also discussed.

  7. Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis.

    PubMed

    Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-Jye; Salton, Stephen R

    2012-11-01

    Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.

  8. Controlled Cre/loxP Site-Specific Recombination in the Developing Brain in Medaka Fish, Oryzias latipes

    PubMed Central

    Okuyama, Teruhiro; Isoe, Yasuko; Hoki, Masahito; Suehiro, Yuji; Yamagishi, Genki; Naruse, Kiyoshi; Kinoshita, Masato; Kamei, Yasuhiro; Shimizu, Atushi; Kubo, Takeo; Takeuchi, Hideaki

    2013-01-01

    Background Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain. Methodology/Principal Findings To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0–1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2–3 dpf embyos compared with 0–1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish. Conclusions/Significance We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages. PMID:23825546

  9. Temporal learning in the cerebellum: The microcircuit model

    NASA Technical Reports Server (NTRS)

    Miles, Coe F.; Rogers, David

    1990-01-01

    The cerebellum is that part of the brain which coordinates motor reflex behavior. To perform effectively, it must learn to generate specific motor commands at the proper times. We propose a fundamental circuit, called the MicroCircuit, which is the minimal ensemble of neurons both necessary and sufficient to learn timing. We describe how learning takes place in the MicroCircuit, which then explains the global behavior of the cerebellum as coordinated MicroCircuit behavior.

  10. Motor cognition-motor semantics: action perception theory of cognition and communication.

    PubMed

    Pulvermüller, Friedemann; Moseley, Rachel L; Egorova, Natalia; Shebani, Zubaida; Boulenger, Véronique

    2014-03-01

    A new perspective on cognition views cortical cell assemblies linking together knowledge about actions and perceptions not only as the vehicles of integrated action and perception processing but, furthermore, as a brain basis for a wide range of higher cortical functions, including attention, meaning and concepts, sequences, goals and intentions, and even communicative social interaction. This article explains mechanisms relevant to mechanistic action perception theory, points to concrete neuronal circuits in brains along with artificial neuronal network simulations, and summarizes recent brain imaging and other experimental data documenting the role of action perception circuits in cognition, language and communication. © 2013 Published by Elsevier Ltd.

  11. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease.

    PubMed

    DeLong, Mahlon R; Wichmann, Thomas

    2015-11-01

    The revival of stereotactic surgery for Parkinson disease (PD) in the 1990s, with pallidotomy and then with high-frequency deep brain stimulation (DBS), has led to a renaissance in functional surgery for movement and other neuropsychiatric disorders. To examine the scientific foundations and rationale for the use of ablation and DBS for treatment of neurologic and psychiatric diseases, using PD as the primary example. A summary of the large body of relevant literature is presented on anatomy, physiology, pathophysiology, and functional surgery for PD and other basal ganglia disorders. The signs and symptoms of movement disorders appear to result largely from signature abnormalities in one of several parallel and largely segregated basal ganglia thalamocortical circuits (ie, the motor circuit). The available evidence suggests that the varied movement disorders resulting from dysfunction of this circuit result from propagated disruption of downstream network activity in the thalamus, cortex, and brainstem. Ablation and DBS act to free downstream networks to function more normally. The basal ganglia thalamocortical circuit may play a key role in the expression of disordered movement, and the basal ganglia-brainstem projections may play roles in akinesia and disturbances of gait. Efforts are under way to target circuit dysfunction in brain areas outside of the traditionally implicated basal ganglia thalamocortical system, in particular, the pedunculopontine nucleus, to address gait disorders that respond poorly to levodopa and conventional DBS targets. Deep brain stimulation is now the treatment of choice for many patients with advanced PD and other movement disorders. The success of DBS and other forms of neuromodulation for neuropsychiatric disorders is the result of the ability to modulate circuit activity in discrete functional domains within the basal ganglia circuitry with highly focused interventions, which spare uninvolved areas that are often disrupted with drugs.

  12. Fear and Reward Circuit Alterations in Pediatric CRPS.

    PubMed

    Simons, Laura E; Erpelding, Nathalie; Hernandez, Jessica M; Serrano, Paul; Zhang, Kunyu; Lebel, Alyssa A; Sethna, Navil F; Berde, Charles B; Prabhu, Sanjay P; Becerra, Lino; Borsook, David

    2015-01-01

    In chronic pain, a number of brain regions involved in emotion (e.g., amygdala, hippocampus, nucleus accumbens, insula, anterior cingulate, and prefrontal cortex) show significant functional and morphometric changes. One phenotypic manifestation of these changes is pain-related fear (PRF). PRF is associated with profoundly altered behavioral adaptations to chronic pain. For example, patients with a neuropathic pain condition known as complex regional pain syndrome (CRPS) often avoid use of and may even neglect the affected body area(s), thus maintaining and likely enhancing PRF. These changes form part of an overall maladaptation to chronic pain. To examine fear-related brain circuit alterations in humans, 20 pediatric patients with CRPS and 20 sex- and age-matched healthy controls underwent functional magnetic resonance imaging (fMRI) in response to a well-established fearful faces paradigm. Despite no significant differences on self-reported emotional valence and arousal between the two groups, CRPS patients displayed a diminished response to fearful faces in regions associated with emotional processing compared to healthy controls. Additionally, increased PRF levels were associated with decreased activity in a number of brain regions including the right amygdala, insula, putamen, and caudate. Blunted activation in patients suggests that (a) individuals with chronic pain may have deficits in cognitive-affective brain circuits that may represent an underlying vulnerability or consequence to the chronic pain state; and (b) fear of pain may contribute and/or maintain these brain alterations. Our results shed new light on altered affective circuits in patients with chronic pain and identify PRF as a potentially important treatment target.

  13. Marijuana and cannabinoid regulation of brain reward circuits.

    PubMed

    Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F

    2004-09-01

    The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Delta(9)-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation of these receptors located within the central brain reward circuits that is thought to play an important role in sustaining the self-administration of marijuana in humans, and in mediating the anxiolytic and pleasurable effects of the drug. Here we describe the cellular circuitry of the VTA and the NAc, define the sites within these areas at which cannabinoids alter synaptic processes, and discuss the relevance of these actions to the regulation of reinforcement and reward. In addition, we compare the effects of Delta(9)-THC with those of other commonly abused drugs on these reward circuits, and we discuss the roles that endogenous cannabinoids may play within these brain pathways, and their possible involvement in regulating ongoing brain function, independently of marijuana consumption. We conclude that, whereas Delta(9)-THC alters the activity of these central reward pathways in a manner that is consistent with other abused drugs, the cellular mechanism through which this occurs is likely different, relying upon the combined regulation of several afferent pathways to the VTA.

  14. Application for the Drosophila ventral nerve cord standard in neuronal circuit reconstruction and in-depth analysis of mutant morphology

    PubMed Central

    Boerner, Jana; Godenschwege, Tanja Angela

    2010-01-01

    The Drosophila standard brain has been a useful tool that provides information about position and size of different brain structures within a wild-type brain and allows the comparison of imaging data that were collected from individual preparations. Therefore the standard can be used to reveal and visualize differences of brain regions between wild-type and mutant brains and can provide spatial description of single neurons within the nervous system. Recently the standard brain was complemented by the generation of a ventral nerve cord (VNC) standard. Here the authors have registered the major components of a simple neuronal circuit, the Giant Fiber System (GFS), into this standard. The authors show that they can also virtually reconstruct the well-characterized synaptic contact of the Giant Fiber with its motorneuronal target when they register the individual neurons from different preparations into the VNC standard. In addition to the potential application for the standard thorax in neuronal circuit reconstruction, the authors show that it is a useful tool for in-depth analysis of mutant morphology of single neurons. The authors find quantitative and qualitative differences when they compared the Giant Fibers of two different neuroglian alleles, nrg849 and nrgG00305, using the averaged wild-type GFS in the standard VNC as a reference. PMID:20615087

  15. Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress.

    PubMed

    Bangasser, Debra A; Lee, Catherine S; Cook, Philip A; Gee, James C; Bhatnagar, Seema; Valentino, Rita J

    2013-10-02

    Responses to acute stressors are determined in part by stress history. For example, a history of chronic stress results in facilitated responses to a novel stressor and this facilitation is considered to be adaptive. We previously demonstrated that repeated exposure of rats to the resident-intruder model of social stress results in the emergence of two subpopulations that are characterized by different coping responses to stress. The submissive subpopulation failed to show facilitation to a novel stressor and developed a passive strategy in the Porsolt forced swim test. Because a passive stress coping response has been implicated in the propensity to develop certain psychiatric disorders, understanding the unique circuitry engaged by exposure to a novel stressor in these subpopulations would advance our understanding of the etiology of stress-related pathology. An ex vivo functional imaging technique, manganese-enhanced magnetic resonance imaging (MEMRI), was used to identify and distinguish brain regions that are differentially activated by an acute swim stress (15 min) in rats with a history of social stress compared to controls. Specifically, Mn(2+) was administered intracerebroventricularly prior to swim stress and brains were later imaged ex vivo to reveal activated structures. When compared to controls, all rats with a history of social stress showed greater activation in specific striatal, hippocampal, hypothalamic, and midbrain regions. The submissive subpopulation of rats was further distinguished by significantly greater activation in amygdala, bed nucleus of the stria terminalis, and septum, suggesting that these regions may form a circuit mediating responses to novel stress in individuals that adopt passive coping strategies. The finding that different circuits are engaged by a novel stressor in the two subpopulations of rats exposed to social stress implicates a role for these circuits in determining individual strategies for responding to stressors. Finally, these data underscore the utility of ex vivo MEMRI to identify and distinguish circuits engaged in behavioral responses. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A Developmental Neuroscience Approach to the Search for Biomarkers in Autism Spectrum Disorder

    PubMed Central

    Varcin, Kandice J.; Nelson, Charles A.

    2016-01-01

    Purpose of review The delineation of biomarkers in autism spectrum disorder (ASD) offers a promising approach to inform precision-medicine based approaches to ASD diagnosis and treatment and to move toward a mechanistic description of the disorder. However, biomarkers with sufficient sensitivity or specificity for clinical application in ASD are yet to be realized. Here, we review recent evidence for early, low-level alterations in brain and behavior development that may offer promising avenues for biomarker development in ASD. Recent findings Accumulating evidence suggests that signs associated with ASD may unfold in a manner that maps onto the hierarchical organization of brain development. Genetic and neuroimaging evidence points towards perturbations in brain development early in life, and emerging evidence indicates that sensorimotor development may be amongst the earliest emerging signs associated with ASD, preceding social and cognitive impairment. Summary The search for biomarkers of risk, prediction and stratification in ASD may be advanced through a developmental neuroscience approach that looks outside of the core signs of ASD and considers the bottom-up nature of brain development alongside the dynamic nature of development over time. We provide examples of assays that could be incorporated in studies to target low-level circuits. PMID:26953849

  17. MET Receptor Tyrosine Kinase as an Autism Genetic Risk Factor

    PubMed Central

    Peng, Yun; Huentelman, Matthew; Smith, Christopher; Qiu, Shenfeng

    2014-01-01

    In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions. PMID:24290385

  18. Learning multiple variable-speed sequences in striatum via cortical tutoring.

    PubMed

    Murray, James M; Escola, G Sean

    2017-05-08

    Sparse, sequential patterns of neural activity have been observed in numerous brain areas during timekeeping and motor sequence tasks. Inspired by such observations, we construct a model of the striatum, an all-inhibitory circuit where sequential activity patterns are prominent, addressing the following key challenges: (i) obtaining control over temporal rescaling of the sequence speed, with the ability to generalize to new speeds; (ii) facilitating flexible expression of distinct sequences via selective activation, concatenation, and recycling of specific subsequences; and (iii) enabling the biologically plausible learning of sequences, consistent with the decoupling of learning and execution suggested by lesion studies showing that cortical circuits are necessary for learning, but that subcortical circuits are sufficient to drive learned behaviors. The same mechanisms that we describe can also be applied to circuits with both excitatory and inhibitory populations, and hence may underlie general features of sequential neural activity pattern generation in the brain.

  19. Reward and motivation in pain and pain relief

    PubMed Central

    Navratilova, Edita; Porreca, Frank

    2015-01-01

    Pain is fundamentally unpleasant, a feature that protects the organism by promoting motivation and learning. Relief of aversive states, including pain, is rewarding. The aversiveness of pain, as well as the reward from relief of pain, is encoded by brain reward/motivational mesocorticolimbic circuitry. In this Review, we describe current knowledge of the impact of acute and chronic pain on reward/motivation circuits gained from preclinical models and from human neuroimaging. We highlight emerging clinical evidence suggesting that anatomical and functional changes in these circuits contribute to the transition from acute to chronic pain. We propose that assessing activity in these conserved circuits can offer new outcome measures for preclinical evaluation of analgesic efficacy to improve translation and speed drug discovery. We further suggest that targeting reward/motivation circuits may provide a path for normalizing the consequences of chronic pain to the brain, surpassing symptomatic management to promote recovery from chronic pain. PMID:25254980

  20. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals

    PubMed Central

    Berényi, Antal; Somogyvári, Zoltán; Nagy, Anett J.; Roux, Lisa; Long, John D.; Fujisawa, Shigeyoshi; Stark, Eran; Leonardo, Anthony; Harris, Timothy D.

    2013-01-01

    Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function. PMID:24353300

  1. A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center.

    PubMed

    Suzuki, Daichi G; Murakami, Yasunori; Escriva, Hector; Wada, Hiroshi

    2015-02-01

    Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions. © 2014 Wiley Periodicals, Inc.

  2. Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence

    PubMed Central

    Foran, William; Velanova, Katerina; Luna, Beatriz

    2013-01-01

    Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721

  3. Origins of the brain networks for advanced mathematics in expert mathematicians

    PubMed Central

    Amalric, Marie; Dehaene, Stanislas

    2016-01-01

    The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit. PMID:27071124

  4. Origins of the brain networks for advanced mathematics in expert mathematicians.

    PubMed

    Amalric, Marie; Dehaene, Stanislas

    2016-05-03

    The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit.

  5. Rules and mechanisms for efficient two-stage learning in neural circuits.

    PubMed

    Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay

    2017-04-04

    Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in 'tutor' circuits ( e.g., LMAN) should match plasticity mechanisms in 'student' circuits ( e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning.

  6. DISSECTING OCD CIRCUITS: FROM ANIMAL MODELS TO TARGETED TREATMENTS.

    PubMed

    Ahmari, Susanne E; Dougherty, Darin D

    2015-08-01

    Obsessive-compulsive disorder (OCD) is a chronic, severe mental illness with up to 2-3% prevalence worldwide. In fact, OCD has been classified as one of the world's 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms.([1]) Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. © 2015 Wiley Periodicals, Inc.

  7. Predicting better performance on a college preparedness test from narrative comprehension at the age of 6 years: An fMRI study.

    PubMed

    Horowitz-Kraus, Tzipi; Eaton, Kenneth; Farah, Rola; Hajinazarian, Ardag; Vannest, Jennifer; Holland, Scott K

    2015-12-10

    To investigate whether high performance on college preparedness tests at 18 years of age can be predicted from brain activation patterns during narrative comprehension at 5-7 years of age. In this longitudinal study, functional MRI data during an auditory narrative-comprehension task were acquired from 15 children (5-7 years of age) who also provided their American College Testing (ACT) scores at the age of 18 years. Active voxels during the narrative-comprehension task were correlated with both composite ACT scores and the reading-comprehension component of the exam. Higher composite ACT scores and behavioral scores for reading comprehension were positively correlated with greater activation in frontal and anterior brain regions during the narrative-comprehension task. Our results suggest that neural circuits supporting higher ACT performance are predictable from a narrative-comprehension task at the age of 5-7 years. This supports a critical role for the anterior cingulate cortex, which is a part of the cingulo-opercular cognitive-control network early in development, as a facilitator for better ACT scores. This study highlights that shared neural circuits that support overall ACT performance and neural circuits that support reading comprehension both rely on neural circuits related to narrative comprehension in childhood, suggesting that interventions involving narrative comprehension should be considered for individuals with reading and other academic difficulties. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. APPROACHING THE BIOLOGY OF HUMAN PARENTAL ATTACHMENT: BRAIN IMAGING, OXYTOCIN AND COORDINATED ASSESSMENTS OF MOTHERS AND FATHERS

    PubMed Central

    Swain, JE; Kim, P; Spicer, J; Ho, SS; Dayton, CJ; Elmadih, A; Abel, KM

    2014-01-01

    Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting of offspring enable formation of each individual’s first social bonds and critically shape infants’ behavior. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce themes in the literature on parental brain circuits studied to date. Next, we present a thorough chronological review of state-of-the-art fMRI studies that probe the parental brain with a range of baby audio and visual stimuli. We also highlight the putative role of oxytocin and effects of psychopathology, as well as the most recent work on the paternal brain. Taken together, a new model emerges in which we propose that cortico-limbic networks interact to support parental brain responses to infants for arousal/salience/motivation/reward, reflexive/instrumental caring, emotion response/regulation and integrative/complex cognitive processing. Maternal sensitivity and the quality of caregiving behavior are likely determined by the responsiveness of these circuits toward long-term influence of early-life experiences on offspring. The function of these circuits is modifiable by current and early-life experiences, hormonal and other factors. Known deviation from the range of normal function in these systems is particularly associated with (maternal) mental illnesses – commonly, depression and anxiety, but also schizophrenia and bipolar disorder. Finally, we discuss the limits and extent to which brain imaging may broaden our understanding of the parental brain, and consider a current model and future directions that may have profound implications for intervention long term outcomes in families across risk and resilience profiles. PMID:24637261

  9. Small molecule analysis and imaging of fatty acids in the zebra finch song system using time-of-flight-secondary ion mass spectrometry.

    PubMed

    Amaya, Kensey R; Sweedler, Jonathan V; Clayton, David F

    2011-08-01

    Fatty acids are central to brain metabolism and signaling, but their distributions within complex brain circuits have been difficult to study. Here we applied an emerging technique, time-of-flight secondary ion mass spectrometry (ToF-SIMS), to image specific fatty acids in a favorable model system for chemical analyses of brain circuits, the zebra finch (Taeniopygia guttata). The zebra finch, a songbird, produces complex learned vocalizations under the control of an interconnected set of discrete, dedicated brain nuclei 'song nuclei'. Using ToF-SIMS, the major song nuclei were visualized by virtue of differences in their content of essential and non-essential fatty acids. Essential fatty acids (arachidonic acid and docosahexaenoic acid) showed distinctive distributions across the song nuclei, and the 18-carbon fatty acids stearate and oleate discriminated the different core and shell subregions of the lateral magnocellular nucleus of the anterior nidopallium. Principal component analysis of the spectral data set provided further evidence of chemical distinctions between the song nuclei. By analyzing the robust nucleus of the arcopallium at three different ages during juvenile song learning, we obtain the first direct evidence of changes in lipid content that correlate with progression of song learning. The results demonstrate the value of ToF-SIMS to study lipids in a favorable model system for probing the function of lipids in brain organization, development and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  10. Mind the fish: zebrafish as a model in cognitive social neuroscience

    PubMed Central

    Oliveira, Rui F.

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed. PMID:23964204

  11. Food-induced brain responses and eating behaviour.

    PubMed

    Smeets, Paul A M; Charbonnier, Lisette; van Meer, Floor; van der Laan, Laura N; Spetter, Maartje S

    2012-11-01

    The brain governs food intake behaviour by integrating many different internal and external state and trait-related signals. Understanding how the decisions to start and to stop eating are made is crucial to our understanding of (maladaptive patterns of) eating behaviour. Here, we aim to (1) review the current state of the field of 'nutritional neuroscience' with a focus on the interplay between food-induced brain responses and eating behaviour and (2) highlight research needs and techniques that could be used to address these. The brain responses associated with sensory stimulation (sight, olfaction and taste), gastric distension, gut hormone administration and food consumption are the subject of increasing investigation. Nevertheless, only few studies have examined relations between brain responses and eating behaviour. However, the neural circuits underlying eating behaviour are to a large extent generic, including reward, self-control, learning and decision-making circuitry. These limbic and prefrontal circuits interact with the hypothalamus, a key homeostatic area. Target areas for further elucidating the regulation of food intake are: (eating) habit and food preference formation and modification, the neural correlates of self-control, nutrient sensing and dietary learning, and the regulation of body adiposity. Moreover, to foster significant progress, data from multiple studies need to be integrated. This requires standardisation of (neuroimaging) measures, data sharing and the application and development of existing advanced analysis and modelling techniques to nutritional neuroscience data. In the next 20 years, nutritional neuroscience will have to prove its potential for providing insights that can be used to tackle detrimental eating behaviour.

  12. Mind the fish: zebrafish as a model in cognitive social neuroscience.

    PubMed

    Oliveira, Rui F

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed.

  13. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study.

    PubMed

    Gabard-Durnam, Laurel Joy; Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim

    2016-04-27

    Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long-term phasic molding hypothesis that resting-state network development is influenced by recurring stimulus-elicited connectivity through prospective examination of the developing human amygdala-cortical functional connections. Our results provide critical insight into how early environmental events sculpt functional network architecture across development and highlight childhood as a potential developmental period of heightened malleability for the amygdala-medial prefrontal cortex circuit. These findings have implications for how both positive and adverse experiences influence the developing brain and motivate future investigations of whether this molding mechanism reflects a general phenomenon of brain development. Copyright © 2016 the authors 0270-6474/16/364772-14$15.00/0.

  14. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study

    PubMed Central

    Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim

    2016-01-01

    Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. SIGNIFICANCE STATEMENT A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long-term phasic molding hypothesis that resting-state network development is influenced by recurring stimulus-elicited connectivity through prospective examination of the developing human amygdala-cortical functional connections. Our results provide critical insight into how early environmental events sculpt functional network architecture across development and highlight childhood as a potential developmental period of heightened malleability for the amygdala-medial prefrontal cortex circuit. These findings have implications for how both positive and adverse experiences influence the developing brain and motivate future investigations of whether this molding mechanism reflects a general phenomenon of brain development. PMID:27122035

  15. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications

    PubMed Central

    Ulrich-Lai, Yvonne M.; Ryan, Karen K.

    2014-01-01

    Significant co-morbidities between obesity-related metabolic disease and stress-related psychological disorders suggest important functional interactions between energy balance and brain stress integration. Largely overlapping neural circuits control these systems, and this anatomical arrangement optimizes opportunities for mutual influence. Here we first review the current literature identifying effects of metabolic neuroendocrine signals on stress regulation, and vice versa. Next, the contributions of reward driven food intake to these metabolic and stress interactions are discussed. Lastly, we consider the inter-relationships among metabolism, stress and reward in light of their important implications in the development of therapies for metabolism- or stress-related disease. PMID:24630812

  16. Social Origins of Developmental Risk for Mental and Physical Illness.

    PubMed

    Cameron, Judy L; Eagleson, Kathie L; Fox, Nathan A; Hensch, Takao K; Levitt, Pat

    2017-11-08

    Adversity in early childhood exerts an enduring impact on mental and physical health, academic achievement, lifetime productivity, and the probability of interfacing with the criminal justice system. More science is needed to understand how the brain is affected by early life stress (ELS), which produces excessive activation of stress response systems broadly throughout the child's body (toxic stress). Our research examines the importance of sex, timing and type of stress exposure, and critical periods for intervention in various brain systems across species. Neglect (the absence of sensitive and responsive caregiving) or disrupted interaction with offspring induces robust, lasting consequences in mice, monkeys, and humans. Complementary assessment of internalizing disorders and brain imaging in children suggests that early adversity can interfere with white matter development in key brain regions, which may increase risk for emotional difficulties in the long term. Neural circuits that are most plastic during ELS exposure in monkeys sustain the greatest change in gene expression, offering a mechanism whereby stress timing might lead to markedly different long-term behaviors. Rodent models reveal that disrupted maternal-infant interactions yield metabolic and behavioral outcomes often differing by sex. Moreover, ELS may further accelerate or delay critical periods of development, which reflect GABA circuit maturation, BDNF, and circadian Clock genes. Such factors are associated with several mental disorders and may contribute to a premature closure of plastic windows for intervention following ELS. Together, complementary cross-species studies are elucidating principles of adaptation to adversity in early childhood with molecular, cellular, and whole organism resolution. Copyright © 2017 the authors 0270-6474/17/3710783-09$15.00/0.

  17. Abulia following penetrating brain injury during endoscopic sinus surgery with disruption of the anterior cingulate circuit: case report.

    PubMed

    Grunsfeld, Alexander A; Login, Ivan S

    2006-01-23

    It is common knowledge that the frontal lobes mediate complex human behavior and that damage to these regions can cause executive dysfunction, apathy, disinhibition and personality changes. However, it is less well known that subcortical structures such as the caudate and thalamus are part of functionally segregated fronto-subcortical circuits, that can also alter behavior after injury. CASE PRESENTATION We present a 57 year old woman who suffered penetrating brain injury during endoscopic sinus surgery causing right basal ganglia injury which resulted in an abulic syndrome. Abulia does not result solely from cortical injury but can occur after disruption anywhere in the anterior cingulate circuit--in the case of our patient, most prominently at the right caudate.

  18. GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain

    PubMed Central

    Martin, Alex

    2016-01-01

    In this article, I discuss some of the latest functional neuroimaging findings on the organization of object concepts in the human brain. I argue that these data provide strong support for viewing concepts as the products of highly interactive neural circuits grounded in the action, perception, and emotion systems. The nodes of these circuits are defined by regions representing specific object properties (e.g., form, color, and motion) and thus are property-specific, rather than strictly modality-specific. How these circuits are modified by external and internal environmental demands, the distinction between representational content and format, and the grounding of abstract social concepts are also discussed. PMID:25968087

  19. The lighter side of BDNF

    PubMed Central

    Noble, Emily E.; Billington, Charles J.; Kotz, Catherine M.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) mediates energy metabolism and feeding behavior. As a neurotrophin, BDNF promotes neuronal differentiation, survival during early development, adult neurogenesis, and neural plasticity; thus, there is the potential that BDNF could modify circuits important to eating behavior and energy expenditure. The possibility that “faulty” circuits could be remodeled by BDNF is an exciting concept for new therapies for obesity and eating disorders. In the hypothalamus, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are extensively expressed in areas associated with feeding and metabolism. Hypothalamic BDNF and TrkB appear to inhibit food intake and increase energy expenditure, leading to negative energy balance. In the hippocampus, the involvement of BDNF in neural plasticity and neurogenesis is important to learning and memory, but less is known about how BDNF participates in energy homeostasis. We review current research about BDNF in specific brain locations related to energy balance, environmental, and behavioral influences on BDNF expression and the possibility that BDNF may influence energy homeostasis via its role in neurogenesis and neural plasticity. PMID:21346243

  20. Using Inspiration from Synaptic Plasticity Rules to Optimize Traffic Flow in Distributed Engineered Networks.

    PubMed

    Suen, Jonathan Y; Navlakha, Saket

    2017-05-01

    Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.

  1. Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging.

