Sample records for developing cardiovascular system

  1. Re-evaluating the functional landscape of the cardiovascular system during development

    PubMed Central

    Takada, Norio; Omae, Madoka; Sagawa, Fumihiko; Chi, Neil C.; Endo, Satsuki; Kozawa, Satoshi

    2017-01-01

    ABSTRACT The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for the development and survival of virtually all vertebrates. However, the zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without a functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations were performed on the zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate the underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. A comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide clues as to why it is the first organ to develop. Furthermore, these data could serve as a resource for the study of organ development and function. PMID:28982700

  2. Re-evaluating the functional landscape of the cardiovascular system during development.

    PubMed

    Takada, Norio; Omae, Madoka; Sagawa, Fumihiko; Chi, Neil C; Endo, Satsuki; Kozawa, Satoshi; Sato, Thomas N

    2017-11-15

    The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for the development and survival of virtually all vertebrates. However, the zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without a functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations were performed on the zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate the underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. A comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide clues as to why it is the first organ to develop. Furthermore, these data could serve as a resource for the study of organ development and function. © 2017. Published by The Company of Biologists Ltd.

  3. Development of a flow feedback pulse duplicator system with rhesus monkey arterial input impedance characteristics

    NASA Technical Reports Server (NTRS)

    Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1999-01-01

    An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.

  4. Transgenerational Epigenetics: The Role of Maternal Effects in Cardiovascular Development

    PubMed Central

    Ho, Dao H.

    2014-01-01

    Transgenerational epigenetics, the study of non-genetic transfer of information from one generation to the next, has gained much attention in the past few decades due to the fact that, in many instances, epigenetic processes outweigh direct genetic processes in the manifestation of aberrant phenotypes across several generations. Maternal effects, or the influences of maternal environment, phenotype, and/or genotype on offsprings’ phenotypes, independently of the offsprings’ genotypes, are a subcategory of transgenerational epigenetics. Due to the intimate role of the mother during early development in animals, there is much interest in investigating the means by which maternal effects can shape the individual. Maternal effects are responsible for cellular organization, determination of the body axis, initiation and maturation of organ systems, and physiological performance of a wide variety of species and biological systems. The cardiovascular system is the first to become functional and can significantly influence the development of other organ systems. Thus, it is important to elucidate the role of maternal effects in cardiovascular development, and to understand its impact on adult cardiovascular health. Topics to be addressed include: (1) how and when do maternal effects change the developmental trajectory of the cardiovascular system to permanently alter the adult’s cardiovascular phenotype, (2) what molecular mechanisms have been associated with maternally induced cardiovascular phenotypes, and (3) what are the evolutionary implications of maternally mediated changes in cardiovascular phenotype? PMID:24813463

  5. Effects of intrauterine growth restriction on sleep and the cardiovascular system: The use of melatonin as a potential therapy?

    PubMed

    Yiallourou, Stephanie R; Wallace, Euan M; Miller, Suzanne L; Horne, Rosemary S C

    2016-04-01

    Intrauterine growth restriction (IUGR) complicates 5-10% of pregnancies and is associated with increased risk of preterm birth, mortality and neurodevelopmental delay. The development of sleep and cardiovascular control are closely coupled and IUGR is known to alter this development. In the long-term, IUGR is associated with altered sleep and an increased risk of hypertension in adulthood. Melatonin plays an important role in the sleep-wake cycle. Experimental animal studies have shown that melatonin therapy has neuroprotective and cardioprotective effects in the IUGR fetus. Consequently, clinical trials are currently underway to assess the short and long term effects of antenatal melatonin therapy in IUGR pregnancies. Given melatonin's role in sleep regulation, this hormone could affect the developing infants' sleep-wake cycle and cardiovascular function after birth. In this review, we will 1) examine the role of melatonin as a therapy for IUGR pregnancies and the potential implications on sleep and the cardiovascular system; 2) examine the development of sleep-wake cycle in fetal and neonatal life; 3) discuss the development of cardiovascular control during sleep; 4) discuss the effect of IUGR on sleep and the cardiovascular system and 5) discuss the future implications of melatonin therapy in IUGR pregnancies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Platelet-derived growth factor-C and -D in the cardiovascular system and diseases.

    PubMed

    Lee, Chunsik; Li, Xuri

    2018-08-01

    The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mathematical modeling of human cardiovascular system for simulation of orthostatic response

    NASA Technical Reports Server (NTRS)

    Melchior, F. M.; Srinivasan, R. S.; Charles, J. B.

    1992-01-01

    This paper deals with the short-term response of the human cardiovascular system to orthostatic stresses in the context of developing a mathematical model of the overall system. It discusses the physiological issues involved and how these issues have been handled in published cardiovascular models for simulation of orthostatic response. Most of the models are stimulus specific with no demonstrated capability for simulating the responses to orthostatic stimuli of different types. A comprehensive model incorporating all known phenomena related to cardiovascular regulation would greatly help to interpret the various orthostatic responses of the system in a consistent manner and to understand the interactions among its elements. This paper provides a framework for future efforts in mathematical modeling of the entire cardiovascular system.

  8. The Learning Healthcare System and Cardiovascular Care: A Scientific Statement From the American Heart Association.

    PubMed

    Maddox, Thomas M; Albert, Nancy M; Borden, William B; Curtis, Lesley H; Ferguson, T Bruce; Kao, David P; Marcus, Gregory M; Peterson, Eric D; Redberg, Rita; Rumsfeld, John S; Shah, Nilay D; Tcheng, James E

    2017-04-04

    The learning healthcare system uses health information technology and the health data infrastructure to apply scientific evidence at the point of clinical care while simultaneously collecting insights from that care to promote innovation in optimal healthcare delivery and to fuel new scientific discovery. To achieve these goals, the learning healthcare system requires systematic redesign of the current healthcare system, focusing on 4 major domains: science and informatics, patient-clinician partnerships, incentives, and development of a continuous learning culture. This scientific statement provides an overview of how these learning healthcare system domains can be realized in cardiovascular disease care. Current cardiovascular disease care innovations in informatics, data uses, patient engagement, continuous learning culture, and incentives are profiled. In addition, recommendations for next steps for the development of a learning healthcare system in cardiovascular care are presented. © 2017 American Heart Association, Inc.

  9. Engineering studies of vectorcardiographs in blood pressure measuring systems

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The following projects involving cardiovascular instrumentation were conducted: (1) the development and fabrication of a three-dimensional display measurement system for vectorcardiograms, (2) the development and fabrication of a cardiovascular monitoring system to noninvasively monitor beat-by-beat the blood pressure and heart rate using aortic pulse wave velocity, (3) the development of software for an interactive system to analyze systolic time interval data, and (4) the development of microprocessor-based physiologic instrumentation, focussing initially on EKG rhythm analysis. Brief descriptions of these projects were given.

  10. Simulation of Cardiovascular Response to the Head-Up/Head-Down Tilt at Different Angles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lu, Hong-Bing; Jiao, Chun; Zhang, Li-Fan

    2008-06-01

    The disappearance of hydrostatic pressure is the original factor that causes the changes of cardiovascular system under microgravity. The hydrostatical changes can be simulated by postural changes. Especially the head-down position can be used to simulate the effects of microgravity. The goal of this investigation was to develop a mathematical model for simulation of the human cardiovascular responses to acute and prolonged exposure under microgravity environment. We were particularly interested in the redistribution of transmural pressures, flows, blood volume, and the consequent alterations in local hemodynamics in different cardiovascular compartments during acute exposure and chronic adjustments. As a preliminary study, we first developed a multi-element, distributed hemodynamic model of human cardiovascular system, and verified the model to simulate cardiovascular changes during head up/down tilt at various angles.

  11. Building Sustainable Capacity for Cardiovascular Care at a Public Hospital in Western Kenya

    PubMed Central

    Binanay, Cynthia A.; Akwanalo, Constantine O.; Aruasa, Wilson; Barasa, Felix A.; Corey, G. Ralph; Crowe, Susie; Esamai, Fabian; Einterz, Robert; Foster, Michael C.; Gardner, Adrian; Kibosia, John; Kimaiyo, Sylvester; Koech, Myra; Korir, Belinda; Lawrence, John E.; Lukas, Stephanie; Manji, Imran; Maritim, Peris; Ogaro, Francis; Park, Peter; Pastakia, Sonak; Sugut, Wilson; Vedanthan, Rajesh; Yanoh, Reuben; Velazquez, Eric J.; Bloomfield, Gerald S.

    2015-01-01

    Cardiovascular disease deaths are increasing in low- and middle-income countries and are exacerbated by health care systems that are ill-equipped to manage chronic diseases. Global health partnerships, which have stemmed the tide of infectious diseases in low- and middle-income countries, can be similarly applied to address cardiovascular diseases. In this review, we present the experiences of an academic partnership between North American and Kenyan medical centers to improve cardiovascular health in a national public referral hospital. We highlight our stepwise approach to developing sustainable cardiovascular services using the health system strengthening World Health Organization Framework for Action. The building blocks of this framework (leadership and governance, health workforce, health service delivery, health financing, access to essential medicines, and health information system) guided our comprehensive and sustainable approach to delivering subspecialty care in a resource limited setting. Our experiences may guide the development of similar collaborations in other settings. PMID:26653630

  12. Cell death and survival signalling in the cardiovascular system.

    PubMed

    Tucka, Joanna; Bennett, Martin; Littlewood, Trevor

    2012-01-01

    The loss of cells is an important factor in many diseases, including those of the cardiovascular system. Whereas apoptosis is an essential process in development and tissue homeostasis, its occurrence is often associated with various pathologies. Apoptosis of neurons that fail to make appropriate connections is essential for the selection of correct neural signalling in the developing embryo, but its appearance in adults is often associated with neurodegenerative disease. Similarly, in the cardiovascular system, remodeling of the mammalian outflow tract during the transition from a single to dual series circulation with four chambers is accompanied by a precise pattern of cell death, but apoptosis of cardiomyocytes contributes to ischemia-reperfusion injury in the heart. In many cases, it is unclear whether apoptosis represents a causative association or merely a consequence of the disease itself. There are many excellent reviews on cell death in the cardiovascular system (1-5); in this review we outline the critical signalling pathways that promote the survival of cardiovascular cells, and their relevance to both physiological cell death and disease.

  13. Wireless Monitoring for Patients with Cardiovascular Diseases and Parkinson's Disease.

    PubMed

    Kefaliakos, Antonios; Pliakos, Ioannis; Charalampidou, Martha; Diomidous, Marianna

    2016-01-01

    The use of applications for mobile devices and wireless sensors is common for the sector of telemedicine. Recently various studies and systems were developed in order to help patients suffering from severe diseases such as cardiovascular diseases and Parkinson's disease. They present a challenge for the sector because such systems demand the flow of accurate data in real time and the use of specialized sensors. In this review will be presented some very interesting applications developed for patients with cardiovascular diseases and Parkinson's disease.

  14. Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography

    PubMed Central

    Boppart, Stephen A.; Tearney, Gary J.; Bouma, Brett E.; Southern, James F.; Brezinski, Mark E.; Fujimoto, James G.

    1997-01-01

    Studies investigating normal and abnormal cardiac development are frequently limited by an inability to assess cardiovascular function within the intact organism. In this work, optical coherence tomography (OCT), a new method of micron-scale, noninvasive imaging based on the measurement of backscattered infrared light, was introduced for the high resolution assessment of structure and function in the developing Xenopus laevis cardiovascular system. Microstructural details, such as ventricular size and wall positions, were delineated with OCT at 16-μm resolution and correlated with histology. Three-dimensional representation of the cardiovascular system also was achieved by repeated cross-sectional imaging at intervals of 25 μm. In addition to structural information, OCT provides high speed in vivo axial ranging and imaging, allowing quantitative dynamic activity, such as ventricular ejection fraction, to be assessed. The sensitivity of OCT for dynamic assessment was demonstrated with an inotropic agent that altered cardiac function and dimensions. Optical coherence tomography is an attractive new technology for assessing cardiovascular development because of its high resolution, its ability to image through nontransparent structures, and its inexpensive portable design. In vivo and in vitro imaging are performed at a resolution approaching that of histopathology without the need for animal killing. PMID:9113976

  15. Hippo signaling pathway in cardiovascular development and diseases.

    PubMed

    Wang, Yong-yu; Yu, Wei; Zhou, Bin

    2017-07-20

    Cardiovascular diseases have become the leading cause of death in the world. Understanding the development of cardiovascular system and the pathogenesis of cardiovascular diseases will promote the generation of novel preventive and therapeutic strategy. The Hippo pathway is a recently identified signaling cascade that plays a critical role in organ size control, cell proliferation, apoptosis and fate determination of stem cells. Gene knockout and transgenic mouse models have revealed that the Hippo signaling pathway is involved in heart development, cardiomyocyte proliferation, apoptosis, hypertrophy and cardiac regeneration. The Hippo signaling pathway also regulates vascular development, differentiation and various functions of vascular cells. Dysregulation of the Hippo signaling pathway leads to different kinds of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, neointima formation and atherosclerosis. In this review, we briefly summarize current research on the roles and regulation mechanisms of the Hippo signaling pathway in cardiovascular development and diseases.

  16. Individual differences in the locus coeruleus-norepinephrine system: relevance to stress-induced cardiovascular vulnerability

    PubMed Central

    Wood, Christopher S.; Valentino, Rita J.; Wood, Susan K.

    2016-01-01

    Repeated exposure to psychosocial stress is a robust sympathomimetic stressor and as such has adverse effects on cardiovascular health. While the neurocircuitry involved remains unclear, the physiological and anatomical characteristics of the locus coeruleus (LC)-norepinephrine (NE) system suggest that it is poised to contribute to stress-induced cardiovascular vulnerability. A major theme throughout is to review studies that shed light on the role that the LC may play in individual differences in vulnerability to social stress-induced cardiovascular dysfunction. Recent findings are discussed that support a unique plasticity in afferent regulation of the LC, resulting in either excitatory or inhibitory input to the LC during establishment of different stress coping strategies. This contrasting regulation of the LC by either afferent regulation, or distinct differences in stress-induced neuroinflammation would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The goal of this review is to highlight recent developments in the interplay between the LC-NE and cardiovascular systems during repeated stress in an effort to advance therapeutic treatments for the development of stress-induced cardiovascular vulnerability. PMID:27423323

  17. Potential Contribution of Work-Related Psychosocial Stress to the Development of Cardiovascular Disease and Type II Diabetes: A Brief Review.

    PubMed

    Krajnak, Kristine M

    2014-01-01

    Two of the major causes of death worldwide are cardiovascular disease and Type II diabetes. Although death due to these diseases is assessed separately, the physiological process that is attributed to the development of cardiovascular disease can be linked to the development of Type II diabetes and the impact that this disease has on the cardiovascular system. Physiological, genetic, and personal factors contribute to the development of both these disorders. It has also been hypothesized that work-related stress may contribute to the development of Type II diabetes and cardiovascular disease. This review summarizes some of the studies examining the role of work-related stress on the development of these chronic disorders. Because women may be more susceptible to the physiological effects of work-related stress, the papers cited in this review focus on studies that examined the difference in responses of men or women to work-related stress or on studies that focused on the effects of stress on women alone. Based on the papers summarized, it is concluded that (1) work-related stress may directly contribute to the development of cardiovascular disease by inducing increases in blood pressure and changes in heart rate that have negative consequences on functioning of the cardiovascular system; (2) workers reporting increased levels of stress may display an increased risk of Type II diabetes because they adopt poor health habits (ie, increased level of smoking, inactivity etc), which in turn contribute to the development of cardiovascular problems; and (3) women in high demand and low-control occupations report an increased level of stress at work, and thus may be at a greater risk of negative health consequences.

  18. Cardiovascular oscillations: in search of a nonlinear parametric model

    NASA Astrophysics Data System (ADS)

    Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan

    2003-05-01

    We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.

  19. Influence of environmental tobacco smoke on morphology and functions of cardiovascular system assessed using diagnostic imaging.

    PubMed

    Gać, Paweł; Poręba, Małgorzata; Pawlas, Krystyna; Sobieszczańska, Małgorzata; Poręba, Rafał

    Exposure to tobacco smoke is a significant problem of environmental medicine. Tobacco smoke contains over one thousand identified chemicals including numerous toxicants. Cardiovascular system diseases are the major cause of general mortality. The recent development of diagnostic imaging provided methods which enable faster and more precise diagnosis of numerous diseases, also those of cardiovascular system. This paper reviews the most significant scientific research concerning relationship between environmental exposure to tobacco smoke and the morphology and function of cardiovascular system carried out using diagnostic imaging methods, i.e. ultrasonography, angiography, computed tomography and magnetic resonance imaging. In the forthcoming future, the studies using current diagnostic imaging methods should contribute to the reliable documentation, followed by the wide-spreading knowledge of the harmful impact of the environmental tobacco smoke exposure on the cardiovascular system.

  20. Building Sustainable Capacity for Cardiovascular Care at a Public Hospital in Western Kenya.

    PubMed

    Binanay, Cynthia A; Akwanalo, Constantine O; Aruasa, Wilson; Barasa, Felix A; Corey, G Ralph; Crowe, Susie; Esamai, Fabian; Einterz, Robert; Foster, Michael C; Gardner, Adrian; Kibosia, John; Kimaiyo, Sylvester; Koech, Myra; Korir, Belinda; Lawrence, John E; Lukas, Stephanie; Manji, Imran; Maritim, Peris; Ogaro, Francis; Park, Peter; Pastakia, Sonak D; Sugut, Wilson; Vedanthan, Rajesh; Yanoh, Reuben; Velazquez, Eric J; Bloomfield, Gerald S

    2015-12-08

    Cardiovascular disease deaths are increasing in low- and middle-income countries and are exacerbated by health care systems that are ill-equipped to manage chronic diseases. Global health partnerships, which have stemmed the tide of infectious diseases in low- and middle-income countries, can be similarly applied to address cardiovascular diseases. In this review, we present the experiences of an academic partnership between North American and Kenyan medical centers to improve cardiovascular health in a national public referral hospital. We highlight our stepwise approach to developing sustainable cardiovascular services using the health system strengthening World Health Organization Framework for Action. The building blocks of this framework (leadership and governance, health workforce, health service delivery, health financing, access to essential medicines, and health information system) guided our comprehensive and sustainable approach to delivering subspecialty care in a resource-limited setting. Our experiences may guide the development of similar collaborations in other settings. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Live dynamic analysis of the developing cardiovascular system in mice

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Larina, Irina V.