    PubMed

    Dal Maschio, Marco; Donovan, Joseph C; Helmbrecht, Thomas O; Baier, Herwig

    2017-05-17

    We introduce a flexible method for high-resolution interrogation of circuit function, which combines simultaneous 3D two-photon stimulation of multiple targeted neurons, volumetric functional imaging, and quantitative behavioral tracking. This integrated approach was applied to dissect how an ensemble of premotor neurons in the larval zebrafish brain drives a basic motor program, the bending of the tail. We developed an iterative photostimulation strategy to identify minimal subsets of channelrhodopsin (ChR2)-expressing neurons that are sufficient to initiate tail movements. At the same time, the induced network activity was recorded by multiplane GCaMP6 imaging across the brain. From this dataset, we computationally identified activity patterns associated with distinct components of the elicited behavior and characterized the contributions of individual neurons. Using photoactivatable GFP (paGFP), we extended our protocol to visualize single functionally identified neurons and reconstruct their morphologies. Together, this toolkit enables linking behavior to circuit activity with unprecedented resolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. On the nature and evolution of the neural bases of human language

    NASA Technical Reports Server (NTRS)

    Lieberman, Philip

    2002-01-01

    The traditional theory equating the brain bases of language with Broca's and Wernicke's neocortical areas is wrong. Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, and comprehending the meaning of sentences. When we hear or read a word, neural structures involved in the perception or real-world associations of the word are activated as well as posterior cortical regions adjacent to Wernicke's area. Many areas of the neocortex and subcortical structures support the cortical-striatal-cortical circuits that confer complex syntactic ability, speech production, and a large vocabulary. However, many of these structures also form part of the neural circuits regulating other aspects of behavior. For example, the basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human linguistic ability and abstract reasoning. The cerebellum, traditionally associated with motor control, is active in motor learning. The basal ganglia are also key elements in reward-based learning. Data from studies of Broca's aphasia, Parkinson's disease, hypoxia, focal brain damage, and a genetically transmitted brain anomaly (the putative "language gene," family KE), and from comparative studies of the brains and behavior of other species, demonstrate that the basal ganglia sequence the discrete elements that constitute a complete motor act, syntactic process, or thought process. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. As Dobzansky put it, "Nothing in biology makes sense except in the light of evolution" (cited in Mayr, 1982). That applies with as much force to the human brain and the neural bases of language as it does to the human foot or jaw. The converse follows: the mark of evolution on the brains of human beings and other species provides insight into the evolution of the brain bases of human language. The neural substrate that regulated motor control in the common ancestor of apes and humans most likely was modified to enhance cognitive and linguistic ability. Speech communication played a central role in this process. However, the process that ultimately resulted in the human brain may have started when our earliest hominid ancestors began to walk.

  3. Ethical issues in neuroprosthetics

    NASA Astrophysics Data System (ADS)

    Glannon, Walter

    2016-04-01

    Objective. Neuroprosthetics are artificial devices or systems designed to generate, restore or modulate a range of neurally mediated functions. These include sensorimotor, visual, auditory, cognitive affective and volitional functions that have been impaired or lost from congenital anomalies, traumatic brain injury, infection, amputation or neurodevelopmental and neurodegenerative disorders. Cochlear implants, visual prosthetics, deep brain stimulation, brain-computer interfaces, brain-to-brain interfaces and hippocampal prosthetics can bypass, replace or compensate for dysfunctional neural circuits, brain injury and limb loss. They can enable people with these conditions to gain or regain varying degrees of control of thought and behavior. These direct and indirect interventions in the brain raise general ethical questions about weighing the potential benefit of altering neural circuits against the potential harm from neurophysiological and psychological sequelae. Other ethical questions are more specific to the therapeutic goals of particular neuroprosthetics and the conditions for which they are indicated. These include informed consent, agency, autonomy (free will) and identity. Approach. This review is an analysis and discussion of these questions. It also includes consideration of social justice issues such as how to establish and implement fair selection criteria in providing access to neuroprosthetic research and balancing technological innovation with patients’ best interests. Main results. Neuroprosthetics can restore or improve motor and mental functions in bypassing areas of injury or modulating dysregulation in neural circuits. As enabling devices that integrate with these circuits, neuroprosthetics can restore varying degrees of autonomous agency for people affected by neurological and psychiatric disorders. They can also re-establish the connectedness and continuity of the psychological properties they had before injury or disease onset and thereby re-establish their identity. Neuroprosthetics can maximize benefit and minimize harm for people affected by damaged or dysfunctional brains and improve the quality of their lives. Significance. Provided that adequate protections are in place for research subjects and patients, the probable benefit of research into and therapeutic applications of neuroprosthetics outweighs the risk and therefore can be ethically justified. Depending on their neurogenerative potential, there may be an ethical obligation to conduct this research. Advances in neuroscience will generate new ethical and philosophical questions about people and their brains. These questions should shape the evolution and application of novel techniques to better understand and treat brain disorders.

  4. Ethical issues in neuroprosthetics.

    PubMed

    Glannon, Walter

    2016-04-01

    Neuroprosthetics are artificial devices or systems designed to generate, restore or modulate a range of neurally mediated functions. These include sensorimotor, visual, auditory, cognitive affective and volitional functions that have been impaired or lost from congenital anomalies, traumatic brain injury, infection, amputation or neurodevelopmental and neurodegenerative disorders. Cochlear implants, visual prosthetics, deep brain stimulation, brain-computer interfaces, brain-to-brain interfaces and hippocampal prosthetics can bypass, replace or compensate for dysfunctional neural circuits, brain injury and limb loss. They can enable people with these conditions to gain or regain varying degrees of control of thought and behavior. These direct and indirect interventions in the brain raise general ethical questions about weighing the potential benefit of altering neural circuits against the potential harm from neurophysiological and psychological sequelae. Other ethical questions are more specific to the therapeutic goals of particular neuroprosthetics and the conditions for which they are indicated. These include informed consent, agency, autonomy (free will) and identity. This review is an analysis and discussion of these questions. It also includes consideration of social justice issues such as how to establish and implement fair selection criteria in providing access to neuroprosthetic research and balancing technological innovation with patients' best interests. Neuroprosthetics can restore or improve motor and mental functions in bypassing areas of injury or modulating dysregulation in neural circuits. As enabling devices that integrate with these circuits, neuroprosthetics can restore varying degrees of autonomous agency for people affected by neurological and psychiatric disorders. They can also re-establish the connectedness and continuity of the psychological properties they had before injury or disease onset and thereby re-establish their identity. Neuroprosthetics can maximize benefit and minimize harm for people affected by damaged or dysfunctional brains and improve the quality of their lives. Provided that adequate protections are in place for research subjects and patients, the probable benefit of research into and therapeutic applications of neuroprosthetics outweighs the risk and therefore can be ethically justified. Depending on their neurogenerative potential, there may be an ethical obligation to conduct this research. Advances in neuroscience will generate new ethical and philosophical questions about people and their brains. These questions should shape the evolution and application of novel techniques to better understand and treat brain disorders.

  5. Exercise, Energy Intake, Glucose Homeostasis, and the Brain

    PubMed Central

    van Praag, Henriette; Fleshner, Monika; Schwartz, Michael W.

    2014-01-01

    Here we summarize topics covered in an SFN symposium that considered how and why exercise and energy intake affect neuroplasticity and, conversely, how the brain regulates peripheral energy metabolism. This article is not a comprehensive review of the subject, but rather a view of how the authors' findings fit into a broader context. Emerging findings elucidate cellular and molecular mechanisms by which exercise and energy intake modify the plasticity of neural circuits in ways that affect brain health. By enhancing neurogenesis, synaptic plasticity and neuronal stress robustness, exercise and intermittent energy restriction/fasting may optimize brain function and forestall metabolic and neurodegenerative diseases. Moreover, brain-centered glucoregulatory and immunomodulating systems that mediate peripheral health benefits of intermittent energetic challenges have recently been described. A better understanding of adaptive neural response pathways activated by energetic challenges will enable the development and optimization of interventions to reduce the burden of disease in our communities. PMID:25392482

  6. Whole-brain activity mapping onto a zebrafish brain atlas.

    PubMed

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  7. Neuroendocrinology and brain imaging of reward in eating disorders: A possible key to the treatment of anorexia nervosa and bulimia nervosa.

    PubMed

    Monteleone, Alessio Maria; Castellini, Giovanni; Volpe, Umberto; Ricca, Valdo; Lelli, Lorenzo; Monteleone, Palmiero; Maj, Mario

    2018-01-03

    Anorexia nervosa and bulimia nervosa are severe eating disorders whose etiopathogenesis is still unknown. Clinical features suggest that eating disorders may develop as reward-dependent syndromes, since eating less food is perceived as rewarding in anorexia nervosa while consumption of large amounts of food during binge episodes in bulimia nervosa aims at reducing the patient's negative emotional states. Therefore, brain reward mechanisms have been a major focus of research in the attempt to contribute to the comprehension of the pathophysiology of these disorders. Structural brain imaging data provided the evidence that brain reward circuits may be altered in patients with anorexia or bulimia nervosa. Similarly, functional brain imaging studies exploring the activation of brain reward circuits by food stimuli as well as by stimuli recognized to be potentially rewarding for eating disordered patients, such as body image cues or stimuli related to food deprivation and physical hyperactivity, showed several dysfunctions in ED patients. Moreover, very recently, it has been demonstrated that some of the biochemical homeostatic modulators of eating behavior are also implicated in the regulation of food-related and non-food-related reward, representing a possible link between the aberrant behaviors of ED subjects and their hypothesized deranged reward processes. In particular, changes in leptin and ghrelin occur in patients with anorexia or bulimia nervosa and have been suggested to represent not only homeostatic adaptations to an altered energy balance but to contribute also to the acquisition and/or maintenance of persistent starvation, binge eating and physical hyperactivity, which are potentially rewarding for ED patients. On the basis of such findings new pathogenetic models of EDs have been proposed, and these models may provide new theoretical basis for the development of innovative treatment strategies, either psychological and pharmacological, with the aim to improve the outcomes of so severe disabling disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Addiction and brain reward and antireward pathways.

    PubMed

    Gardner, Eliot L

    2011-01-01

    Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly), and that they enhance the functioning of the reward circuitry of the brain (producing the 'high' that the drug user seeks). The core reward circuitry consists of an 'in-series' circuit linking the ventral tegmental area, nucleus accumbens and ventral pallidum via the medial forebrain bundle. Although originally believed to simply encode the set point of hedonic tone, these circuits are now believed to be functionally far more complex, also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. 'Hedonic dysregulation' within these circuits may lead to addiction. The 'second-stage' dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dop-aminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g. opiates), tolerance to the euphoric effects develops with chronic use. Postuse dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get high, but simply to get back to normal ('get straight'). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the 'bio-psycho-social' model of etiology holds very well for addiction. Addiction appears to correlate with a hypodopaminergic dysfunctional state within the reward circuitry of the brain. Neuroimaging studies in humans add credence to this hypothesis. Credible evidence also implicates serotonergic, opioid, endocannabinoid, GABAergic and glutamatergic mechanisms in addiction. Critically, drug addiction progresses from occasional recreational use to impulsive use to habitual compulsive use. This correlates with a progression from reward-driven to habit-driven drug-seeking behavior. This behavioral progression correlates with a neuroanatomical progression from ventral striatal (nucleus accumbens) to dorsal striatal control over drug-seeking behavior. The three classical sets of craving and relapse triggers are (a) reexposure to addictive drugs, (b) stress, and (c) reexposure to environmental cues (people, places, things) previously associated with drug-taking behavior. Drug-triggered relapse involves the nucleus accumbens and the neurotransmitter dopamine. Stress-triggered relapse involves (a) the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and the neurotransmitter corticotrophin-releasing factor, and (b) the lateral tegmental noradrenergic nuclei of the brain stem and the neurotransmitter norepinephrine. Cue-triggered relapse involves the basolateral nucleus of the amygdala, the hippocampus and the neurotransmitter glutamate. Knowledge of the neuroanatomy, neurophysiology, neurochemistry and neuropharmacology of addictive drug action in the brain is currently producing a variety of strategies for pharmacotherapeutic treatment of drug addiction, some of which appear promising. Copyright © 2011 S. Karger AG, Basel.

  9. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology

    PubMed Central

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-01-01

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252

  10. Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.

    PubMed

    Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar

    2018-07-01

    The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.

  11. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis

    PubMed Central

    Song, Juan; Olsen, Reid H.J.; Sun, Jiaqi; Ming, Guo-li; Song, Hongjun

    2017-01-01

    The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb. PMID:27143698

  12. Mechanism of Chronic Pain in Rodent Brain Imaging

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  13. An integrated modelling framework for neural circuits with multiple neuromodulators.

    PubMed

    Joshi, Alok; Youssofzadeh, Vahab; Vemana, Vinith; McGinnity, T M; Prasad, Girijesh; Wong-Lin, KongFatt

    2017-01-01

    Neuromodulators are endogenous neurochemicals that regulate biophysical and biochemical processes, which control brain function and behaviour, and are often the targets of neuropharmacological drugs. Neuromodulator effects are generally complex partly owing to the involvement of broad innervation, co-release of neuromodulators, complex intra- and extrasynaptic mechanism, existence of multiple receptor subtypes and high interconnectivity within the brain. In this work, we propose an efficient yet sufficiently realistic computational neural modelling framework to study some of these complex behaviours. Specifically, we propose a novel dynamical neural circuit model that integrates the effective neuromodulator-induced currents based on various experimental data (e.g. electrophysiology, neuropharmacology and voltammetry). The model can incorporate multiple interacting brain regions, including neuromodulator sources, simulate efficiently and easily extendable to large-scale brain models, e.g. for neuroimaging purposes. As an example, we model a network of mutually interacting neural populations in the lateral hypothalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrenaline, respectively, and which play significant roles in regulating many physiological functions. We demonstrate that such a model can provide predictions of systemic drug effects of the popular antidepressants (e.g. reuptake inhibitors), neuromodulator antagonists or their combinations. Finally, we developed user-friendly graphical user interface software for model simulation and visualization for both fundamental sciences and pharmacological studies. © 2017 The Authors.

  14. An integrated modelling framework for neural circuits with multiple neuromodulators

    PubMed Central

    Vemana, Vinith

    2017-01-01

    Neuromodulators are endogenous neurochemicals that regulate biophysical and biochemical processes, which control brain function and behaviour, and are often the targets of neuropharmacological drugs. Neuromodulator effects are generally complex partly owing to the involvement of broad innervation, co-release of neuromodulators, complex intra- and extrasynaptic mechanism, existence of multiple receptor subtypes and high interconnectivity within the brain. In this work, we propose an efficient yet sufficiently realistic computational neural modelling framework to study some of these complex behaviours. Specifically, we propose a novel dynamical neural circuit model that integrates the effective neuromodulator-induced currents based on various experimental data (e.g. electrophysiology, neuropharmacology and voltammetry). The model can incorporate multiple interacting brain regions, including neuromodulator sources, simulate efficiently and easily extendable to large-scale brain models, e.g. for neuroimaging purposes. As an example, we model a network of mutually interacting neural populations in the lateral hypothalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrenaline, respectively, and which play significant roles in regulating many physiological functions. We demonstrate that such a model can provide predictions of systemic drug effects of the popular antidepressants (e.g. reuptake inhibitors), neuromodulator antagonists or their combinations. Finally, we developed user-friendly graphical user interface software for model simulation and visualization for both fundamental sciences and pharmacological studies. PMID:28100828

  15. Neural Plasticity and Neurorehabilitation: Teaching the New Brain Old Tricks

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.

    2011-01-01

    Following brain injury or disease there are widespread biochemical, anatomical and physiological changes that result in what might be considered a new, very different brain. This adapted brain is forced to reacquire behaviors lost as a result of the injury or disease and relies on neural plasticity within the residual neural circuits. The same…

  16. CRHR1 genotypes, neural circuits and the diathesis for anxiety and depression.

    PubMed

    Rogers, J; Raveendran, M; Fawcett, G L; Fox, A S; Shelton, S E; Oler, J A; Cheverud, J; Muzny, D M; Gibbs, R A; Davidson, R J; Kalin, N H

    2013-06-01

    The corticotrophin-releasing hormone (CRH) system integrates the stress response and is associated with stress-related psychopathology. Previous reports have identified interactions between childhood trauma and sequence variation in the CRH receptor 1 gene (CRHR1) that increase risk for affective disorders. However, the underlying mechanisms that connect variation in CRHR1 to psychopathology are unknown. To explore potential mechanisms, we used a validated rhesus macaque model to investigate association between genetic variation in CRHR1, anxious temperament (AT) and brain metabolic activity. In young rhesus monkeys, AT is analogous to the childhood risk phenotype that predicts the development of human anxiety and depressive disorders. Regional brain metabolism was assessed with (18)F-labeled fluoro-2-deoxyglucose (FDG) positron emission tomography in 236 young, normally reared macaques that were also characterized for AT. We show that single nucleotide polymorphisms (SNPs) affecting exon 6 of CRHR1 influence both AT and metabolic activity in the anterior hippocampus and amygdala, components of the neural circuit underlying AT. We also find evidence for association between SNPs in CRHR1 and metabolism in the intraparietal sulcus and precuneus. These translational data suggest that genetic variation in CRHR1 affects the risk for affective disorders by influencing the function of the neural circuit underlying AT and that differences in gene expression or the protein sequence involving exon 6 may be important. These results suggest that variation in CRHR1 may influence brain function before any childhood adversity and may be a diathesis for the interaction between CRHR1 genotypes and childhood trauma reported to affect human psychopathology.

  17. Genetic Feedback Regulation of Frontal Cortical Neuronal Ensembles Through Activity-Dependent Arc Expression and Dopaminergic Input.

    PubMed

    Mastwal, Surjeet; Cao, Vania; Wang, Kuan Hong

    2016-01-01

    Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic (DA) input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of DA projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.

  18. Cell Type-Specific Circuit Mapping Reveals the Presynaptic Connectivity of Developing Cortical Circuits

    PubMed Central

    Cocas, Laura A.; Fernandez, Gloria; Barch, Mariya; Doll, Jason; Zamora Diaz, Ivan

    2016-01-01

    The mammalian cerebral cortex is a dense network composed of local, subcortical, and intercortical synaptic connections. As a result, mapping cell type-specific neuronal connectivity in the cerebral cortex in vivo has long been a challenge for neurobiologists. In particular, the development of excitatory and inhibitory interneuron presynaptic input has been hard to capture. We set out to analyze the development of this connectivity in the first postnatal month using a murine model. First, we surveyed the connectivity of one of the earliest populations of neurons in the brain, the Cajal-Retzius (CR) cells in the neocortex, which are known to be critical for cortical layer formation and are hypothesized to be important in the establishment of early cortical networks. We found that CR cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We also found that both excitatory pyramidal neurons and inhibitory interneurons received broad inputs in the first postnatal week, including inputs from CR cells. Expanding our analysis into the more mature brain, we assessed the inputs onto inhibitory interneurons and excitatory projection neurons, labeling neuronal progenitors with Cre drivers to study discrete populations of neurons in older cortex, and found that excitatory cortical and subcortical inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. Cell type-specific circuit mapping is specific, reliable, and effective, and can be used on molecularly defined subtypes to determine connectivity in the cortex. SIGNIFICANCE STATEMENT Mapping cortical connectivity in the developing mammalian brain has been an intractable problem, in part because it has not been possible to analyze connectivity with cell subtype precision. Our study systematically targets the presynaptic connections of discrete neuronal subtypes in both the mature and developing cerebral cortex. We analyzed the connections that Cajal-Retzius cells make and receive, and found that these cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We assessed the inputs onto inhibitory interneurons and excitatory projection neurons, the major two types of neurons in the cortex, and found that excitatory inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. PMID:26985044

  19. Optical manipulation for optogenetics: otoliths manipulation in zebrafish (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Favre-Bulle, Itia A.; Scott, Ethan; Rubinsztein-Dunlop, Halina

    2016-03-01

    Otoliths play an important role in Zebrafish in terms of hearing and sense of balance. Many studies have been conducted to understand its structure and function, however the encoding of its movement in the brain remains unknown. Here we developed a noninvasive system capable of manipulating the otolith using optical trapping while we image its behavioral response and brain activity. We'll also present our tools for behavioral response detection and brain activity mapping. Acceleration is sensed through movements of the otoliths in the inner ear. Because experimental manipulations involve movements, electrophysiology and fluorescence microscopy are difficult. As a result, the neural codes underlying acceleration sensation are poorly understood. We have developed a technique for optically trapping otoliths, allowing us to simulate acceleration in stationary larval zebrafish. By applying forces to the otoliths, we can elicit behavioral responses consistent with compensation for perceived acceleration. Since the animal is stationary, we can use calcium imaging in these animals' brains to identify the functional circuits responsible for mediating responses to acceleration in natural settings.

  20. The autistic brain in the context of normal neurodevelopment.

    PubMed

    Ziats, Mark N; Edmonson, Catherine; Rennert, Owen M

    2015-01-01

    The etiology of autism spectrum disorders (ASDs) is complex and largely unclear. Among various lines of inquiry, many have suggested convergence onto disruptions in both neural circuitry and immune regulation/glial cell function pathways. However, the interpretation of the relationship between these two putative mechanisms has largely focused on the role of exogenous factors and insults, such as maternal infection, in activating immune pathways that in turn result in neural network abnormalities. Yet, given recent insights into our understanding of human neurodevelopment, and in particular the critical role of glia and the immune system in normal brain development, it is important to consider these putative pathological processes in their appropriate normal neurodevelopmental context. In this review, we explore the hypothesis that the autistic brain cellular phenotype likely represents intrinsic abnormalities of glial/immune processes constitutively operant in normal brain development that result in the observed neural network dysfunction. We review recent studies demonstrating the intercalated role of neural circuit development, the immune system, and glial cells in the normal developing brain, and integrate them with studies demonstrating pathological alterations in these processes in autism. By discussing known abnormalities in the autistic brain in the context of normal brain development, we explore the hypothesis that the glial/immune component of ASD may instead be related to intrinsic exaggerated/abnormal constitutive neurodevelopmental processes such as network pruning. Moreover, this hypothesis may be relevant to other neurodevelopmental disorders that share genetic, pathologic, and clinical features with autism.

  1. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood.

    PubMed

    Parker, Matthew O; Evans, Alexandra M-D; Brock, Alistair J; Combe, Fraser J; Teh, Muy-Teck; Brennan, Caroline H

    2016-01-01

    Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning. © 2014 Society for the Study of Addiction.

  2. Morphological and Glucose Metabolism Abnormalities in Alcoholic Korsakoff's Syndrome: Group Comparisons and Individual Analyses

    PubMed Central

    Pitel, Anne-Lise; Aupée, Anne-Marie; Chételat, Gaël; Mézenge, Florence; Beaunieux, Hélène; de la Sayette, Vincent; Viader, Fausto; Baron, Jean-Claude; Eustache, Francis; Desgranges, Béatrice

    2009-01-01

    Background Gray matter volume studies have been limited to few brain regions of interest, and white matter and glucose metabolism have received limited research attention in Korsakoff's syndrome (KS). Because of the lack of brain biomarkers, KS was found to be underdiagnosed in postmortem studies. Methodology/Principal Findings Nine consecutively selected patients with KS and 22 matched controls underwent both structural magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography examinations. Using a whole-brain analysis, the between-group comparisons of gray matter and white matter density and relative glucose uptake between patients with KS and controls showed the involvement of both the frontocerebellar and the Papez circuits, including morphological abnormalities in their nodes and connection tracts and probably resulting hypometabolism. The direct comparison of the regional distribution and degree of gray matter hypodensity and hypometabolism within the KS group indicated very consistent gray matter distribution of both abnormalities, with a single area of significant difference in the middle cingulate cortex showing greater hypometabolism than hypodensity. Finally, the analysis of the variability in the individual patterns of brain abnormalities within our sample of KS patients revealed that the middle cingulate cortex was the only brain region showing significant GM hypodensity and hypometabolism in each of our 9 KS patients. Conclusions/Significance These results indicate widespread brain abnormalities in KS including both gray and white matter damage mainly involving two brain networks, namely, the fronto-cerebellar circuit and the Papez circuit. Furthermore, our findings suggest that the middle cingulate cortex may play a key role in the pathophysiology of KS and could be considered as a potential in vivo brain biomarker. PMID:19936229

  3. Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity.

    PubMed

    Duman, Joseph G; Tu, Yen-Kuei; Tolias, Kimberley F

    2016-01-01

    Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases.

  4. Design and Application of a Circuit for Measuring Frequency and Duty Cycle of Stimulated Bioelectrical Signal

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ming; Chang, Ben-Kang; Liu, Tie-Bing; Wu, Min; Ling, Gang

    2002-12-01

    To design a new type of circuit for measuring frequency & duty cycle of stimulated bioelectrical signal for the project of 'the map of neuron-threshold in human brain and its clinical application'. This circuit was designed according to the character of stimulated bioelectrical signals. It was tested and improved and then used in the neuron -threshold stimulator. The circuit was found to be very accurate for measuring frequency and the error for measuring duty cycle was below 0.2%. This circuit is well-designed, simple, easy to use, and can be applied in many systems.

  5. The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders.

    PubMed

    Letra, Liliana; Santana, Isabel

    2017-01-01

    The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer's disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.

  6. On the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors.

    PubMed

    Fedder, Karlie N; Sabo, Shasta L

    2015-12-14

    Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases.

  7. The Mind Bending Quest for Cognitive Enhancers

    PubMed Central

    Arce, E

    2016-01-01

    Adequate cognitive functioning is essential for daily activities. When there is an insult to the brain, cognitive abilities can suffer, which, in turn, produce substantial medical and functional impairment. Advances in neurobiology, circuit neuroscience, and clinical assessment technology are converging in a manner that holds promise for the development of new pharmacological agents for cognitive enhancement in neuropsychiatric disease. PMID:27706806

  8. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    ERIC Educational Resources Information Center

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  9. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry

    PubMed Central

    Pallas, Sarah L.

    2017-01-01

    Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways. PMID:28701910

  10. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry.

    PubMed

    Pallas, Sarah L

    2017-01-01

    Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways.

  11. MET receptor tyrosine kinase as an autism genetic risk factor.

    PubMed

    Peng, Yun; Huentelman, Matthew; Smith, Christopher; Qiu, Shenfeng

    2013-01-01

    In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions. © 2013 Elsevier Inc. All rights reserved.

  12. Molecular neuroanatomy: a generation of progress.

    PubMed

    Pollock, Jonathan D; Wu, Da-Yu; Satterlee, John S

    2014-02-01

    The neuroscience research landscape has changed dramatically over the past decade. Specifically, an impressive array of new tools and technologies have been generated, including but not limited to: brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity, and new methods for imaging and mapping circuits. However, despite these technological advances, several significant challenges must be overcome to enable a better understanding of brain function and to develop cell type-targeted therapeutics to treat brain disorders. This review provides an overview of some of the tools and technologies currently being used to advance the field of molecular neuroanatomy, and also discusses emerging technologies that may enable neuroscientists to address these crucial scientific challenges over the coming decade. Published by Elsevier Ltd.

  13. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy.

    PubMed

    Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente

    2015-09-01

    The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cerebellar Granule Cell Replenishment Post-Injury by Adaptive Reprogramming of Nestin+ Progenitors

    PubMed Central

    Wojcinski, Alexandre; Lawton, Andrew K.; Bayin, N Sumru.; Lao, Zhimin; Stephen, Daniel N.; Joyner, Alexandra L.

    2017-01-01

    Regeneration of several organs involves adaptive reprogramming of progenitors, however, the intrinsic capacity of the developing brain to replenish lost cells remains largely unknown. In this study, we discovered that the developing cerebellum has unappreciated progenitor plasticity, since it undergoes near full growth and functional recovery following acute depletion of granule cells, the most plentiful neuron population in the brain. We demonstrate that following postnatal ablation of granule cell progenitors, Nestin-expressing progenitors (NEPs) specified during mid-embryogenesis to produce astroglia and interneurons, switch their fate and generate granule neurons in mice. Moreover, Hedgehog-signaling in two NEP populations is crucial not only for the compensatory replenishment of granule neurons but also to scale interneuron and astrocyte numbers. Thus we provide insights into the mechanisms underlying robustness of circuit formation in the cerebellum, and speculate that adaptive reprogramming of progenitors in other brain regions plays a greater role than appreciated in developmental regeneration. PMID:28805814

  15. NMDA Receptor Regulation Prevents Regression of Visual Cortical Function in the Absence of Mecp2

    PubMed Central

    Durand, Severine; Patrizi, Annarita; Quast, Kathleen B.; Hachigian, Lea; Pavlyuk, Roman; Saxena, Alka; Carninci, Piero; Hensch, Takao K.; Fagiolini, Michela

    2012-01-01

    SUMMARY Brain function is shaped by postnatal experience and vulnerable to disruption of Methyl-CpG-binding protein, Mecp2, in multiple neurodevelopmental disorders. How Mecp2 contributes to the experience-dependent refinement of specific cortical circuits and their impairment remains unknown. We analyzed vision in gene-targeted mice and observed an initial normal development in the absence of Mecp2. Visual acuity then rapidly regressed after postnatal day P35–40 and cortical circuits largely fell silent by P55-60. Enhanced inhibitory gating and an excess of parvalbumin-positive, perisomatic input preceded the loss of vision. Both cortical function and inhibitory hyperconnectivity were strikingly rescued independent of Mecp2 by early sensory deprivation or genetic deletion of the excitatory NMDA receptor subunit, NR2A. Thus, vision is a sensitive biomarker of progressive cortical dysfunction and may guide novel, circuit-based therapies for Mecp2 deficiency. PMID:23259945

  16. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway

    PubMed Central

    Iafrati, J; Orejarena, M J; Lassalle, O; Bouamrane, L; Chavis, P

    2014-01-01

    Defective brain extracellular matrix (ECM) is a factor of vulnerability in various psychiatric diseases such as schizophrenia, depression and autism. The glycoprotein reelin is an essential building block of the brain ECM that modulates neuronal development and participates to the functions of adult central synapses. The reelin gene (RELN) is a strong candidate in psychiatric diseases of early onset, but its synaptic and behavioral functions in juvenile brain circuits remain unresolved. Here, we found that in juvenile reelin-haploinsufficient heterozygous reeler mice (HRM), abnormal fear memory erasure is concomitant to reduced dendritic spine density and anomalous long-term potentiation in the prefrontal cortex. In juvenile HRM, a single in vivo injection with ketamine or Ro25-6981 to inhibit GluN2B-N-methyl-𝒟-aspartate receptors (NMDARs) restored normal spine density, synaptic plasticity and converted fear memory to an erasure-resilient state typical of adult rodents. The functional and behavioral rescue by ketamine was prevented by rapamycin, an inhibitor of the mammalian target of rapamycin pathway. Finally, we show that fear memory erasure persists until adolescence in HRM and that a single exposure to ketamine during the juvenile period reinstates normal fear memory in adolescent mice. Our results show that reelin is essential for successful structural, functional and behavioral development of juvenile prefrontal circuits and that this developmental period provides a critical window for therapeutic rehabilitation with GluN2B-NMDAR antagonists. PMID:23752244

  17. Multimodal Approaches to Define Network Oscillations in Depression

    PubMed Central

    Smart, Otis Lkuwamy; Tiruvadi, Vineet Ravi; Mayberg, Helen S.

    2018-01-01

    The renaissance in the use of encephalography-based research methods to probe the pathophysiology of neuropsychiatric disorders is well afoot and continues to advance. Building on the platform of neuroimaging evidence on brain circuit models, magnetoencephalography, scalp electroencephalography, and even invasive electroencephalography are now being used to characterize brain network dysfunctions that underlie major depressive disorder using brain oscillation measurements and associated treatment responses. Such multiple encephalography modalities provide avenues to study pathologic network dynamics with high temporal resolution and over long time courses, opportunities to complement neuroimaging methods and findings, and new approaches to identify quantitative biomarkers that indicate critical targets for brain therapy. Such goals have been facilitated by the ongoing testing of novel invasive neuromodulation therapies, notably, deep brain stimulation, where clinically relevant treatment effects can be monitored at multiple brain sites in a time-locked causal manner. We review key brain rhythms identified in major depressive disorder as foundation for development of putative biomarkers for objectively evaluating neuromodulation success and for guiding deep brain stimulation or other target-based neuromodulation strategies for treatment-resistant depression patients. PMID:25681871

  18. Abulia following penetrating brain injury during endoscopic sinus surgery with disruption of the anterior cingulate circuit: Case report

    PubMed Central

    Grunsfeld, Alexander A; Login, Ivan S

    2006-01-01

    Background It is common knowledge that the frontal lobes mediate complex human behavior and that damage to these regions can cause executive dysfunction, apathy, disinhibition and personality changes. However, it is less well known that subcortical structures such as the caudate and thalamus are part of functionally segregated fronto-subcortical circuits, that can also alter behavior after injury. Case presentation We present a 57 year old woman who suffered penetrating brain injury during endoscopic sinus surgery causing right basal ganglia injury which resulted in an abulic syndrome. Conclusion Abulia does not result solely from cortical injury but can occur after disruption anywhere in the anterior cingulate circuit – in the case of our patient, most prominently at the right caudate. PMID:16430769

  19. Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango.

    PubMed

    Talay, Mustafa; Richman, Ethan B; Snell, Nathaniel J; Hartmann, Griffin G; Fisher, John D; Sorkaç, Altar; Santoyo, Juan F; Chou-Freed, Cambria; Nair, Nived; Johnson, Mark; Szymanski, John R; Barnea, Gilad

    2017-11-15

    Mapping neural circuits across defined synapses is essential for understanding brain function. Here we describe trans-Tango, a technique for anterograde transsynaptic circuit tracing and manipulation. At the core of trans-Tango is a synthetic signaling pathway that is introduced into all neurons in the animal. This pathway converts receptor activation at the cell surface into reporter expression through site-specific proteolysis. Specific labeling is achieved by presenting a tethered ligand at the synapses of genetically defined neurons, thereby activating the pathway in their postsynaptic partners and providing genetic access to these neurons. We first validated trans-Tango in the Drosophila olfactory system and then implemented it in the gustatory system, where projections beyond the first-order receptor neurons are not fully characterized. We identified putative second-order neurons within the sweet circuit that include projection neurons targeting known neuromodulation centers in the brain. These experiments establish trans-Tango as a flexible platform for transsynaptic circuit analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice.

    PubMed

    Ansorge, Mark S; Morelli, Emanuela; Gingrich, Jay A

    2008-01-02

    Serotonin (5-HT) acts as a neurotransmitter, but also modulates brain maturation during early development. The demonstrated influence of genetic variants on brain function, personality traits, and susceptibility to neuropsychiatric disorders suggests a critical importance of developmental mechanisms. However, little is known about how and when developmentally perturbed 5-HT signaling affects circuitry and resulting behavior. The 5-HT transporter (5-HTT) is a key regulator of extracellular 5-HT levels and we used pharmacologic strategies to manipulate 5-HTT function during development and determine behavioral consequences. Transient exposure to the 5-HTT inhibitors fluoxetine, clomipramine, and citalopram from postnatal day 4 (P4) to P21 produced abnormal emotional behaviors in adult mice. Similar treatment with the norepinephrine transporter (NET) inhibitor, desipramine, did not adversely affect adult behavior, suggesting that 5-HT and norepinephrine (NE) do not share the same effects on brain development. Shifting our period of treatment/testing to P90/P185 failed to mimic the effect of earlier exposure, demonstrating that 5-HT effects on adult behavior are developmentally specific. We have hypothesized that early-life perturbations of 5-HT signaling affect corticolimbic circuits that do not reach maturity until the peri-adolescent period. In support of this idea, we found that abnormal behaviors resulting from postnatal fluoxetine exposure have a post-pubescent onset and persist long after reaching adult age. A better understanding of the underlying 5-HT sensitive circuits and how they are perturbed should lead to new insights into how various genetic polymorphisms confer their risk to carriers. Furthermore, these studies should help determine whether in utero exposure to 5-HTT blocking drugs poses a risk for behavioral abnormalities in later life.

  1. Design of a 32-Channel EEG System for Brain Control Interface Applications

    PubMed Central

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design. PMID:22778545

  2. Design of a 32-channel EEG system for brain control interface applications.

    PubMed

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design.

  3. The Role of BDNF in the Development of Fear Learning.

    PubMed

    Dincheva, Iva; Lynch, Niccola B; Lee, Francis S

    2016-10-01

    Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders. © 2016 Wiley Periodicals, Inc.

  4. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology.

    PubMed

    Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  5. Ontogeny of cholecystokinin-like immunoreactivity in the Brazilian opossum brain.

    PubMed

    Fox, C A; Jeyapalan, M; Ross, L R; Jacobson, C D

    1991-12-17

    We have studied the anatomical distribution of cholecystokinin-like immunoreactive (CCK-IR) somata and fibers in the brain of the adult and developing Brazilian short-tailed opossum, Monodelphis domestica. Animals ranged in age from the day of birth (1PN) to young adulthood (180PN). A nickel enhanced, avidin-biotin, indirect immunohistochemical technique was used to identify CCK-IR structures. Somata containing CCK immunoreactivity were observed in the cerebral cortex, hippocampus, hypothalamus, thalamus, midbrain, and brainstem in the adult. Cholecystokinin immunoreactive fibers had a wide distribution in the adult Monodelphis brain. The only major region of the brain that did not contain CCK-IR fibers was the cerebellum. The earliest expression of CCK immunoreactivity was found in fibers in the dorsal brainstem of 5-day-old opossum pups. It is possible that the CCK-IR fibers in the brainstem at 5PN are of vagal origin. Cholecystokinin immunoreactive somata were observed in the brainstem on 10PN. The CCK-IR cell bodies observed in the brainstem at 10PN may mark the first expression of CCK-IR elements intrinsic to the brain. A broad spectrum of patterns of onset of CCK expression was observed in the opossum brain. The early occurrence and varied ontogenesis of CCK-IR structures indicates CCK may be involved in the function of a variety of circuits from the brainstem to the cerebral cortex. The early expression of CCK-IR structures in the dorsal brainstem suggests that CCK may modulate feeding behavior in the Monodelphis neonate. Cholecystokinin immunoreactivity in forebrain structures such as the suprachiasmatic nucleus, medial preoptic area, thalamus and cortical structures indicates that CCK may also be involved in circadian rhythmicity, reproductive functions, as well as the state of arousal of the Brazilian opossum. The ontogenic timing of CCK immunoreactivity in specific circuitry also indicates that CCK expression does not occur simultaneously throughout the brain. This pattern of CCK onset may relate to the temporal need for CCK in specific circuits of the central nervous system (CNS) during development.

  6. Decision making in the ageing brain: changes in affective and motivational circuits.

    PubMed

    Samanez-Larkin, Gregory R; Knutson, Brian

    2015-05-01

    As the global population ages, older decision makers will be required to take greater responsibility for their own physical, psychological and financial well-being. With this in mind, researchers have begun to examine the effects of ageing on decision making and associated neural circuits. A new 'affect-integration-motivation' (AIM) framework may help to clarify how affective and motivational circuits support decision making. Recent research has shed light on whether and how ageing influences these circuits, providing an interdisciplinary account of how ageing can alter decision making.

  7. Decision making in the ageing brain: Changes in affective and motivational circuits

    PubMed Central

    Samanez-Larkin, Gregory R.; Knutson, Brian

    2017-01-01

    As the global population ages, older decision makers will be required to take greater responsibility for their own physical, psychological and financial well-being. With this in mind, researchers have begun to examine the effects of ageing on decision making and associated neural circuits. A new “affect, integration, motivation” (or AIM) framework may help clarify how affective and motivational circuits support decision making. Recent research has shed light on whether and how ageing influences these circuits, providing an interdisciplinary account of how ageing can alter decision making. PMID:25873038

  8. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    PubMed

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis

    PubMed Central

    Cannon, Tyrone D.

    2015-01-01

    Identifying cognitive and neural mechanisms involved in the development of schizophrenia requires longitudinal observation of individuals prior to onset. Here recent studies of prodromal individuals who progress to full psychosis are briefly reviewed in relation to models of schizophrenia pathophysiology. Together, this body of work suggests that disruption in brain connectivity, driven primarily by a progressive reduction in dendritic spines on cortical pyramidal neurons, may represent a key triggering mechanism. The earliest disruptions appear to be in circuits involved in referencing experiences according to time, place, and agency, which may result in a failure to recognize particular cognitions as self-generated or to constrain interpretations of the meaning of events based on prior experiences, providing the scaffolding for faulty reality testing. PMID:26493362

  10. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder.

    PubMed

    Poirier, Guillaume L; Huang, Wei; Tam, Kelly; DiFranza, Joseph R; King, Jean A

    2017-09-01

    Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping

    PubMed Central

    Kim, Christina K.; Miri, Andrew; Leung, Louis C.; Berndt, Andre; Mourrain, Philippe; Tank, David W.; Burdine, Rebecca D.

    2014-01-01

    Larval zebrafish offer the potential for large-scale optical imaging of neural activity throughout the central nervous system; however, several barriers challenge their utility. First, ~panneuronal probe expression has to date only been demonstrated at early larval stages up to 7 days post-fertilization (dpf), precluding imaging at later time points when circuits are more mature. Second, nuclear exclusion of genetically-encoded calcium indicators (GECIs) limits the resolution of functional fluorescence signals collected during imaging. Here, we report the creation of transgenic zebrafish strains exhibiting robust, nuclearly targeted expression of GCaMP3 across the brain up to at least 14 dpf utilizing a previously described optimized Gal4-UAS system. We confirmed both nuclear targeting and functionality of the modified probe in vitro and measured its kinetics in response to action potentials (APs). We then demonstrated in vivo functionality of nuclear-localized GCaMP3 in transgenic zebrafish strains by identifying eye position-sensitive fluorescence fluctuations in caudal hindbrain neurons during spontaneous eye movements. Our methodological approach will facilitate studies of larval zebrafish circuitry by both improving resolution of functional Ca2+ signals and by allowing brain-wide expression of improved GECIs, or potentially any probe, further into development. PMID:25505384

  12. Pharmacogenetic and optical dissection for mechanistic understanding of Parkinson's disease: potential utilities revealed through behavioural assessment.

    PubMed

    Sharma, Puneet; Pienaar, Ilse S

    2014-11-01

    The technology toolbox by which neural elements can be selectively manipulated in vertebrate and invertebrate brains has expanded greatly in recent years, to now include sophisticated optogenetics and novel designer receptors. Application of such tools allow for ascertaining whether a particular behavioural phenotype associates with interrogation of a specific neural circuit. Optogenetics has already found application in the study of Parkinson's disease (PD) circuitry and therapies, whereas novel designer receptors hold promise for enlightening on current understanding of the mechanisms underlying parkinsonian motor and non-motor symptoms. In particular, this new generation of research tools provide a method by which significant insights can be gained on brain networks implicated in brain diseases such as PD. These tools also promise to assist in the development of novel therapies for targeting degenerated dopaminergic and non-dopaminergic neurons in the diseased basal ganglia system of PD patients, for providing symptomatic relief or even reverse neurodegenerative processes. The present review discusses how such technologies, in conjunction with application of sensitive behavioural assays, continue to significantly advance our knowledge of circuit and signalling properties inherent to PD pathology. The discussion also highlights how such experimental approaches provide additional explorative avenues which may result in dramatically improved therapeutic options for PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain.

    PubMed

    Arganda-Carreras, Ignacio; Manoliu, Tudor; Mazuras, Nicolas; Schulze, Florian; Iglesias, Juan E; Bühler, Katja; Jenett, Arnim; Rouyer, François; Andrey, Philippe

    2018-01-01

    Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila , one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.

  14. Temporal Requirements of the Fragile X Mental Retardation Protein in Modulating Circadian Clock Circuit Synaptic Architecture

    PubMed Central

    Gatto, Cheryl L.; Broadie, Kendal

    2009-01-01

    Loss of fragile X mental retardation 1 (FMR1) gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP) is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs), a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning) occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity. PMID:19738924

  15. Prenatal Drug Exposures Sensitize Noradrenergic Circuits to Subsequent Disruption by Chlorpyrifos

    PubMed Central

    Slotkin, Theodore A.; Skavicus, Samantha; Seidler, Frederic J.

    2015-01-01

    We examined whether nicotine or dexamethasone, common prenatal drug exposures, sensitize the developing brain to chlorpyrifos. We gave nicotine to pregnant rats throughout gestation at a dose (3 mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1–4, at a dose (1 mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. In a parallel study, we administered dexamethasone to pregnant rats on gestational days 17–19 at a standard therapeutic dose (0.2 mg/kg) used in the management of preterm labor, followed by postnatal chlorpyrifos. We evaluated cerebellar noradrenergic projections, a known target for each agent, and contrasted the effects with those in the cerebral cortex. Either drug augmented the effect of chlorpyrifos, evidenced by deficits in cerebellar β-adrenergic receptors; the receptor effects were not due to increased systemic toxicity or cholinesterase inhibition, nor to altered chlorpyrifos pharmacokinetics. Further, the deficits were not secondary adaptations to presynaptic hyperinnervation/hyperactivity, as there were significant deficits in presynaptic norepinephrine levels that would serve to augment the functional consequence of receptor deficits. The pretreatments also altered development of cerebrocortical noradrenergic circuits, but with a different overall pattern, reflecting the dissimilar developmental stages of the regions at the time of exposure. However, in each case the net effects represented a change in the developmental trajectory of noradrenergic circuits, rather than simply a continuation of an initial injury. Our results point to the ability of prenatal drug exposure to create a subpopulation with heightened vulnerability to environmental neurotoxicants. PMID:26419632

  16. Prenatal drug exposures sensitize noradrenergic circuits to subsequent disruption by chlorpyrifos.

    PubMed

    Slotkin, Theodore A; Skavicus, Samantha; Seidler, Frederic J

    2015-12-02

    We examined whether nicotine or dexamethasone, common prenatal drug exposures, sensitize the developing brain to chlorpyrifos. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. In a parallel study, we administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg) used in the management of preterm labor, followed by postnatal chlorpyrifos. We evaluated cerebellar noradrenergic projections, a known target for each agent, and contrasted the effects with those in the cerebral cortex. Either drug augmented the effect of chlorpyrifos, evidenced by deficits in cerebellar β-adrenergic receptors; the receptor effects were not due to increased systemic toxicity or cholinesterase inhibition, nor to altered chlorpyrifos pharmacokinetics. Further, the deficits were not secondary adaptations to presynaptic hyperinnervation/hyperactivity, as there were significant deficits in presynaptic norepinephrine levels that would serve to augment the functional consequence of receptor deficits. The pretreatments also altered development of cerebrocortical noradrenergic circuits, but with a different overall pattern, reflecting the dissimilar developmental stages of the regions at the time of exposure. However, in each case the net effects represented a change in the developmental trajectory of noradrenergic circuits, rather than simply a continuation of an initial injury. Our results point to the ability of prenatal drug exposure to create a subpopulation with heightened vulnerability to environmental neurotoxicants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Advanced Shutter Control for a Molecular Beam Epitaxy Reactor

    DTIC Science & Technology

    An open-source hardware and software-based shutter controller solution was developed that communicates over Ethernet with our original equipment...manufacturer (OEM) molecular beam epitaxy (MBE) reactor control software. An Arduino Mega microcontroller is the used for the brain of the shutter... controller , while a custom-designed circuit board distributes 24-V power to each of the 16 shutter solenoids available on the MBE. Using Ethernet

  18. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging.

    PubMed

    Schultz, Simon R; Copeland, Caroline S; Foust, Amanda J; Quicke, Peter; Schuck, Renaud

    2017-01-01

    Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size.

  19. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging

    PubMed Central

    Schultz, Simon R.; Copeland, Caroline S.; Foust, Amanda J.; Quicke, Peter; Schuck, Renaud

    2017-01-01

    Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size. PMID:28757657

  20. Rules and mechanisms for efficient two-stage learning in neural circuits

    PubMed Central

    Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay

    2017-01-01

    Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning. DOI: http://dx.doi.org/10.7554/eLife.20944.001 PMID:28374674

  1. Engineering-Aligned 3D Neural Circuit in Microfluidic Device.

    PubMed

    Bang, Seokyoung; Na, Sangcheol; Jang, Jae Myung; Kim, Jinhyun; Jeon, Noo Li

    2016-01-07

    The brain is one of the most important and complex organs in the human body. Although various neural network models have been proposed for in vitro 3D neuronal networks, it has been difficult to mimic functional and structural complexity of the in vitro neural circuit. Here, a microfluidic model of a simplified 3D neural circuit is reported. First, the microfluidic device is filled with Matrigel and continuous flow is delivered across the device during gelation. The fluidic flow aligns the extracellular matrix (ECM) components along the flow direction. Following the alignment of ECM fibers, neurites of primary rat cortical neurons are grown into the Matrigel at the average speed of 250 μm d(-1) and form axon bundles approximately 1500 μm in length at 6 days in vitro (DIV). Additionally, neural networks are developed from presynaptic to postsynaptic neurons at 14 DIV. The establishment of aligned 3D neural circuits is confirmed with the immunostaining of PSD-95 and synaptophysin and the observation of calcium signal transmission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Recent Advances on Neuromorphic Systems Using Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-05-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  3. Recent Advances on Neuromorphic Systems Using Phase-Change Materials.

    PubMed

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-12-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  4. Spatial organization of astrocytes in ferret visual cortex.

    PubMed

    López-Hidalgo, Mónica; Hoover, Walter B; Schummers, James

    2016-12-01

    Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the "tiling" of the brain with non-overlapping territories. There are some documented species and brain region-specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown. We quantitatively defined the rules that govern the spatial arrangement of astrocyte somata and territory overlap in ferret visual cortex using a combination of in vivo two-photon imaging, morphological reconstruction, immunostaining, and model simulations. We found that ferret astrocytes share, on average, half of their territory with other astrocytes. However, a specific class of astrocytes, abundant in thalamo-recipient cortical layers ("kissing" astrocytes), overlap markedly less. Together, these results demonstrate novel features of astrocyte organization indicating that different classes of astrocytes are arranged in a circuit-specific manner and that tiling does not apply universally across brain regions and species. J. Comp. Neurol. 524:3561-3576, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  5. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit

    PubMed Central

    Shankar, Shruti; Chua, Jia Yi; Tan, Kah Junn; Calvert, Meredith EK; Weng, Ruifen; Ng, Wan Chin; Mori, Kenji; Yew, Joanne Y

    2015-01-01

    Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state. DOI: http://dx.doi.org/10.7554/eLife.06914.001 PMID:26083710

  6. Genetically increased cell-intrinsic excitability enhances neuronal integration into adult brain circuits

    PubMed Central

    Lin, Chia-Wei; Sim, Shuyin; Ainsworth, Alice; Okada, Masayoshi; Kelsch, Wolfgang; Lois, Carlos

    2009-01-01

    New neurons are added to the adult brain throughout life, but only half ultimately integrate into existing circuits. Sensory experience is an important regulator of the selection of new neurons but it remains unknown whether experience provides specific patterns of synaptic input, or simply a minimum level of overall membrane depolarization critical for integration. To investigate this issue, we genetically modified intrinsic electrical properties of adult-generated neurons in the mammalian olfactory bulb. First, we observed that suppressing levels of cell-intrinsic neuronal activity via expression of ESKir2.1 potassium channels decreases, whereas enhancing activity via expression of NaChBac sodium channels increases survival of new neurons. Neither of these modulations affects synaptic formation. Furthermore, even when neurons are induced to fire dramatically altered patterns of action potentials, increased levels of cell-intrinsic activity completely blocks cell death triggered by NMDA receptor deletion. These findings demonstrate that overall levels of cell-intrinsic activity govern survival of new neurons and precise firing patterns are not essential for neuronal integration into existing brain circuits. PMID:20152111

  7. Role of Neurotrophins in the Development and Function of Neural Circuits that Regulate Energy Homeostasis

    PubMed Central

    Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L.; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-jye; Salton, Stephen R.

    2012-01-01

    Members of the neurotrophin family, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), and other neurotrophic growth factors such as ciliary neurotrophic factor (CNTF) and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue (BAT and WAT), muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis. PMID:22581449

  8. Sleep and Development in Genetically Tractable Model Organisms

    PubMed Central

    Kayser, Matthew S.; Biron, David

    2016-01-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. PMID:27183564

  9. The missing piece in the 'use it or lose it' puzzle: is inhibition regulated by activity or does it act on its own accord?

    PubMed

    Sun, Qian-Quan

    2007-01-01

    We have gained enormous insight into the mechanisms underlying both activity-dependent and (to a lesser degree) -independent plasticity of excitatory synapses. Recently, cortical inhibition has been shown to play a vital role in the formation of critical periods for sensory plasticity. As such, sculpting of neuronal circuits by inhibition may be a common mechanism by which activity organizes or reorganizes brain circuits. Disturbances in the balance of excitation and inhibition in the neocortex provoke abnormal activities, such as epileptic seizures and abnormal cortical development. However, both the process of experience-dependent postnatal maturation of neocortical inhibitory networks and its underlying mechanisms remain elusive. Mechanisms that match excitation and inhibition are central to achieving balanced function at the level of individual circuits. The goal of this review is to reinforce our understanding of the mechanisms by which developing inhibitory networks are able to adapt to sensory inputs, and to maintain their balance with developing excitatory networks. Discussion is centered on the following questions related to experience-dependent plasticity of neocortical inhibitory networks: 1) What are the roles of GABAergic inhibition in the postnatal maturation of neocortical circuits? 2) Does the maturation of neocortical inhibitory circuits proceed in an activity-dependent manner or do they develop independently of sensory inputs? 3) Does activity regulate inhibitory networks in the same way it regulates excitatory networks? 4) What are the molecular and cellular mechanisms that underlie the activity-dependent maturation of inhibitory networks? 5) What are the functional advantages of experience-dependent plasticity of inhibitory networks to network processing in sensory cortices?

  10. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. © 2015 Society for the Study of Addiction.

  11. Introduction: Addiction and Brain Reward and Anti-Reward Pathways

    PubMed Central

    Gardner, Eliot L.

    2013-01-01

    Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly) and that they enhance the functioning of the reward circuitry of the brain (producing the “high” that the drug-user seeks). The core reward circuitry consists of an “in series” circuit linking the ventral tegmental area, nucleus accumbens, and ventral pallidum - via the medial forebrain bundle. Although originally believed to encode simply the set-point of hedonic tone, these circuits are now believed to be functionally far more complex - also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. “Hedonic dysregulation” within these circuits may lead to addiction. The “second-stage” dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dopaminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g., opiates), tolerance to the euphoric effects develops with chronic use. Post-use dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get “high,” but simply to get back to normal (“get straight”). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically, and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the “bio-psycho-social” model of etiology holds very well for addiction. Addiction appears to correlate with a hypo-dopaminergic dysfunctional state within the reward circuitry of the brain. Neuroimaging studies in humans add credence to this hypothesis. Credible evidence also implicates serotonergic, opioid, endocannabinoid, GABAergic, and glutamatergic mechanisms in addiction. Critically, drug addiction progresses from occasional recreational use to impulsive use to habitual compulsive use. This correlates with a progression from reward-driven to habit-driven drug-seeking behavior. This behavioral progression correlates with a neuroanatomical progression from ventral striatal (nucleus accumbens) to dorsal striatal control over drug-seeking behavior. The three classical sets of craving and relapse triggers are a) re-exposure to addictive drugs, b) stress, and c) re-exposure to environmental cues (“people, places, things”) previously associated with drug-taking behavior. Drug-triggered relapse involves the nucleus accumbens and the neurotransmitter dopamine. Stress-triggered relapse involves a) the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and the neurotransmitter CRF; and b) the lateral tegmental noradrenergic nuclei of the brain stem and the neurotransmitter norepinephrine. Cue-triggered relapse involves the basolateral nucleus of the amygdala, the hippocampus, and the neurotransmitter glutamate. Knowledge of the neuroanatomy, neurophysiology, neurochemistry, and neuropharmacology of addictive drug action in the brain is currently producing a variety of strategies for pharmacotherapeutic treatment of drug addiction, some of which appear promising. PMID:21508625

  12. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition

    PubMed Central

    D'Angelo, Egidio; Casali, Stefano

    2013-01-01

    Following the fundamental recognition of its involvement in sensory-motor coordination and learning, the cerebellum is now also believed to take part in the processing of cognition and emotion. This hypothesis is recurrent in numerous papers reporting anatomical and functional observations, and it requires an explanation. We argue that a similar circuit structure in all cerebellar areas may carry out various operations using a common computational scheme. On the basis of a broad review of anatomical data, it is conceivable that the different roles of the cerebellum lie in the specific connectivity of the cerebellar modules, with motor, cognitive, and emotional functions (at least partially) segregated into different cerebro-cerebellar loops. We here develop a conceptual and operational framework based on multiple interconnected levels (a meta-levels hypothesis): from cellular/molecular to network mechanisms leading to generation of computational primitives, thence to high-level cognitive/emotional processing, and finally to the sphere of mental function and dysfunction. The main concept explored is that of intimate interplay between timing and learning (reminiscent of the “timing and learning machine” capabilities long attributed to the cerebellum), which reverberates from cellular to circuit mechanisms. Subsequently, integration within large-scale brain loops could generate the disparate cognitive/emotional and mental functions in which the cerebellum has been implicated. We propose, therefore, that the cerebellum operates as a general-purpose co-processor, whose effects depend on the specific brain centers to which individual modules are connected. Abnormal functioning in these loops could eventually contribute to the pathogenesis of major brain pathologies including not just ataxia but also dyslexia, autism, schizophrenia, and depression. PMID:23335884

  13. Metaplasticity and behavior: how training and inflammation affect plastic potential within the spinal cord and recovery after injury

    PubMed Central

    Grau, James W.; Huie, J. Russell; Lee, Kuan H.; Hoy, Kevin C.; Huang, Yung-Jen; Turtle, Joel D.; Strain, Misty M.; Baumbauer, Kyle M.; Miranda, Rajesh M.; Hook, Michelle A.; Ferguson, Adam R.; Garraway, Sandra M.