    2017-02-01

    The study of the developing cardiovascular system in mice is important for understanding human cardiogenesis and congenital heart defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development under the regulation of dynamic factors like contractile force and blood flow using optical coherence tomography (OCT). We have previously developed an OCT based approach that combines static embryo culture and advanced image processing with computational modeling to live-image mouse embryos and obtain 4D (3D+time) cardiodynamic datasets. Here we present live 4D dynamic blood flow imaging of the early embryonic mouse heart in correlation with heart wall movement. We are using this approach to understand how specific mutations impact heart wall dynamics, and how this influences flow patterns and cardiogenesis. We perform studies in mutant embryos with cardiac phenotypes such as myosin regulatory light chain 2, atrial isoform (Mlc2a). This work is brings us closer to understanding the connections between dynamic mechanical factors and gene programs responsible for early cardiovascular development.

  2. Reintrepreting the cardiovascular system as a mechanical model

    NASA Astrophysics Data System (ADS)

    Lemos, Diogo; Machado, José; Minas, Graça; Soares, Filomena; Barros, Carla; Leão, Celina Pinto

    2013-10-01

    The simulation of the different physiological systems is very useful as a pedagogical tool, allowing a better understanding of the mechanisms and the functions of the processes. The observation of the physiological phenomena through mechanical simulators represents a great asset. Furthermore, the development of these simulators allows reinterpreting physiological systems, with the advantage of using the same transducers and sensors that are commonly used in diagnostic and therapeutic cardiovascular procedures for the monitoring of system' parameters. The cardiovascular system is one of the most important systems of the human body and has been the target of several biomedical studies. The present work describes a mechanical simulation of the cardiovascular system, in particularly, the systemic circulation, which can be described in terms of its hemodynamic variables. From the mechanical process and parameters, physiological system's behavior was reproduced, as accurately as possible.

  3. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease

    PubMed Central

    Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.

    2016-01-01

    Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  4. Reactive oxygen species: players in the cardiovascular effects of testosterone

    PubMed Central

    Carneiro, Fernando S.; Carvalho, Maria Helena C.; Reckelhoff, Jane F.

    2015-01-01

    Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed. PMID:26538238

  5. Sirtuins in the Cardiovascular System: Potential Targets in Pediatric Cardiology.

    PubMed

    Ianni, Alessandro; Yuan, Xuejun; Bober, Eva; Braun, Thomas

    2018-06-01

    Cardiovascular diseases represent a major cause of death and morbidity. Cardiac and vascular pathologies develop predominantly in the aged population in part due to lifelong exposure to numerous risk factors but are also found in children and during adolescence. In comparison to adults, much has to be learned about the molecular pathways driving cardiovascular diseases in the pediatric population. Sirtuins are highly conserved enzymes that play pivotal roles in ensuring cardiac homeostasis under physiological and stress conditions. In this review, we discuss novel findings about the biological functions of these molecules in the cardiovascular system and their possible involvement in pediatric cardiovascular diseases.

  6. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System

    PubMed Central

    Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases. PMID:26839635

  7. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System.

    PubMed

    Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases.

  8. An integrated mathematical model of the human cardiopulmonary system: model development.

    PubMed

    Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W

    2016-04-01

    Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics. Copyright © 2016 the American Physiological Society.

  9. Developmental cardiovascular physiology of the olive ridley sea turtle (Lepidochelys olivacea).

    PubMed

    Crossley, Dane Alan; Crossley, Janna Lee; Smith, Camilla; Harfush, Martha; Sánchez-Sánchez, Hermilo; Garduño-Paz, Mónica Vanessa; Méndez-Sánchez, José Fernando

    2017-09-01

    Our understanding of reptilian cardiovascular development and regulation has increased substantially for two species the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina) during the past two decades. However, what we know about cardiovascular maturation in many other species remains poorly understood or unknown. Embryonic sea turtles have been studied to understand the maturation of metabolic function, but these studies have not addressed the cardiovascular system. Although prior studies have been pivotal in characterizing development, and factors that influence it, the development of cardiovascular function, which supplies metabolic function, is unknown in sea turtles. During our investigation we focused on quantifying how cardiovascular morphological and functional parameters change, to provide basic knowledge of development in the olive ridley sea turtle (Lepidochelys olivacea). Embryonic mass, as well as mass of the heart, lungs, liver, kidney, and brain increased during turtle embryo development. Although heart rate was constant during this developmental period, arterial pressure approximately doubled. Further, while embryonic olive ridley sea turtles lacked cholinergic tone on heart rate, there was a pronounced beta adrenergic tone on heart rate that decreased in strength at 90% of incubation. This beta adrenergic tone may be partially originating from the sympathetic nervous system at 90% of incubation, with the majority originating from circulating catecholamines. Data indicates that olive ridley sea turtles share traits of embryonic functional cardiovascular maturation with the American alligator (Alligator mississippiensis) but not the common snapping turtle (Chelydra serpentina). Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The Brain Norepinephrine System, Stress and Cardiovascular Vulnerability

    PubMed Central

    Wood, Susan K.; Valentino, Rita J.

    2016-01-01

    Chronic exposure to psychosocial stress has adverse effects on cardiovascular health, however the stress-sensitive neurocircuitry involved remains to be elucidated. The anatomical and physiological characteristics of the locus coeruleus (LC)-norepinephrine (NE) system position it to contribute to stress-induced cardiovascular disease. This review focuses on cardiovascular dysfunction produced by social stress and a major theme highlighted is that differences in coping strategy determine individual differences in social stress-induced cardiovascular vulnerability. The establishment of different coping strategies and cardiovascular vulnerability during repeated social stress has recently been shown to parallel a unique plasticity in LC afferent regulation, resulting in either excitatory or inhibitory input to the LC. This contrasting regulation of the LC would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The advances described suggest new directions for developing treatments and/or strategies for decreasing stress-induced cardiovascular vulnerability. PMID:27131968

  11. Roadmap for cardiovascular circulation model

    PubMed Central

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.

    2016-01-01

    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  12. Roadmap for cardiovascular circulation model.

    PubMed

    Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J

    2016-12-01

    Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Microelectronics bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1977-01-01

    Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.

  14. Nonlinear effects of respiration on the crosstalk between cardiovascular and cerebrovascular control systems

    NASA Astrophysics Data System (ADS)

    Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Rossato, Gianluca; Nollo, Giandomenico; Faes, Luca; Porta, Alberto

    2016-05-01

    Cardiovascular and cerebrovascular regulatory systems are vital control mechanisms responsible for guaranteeing homeostasis and are affected by respiration. This work proposes the investigation of cardiovascular and cerebrovascular control systems and the nonlinear influences of respiration on both regulations through joint symbolic analysis (JSA), conditioned or unconditioned on respiration. Interactions between cardiovascular and cerebrovascular regulatory systems were evaluated as well by performing correlation analysis between JSA indexes describing the two control systems. Heart period, systolic and mean arterial pressure, mean cerebral blood flow velocity and respiration were acquired on a beat-to-beat basis in 13 subjects experiencing recurrent syncope episodes (SYNC) and 13 healthy individuals (non-SYNC) in supine resting condition and during head-up tilt test at 60° (TILT). Results showed that JSA distinguished conditions and groups, whereas time domain parameters detected only the effect of TILT. Respiration affected cardiovascular and cerebrovascular regulatory systems in a nonlinear way and was able to modulate the interactions between the two control systems with different outcome in non-SYNC and SYNC groups, thus suggesting that the analysis of the impact of respiration on cardiovascular and cerebrovascular regulatory systems might improve our understanding of the mechanisms underpinning the development of postural-related syncope.

  15. Endothelial to mesenchymal transition in the cardiovascular system.

    PubMed

    Gong, Hui; Lyu, Xing; Wang, Qiong; Hu, Min; Zhang, Xiangyu

    2017-09-01

    Endothelial to mesenchymal transition (EndMT) is a special type of epithelial to mesenchymal transition. It is a process that is characterized by the loss of features of endothelial cells and acquisition of specific markers of mesenchymal cells. A variety of stimuli, such as inflammation, growth factors, and hypoxia, regulate EndMT through various signaling pathways and intracellular transcription factors. It has been demonstrated that epigenetic modifications are also involved in this process. Recent studies have identified the essential role of EndMT in the cardiovascular system. EndMT contributes to steps in cardiovascular development, such as cardiac valve formation and septation, as well as the pathogenesis of various cardiovascular disorders, such as congenital heart disease, myocardial fibrosis, myocardial infarction and pulmonary arterial hypertension. Thus, comprehensive understanding of the underlying mechanisms of EndMT will provide novel therapeutic strategies to overcome congenital heart disease due to abnormal development and other cardiovascular diseases. This review will focus on summarizing the currently understood signaling pathways and epigenetic modifications involved in the regulation of EndMT and the role of EndMT in pathophysiological conditions of the cardiovascular system. Copyright © 2017. Published by Elsevier Inc.

  16. Cardiovascular Impact in Patients Undergoing Maintenance Hemodialysis: Clinical Management Considerations

    PubMed Central

    Chirakarnjanakorn, Srisakul; Navaneethan, Sankar D.; Francis, Gary S.; Tang, W.H. Wilson

    2017-01-01

    Patients undergoing maintenance hemodialysis develop both structural and functional cardiovascular abnormalities. Despite improvement of dialysis technology, cardiovascular mortality of this population remains high. The pathophysiological mechanisms of these changes are complex and not well understood. It has been postulated that several non-traditional, uremic-related risk factors, especially the long-term uremic state, which may affect the cardiovascular system. There are many cardiovascular changes that occur in chronic kidney disease including left ventricular hypertrophy, myocardial fibrosis, microvascular disease, accelerated atherosclerosis and arteriosclerosis. These structural and functional changes in patients receiving chronic dialysis make them more susceptible to myocardial ischemia. Hemodialysis itself may adversely affect the cardiovascular system due to non-physiologic fluid removal, leading to hemodynamic instability and initiation of systemic inflammation. In the past decade there has been growing awareness that pathophysiological mechanisms cause cardiovascular dysfunction in patients on chronic dialysis, and there are now pharmacological and non-pharmacological therapies that may improve the poor quality of life and high mortality rate that these patients experience. PMID:28108129

  17. An Integrated Model of the Cardiovascular and Central Nervous Systems for Analysis of Microgravity Induced Fluid Redistribution

    NASA Technical Reports Server (NTRS)

    Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.

    2015-01-01

    A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.

  18. Androgen actions on endothelium functions and cardiovascular diseases

    PubMed Central

    Cai, Jing-Jing; Wen, Juan; Jiang, Wei-Hong; Lin, Jian; Hong, Yuan; Zhu, Yuan-Shan

    2016-01-01

    The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genomic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system. PMID:27168746

  19. A forward model-based validation of cardiovascular system identification

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.

    2001-01-01

    We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.

  20. The zebrafish as a model system to study cardiovascular development.

    PubMed

    Stainier, D Y; Fishman, M C

    1994-01-01

    The zebrafish, Brachydanio rerio, is rapidly becoming a system of choice for vertebrate developmental biologists. It presents unique embryological attributes and is amenable to saturation style mutagenesis, a powerful approach that, in invertebrates, has already led to the identification of a large number of key developmental genes. Since fertilization is external, the zebrafish embryo develops in the dish and is thus accessible for continued observation and manipulation at all stages of development. Furthermore, because the embryo is transparent, the developing heart and vessels can be resolved at the single-cell level. A large number of mutations that affect the development of cardiovascular form and function have recently been isolated from large-scale genetic screens for zygotic embryonic lethals. Our further understanding of the development of the cardiovascular system is important not only because of the high incidence, and familial inheritance, of congenital abnormalities, but also because it should lead to novel, differentiation-based strategies for the analysis and therapy of the diseased state. Copyright © 1994. Published by Elsevier Inc.

  1. Circulating Wnt inhibitory factor 1 levels are associated with development of cardiovascular disease.

    PubMed

    Ress, Claudia; Paulweber, Mariya; Goebel, Georg; Willeit, Karin; Rufinatscha, Kerstin; Strobl, Anna; Salzmann, Karin; Kedenko, Ludmilla; Tschoner, Alexander; Staudacher, Gabriele; Iglseder, Bernhard; Tilg, Herbert; Paulweber, Bernhard; Kaser, Susanne

    2018-03-29

    Wnt signaling is involved in atherosclerotic plaque formation directly and indirectly by modulating cardiovascular risk factors. We investigated whether circulating concentrations of Wnt inhibitors are associated with cardiovascular events in subjects with intermediate cardiovascular risk. 904 non-diabetic subjects participating in the SAPHIR study were assessed. In the SAPHIR study, middle-aged women without overt atherosclerotic disease at study entry were followed up for 10 years. 88 patients of our study cohort developed cardiovascular disease at follow-up (CVD group). Subjects of the CVD group were 1:2 case-control matched for age, sex, BMI and smoking behavior with subjects without overt cardiovascular disease after a 10 year-follow-up (control group). 18 patients of the CVD group and 19 subjects of the control group were retrospectively excluded due to fulfilling exclusion criteria. Baseline circulating sclerostin, dickkopf (DKK)-1, secreted frizzled-related protein (SFRP)-1 and Wnt inhibitory factor (WIF)-1 levels were assessed by ELISA. Baseline systemic SFRP-1 and WIF-1 levels were significantly higher in patients with cardiovascular events (n = 70) when compared to healthy controls (n = 157) while DKK-1 and sclerostin levels were similar in both groups. Logistic regression analysis revealed WIF-1 as a significant predictor of future cardiovascular events. Our data suggest that increased SFRP-1 and WIF-1 levels precede the development of symptomatic atherosclerotic disease. Assessment of systemic WIF-1 levels, which turned out to be independently associated with CVD, might help to early identify patients at intermediate cardiovascular risk. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. [Effect of lead on the cardiovascular system].

    PubMed

    Zyśko, Dorota; Chlebda, Ewa; Gajek, Jacek

    2004-11-01

    Lead is a metal widely spread in the natural environment. It is strongly toxic, particularly to the peripheral and central nervous systems. The toxic influence on the cardiovascular system is most pronounced in case of higher exposures, where myocardium and the renal circulation are affected, in consequence of which secondary arterial hypertension can develop. It seems that lead affects the cardiovascular system mainly by changing the peripheral autonomic nervous system and leading to chronic neuropathy. Chronic exposure, even to low doses of lead, can impair conduction in myocardium. In order to assess those changes thoroughly prospective studies involving newly employed workers with occupational exposure to toxic activity of lead will be necessary.

  3. Sex hormones in the cardiovascular system.

    PubMed

    dos Santos, Roger Lyrio; da Silva, Fabrício Bragança; Ribeiro, Rogério Faustino; Stefanon, Ivanita

    2014-05-01

    Gender-associated differences in the development of cardiovascular diseases have been described in humans and animals. These differences could explain the low incidence of cardiovascular disease in women in the reproductive period, such as stroke, hypertension, and atherosclerosis. The cardiovascular protection observed in females has been attributed to the beneficial effects of estrogen on endothelial function. Besides estrogen, sex hormones are able to modulate blood pressure by acting on important systems as cardiovascular, renal, and neural. They can have complementary or antagonistic actions. For example, testosterone can raise blood pressure by stimulating the renin-angiotensin-aldosterone system, whereas estrogen alone or combined with progesterone has been associated with decreased blood pressure. The effects of testosterone in the development of cardiovascular disease are contradictory. Although some researchers suggest a positive effect, others indicate negative actions of testosterone. Estrogens physiologically stimulate the release of endothelium-derived vasodilator factors and inhibit the renin-angiotensin system. Although the cardioprotective effects of estrogen are widely appreciated, little is known about the effects of progesterone, which is commonly used in hormone replacement therapy. Progesterone has both vasodilatory and vasoconstrictive effects in the vasculature, depending on the location of the vessel and the level of exposure. Nevertheless, the mechanisms through which sex hormones modulate blood pressure have not been fully elucidated. Therefore, the characterization of those could lead to a better understanding of hypertension in women and men and perhaps to improved forms of therapy.

  4. Acute pneumonia and the cardiovascular system.

    PubMed

    Corrales-Medina, Vicente F; Musher, Daniel M; Shachkina, Svetlana; Chirinos, Julio A

    2013-02-09

    Although traditionally regarded as a disease confined to the lungs, acute pneumonia has important effects on the cardiovascular system at all severities of infection. Pneumonia tends to affect individuals who are also at high cardiovascular risk. Results of recent studies show that about a quarter of adults admitted to hospital with pneumonia develop a major acute cardiac complication during their hospital stay, which is associated with a 60% increase in short-term mortality. These findings suggest that outcomes of patients with pneumonia can be improved by prevention of the development and progression of associated cardiac complications. Before this hypothesis can be tested, however, an adequate mechanistic understanding of the cardiovascular changes that occur during pneumonia, and their role in the trigger of various cardiac complications, is needed. In this Review, we summarise knowledge about the burden of cardiac complications in adults with acute pneumonia, the cardiovascular response to this infection, the potential effects of commonly used cardiovascular and anti-infective drugs on these associations, and possible directions for future research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Artificial Intelligence (Al) Center of Excellence at the University of Pennsylvania

    DTIC Science & Technology

    1995-07-01

    Approach and repel behaviors were implemented in order to study higher level behavioral simulation . Parallel algorithms for motion planning (as a...of decision-making accuracy can be specified for this graph-reduction process. We have also developed a mixed qualitative/quantitative simulation ...system, called QobiSIM. QobiSIM has been used to develop a cardiovascular simulation to be incorporated into the TraumAID system. This cardiovascular

  6. The European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool: A digital training and decision support system for optimized exercise prescription in cardiovascular disease. Concept, definitions and construction methodology.