    2014-01-01

    Research has shown that spinal circuits have the capacity to adapt in response to training, nociceptive stimulation and peripheral inflammation. These changes in neural function are mediated by physiological and neurochemical systems analogous to those that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA receptor). As observed in the hippocampus, engaging spinal circuits can have a lasting impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are related to the concept of metaplasticity. Behavioral paradigms are described that induce metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning. Conversely, exposure to controllable or predictable stimulation engages a form of adaptive plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity is tied to an up-regulation of brain derived neurotrophic factor (BDNF). Maladaptive plasticity is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu) receptor, glia, and the cytokine tumor necrosis factor (TNF). Uncontrollable nociceptive stimulation also impairs recovery after a spinal contusion injury and fosters the development of pain (allodynia). These adverse effects are related to an up-regulation of TNF and a down-regulation of BDNF and its receptor (TrkB). In the absence of injury, brain systems quell the sensitization of spinal circuits through descending serotonergic fibers and the serotonin 1A (5HT 1A) receptor. This protective effect is blocked by surgical anesthesia. Disconnected from the brain, intracellular Cl- concentrations increase (due to a down-regulation of the cotransporter KCC2), which causes GABA to have an excitatory effect. It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and re-establishes GABA-mediated inhibition. PMID:25249941

  14. Stable long-term chronic brain mapping at the single-neuron level.

    PubMed

    Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2016-10-01

    Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.

  15. The neurobiology of pain, affect and hypnosis.

    PubMed

    Feldman, Jeffrey B

    2004-01-01

    Recent neuroimaging studies have used hypnotic suggestion to distinguish the brain structures most associated with the sensory and affective dimensions of pain. This paper reviews studies that delineate the overlapping brain circuits involved in the processing of pain and emotions, and their relationship to autonomic arousal. Also examined are the replicated findings of reliable changes in the activation of specific brain structures and the deactivation of others associated with the induction of hypnosis. These differ from those parts of the brain involved in response to hypnotic suggestions. It is proposed that the activation of a portion of the prefrontal cortex in response to both hypnotic suggestions for decreased pain and to positive emotional experience might indicate a more general underlying mechanism. Great potential exists for further research to clarify the relationships among individual differences in reactivity to pain, emotion, and stress, and the possible role of such differences in the development of chronic pain.

  16. Information processing in micro and meso-scale neural circuits during normal and disease states

    NASA Astrophysics Data System (ADS)

    Luongo, Francisco

    Neural computation can occur at multiple spatial and temporal timescales. The sum total of all of these processes is to guide optimal behaviors within the context of the constraints imposed by the physical world. How the circuits of the brain achieves this goal represents a central question in systems neuroscience. Here I explore the many ways in which the circuits of the brain can process information at both the micro and meso scale. Understanding the way information is represented and processed in the brain could shed light on the neuropathology underlying complex neuropsychiatric diseases such as autism and schizophrenia. Chapter 2 establishes an experimental paradigm for assaying patterns of microcircuit activity and examines the role of dopaminergic modulation on prefrontal microcircuits. We find that dopamine type 2 (D2) receptor activation results in an increase in spontaneous activity while dopamine type 1 (D1) activation does not. Chapter 3 of this dissertation presents a study that illustrates how cholingergic activation normally produces what has been suggested as a neural substrate of attention; pairwise decorrelation in microcircuit activity. This study also shows that in two etiologicall distinct mouse models of autism, FMR1 knockout mice and Valproic Acid exposed mice, this ability to decorrelate in the presence of cholinergic activation is lost. This represents a putative microcircuit level biomarker of autism. Chapter 4 examines the structure/function relationship within the prefrontal microcircuit. Spontaneous activity in prefrontal microcircuits is shown to be organized according to a small world architecture. Interestingly, this architecture is important for one concrete function of neuronal microcircuits; the ability to produce temporally stereotyped patterns of activation. In the final chapter, we identify subnetworks in chronic intracranial electrocorticographic (ECoG) recordings using pairwise electrode coherence and dimensionality reduction techniques. We show that we can further reduce the dimensionality of these networks by identifying 'key-interactions' that are informative of the overall subnetwork state at any given point in time. This study highlights that redundancy in ECoG data can be exploited to identify low-dimensional representation of brain-wide subnetworks. Taken together, these studies represent the development of multiple technological and analytical techniques aimed at understanding how information is processed and modulated at emergent circuit and network levels as well as understanding their dysfunction in a neuropsychiatric disease state.

  17. POMC Neurons: From Birth to Death

    PubMed Central

    Toda, Chitoku; Santoro, Anna; Kim, Jung Dae

    2017-01-01

    The hypothalamus is an evolutionarily conserved brain structure that regulates an organism’s basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation. PMID:28192062

  18. Sense of agency in the human brain.

    PubMed

    Haggard, Patrick

    2017-04-01

    In adult life, people normally know what they are doing. This experience of controlling one's own actions and, through them, the course of events in the outside world is called 'sense of agency'. It forms a central feature of human experience; however, the brain mechanisms that produce the sense of agency have only recently begun to be investigated systematically. This recent progress has been driven by the development of better measures of the experience of agency, improved design of cognitive and behavioural experiments, and a growing understanding of the brain circuits that generate this distinctive but elusive experience. The sense of agency is a mental and neural state of cardinal importance in human civilization, because it is frequently altered in psychopathology and because it underpins the concept of responsibility in human societies.

  19. Large-Scale Brain Systems in ADHD: Beyond the Prefrontal-Striatal Model

    PubMed Central

    Castellanos, F. Xavier; Proal, Erika

    2012-01-01

    Attention-deficit/hyperactivity disorder (ADHD) has long been thought to reflect dysfunction of prefrontal-striatal circuitry, with involvement of other circuits largely ignored. Recent advances in systems neuroscience-based approaches to brain dysfunction enable the development of models of ADHD pathophysiology that encompass a number of different large-scale “resting state” networks. Here we review progress in delineating large-scale neural systems and illustrate their relevance to ADHD. We relate frontoparietal, dorsal attentional, motor, visual, and default networks to the ADHD functional and structural literature. Insights emerging from mapping intrinsic brain connectivity networks provide a potentially mechanistic framework for understanding aspects of ADHD, such as neuropsychological and behavioral inconsistency, and the possible role of primary visual cortex in attentional dysfunction in the disorder. PMID:22169776

  20. Neural responses to macronutrients: hedonic and homeostatic mechanisms.

    PubMed

    Tulloch, Alastair J; Murray, Susan; Vaicekonyte, Regina; Avena, Nicole M

    2015-05-01

    The brain responds to macronutrients via intricate mechanisms. We review how the brain's neural systems implicated in homeostatic control of feeding and hedonic responses are influenced by the ingestion of specific types of food. We discuss how these neural systems are dysregulated in preclinical models of obesity. Findings from these studies can increase our understanding of overeating and, perhaps in some cases, the development of obesity. In addition, a greater understanding of the neural circuits affected by the consumption of specific macronutrients, and by obesity, might lead to new treatments and strategies for preventing unhealthy weight gain. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Central genes, pathways and modules that regulate bone mass.

    PubMed

    Quiros-Gonzalez, Isabel; Yadav, Vijay K

    2014-11-01

    Bones are structures that give the shape and defined features to vertebrates, protect several soft organs and perform multiple endocrine influences on other organs. To achieve these functions bones are first modeled early during life and then constantly remodeled throughout life. The process of bone (re)modeling happens simultaneously at multitude of locations in the skeleton and ensures that vertebrates have a mechanically strong yet a flexible skeleton to the most part of their life. Given the extent of its occurrence in the body, bone remodeling is a highly energy demanding process and is co-ordinated with other physiological processes as diverse as energy metabolism, sleep-wake cycle and reproduction. Neuronal circuits in the brain play a very important role in the coordination of bone remodeling with other organ system functions, and perform this function in sync with environmental and peripheral hormonal cues. In this review, we will focus on the roles of hormonal signals and neural circuits that originate in, or impinge on, the brain in the regulation of bone mass. We will provide herein an updated view of how advances in molecular genetics have refined the neural circuits involved in the regulation of bone mass, from the whole brain level to the specific neuronal populations and their neurotransmitters. This will help to understand the mechanisms whereby vertebrate brain regulates bone mass by fine-tuning metabolic signals that originate in the brain or elsewhere in the body. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. NORADRENERGIC CONTROL OF CORTICO-STRIATO-THALAMIC AND MESOLIMBIC CROSS-STRUCTURAL SYNCHRONY

    PubMed Central

    Dzirasa, Kafui; Phillips, H. Westley; Sotnikova, Tatyana D.; Salahpour, Ali; Kumar, Sunil; Gainetdinov, Raul R.; Caron, Marc G.; Nicolelis, Miguel A. L.

    2010-01-01

    While normal dopaminergic tone has been shown to be essential for the induction of cortico-striatal and mesolimbic theta oscillatory activity, the influence of norepinephrine on these brain networks remains relatively unknown. To address this question, we simultaneously recorded local field potentials (LFPs) and single neuron activity across ten interconnected brain areas (ventral striatum, frontal association cortex hippocampus, primary motor cortex, orbital frontal cortex, prelimbic cortex, dorsal lateral striatum, medial dorsal nucleus of thalamus, substantia nigra pars reticularis, and ventral tegmental area) in a combined genetically and pharmacologically induced mouse model of hyponoradrenergia. Our results show that norepinephrine (NE) depletion induces a novel state in male mice characterized by a profound disruption of coherence across multiple cortico-striatal circuits, and an increase in mesolimbic cross-structural coherence. Moreover, this brain state is accompanied by a complex behavioral phenotype consisting of transient hyperactivity, stereotypic behaviors, and an acute twelve-fold increase in grooming. Notably, treatment with a norepinephrine precursors (L-DOPA 100mg/kg or L-DOPS 5mg/kg), or a selective serotonin reuptake inhibitor (fluoxetine 20mg/kg) attenuates the abnormal behaviors and selectively reverses the circuit changes observed in NE depleted mice. Together, our results demonstrate that norepinephrine modulates the dynamic tuning of coherence across cortico-striatal-thalamic circuits, and they suggest that changes in coherence across these circuits mediate the abnormal generation of hyperactivity and repetitive behaviors. PMID:20445065

  3. Noradrenergic control of cortico-striato-thalamic and mesolimbic cross-structural synchrony.

    PubMed

    Dzirasa, Kafui; Phillips, H Westley; Sotnikova, Tatyana D; Salahpour, Ali; Kumar, Sunil; Gainetdinov, Raul R; Caron, Marc G; Nicolelis, Miguel A L

    2010-05-05

    Although normal dopaminergic tone has been shown to be essential for the induction of cortico-striatal and mesolimbic theta oscillatory activity, the influence of norepinephrine on these brain networks remains relatively unknown. To address this question, we simultaneously recorded local field potentials and single-neuron activity across 10 interconnected brain areas (ventral striatum, frontal association cortex, hippocampus, primary motor cortex, orbital frontal cortex, prelimbic cortex, dorsal lateral striatum, medial dorsal nucleus of thalamus, substantia nigra pars reticularis, and ventral tegmental area) in a combined genetically and pharmacologically induced mouse model of hyponoradrenergia. Our results show that norepinephrine (NE) depletion induces a novel state in male mice characterized by a profound disruption of coherence across multiple cortico-striatal circuits and an increase in mesolimbic cross-structural coherence. Moreover, this brain state is accompanied by a complex behavioral phenotype consisting of transient hyperactivity, stereotypic behaviors, and an acute 12-fold increase in grooming. Notably, treatment with a norepinephrine precursors (l-3,4-dihydroxyphenylalanine at 100 mg/kg or l-threo-dihydroxyphenylserine at 5 mg/kg) or a selective serotonin reuptake inhibitor (fluoxetine at 20 mg/kg) attenuates the abnormal behaviors and selectively reverses the circuit changes observed in NE-depleted mice. Together, our results demonstrate that norepinephrine modulates the dynamic tuning of coherence across cortico-striato-thalamic circuits, and they suggest that changes in coherence across these circuits mediate the abnormal generation of hyperactivity and repetitive behaviors.

  4. Coordinated Recruitment of Cortical-Subcortical Circuits and Ascending Dopamine and Serotonin Neurons During Inhibitory Control of Cocaine Seeking in Rats.

    PubMed

    Navailles, Sylvia; Guillem, Karine; Vouillac-Mendoza, Caroline; Ahmed, Serge H

    2015-09-01

    People with cocaine addiction retain some degree of prefrontal cortex (PFC) inhibitory control of cocaine craving, a brain capacity that may underlie the efficacy of cognitive behavioral therapy for addiction. Similar findings were recently found in rats after extended access to and escalation of cocaine self-administration. Rats' inhibitory control of cocaine seeking was flexible, sufficiently strong to suppress cocaine-primed reinstatement and depended, at least in part, on neuronal activity within the prelimbic (PL) PFC. Here, we used a large-scale and high-resolution Fos mapping approach to identify, beyond the PL PFC, how top-down and/or bottom-up PFC-subcortical circuits are recruited during inhibition of cocaine seeking. Overall, we found that effective inhibitory control of cocaine seeking is associated with the coordinated recruitment of different top-down cortical-striatal circuits originating from different PFC territories, and of different bottom-up dopamine (DA) and serotonin (5-HT) midbrain subsystems that normally modulate activity in these circuits. This integrated brain response suggests that rats concomitantly engage and experience intricate cognitive and affective processes when they have to inhibit intense cocaine seeking. Thus, even after extended drug use, rats can be successfully trained to engage whole-brain inhibitory control mechanisms to suppress cocaine seeking. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Exercise, energy intake, glucose homeostasis, and the brain.

    PubMed

    van Praag, Henriette; Fleshner, Monika; Schwartz, Michael W; Mattson, Mark P

    2014-11-12

    Here we summarize topics covered in an SFN symposium that considered how and why exercise and energy intake affect neuroplasticity and, conversely, how the brain regulates peripheral energy metabolism. This article is not a comprehensive review of the subject, but rather a view of how the authors' findings fit into a broader context. Emerging findings elucidate cellular and molecular mechanisms by which exercise and energy intake modify the plasticity of neural circuits in ways that affect brain health. By enhancing neurogenesis, synaptic plasticity and neuronal stress robustness, exercise and intermittent energy restriction/fasting may optimize brain function and forestall metabolic and neurodegenerative diseases. Moreover, brain-centered glucoregulatory and immunomodulating systems that mediate peripheral health benefits of intermittent energetic challenges have recently been described. A better understanding of adaptive neural response pathways activated by energetic challenges will enable the development and optimization of interventions to reduce the burden of disease in our communities. Copyright © 2014 the authors 0270-6474/14/3415139-11$15.00/0.

  6. Whole-brain activity mapping onto a zebrafish brain atlas

    PubMed Central

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinase – Mapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  7. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network.

    PubMed

    McConnell, Michael J; Moran, John V; Abyzov, Alexej; Akbarian, Schahram; Bae, Taejeong; Cortes-Ciriano, Isidro; Erwin, Jennifer A; Fasching, Liana; Flasch, Diane A; Freed, Donald; Ganz, Javier; Jaffe, Andrew E; Kwan, Kenneth Y; Kwon, Minseok; Lodato, Michael A; Mills, Ryan E; Paquola, Apua C M; Rodin, Rachel E; Rosenbluh, Chaggai; Sestan, Nenad; Sherman, Maxwell A; Shin, Joo Heon; Song, Saera; Straub, Richard E; Thorpe, Jeremy; Weinberger, Daniel R; Urban, Alexander E; Zhou, Bo; Gage, Fred H; Lehner, Thomas; Senthil, Geetha; Walsh, Christopher A; Chess, Andrew; Courchesne, Eric; Gleeson, Joseph G; Kidd, Jeffrey M; Park, Peter J; Pevsner, Jonathan; Vaccarino, Flora M

    2017-04-28

    Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders. Copyright © 2017, American Association for the Advancement of Science.

  8. Intranasal insulin modulates intrinsic reward and prefrontal circuitry of the human brain in lean women.

    PubMed

    Kullmann, Stephanie; Frank, Sabine; Heni, Martin; Ketterer, Caroline; Veit, Ralf; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2013-01-01

    There is accumulating evidence that food consumption is controlled by a wide range of brain circuits outside of the homeostatic system. Activation in these brain circuits may override the homeostatic system and also contribute to the enormous increase of obesity. However, little is known about the influence of hormonal signals on the brain's non-homeostatic system. Thus, selective insulin action in the brain was investigated by using intranasal application. We performed 'resting-state' functional magnetic resonance imaging in 17 healthy lean female subjects to assess intrinsic brain activity by fractional amplitude of low-frequency fluctuations (fALFF) before, 30 and 90 min after application of intranasal insulin. Here, we showed that insulin modulates intrinsic brain activity in the hypothalamus and orbitofrontal cortex. Furthermore, we could show that the prefrontal and anterior cingulate cortex response to insulin is associated with body mass index. This demonstrates that hormonal signals as insulin may reduce food intake by modifying the reward and prefrontal circuitry of the human brain, thereby potentially decreasing the rewarding properties of food. Due to the alarming increase in obesity worldwide, it is of great importance to identify neural mechanisms of interaction between the homeostatic and non-homeostatic system to generate new targets for obesity therapy. Copyright © 2012 S. Karger AG, Basel.

  9. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    PubMed Central

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  10. In Vitro Studies of Neuronal Networks and Synaptic Plasticity in Invertebrates and in Mammals Using Multielectrode Arrays

    PubMed Central

    Tessadori, Jacopo; Ghirardi, Mirella

    2015-01-01

    Brain functions are strictly dependent on neural connections formed during development and modified during life. The cellular and molecular mechanisms underlying synaptogenesis and plastic changes involved in learning and memory have been analyzed in detail in simple animals such as invertebrates and in circuits of mammalian brains mainly by intracellular recordings of neuronal activity. In the last decades, the evolution of techniques such as microelectrode arrays (MEAs) that allow simultaneous, long-lasting, noninvasive, extracellular recordings from a large number of neurons has proven very useful to study long-term processes in neuronal networks in vivo and in vitro. In this work, we start off by briefly reviewing the microelectrode array technology and the optimization of the coupling between neurons and microtransducers to detect subthreshold synaptic signals. Then, we report MEA studies of circuit formation and activity in invertebrate models such as Lymnaea, Aplysia, and Helix. In the following sections, we analyze plasticity and connectivity in cultures of mammalian dissociated neurons, focusing on spontaneous activity and electrical stimulation. We conclude by discussing plasticity in closed-loop experiments. PMID:25866681

  11. Animal models of speech and vocal communication deficits associated with psychiatric disorders

    PubMed Central

    Konopka, Genevieve; Roberts, Todd F.

    2015-01-01

    Disruptions in speech, language and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language when compared to vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. Here, we review animal models of vocal learning and vocal communication, and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language and vocal communication. PMID:26232298

  12. Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia.

    PubMed

    Noh, Kyungchul; Shin, Kyung Soon; Shin, Dongkwan; Hwang, Jae Yeon; Kim, June Sic; Jang, Joon Hwan; Chung, Chun Kee; Kwon, Jun Soo; Cho, Kwang-Hyun

    2013-04-10

    Abnormal synchronization of brain oscillations is found to be associated with various core symptoms of schizophrenia. However, the underlying mechanism of this association remains yet to be elucidated. In this study, we found that coupled local and global feedback (CLGF) circuits in the cortical functional network are related to the abnormal synchronization and also correlated to the negative symptom of schizophrenia. Analysis of the magnetoencephalography data obtained from patients with chronic schizophrenia during rest revealed an increase in beta band synchronization and a reduction in gamma band power compared to healthy controls. Using a feedback identification method based on non-causal impulse responses, we constructed functional feedback networks and found that CLGF circuits were significantly reduced in schizophrenia. From computational analysis on the basis of the Wilson-Cowan model, we unraveled that the CLGF circuits are critically involved in the abnormal synchronization and the dynamical switching between beta and gamma bands power in schizophrenia. Moreover, we found that the abundance of CLGF circuits was negatively correlated with the development of negative symptoms of schizophrenia, suggesting that the negative symptom is closely related to the impairment of this circuit. Our study implicates that patients with schizophrenia might have the impaired coupling of inter- and intra-regional functional feedbacks and that the CLGF circuit might serve as a critical bridge between abnormal synchronization and the negative symptoms of schizophrenia.

  13. Endocrine modulation of the adolescent brain: a review.

    PubMed

    Vigil, Pilar; Orellana, Renán F; Cortés, Manuel E; Molina, Carmen T; Switzer, Barbara E; Klaus, Hanna

    2011-12-01

    Neurophysiological and behavioral development is particularly complex in adolescence. Youngsters experience strong emotions and impulsivity, reduced self-control, and preference for actions which offer immediate rewards, among other behavioral patterns. Given the growing interest in endocrine effects on adolescent central nervous system development and their implications on later stages of life, this article reviews the effects of gonadal steroid hormones on the adolescent brain. These effects are classified as organizational, the capacity of steroids to determine nervous system structure during development, and activational, the ability of steroids to modify nervous activity to promote certain behaviors. During transition from puberty to adolescence, steroid hormones trigger various organizational phenomena related to structural brain circuit remodelling, determining adult behavioral response to steroids or sensory stimuli. These changes account for most male-female sexual dimorphism. In this stage sex steroids are involved in the main functional mechanisms responsible for organizational changes, namely myelination, neural pruning, apoptosis, and dendritic spine remodelling, activated only during embryonic development and during the transition from puberty to adolescence. This stage becomes a critical organizational window when the appropriately and timely exerted functions of steroid hormones and their interaction with some neurotransmitters on adolescent brain development are fundamental. Thus, understanding the phenomena linking steroid hormones and adolescent brain organization is crucial in the study of teenage behavior and in later assessment and treatment of anxiety, mood disorders, and depression. Adolescent behavior clearly evidences a stage of brain development influenced for the most part by steroid hormones. Copyright © 2011 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  14. Genetic and early environmental influences on the serotonin system: consequences for brain development and risk for psychopathology

    PubMed Central

    Booij, Linda; Tremblay, Richard E.; Szyf, Moshe; Benkelfat, Chawki

    2015-01-01

    Background Despite more than 60 years of research in the role of serotonin (5-HT) in psychopathology, many questions still remain. From a developmental perspective, studies have provided more insight into how 5-HT dysfunctions acquired in utero or early in life may modulate brain development. This paper discusses the relevance of the developmental role of 5-HT for the understanding of psychopathology. We review developmental milestones of the 5-HT system, how genetic and environmental 5-HT disturbances could affect brain development and the potential role of DNA methylation in 5-HT genes for brain development. Methods Studies were identified using common databases (e.g., PubMed, Google Scholar) and reference lists. Results Despite the widely supported view that the 5-HT system matures in early life, different 5-HT receptors, proteins and enzymes have different developmental patterns, and development is brain region–specific. A disruption in 5-HT homeostasis during development may lead to structural and functional changes in brain circuits that modulate emotional stress responses, including subcortical limbic and (pre)frontal areas. This may result in a predisposition to psychopathology. DNA methylation might be one of the underlying physiologic mechanisms. Limitations There is a need for prospective studies. The impact of stressors during adolescence on the 5-HT system is understudied. Questions regarding efficacy of drugs acting on 5-HT still remain. Conclusion A multidisciplinary and longitudinal approach in designing studies on the role of 5-HT in psychopathology might help to bring us closer to the understanding of the role of 5-HT in psychopathology. PMID:25285876

  15. Free-running ADC- and FPGA-based signal processing method for brain PET using GAPD arrays

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Choi, Yong; Hong, Key Jo; Kang, Jihoon; Jung, Jin Ho; Huh, Youn Suk; Lim, Hyun Keong; Kim, Sang Su; Kim, Byung-Tae; Chung, Yonghyun

    2012-02-01

    Currently, for most photomultiplier tube (PMT)-based PET systems, constant fraction discriminators (CFD) and time to digital converters (TDC) have been employed to detect gamma ray signal arrival time, whereas anger logic circuits and peak detection analog-to-digital converters (ADCs) have been implemented to acquire position and energy information of detected events. As compared to PMT the Geiger-mode avalanche photodiodes (GAPDs) have a variety of advantages, such as compactness, low bias voltage requirement and MRI compatibility. Furthermore, the individual read-out method using a GAPD array coupled 1:1 with an array scintillator can provide better image uniformity than can be achieved using PMT and anger logic circuits. Recently, a brain PET using 72 GAPD arrays (4×4 array, pixel size: 3 mm×3 mm) coupled 1:1 with LYSO scintillators (4×4 array, pixel size: 3 mm×3 mm×20 mm) has been developed for simultaneous PET/MRI imaging in our laboratory. Eighteen 64:1 position decoder circuits (PDCs) were used to reduce GAPD channel number and three off-the-shelf free-running ADC and field programmable gate array (FPGA) combined data acquisition (DAQ) cards were used for data acquisition and processing. In this study, a free-running ADC- and FPGA-based signal processing method was developed for the detection of gamma ray signal arrival time, energy and position information all together for each GAPD channel. For the method developed herein, three DAQ cards continuously acquired 18 channels of pre-amplified analog gamma ray signals and 108-bit digital addresses from 18 PDCs. In the FPGA, the digitized gamma ray pulses and digital addresses were processed to generate data packages containing pulse arrival time, baseline value, energy value and GAPD channel ID. Finally, these data packages were saved to a 128 Mbyte on-board synchronous dynamic random access memory (SDRAM) and then transferred to a host computer for coincidence sorting and image reconstruction. In order to evaluate the functionality of the developed signal processing method, energy and timing resolutions for brain PET were measured via the placement of a 6 μCi 22Na point source at the center of the PET scanner. Furthermore the PET image of the hot rod phantom (rod diameter: from 2.5 mm to 6.5 mm) with activity of 1 mCi was simulated, and then image acquisition experiment was performed using the brain PET. Measured average energy resolution for 1152 GAPD channels and system timing resolution were 19.5% (FWHM%) and 2.7 ns (FWHM), respectively. With regard to the acquisition of the hot rod phantom image, rods could be resolved down to a diameter of 2.5 mm, which was similar to simulated results. The experimental results demonstrated that the signal processing method developed herein was successfully implemented for brain PET. This reduced the complexity, cost and developing duration for PET system relative to normal PET electronics, and it will obviously be useful for the development of high-performance investigational PET systems.

  16. Fast and precise thermoregulation system in physiological brain slice experiment

    NASA Astrophysics Data System (ADS)

    Sheu, Y. H.; Young, M. S.

    1995-12-01

    We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.

  17. Tics after traumatic brain injury.

    PubMed

    Ranjan, Nishant; Nair, Krishnan Padmakumari Sivaraman; Romanoski, Charles; Singh, Rajiv; Venketswara, Guruprasad

    2011-01-01

    Tics are involuntary non-rhythmic, stereotyped muscle contractions which can be suppressed temporarily. Tics usually start during childhood as part of Tourette syndrome. Adult onset tics are infrequent. This study reports on an adult man who developed tics 1 year after severe traumatic brain injury (TBI). Case report and review of literature. A 19-year-old man sustained TBI following a road traffic accident. He did not have tics or features of obsessive compulsive disorder before the brain injury. A year after injury he developed motor and vocal tics. Magnetic resonance image of the brain showed lesions in the basal ganglia. A search of databases Medline, EMBASE and CINHAL found only four publications on tics in adults with TBI. None of these reported cases had lesions in the basal ganglia. Tics are a rare complication of TBI. People with early onset post-traumatic tics may have had a previously unrecognized, mild tic disorder or a genetic predisposition for tics, which was unmasked by the TBI. In contrast, late post-traumatic tics could be due to delayed effects of injury on neural circuits connecting the frontal cortex and basal ganglia.

  18. Nogo Receptor 1 Confines a Disinhibitory Microcircuit to the Critical Period in Visual Cortex.

    PubMed

    Stephany, Céleste-Élise; Ikrar, Taruna; Nguyen, Collins; Xu, Xiangmin; McGee, Aaron W

    2016-10-26

    A characteristic of the developing mammalian visual system is a brief interval of plasticity, termed the "critical period," when the circuitry of primary visual cortex is most sensitive to perturbation of visual experience. Depriving one eye of vision (monocular deprivation [MD]) during the critical period alters ocular dominance (OD) by shifting the responsiveness of neurons in visual cortex to favor the nondeprived eye. A disinhibitory microcircuit involving parvalbumin-expressing (PV) interneurons initiates this OD plasticity. The gene encoding the neuronal nogo-66-receptor 1 (ngr1/rtn4r) is required to close the critical period. Here we combined mouse genetics, electrophysiology, and circuit mapping with laser-scanning photostimulation to investigate whether disinhibition is confined to the critical period by ngr1 We demonstrate that ngr1 mutant mice retain plasticity characteristic of the critical period as adults, and that ngr1 operates within PV interneurons to restrict the loss of intracortical excitatory synaptic input following MD in adult mice, and this disinhibition induces a "lower PV network configuration" in both critical-period wild-type mice and adult ngr1 -/- mice. We propose that ngr1 limits disinhibition to close the critical period for OD plasticity and that a decrease in PV expression levels reports the diminished recent cumulative activity of these interneurons. Life experience refines brain circuits throughout development during specified critical periods. Abnormal experience during these critical periods can yield enduring maladaptive changes in neural circuits that impair brain function. In the developing visual system, visual deprivation early in life can result in amblyopia (lazy-eye), a prevalent childhood disorder comprising permanent deficits in spatial vision. Here we identify that the nogo-66 receptor 1 gene restricts an early and essential step in OD plasticity to the critical period. These findings link the emerging circuit-level description of OD plasticity to the genetic regulation of the critical period. Understanding how plasticity is confined to critical periods may provide clues how to better treat amblyopia. Copyright © 2016 the authors 0270-6474/16/3611006-07$15.00/0.

  19. Cognitive-motor interactions of the basal ganglia in development

    PubMed Central

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214

  20. Functional neural networks underlying response inhibition in adolescents and adults.

    PubMed

    Stevens, Michael C; Kiehl, Kent A; Pearlson, Godfrey D; Calhoun, Vince D

    2007-07-19

    This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by fronto-striatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development.

  1. Functional neural networks underlying response inhibition in adolescents and adults

    PubMed Central

    Stevens, Michael C.; Kiehl, Kent A.; Pearlson, Godfrey D.; Calhoun, Vince D.

    2008-01-01

    This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally-integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by frontostriatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development. PMID:17467816

  2. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  3. Controlling feeding behavior by chemical or gene-directed targeting in the brain: what's so spatial about our methods?

    PubMed Central

    Khan, Arshad M.

    2013-01-01

    Intracranial chemical injection (ICI) methods have been used to identify the locations in the brain where feeding behavior can be controlled acutely. Scientists conducting ICI studies often document their injection site locations, thereby leaving kernels of valuable location data for others to use to further characterize feeding control circuits. Unfortunately, this rich dataset has not yet been formally contextualized with other published neuroanatomical data. In particular, axonal tracing studies have delineated several neural circuits originating in the same areas where ICI injection feeding-control sites have been documented, but it remains unclear whether these circuits participate in feeding control. Comparing injection sites with other types of location data would require careful anatomical registration between the datasets. Here, a conceptual framework is presented for how such anatomical registration efforts can be performed. For example, by using a simple atlas alignment tool, a hypothalamic locus sensitive to the orexigenic effects of neuropeptide Y (NPY) can be aligned accurately with the locations of neurons labeled by anterograde tracers or those known to express NPY receptors or feeding-related peptides. This approach can also be applied to those intracranial “gene-directed” injection (IGI) methods (e.g., site-specific recombinase methods, RNA expression or interference, optogenetics, and pharmacosynthetics) that involve viral injections to targeted neuronal populations. Spatial alignment efforts can be accelerated if location data from ICI/IGI methods are mapped to stereotaxic brain atlases to allow powerful neuroinformatics tools to overlay different types of data in the same reference space. Atlas-based mapping will be critical for community-based sharing of location data for feeding control circuits, and will accelerate our understanding of structure-function relationships in the brain for mammalian models of obesity and metabolic disorders. PMID:24385950

  4. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus.

    PubMed

    Zhou, Li; Liu, Ming-Zhe; Li, Qing; Deng, Juan; Mu, Di; Sun, Yan-Gang

    2017-03-21

    Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. A Protocol for the Administration of Real-Time fMRI Neurofeedback Training

    PubMed Central

    Sherwood, Matthew S.; Diller, Emily E.; Ey, Elizabeth; Ganapathy, Subhashini; Nelson, Jeremy T.; Parker, Jason G.

    2017-01-01

    Neurologic disorders are characterized by abnormal cellular-, molecular-, and circuit-level functions in the brain. New methods to induce and control neuroplastic processes and correct abnormal function, or even shift functions from damaged tissue to physiologically healthy brain regions, hold the potential to dramatically improve overall health. Of the current neuroplastic interventions in development, neurofeedback training (NFT) from functional Magnetic Resonance Imaging (fMRI) has the advantages of being completely non-invasive, non-pharmacologic, and spatially localized to target brain regions, as well as having no known side effects. Furthermore, NFT techniques, initially developed using fMRI, can often be translated to exercises that can be performed outside of the scanner without the aid of medical professionals or sophisticated medical equipment. In fMRI NFT, the fMRI signal is measured from specific regions of the brain, processed, and presented to the participant in real-time. Through training, self-directed mental processing techniques, that regulate this signal and its underlying neurophysiologic correlates, are developed. FMRI NFT has been used to train volitional control over a wide range of brain regions with implications for several different cognitive, behavioral, and motor systems. Additionally, fMRI NFT has shown promise in a broad range of applications such as the treatment of neurologic disorders and the augmentation of baseline human performance. In this article, we present an fMRI NFT protocol developed at our institution for modulation of both healthy and abnormal brain function, as well as examples of using the method to target both cognitive and auditory regions of the brain. PMID:28872110

  6. A Protocol for the Administration of Real-Time fMRI Neurofeedback Training.

    PubMed

    Sherwood, Matthew S; Diller, Emily E; Ey, Elizabeth; Ganapathy, Subhashini; Nelson, Jeremy T; Parker, Jason G

    2017-08-24

    Neurologic disorders are characterized by abnormal cellular-, molecular-, and circuit-level functions in the brain. New methods to induce and control neuroplastic processes and correct abnormal function, or even shift functions from damaged tissue to physiologically healthy brain regions, hold the potential to dramatically improve overall health. Of the current neuroplastic interventions in development, neurofeedback training (NFT) from functional Magnetic Resonance Imaging (fMRI) has the advantages of being completely non-invasive, non-pharmacologic, and spatially localized to target brain regions, as well as having no known side effects. Furthermore, NFT techniques, initially developed using fMRI, can often be translated to exercises that can be performed outside of the scanner without the aid of medical professionals or sophisticated medical equipment. In fMRI NFT, the fMRI signal is measured from specific regions of the brain, processed, and presented to the participant in real-time. Through training, self-directed mental processing techniques, that regulate this signal and its underlying neurophysiologic correlates, are developed. FMRI NFT has been used to train volitional control over a wide range of brain regions with implications for several different cognitive, behavioral, and motor systems. Additionally, fMRI NFT has shown promise in a broad range of applications such as the treatment of neurologic disorders and the augmentation of baseline human performance. In this article, we present an fMRI NFT protocol developed at our institution for modulation of both healthy and abnormal brain function, as well as examples of using the method to target both cognitive and auditory regions of the brain.

  7. A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain

    PubMed Central

    Arganda-Carreras, Ignacio; Manoliu, Tudor; Mazuras, Nicolas; Schulze, Florian; Iglesias, Juan E.; Bühler, Katja; Jenett, Arnim; Rouyer, François; Andrey, Philippe

    2018-01-01

    Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species. PMID:29628885

  8. An Update Overview on Brain Imaging Studies of Internet Gaming Disorder

    PubMed Central

    Weinstein, Aviv M.

    2017-01-01

    There are a growing number of studies on structural and functional brain mechanisms underlying Internet gaming disorder (IGD). Recent functional magnetic resonance imaging studies showed that IGD adolescents and adults had reduced gray matter volume in regions associated with attention motor coordination executive function and perception. Adolescents with IGD showed lower white matter (WM) integrity measures in several brain regions that are involved in decision-making, behavioral inhibition, and emotional regulation. IGD adolescents had also disruption in the functional connectivity in areas responsible for learning memory and executive function, processing of auditory, visual, and somatosensory stimuli and relay of sensory and motor signals. IGD adolescents also had decreased functional connectivity of PFC-striatal circuits, increased risk-taking choices, and impaired ability to control their impulses similar to other impulse control disorders. Recent studies indicated that altered executive control mechanisms in attention deficit hyperactivity disorder (ADHD) would be a predisposition for developing IGD. Finally, patients with IGD have also shown an increased functional connectivity of several executive control brain regions that may related to comorbidity with ADHD and depression. The behavioral addiction model argues that IGD shows the features of excessive use despite adverse consequences, withdrawal phenomena, and tolerance that characterize substance use disorders. The evidence supports the behavioral addiction model of IGD by showing structural and functional changes in the mechanisms of reward and craving (but not withdrawal) in IGD. Future studies need to investigate WM density and functional connectivity in IGD in order to validate these findings. Furthermore, more research is required about the similarity in neurochemical and neurocognitive brain circuits in IGD and comorbid conditions such as ADHD and depression. PMID:29033857

  9. Frequency-specific alterations in functional connectivity in treatment-resistant and -sensitive major depressive disorder.

    PubMed

    He, Zongling; Cui, Qian; Zheng, Junjie; Duan, Xujun; Pang, Yajing; Gao, Qing; Han, Shaoqiang; Long, Zhiliang; Wang, Yifeng; Li, Jiao; Wang, Xiao; Zhao, Jingping; Chen, Huafu

    2016-11-01

    Major depressive disorder (MDD) may involve alterations in brain functional connectivity in multiple neural circuits and present large-scale network dysfunction. Patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) show different responses to antidepressants and aberrant brain functions. This study aims to investigate functional connectivity patterns of TRD and TSD at the whole brain resting state. Seventeen patients with TRD, 17 patients with TSD, and 17 healthy controls matched with age, gender, and years of education were recruited in this study. The brain was divided using an automated anatomical labeling atlas into 90 regions of interest, which were used to construct the entire brain functional networks. An analysis method called network-based statistic was used to explore the dysconnected subnetworks of TRD and TSD at different frequency bands. At resting state, TSD and TRD present characteristic patterns of network dysfunction at special frequency bands. The dysconnected subnetwork of TSD mainly lies in the fronto-parietal top-down control network. Moreover, the abnormal neural circuits of TRD are extensive and complex. These circuits not only depend on the abnormal affective network but also involve other networks, including salience network, auditory network, visual network, and language processing cortex. Our findings reflect that the pathological mechanism of TSD may refer to impairment in cognitive control, whereas TRD mainly triggers the dysfunction of emotion processing and affective cognition. This study reveals that differences in brain functional connectivity at resting state reflect distinct pathophysiological mechanisms in TSD and TRD. These findings may be helpful in differentiating two types of MDD and predicting treatment responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cortical activity in the null space: permitting preparation without movement

    PubMed Central

    Kaufman, Matthew T.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-01-01

    Neural circuits must perform computations and then selectively output the results to other circuits. Yet synapses do not change radically at millisecond timescales. A key question then is: how is communication between neural circuits controlled? In motor control, brain areas directly involved in driving movement are active well before movement begins. Muscle activity is some readout of neural activity, yet remains largely unchanged during preparation. Here we find that during preparation, while the monkey holds still, changes in motor cortical activity cancel out at the level of these population readouts. Motor cortex can thereby prepare the movement without prematurely causing it. Further, we found evidence that this mechanism also operates in dorsal premotor cortex (PMd), largely accounting for how preparatory activity is attenuated in primary motor cortex (M1). Selective use of “output-null” vs. “output-potent” patterns of activity may thus help control communication to the muscles and between these brain areas. PMID:24487233

  11. An extra-uterine system to physiologically support the extreme premature lamb

    PubMed Central

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-01-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed ‘amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination. PMID:28440792

  12. An extra-uterine system to physiologically support the extreme premature lamb

    NASA Astrophysics Data System (ADS)

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-04-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed `amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination.

  13. THE ROLE OF SEROTONIN IN RESPIRATORY FUNCTION AND DYSFUNCTION

    PubMed Central

    Hilaire, Gérard; Voituron, Nicolas; Menuet, Clément; Ichiyama, Ronaldo M.; Subramanian, Hari H.; Dutschmann, Mathias

    2010-01-01

    Serotonin (5-HT) is a neuro-modulator–transmitter influencing global brain function. Past and present findings illustrate a prominent role for 5-HT in the modulation of ponto-medullary autonomic circuits. 5-HT is also involved in the control of neurotrophic processes during pre- and postnatal development of neural circuits. The functional implications of 5-HT is particularly illustrated in the alterations to the serotonergic system, as seen in a wide range of neurological disorders. This article reviews the role of 5-HT in the development and control of respiratory networks in the ponto-medullary brainstem. The review further examines the role of 5-HT in breathing disorders occurring at different stages of life, in particular, the neonatal neurodevelopmental diseases such as Rett, sudden infant death and Prader-Willi syndromes, adult diseases such as sleep apnoea and mental illness linked to neurodegeneration. PMID:20801236

  14. Sleep and Development in Genetically Tractable Model Organisms.

    PubMed

    Kayser, Matthew S; Biron, David

    2016-05-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. Copyright © 2016 by the Genetics Society of America.

  15. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens.

    PubMed

    Ross, Erika K; Kim, Joo Pyung; Settell, Megan L; Han, Seong Rok; Blaha, Charles D; Min, Hoon-Ki; Lee, Kendall H

    2016-03-01

    Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc, involving excitatory glutamatergic input, and that the medial limbic and corticolimbic circuits interact in a functional loop. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. What Affective Neuroscience Means for Science Of Consciousness

    PubMed Central

    Almada, Leonardo Ferreira; Pereira, Alfredo; Carrara-Augustenborg, Claudia

    2013-01-01

    The field of affective neuroscience has emerged from the efforts of Jaak Panksepp in the 1990s and reinforced by the work of, among others, Joseph LeDoux in the 2000s. It is based on the ideas that affective processes are supported by brain structures that appeared earlier in the phylogenetic scale (as the periaqueductal gray area), they run in parallel with cognitive processes, and can influence behaviour independently of cognitive judgements. This kind of approach contrasts with the hegemonic concept of conscious processing in cognitive neurosciences, which is based on the identification of brain circuits responsible for the processing of (cognitive) representations. Within cognitive neurosciences, the frontal lobes are assigned the role of coordinators in maintaining affective states and their emotional expressions under cognitive control. An intermediary view is the Damasio-Bechara Somatic Marker model, which puts cognition under partial somatic-affective control. We present here our efforts to make a synthesis of these views, by proposing the existence of two interacting brain circuits; the first one in charge of cognitive processes and the second mediating feelings about cognitive contents. The coupling of the two circuits promotes an endogenous feedback that supports conscious processes. Within this framework, we present the defence that detailed study of both affective and cognitive processes, their interactions, as well of their respective brain networks, is necessary for a science of consciousness. PMID:23678246

  17. Reward Circuitry in Addiction.

    PubMed

    Cooper, Sarah; Robison, A J; Mazei-Robison, Michelle S

    2017-07-01

    Understanding the brain circuitry that underlies reward is critical to improve treatment for many common health issues, including obesity, depression, and addiction. Here we focus on insights into the organization and function of reward circuitry and its synaptic and structural adaptations in response to cocaine exposure. While the importance of certain circuits, such as the mesocorticolimbic dopamine pathway, are well established in drug reward, recent studies using genetics-based tools have revealed functional changes throughout the reward circuitry that contribute to different facets of addiction, such as relapse and craving. The ability to observe and manipulate neuronal activity within specific cell types and circuits has led to new insight into not only the basic connections between brain regions, but also the molecular changes within these specific microcircuits, such as neurotrophic factor and GTPase signaling or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse. Excitingly, these insights from preclinical rodent work are now being translated into the clinic, where transcranial magnetic simulation and deep brain stimulation therapies are being piloted in human cocaine dependence. Thus, this review seeks to summarize current understanding of the major brain regions implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these regions, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.

  18. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia

    PubMed Central

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2014-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. PMID:25098903

  19. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia.

    PubMed

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B; Geary, David C; Menon, Vinod

    2015-05-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. © 2014 John Wiley & Sons Ltd.

  20. Developmental emergence of fear/threat learning: neurobiology, associations and timing

    PubMed Central

    Tallot, L.; Doyère, V.; Sullivan, R. M.

    2016-01-01

    Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups’ transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes. PMID:26534899

  1. Adult neurogenesis is necessary to refine and maintain circuit specificity.

    PubMed

    Cummings, Diana M; Snyder, Jason S; Brewer, Michelle; Cameron, Heather A; Belluscio, Leonardo

    2014-10-08

    The circuitry of the olfactory bulb contains a precise anatomical map that links isofunctional regions within each olfactory bulb. This intrabulbar map forms perinatally and undergoes activity-dependent refinement during the first postnatal weeks. Although this map retains its plasticity throughout adulthood, its organization is remarkably stable despite the addition of millions of new neurons to this circuit. Here we show that the continuous supply of new neuroblasts from the subventricular zone is necessary for both the restoration and maintenance of this precise central circuit. Using pharmacogenetic methods to conditionally ablate adult neurogenesis in transgenic mice, we find that the influx of neuroblasts is required for recovery of intrabulbar map precision after disruption due to sensory block. We further demonstrate that eliminating adult-born interneurons in naive animals leads to an expansion of tufted cell axons that is identical to the changes caused by sensory block, thus revealing an essential role for new neurons in circuit maintenance under baseline conditions. These findings show, for the first time, that inhibiting adult neurogenesis alters the circuitry of projection neurons in brain regions that receive new interneurons and points to a critical role for adult-born neurons in stabilizing a brain circuit that exhibits high levels of plasticity. Copyright © 2014 the authors 0270-6474/14/3413801-10$15.00/0.

  2. Multi-sensory integration in a small brain

    NASA Astrophysics Data System (ADS)

    Gepner, Ruben; Wolk, Jason; Gershow, Marc

    Understanding how fluctuating multi-sensory stimuli are integrated and transformed in neural circuits has proved a difficult task. To address this question, we study the sensori-motor transformations happening in the brain of the Drosophila larva, a tractable model system with about 10,000 neurons. Using genetic tools that allow us to manipulate the activity of individual brain cells through their transparent body, we observe the stochastic decisions made by freely-behaving animals as their visual and olfactory environments fluctuate independently. We then use simple linear-nonlinear models to correlate outputs with relevant features in the inputs, and adaptive filtering processes to track changes in these relevant parameters used by the larva's brain to make decisions. We show how these techniques allow us to probe how statistics of stimuli from different sensory modalities combine to affect behavior, and can potentially guide our understanding of how neural circuits are anatomically and functionally integrated. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  3. Brains are not just neurons. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by Fitch

    NASA Astrophysics Data System (ADS)

    Huber, Ludwig

    2014-09-01

    This comment addresses the first component of Fitch's framework: the computational power of single neurons [3]. Although I agree that traditional models of neural computation have vastly underestimated the computational power of single neurons, I am hesitant to follow him completely. The exclusive focus on neurons is likely to underestimate the importance of other cells in the brain. In the last years, two such cell types have received appropriate attention by neuroscientists: interneurons and glia. Interneurons are small, tightly packed cells involved in the control of information processing in learning and memory. Rather than transmitting externally (like motor or sensory neurons), these neurons process information within internal circuits of the brain (therefore also called 'relay neurons'). Some specialized interneuron subtypes temporally regulate the flow of information in a given cortical circuit during relevant behavioral events [4]. In the human brain approx. 100 billion interneurons control information processing and are implicated in disorders such as epilepsy and Parkinson's.

  4. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cell type-specific long-range connections of basal forebrain circuit.

    PubMed

    Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang

    2016-09-19

    The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.

  6. Natural Changes in Brain Temperature Underlie Variations in Song Tempo during a Mating Behavior

    PubMed Central

    Aronov, Dmitriy; Fee, Michale S.

    2012-01-01

    The song of a male zebra finch is a stereotyped motor sequence whose tempo varies with social context – whether or not the song is directed at a female bird – as well as with the time of day. The neural mechanisms underlying these changes in tempo are unknown. Here we show that brain temperature recorded in freely behaving male finches exhibits a global increase in response to the presentation of a female bird. This increase strongly correlates with, and largely explains, the faster tempo of songs directed at a female compared to songs produced in social isolation. Furthermore, we find that the observed diurnal variations in song tempo are also explained by natural variations in brain temperature. Our findings suggest that brain temperature is an important variable that can influence the dynamics of activity in neural circuits, as well as the temporal features of behaviors that some of these circuits generate. PMID:23112858

  7. Context Processing and the Neurobiology of Post-Traumatic Stress Disorder

    PubMed Central

    Liberzon, Israel; Abelson, James L.

    2016-01-01

    Summary Progress in clinical and affective neuroscience is redefining psychiatric illness as symptomatic expression of cellular/molecular dysfunctions in specific brain circuits. Post-traumatic stress disorder (PTSD) has been an exemplar of this progress, with improved understanding of neurobiological systems subserving fear learning, salience detection, and emotion regulation explaining much of its phenomenology and neurobiology. However, many features remain unexplained and a parsimonious model that more fully accounts for symptoms and the core neurobiology remains elusive. Contextual processing is a key modulatory function of hippocampal-prefrontal-thalamic circuitry, allowing organisms to disambiguate cues and derive situation-specific meaning from the world. We propose that dysregulation within this context-processing circuit is at the core of PTSD pathophysiology, accounting for much of its phenomenology and most of its biological findings. Understanding core mechanisms like this, and their underlying neural circuits, will sharpen diagnostic precision and understanding of risk factors, enhancing our ability to develop preventive and “personalized” interventions. PMID:27710783

  8. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex

    PubMed Central

    Chaudhuri, Rishidev; Knoblauch, Kenneth; Gariel, Marie-Alice; Kennedy, Henry; Wang, Xiao-Jing

    2015-01-01

    We developed a large-scale dynamical model of the macaque neocortex, which is based on recently acquired directed- and weighted-connectivity data from tract-tracing experiments, and which incorporates heterogeneity across areas. A hierarchy of timescales naturally emerges from this system: sensory areas show brief, transient responses to input (appropriate for sensory processing), whereas association areas integrate inputs over time and exhibit persistent activity (suitable for decision-making and working memory). The model displays multiple temporal hierarchies, as evidenced by contrasting responses to visual versus somatosensory stimulation. Moreover, slower prefrontal and temporal areas have a disproportionate impact on global brain dynamics. These findings establish a circuit mechanism for “temporal receptive windows” that are progressively enlarged along the cortical hierarchy, suggest an extension of time integration in decision-making from local to large circuits, and should prompt a re-evaluation of the analysis of functional connectivity (measured by fMRI or EEG/MEG) by taking into account inter-areal heterogeneity. PMID:26439530

  9. Topological self-organization and prediction learning support both action and lexical chains in the brain.

    PubMed

    Chersi, Fabian; Ferro, Marcello; Pezzulo, Giovanni; Pirrelli, Vito

    2014-07-01

    A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. Copyright © 2014 Cognitive Science Society, Inc.

  10. Biological and bionic hands: natural neural coding and artificial perception.

    PubMed

    Bensmaia, Sliman J

    2015-09-19

    The first decade and a half of the twenty-first century brought about two major innovations in neuroprosthetics: the development of anthropomorphic robotic limbs that replicate much of the function of a native human arm and the refinement of algorithms that decode intended movements from brain activity. However, skilled manipulation of objects requires somatosensory feedback, for which vision is a poor substitute. For upper-limb neuroprostheses to be clinically viable, they must therefore provide for the restoration of touch and proprioception. In this review, I discuss efforts to elicit meaningful tactile sensations through stimulation of neurons in somatosensory cortex. I focus on biomimetic approaches to sensory restoration, which leverage our current understanding about how information about grasped objects is encoded in the brain of intact individuals. I argue that not only can sensory neuroscience inform the development of sensory neuroprostheses, but also that the converse is true: stimulating the brain offers an exceptional opportunity to causally interrogate neural circuits and test hypotheses about natural neural coding.

  11. Neuroimaging the interaction of mind and metabolism in humans

    PubMed Central

    D’Agostino, Alexandra E.; Small, Dana M.

    2012-01-01

    Hormonal and metabolic signals interact with neural circuits orchestrating behavior to guide food intake. Neuroimaging techniques such as functional magnetic resonance imaging (fMRI) enable the identification of where in the brain particular mental processes like desire, satiety and pleasure occur. Once these neural circuits are described it then becomes possible to determine how metabolic and hormonal signals can alter brain response to influence psychological states and decision-making processes to guide intake. Here, we provide an overview of the contributions of functional neuroimaging to the understanding of how subjective and neural responses to food and food cues interact with metabolic/hormonal factors. PMID:24024114

  12. Genetic Approaches to Reveal the Connectivity of Adult-Born Neurons

    PubMed Central

    Arenkiel, Benjamin R.