    PubMed

    Hansen, Dominique; Dendale, Paul; Coninx, Karin; Vanhees, Luc; Piepoli, Massimo F; Niebauer, Josef; Cornelissen, Veronique; Pedretti, Roberto; Geurts, Eva; Ruiz, Gustavo R; Corrà, Ugo; Schmid, Jean-Paul; Greco, Eugenio; Davos, Constantinos H; Edelmann, Frank; Abreu, Ana; Rauch, Bernhard; Ambrosetti, Marco; Braga, Simona S; Barna, Olga; Beckers, Paul; Bussotti, Maurizio; Fagard, Robert; Faggiano, Pompilio; Garcia-Porrero, Esteban; Kouidi, Evangelia; Lamotte, Michel; Neunhäuserer, Daniel; Reibis, Rona; Spruit, Martijn A; Stettler, Christoph; Takken, Tim; Tonoli, Cajsa; Vigorito, Carlo; Völler, Heinz; Doherty, Patrick

    2017-07-01

    Background Exercise rehabilitation is highly recommended by current guidelines on prevention of cardiovascular disease, but its implementation is still poor. Many clinicians experience difficulties in prescribing exercise in the presence of different concomitant cardiovascular diseases and risk factors within the same patient. It was aimed to develop a digital training and decision support system for exercise prescription in cardiovascular disease patients in clinical practice: the European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool. Methods EXPERT working group members were requested to define (a) diagnostic criteria for specific cardiovascular diseases, cardiovascular disease risk factors, and other chronic non-cardiovascular conditions, (b) primary goals of exercise intervention, (c) disease-specific prescription of exercise training (intensity, frequency, volume, type, session and programme duration), and (d) exercise training safety advices. The impact of exercise tolerance, common cardiovascular medications and adverse events during exercise testing were further taken into account for optimized exercise prescription. Results Exercise training recommendations and safety advices were formulated for 10 cardiovascular diseases, five cardiovascular disease risk factors (type 1 and 2 diabetes, obesity, hypertension, hypercholesterolaemia), and three common chronic non-cardiovascular conditions (lung and renal failure and sarcopaenia), but also accounted for baseline exercise tolerance, common cardiovascular medications and occurrence of adverse events during exercise testing. An algorithm, supported by an interactive tool, was constructed based on these data. This training and decision support system automatically provides an exercise prescription according to the variables provided. Conclusion This digital training and decision support system may contribute in overcoming barriers in exercise implementation in common cardiovascular diseases.

  7. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System

    PubMed Central

    Finch, Jordan; Conklin, Daniel J.

    2015-01-01

    Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health. PMID:26148452

  8. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System.

    PubMed

    Finch, Jordan; Conklin, Daniel J

    2016-07-01

    Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.

  9. Adipokines and the cardiovascular system: mechanisms mediating health and disease.

    PubMed

    Northcott, Josette M; Yeganeh, Azadeh; Taylor, Carla G; Zahradka, Peter; Wigle, Jeffrey T

    2012-08-01

    This review focuses on the role of adipokines in the maintenance of a healthy cardiovascular system, and the mechanisms by which these factors mediate the development of cardiovascular disease in obesity. Adipocytes are the major cell type comprising the adipose tissue. These cells secrete numerous factors, termed adipokines, into the blood, including adiponectin, leptin, resistin, chemerin, omentin, vaspin, and visfatin. Adipose tissue is a highly vascularised endocrine organ, and different adipose depots have distinct adipokine secretion profiles, which are altered with obesity. The ability of many adipokines to stimulate angiogenesis is crucial for adipose tissue expansion; however, excessive blood vessel growth is deleterious. As well, some adipokines induce inflammation, which promotes cardiovascular disease progression. We discuss how these 7 aforementioned adipokines act upon the various cardiovascular cell types (endothelial progenitor cells, endothelial cells, vascular smooth muscle cells, pericytes, cardiomyocytes, and cardiac fibroblasts), the direct effects of these actions, and their overall impact on the cardiovascular system. These were chosen, as these adipokines are secreted predominantly from adipocytes and have known effects on cardiovascular cells.

  10. Cardiovascular impact in patients undergoing maintenance hemodialysis: Clinical management considerations.

    PubMed

    Chirakarnjanakorn, Srisakul; Navaneethan, Sankar D; Francis, Gary S; Tang, W H Wilson

    2017-04-01

    Patients undergoing maintenance hemodialysis develop both structural and functional cardiovascular abnormalities. Despite improvement of dialysis technology, cardiovascular mortality of this population remains high. The pathophysiological mechanisms of these changes are complex and not well understood. It has been postulated that several non-traditional, uremic-related risk factors, especially the long-term uremic state, which may affect the cardiovascular system. There are many cardiovascular changes that occur in chronic kidney disease including left ventricular hypertrophy, myocardial fibrosis, microvascular disease, accelerated atherosclerosis and arteriosclerosis. These structural and functional changes in patients receiving chronic dialysis make them more susceptible to myocardial ischemia. Hemodialysis itself may adversely affect the cardiovascular system due to non-physiologic fluid removal, leading to hemodynamic instability and initiation of systemic inflammation. In the past decade there has been growing awareness that pathophysiological mechanisms cause cardiovascular dysfunction in patients on chronic dialysis, and there are now pharmacological and non-pharmacological therapies that may improve the poor quality of life and high mortality rate that these patients experience. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease.

    PubMed

    Gouweleeuw, L; Naudé, P J W; Rots, M; DeJongste, M J L; Eisel, U L M; Schoemaker, R G

    2015-05-01

    Depression is more common in patients with cardiovascular disease than in the general population. Conversely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovascular disease and depression, including inflammation. Systemic inflammation can have long-lasting effects on the central nervous system, which could be associated with depression. NGAL is an inflammatory marker and elevated plasma levels are associated with both cardiovascular disease and depression. While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL levels are significantly higher and associated with depression scores. Systemic inflammation evokes NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depression/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression and cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system.

    PubMed

    Maron, Bradley A; Tang, Shiow-Shih; Loscalzo, Joseph

    2013-01-20

    Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca(2+) channel function that influences myocyte contractility and electrophysiologic stability. Contemporary developments in liquid chromatography-mass spectrometry methods, the development of biotin- and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field.

  13. Point-of-Care Technologies for Precision Cardiovascular Care and Clinical Research

    PubMed Central

    King, Kevin; Grazette, Luanda P.; Paltoo, Dina N.; McDevitt, John T.; Sia, Samuel K.; Barrett, Paddy M.; Apple, Fred S.; Gurbel, Paul A.; Weissleder, Ralph; Leeds, Hilary; Iturriaga, Erin J.; Rao, Anupama; Adhikari, Bishow; Desvigne-Nickens, Patrice; Galis, Zorina S.; Libby, Peter

    2016-01-01

    Point-of-care technologies (POC or POCT) are enabling innovative cardiovascular diagnostics that promise to improve patient care across diverse clinical settings. The National Heart, Lung, and Blood Institute convened a working group to discuss POCT in cardiovascular medicine. The multidisciplinary working group, which included clinicians, scientists, engineers, device manufacturers, regulatory officials, and program staff, reviewed the state of the POCT field; discussed opportunities for POCT to improve cardiovascular care, realize the promise of precision medicine, and advance the clinical research enterprise; and identified barriers facing translation and integration of POCT with existing clinical systems. A POCT development roadmap emerged to guide multidisciplinary teams of biomarker scientists, technologists, health care providers, and clinical trialists as they: 1) formulate needs assessments; 2) define device design specifications; 3) develop component technologies and integrated systems; 4) perform iterative pilot testing; and 5) conduct rigorous prospective clinical testing to ensure that POCT solutions have substantial effects on cardiovascular care. PMID:26977455

  14. Cardiovascular magnetic resonance imaging: clinical implications in the evaluation of connective tissue diseases

    PubMed Central

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Koutsogeorgopoulou, Loukia; Kolovou, Genovefa

    2017-01-01

    Cardiovascular magnetic resonance imaging is a recently developed noninvasive, nonradiating, operator-independent technique that has been successfully used for the evaluation of congenital heart disease, valvular and pericardial diseases, iron overload, cardiomyopathies, great and coronary vessel diseases, cardiac inflammation, stress–rest myocardial perfusion, and fibrosis. Rheumatoid arthritis and other spondyloarthropathies, systemic lupus erythematosus, inflammatory myopathies, mixed connective tissue diseases (CTDs), systemic sclerosis, vasculitis, and sarcoidosis are among CTDs with serious cardiovascular involvement; this is due to multiple causative factors such as myopericarditis, micro/macrovascular disease, coronary artery disease, myocardial fibrosis, pulmonary hypertension, and finally heart failure. The complicated pathophysiology and the high cardiovascular morbidity and mortality of CTDs demand a versatile, noninvasive, nonradiative diagnostic tool for early cardiovascular diagnosis, risk stratification, and treatment follow-up. Cardiovascular magnetic resonance imaging can detect early silent cardiovascular lesions, assess disease acuteness, and reliably evaluate the effect of both cardiac and rheumatic medication in the cardiovascular system, due to its capability to perform tissue characterization and its high spatial resolution. However, until now, high cost; lack of interaction between cardiologists, radiologists, and rheumatologists; lack of availability; and lack of experts in the field have limited its wider adoption in the clinical practice. PMID:28546762

  15. Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 2

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The development of a cardiovascular monitoring system to noninvasively monitor the blood pressure and heart rate using pulse wave velocity was described. The following topics were covered: (1) pulse wave velocity as a measure of arterial blood pressure, (2) diastolic blood pressure and pulse wave velocity in humans, (3) transducer development for blood pressure measuring device, and (4) cardiovascular monitoring system. It was found, in experiments on dogs, that the pulse wave velocity is linearly related to diastolic blood pressure over a wide range of blood pressure and in the presence of many physiological perturbations. A similar relationship was observed in normal, young human males over a moderate range of pressures. Past methods for monitoring blood pressure and a new method based on pulse wave velocity determination were described. Two systems were tested: a Doppler ultrasonic transducer and a photoelectric plethysmograph. A cardiovascular monitoring system was described, including operating instructions.

  16. Drug Delivery and Nanoformulations for the Cardiovascular System.

    PubMed

    Geldenhuys, W J; Khayat, M T; Yun, J; Nayeem, M A

    2017-02-01

    Therapeutic delivery to the cardiovascular system may play an important role in the successful treatment of a variety of disease state, including atherosclerosis, ischemic-reperfusion injury and other types of microvascular diseases including hypertension. In this review we evaluate the different options available for the development of suitable delivery systems that include the delivery of small organic compounds [adenosin A 2A receptor agonist (CGS 21680), CYP-epoxygenases inhibitor (N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy] benzoic acid), soluble epoxide hydrolase inhibitor (N-methylsulfonyl-12,12-dibromododec-11-enamide), PPARγ agonist (rosiglitazone) and PPARγ antagonist (T0070907)], nanoparticles, peptides, and siRNA to the cardiovascular system. Effective formulations of nanoproducts have significant potential to overcome physiological barriers and improve therapeutic outcomes in patients. As per the literature covering targeted delivery to the cardiovascular system, we found that this area is still at infancy stage, as compare to the more mature fields of tumor cancer or brain delivery (e.g. blood-brain barrier permeability) with fewer publications focused on the targeted drug delivery technologies. Additionally, we show how pharmacology needs to be well understood when considering the cardiovascular system. Therefore, we discussed in this review various receptors agonists, antagonists, activators and inhibitors which will have effects on cardiovascular system.

  17. A literature review of the cardiovascular risk-assessment tools: applicability among Asian population.

    PubMed

    Liau, Siow Yen; Mohamed Izham, M I; Hassali, M A; Shafie, A A

    2010-01-01

    Cardiovascular diseases, the main causes of hospitalisations and death globally, have put an enormous economic burden on the healthcare system. Several risk factors are associated with the occurrence of cardiovascular events. At the heart of efficient prevention of cardiovascular disease is the concept of risk assessment. This paper aims to review the available cardiovascular risk-assessment tools and its applicability in predicting cardiovascular risk among Asian populations. A systematic search was performed using keywords as MeSH and Boolean terms. A total of 25 risk-assessment tools were identified. Of these, only two risk-assessment tools (8%) were derived from an Asian population. These risk-assessment tools differ in various ways, including characteristics of the derivation sample, type of study, time frame of follow-up, end points, statistical analysis and risk factors included. Very few cardiovascular risk-assessment tools were developed in Asian populations. In order to accurately predict the cardiovascular risk of our population, there is a need to develop a risk-assessment tool based on local epidemiological data.

  18. A histological ontology of the human cardiovascular system.

    PubMed

    Mazo, Claudia; Salazar, Liliana; Corcho, Oscar; Trujillo, Maria; Alegre, Enrique

    2017-10-02

    In this paper, we describe a histological ontology of the human cardiovascular system developed in collaboration among histology experts and computer scientists. The histological ontology is developed following an existing methodology using Conceptual Models (CMs) and validated using OOPS!, expert evaluation with CMs, and how accurately the ontology can answer the Competency Questions (CQ). It is publicly available at http://bioportal.bioontology.org/ontologies/HO and https://w3id.org/def/System . The histological ontology is developed to support complex tasks, such as supporting teaching activities, medical practices, and bio-medical research or having natural language interactions.

  19. Spectral analysis of resting cardiovascular variables and responses to oscillatory LBNP before and after 6 degree head dowm bedrest

    NASA Technical Reports Server (NTRS)

    Knapp, Charles F.; Evans, J. M.; Patwardhan, A.; Levenhagen, D.; Wang, M.; Charles, John B.

    1991-01-01

    A major focus of our research program is to develop noninvasive procedures for determining changes in cardiovascular function associated with the null gravity environment. We define changes in cardiovascular function to be (1) the result of the regulatory system operating at values different from 'normal' but with an overall control system basically unchanged by the null gravity exposure, or (2) the result of operating with a control system that has significantly different regulatory characteristics after an exposure. To this end, we have used a model of weightlessness that consisted of exposing humans to 2 hrs. in the launch position, followed by 20 hrs. of 6 deg head down bedrest. Our principal objective was to use this model to measure cardiovascular responses to the 6 deg head down bedrest protocol and to develop the most sensitive 'systems identification' procedure for indicating change. A second objective, related to future experiments, is to use the procedure in combination with experiments designed to determine the degree to which a regulatory pathway has been altered and to determine the mechanisms responsible for the changes.

  20. Cardiovascular fitness strengthening using portable device.

    PubMed

    Alqudah, Hamzah; Kai Cao; Tao Zhang; Haddad, Azzam; Su, Steven; Celler, Branko; Nguyen, Hung T

    2016-08-01

    The paper describes a reliable and valid Portable Exercise Monitoring system developed using TI eZ430-Chronos watch, which can control the exercise intensity through audio stimulation in order to increase the Cardiovascular fitness strengthening.

  1. Imaging of cardiovascular dynamics in early mouse embryos with swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Larina, Irina V.; Liebling, Michael; Dickinson, Mary E.; Larin, Kirill V.

    2009-02-01

    Congenital cardiovascular defects are very common, occurring in 1% of live births, and cardiovascular failures are the leading cause of birth defect-related deaths in infants. To improve diagnostics, prevention and treatment of cardiovascular abnormalities, we need to understand not only how cells form the heart and vessels but also how physical factors such as heart contraction and blood flow influence heart development and changes in the circulatory network. Mouse models are an excellent resource for studying cardiovascular development and disease because of the resemblance to humans, rapid generation time, and availability of mutants with cardiovascular defects linked to human diseases. In this work, we present results on development and application of Doppler Swept Source Optical Coherence Tomography (DSS-OCT) for imaging of cardiovascular dynamics and blood flow in the mouse embryonic heart and vessels. Our studies demonstrated that the spatial and temporal resolution of the DSS-OCT makes it possible to perform sensitive measurements of heart and vessel wall movements and to investigate how contractile waves facilitate the movement of blood through the circulatory system.

  2. Cardiotoxicity of Anticancer Drugs: The Need for Cardio-Oncology and Cardio-Oncological Prevention

    PubMed Central

    Pennesi, Giuseppina; Donatelli, Francesco; Cammarota, Rosaria; De Flora, Silvio; Noonan, Douglas M.

    2010-01-01

    Due to the aging of the populations of developed countries and a common occurrence of risk factors, it is increasingly probable that a patient may have both cancer and cardiovascular disease. In addition, cytotoxic agents and targeted therapies used to treat cancer, including classic chemotherapeutic agents, monoclonal antibodies that target tyrosine kinase receptors, small molecule tyrosine kinase inhibitors, and even antiangiogenic drugs and chemoprevention agents such as cyclooxygenase-2 inhibitors, all affect the cardiovascular system. One of the reasons is that many agents reach targets in the microenvironment and do not affect only the tumor. Combination therapy often amplifies cardiotoxicity, and radiotherapy can also cause heart problems, particularly when combined with chemotherapy. In the past, cardiotoxic risk was less evident, but it is increasingly an issue, particularly with combination therapy and adjuvant therapy. Today's oncologists must be fully aware of cardiovascular risks to avoid or prevent adverse cardiovascular effects, and cardiologists must now be ready to assist oncologists by performing evaluations relevant to the choice of therapy. There is a need for cooperation between these two areas and for the development of a novel discipline, which could be termed cardio-oncology or onco-cardiology. Here, we summarize the potential cardiovascular toxicities for a range of cancer chemotherapeutic and chemopreventive agents and emphasize the importance of evaluating cardiovascular risk when patients enter into trials and the need to develop guidelines that include collateral effects on the cardiovascular system. We also discuss mechanistic pathways and describe several potential protective agents that could be administered to patients with occult or overt risk for cardiovascular complications. PMID:20007921

  3. Preparing nurses for leadership roles in cardiovascular disease prevention.

    PubMed

    Lanuza, Dorothy M; Davidson, Patricia M; Dunbar, Sandra B; Hughes, Suzanne; De Geest, Sabina

    2011-01-01

    Cardiovascular disease (CVD) is a critical global health issue, and cardiovascular nurses play a vital role in decreasing the global burden and contributing to improving outcomes in individuals and communities. Cardiovascular nurses require the knowledge, skills, and resources that will enable them to function as leaders in CVD. This article addresses the education, training, and strategies that are needed to prepare nurses for leadership roles in preventing and managing CVD. Building on the World Health Organization core competencies for 21st-century health care workers, the specific competencies of cardiovascular nurses working in prevention are outlined. These can be further strengthened by investing in the development of cultural, system change and leadership competencies. Mentorship is proposed as a powerful strategy for promoting the cardiovascular nursing role and equipping individual nurses to contribute meaningfully to health system reform and community engagement in CVD risk reduction.