    2011-01-01

    Much has been learned about the environmental and molecular factors that influence the division, migration, and programmed cell death of adult-born neurons in the mammalian brain. However, detailed knowledge of the mechanisms that govern the formation and maintenance of functional circuit connectivity via adult neurogenesis remains elusive. Recent advances in genetic technologies now afford the ability to precisely target discrete brain tissues, neuronal subtypes, and even single neurons for vital reporter expression and controlled activity manipulations. Here, I review current viral tracing methods, heterologous receptor expression systems, and optogenetic technologies that hold promise toward elucidating the wiring diagrams and circuit properties of adult-born neurons. PMID:21519388

  13. The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing

    PubMed Central

    Chang, Po-Yen; Su, Ta-Shun; Shih, Chi-Tin; Lo, Chung-Chuan

    2017-01-01

    Neural networks regulate brain functions by routing signals. Therefore, investigating the detailed organization of a neural circuit at the cellular levels is a crucial step toward understanding the neural mechanisms of brain functions. To study how a complicated neural circuit is organized, we analyzed recently published data on the neural circuit of the Drosophila central complex, a brain structure associated with a variety of functions including sensory integration and coordination of locomotion. We discovered that, except for a small number of “atypical” neuron types, the network structure formed by the identified 194 neuron types can be described by only a few simple mathematical rules. Specifically, the topological mapping formed by these neurons can be reconstructed by applying a generation matrix on a small set of initial neurons. By analyzing how information flows propagate with or without the atypical neurons, we found that while the general pattern of signal propagation in the central complex follows the simple topological mapping formed by the “typical” neurons, some atypical neurons can substantially re-route the signal pathways, implying specific roles of these neurons in sensory signal integration. The present study provides insights into the organization principle and signal integration in the central complex. PMID:28443014

  14. The multi-instrumentalist hippocampus. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    NASA Astrophysics Data System (ADS)

    Strange, Bryan A.; Yebra, Mar

    2015-06-01

    Characterizing the neural circuitry of emotion is important not only from a basic science perspective, but also for understanding how these circuits may malfunction in psychiatric disease. A fundamental question for affective neuroscience is whether there are specialised neuroanatomical areas, or "modules", dedicated to the processing of emotional stimuli. In their review, Koelsch and colleagues [1] argue for the existence of a quartet of neuroanatomically distinct cerebral systems involved in the generation of a specific class of affects. Intriguingly, all four systems (brainstem-, diencephalon-, hippocampus-, and orbitofrontal-centred) comprise brain areas whose role in emotional processing is in addition to mediating other specific aspects of cognition. One member of the quartet in which this is particularly apparent is the hippocampus, a structure known to be critical for episodic memory and navigation. If areas involved in emotion also mediate other brain functions, this raises an issue of whether these multiple functions are executed by segregated circuits within each structure - i.e., a "module" for emotion residing in a sub-division of a brain structure - or whether these circuits are superimposed.

  15. Saccadic Corollary Discharge Underlies Stable Visual Perception

    PubMed Central

    Berman, Rebecca A.; Joiner, Wilsaan M.; Wurtz, Robert H.

    2016-01-01

    Saccadic eye movements direct the high-resolution foveae of our retinas toward objects of interest. With each saccade, the image jumps on the retina, causing a discontinuity in visual input. Our visual perception, however, remains stable. Philosophers and scientists over centuries have proposed that visual stability depends upon an internal neuronal signal that is a copy of the neuronal signal driving the eye movement, now referred to as a corollary discharge (CD) or efference copy. In the old world monkey, such a CD circuit for saccades has been identified extending from superior colliculus through MD thalamus to frontal cortex, but there is little evidence that this circuit actually contributes to visual perception. We tested the influence of this CD circuit on visual perception by first training macaque monkeys to report their perceived eye direction, and then reversibly inactivating the CD as it passes through the thalamus. We found that the monkey's perception changed; during CD inactivation, there was a difference between where the monkey perceived its eyes to be directed and where they were actually directed. Perception and saccade were decoupled. We established that the perceived eye direction at the end of the saccade was not derived from proprioceptive input from eye muscles, and was not altered by contextual visual information. We conclude that the CD provides internal information contributing to the brain's creation of perceived visual stability. More specifically, the CD might provide the internal saccade vector used to unite separate retinal images into a stable visual scene. SIGNIFICANCE STATEMENT Visual stability is one of the most remarkable aspects of human vision. The eyes move rapidly several times per second, displacing the retinal image each time. The brain compensates for this disruption, keeping our visual perception stable. A major hypothesis explaining this stability invokes a signal within the brain, a corollary discharge, that informs visual regions of the brain when and where the eyes are about to move. Such a corollary discharge circuit for eye movements has been identified in macaque monkey. We now show that selectively inactivating this brain circuit alters the monkey's visual perception. We conclude that this corollary discharge provides a critical signal that can be used to unite jumping retinal images into a consistent visual scene. PMID:26740647

  16. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact

    PubMed Central

    Kent, A R; Grill, W M

    2012-01-01

    Deep brain stimulation (DBS) is an effective treatment for movement disorders, but the selection of stimulus parameters is a clinical burden and often yields sub-optimal outcomes for patients. Measurement of electrically evoked compound action potentials (ECAPs) during DBS could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulus parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1,000 to 5,000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 μs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters. PMID:22510375

  17. Layer-specific optogenetic activation of pyramidal neurons causes beta–gamma entrainment of neonatal networks

    PubMed Central

    Bitzenhofer, Sebastian H; Ahlbeck, Joachim; Wolff, Amy; Wiegert, J. Simon; Gee, Christine E.; Oertner, Thomas G.; Hanganu-Opatz, Ileana L.

    2017-01-01

    Coordinated activity patterns in the developing brain may contribute to the wiring of neuronal circuits underlying future behavioural requirements. However, causal evidence for this hypothesis has been difficult to obtain owing to the absence of tools for selective manipulation of oscillations during early development. We established a protocol that combines optogenetics with electrophysiological recordings from neonatal mice in vivo to elucidate the substrate of early network oscillations in the prefrontal cortex. We show that light-induced activation of layer II/III pyramidal neurons that are transfected by in utero electroporation with a high-efficiency channelrhodopsin drives frequency-specific spiking and boosts network oscillations within beta–gamma frequency range. By contrast, activation of layer V/VI pyramidal neurons causes nonspecific network activation. Thus, entrainment of neonatal prefrontal networks in fast rhythms relies on the activation of layer II/III pyramidal neurons. This approach used here may be useful for further interrogation of developing circuits, and their behavioural readout. PMID:28216627

  18. Targeting circuits of sexual desire as a treatment strategy for hypoactive sexual desire disorder.

    PubMed

    Stahl, Stephen M

    2010-07-01

    Hypoactive sexual desire disorder (HSDD) is hypothesized to be a disorder of the brain's reward circuitry. Neurotransmitters in reward circuits are thus therapeutic targets for improving sexual desire. Novel treatment strategies are to enhance dopamine (DA) actions, reduce serotonin (5-HT) actions, or both. (c) Copyright 2010 Physicians Postgraduate Press, Inc.

  19. A Behavior-Based Circuit Model of How Outcome Expectations Organize Learned Behavior in Larval "Drosophila"

    ERIC Educational Resources Information Center

    Schleyer, Michael; Saumweber, Timo; Nahrendorf, Wiebke; Fischer, Benjamin; von Alpen, Desiree; Pauls, Dennis; Thum, Andreas; Gerber, Bertram

    2011-01-01

    Drosophila larvae combine a numerically simple brain, a correspondingly moderate behavioral complexity, and the availability of a rich toolbox for transgenic manipulation. This makes them attractive as a study case when trying to achieve a circuit-level understanding of behavior organization. From a series of behavioral experiments, we suggest a…

  20. Neural Circuits via Which Single Prolonged Stress Exposure Leads to Fear Extinction Retention Deficits

    ERIC Educational Resources Information Center

    Knox, Dayan; Stanfield, Briana R.; Staib, Jennifer M.; David, Nina P.; Keller, Samantha M.; DePietro, Thomas

    2016-01-01

    Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions…

  1. Shining Light on Social Learning Circuits.

    PubMed

    Chang, Steve W C; Dal Monte, Olga

    2018-05-28

    Learning from others powerfully shapes our lives, yet the circuit-specific mechanisms underlying social learning in the brain remain unclear. A recent study in mice provides evidence that direct neuronal projections from the anterior cingulate cortex (ACC) to the basolateral amygdala (BLA) play a critical role in observational fear learning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A silicon-based microelectrode array with a microdrive for monitoring brainstem regions of freely moving rats

    NASA Astrophysics Data System (ADS)

    Márton, G.; Baracskay, P.; Cseri, B.; Plósz, B.; Juhász, G.; Fekete, Z.; Pongrácz, A.

    2016-04-01

    Objective. Exploring neural activity behind synchronization and time locking in brain circuits is one of the most important tasks in neuroscience. Our goal was to design and characterize a microelectrode array (MEA) system specifically for obtaining in vivo extracellular recordings from three deep-brain areas of freely moving rats, simultaneously. The target areas, the deep mesencephalic reticular-, pedunculopontine tegmental- and pontine reticular nuclei are related to the regulation of sleep-wake cycles. Approach. The three targeted nuclei are collinear, therefore a single-shank MEA was designed in order to contact them. The silicon-based device was equipped with 3*4 recording sites, located according to the geometry of the brain regions. Furthermore, a microdrive was developed to allow fine actuation and post-implantation relocation of the probe. The probe was attached to a rigid printed circuit board, which was fastened to the microdrive. A flexible cable was designed in order to provide not only electronic connection between the probe and the amplifier system, but sufficient freedom for the movements of the probe as well. Main results. The microdrive was stable enough to allow precise electrode targeting into the tissue via a single track. The microelectrodes on the probe were suitable for recording neural activity from the three targeted brainstem areas. Significance. The system offers a robust solution to provide long-term interface between an array of precisely defined microelectrodes and deep-brain areas of a behaving rodent. The microdrive allowed us to fine-tune the probe location and easily scan through the regions of interest.

  3. Neuropsychologists as primary care providers of cognitive health: A novel comprehensive cognitive wellness service delivery model.

    PubMed

    Pimental, Patricia A; O'Hara, John B; Jandak, Jessica L

    2018-01-01

    By virtue of their extensive knowledge base and specialized training in brain-behavior relationships, neuropsychologists are especially poised to execute a unique broad-based approach to overall cognitive wellness and should be viewed as primary care providers of cognitive health. This article will describe a novel comprehensive cognitive wellness service delivery model including cognitive health, anti-aging, lifelong wellness, and longevity-oriented practices. These practice areas include brain-based cognitive wellness, emotional and spiritually centric exploration, and related multimodality health interventions. As experts in mind-body connections, neuropsychologists can provide a variety of evidence-based treatment options, empowering patients with a sense of value and purpose. Multiple areas of clinical therapy skill-based learning, tailor-made to fit individual needs, will be discussed including: brain stimulating activities, restorative techniques, automatic negative thoughts and maladaptive thinking reduction, inflammation and pain management techniques, nutrition and culinary focused cognitive wellness, spirituality based practices and mindfulness, movement and exercise, alternative/complimentary therapies, relationship restoration/social engagement, and trauma healing/meaning. Cognitive health rests upon the foundation of counteracting mind-body connection disruptions from multiple etiologies including inflammation, chronic stress, metabolic issues, cardiac conditions, autoimmune disease, neurological disorders, infectious diseases, and allergy spectrum disorders. Superimposed on these issues are lifestyle patterns and negative health behaviors that develop as ill-fated compensatory mechanisms used to cope with life stressors and aging. The brain and body are electrical systems that can "short circuit." The therapy practices inherent in the proposed cognitive wellness service delivery model can provide preventative insulation and circuit breaking against the shock of illness.

  4. Netrin-G1 regulates fear-like and anxiety-like behaviors in dissociable neural circuits.

    PubMed

    Zhang, Qi; Sano, Chie; Masuda, Akira; Ando, Reiko; Tanaka, Mika; Itohara, Shigeyoshi

    2016-06-27

    In vertebrate mammals, distributed neural circuits in the brain are involved in emotion-related behavior. Netrin-G1 is a glycosyl-phosphatidylinositol-anchored synaptic adhesion molecule whose deficiency results in impaired fear-like and anxiety-like behaviors under specific circumstances. To understand the cell type and circuit specificity of these responses, we generated netrin-G1 conditional knockout mice with loss of expression in cortical excitatory neurons, inhibitory neurons, or thalamic neurons. Genetic deletion of netrin-G1 in cortical excitatory neurons resulted in altered anxiety-like behavior, but intact fear-like behavior, whereas loss of netrin-G1 in inhibitory neurons resulted in attenuated fear-like behavior, but intact anxiety-like behavior. These data indicate a remarkable double dissociation of fear-like and anxiety-like behaviors involving netrin-G1 in excitatory and inhibitory neurons, respectively. Our findings support a crucial role for netrin-G1 in dissociable neural circuits for the modulation of emotion-related behaviors, and provide genetic models for investigating the mechanisms underlying the dissociation. The results also suggest the involvement of glycosyl-phosphatidylinositol-anchored synaptic adhesion molecules in the development and pathogenesis of emotion-related behavior.

  5. A review of monoaminergic neuropsychopharmacology in zebrafish.

    PubMed

    Maximino, Caio; Herculano, Anderson Manoel

    2010-12-01

    Monoamine neurotransmitters are the major regulatory mechanisms in the vertebrate brain, involved in the adjustment of motivation, emotion, and cognition. The chemical anatomy of these systems is thought to be highly conserved in the brain of all vertebrates, including zebrafish. Recently, the development of behavioral assays in zebrafish allowed the neuropsychopharmacological investigation of these circuits and its functions. Here we review neuroanatomical, genetic, neurochemical, and psychopharmacological evidence regarding the roles of histaminergic, dopaminergic, noradrenergic, serotonergic, and melatonergic systems in this species. We conclude that, in spite of species differences, zebrafish are suitable for the investigation of neuropsychopharmacology of drugs that affect theses systems; nonetheless, more thorough validation of behavioral methods is still needed.

  6. Synaptic Effects of Electric Fields

    NASA Astrophysics Data System (ADS)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits. Moreover, stimulation polarity has asymmetric effects on synaptic strength making it easier to enhance ongoing plasticity. These results suggest that the susceptibility of brain networks to an electric field depends on the state of synaptic activity. Combining a training task, which activates specific circuits, with TES may lead to functionally-specific effects. Given the simplicity of TES and the complexity of brain function, understanding the mechanisms leading to specificity is fundamental to the rational advancement of TES.

  7. Structure, production and signaling of leptin

    PubMed Central

    Münzberg, Heike; Morrison, Christopher D.

    2014-01-01

    The cloning of leptin in 1994 was an important milestone in obesity research. In those days obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause morbid obesity, and it is now appreciated that obesity is caused by a dysregulation of central neuronal circuits. From the first discovery of the leptin deficient obese mouse (ob/ob), to the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, much has been learned about leptin and its action in the central nervous system. The initial high hopes that leptin would cure obesity were quickly dampened by the discovery that most obese humans have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint for distinct neuronal circuits that control energy homeostasis. A better understanding of the regulation and interconnection of these circuits will further guide and improve the development of safe and effective interventions to treat obesity. This review will highlight our current knowledge about the hormone leptin, its signaling pathways and its central actions to mediate distinct physiological functions. PMID:25305050

  8. Dynamic changes in neural circuit topology following mild mechanical injury in vitro.

    PubMed

    Patel, Tapan P; Ventre, Scott C; Meaney, David F

    2012-01-01

    Despite its enormous incidence, mild traumatic brain injury is not well understood. One aspect that needs more definition is how the mechanical energy during injury affects neural circuit function. Recent developments in cellular imaging probes provide an opportunity to assess the dynamic state of neural networks with single-cell resolution. In this article, we developed imaging methods to assess the state of dissociated cortical networks exposed to mild injury. We estimated the imaging conditions needed to achieve accurate measures of network properties, and applied these methodologies to evaluate if mild mechanical injury to cortical neurons produces graded changes to either spontaneous network activity or altered network topology. We found that modest injury produced a transient increase in calcium activity that dissipated within 1 h after injury. Alternatively, moderate mechanical injury produced immediate disruption in network synchrony, loss in excitatory tone, and increased modular topology. A calcium-activated neutral protease (calpain) was a key intermediary in these changes; blocking calpain activation restored the network nearly completely to its pre-injury state. Together, these findings show a more complex change in neural circuit behavior than previously reported for mild mechanical injury, and highlight at least one important early mechanism responsible for these changes.

  9. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    PubMed

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system.

  10. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    PubMed Central

    Broderick, Patricia A.

    2013-01-01

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system. PMID:24961434

  11. From imitation to meaning: circuit plasticity and the acquisition of a conventionalized semantics

    PubMed Central

    García, Ricardo R.; Zamorano, Francisco; Aboitiz, Francisco

    2014-01-01

    The capacity for language is arguably the most remarkable innovation of the human brain. A relatively recent interpretation prescribes that part of the language-related circuits were co-opted from circuitry involved in hand control—the mirror neuron system (MNS), involved both in the perception and in the execution of voluntary grasping actions. A less radical view is that in early humans, communication was opportunistic and multimodal, using signs, vocalizations or whatever means available to transmit social information. However, one point that is not yet clear under either perspective is how learned communication acquired a semantic property thereby allowing us to name objects and eventually describe our surrounding environment. Here we suggest a scenario involving both manual gestures and learned vocalizations that led to the development of a primitive form of conventionalized reference. This proposal is based on comparative evidence gathered from other species and on neurolinguistic evidence in humans, which points to a crucial role for vocal learning in the early development of language. Firstly, the capacity to direct the attention of others to a common object may have been crucial for developing a consensual referential system. Pointing, which is a ritualized grasping gesture, may have been crucial to this end. Vocalizations also served to generate joint attention among conversants, especially when combined with gaze direction. Another contributing element was the development of pantomimic actions resembling events or animals. In conjunction with this mimicry, the development of plastic neural circuits that support complex, learned vocalizations was probably a significant factor in the evolution of conventionalized semantics in our species. Thus, vocal imitations of sounds, as in onomatopoeias (words whose sound resembles their meaning), are possibly supported by mirror system circuits, and may have been relevant in the acquisition of early meanings. PMID:25152726

  12. Chemogenetic activation of the lateral hypothalamus reverses early life stress-induced deficits in motivational drive.

    PubMed

    Campbell, Erin J; Mitchell, Caitlin S; Adams, Cameron D; Yeoh, Jiann Wei; Hodgson, Deborah M; Graham, Brett A; Dayas, Christopher V

    2017-10-01

    Altered motivated behaviour is a cardinal feature of several neuropsychiatric conditions including mood disorders. One well-characterized antecedent to the development of mood disorders is exposure to early life stress (ELS). A key brain substrate controlling motivated behaviour is the lateral hypothalamus (LH). Here, we examined the effect of ELS on LH activation and the motivation to self-administer sucrose. We tested whether chemogenetic activation of LH circuits could modify sucrose responding in ELS rats and examined the impact on LH cell populations. Male rat pups were maternally separated for 0 or 3 h on postnatal days 2-14. During adolescence, rats received bilateral injections of hM3D(Gq), the excitatory designer receptor exclusively activated by designer drugs, into LH. In adulthood, rats were trained to self-administer sucrose and tested under a progressive ratio schedule to determine their motivation for reward following injection with either vehicle or 5 mg/kg clozapine-N-oxide. Brains were processed for Fos-protein immunohistochemistry. ELS significantly suppressed lever responding for sucrose, indicating a long-lasting impact of ELS on motivation circuits. hM3D(Gq) activation of LH increased responding, normalizing deficits in ELS rats, and increased Fos-positive orexin and MCH cell numbers within LH. Our findings indicate that despite being susceptible to environmental stressors, LH circuits retain the capacity to overcome ELS-induced deficits in motivated behaviour. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation

    PubMed Central

    Chen, Chang Hao; McCullagh, Elizabeth A.; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C.

    2017-01-01

    The ability to record and to control action potential firing in neuronal circuits of the brain is critical to understand how the brain functions on the cellular and network levels. Recent development of optogenetic proteins allows direct stimulation or inhibition of action potential firing of neurons upon optical illumination. In this paper, we combined a low-noise and high input impedance (or low input capacitance) neural recording amplifier, and a high current laser/LED driver in a monolithic integrated circuit (IC) for simultaneous neural recording and optogenetic neural control. The low input capacitance of the amplifier (9.7 pF) was achieved through adding a dedicated unity gain input stage optimized for high impedance metal electrodes. The input referred noise of the amplifier was measured to be 4.57 µVrms, which is lower than the estimated thermal noise of the metal electrode. Thus, action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of ~6.6. The LED/laser current driver delivers a maximum current of 330 mA to generate adequate light for optogenetic control. We experimentally tested the functionality of the IC with an anesthetized Mongolian gerbil and recorded auditory stimulated action potentials from the inferior colliculus. Furthermore, we showed that spontaneous firing of 5th (trigeminal) nerve fibers was inhibited using the optogenetic protein Halorhodopsin. A noise model was also derived including the equivalent electronic components of the metal electrode and the high current driver to guide the design. PMID:28221990

  14. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism.

    PubMed

    Pineda, J A; Juavinett, A; Datko, M

    2012-12-01

    Autism is a highly varied developmental disorder typically characterized by deficits in reciprocal social interaction, difficulties with verbal and nonverbal communication, and restricted interests and repetitive behaviors. Although a wide range of behavioral, pharmacological, and alternative medicine strategies have been reported to ameliorate specific symptoms for some individuals, there is at present no cure for the condition. Nonetheless, among the many incompatible observations about aspects of the development, anatomy, and functionality of the autistic brain, it is widely agreed that it is characterized by widespread aberrant connectivity. Such disordered connectivity, be it increased, decreased, or otherwise compromised, may complicate healthy synchronization and communication among and within different neural circuits, thereby producing abnormal processing of sensory inputs necessary for normal social life. It is widely accepted that the innate properties of brain electrical activity produce pacemaker elements and linked networks that oscillate synchronously or asynchronously, likely reflecting a type of functional connectivity. Using phase coherence in multiple frequency EEG bands as a measure of functional connectivity, studies have shown evidence for both global hypoconnectivity and local hyperconnectivity in individuals with ASD. However, the nature of the brain's experience-dependent structural plasticity suggests that these abnormal patterns may be reversed with the proper type of treatment. Indeed, neurofeedback (NF) training, an intervention based on operant conditioning that results in self-regulation of brain electrical oscillations, has shown promise in addressing marked abnormalities in functional and structural connectivity. It is hypothesized that neurofeedback produces positive behavioral changes in ASD children by normalizing the aberrant connections within and between neural circuits. NF exploits the brain's plasticity to normalize aberrant connectivity patterns apparent in the autistic brain. By grounding this training in known anatomical (e.g., mirror neuron system) and functional markers (e.g., mu rhythms) of autism, NF training holds promise to support current treatments for this complex disorder. The proposed hypothesis specifically states that neurofeedback-induced alpha mu (8-12Hz) rhythm suppression or desynchronization, a marker of cortical activation, should induce neuroplastic changes and lead to normalization in relevant mirroring networks that have been associated with higher-order social cognition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17β-HSD type 4

    PubMed Central

    2010-01-01

    Background Steroids affect many tissues, including the brain. In the zebra finch, the estrogenic steroid estradiol (E2) is especially effective at promoting growth of the neural circuit specialized for song. In this species, only the males sing and they have a much larger and more interconnected song circuit than females. Thus, it was surprising that the gene for 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4), an enzyme that converts E2 to a less potent estrogen, had been mapped to the Z sex chromosome. As a consequence, it was likely that HSD17B4 was differentially expressed in males (ZZ) and females (ZW) because dosage compensation of Z chromosome genes is incomplete in birds. If a higher abundance of HSD17B4 mRNA in males than females was translated into functional enzyme in the brain, then contrary to expectation, males could produce less E2 in their brains than females. Results Here, we used molecular and biochemical techniques to confirm the HSD17B4 Z chromosome location in the zebra finch and to determine that HSD17B4 mRNA and activity were detectable in the early developing and adult brain. As expected, HSD17B4 mRNA expression levels were higher in males compared to females. This provides further evidence of the incomplete Z chromosome inactivation mechanisms in birds. We detected HSD17B4 mRNA in regions that suggested a role for this enzyme in the early organization and adult function of song nuclei. We did not, however, detect significant sex differences in HSD17B4 activity levels in the adult brain. Conclusions Our results demonstrate that the HSD17B4 gene is expressed and active in the zebra finch brain as an E2 metabolizing enzyme, but that dosage compensation of this Z-linked gene may occur via post-transcriptional mechanisms. PMID:20359329

  16. In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex

    PubMed Central

    Azzarelli, Roberta; Oleari, Roberto; Lettieri, Antonella; Andre', Valentina; Cariboni, Anna

    2017-01-01

    Neuronal migration is a fundamental biological process that underlies proper brain development and neuronal circuit formation. In the developing cerebral cortex, distinct neuronal populations, producing excitatory, inhibitory and modulatory neurotransmitters, are generated in different germinative areas and migrate along various routes to reach their final positions within the cortex. Different technical approaches and experimental models have been adopted to study the mechanisms regulating neuronal migration in the cortex. In this review, we will discuss the most common in vitro, ex vivo and in vivo techniques to visualize and study cortical neuronal migration. PMID:28448448

  17. Stress and visceral pain: focusing on irritable bowel syndrome.

    PubMed

    Fukudo, Shin

    2013-12-01

    Recent advances in brain science have shown that the brain function encoding emotion depends on interoceptive signals such as visceral pain. Visceral pain arose early in our evolutionary history. Bottom-up processing from gut-to-brain and top-down autonomic/neuroendocrine mechanisms in brain-to-gut signaling constitute a circuit. Brain imaging techniques have enabled us to depict the visceral pain pathway as well as the related emotional circuit. Irritable bowel syndrome (IBS) is characterized by chronic recurrent abdominal pain or abdominal discomfort associated with bowel dysfunction. It is also thought to be a disorder of the brain-gut link associated with an exaggerated response to stress. Corticotropin-releasing hormone (CRH), a major mediator of the stress response in the brain-gut axis, is an obvious candidate in the pathophysiology of IBS. Indeed, administration of CRH has been shown to aggravate the visceral sensorimotor response in IBS patients, and the administration of peptidergic CRH antagonists seems to alleviate IBS pathophysiology. Serotonin (5-HT) is another likely candidate associated with brain-gut function in IBS, as 5-HT3 antagonists, 5-HT4 agonists, and antidepressants were demonstrated to regulate 5-HT neurotransmission in IBS patients. Autonomic nervous system function, the neuroimmune axis, and the brain-gut-microbiota axis show specific profiles in IBS patients. Further studies on stress and visceral pain neuropathways in IBS patients are warranted. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Adaptations for Students with ADHD

    ERIC Educational Resources Information Center

    McGrady, Mart

    2005-01-01

    ADHD is a neurobiological-based brain disorder, most often hereditary, affecting nearly one in twenty students. The ADHD brain functions differently because the area between the frontal lobe and rear lobe is having short-circuit problems and is not transmitting necessary information. The technical part of the disorder does not engage us as…

  19. [Memory engram of brain circuit].

    PubMed

    Kojima, Hiroto; Sakaguchi, Tetsuya; Ikegaya, Yuji

    2015-05-01

    How are memories stored in the brain and retrieved on demand? This is a frequently asked question. Indeed, we acquire new memories daily and remember old ones. However, how we can memorize one-time experiences is yet to be investigated. Here, we review possible mechanisms by which memories are maintained in neural networks.

  20. [Systemic biopsychological perspective of basic emotions].