  4. Cardiovascular Adaptations Induced by Resistance Training in Animal Models.

    PubMed

    Melo, S F S; da Silva Júnior, N D; Barauna, V G; Oliveira, E M

    2018-01-01

    In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.

  5. Predictors of Cardiovascular Events After Liver Transplantation.

    PubMed

    Gallegos-Orozco, Juan F; Charlton, Michael R

    2017-05-01

    Indications for liver transplant have been extended, and older and sicker patients are undergoing transplantation. Infectious, malignant, and cardiovascular diseases account for the most posttransplant deaths. Cirrhotic patients can develop heart disease through systemic diseases affecting the heart and the liver, cirrhosis-specific heart disease, or common cardiovascular. No single factor can predict posttransplant cardiovascular complications. Patients with history of cardiovascular disease, and specific abnormalities on echocardiography, electrocardiography, or serum markers of heart disease seem to be at increased risk of complications. Pretransplant cardiovascular evaluation is essential to detecting these risk factors so their effects can be mitigated through appropriate intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Aging Cardiovascular System: Understanding It at the Cellular and Clinical Levels.

    PubMed

    Paneni, Francesco; Diaz Cañestro, Candela; Libby, Peter; Lüscher, Thomas F; Camici, Giovanni G

    2017-04-18

    Cardiovascular disease (CVD) presents a great burden for elderly patients, their caregivers, and health systems. Structural and functional alterations of vessels accumulate throughout life, culminating in increased risk of developing CVD. The growing elderly population worldwide highlights the need to understand how aging promotes CVD in order to develop new strategies to confront this challenge. This review provides examples of some major unresolved clinical problems encountered in daily cardiovascular practice as we care for elderly patients. Next, the authors summarize the current understanding of the mechanisms implicated in cardiovascular aging, and the potential for targeting novel pathways implicated in endothelial dysfunction, mitochondrial oxidative stress, chromatin remodeling, and genomic instability. Lastly, the authors consider critical aspects of vascular repair, including autologous transplantation of bone marrow-derived stem cells in elderly patients. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Influence hypervitaminosis D3 on hemodynamic presentation of experimental copper intoxication.

    PubMed

    Brin, V B; Mittsiev, K G; Mittsiev, A K; Kabisov, O T

    2016-01-01

    As a component of various enzymes, it refers to copper essential trace elements, but the excessive consumption of the metal leads to the development of the pathogenic effects of xenobiotics on the functional condition of the cardiovascular system. However, the works devoted to the study of the effectiveness of prophylactic calcium in a copper toxicity, is not in the current literature. study the effect of long-term toxicity of copper on the functional state of the cardiovascular system and its reactivity in experimental hypercalcemia. Experimental hypercalcemia model was created by forming a pilot hypervitaminosis D, by introducing «Akvadetrim» atraumatic preparation through a probe into the stomach in the dose 3000 IU (0.2 ml) / 100 g of body weight for 30 days. Chronic copper poisoning model created by intragastric administration of copper sulfate solution at a dosage of 20 mg/kg (in terms of metal) for 30 days, daily one time a day. The study of the functional state of the cardiovascular system is to determine the mean arterial pressure, specific peripheral vascular resistance, stroke index, cardiac index, the reactivity of the renin-angiotensin system and adrenoreactivity cardiovascular system. The experimental study revealed that long-term copper poisoning leads to the development of hypertension due to an increase in total peripheral vascular resistance, along with the marked decline in the pumping function of the heart. Experimental hypercalcemia simulated by intragastric administration of vitamin D promotes more pronounced toxic effects of copper sulfate on the cardiovascular system. Copper poisoning of the body is characterized by the development of hypertension and the condition of artificial hypercalcemia potentiates the cardiotoxic effects of copper.

  8. The Spleen: A Hub Connecting Nervous and Immune Systems in Cardiovascular and Metabolic Diseases

    PubMed Central

    Lori, Andrea; Perrotta, Marialuisa; Lembo, Giuseppe; Carnevale, Daniela

    2017-01-01

    Metabolic disorders have been identified as major health problems affecting a large portion of the world population. In addition, obesity and insulin resistance are principal risk factors for the development of cardiovascular diseases. Altered immune responses are common features of both hypertension and obesity and, moreover, the involvement of the nervous system in the modulation of immune system is gaining even more attention in both pathophysiological contexts. For these reasons, during the last decades, researches focused their efforts on the comprehension of the molecular mechanisms connecting immune system to cardiovascular and metabolic diseases. On the other hand, it has been reported that in these pathological conditions, central neural pathways modulate the activity of the peripheral nervous system, which is strongly involved in onset and progression of the disease. It is interesting to notice that neural reflex can also participate in the modulation of immune functions. In this scenario, the spleen becomes the crucial hub allowing the interaction of different systems differently involved in metabolic and cardiovascular diseases. Here, we summarize the major findings that dissect the role of the immune system in disorders related to metabolic and cardiovascular dysfunctions, and how this could also be influenced by neural reflexes. PMID:28590409

  9. Depression, anxiety, and the cardiovascular system: the psychiatrist's perspective.

    PubMed

    Roose, S P

    2001-01-01

    It is becoming clear that the comorbidity of depression and cardiovascular disease does not occur by chance but rather is an inevitable consequence of the relationship between the conditions. Depression in patients with cardiovascular disease is a significant risk factor for developing symptomatic and fatal ischemic heart disease. Moreover, depressed patients have a higher than expected rate of sudden cardiovascular death. Therefore, appropriate treatment of patients with depression and cardiovascular disease cannot be restricted to considerations of either depression or cardiovascular disease in isolation. The tricyclic antidepressants (TCAs) have various effects on the cardiovascular system, including Type IA antiarrhythmic activity that has been associated with an increased risk of mortality in post-myocardial infarction patients. The selective serotonin reuptake inhibitors (SSRIs) are not associated with adverse cardiac effects. The SSRI paroxetine was compared with a therapeutic level of the TCA nortriptyline in a randomized, controlled study and demonstrated a benign cardiovascular profile, while the TCA induced a significantly higher rate of serious adverse cardiovascular events. On the basis of this favorable cardiovascular profile, the SSRIs should therefore be the preferred choice for the treatment of most patients with comorbid depression and cardiovascular disease. Investigation of putative pathophysiologic mechanisms linking depression and cardiovascular mortality, such as the role of platelet activation, will form the basis for further investigation of antidepressant treatments in order to establish if the antidepressants have a beneficial effect on the prognosis of cardiovascular diseases.

  10. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics

    PubMed Central

    Marzetti, Emanuele; Csiszar, Anna; Dutta, Debapriya; Balagopal, Gauthami; Calvani, Riccardo

    2013-01-01

    Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD. PMID:23748424

  11. Synchronisation and coupling analysis: applied cardiovascular physics in sleep medicine.

    PubMed

    Wessel, Niels; Riedl, Maik; Kramer, Jan; Muller, Andreas; Penzel, Thomas; Kurths, Jurgen

    2013-01-01

    Sleep is a physiological process with an internal program of a number of well defined sleep stages and intermediate wakefulness periods. The sleep stages modulate the autonomous nervous system and thereby the sleep stages are accompanied by different regulation regimes for the cardiovascular and respiratory system. The differences in regulation can be distinguished by new techniques of cardiovascular physics. The number of patients suffering from sleep disorders increases unproportionally with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop highly-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Methods of cardiovascular physics are used to analyze heart rate, blood pressure and respiration to detect changes of the autonomous nervous system in different diseases. Data driven modeling analysis, synchronization and coupling analysis and their applications to biosignals in healthy subjects and patients with different sleep disorders are presented. Newly derived methods of cardiovascular physics can help to find indicators for these health risks.

  12. Effects of interventions on oxidative stress and inflammation of cardiovascular diseases

    PubMed Central

    Lee, Sewon; Park, Yoonjung; Zuidema, Mozow Yusof; Hannink, Mark; Zhang, Cuihua

    2011-01-01

    Excessive oxidative stress and low-grade chronic inflammation are major pathophysiological factors contributing to the development of cardiovascular diseases (CVD) such as hypertension, diabetes and atherosclerosis. Accumulating evidence suggests that a compromised anti-oxidant system can lead to excessive oxidative stress in cardiovascular related organs, resulting in cell damage and death. In addition, increased circulating levels of pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and C-reactive protein, are closely related to morbidity and mortality of cardiovascular complications. Emerging evidence suggests that interventions including nutrition, pharmacology and exercise may activate expression of cellular anti-oxidant systems via the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 signaling pathway and play a role in preventing inflammatory processes in CVD. The focus of the present review is to summarize recent evidence showing the role of these anti-oxidant and anti-inflammatory interventions in cardiovascular disease. We believe that these findings may prompt new effective pathogenesis-oriented interventions, based on the exercise-induced protection from disease in the cardiovascular system, aimed at targeting oxidant stress and inflammation. PMID:21286214

  13. Imaging the small animal cardiovascular system in real-time with multispectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Herzog, Eva; Razansky, Daniel; Ntziachristos, Vasilis

    2011-03-01

    Multispectral Optoacoustic Tomography (MSOT) is an emerging technique for high resolution macroscopic imaging with optical and molecular contrast. We present cardiovascular imaging results from a multi-element real-time MSOT system recently developed for studies on small animals. Anatomical features relevant to cardiovascular disease, such as the carotid arteries, the aorta and the heart, are imaged in mice. The system's fast acquisition time, in tens of microseconds, allows images free of motion artifacts from heartbeat and respiration. Additionally, we present in-vivo detection of optical imaging agents, gold nanorods, at high spatial and temporal resolution, paving the way for molecular imaging applications.

  14. S-Nitrosothiols and the S-Nitrosoproteome of the Cardiovascular System

    PubMed Central

    Maron, Bradley A.; Tang, Shiow-Shih

    2013-01-01

    Abstract Significance: Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca2+ channel function that influences myocyte contractility and electrophysiologic stability. Recent Advances: Contemporary developments in liquid chromatography–mass spectrometry methods, the development of biotin- and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. Critical Issues: Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. Future Directions: Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field. Antioxid. Redox Signal. 18, 270–287. PMID:22770551

  15. Sleep Disturbances as a Risk Factor for Stroke

    PubMed Central

    Koo, Dae Lim; Nam, Hyunwoo; Thomas, Robert J.; Yun, Chang-Ho

    2018-01-01

    Sleep, a vital process of human being, is carefully orchestrated by the brain and consists of cyclic transitions between rapid eye movement (REM) and non-REM (NREM) sleep. Autonomic tranquility during NREM sleep is characterized by vagal dominance and stable breathing, providing an opportunity for the cardiovascular-neural axis to restore homeostasis, in response to use, distress or fatigue inflicted during wakefulness. Abrupt irregular swings in sympathovagal balance during REM sleep act as phasic loads on the resting cardiovascular system. Any causes of sleep curtailment or fragmentation such as sleep restriction, sleep apnea, insomnia, periodic limb movements during sleep, and shift work, not only impair cardiovascular restoration but also impose a stress on the cardiovascular system. Sleep disturbances have been reported to play a role in the development of stroke and other cardiovascular disorders. This review aims to provide updated information on the role of abnormal sleep in the development of stroke, to discuss the implications of recent research findings, and to help both stroke clinicians and researchers understand the importance of identification and management of sleep pathology for stroke prevention and care. PMID:29402071

  16. Observation of arterial blood pressure of the primate

    NASA Technical Reports Server (NTRS)

    Meehan, J. P.; Henry, J. P.

    1973-01-01

    The developments are reported in physiological instrumentation, surgical procedures, measurement and data analysis techniques, and the definition of flight experiments to determine the effects of prolonged weightlessness on the cardiovascular system of subhuman primates. The development of an implantable telemetric data acquisition system is discussed along with cardiovascular research applications in renal hemodynamics. It is concluded that the implant technique permits a valid interpretation, free of emotional response, for the manipulated variable on physiological functions. It also allows a better definition of normal physiological baseline conditions.

  17. Update on apelin peptides as putative targets for cardiovascular drug discovery.

    PubMed

    Charles, Christopher J

    2011-06-01

    The physiological importance of GPCR/ligand pathways is highlighted by the fact that numerous pathologies are attributed to their signaling dysfunction. Over 50% of the pharmaceutical drugs currently used to treat human disease are based on compounds that interact with GPCRs. Apelin/APJ constitutes a novel endogenous peptide/GPCR system proposed to be involved in a wide range of physiological functions. Early evidence suggests that apelin/APJ may hold promise as a target for development of novel therapeutic agents which may counteract a number of pathologies including cardiovascular disease. Despite advances in treatment of cardiovascular disease, incidence, prevalence, morbidity and economic costs remain high necessitating the development of new treatment paradigms. This review summarizes apelin/APJ structure, distribution and regulation; presents evidence for a role of apelin in pressure/volume homeostasis and in the pathophysiology of cardiovascular disease; summarizes data on beneficial effects of apelin in preclinical, animal models of cardiovascular disease and measurement of plasma levels of apelin across the full spectrum of cardiovascular disease in humans; and notes the first studies describing bioactivity of apelin peptides in human healthy volunteers and patients with heart failure. More clarity is needed on the precise physiological/pathophysiological role of the apelin/APJ system in human health and disease. Nonetheless, preclinical studies and initial studies in humans show that APJ antagonism may represent a novel therapeutic target for patients with cardiovascular disease. Development of appropriately validated assays for apelin will clarify circulating levels of the peptide in health and disease. Development of suitable agonists/antagonists will pave the way for much needed future studies essential for advancing this promising field of drug discovery.

  18. Cardiovascular studies using the chimpanzee (Pan troglodytes)

    NASA Technical Reports Server (NTRS)

    Hinds, J. E.; Cothran, L. N.; Hawthorne, E. W.

    1977-01-01

    Despite the phylogenetic similarities between chimpanzees and man, there exists a paucity of reliable data on normal cardiovascular function and the physiological responses of the system to standard interventions. Totally implanted biotelemetry systems or hardwire analog techniques were used to examine the maximum number of cardiovascular variables which could be simultaneously monitored without significantly altering the system's performance. This was performed in order to acquire base-line data not previously obtained in this species, to determine cardiovascular response to specific forcing functions such as ventricular pacing, drug infusions, and lower body negative pressure. A cardiovascular function profile protocol was developed in order to adjust independently the three major factors which modify ventricular performance, namely, left ventricular performance, left ventricular preload, afterload, and contractility. Cardiac pacing at three levels above the ambient rate was used to adjust end diastolic volume (preload). Three concentrations of angiotensin were infused continuously to evaluate afterload in a stepwide fashion. A continuous infusion of dobutamine was administered to raise the manifest contractile state of the heart.

  19. Instrumentation for Non-Invasive Assessment of Cardiovascular Regulation

    NASA Technical Reports Server (NTRS)

    Cohen, Richard J.

    1999-01-01

    It is critically important to be able to assess alterations in cardiovascular regulation during and after space flight. We propose to develop an instrument for the non-invasive assessment of such alterations that can be used on the ground and potentially during space flight. This instrumentation would be used by the Cardiovascular Alterations Team at multiple sites for the study of the effects of space flight on the cardiovascular system and the evaluation of countermeasures. In particular, the Cardiovascular Alterations Team will use this instrumentation in conjunction with ground-based human bed-rest studies and during application of acute stresses e.g., tilt, lower body negative pressure, and exercise. In future studies, the Cardiovascular Alterations Team anticipates using this instrumentation to study astronauts before and after space flight and ultimately, during space flight. The instrumentation may also be used by the Bone Demineralization/Calcium Metabolism Team, the Neurovestibular Team and the Human Performance Factors, Sleep and Chronobiology Team to measure changes in autonomic nervous function. The instrumentation will be based on a powerful new technology - cardiovascular system identification (CSI) - which has been developed in our laboratory. CSI provides a non-invasive approach for the study of alterations in cardiovascular regulation. This approach involves the analysis of second-to-second fluctuations in physiologic signals such as heart rate and non-invasively measured arterial blood pressure in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of multiple physiologic mechanisms, CSI provides a closed-loop model of the cardiovascular regulatory state in an individual subject.

  20. Clinical Application of Stem Cells in the Cardiovascular System

    NASA Astrophysics Data System (ADS)

    Stamm, Christof; Klose, Kristin; Choi, Yeong-Hoon

    Regenerative medicine encompasses "tissue engineering" - the in vitro fabrication of tissues and/or organs using scaffold material and viable cells - and "cell therapy" - the transplantation or manipulation of cells in diseased tissue in vivo. In the cardiovascular system, tissue engineering strategies are being pursued for the development of viable replacement blood vessels, heart valves, patch material, cardiac pacemakers and contractile myocardium. Anecdotal clinical applications of such vessels, valves and patches have been described, but information on systematic studies of the performance of such implants is not available, yet. Cell therapy for cardiovascular regeneration, however, has been performed in large series of patients, and numerous clinical studies have produced sometimes conflicting results. The purpose of this chapter is to summarize the clinical experience with cell therapy for diseases of the cardiovascular system, and to analyse possible factors that may influence its outcome.