    PubMed

    Poisson, Benoît

    The systemic biopsychological perspective of basic emotions is a heuristic model that allows a better understanding of how people learn to adapt to their environment through different emotions that developed gradually along neurohormonal circuit myelination from birth until about the age of twenty-one. These same emotions, acting in complementarity, will allow the individual to maintain a balance throughout his life.Five basic emotions were retained in line with the five emotions related to neuronal circuits, which are defined in the literature, and these are the five circuits described by Panksepp as follows: aggressiveness (Rage, angry), stress (Fear- surprise), developed by LeDoux, reward (Seeking-joy), developed by Tassin, empathy (Panic-sadness), developed by Decety, and consciousness (consciousness-happiness), developed by Damasio.Several studies on myelination (Kinney, 1988, Parazzini, 2002, Deoni, 2012), Miller, 2012, and Welker, 2012) provide us with a scientific platform to determine the order of development of the neurohormonal circuits underlying basic emotions.Neurohormonal circuits development begins at conception and will continue up until the age of 20-30 years. This article specifically addresses the first three years of life. It offers a systemic biopsychological perspective of basic emotions developed from the latest data in neuroscience. These informations have been integrated into a coherent whole that allows understanding the origin, the development and the functioning of basic emotions.In addition to the information output from the thalamus to the midbrain that set in motion the somatic nervous system there exist, according to Roberge (1998), two other brain information sources that are managed by the hypothalamus (the limbic system). These two information sources allow the refining of the behavioural responses and they favour the homeostasis of the organism. The first information source goes from the midbrain to the hypothalamus to activate the peripheral nervous system. The latter is divided into two: the sympathetic (norepinephrine) that accelerates the motor response and the parasympathetic (acetylcholine), which slows it down. These two systems work in tandem. As for the second release of information, it is endocrine, thus it will follow the hypothalamus-pituitary-adrenal axis to cortisol, the hypothalamus-pituitary axis to endorphin and oxytocin and the hypothalamus-pineal axis to melatonin. The different emotional behaviours result from one of these two sources of information or from a combination of these two and are then managed by the limbic system, which is in continuous connection with the neocortex.In short, no specific centre totally controls human behaviour. Control is achieved through a group of brain structures and relays, permitting adaptive behaviour and maintenance of balance by means of permanent exchanges. Anger, for instance, is a survival emotion, which allows protecting one's physical integrity. It is very useful as an immediate response in an emergency situation, but it can also be harmful if it is used extensively in all situations, giving way to conduct disorders. Thus, the other neurohormonal circuits will regulate anger.Emotions are an integral part of human behaviour. They allow the individual to constantly adapt to the physical and social environment. This approach brings a new perspective to understand how each person maintains balance to avoid the onset of clinical disorders. The understanding of neurochemical mechanisms underlying basic emotions opens up the door to several clinical applications.

  1. Maturation of Cortico-Subcortical Structural Networks-Segregation and Overlap of Medial Temporal and Fronto-Striatal Systems in Development.

    PubMed

    Walhovd, Kristine B; Tamnes, Christian K; Bjørnerud, Atle; Due-Tønnessen, Paulina; Holland, Dominic; Dale, Anders M; Fjell, Anders M

    2015-07-01

    The brain consists of partly segregated neural circuits within which structural convergence and functional integration occurs during development. The relationship of structural cortical and subcortical maturation is largely unknown. We aimed to study volumetric development of the hippocampus and basal ganglia (caudate, putamen, pallidum, accumbens) in relation to volume changes throughout the cortex. Longitudinal MRI data were obtained across a mean interval of 2.6 years in 85 participants with an age range of 8-19 years at study start. Left and right subcortical changes were related to cortical change vertex-wise in the ipsilateral hemisphere with general linear models with age, sex, interval between scans, and mean cortical volume change as covariates. Hippocampal-cortical change relationships centered on parts of the Papez circuit, including entorhinal, parahippocampal, and isthmus cingulate areas, and lateral temporal, insular, and orbitofrontal cortices in the left hemisphere. Basal ganglia-cortical change relationships were observed in mostly nonoverlapping and more anterior cortical areas, all including the anterior cingulate. Other patterns were unique to specific basal ganglia structures, including pre-, post-, and paracentral patterns relating to putamen change. In conclusion, patterns of cortico-subcortical development as assessed by morphometric analyses in part map out segregated neural circuits at the macrostructural level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. [Structural plasticity associated with drugs addiction].

    PubMed

    Zhu, Jie; Cao, Guo-fen; Dang, Yong-hui; Chen, Teng

    2011-12-01

    An essential feature of drug addiction is that an individual continues to use drug despite the threat of severely adverse physical or psychosocial consequences. Persistent changes in behavior and psychological function that occur as a function of drugs of abuse are thought to be due to the reorganization of synaptic connections (structural plasticity) in relevant brain circuits (especially the brains reward circuits). In this paper we summarized evidence that, indeed, exposure to amphetamine, cocaine, nicotine or morphine produced persistent changes in the structure of dendrites and dendritic spines on cells in relevant brain regions. We also approached the potential molecular mechanisms of these changes. It is suggested that structural plasticity associated with exposure to drugs of abuse reflects a reorganization of patterns of synaptic connectivity in these neural systems, a reorganization that alters their operation, thus contributing to some of the persistent sequela associated with drug use-including addiction.

  3. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior

    PubMed Central

    Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.

    2014-01-01

    Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252

  4. Neural mechanisms of movement planning: motor cortex and beyond.

    PubMed

    Svoboda, Karel; Li, Nuo

    2018-04-01

    Neurons in motor cortex and connected brain regions fire in anticipation of specific movements, long before movement occurs. This neural activity reflects internal processes by which the brain plans and executes volitional movements. The study of motor planning offers an opportunity to understand how the structure and dynamics of neural circuits support persistent internal states and how these states influence behavior. Recent advances in large-scale neural recordings are beginning to decipher the relationship of the dynamics of populations of neurons during motor planning and movements. New behavioral tasks in rodents, together with quantified perturbations, link dynamics in specific nodes of neural circuits to behavior. These studies reveal a neural network distributed across multiple brain regions that collectively supports motor planning. We review recent advances and highlight areas where further work is needed to achieve a deeper understanding of the mechanisms underlying motor planning and related cognitive processes. Copyright © 2017. Published by Elsevier Ltd.

  5. A Plastic Temporal Brain Code for Conscious State Generation

    PubMed Central

    Dresp-Langley, Birgitta; Durup, Jean

    2009-01-01

    Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms. PMID:19644552

  6. Oligodendrocyte-Neuron Interactions: Impact on Myelination and Brain Function.

    PubMed

    Shimizu, Takeshi; Osanai, Yasuyuki; Ikenaka, Kazuhiro

    2018-01-01

    In the past, glial cells were considered to be 'glue' cells whose primary role was thought to be merely filling gaps in neural circuits. However, a growing number of reports have indicated the role of glial cells in higher brain function through their interaction with neurons. Myelin was originally thought to be just a sheath structure surrounding neuronal axons, but recently it has been shown that myelin exerts effects on the conduction velocity of neuronal axons even after myelin formation. Therefore, the investigation of glial cell properties and the neuron-glial interactions is important for understanding higher brain function. Moreover, since there are many neurological disorders caused by glial abnormalities, further understanding of glial cell-related diseases and the development of effective therapeutic strategies are warranted. In this review, we focused on oligodendrocyte-neuron interactions, with particular attention on (1) axonal signals underlying oligodendrocyte differentiation and myelination, (2) neuronal activity-dependent myelination and (3) the effects of myelination on higher brain function.

  7. Neurosteroid production in the songbird brain: a re-evaluation of core principles

    PubMed Central

    London, Sarah E.; Remage-Healey, Luke; Schlinger, Barney A.

    2009-01-01

    Concepts of brain-steroid signaling have traditionally placed emphasis on the gonads and adrenals as the source of steroids, the strict dichotomy of early developmental (“organizational”) and mature (“activational”) effects, and a relatively slow mechanism of signaling through intranuclear receptors. Continuing research shows that these concepts are not inaccurate, but they are certainly incomplete. In this review, we focus on the song control circuit of songbird species to demonstrate how each of these concepts is limited. We discuss the solid evidence for steroid synthesis within the brain (“neurosteroidogenesis”), the role of neurosteroids in organizational events that occur both early in development and later in life, and how neurosteroids can act in acute and non-traditional ways. The songbird model therefore illustrates how neurosteroids can dramatically increase the diversity of steroid-sensitive brain functions in a behaviorally-relevant system. We hope this inspires further research and thought into neurosteroid signaling in songbirds and other animals. PMID:19442685

  8. [The search of the "intact" structural and functional brain systems as a paradigm shift in schizophrenia research].

    PubMed

    Lebedeva, I S

    2015-01-01

    The search of the structural and functional brain characteristics is one of the most studied directions in the modern biological psychiatry. However, in spite of the numerous studies the results are still controversial. As the necessity of the shift of the current paradigm in schizophrenia research evolves it has been suggested to discriminate not only abnormal but stable functioning neuronal circuits as well. Consequently, the aim is formulated as the search of the minimal brain damage sufficient for disease development. Author analyzed the auditory oddball P300 latency (as a marker of information processing speed), N-acetylaspartate level in the dorsolateral prefrontal cortex (as a marker of neuronal integrity in this brain area) and fractional anisotropy of the fasciculus uncindtus which connects the frontal and temporal lobes (as a marker of white matter bundles microstructure) in 30 patients with schizophrenia and 27 healthy people. The findings showed that all the tested characteristics are not "obligatory" for schizophrenia.

  9. Toward a conceptual framework for early brain and behavior development in autism

    PubMed Central

    Piven, J; Elison, J T; Zylka, M J

    2017-01-01

    Studies of infant siblings of older autistic probands, who are at elevated risk for autism, have demonstrated that the defining features of autism are not present in the first year of life but emerge late in the first and into the second year. A recent longitudinal neuroimaging study of high-risk siblings revealed a specific pattern of brain development in infants later diagnosed with autism, characterized by cortical surface area hyper-expansion in the first year followed by brain volume overgrowth in the second year that is associated with the emergence of autistic social deficits. Together with new observations from genetically defined autism risk alleles and rodent model, these findings suggest a conceptual framework for the early, post-natal development of autism. This framework postulates that an increase in the proliferation of neural progenitor cells and hyper-expansion of cortical surface area in the first year, occurring during a pre-symptomatic period characterized by disrupted sensorimotor and attentional experience, leads to altered experience-dependent neuronal development and decreased elimination of neuronal processes. This process is linked to brain volume overgrowth and disruption of the refinement of neural circuit connections and is associated with the emergence of autistic social deficits in the second year of life. A better understanding of the timing of developmental brain and behavior mechanisms in autism during infancy, a period which precedes the emergence of the defining features of this disorder, will likely have important implications for designing rational approaches to early intervention. PMID:28937691

  10. Functional connectivity decreases in autism in emotion, self, and face circuits identified by Knowledge-based Enrichment Analysis.

    PubMed

    Cheng, Wei; Rolls, Edmund T; Zhang, Jie; Sheng, Wenbo; Ma, Liang; Wan, Lin; Luo, Qiang; Feng, Jianfeng

    2017-03-01

    A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity. Copyright © 2017. Published by Elsevier Inc.

  11. Co-activation patterns in resting-state fMRI signals.

    PubMed

    Liu, Xiao; Zhang, Nanyin; Chang, Catie; Duyn, Jeff H

    2018-02-08

    The brain is a complex system that integrates and processes information across multiple time scales by dynamically coordinating activities over brain regions and circuits. Correlations in resting-state functional magnetic resonance imaging (rsfMRI) signals have been widely used to infer functional connectivity of the brain, providing a metric of functional associations that reflects a temporal average over an entire scan (typically several minutes or longer). Not until recently was the study of dynamic brain interactions at much shorter time scales (seconds to minutes) considered for inference of functional connectivity. One method proposed for this objective seeks to identify and extract recurring co-activation patterns (CAPs) that represent instantaneous brain configurations at single time points. Here, we review the development and recent advancement of CAP methodology and other closely related approaches, as well as their applications and associated findings. We also discuss the potential neural origins and behavioral relevance of CAPs, along with methodological issues and future research directions in the analysis of fMRI co-activation patterns. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. [Clinical interest of fMRI and functional exploration methods of brain activity and interactivity: physical and neurophysiological considerations].

    PubMed

    de Marco, G; Menuel, C; Guillevin, R; Vallée, J-N; Lehmann, P; Fall, S; Quaglino, V; Bourdin, B; Devauchelle, B; Chiras, J

    2008-07-01

    After having provided a brief reminder of the principle of the blood oxygen level-dependent (BOLD) contrast effect, the physiological bases of brain activity and the concepts of functional integration and effective connectivity, we describe the most recent approaches, which permit to explore brain activity and putative networks of interconnected active areas in order to examine the normal brain physiology and its dysfunctions. We present various methods and studies of brain activity analysis clinically applicable, and we detail the concepts of functional and effective connectivity, which allow to study the cerebral plasticity which occurs at the child's during the maturation (e.g., dyslexia), at the adult during the ageing (e.g., Alzheimer disease), or still in schizophrenia or Parkinson disease. The study of specific circuits in networks has to allow defining in a more realistic way the dynamic of the central nervous system, which underlies various cerebral functions, both in physiological and pathological conditions. This connectivity approach should improve the diagnostic and facilitate the development of new therapeutic strategies.

  13. Neuroscience, virtual reality and neurorehabilitation: brain repair as a validation of brain theory.

    PubMed

    Verschure, Paul F M J

    2011-01-01

    This paper argues that basing cybertherapy approaches on a theoretical understanding of the brain has advantages. On one hand it provides for a rational approach towards therapy design while on the other allowing for a direct validation of brain theory in the clinic. As an example this paper discusses how the Distributed Adaptive Control architecture, a theory of mind, brain and action, has given rise to a new paradigm in neurorehabilitation called the Rehabilitation Gaming System (RGS) and to novel neuroprosthetic systems. The neuroprosthetic system considered is developed to replace the function of cerebellar micro-circuits, expresses core aspects of the learning systems of DAC and has been successfully tested in in-vivo experiments. The Virtual reality based rehabilitation paradigm of RGS has been validated in the treatment of acute and chronic stroke and has been shown to be more effective than existing methods. RGS provides a foundation for integrated at-home therapy systems that can operate largely autonomously when also augmented with appropriate physiological monitoring and diagnostic devices. These examples provide first steps towards a science based medicine.

  14. Advanced lesion symptom mapping analyses and implementation as BCBtoolkit.

    PubMed

    Foulon, Chris; Cerliani, Leonardo; Kinkingnéhun, Serge; Levy, Richard; Rosso, Charlotte; Urbanski, Marika; Volle, Emmanuelle; Thiebaut de Schotten, Michel

    2018-03-01

    Patients with brain lesions provide a unique opportunity to understand the functioning of the human mind. However, even when focal, brain lesions have local and remote effects that impact functionally and structurally connected circuits. Similarly, function emerges from the interaction between brain areas rather than their sole activity. For instance, category fluency requires the associations between executive, semantic, and language production functions. Here, we provide, for the first time, a set of complementary solutions for measuring the impact of a given lesion on the neuronal circuits. Our methods, which were applied to 37 patients with a focal frontal brain lesions, revealed a large set of directly and indirectly disconnected brain regions that had significantly impacted category fluency performance. The directly disconnected regions corresponded to areas that are classically considered as functionally engaged in verbal fluency and categorization tasks. These regions were also organized into larger directly and indirectly disconnected functional networks, including the left ventral fronto-parietal network, whose cortical thickness correlated with performance on category fluency. The combination of structural and functional connectivity together with cortical thickness estimates reveal the remote effects of brain lesions, provide for the identification of the affected networks, and strengthen our understanding of their relationship with cognitive and behavioral measures. The methods presented are available and freely accessible in the BCBtoolkit as supplementary software [1].

  15. Letter to Editor. Prerequisites for psychiatric examination detecting the intention to commit suicide.

    PubMed

    Brodziak, Andrzej

    2015-01-01

    The recent plane crash caused by the pilot increased the interest in the possibility of medical examination, which would be able to detect the intention of committing suicide. The development of such a diagnostic procedure is not only important for the prevention of events in the civil and military aviation, but also due to increase in the incidence of various suicide terrorist acts. The author expresses his opinion on the nature of such examination, due to his experience of working in Acute Poisoning Treatment Centre. The Centre admits about 1 000 patients per year, who have been rescued after suicide attempts made by the intake of a toxic substance. He discusses the developed scheme of structuralized interview, however, he believes that the ability to detect the existence of suicidal ideation was significantly improved as a result of the formulation of Interpersonal Theory of Suicide, which distinguishes four stages: 1) passive suicidal ideation, 2) suicidal desire, 3) suicidal intent, 4) lethal and near lethal suicide attempts. Next, the author presents his own prediction of the development of methods, enabling the objective detection of "suicidal intent" (plan). In his opinion, such an examination in the future, would be based on brain imaging techniques, which could detect the specific configuration of a person's brain neural circuits representing the existing plan of suicide. The real ability to detect such a configuration of neural circuits can be predicted on the basis of new, quoted results of neurophysiological studies.

  16. RETHINKING THE EMOTIONAL BRAIN

    PubMed Central

    LeDoux, Joseph

    2013-01-01

    I propose a re-conceptualization of key phenomena important in the study of emotion — those phenomena that reflect functions and circuits related to survival, and that are shared by humans and other animals. The approach shifts the focus from questions about whether emotions that humans consciously feel are also present in other animals, and towards questions about the extent to which circuits and corresponding functions that are present in other animals (survival circuits and functions) are also present in humans. Survival circuit functions are not causally related to emotional feelings, but obviously contribute to these, at least indirectly. The survival circuit concept integrates ideas about emotion, motivation, reinforcement, and arousal in the effort to understand how organisms survive and thrive by detecting and responding to challenges and opportunities in daily life. PMID:22365542

  17. [The endogenous opioid system and drug addiction].

    PubMed

    Maldonado, R

    2010-01-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  18. Neural Control of the Lower Urinary Tract

    PubMed Central

    de Groat, William C.; Griffiths, Derek; Yoshimura, Naoki

    2015-01-01

    This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed. PMID:25589273

  19. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  20. Optogenetic Functional MRI

    PubMed Central

    Lin, Peter; Fang, Zhongnan; Liu, Jia; Lee, Jin Hyung

    2016-01-01

    The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. PMID:27167840

  1. Distributed affective space represents multiple emotion categories across the human brain

    PubMed Central

    Saarimäki, Heini; Ejtehadian, Lara Farzaneh; Jääskeläinen, Iiro P; Vuilleumier, Patrik; Sams, Mikko; Nummenmaa, Lauri

    2018-01-01

    Abstract The functional organization of human emotion systems as well as their neuroanatomical basis and segregation in the brain remains unresolved. Here, we used pattern classification and hierarchical clustering to characterize the organization of a wide array of emotion categories in the human brain. We induced 14 emotions (6 ‘basic’, e.g. fear and anger; and 8 ‘non-basic’, e.g. shame and gratitude) and a neutral state using guided mental imagery while participants' brain activity was measured with functional magnetic resonance imaging (fMRI). Twelve out of 14 emotions could be reliably classified from the haemodynamic signals. All emotions engaged a multitude of brain areas, primarily in midline cortices including anterior and posterior cingulate gyri and precuneus, in subcortical regions, and in motor regions including cerebellum and premotor cortex. Similarity of subjective emotional experiences was associated with similarity of the corresponding neural activation patterns. We conclude that different basic and non-basic emotions have distinguishable neural bases characterized by specific, distributed activation patterns in widespread cortical and subcortical circuits. Regionally differentiated engagement of these circuits defines the unique neural activity pattern and the corresponding subjective feeling associated with each emotion. PMID:29618125

  2. Task-Based Core-Periphery Organization of Human Brain Dynamics

    PubMed Central

    Bassett, Danielle S.; Wymbs, Nicholas F.; Rombach, M. Puck; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2013-01-01

    As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain's putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior. PMID:24086116

  3. In vivo voltammetry: from wire to wireless measurements.

    PubMed

    Crespi, Francesco; Dalessandro, Davide; Annovazzi-Lodi, Valerio; Heidbreder, Christian; Norgia, Michele

    2004-12-30

    A novel telemetric system based on either differential pulse voltammetry (DPV) or direct current amperometry (DCA) by using a diffused infrared transmission channel is presented. Unlike similar pre-existing instruments based on infrared transmission, the present system works on a single-way communication, thus avoiding problems related to cross-talking between two-way channels. The infrared channel is also immune from electromagnetic interferences from the surrounding environment. Further advancement is the development of an original miniaturised system (dimension 1cm x 1.2 cm x 0.5 cm) with reduced weight (5-6 g), suitable for affixing to the rat head and allowing real time telemetric monitoring using DCA sampling of neurotransmitters such as dopamine or serotonin every 100 ms. The set-up is based on a transmitter (TX) circuit mounted on the animal's head and connected to the electrodes inserted into its brain. The TX circuit generates the proper electrical signals for DPV or DCA, collects the electrical response of the brain and transmits it, via an infrared channel, to a receiving station (RX) interfaced with a personal computer. The PC performs the sampling and elaboration of polarographic traces in a flexible and programmable way.

  4. Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders.

    PubMed

    Viejo, Guillaume; Cortier, Thomas; Peyrache, Adrien

    2018-03-01

    Understanding how neurons cooperate to integrate sensory inputs and guide behavior is a fundamental problem in neuroscience. A large body of methods have been developed to study neuronal firing at the single cell and population levels, generally seeking interpretability as well as predictivity. However, these methods are usually confronted with the lack of ground-truth necessary to validate the approach. Here, using neuronal data from the head-direction (HD) system, we present evidence demonstrating how gradient boosted trees, a non-linear and supervised Machine Learning tool, can learn the relationship between behavioral parameters and neuronal responses with high accuracy by optimizing the information rate. Interestingly, and unlike other classes of Machine Learning methods, the intrinsic structure of the trees can be interpreted in relation to behavior (e.g. to recover the tuning curves) or to study how neurons cooperate with their peers in the network. We show how the method, unlike linear analysis, reveals that the coordination in thalamo-cortical circuits is qualitatively the same during wakefulness and sleep, indicating a brain-state independent feed-forward circuit. Machine Learning tools thus open new avenues for benchmarking model-based characterization of spike trains.

  5. Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders

    PubMed Central

    Cortier, Thomas; Peyrache, Adrien

    2018-01-01

    Understanding how neurons cooperate to integrate sensory inputs and guide behavior is a fundamental problem in neuroscience. A large body of methods have been developed to study neuronal firing at the single cell and population levels, generally seeking interpretability as well as predictivity. However, these methods are usually confronted with the lack of ground-truth necessary to validate the approach. Here, using neuronal data from the head-direction (HD) system, we present evidence demonstrating how gradient boosted trees, a non-linear and supervised Machine Learning tool, can learn the relationship between behavioral parameters and neuronal responses with high accuracy by optimizing the information rate. Interestingly, and unlike other classes of Machine Learning methods, the intrinsic structure of the trees can be interpreted in relation to behavior (e.g. to recover the tuning curves) or to study how neurons cooperate with their peers in the network. We show how the method, unlike linear analysis, reveals that the coordination in thalamo-cortical circuits is qualitatively the same during wakefulness and sleep, indicating a brain-state independent feed-forward circuit. Machine Learning tools thus open new avenues for benchmarking model-based characterization of spike trains. PMID:29565979

  6. Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain-machine interfaces.

    PubMed

    Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G

    2015-05-07

    Electrode impedance is used to assess the thermal noise and signal-to-noise ratio for brain-machine interfaces. An intermediate frequency of 1 kHz is typically measured, although other frequencies may be better predictors of device performance. PEDOT-PSS, PEDOT-DBSA and PEDOT-pTs conducting polymer modified electrodes have reduced impedance at 1 kHz compared to bare metal electrodes, but have no correlation with the effective electrode area. Analytical solutions to impedance indicate that all low-intermediate frequencies can be used to compare the electrode area at a series RC circuit, typical of an ideal metal electrode in a conductive solution. More complex equivalent circuits can be used for the modified electrodes, with a simplified Randles circuit applied to PEDOT-PSS and PEDOT-pTs and a Randles circuit including a Warburg impedance element for PEDOT-DBSA at 0 V. The impedance and phase angle at low frequencies using both equivalent circuit models is dependent on the electrode area. Low frequencies may therefore provide better predictions of the thermal noise and signal-to-noise ratio at modified electrodes. The coefficient of variation of the PEDOT-pTs impedance at low frequencies was lower than the other conducting polymers, consistent with linear and steady-state electroactive area measurements. There are poor correlations between the impedance and the charge density as they are not ideal metal electrodes.

  7. Complex computation in the retina

    NASA Astrophysics Data System (ADS)

    Deshmukh, Nikhil Rajiv

    Elucidating the general principles of computation in neural circuits is a difficult problem requiring both a tractable model circuit as well as sophisticated measurement tools. This thesis advances our understanding of complex computation in the salamander retina and its underlying circuitry and furthers the development of advanced tools to enable detailed study of neural circuits. The retina provides an ideal model system for neural circuits in general because it is capable of producing complex representations of the visual scene, and both its inputs and outputs are accessible to the experimenter. Chapter 2 describes the biophysical mechanisms that give rise to the omitted stimulus response in retinal ganglion cells described in Schwartz et al., (2007) and Schwartz and Berry, (2008). The extra response to omitted flashes is generated at the input to bipolar cells, and is separable from the characteristic latency shift of the OSR apparent in ganglion cells, which must occur downstream in the circuit. Chapter 3 characterizes the nonlinearities at the first synapse of the ON pathway in response to high contrast flashes and develops a phenomenological model that captures the effect of synaptic activation and intracellular signaling dynamics on flash responses. This work is the first attempt to model the dynamics of the poorly characterized mGluR6 transduction cascade unique to ON bipolar cells, and explains the second lobe of the biphasic flash response. Complementary to the study of neural circuits, recent advances in wafer-scale photolithography have made possible new devices to measure the electrical and mechanical properties of neurons. Chapter 4 reports a novel piezoelectric sensor that facilitates the simultaneous measurement of electrical and mechanical signals in neural tissue. This technology could reveal the relationship between the electrical activity of neurons and their local mechanical environment, which is critical to the study of mechanoreceptors, neural development, and traumatic brain injury. Chapter 5 describes advances in the development, fabrication, and testing of a prototype silicon micropipette for patch clamp physiology. Nanoscale photolithography addresses some of the limitations of traditional glass patch electrodes, such as the rapid dialysis of the cell with internal solution, and provides a platform for integration of microfluidics and electronics into the device, which can enable novel experimental methodology.

  8. Brain network informed subject community detection in early-onset schizophrenia.

    PubMed

    Yang, Zhi; Xu, Yong; Xu, Ting; Hoy, Colin W; Handwerker, Daniel A; Chen, Gang; Northoff, Georg; Zuo, Xi-Nian; Bandettini, Peter A

    2014-07-03

    Early-onset schizophrenia (EOS) offers a unique opportunity to study pathophysiological mechanisms and development of schizophrenia. Using 26 drug-naïve, first-episode EOS patients and 25 age- and gender-matched control subjects, we examined intrinsic connectivity network (ICN) deficits underlying EOS. Due to the emerging inconsistency between behavior-based psychiatric disease classification system and the underlying brain dysfunctions, we applied a fully data-driven approach to investigate whether the subjects can be grouped into highly homogeneous communities according to the characteristics of their ICNs. The resultant subject communities and the representative characteristics of ICNs were then associated with the clinical diagnosis and multivariate symptom patterns. A default mode ICN was statistically absent in EOS patients. Another frontotemporal ICN further distinguished EOS patients with predominantly negative symptoms. Connectivity patterns of this second network for the EOS patients with predominantly positive symptom were highly similar to typically developing controls. Our post-hoc functional connectivity modeling confirmed that connectivity strength in this frontotemporal circuit was significantly modulated by relative severity of positive and negative syndromes in EOS. This study presents a novel subtype discovery approach based on brain networks and proposes complex links between brain networks and symptom patterns in EOS.

  9. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    PubMed

    Lecrux, C; Hamel, E

    2016-10-05

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  10. Basal forebrain projections to the lateral habenula modulate aggression reward.

    PubMed

    Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J

    2016-06-30

    Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.

  11. Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates.

    PubMed

    Reser, David H; Rosa, Marcello

    2014-12-01

    Ackermann et al. outline a model for elaboration of subcortical motor outputs as a driving force for the development of the apparently unique behaviour of language in humans. They emphasize circuits in the striatum and midbrain, and acknowledge, but do not explore, the importance of the auditory perceptual pathway for evolution of verbal communication. We suggest that understanding the evolution of language will also require understanding of vocalization perception, especially in the auditory cortex.

  12. Loss of Cation-Chloride Cotransporter Expression in Preterm Infants With White Matter Lesions: Implications for the Pathogenesis of Epilepsy

    PubMed Central

    Robinson, Shenandoah; Mikolaenko, Irina; Thompson, Ian; Cohen, Mark L.; Goyal, Monisha

    2011-01-01

    Epilepsy associated with preterm birth is often refractory to anticonvulsants. Children who are born preterm are also prone to cognitive delay and behavioral problems. Brains from these children often show diffuse abnormalities in cerebral circuitry that is likely caused by disrupted development during critical stages of cortical formation. To test the hypothesis that prenatal injury impairs the developmental switch of γ-amino butyric acid (GABA)ergic synapses from excitatory to inhibitory, thereby disrupting cortical circuit formation and predisposing to epilepsy, we used immunohistochemistry to compare the expression of cation-chloride transporters that developmentally regulate postsynaptic GABAergic discharges in postmortem cerebral samples from infants born preterm with known white matter injury (n = 11) with that of controls with minimal white matter gliosis (n = 7). Controls showed the expected developmental expression of cation-chloride transporters NKCC1 and KCC2 and of calretinin, a marker of a GABAergic neuronal subpopulation. Samples from infants with white matter damage showed a significant loss of expression of both NKCC1 and KCC2 in subplate and white matter. By contrast, there were no significant differences in total cell number or glutamate transporter VGLUT1 expression. Together, these novel findings suggest a molecular mechanism involved in the disruption of a critical stage of cerebral circuit development after brain injury from preterm birth that may predispose to epilepsy. PMID:20467335

  13. Large-scale recording of neuronal ensembles.

    PubMed

    Buzsáki, György

    2004-05-01

    How does the brain orchestrate perceptions, thoughts and actions from the spiking activity of its neurons? Early single-neuron recording research treated spike pattern variability as noise that needed to be averaged out to reveal the brain's representation of invariant input. Another view is that variability of spikes is centrally coordinated and that this brain-generated ensemble pattern in cortical structures is itself a potential source of cognition. Large-scale recordings from neuronal ensembles now offer the opportunity to test these competing theoretical frameworks. Currently, wire and micro-machined silicon electrode arrays can record from large numbers of neurons and monitor local neural circuits at work. Achieving the full potential of massively parallel neuronal recordings, however, will require further development of the neuron-electrode interface, automated and efficient spike-sorting algorithms for effective isolation and identification of single neurons, and new mathematical insights for the analysis of network properties.

  14. Brain circuit imprints of developmental 17α-Ethinylestradiol exposure in guppies (Poecilia reticulata): persistent effects on anxiety but not on reproductive behaviour.

    PubMed

    Volkova, Kristina; Reyhanian, Nasim; Kot-Wasik, Agata; Olsén, Håkan; Porsch-Hällström, Inger; Hallgren, Stefan

    2012-09-01

    The effects of endocrine disruptors may vary with the timing of exposure. The physiological implications of adult exposure are present during and shortly after exposure while embryonic exposure can imprint changes manifested in adulthood. In this study, guppy (Poecilia reticulata) embryos were exposed to 2 and 20 ng/L of 17α-ethinylestradiol during development via the mother and reared in clean water from gestation until 6 months of age. As adults, fish exposed to 20 ng/L during development showed significantly altered behaviour in the Novel Tank test, where anxiety is determined as the tendency to remain at the bottom upon introduction into an unfamiliar tank. 17α-ethinylestradiol treatment increased the latency time before swimming to the upper half of the tank and decreased the number of transitions to the upper half. In control females the basal stress behaviour responses were significantly higher than in males, as indicated by longer latency period and fewer and shorter visits to the upper half, supporting the importance of gonadal hormones for the behaviour. The anxiety increased, however, with treatment in both sexes, suggesting that the observed response is not entirely due to feminisation of the males. Shoaling behaviour, analysed as tendency to leave a shoal of littermates, was neither sex-differentiated nor changed by treatment. Also male reproductive behaviour, brain aromatase activity and testes histology, previously shown to respond to oestrogen exposure in adult guppy, were unaffected by the developmental treatment. This suggests that the stress system in the guppy is very sensitive to 17α-ethinylestradiol, which possibly causes an early organisational imprint on the brain circuit that regulates stress reactions. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Genetics and language: a neurobiological perspective on the missing link (-ing hypotheses).

    PubMed

    Poeppel, David

    2011-12-01

    The paper argues that both evolutionary and genetic approaches to studying the biological foundations of speech and language could benefit from fractionating the problem at a finer grain, aiming not to map genetics to "language"-or even subdomains of language such as "phonology" or "syntax"-but rather to link genetic results to component formal operations that underlie processing the comprehension and production of linguistic representations. Neuroanatomic and neurophysiological research suggests that language processing is broken down in space (distributed functional anatomy along concurrent pathways) and time (concurrent processing on multiple time scales). These parallel neuronal pathways and their local circuits form the infrastructure of speech and language and are the actual targets of evolution/genetics. Therefore, investigating the mapping from gene to brain circuit to linguistic phenotype at the level of generic computational operations (subroutines actually executable in these circuits) stands to provide a new perspective on the biological foundations in the healthy and challenged brain.

  16. A wireless beta-microprobe based on pixelated silicon for in vivo brain studies in freely moving rats

    NASA Astrophysics Data System (ADS)

    Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.

    2013-07-01

    The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.

  17. Relaxed genetic control of cortical organization in human brains compared with chimpanzees

    PubMed Central

    Gómez-Robles, Aida; Hopkins, William D.; Schapiro, Steven J.; Sherwood, Chet C.

    2015-01-01

    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution. PMID:26627234

  18. Universal brain systems for recognizing word shapes and handwriting gestures during reading

    PubMed Central

    Nakamura, Kimihiro; Kuo, Wen-Jui; Pegado, Felipe; Cohen, Laurent; Tzeng, Ovid J. L.; Dehaene, Stanislas

    2012-01-01

    Do the neural circuits for reading vary across culture? Reading of visually complex writing systems such as Chinese has been proposed to rely on areas outside the classical left-hemisphere network for alphabetic reading. Here, however, we show that, once potential confounds in cross-cultural comparisons are controlled for by presenting handwritten stimuli to both Chinese and French readers, the underlying network for visual word recognition may be more universal than previously suspected. Using functional magnetic resonance imaging in a semantic task with words written in cursive font, we demonstrate that two universal circuits, a shape recognition system (reading by eye) and a gesture recognition system (reading by hand), are similarly activated and show identical patterns of activation and repetition priming in the two language groups. These activations cover most of the brain regions previously associated with culture-specific tuning. Our results point to an extended reading network that invariably comprises the occipitotemporal visual word-form system, which is sensitive to well-formed static letter strings, and a distinct left premotor region, Exner’s area, which is sensitive to the forward or backward direction with which cursive letters are dynamically presented. These findings suggest that cultural effects in reading merely modulate a fixed set of invariant macroscopic brain circuits, depending on surface features of orthographies. PMID:23184998

  19. Reward, motivation and emotion of pain and its relief

    PubMed Central

    Porreca, Frank; Navratilova, Edita

    2016-01-01

    The experience of pain depends on interpretation of context and past experience that guide the choice of an immediate behavioral response and influence future decisions of actions to avoid harm. The aversive qualities of pain underlie its physiological role in learning and motivation. In this review, we highlight findings from human and animal investigations that suggest that both pain, and the relief of pain, are complex emotions that are comprised of feelings and their motivational consequences. Relief of aversive states, including pain, is rewarding. How relief of pain aversiveness occurs is not well understood. Termination of aversive states can directly provide relief as well as reinforce behaviors that result in avoidance of pain. Emerging preclinical data also suggests that relief may elicit a positive hedonic value that results from activation of neural cortical and mesolimbic brain circuits that may also motivate behavior. Brain circuits mediating the reward of pain relief, as well as relief-induced motivation are significantly impacted as pain becomes chronic. In chronic pain states, the negative motivational value of nociception may be increased while the value of the reward of pain relief may decrease. As a consequence, the impact of pain on these ancient, and conserved brain limbic circuits suggest a path forward for discovery of new pain therapies. PMID:28106670

  20. Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy.

    PubMed

    Neubauer, Florian B; Sederberg, Audrey; MacLean, Jason N

    2014-01-01

    During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.

  1. Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy

    PubMed Central

    Neubauer, Florian B.; Sederberg, Audrey; MacLean, Jason N.

    2014-01-01

    During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges. PMID:25232306

  2. Pubertally born neurons and glia are functionally integrated into limbic and hypothalamic circuits of the male Syrian hamster.

    PubMed

    Mohr, Margaret A; Sisk, Cheryl L

    2013-03-19

    During puberty, the brain goes through extensive remodeling, involving the addition of new neurons and glia to brain regions beyond the canonical neurogenic regions (i.e., dentate gyrus and olfactory bulb), including limbic and hypothalamic cell groups associated with sex-typical behavior. Whether these pubertally born cells become functionally integrated into neural circuits remains unknown. To address this question, we gave male Syrian hamsters daily injections of the cell birthdate marker bromodeoxyuridine throughout puberty (postnatal day 28-49). Half of the animals were housed in enriched environments with access to a running wheel to determine whether enrichment increased the survival of pubertally born cells compared with the control environment. At 4 wk after the last BrdU injection, animals were allowed to interact with a receptive female and were then killed 1 h later. Triple-label immunofluorescence for BrdU, the mature neuron marker neuronal nuclear antigen, and the astrocytic marker glial fibrillary acidic protein revealed that a proportion of pubertally born cells in the medial preoptic area, arcuate nucleus, and medial amygdala differentiate into either mature neurons or astrocytes. Double-label immunofluorescence for BrdU and the protein Fos revealed that a subset of pubertally born cells in these regions is activated during sociosexual behavior, indicative of their functional incorporation into neural circuits. Enrichment affected the survival and activation of pubertally born cells in a brain region-specific manner. These results demonstrate that pubertally born cells located outside of the traditional neurogenic regions differentiate into neurons and glia and become functionally incorporated into neural circuits that subserve sex-typical behaviors.

  3. Brain activation associated with pride and shame.

    PubMed

    Roth, Lilian; Kaffenberger, Tina; Herwig, Uwe; Brühl, Annette B

    2014-01-01

    Self-referential emotions such as shame/guilt and pride provide evaluative information about persons themselves. In addition to emotional aspects, social and self-referential processes play a role in self-referential emotions. Prior studies have rather focused on comparing self-referential and other-referential processes of one valence, triggered mostly by external stimuli. In the current study, we aimed at investigating the valence-specific neural correlates of shame/guilt and pride, evoked by the remembrance of a corresponding autobiographical event during functional magnetic resonance imaging. A total of 25 healthy volunteers were studied. The task comprised a negative (shame/guilt), a positive (pride) and a neutral condition (expecting the distractor). Each condition was initiated by a simple cue, followed by the remembrance and finished by a distracting picture. Pride and shame/guilt conditions both activated typical emotion-processing circuits including the amygdala, insula and ventral striatum, as well as self-referential brain regions such as the bilateral dorsomedial prefrontal cortex. Comparing the two emotional conditions, emotion-processing circuits were more activated by pride than by shame, possibly due to either hedonic experiences or stronger involvement of the participants in positive self-referential emotions due to a self-positivity bias. However, the ventral striatum was similarly activated by pride and shame/guilt. In the whole-brain analysis, both self-referential emotion conditions activated medial prefrontal and posterior cingulate regions, corresponding to the self-referential aspect and the autobiographical evocation of the respective emotions. Autobiographically evoked self-referential emotions activated basic emotional as well as self-referential circuits. Except for the ventral striatum, emotional circuits were more active with pride than with shame.

  4. Developmental emergence of fear/threat learning: neurobiology, associations and timing.

    PubMed

    Tallot, L; Doyère, V; Sullivan, R M

    2016-01-01

    Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups' transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Parietal Hyper-Connectivity, Aberrant Brain Organization, and Circuit-Based Biomarkers in Children with Mathematical Disabilities

    ERIC Educational Resources Information Center

    Jolles, Dietsje; Ashkenazi, Sarit; Kochalka, John; Evans, Tanya; Richardson, Jennifer; Rosenberg-Lee, Miriam; Zhao, Hui; Supekar, Kaustubh; Chen, Tianwen; Menon, Vinod

    2016-01-01

    Mathematical disabilities (MD) have a negative life-long impact on professional success, employment, and health outcomes. Yet little is known about the intrinsic functional brain organization that contributes to poor math skills in affected children. It is now increasingly recognized that math cognition requires coordinated interaction within a…

  6. Memory Processing: Ripples in the Resting Brain.

    PubMed

    Walker, Matthew P; Robertson, Edwin M

    2016-03-21

    Recent work has shown that, during sleep, a functional circuit is created amidst a general breakdown in connectivity following fast-frequency bursts of brain activity. The findings question the unconscious nature of deep sleep, and provide an explanation for its contribution to memory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Contributions of Memory Circuits to Language: The Declarative/Procedural Model

    ERIC Educational Resources Information Center

    Ullman, Michael T.

    2004-01-01

    The structure of the brain and the nature of evolution suggest that, despite its uniqueness, language likely depends on brain systems that also subserve other functions. The declarative/procedural (DP) model claims that the mental lexicon of memorized word-specific knowledge depends on the largely temporal-lobe substrates of declarative memory,…

  8. Getting the beat: entrainment of brain activity by musical rhythm and pleasantness.

    PubMed

    Trost, Wiebke; Frühholz, Sascha; Schön, Daniele; Labbé, Carolina; Pichon, Swann; Grandjean, Didier; Vuilleumier, Patrik

    2014-12-01

    Rhythmic entrainment is an important component of emotion induction by music, but brain circuits recruited during spontaneous entrainment of attention by music and the influence of the subjective emotional feelings evoked by music remain still largely unresolved. In this study we used fMRI to test whether the metric structure of music entrains brain activity and how music pleasantness influences such entrainment. Participants listened to piano music while performing a speeded visuomotor detection task in which targets appeared time-locked to either strong or weak beats. Each musical piece was presented in both a consonant/pleasant and dissonant/unpleasant version. Consonant music facilitated target detection and targets presented synchronously with strong beats were detected faster. FMRI showed increased activation of bilateral caudate nucleus when responding on strong beats, whereas consonance enhanced activity in attentional networks. Meter and consonance selectively interacted in the caudate nucleus, with greater meter effects during dissonant than consonant music. These results reveal that the basal ganglia, involved both in emotion and rhythm processing, critically contribute to rhythmic entrainment of subcortical brain circuits by music. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A miniaturized neuroprosthesis suitable for implantation into the brain

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Binkley, David; Blalock, Benjamin; Andersen, Richard; Ulshoefer, Norbert; Johnson, Travis; Del Castillo, Linda

    2003-01-01

    This paper presents current research on a miniaturized neuroprosthesis suitable for implantation into the brain. The prosthesis is a heterogeneous integration of a 100-element microelectromechanical system (MEMS) electrode array, front-end complementary metal-oxide-semiconductor (CMOS) integrated circuit for neural signal preamplification, filtering, multiplexing and analog-to-digital conversion, and a second CMOS integrated circuit for wireless transmission of neural data and conditioning of wireless power. The prosthesis is intended for applications where neural signals are processed and decoded to permit the control of artificial or paralyzed limbs. This research, if successful, will allow implantation of the electronics into the brain, or subcutaneously on the skull, and eliminate all external signal and power wiring. The neuroprosthetic system design has strict size and power constraints with each of the front-end preamplifier channels fitting within the 400 x 400-microm pitch of the 100-element MEMS electrode array and power dissipation resulting in less than a 1 degree C temperature rise for the surrounding brain tissue. We describe the measured performance of initial micropower low-noise CMOS preamplifiers for the neuroprosthetic.

  10. Sensing of glucose in the brain.

    PubMed

    Thorens, Bernard

    2012-01-01

    The brain, and in particular the hypothalamus and brainstem, have been recognized for decades as important centers for the homeostatic control of feeding, energy expenditure, and glucose homeostasis. These structures contain neurons and neuronal circuits that may be directly or indirectly activated or inhibited by glucose, lipids, or amino acids. The detection by neurons of these nutrient cues may become deregulated, and possibly cause metabolic diseases such as obesity and diabetes. Thus, there is a major interest in identifying these neurons, how they respond to nutrients, the neuronal circuits they form, and the physiological function they control. Here I will review some aspects of glucose sensing by the brain. The brain is responsive to both hyperglycemia and hypoglycemia, and the glucose sensing cells involved are distributed in several anatomical sites that are connected to each other. These eventually control the activity of the sympathetic or parasympathetic nervous system, which regulates the function of peripheral organs such as liver, white and brown fat, muscle, and pancreatic islets alpha and beta cells. There is now evidence for an extreme diversity in the sensing mechanisms used, and these will be reviewed.

  11. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  12. The Zebrafish Brain in Research and Teaching: A Simple in Vivo and in Vitro Model for the Study of Spontaneous Neural Activity

    ERIC Educational Resources Information Center

    Vargas, R.; Johannesdottir, I. P.; Sigurgeirsson, B.; Porsteinsson, H.; Karlsson, K. AE.

    2011-01-01

    Recently, the zebrafish ("Danio rerio") has been established as a key animal model in neuroscience. Behavioral, genetic, and immunohistochemical techniques have been used to describe the connectivity of diverse neural circuits. However, few studies have used zebrafish to understand the function of cerebral structures or to study neural circuits.…

  13. Closed Loop Deep Brain Stimulation for PTSD, Addiction, and Disorders of Affective Facial Interpretation: Review and Discussion of Potential Biomarkers and Stimulation Paradigms

    PubMed Central

    Bina, Robert W.; Langevin, Jean-Phillipe

    2018-01-01

    The treatment of psychiatric diseases with Deep Brain Stimulation (DBS) is becoming more of a reality as studies proliferate the indications and targets for therapies. Opinions on the initial failures of DBS trials for some psychiatric diseases point to a certain lack of finesse in using an Open Loop DBS (OLDBS) system in these dynamic, cyclical pathologies. OLDBS delivers monomorphic input into dysfunctional brain circuits with modulation of that input via human interface at discrete time points with no interim modulation or adaptation to the changing circuit dynamics. Closed Loop DBS (CLDBS) promises dynamic, intrinsic circuit modulation based on individual physiologic biomarkers of dysfunction. Discussed here are several psychiatric diseases which may be amenable to CLDBS paradigms as the neurophysiologic dysfunction is stochastic and not static. Post-Traumatic Stress Disorder (PTSD) has several peripheral and central physiologic and neurologic changes preceding stereotyped hyper-activation behavioral responses. Biomarkers for CLDBS potentially include skin conductance changes indicating changes in the sympathetic nervous system, changes in serum and central neurotransmitter concentrations, and limbic circuit activation. Chemical dependency and addiction have been demonstrated to be improved with both ablation and DBS of the Nucleus Accumbens and as a serendipitous side effect of movement disorder treatment. Potential peripheral biomarkers are similar to those proposed for PTSD with possible use of environmental and geolocation based cues, peripheral signs of physiologic arousal, and individual changes in central circuit patterns. Non-substance addiction disorders have also been serendipitously treated in patients with OLDBS for movement disorders. As more is learned about these behavioral addictions, DBS targets and effectors will be identified. Finally, discussed is the use of facial recognition software to modulate activation of inappropriate responses for psychiatric diseases in which misinterpretation of social cues feature prominently. These include Autism Spectrum Disorder, PTSD, and Schizophrenia—all of which have a common feature of dysfunctional interpretation of facial affective clues. Technological advances and improvements in circuit-based, individual-specific, real-time adaptable modulation, forecast functional neurosurgery treatments for heretofore treatment-resistant behavioral diseases. PMID:29780303

  14. The neurogenetic frontier--lessons from misbehaving zebrafish.

    PubMed

    Burgess, Harold A; Granato, Michael

    2008-11-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.

  15. The neurogenetic frontier—lessons from misbehaving zebrafish

    PubMed Central

    Granato, Michael

    2008-01-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206

  16. Thalamic alterations in preterm neonates and its relation to ventral striatum disturbances revealed by a combined shape and pose analysis

    PubMed Central

    Lao, Yi; Wang, Yalin; Shi, Jie; Ceschin, Rafael; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha

    2015-01-01

    Finding the neuroanatomical correlates of prematurity is vital to understanding which structures are affected, and design efficient prevention andtreatment strategy. Converging results reveal that thalamic abnormalities are important indicators of prematurity. However, little is known about the localization of the disturbance within the subnuclei of the thalamus, or on the association of altered thalamic development with other deep gray matter disturbances. Here, using brain structural magnetic resonance imaging (MRI), we perform a novel combined shape and pose analysis of the thalamus and ventral striatum between 17 preterm and 19 term-born neonates. We detect statistically significant surface deformations and pose changes on the thalamus andventral striatum, successfully locating the alterations on specific regions such as the anterior and ventral-anterior thalamic nuclei, and for the first time, demonstrating the feasibility of using relative pose parameters as indicators for prematurity in neonates. We also perform a set of correlation analyses between the thalamus and the ventral striatum, based on the surface and pose results. Our methods show that regional abnormalities of the thalamus are associated with alterations of the ventral striatum, possibly due to disturbed development of sharedpre-frontal connectivity. More specifically, the significantly correlated regions in these two structures point to frontal-subcortical pathways including the dorsolateral prefrontal-subcortical circuit, the lateral orbitofrontal-subcortical circuit, the motor circuit, and the oculomotor circuit. These findings reveal new insight into potential subcortical structural covariatesfor poor neurodevelopmental outcomes in the preterm population. PMID:25366970

  17. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’

    PubMed Central

    Karten, Harvey J.

    2015-01-01

    The organization of the non-mammalian forebrain had long puzzled neurobiologists. Unlike typical mammalian brains, the telencephalon is not organized in a laminated ‘cortical’ manner, with distinct cortical areas dedicated to individual sensory modalities or motor functions. The two major regions of the telencephalon, the basal ventricular ridge (BVR) and the dorsal ventricular ridge (DVR), were loosely referred to as being akin to the mammalian basal ganglia. The telencephalon of non-mammalian vertebrates appears to consist of multiple ‘subcortical’ groups of cells. Analysis of the nuclear organization of the avian brain, its connections, molecular properties and physiology, and organization of its pattern of circuitry and function relative to that of mammals, collectively referred to as ‘evolutionary connectomics’, revealed that only a restricted portion of the BVR is homologous to the basal ganglia of mammals. The remaining dorsal regions of the DVR, wulst and arcopallium of the avian brain contain telencephalic inputs and outputs remarkably similar to those of the individual layers of the mammalian ‘neocortex’, hippocampus and amygdala, with instances of internuclear connections strikingly similar to those found between cortical layers and within radial ‘columns’ in the mammalian sensory and motor cortices. The molecular properties of these ‘nuclei’ in birds and reptiles are similar to those of the corresponding layers of the mammalian neocortex. The fundamental pathways and cell groups of the auditory, visual and somatosensory systems of the thalamus and telencephalon are homologous at the cellular, circuit, network and gene levels, and are of great antiquity. A proposed altered migration of these homologous neurons and circuits during development is offered as a mechanism that may account for the altered configuration of mammalian telencephalae. PMID:26554047

  18. Cannabinoid Regulation of Brain Reward Processing with an Emphasis on the Role of CB1 Receptors: A Step Back into the Future.

    PubMed

    Panagis, George; Mackey, Brian; Vlachou, Styliani

    2014-01-01

    Over the last decades, the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain-reward circuits and the regulation of motivational processes. Importantly, behavioral studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine, and heroin, although the conditions under which cannabinoids exert their rewarding effects may be more limited. Furthermore, there is evidence on the involvement of the endocannabinoid system in the regulation of cue- and drug-induced relapsing phenomena in animal models. The aim of this review is to briefly present the available data obtained using diverse behavioral experimental approaches in experimental animals, namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure, and the reinstatement of drug-seeking behavior procedure, to provide a comprehensive picture of the current status of what is known about the endocannabinoid system mechanisms that underlie modification of brain-reward processes. Emphasis is placed on the effects of cannabinoid 1 (CB1) receptor agonists, antagonists, and endocannabinoid modulators. Further, the role of CB1 receptors in reward processes is investigated through presentation of respective genetic ablation studies in mice. The vast majority of studies in the existing literature suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. However, much remains to be done before we fully understand these interactions. Further research in the future will shed more light on these processes and, thus, could lead to the development of potential pharmacotherapies designed to treat reward-dysfunction-related disorders.

  19. An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques

    PubMed Central

    Sui, Jing; Adali, Tülay; Pearlson, Godfrey D.; Calhoun, Vince D.

    2013-01-01

    Extraction of relevant features from multitask functional MRI (fMRI) data in order to identify potential biomarkers for disease, is an attractive goal. In this paper, we introduce a novel feature-based framework, which is sensitive and accurate in detecting group differences (e.g. controls vs. patients) by proposing three key ideas. First, we integrate two goal-directed techniques: coefficient-constrained independent component analysis (CC-ICA) and principal component analysis with reference (PCA-R), both of which improve sensitivity to group differences. Secondly, an automated artifact-removal method is developed for selecting components of interest derived from CC-ICA, with an average accuracy of 91%. Finally, we propose a strategy for optimal feature/component selection, aiming to identify optimal group-discriminative brain networks as well as the tasks within which these circuits are engaged. The group-discriminating performance is evaluated on 15 fMRI feature combinations (5 single features and 10 joint features) collected from 28 healthy control subjects and 25 schizophrenia patients. Results show that a feature from a sensorimotor task and a joint feature from a Sternberg working memory (probe) task and an auditory oddball (target) task are the top two feature combinations distinguishing groups. We identified three optimal features that best separate patients from controls, including brain networks consisting of temporal lobe, default mode and occipital lobe circuits, which when grouped together provide improved capability in classifying group membership. The proposed framework provides a general approach for selecting optimal brain networks which may serve as potential biomarkers of several brain diseases and thus has wide applicability in the neuroimaging research community. PMID:19457398

  20. A Complete Developmental Sequence of a Drosophila Neuronal Lineage as Revealed by Twin-Spot MARCM

    PubMed Central

    He, Yisheng; Ding, Peng; Kao, Jui-Chun; Lee, Tzumin

    2010-01-01

    Drosophila brains contain numerous neurons that form complex circuits. These neurons are derived in stereotyped patterns from a fixed number of progenitors, called neuroblasts, and identifying individual neurons made by a neuroblast facilitates the reconstruction of neural circuits. An improved MARCM (mosaic analysis with a repressible cell marker) technique, called twin-spot MARCM, allows one to label the sister clones derived from a common progenitor simultaneously in different colors. It enables identification of every single neuron in an extended neuronal lineage based on the order of neuron birth. Here we report the first example, to our knowledge, of complete lineage analysis among neurons derived from a common neuroblast that relay olfactory information from the antennal lobe (AL) to higher brain centers. By identifying the sequentially derived neurons, we found that the neuroblast serially makes 40 types of AL projection neurons (PNs). During embryogenesis, one PN with multi-glomerular innervation and 18 uniglomerular PNs targeting 17 glomeruli of the adult AL are born. Many more PNs of 22 additional types, including four types of polyglomerular PNs, derive after the neuroblast resumes dividing in early larvae. Although different offspring are generated in a rather arbitrary sequence, the birth order strictly dictates the fate of each post-mitotic neuron, including the fate of programmed cell death. Notably, the embryonic progenitor has an altered temporal identity following each self-renewing asymmetric cell division. After larval hatching, the same progenitor produces multiple neurons for each cell type, but the number of neurons for each type is tightly regulated. These observations substantiate the origin-dependent specification of neuron types. Sequencing neuronal lineages will not only unravel how a complex brain develops but also permit systematic identification of neuron types for detailed structure and function analysis of the brain. PMID:20808769

Top