  1. Antioxidant-based therapies for angiotensin II-associated cardiovascular diseases

    PubMed Central

    Rosenbaugh, Erin G.; Savalia, Krupa K.; Manickam, Devika S.

    2013-01-01

    Cardiovascular diseases, including hypertension and heart failure, are associated with activation of the renin-angiotensin system (RAS) and increased circulating and tissue levels of ANG II, a primary effector peptide of the RAS. Through its actions on various cell types and organ systems, ANG II contributes to the pathogenesis of cardiovascular diseases by inducing cardiac and vascular hypertrophy, vasoconstriction, sodium and water reabsorption in kidneys, sympathoexcitation, and activation of the immune system. Cardiovascular research over the past 15–20 years has clearly implicated an important role for elevated levels of reactive oxygen species (ROS) in mediating these pathophysiological actions of ANG II. As such, the use of antioxidants, to reduce the elevated levels of ROS, as potential therapies for various ANG II-associated cardiovascular diseases has been intensely investigated. Although some antioxidant-based therapies have shown therapeutic impact in animal models of cardiovascular disease and in human patients, others have failed. In this review, we discuss the benefits and limitations of recent strategies, including gene therapy, dietary sources, low-molecular-weight free radical scavengers, polyethylene glycol conjugation, and nanomedicine-based technologies, which are designed to deliver antioxidants for the improved treatment of cardiovascular diseases. Although much work has been completed, additional research focusing on developing specific antioxidant molecules or proteins and identifying the ideal in vivo delivery system for such antioxidants is necessary before the use of antioxidant-based therapies for cardiovascular diseases become a clinical reality. PMID:23552499

  2. Imaging of murine embryonic cardiovascular development using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yongyang; Degenhardt, Karl R.; Astrof, Sophie; Zhou, Chao

    2016-03-01

    We have demonstrated the capability of spectral domain optical coherence tomography (SDOCT) system to image full development of mouse embryonic cardiovascular system. Monitoring morphological changes of mouse embryonic heart occurred in different embryonic stages helps identify structural or functional cardiac anomalies and understand how these anomalies lead to congenital heart diseases (CHD) present at birth. In this study, mouse embryo hearts ranging from E9.5 to E15.5 were prepared and imaged in vitro. A customized spectral domain OCT system was used for imaging, with a central wavelength of 1310nm, spectral bandwidth of ~100nm and imaging speed of 47kHz A-scans/s. Axial resolution of this system was 8.3µm in air, and transverse resolution was 6.2 µm with 5X objective. Key features of mouse embryonic cardiovascular development such as vasculature remodeling into circulatory system, separation of atria and ventricles and emergence of valves could be clearly seen in three-dimensional OCT images. Optical clearing was applied to overcome the penetration limit of OCT system. With high resolution, fast imaging speed, 3D imaging capability, OCT proves to be a promising biomedical imaging modality for developmental biology studies, rivaling histology and micro-CT.

  3. BDNF - A key player in cardiovascular system.

    PubMed

    Pius-Sadowska, Ewa; Machaliński, Bogusław

    2017-09-01

    Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The hypertension of Cushing's syndrome: controversies in the pathophysiology and focus on cardiovascular complications.

    PubMed

    Isidori, Andrea M; Graziadio, Chiara; Paragliola, Rosa Maria; Cozzolino, Alessia; Ambrogio, Alberto G; Colao, Annamaria; Corsello, Salvatore M; Pivonello, Rosario

    2015-01-01

    Cushing's syndrome is associated with increased mortality, mainly due to cardiovascular complications, which are sustained by the common development of systemic arterial hypertension and metabolic syndrome, which partially persist after the disease remission. Cardiovascular diseases and hypertension associated with endogenous hypercortisolism reveal underexplored peculiarities. The use of exogenous corticosteroids also impacts on hypertension and cardiovascular system, especially after prolonged treatment. The mechanisms involved in the development of hypertension differ, whether glucocorticoid excess is acute or chronic, and the source endogenous or exogenous, introducing inconsistencies among published studies. The pleiotropic effects of glucocorticoids and the overlap of the several regulatory mechanisms controlling blood pressure suggest that a rigorous comparison of in-vivo and in-vitro studies is necessary to draw reliable conclusions. This review, developed during the first 'Altogether to Beat Cushing's syndrome' workshop held in Capri in 2012, evaluates the most important peculiarities of hypertension associated with CS, with a particular focus on its pathophysiology. A critical appraisal of most significant animal and human studies is compared with a systematic review of the few available clinical trials. A special attention is dedicated to the description of the clinical features and cardiovascular damage secondary to glucocorticoid excess. On the basis of the consensus reached during the workshop, a pathophysiology-oriented therapeutic algorithm has been developed and it could serve as a first attempt to rationalize the treatment of hypertension in Cushing's syndrome.

  5. RhoA/Rho-Kinase in the Cardiovascular System.

    PubMed

    Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio

    2016-01-22

    Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.

  6. Thyroid and the Heart

    PubMed Central

    Grais, Ira Martin; Sowers, James R.

    2015-01-01

    Thyroid hormones modulate every component of the cardiovascular system necessary for normal cardiovascular development and function. When cardiovascular disease is present, thyroid function tests are characteristically indicated to determine if overt thyroid disorders or even subclinical dysfunction exists. As hypothyroidism, hypertension and cardiovascular disease all increase with advancing age monitoring of TSH, the most sensitive test for hypothyroidism, is important in this expanding segment of our population. A better understanding of the impact of thyroid hormonal status on cardiovascular physiology will enable health care providers to make decisions regarding thyroid hormone evaluation and therapy in concert with evaluating and treating hypertension and cardiovascular disease. The goal of this review is to access contemporary understanding of the effects of thyroid hormones on normal cardiovascular function and the potential role of overt and subclinical hypothyroidism and hyperthyroidism in a variety of cardiovascular diseases. PMID:24662620

  7. Preparing nurses for leadership roles in cardiovascular disease prevention.

    PubMed

    Lanuza, Dorothy M; Davidson, Patricia M; Dunbar, Sandra B; Hughes, Suzanne; De Geest, Sabina

    2011-07-01

    Cardiovascular disease (CVD) is a critical global health issue, and cardiovascular nurses play a vital role in decreasing the global burden and contributing to improving outcomes in individuals and communities. Cardiovascular nurses require the knowledge, skills, and resources that will enable them to function as leaders in CVD. This article addresses the education, training, and strategies that are needed to prepare nurses for leadership roles in preventing and managing CVD. Building on the World Health Organization core competencies for 21st-century health care workers, the specific competencies of cardiovascular nurses working in prevention are outlined. These can be further strengthened by investing in the development of cultural, system change and leadership competencies. Mentorship is proposed as a powerful strategy for promoting the cardiovascular nursing role and equipping individual nurses to contribute meaningfully to health system reform and community engagement in CVD risk reduction. Copyright © 2011 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

  8. Regulation of chromatin structure in the cardiovascular system.

    PubMed

    Rosa-Garrido, Manuel; Karbassi, Elaheh; Monte, Emma; Vondriska, Thomas M

    2013-01-01

    It has been appreciated for some time that cardiovascular disease involves large-scale transcriptional changes in various cell types. What has become increasingly clear only in the past few years, however, is the role of chromatin remodeling in cardiovascular phenotypes in normal physiology, as well as in development and disease. This review summarizes the state of the chromatin field in terms of distinct mechanisms to regulate chromatin structure in vivo, identifying when these modes of regulation have been demonstrated in cardiovascular tissues. We describe areas in which a better understanding of chromatin structure is leading to new insights into the fundamental biology of cardiovascular disease. 

  9. Connective Tissue Disorders and Cardiovascular Complications: The indomitable role of Transforming Growth Factor-beta signaling

    PubMed Central

    Wheeler, Jason B.; Ikonomidis, John S.; Jones, Jeffrey A.

    2015-01-01

    Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system. PMID:24443024

  10. EXPERIMENTAL APPROACHES TO EVALUATING THE ROLE OF ENVIRONMENTAL FACTORS IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASE

    EPA Science Inventory

    Epidemiologic studies have suggested factors in drinking water influence on the human cardiovascular system. A clear identification of the factors involved requires more invasive techniques and more strict experimental controls than can usually be applied in epidemiologic studies...

  11. Promoting cardiovascular health worldwide: strategies, challenges, and opportunities.

    PubMed

    Castellano, José M; Narula, Jagat; Castillo, Javier; Fuster, Valentín

    2014-09-01

    Cardiovascular disease is the leading cause of death in the world, affecting not only industrialized but, above all, low- and middle-income countries, where it has overtaken infectious diseases as the first cause of death and its impact threatens social and economic development. The increased prevalence of cardiovascular disease in recent years together with projected mortality for the coming decades constitute an irrefutable argument for the urgent implementation of well-planned interventions to control the pandemic of cardiovascular diseases, especially in the more economically deprived countries. The combination of behavioral, social, environmental, and biological factors, and others related to health care systems, that contribute to the development of cardiovascular diseases requires a multi-sector strategy that promotes a healthy lifestyle, reduces cardiovascular risk factors, and cuts mortality and morbidity through quality health care services. These proposals should be guided by leaders in the scientific community, government, civil society, private sector, and local communities. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  12. Pharmacological Strategies to Retard Cardiovascular Aging.

    PubMed

    Alfaras, Irene; Di Germanio, Clara; Bernier, Michel; Csiszar, Anna; Ungvari, Zoltan; Lakatta, Edward G; de Cabo, Rafael

    2016-05-13

    Aging is the major risk factor for cardiovascular diseases, which are the leading cause of death in the United States. Traditionally, the effort to prevent cardiovascular disease has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat cardiovascular disease. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the prolongevity benefits of various therapeutic strategies that support cardiovascular health. © 2016 American Heart Association, Inc.

  13. Automated evaluation of electronic discharge notes to assess quality of care for cardiovascular diseases using Medical Language Extraction and Encoding System (MedLEE)

    PubMed Central

    Lin, Jou-Wei; Yang, Chen-Wei

    2010-01-01

    The objective of this study was to develop and validate an automated acquisition system to assess quality of care (QC) measures for cardiovascular diseases. This system combining searching and retrieval algorithms was designed to extract QC measures from electronic discharge notes and to estimate the attainment rates to the current standards of care. It was developed on the patients with ST-segment elevation myocardial infarction and tested on the patients with unstable angina/non-ST-segment elevation myocardial infarction, both diseases sharing almost the same QC measures. The system was able to reach a reasonable agreement (κ value) with medical experts from 0.65 (early reperfusion rate) to 0.97 (β-blockers and lipid-lowering agents before discharge) for different QC measures in the test set, and then applied to evaluate QC in the patients who underwent coronary artery bypass grafting surgery. The result has validated a new tool to reliably extract QC measures for cardiovascular diseases. PMID:20442141

  14. PPARs and the Cardiovascular System

    PubMed Central

    Hamblin, Milton; Chang, Lin; Fan, Yanbo; Zhang, Jifeng

    2009-01-01

    Abstract Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPARγ appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPARγ expression may be a vascular compensatory response. Also, ligand-activated PPARγ decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPARα, similar to PPARγ, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPARα activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPARδ overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPARδ ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology. Antioxid. Redox Signal. 11, 1415–1452. PMID:19061437

  15. [Characteristics of lipid metabolism and the cardiovascular system in glycogenosis types I and III].

    PubMed

    Polenova, N V; Strokova, T V; Starodubova, A V

    Glycogen storage disease (GSD) is an inherited metabolic disorder characterized by early childhood lipid metabolic disturbances with potentially proatherogenic effects. The review outlines the characteristics of impaired lipid composition and other changes in the cardiovascular system in GSD types I and III. It analyzes the factors enabling and inhibiting the development of atherosclerosis in patients with GSD. The review describes the paradox of vascular resistance to the development of early atherosclerosis despite the proatherogenic composition of lipids in the patients of this group.

  16. An integrated approach to preventing cardiovascular disease: community-based approaches, health system initiatives, and public health policy.

    PubMed

    Karwalajtys, Tina; Kaczorowski, Janusz

    2010-01-01

    Cardiovascular disease (CVD) is largely the product of interactions among modifiable risk factors that are common in developed nations and increasingly of concern in developing countries. Hypertension is an important precursor to the development of CVD, and although detection and treatment rates have improved in recent years in some jurisdictions, effective strategies and policies supporting a shift in distribution of risk factors at the population level remain paramount. Challenges in managing cardiovascular health more effectively include factors at the patient, provider, and system level. Strategies to reduce hypertension and CVD should be population based, incorporate multilevel, multicomponent, and socioenvironmental approaches, and integrate community resources with public health and clinical care. There is an urgent need to improve monitoring and management of risk factors through community-wide, primary care-linked initiatives, increase the evidence base for community-based prevention strategies, further develop and evaluate promising program components, and develop new approaches to support healthy lifestyle behaviors in diverse age, socioeconomic, and ethnocultural groups. Policy and system changes are critical to reduce risk in populations, including legislation and public education to reduce dietary sodium and trans-fatty acids, food pricing policies, and changes to health care delivery systems to explicitly support prevention and management of CVD.

  17. The apelin peptides as putative targets in cardiovascular drug discovery and development.

    PubMed

    Charles, Cj

    2008-01-01

    Apelin is a recently isolated peptide that appears to act as an endogenous ligand for the previously orphaned G-protein-coupled receptor APJ. A number of studies have reported cardiovascular actions of apelin, including changes in the blood pressure and potent inotropic actions. Furthermore, perturbations of both apelin and APJ within the myocardial tissue and circulating levels of the peptide have been reported in a number of cardiovascular disease states. Taken together, these studies suggest a role for apelin in the pressure/volume homeostasis and in the pathophysiology of cardiovascular diseases. However, findings in the literature to date are, at times, disparate. This review highlights key areas where further work is required to clarify the role of apelin/APJ in both normal physiology and pathophysiology. Nonetheless, preliminary evidence suggests that the manipulation of this receptor/ligand peptide system may be a target for drug development, thereby offering a therapeutic benefit in cardiovascular diseases.

  18. Computer model for the cardiovascular system: development of an e-learning tool for teaching of medical students.

    PubMed

    Warriner, David Roy; Bayley, Martin; Shi, Yubing; Lawford, Patricia Victoria; Narracott, Andrew; Fenner, John

    2017-11-21

    This study combined themes in cardiovascular modelling, clinical cardiology and e-learning to create an on-line environment that would assist undergraduate medical students in understanding key physiological and pathophysiological processes in the cardiovascular system. An interactive on-line environment was developed incorporating a lumped-parameter mathematical model of the human cardiovascular system. The model outputs were used to characterise the progression of key disease processes and allowed students to classify disease severity with the aim of improving their understanding of abnormal physiology in a clinical context. Access to the on-line environment was offered to students at all stages of undergraduate training as an adjunct to routine lectures and tutorials in cardiac pathophysiology. Student feedback was collected on this novel on-line material in the course of routine audits of teaching delivery. Medical students, irrespective of their stage of undergraduate training, reported that they found the models and the environment interesting and a positive experience. After exposure to the environment, there was a statistically significant improvement in student performance on a series of 6 questions based on cardiovascular medicine, with a 33% and 22% increase in the number of questions answered correctly, p < 0.0001 and p < 0.001 respectively. Considerable improvement was found in students' knowledge and understanding during assessment after exposure to the e-learning environment. Opportunities exist for development of similar environments in other fields of medicine, refinement of the existing environment and further engagement with student cohorts. This work combines some exciting and developing fields in medical education, but routine adoption of these types of tool will be possible only with the engagement of all stake-holders, from educationalists, clinicians, modellers to, most importantly, medical students.

  19. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction.

    PubMed

    Korakianitis, Theodosios; Shi, Yubing

    2006-09-01

    Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.

  20. Diabetes and cardiovascular disease: the potential benefit of incretin-based therapies.

    PubMed

    Addison, Daniel; Aguilar, David

    2011-04-01

    The health burden of type 2 diabetes mellitus continues to increase worldwide. A substantial portion of this burden is due to the development of cardiovascular disease in patients with diabetes. Recent failures of clinical trials of intensive glucose control to reduce macrovascular events, coupled with reports of potential harm of certain diabetic therapy, have led to increased scrutiny as new diabetic therapies are developed. Incretin peptides are a group of gastrointestinal proteins that regulate glucose metabolism through multiple mechanisms, and incretin-based therapies have been developed to treat type 2 diabetes. These agents include glucagon-like peptide-1 (GLP-1) and dipeptidyl peptidase-IV (DPP-IV) inhibitors. In addition to effects on glucose homeostasis, growing evidence suggest that these peptides may also affect the cardiovascular system. In this review, we discuss recent findings concerning the potential, yet untested, benefits of incretin-based pharmacotherapy in the treatment of cardiovascular disease.

  1. The hypertension of Cushing's syndrome: controversies in the pathophysiology and focus on cardiovascular complications

    PubMed Central

    Isidori, Andrea M.; Graziadio, Chiara; Paragliola, Rosa Maria; Cozzolino, Alessia; Ambrogio, Alberto G.; Colao, Annamaria; Corsello, Salvatore M.; Pivonello, Rosario

    2015-01-01

    Cushing's syndrome is associated with increased mortality, mainly due to cardiovascular complications, which are sustained by the common development of systemic arterial hypertension and metabolic syndrome, which partially persist after the disease remission. Cardiovascular diseases and hypertension associated with endogenous hypercortisolism reveal underexplored peculiarities. The use of exogenous corticosteroids also impacts on hypertension and cardiovascular system, especially after prolonged treatment. The mechanisms involved in the development of hypertension differ, whether glucocorticoid excess is acute or chronic, and the source endogenous or exogenous, introducing inconsistencies among published studies. The pleiotropic effects of glucocorticoids and the overlap of the several regulatory mechanisms controlling blood pressure suggest that a rigorous comparison of in-vivo and in-vitro studies is necessary to draw reliable conclusions. This review, developed during the first ‘Altogether to Beat Cushing's syndrome’ workshop held in Capri in 2012, evaluates the most important peculiarities of hypertension associated with CS, with a particular focus on its pathophysiology. A critical appraisal of most significant animal and human studies is compared with a systematic review of the few available clinical trials. A special attention is dedicated to the description of the clinical features and cardiovascular damage secondary to glucocorticoid excess. On the basis of the consensus reached during the workshop, a pathophysiology-oriented therapeutic algorithm has been developed and it could serve as a first attempt to rationalize the treatment of hypertension in Cushing's syndrome. PMID:25415766

  2. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging.

    PubMed

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI.

  3. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging

    PubMed Central

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P.; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P.; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785

  4. Phylloquinone and vitamin D status: associations with incident chronic kidney disease in the Framingham Offspring Cohort

    USDA-ARS?s Scientific Manuscript database

    Cardiovascular risk factors are associated with the development of chronic kidney disease (CKD), and CKD and vascular disease are etiologically linked. Evidence suggests deficiencies of vitamins D and K may adversely affect the cardiovascular system, but data from longitudinal studies are lacking. W...

  5. Ultrasound Techniques for Space Applications

    NASA Technical Reports Server (NTRS)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  6. [Cardiovascular disease and systemic inflammatory diseases].

    PubMed

    Cuende, José I; Pérez de Diego, Ignacio J; Godoy, Diego

    2016-01-01

    More than a century of research has shown that atherosclerosis is an inflammatory process more than an infiltrative or thrombogenic process. It has been demonstrated epidemiologically and by imaging techniques, that systemic inflammatory diseases (in particular, but not exclusively, rheumatoid arthritis and systemic lupus erythematosus) increase the atherosclerotic process, and has a demonstrated pathophysiological basis. Furthermore, treatments to control inflammatory diseases can modify the course of the atherosclerotic process. Although there are no specific scales for assessing cardiovascular risk in patients with these diseases, cardiovascular risk is high. A number of specific risk scales are being developed, that take into account specific factors such as the degree of inflammatory activity. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  7. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    PubMed Central

    Burford, Natalie G.; Webster, Natalia A.; Cruz-Topete, Diana

    2017-01-01

    The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA) axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart. PMID:29035323

  8. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.

    PubMed

    Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana

    2017-10-16

    The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  9. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system.

    PubMed

    Kietzmann, Thomas; Petry, Andreas; Shvetsova, Antonina; Gerhold, Joachim M; Görlach, Agnes

    2017-06-01

    Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc. © 2017 The British Pharmacological Society.

  10. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system

    PubMed Central

    Kietzmann, Thomas; Petry, Andreas; Shvetsova, Antonina; Gerhold, Joachim M

    2017-01-01

    Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post‐translational histone modifications, ATP‐dependent alterations to chromatin and non‐coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage‐specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:28332701

  11. Noise and cardiovascular effects in workers of the sanitary fixtures industry.

    PubMed

    Assunta, Capozzella; Ilaria, Samperi; Simone, De Sio; Gianfranco, Tomei; Teodorico, Casale; Carmina, Sacco; Anastasia, Suppi; Roberto, Giubilati; Francesco, Tomei; Valeria, Rosati Maria

    2015-01-01

    The aim of the present study is to evaluate whether workers in the sanitary fixtures industry are a category at risk of developing cardiovascular diseases, and in particular, whether chronic noise exposure may play a role in cardiovascular effects in exposed workers. Seventy-five employees engaged in sanitation fixtures production and a control group of sixty-four office workers, who were not exposed to agents that could damage the cardiovascular system, participated in our study. The selected workers completed a clinical-anamnestic questionnaire, and underwent a medical examination, blood pressure test, electrocardiogram (ECG), blood tests, and audiometry. Measurements of environmental noise, dust, and lead were also carried out. The exposed workers, in comparison to the control group, showed a higher frequency of hypertension, systolic and diastolic blood pressure (p<0.05, p<0.05), as well as electrocardiographic abnormalities (p<0.05). There was also a higher frequency of hypertension and electrocardiographic abnormalities among subjects with audiometric deficit compared to normoacoustic subjects (p<0.05 and p<0.05). from our study suggest that work activity in the sanitary fixtures industry can have an influence on the cardiovascular system, and noise can be the main cause of damage for the cardiovascular system in exposed workers, as cardiovascular damage seems to be linked to hearing loss. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. [Research priorities and research topics for cardiovascular nursing: the Swiss Research Agenda for Nursing].

    PubMed

    Mahrer-Imhof, Romy; Imhof, Lorenz

    2008-12-01

    Cardiovascular diseases are worldwide a major challenge for the health care system and the number one reason for premature mortality and lost life years. Many accomplishments to reduce risk factors and improve treatment in acute and chronic disease and rehabilitation have been initiated by medical research but were also embraced by nursing research, which provided valuable knowledge about supporting risk factor modification and patients' self-management. Nursing research in the cardiovascular field has a long tradition in the US. In Europe cardiovascular nursing research also developed over the past decade, with increasing participation of Swiss nurse researchers. Efforts in this field of cardiovascular nursing have been made to convey projects in nursing research that help to enhance the health of the population sustainably and improve well-being in patients with acute and chronic courses of cardiovascular disease. Scientific knowledge is pivotal in developing evidence-based nursing interventions. Since both the German and the French speaking part of Switzerland have been lacking a literature-based and expert-supported agenda for nursing research, the aim of the Swiss Research Agenda for Nursing (SRAN) project was to develop an agenda providing researchers, funding agencies, and politics with orientation. This article takes the seven priorities of the SRAN project and links them to the topics of risk factor modification, rehabilitation programs, self-care, and patient education. The article presents the first agenda for cardiovascular nursing for the years 2007 to 2017. The agenda will serve to develop an action plan and to promote nursing research projects in the field of cardiovascular nursing in Switzerland.

  13. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues

    PubMed Central

    Borovjagin, Anton V.; Ogle, Brenda; Berry, Joel; Zhang, Jianyi

    2016-01-01

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional two-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and pre-clinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. PMID:28057791

  14. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development

    PubMed Central

    Ribas, João; Sadeghi, Hossein; Manbachi, Amir; Leijten, Jeroen; Brinegar, Katelyn; Zhang, Yu Shrike; Ferreira, Lino

    2016-01-01

    Abstract Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general vasculature have become common causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics. Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovascular system—in particular, heart and general vasculature. These systems pay particular attention to mimicking structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation. Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the area of drug discovery and development. PMID:28971113

  15. Introduction: Cardiovascular physics

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Kurths, Jürgen; Ditto, William; Bauernschmitt, Robert

    2007-03-01

    The number of patients suffering from cardiovascular diseases increases unproportionally high with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Cardiovascular physics-which interconnects medicine, physics, biology, engineering, and mathematics-is based on interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain deeper insights into pathophysiology and treatment options. This paper summarizes advances in cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005. The meeting attracted an interdisciplinary audience and led to a number of papers covering the main research fields of cardiovascular physics, including data analysis, modeling, and medical application. The variety of problems addressed by this issue underlines the complexity of the cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and modeling methods from cardiovascular physics have the ability to lead to significant improvements in different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite all interested readers to join the community and find competent discussion and cooperation partners.

  16. Thinking on building the network cardiovasology of Chinese medicine.

    PubMed

    Yu, Gui; Wang, Jie

    2012-11-01

    With advances in complex network theory, the thinking and methods regarding complex systems have changed revolutionarily. Network biology and network pharmacology were built by applying network-based approaches in biomedical research. The cardiovascular system may be regarded as a complex network, and cardiovascular diseases may be taken as the damage of structure and function of the cardiovascular network. Although Chinese medicine (CM) is effective in treating cardiovascular diseases, its mechanisms are still unclear. With the guidance of complex network theory, network biology and network pharmacology, network-based approaches could be used in the study of CM in preventing and treating cardiovascular diseases. A new discipline-network cardiovasology of CM was, therefore, developed. In this paper, complex network theory, network biology and network pharmacology were introduced and the connotation of "disease-syndrome-formula-herb" was illustrated from the network angle. Network biology could be used to analyze cardiovascular diseases and syndromes and network pharmacology could be used to analyze CM formulas and herbs. The "network-network"-based approaches could provide a new view for elucidating the mechanisms of CM treatment.

  17. Usefulness of Myeloperoxidase Levels in Healthy Elderly Subjects to Predict Risk of Developing Heart Failure

    PubMed Central

    Tang, W.H. Wilson; Katz, Ronit; Brennan, Marie-Luise; Aviles, Ronnier J.; Tracy, Russell P.; Psaty, Bruce M.; Hazen, Stanley L.

    2009-01-01

    Increased systemic myeloperoxidase (MPO) has been associated with both the presence and severity of heart failure (HF). This study tested the hypothesis that increased systemic MPO in apparently healthy elderly subjects may predict increased risk of developing HF. Systemic MPO was measured in all available samples from the 1992 to 1993 visit of the Cardiovascular Health Study (CHS). After excluding subjects without available blood samples or with a history of prevalent HF, myocardial infarction (MI), or stroke, 3,733 subjects were included. A total of 569 subjects developed incident HF during 7.2 ± 2.3 years of follow-up. Patients in the highest MPO quartile (>432 pmol/L) showed higher risk of developing incident HF after adjusting for MI, age, gender, systolic blood pressure, smoking, low-density lipoprotein cholesterol, diabetes mellitus, and any subclinical cardiovascular disease (hazard ratio 1.34, 95% confidence interval 1.06 to 1.72, p = 0.013). However, the relation was more apparent after censoring subjects with incident MI before incident HF, even when adjusted for C-reactive protein and cystatin C (hazard ratio 1.46, 95% confidence interval 1.08 to 1.97, p = 0.02). Interestingly, stratified analyses showed that the relation between increased MPO and HF risk was stronger in subjects without traditional cardiovascular risk factors (≤75 years old, systolic blood pressure ≤136 mm Hg, no subclinical cardiovascular disease, and no diabetes mellitus). In conclusion, an independent association between increased MPO and the development of HF in apparently healthy elderly subjects was observed, particularly beyond MI and traditional cardiac risk factors. PMID:19406270

  18. 76 FR 47143 - Approval for Manufacturing Authority, Foreign-Trade Zone 153; Abbott Cardiovascular Systems, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Authority, Foreign-Trade Zone 153; Abbott Cardiovascular Systems, Inc., (Cardiovascular Devices), Riverside... of Abbott Cardiovascular Systems, Inc., within Sites 11-13 of FTZ 153, located in Riverside County... behalf of Abbott Cardiovascular Systems, Inc., as described in the application and Federal Register...

  19. Cardio-Oncology: How New Targeted Cancer Therapies and Precision Medicine Can Inform Cardiovascular Discovery

    PubMed Central

    Bellinger, Andrew M.; Arteaga, Carlos L.; Force, Thomas; Humphreys, Benjamin D.; Demetri, George D.; Druker, Brian J.; Moslehi, Javid

    2016-01-01

    Cardio-Oncology (the cardiovascular care of cancer patients) has developed as a new translational and clinical field based on the expanding repertoire of mechanism-based cancer therapies. While these therapies have changed the natural course of many cancers, several may also lead to cardiovascular complications. Many new anti-cancer drugs approved over the past decade are “targeted” kinase inhibitors that interfere with intracellular signaling contributing to tumor progression. Unexpected cardiovascular and cardio-metabolic effects following patient treatment with these inhibitors have provided unique insights into the role of kinases in human cardiovascular biology. Today, an ever-expanding number of cancer therapies targeting novel kinases as well as other specific cellular and metabolic pathways are being developed and tested in oncology clinical trials. Some of these drugs may impact the cardiovascular system in detrimental and others perhaps in beneficial ways. We propose that the numerous ongoing oncology clinical trials are an opportunity for closer collaboration between cardiologists and oncologists to study the cardiovascular and cardio-metabolic changes due to modulation of these pathways in patients. In this regard, cardio-oncology represents an opportunity and a novel platform for basic and translational investigation and can serve as a potential avenue for optimization of anti-cancer therapies as well as for cardiovascular research and drug discovery. PMID:26644247

  20. Mathematical biomarkers for the autonomic regulation of cardiovascular system.

    PubMed

    Campos, Luciana A; Pereira, Valter L; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia

    2013-10-07

    Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance.

  1. Mathematical biomarkers for the autonomic regulation of cardiovascular system

    PubMed Central

    Campos, Luciana A.; Pereira, Valter L.; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia

    2013-01-01

    Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance. PMID:24109456

  2. Flow and pressure regulation in the cardiovascular system. [engineering systems model

    NASA Technical Reports Server (NTRS)

    Iberall, A.

    1974-01-01

    Principles and descriptive fragments which may contribute to a model of the regulating chains in the cardiovascular system are presented. Attention is given to the strain sensitivity of blood vessels, the law of the autonomy of the heart beat oscillator, the law of the encapsulation of body fluids, the law of the conservation of protein, the law of minimum 'arterial' pressure, the design of the 'mammalian' kidney, questions of homeokinetic organization, and the development of self-regulatory chains. Details concerning the development program for the heart muscle are considered along with the speed of response of the breathing rate and the significance of the pulmonary vascular pressure-flow characteristics.

  3. Internet and cardiovascular research: the present and its future potentials and limits.

    PubMed

    2002-03-01

    The Internet and the World Wide Web have been proposed as tools to improve medical and cardiovascular research. These new technologies have been mainly applied to large-scale clinical trials, with the development of clinical-trial websites. They include tools for the management of some aspects of clinical trials, such as the dissemination of information on trial progress; randomisation and the monitoring processes; the distribution and accountability of study drugs; and remote data-entry. Several clinical-trial websites have been developed in the cardiovascular field over the last few years, but few have been designed to conduct trials fully online. Advantages of such systems include greater interaction between the coordinating centre and investigators, availability of a clean database in a short time, and cost reduction. Website developers need to take care of security issues and to use security tools (data encryption, firewalls, passwords and electronic signatures) in order to prevent unauthorised users from accessing the system and patient data.

  4. In-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1997-01-01

    An in-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation has been developed. Studies show that good accuracy can be achieved in the measurement of pressure and of flow, in steady and pulstile flow systems. The model can be used for development, testing and evaluation of cardiovascular-mechanical-electrical anlogue models, cardiovascular prosthetics (i.e. valves, vascular grafts) and pressure and flow biosensors.

  5. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    PubMed

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  6. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2012-01-01

    The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771

  7. Functions of MicroRNAs in Cardiovascular Biology and Disease

    PubMed Central

    Hata, Akiko

    2015-01-01

    In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557

  8. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish

    PubMed Central

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    2016-01-01

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)-b-poly(ε-caprolactone) (PCL), namely PEG-b-PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG-b-PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG-b-PCL nano-micelle on cardiovascular development. The results showed that PEG-b-PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG-b-PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG-b-PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG-b-PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG-b-PCL nano-micelles, indicating that PEG-b-PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG-b-PCL nano-micelle could pose potential hazards to cardiovascular development. PMID:27980407

  9. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    PubMed

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could pose potential hazards to cardiovascular development.

  10. Stress, depression, and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models

    PubMed Central

    Grippo, Angela J.; Johnson, Alan Kim

    2008-01-01

    A bidirectional association between mood disorders such as depression, and cardiovascular diseases such as myocardial infarction and congestive heart failure, has been described; however, the precise neurobiological mechanisms that underlie these associations have not been fully elucidated. This review is focused on the neurobiological processes and mediators that are common to both mood and cardiovascular disorders, with an emphasis on the role of exogenous stressors in addition to: (a) neuroendocrine and neurohumoral changes involving dysfunction of the hypothalamic-pituitary-adrenal axis and activation of the renin-angiotensin-aldosterone system, (b) immune alterations including activation of pro-inflammatory cytokines, (c) autonomic and cardiovascular dysregulation including increased sympathetic drive, withdrawal of parasympathetic tone, cardiac rate and rhythm disturbances, and altered baroreceptor reflex function, (d) central neurotransmitter system dysfunction including dopamine, norepinephrine and serotonin, and (e) behavioral changes including fatigue and physical inactivity. We also focus specifically on experimental investigations with preclinical disease models, conducted to elucidate the neurobiological mechanisms underlying the link between mood disorders and cardiovascular disease. These include: (a) the chronic mild stress model of depression, (b) a model of congestive heart failure, a model of cardiovascular deconditioning, (d) pharmacological manipulations of body fluid and sodium balance, and (e) pharmacological manipulations of the central serotonergic system. In combination with the extensive literature describing findings from human research, the investigation of mechanisms underlying mood and cardiovascular regulation using animal models will enhance our understanding of the association of depression and cardiovascular disease, and can promote the development of better treatments and interventions for individuals with these co-morbid conditions. PMID:19116888

  11. An overview of lymphatic vessels and their emerging role in cardiovascular disease

    PubMed Central

    Jones, Dennis; Min, Wang

    2011-01-01

    Over the past decade, molecular details of lymphatic vessels (lymphatics) have been rapidly acquired due to the identification of lymphatic endothelial-specific markers. Separate from the cardiovascular system, the lymphatic system is also an elaborate network of vessels that are important in normal physiology. Lymphatic vessels have the unique task to regulate fluid homeostasis, assist in immune surveillance, and transport dietary lipids. However, dysfunctional lymphatic vessels can cause pathology, while normal lymphatics can exacerbate pathology. This review summarizes the development and growth of lymphatic vessels in addition to highlighting their critical roles in physiology and pathology. Also, we discuss recent work that suggests a connection between lymphatic dysfunction and cardiovascular disease. PMID:22022141

  12. Long-term regulation in the cardiovascular system - Cornerstone in the development of a composite physiological model

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    The present work discusses a model of the cardiovascular system and related subsystems capable of long-term simulations of the type desired for in-space hypogravic human physiological performance prediction. The discussion centers around the model of Guyton and modifications of it. In order to draw attention to the fluid handling capabilities of the model, one of several transfusion simulations performed is presented, namely, the isotonic saline transfusion simulation.

  13. CARDIOCOG. Experiment ops

    NASA Image and Video Library

    2006-11-29

    ISS014-E-08795 (29 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, works with the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  14. An object-oriented, knowledge-based system for cardiovascular rehabilitation--phase II.

    PubMed Central

    Ryder, R. M.; Inamdar, B.

    1995-01-01

    The Heart Monitor is an object-oriented, knowledge-based system designed to support the clinical activities of cardiovascular (CV) rehabilitation. The original concept was developed as part of graduate research completed in 1992. This paper describes the second generation system which is being implemented in collaboration with a local heart rehabilitation program. The PC UNIX-based system supports an extensive patient database organized by clinical areas. In addition, a knowledge base is employed to monitor patient status. Rule-based automated reasoning is employed to assess risk factors contraindicative to exercise therapy and to monitor administrative and statutory requirements. PMID:8563285

  15. Resveratrol and polydatin as modulators of Ca2+ mobilization in the cardiovascular system.

    PubMed

    Liu, Wenjuan; Chen, Peiya; Deng, Jianxin; Lv, Jingzhang; Liu, Jie

    2017-09-01

    In the cardiovascular system, Ca 2+ controls cardiac excitation-contraction coupling and vascular contraction and dilation. Disturbances in intracellular Ca 2+ homeostasis induce malfunctions of the cardiovascular system, including cardiac pump dysfunction, arrhythmia, remodeling, and apoptosis, as well as hypertension and impairment of vascular reactivity. Therefore, developing drugs and strategies manipulating Ca 2+ handling are highly valued in the treatment of cardiovascular disease. Resveratrol (Res) and polydatin (PD), a Res glucoside, have been well established to have beneficial effects on improving cardiovascular function. Studies from our laboratory and others have demonstrated that they exhibit inotropic effects on normal heart and therapeutic effects on hypertension, cardiac ischemia/reperfusion injury, hypertrophy, and heart failure by manipulating Ca 2+ mobilization. The actions of Res and PD on Ca 2+ signals delicately manipulated by multiple Ca 2+ -handling proteins are pleiotropic and somewhat controversial, depending on cellular species and intracellular oxidative status. Here, we focus on the effects of Res and PD on controlling Ca 2+ homeostasis in the heart and vasculature under normal and diseased conditions and highlight the key direct and indirect molecules mediating these effects. © 2017 New York Academy of Sciences.

  16. The Veterans Affairs Cardiac Risk Score: Recalibrating the Atherosclerotic Cardiovascular Disease Score for Applied Use.

    PubMed

    Sussman, Jeremy B; Wiitala, Wyndy L; Zawistowski, Matthew; Hofer, Timothy P; Bentley, Douglas; Hayward, Rodney A

    2017-09-01

    Accurately estimating cardiovascular risk is fundamental to good decision-making in cardiovascular disease (CVD) prevention, but risk scores developed in one population often perform poorly in dissimilar populations. We sought to examine whether a large integrated health system can use their electronic health data to better predict individual patients' risk of developing CVD. We created a cohort using all patients ages 45-80 who used Department of Veterans Affairs (VA) ambulatory care services in 2006 with no history of CVD, heart failure, or loop diuretics. Our outcome variable was new-onset CVD in 2007-2011. We then developed a series of recalibrated scores, including a fully refit "VA Risk Score-CVD (VARS-CVD)." We tested the different scores using standard measures of prediction quality. For the 1,512,092 patients in the study, the Atherosclerotic cardiovascular disease risk score had similar discrimination as the VARS-CVD (c-statistic of 0.66 in men and 0.73 in women), but the Atherosclerotic cardiovascular disease model had poor calibration, predicting 63% more events than observed. Calibration was excellent in the fully recalibrated VARS-CVD tool, but simpler techniques tested proved less reliable. We found that local electronic health record data can be used to estimate CVD better than an established risk score based on research populations. Recalibration improved estimates dramatically, and the type of recalibration was important. Such tools can also easily be integrated into health system's electronic health record and can be more readily updated.

  17. Exposure to 3,3’,4,4’,5-pentachlorobiphenyl (PCB 126) impacts multiple organ systems in developing little skate (Leucoraja erinacea)

    EPA Science Inventory

    Effects of exposure to coplanar polychlorinated biphenyls (PCBs) and other dioxin-like chemicals on developing vertebrates involve many organ systems, including the skeletal and cardiovascular systems. Apex predators, including those from the class Chondrichthyes (sharks, skates,...

  18. Exposure to 3,3’,4,4’,5-pentachlorobiphenyl (PCB 126) impacts multiple organ systems in developing little skate (Leucoraja erinacea).

    EPA Science Inventory

    Effects of exposure to coplanar polychlorinated biphenyls (PCBs) and other dioxin-like chemicals on developing vertebrates involve many organ systems, including the skeletal and cardiovascular systems. Apex predators, including those from the class Chondrichthyes (sharks, skates,...

  19. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly.

    PubMed

    Pacher, Pal; Steffens, Sabine; Haskó, György; Schindler, Thomas H; Kunos, George

    2018-03-01

    Dysregulation of the endogenous lipid mediators endocannabinoids and their G-protein-coupled cannabinoid receptors 1 and 2 (CB 1 R and CB 2 R) has been implicated in a variety of cardiovascular pathologies. Activation of CB 1 R facilitates the development of cardiometabolic disease, whereas activation of CB 2 R (expressed primarily in immune cells) exerts anti-inflammatory effects. The psychoactive constituent of marijuana, Δ 9 -tetrahydrocannabinol (THC), is an agonist of both CB 1 R and CB 2 R, and exerts its psychoactive and adverse cardiovascular effects through the activation of CB 1 R in the central nervous and cardiovascular systems. The past decade has seen a nearly tenfold increase in the THC content of marijuana as well as the increased availability of highly potent synthetic cannabinoids for recreational use. These changes have been accompanied by the emergence of serious adverse cardiovascular events, including myocardial infarction, cardiomyopathy, arrhythmias, stroke, and cardiac arrest. In this Review, we summarize the role of the endocannabinoid system in cardiovascular disease, and critically discuss the cardiovascular consequences of marijuana and synthetic cannabinoid use. With the legalization of marijuana for medicinal purposes and/or recreational use in many countries, physicians should be alert to the possibility that the use of marijuana or its potent synthetic analogues might be the underlying cause of severe cardiovascular events and pathologies.

  20. Prognostic value of metabolic syndrome for the development of cardiovascular disease in a cohort of premenopausal women with systemic lupus erythematosus.

    PubMed

    García-Villegas, Elsy Aidé; Lerman-Garber, Israel; Flores-Suárez, Luis Felipe; Aguilar-Salinas, Carlos; Márquez González, Horacio; Villa-Romero, Antonio Rafael

    2015-04-08

    Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease of unknown etiology. In lupus patients there is an increased cardiovascular risk due to an accelerated atherogenesis. Furthermore, Metabolic Syndrome (MS) adds an independent risk for developing Cardiovascular Disease (CVD) in the population. Therefore, it is important to determine whether lupus patients have an increased risk of developing Cardiovascular Disease in the presence of MS. To estimate the prognostic value of MS in the incidence of cardiovascular events in a cohort of premenopausal patients with SLE. Cohort study in 238 patients was carried out. Clinical, biochemical, dietetic and anthropometric evaluations were performed. Patients were classified according to the prevalence of MS in 2001. There was a patient follow-up from 2001 to 2008. In 2008, after studying the records, we obtained the "cases" (patients with CVD) and the "no cases" (patients without CVD). The basal prevalence of MS in the cohort was of 21.8% (ATPIII). The MS component with the highest prevalence in the population studied in 2001 was low HDL-Cholesterol (<50mg/dL) with a prevalence of 55.0%. The cumulative incidence of CVD in the group with MS was 17.3% and in the group without MS it was 7.0% with a Relative Risk (RR) of 2.48 (1.12-5.46) and p<0.05. In the multivariable analysis it was noted that MS is a predictive factor of CVD. We observed the prognostic value of MS for an increased risk of cardiovascular damage in premenopausal patients with lupus. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  1. Regulation of signal transduction by reactive oxygen species in the cardiovascular system.

    PubMed

    Brown, David I; Griendling, Kathy K

    2015-01-30

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. © 2015 American Heart Association, Inc.

  2. Regulation of signal transduction by reactive oxygen species in the cardiovascular system

    PubMed Central

    Brown, David I.; Griendling, Kathy K.

    2015-01-01

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species in normal physiological signaling has been elucidated. Signaling pathways modulated by reactive oxygen species (ROS) are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here we review the current literature regarding ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. PMID:25634975

  3. Collaborative research in cardiovascular dynamics and bone elasticity

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A collaborative research program covering a variety of topics of biomechanics and biomedical engineering within the fields of cardiovascular dynamics, respiration, bone elasticity and vestibular physiology is described. The goals of the research were to promote: (1) a better understanding of the mechanical behavior of the circulatory system and its control mechanisms; (2) development of noninvasive methods of measuring the changes in the mechanical properties of blood vessels and other cardiovascular parameters in man; (3) application of these noninvasive methods to examine in man the physiological effects of environmental changes, including earth-simulated gravitational changes; and (4) development of in-flight methods for studying the events which lead to post-flight postural hypotension.

  4. The Cardiovascular Health in Ambulatory Care Research Team performance indicators for the primary prevention of cardiovascular disease: a modified Delphi panel study.

    PubMed

    Tu, Jack V; Maclagan, Laura C; Ko, Dennis T; Atzema, Clare L; Booth, Gillian L; Johnston, Sharon; Tu, Karen; Lee, Douglas S; Bierman, Arlene; Hall, Ruth; Bhatia, R Sacha; Gershon, Andrea S; Tobe, Sheldon W; Sanmartin, Claudia; Liu, Peter; Chu, Anna

    2017-04-25

    High-quality ambulatory care can reduce cardiovascular disease risk, but important gaps exist in the provision of cardiovascular preventive care. We sought to develop a set of key performance indicators that can be used to measure and improve cardiovascular care in the primary care setting. As part of the Cardiovascular Health in Ambulatory Care Research Team initiative, we established a 14-member multidisciplinary expert panel to develop a set of indicators for measuring primary prevention performance in ambulatory cardiovascular care. We used a 2-stage modified Delphi panel process to rate potential indicators, which were identified from the literature and national cardiovascular organizations. The top-rated indicators were pilot tested to determine their measurement feasibility with the use of data routinely collected in the Canadian health care system. A set of 28 indicators of primary prevention performance were identified, which were grouped into 5 domains: risk factor prevalence, screening, management, intermediate outcomes and long-term outcomes. The indicators reflect the major cardiovascular risk factors including smoking, obesity, hypertension, diabetes, dyslipidemia and atrial fibrillation. All indicators were determined to be amenable to measurement with the use of population-based administrative (physician claims, hospital admission, laboratory, medication), survey or electronic medical record databases. The Cardiovascular Health in Ambulatory Care Research Team indicators of primary prevention performance provide a framework for the measurement of cardiovascular primary prevention efforts in Canada. The indicators may be used by clinicians, researchers and policy-makers interested in measuring and improving the prevention of cardiovascular disease in ambulatory care settings. Copyright 2017, Joule Inc. or its licensors.

  5. 76 FR 62164 - VASRD Improvement Forum-Updating Disability Criteria for the Respiratory System, Cardiovascular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Respiratory System, Cardiovascular System, Hearing Impairment, and Ear, Nose and Throat Diseases AGENCY... System, Cardiovascular System, Hearing Impairment, and Ear, Nose and Throat Diseases. The purpose of this...) the Cardiovascular System (38 CFR 4.100-4.104), (3) the Impairment of Auditory Acuity (38 CFR 4.85 and...

  6. A threshold of GATA4 and GATA6 expression is required for cardiovascular development

    PubMed Central

    Xin, Mei; Davis, Christopher A.; Molkentin, Jeffery D.; Lien, Ching-Ling; Duncan, Stephen A.; Richardson, James A.; Olson, Eric N.

    2006-01-01

    The zinc-finger transcription factors GATA4 and GATA6 play critical roles in embryonic development. Mouse embryos lacking GATA4 die at embryonic day (E) 8.5 because of failure of ventral foregut closure and cardiac bifida, whereas GATA6 is essential for development of the visceral endoderm. Although mice that are heterozygous for either a GATA4 or GATA6 null allele are normal, we show that compound heterozygosity of GATA4 and GATA6 results in embryonic lethality by E13.5 accompanied by a spectrum of cardiovascular defects, including thin-walled myocardium, ventricular and aortopulmonary septal defects, and abnormal smooth muscle development. Myocardial hypoplasia in GATA4/GATA6 double heterozygous mutant embryos is associated with reduced proliferation of cardiomyocytes, diminished expression of the myogenic transcription factor MEF2C (myocyte enhancer factor 2C), and down-regulation of β-myosin heavy chain expression, a key determinant of cardiac contractility. These findings reveal a threshold of GATA4 and GATA6 activity that is required for gene expression in the developing cardiovascular system and underscore the potential of recessive mutations to perturb the delicate regulation of cardiovascular development. PMID:16847256

  7. The Effects of Exercise on Cardiovascular Biomarkers: New Insights, Recent Data, and Applications.

    PubMed

    Che, Lin; Li, Dong

    2017-01-01

    The benefit of regular exercise or physical activity with appropriate intensity on improving cardiopulmonary function and endurance has long been accepted with less controversy. The challenge remains, however, quantitatively evaluate the effect of exercise on cardiovascular health due in part to the amount and intensity of exercise varies widely plus lack of effective, robust and efficient biomarker evaluation systems. Better evaluating the overall function of biomarker and validate biomarkers utility in cardiovascular health should improve the evidence regarding the benefit or the effect of exercise or physical activity on cardiovascular health, in turn increasing the efficiency of the biomarker on individuals with mild to moderate cardiovascular risk. In this review, beyond traditional cytokines, chemokines and inflammatory factors, we systemic reviewed the latest novel biomarkers in metabolomics, genomics, proteomics, and molecular imaging mainly focus on heart health, as well as cardiovascular diseases such as atherosclerosis and ischemic heart disease. Furthermore, we highlight the state-of-the-art biomarker developing techniques and its application in the field of heart health. Finally, we discuss the clinical relevance of physical activity and exercise on key biomarkers in molecular basis and practical considerations.

  8. Primary Prevention of Asymptomatic Cardiovascular Disease Using Physiological Sensors Connected to an iOS App.

    PubMed

    Moreno-Alsasua, Leire; Garcia-Zapirain, Begonya; David Rodrigo-Carbonero, J; Ruiz, Ibon Oleagordia; Hamrioui, Sofiane; de la Torre Díez, Isabel

    2017-10-26

    Cardiovascular disease is the first cause of death and disease and one of the leading causes of disability in developed countries. The prevalence of this disease is expected to increase in coming years although the death rate may be lower due to better treatment. To present the design and development of a technology solution for primary prevention of cardiovascular disease in asymptomatic patients. The system aims to raise the population's awareness of the importance of adopting healthy heart habits by using self-feedback techniques. A series of sensors which makes it possible to detect cardiovascular risk factors in asymptomatic patients were used. These sensors enable evaluation of heart rate, blood pressure, SpO 2 -oxygen saturation in blood- and body temperature. This work has developed a modular solution centred on four parts: iOS app, sensors, server and web. The CoreBluetooth library, which carries out Bluetooth 4.0 communication, was used for the connection between the app and the sensors. The data files are stored on the iPad and the server by using CoreData and SQL mechanisms. The system was validated with 20 healthy volunteers and 10 patients with established structural heart disease. Once the samples had been obtained, a comparison of all the significant data was run, in addition to a statistical analysis. The result of this calculation was a total of 32 cases of first level significance correlations (p < 0.01), for example, the inverse relationship between the daily step count and high blood pressure (p = 0.008) and 24 s level cases (p < 0.05) such as the significant correlation between risk and age (p = 0.013). The system designed in this paper has made it possible to create an application capable of collecting data on cardiovascular risk factors through a sensor system that measures physiological variables and records physical activity and diet.

  9. [Influence of work intensity on development of arterial hypertension in metal-mining workers].

    PubMed

    Ustinova, O Iu; Alekseev, V B; Rumiantseva, A N; Orehova, Ia V

    2013-01-01

    The article covers data on influence of working shifts duration and shift work intensity on cardiovascular system functioning in operators of mining excavators. Findings are that 8 hours shift with regular shift schedule (40 working hours per week) gives significant load on cardiovascular system of workers engaged into underground activities. 50% of mining excavator operators following this working schedule develop transitory arterial hypertension within 10 years. Longer work shift over 8 hours and more intensive shifting schedule over 40 hours per week causes stable arterial hypertension within 3 months in 60% of workers, in 10% of cases associated with lower functioning of sinus node.

  10. Application of acoustic microscopy to assessment of cardiovascular biomechanics

    NASA Astrophysics Data System (ADS)

    Saijo, Yoshifumi; Sasaki, Hidehiko; Nitta, Shin-ichi; Tanaka, Motonao; Joergensen, Claus S.; Falk, Erling

    2002-11-01

    Acoustic microscopy provides information on physical and mechanical properties of biological tissues, while optical microscopy with various staining techniques provides chemical properties. The biomechanics of tissues is especially important in cardiovascular system because its pathophysiology is closely related with mechanical stresses such as blood pressure or blood flow. A scanning acoustic microscope (SAM) system with tone-burst ultrasound in the frequency range of 100-200 MHz has been developed, and attenuation and sound speed of tissues have been measured. In human coronary arteries, attenuation and sound speed were high in calcification and collagen, while both values were low in smooth muscle and lipid. Another SAM system with 800-MHz-1.3-GHz ultrasound was applied for aortas of Apo-E deficient mouse, which is known to develop atherosclerosis. Attenuation of ultrasound was significantly higher in type 1 collagen compared to type 3 collagen. Recently, a new type FFT-SAM using a single-pulse, broadband frequency range ultrasound (20-150 MHz) has been developed. Cardiac allograft was observed by FFT-SAM and the acoustic properties were able to grade allograft rejection. SAM provides very useful information for assessing cardiovascular biomechanics and for understanding normal and abnormal images of clinical ultrasound.

  11. Patient-specific system for prognosis of surgical treatment outcomes of human cardiovascular system

    NASA Astrophysics Data System (ADS)

    Golyadkina, Anastasiya A.; Kalinin, Aleksey A.; Kirillova, Irina V.; Kossovich, Elena L.; Kossovich, Leonid Y.; Menishova, Liyana R.; Polienko, Asel V.

    2015-03-01

    Object of study: Improvement of life quality of patients with high stroke risk ia the main goal for development of system for patient-specific modeling of cardiovascular system. This work is dedicated at increase of safety outcomes for surgical treatment of brain blood supply alterations. The objects of study are common carotid artery, internal and external carotid arteries and bulb. Methods: We estimated mechanical properties of carotid arteries tissues and patching materials utilized at angioplasty. We studied angioarchitecture features of arteries. We developed and clinically adapted computer biomechanical models, which are characterized by geometrical, physical and mechanical similarity with carotid artery in norm and with pathology (atherosclerosis, pathological tortuosity, and their combination). Results: Collaboration of practicing cardiovascular surgeons and specialists in the area of Mathematics and Mechanics allowed to successfully conduct finite-element modeling of surgical treatment taking into account various features of operation techniques and patching materials for a specific patient. Numerical experiment allowed to reveal factors leading to brain blood supply decrease and atherosclerosis development. Modeling of carotid artery reconstruction surgery for a specific patient on the basis of the constructed biomechanical model demonstrated the possibility of its application in clinical practice at approximation of numerical experiment to the real conditions.

  12. Objective cardiovascular assessment in the neonatal intensive care unit.

    PubMed

    Dempsey, Eugene M; El-Khuffash, Afif Faisal

    2018-01-01

    Traditionally, cardiovascular well-being was essentially based on whether the mean blood pressure was above or below a certain value. However, this singular crude method of assessment provides limited insight into overall cardiovascular well-being. Echocardiography has become increasingly used and incorporated into clinical care. New objective modality assessments of cardiovascular status continue to evolve and are being evaluated and incorporated into clinical care. In this review article, we will discuss some of the recent advances in objective assessment of cardiovascular well-being, including the concept of multimodal monitoring. Sophisticated haemodynamic monitoring systems are being developed, including mechanisms of data acquisition and analysis. Their incorporation into clinical care represents an exciting next stage in the management of the infant with cardiovascular compromise. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Obesity-induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease

    PubMed Central

    Fuster, Jose J.; Ouchi, Noriyuki; Gokce, Noyan; Walsh, Kenneth

    2016-01-01

    Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the “collateral damage” of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of pro-inflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines. PMID:27230642

  14. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research.

    PubMed

    Seto, Sai-Wang; Kiat, Hosen; Lee, Simon M Y; Bensoussan, Alan; Sun, Yu-Ting; Hoi, Maggie P M; Chang, Dennis

    2015-12-05

    The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  15. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues.

    PubMed

    Borovjagin, Anton V; Ogle, Brenda M; Berry, Joel L; Zhang, Jianyi

    2017-01-06

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional 2-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and preclinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. © 2017 American Heart Association, Inc.

  16. Cardiomed System for Medical Monitoring Onboard ISS

    NASA Astrophysics Data System (ADS)

    Lloret, J. C.; Aubry, P.; Nguyen, L.; Kozharinov, V.; Grachev, V.; Temnova, E.

    2008-06-01

    Cardiomed system was developed with two main objectives: (1) cardiovascular medical monitoring of cosmonauts onboard ISS together with LBNP countermeasure; (2) scientific study of the cardio-vascular system in micro-gravity. Cardiomed is an integrated end-to-end system, from the onboard segment operating different medical instruments, to the ground segment which provides real-time telemetry of on-board experiments and off-line analysis of physiological measurements. In the first part of the paper, Cardiomed is described from an architecture point of view together with some typical uses. In the second part, the most constraining requirements with respect to system design are introduced. Some requirements are generic; some are specific to medical follow-up, others to scientific objectives. In the last part, the main technical challenges which were addressed during the development and the qualification of Cardiomed and the lessons learnt are presented.

  17. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system.

    PubMed

    Meng, Guoliang; Zhao, Shuang; Xie, Liping; Han, Yi; Ji, Yong

    2018-04-01

    Hydrogen sulfide (H 2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H 2 S was not clear. Recently, a novel post-translational modification induced by H 2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H 2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H 2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca 2+ channels, transient receptor potential channels and ATP-sensitive K + channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H 2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H 2 S-related drugs in the future. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.

  18. How Hippo Signaling Pathway Modulates Cardiovascular Development and Diseases.

    PubMed

    Zhou, Wenyi; Zhao, Mingyi

    2018-01-01

    Cardiovascular disease remains the leading cause of death around the globe. Cardiac deterioration is associated with irreversible cardiomyocyte loss. Understanding how the cardiovascular system develops and the pathological processes of cardiac disease will contribute to finding novel and preventive therapeutic methods. The canonical Hippo tumor suppressor pathway in mammalian cells is primarily composed of the MST1/2-SAV1-LATS1/2-MOB1-YAP/TAZ cascade. Continuing research on this pathway has identified other factors like RASSF1A, Nf2, MAP4Ks, and NDR1/2, further enriching our knowledge of the Hippo-YAP pathway. YAP, the core effecter of the Hippo pathway, may accumulate in the nucleus and initiate transcriptional activity if the pathway is inhibited. The role of Hippo signaling has been widely investigated in organ development and cancers. A heart of normal size and function which is critical for survival could not be generated without the proper regulation of the Hippo tumor suppressor pathway. Recent research has demonstrated a novel role of Hippo signaling in cardiovascular disease in the context of development, hypertrophy, angiogenesis, regeneration, apoptosis, and autophagy. In this review, we summarize the current knowledge of how Hippo signaling modulates pathological processes in cardiovascular disease and discuss potential molecular therapeutic targets.

  19. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention.

    PubMed

    Zhang, Yanhang; Barocas, Victor H; Berceli, Scott A; Clancy, Colleen E; Eckmann, David M; Garbey, Marc; Kassab, Ghassan S; Lochner, Donna R; McCulloch, Andrew D; Tran-Son-Tay, Roger; Trayanova, Natalia A

    2016-09-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.

  20. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention

    PubMed Central

    Zhang, Yanhang; Barocas, Victor H.; Berceli, Scott A.; Clancy, Colleen E.; Eckmann, David M.; Garbey, Marc; Kassab, Ghassan S.; Lochner, Donna R.; McCulloch, Andrew D.; Tran-Son-Tay, Roger; Trayanova, Natalia A.

    2016-01-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications. PMID:27138523

  1. Lysyl Oxidase Is Essential for Normal Development and Function of the Respiratory System and for the Integrity of Elastic and Collagen Fibers in Various Tissues

    PubMed Central

    Mäki, Joni M.; Sormunen, Raija; Lippo, Sari; Kaarteenaho-Wiik, Riitta; Soininen, Raija; Myllyharju, Johanna

    2005-01-01

    Lysyl oxidases, a family comprising LOX and four LOX-like enzymes, catalyze crosslinking of elastin and collagens. Mouse Lox was recently shown to be crucial for development of the cardiovascular system because null mice died perinatally of aortic aneurysms and cardiovascular dysfunction. We show here that Lox is also essential for development of the respiratory system and the integrity of elastic and collagen fibers in the lungs and skin. The lungs of E18.5 Lox−/− embryos showed impaired development of the distal and proximal airways. Elastic fibers in E18.5 Lox−/− lungs were markedly less intensely stained and more disperse than in the wild type, especially in the mesenchyme surrounding the distal airways, bronchioles, bronchi, and trachea, and were fragmented in pulmonary arterial walls. The organization of individual collagen fibers into tight bundles was likewise abnormal. Similar elastic and collagen fiber abnormalities were seen in the skin. Lysyl oxidase activity in cultured Lox−/− skin fibroblasts and aortic smooth muscle cells was reduced by ∼80%, indicating that Lox is the main isoenzyme in these cells. LOX abnormalities may thus be critical for the pathogenesis of several common diseases, including pulmonary, skin, and cardiovascular disorders. PMID:16192629

  2. Intrauterine growth restriction: impact on cardiovascular development and function throughout infancy.

    PubMed

    Cohen, Emily; Wong, Flora Y; Horne, Rosemary S C; Yiallourou, Stephanie R

    2016-06-01

    Intrauterine growth restriction (IUGR) refers to the situation where a fetus does not grow according to its genetic growth potential. One of the main causes of IUGR is uteroplacental vascular insufficiency. Under these circumstances of chronic oxygen and nutrient deprivation, the growth-restricted fetus often displays typical circulatory changes, which in part represent adaptations to the suboptimal intrauterine environment. These fetal adaptations aim to preserve oxygen and nutrient supply to vital organs such as the brain, the heart, and the adrenals. These prenatal circulatory adaptations are thought to lead to an altered development of the cardiovascular system and "program" the fetus for life long cardiovascular morbidities. In this review, we discuss the alterations to cardiovascular structure, function, and control that have been observed in growth-restricted fetuses, neonates, and infants following uteroplacental vascular insufficiency. We also discuss the current knowledge on early life surveillance and interventions to prevent progression into chronic disease.

  3. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.

    PubMed

    Kucinska-Lipka, J; Gubanska, I; Janik, H; Sienkiewicz, M

    2015-01-01

    Electrospinning is a unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of the cardiovascular system. Such artificial soft tissues of the cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportunity to form fibres with nm- to μm-scale in diameter. The arrangement of obtained fibres and their surface determine the biocompatibility of the scaffolds. Polyurethanes (PUs) are being commonly used as a prosthesis of cardiovascular soft tissues due to their excellent biocompatibility, non-toxicity, elasticity and mechanical properties. PUs also possess fine spinning properties. The combination of a variety of PU properties with an electrospinning technique, conducted at the well tailored conditions, gives unlimited possibilities of forming novel polyurethane materials suitable for soft tissue scaffolds applied in cardiovascular tissue engineering. This paper can help researches to gain more widespread and deeper understanding of designing electrospinable PU materials, which may be used as cardiovascular soft tissue scaffolds. In this paper we focus on reagents used in PU synthesis designed to increase PU biocompatibility (polyols) and biodegradability (isocyanates). We also describe suggested surface modifications of electrospun PUs, and the direct influence of surface wettability on providing enhanced biocompatibility of scaffolds. We indicate a great influence of electrospinning parameters (voltage, flow rate, working distance) and used solvents (mostly DMF, THF and HFIP) on fibre alignment and diameter - what impacts the biocompatibility and hemocompatibility of such electrospun PU scaffolds. Moreover, we present PU modifications with natural polymers with novel approach applied in electrospinning of PU scaffolds. This work may contribute with further developing of novel electrospun PUs, which may be applied as soft tissue scaffolds of the cardiovascular system. Copyright © 2014. Published by Elsevier B.V.

  4. Computational Models of the Cardiovascular System and Its Response to Microgravity

    NASA Technical Reports Server (NTRS)

    Kamm, Roger D.

    1999-01-01

    Computational models of the cardiovascular system are powerful adjuncts to ground-based and in-flight experiments. We will provide NSBRI with a model capable of simulating the short-term effects of gravity on cardiovascular function. The model from this project will: (1) provide a rational framework which quantitatively defines interactions among complex cardiovascular parameters and which supports the critical interpretation of experimental results and testing of hypotheses. (2) permit predictions of the impact of specific countermeasures in the context of various hypothetical cardiovascular abnormalities induced by microgravity. Major progress has been made during the first 18 months of the program: (1) We have developed an operational first-order computer model capable of simulating the cardiovascular response to orthostatic stress. The model consists of a lumped parameter hemodynamic model and a complete reflex control system. The latter includes cardiopulmonary and carotid sinus reflex limbs and interactions between the two. (2) We have modeled the physiologic stress of tilt table experiments and lower body negative pressure procedures (LBNP). We have verified our model's predictions by comparing them with experimental findings from the literature. (3) We have established collaborative efforts with leading investigators interested in experimental studies of orthostatic intolerance, cardiovascular control, and physiologic responses to space flight. (4) We have established a standardized method of transferring data to our laboratory from the ongoing NSBRI bedrest studies. We use this data to estimate input parameters to our model and compare our model predictions to actual data to further verify our model. (5) We are in the process of systematically simulating current hypotheses concerning the mechanism underlying orthostatic intolerance by matching our simulations to stand test data from astronauts pre- and post-flight. (6) We are in the process of developing a JAVA version of the simulator which will be distributed amongst the cardiovascular team members. Future work on this project involves modifications of the model to represent a rodent (rat) model, further evaluation of the bedrest astronaut and animal data, and systematic investigation of specific countermeasures.

  5. Stakeholder analysis for the development of a community pharmacy service aimed at preventing cardiovascular disease.

    PubMed

    Franco-Trigo, L; Hossain, L N; Durks, D; Fam, D; Inglis, S C; Benrimoj, S I; Sabater-Hernández, D

    Participatory approaches involving stakeholders across the health care system can help enhance the development, implementation and evaluation of health services. These approaches may be particularly useful in planning community pharmacy services and so overcome challenges in their implementation into practice. Conducting a stakeholder analysis is a key first step since it allows relevant stakeholders to be identified, as well as providing planners a better understanding of the complexity of the health care system. The main aim of this study was to conduct a stakeholder analysis to identify those individuals and organizations that could be part of a leading planning group for the development of a community pharmacy service (CPS) to prevent cardiovascular disease (CVD) in Australia. An experienced facilitator conducted a workshop with 8 key informants of the Australian health care system. Two structured activities were undertaken. The first explored current needs and gaps in cardiovascular care and the role of community pharmacists. The second was a stakeholder analysis, using both ex-ante and ad-hoc approaches. Identified stakeholders were then classified into three groups according to their relative influence on the development of the pharmacy service. The information gathered was analyzed using qualitative content analysis. The key informants identified 46 stakeholders, including (1) patient/consumers and their representative organizations, (2) health care providers and their professional organizations and (3) institutions and organizations that do not directly interact with patients but organize and manage the health care system, develop and implement health policies, pay for health care, influence funding for health service research or promote new health initiatives. From the 46 stakeholders, a core group of 12 stakeholders was defined. These were considered crucial to the service's development because they held positions that could drive or inhibit progress. Secondary results of the workshop included: a list of needs and gaps in cardiovascular care (n = 6), a list of roles for community pharmacists in cardiovascular prevention (n = 12) and a list of potential factors (n = 7) that can hinder the integration of community pharmacy services into practice. This stakeholder analysis provided a detailed picture of the wide range of stakeholders across the entire health care system that have a stake in the development of a community pharmacy service aimed at preventing CVD. Of these, a core group of key stakeholders, with complementary roles, can then be approached for further planning of the service. The results of this analysis highlight the relevance of establishing multilevel stakeholder groups for CPS planning. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of Estrogen in Gender-dependent Fetal Programming of Adult Cardiovascular Dysfunction.

    PubMed

    Chen, Zewen; Wang, Lei; Ke, Jun; Xiao, DaLiao

    2018-03-01

    Epidemiological studies and experimental studies have demonstrated that intrauterine adverse environment increases the risk of cardiovascular disease (CVD) in adulthood. However, whether an individual develops a cardiovascular dysfunctional phenotype may depend on genetic background, age, and sex. In this review, we summarize some of the recent experimental animal studies in the developmental programming of adult CVD with an emphasis on sex differences and the potential role of estrogen in mediating sexual dimorphism. Few epidemiological studies report the effect of sex on the developmental programming of CVD. However, numerous experimental animal studies have shown a sex difference in fetal programming of adult cardiovascular dysfunction. Most of the animal studies indicate that male offspring develop cardiovascular dysfunction and CVD in adulthood, whereas adult females appear to be protected. Estrogen is one of the key factors that contributes to the sex difference of adult CVD. Estrogen/its receptor (ER) may interact with the RAS system by changes of DNA methylation patterns at the target gene promoter, serve as an antioxidant to counteract the prenatal insults-induced heightened ROS, and function as an eNOS activator to increase vasodilation, resulting in the protection of female offspring from the development of hypertension and other CVDs. These studies suggest that estrogen/ER may contribute to sex differences in cardiovascular response to an adverse intrauterine environment and play a significant role in modulating the cardiovascular response in adulthood. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Angiotensins as therapeutic targets beyond heart disease.

    PubMed

    Passos-Silva, Danielle Gomes; Brandan, Enrique; Santos, Robson Augusto Souza

    2015-05-01

    The renin-angiotensin system (RAS) plays a pivotal role in cardiovascular and hydro-electrolyte homeostasis. Blockade of the RAS as a therapeutic strategy for treating hypertension and related cardiovascular diseases is well established. However, actions of the RAS go far beyond the targets initially described. In this regard, the recent identification of novel components of the RAS, including angiotensin-(1-7) [Ang-(1-7)], Ang-(1-9), and alamandine, have opened new possibilities for interfering with the development and manifestations of cardiovascular and non-cardiovascular diseases. In this article, we briefly review novel targets for angiotensins and its therapeutic implications in diverse areas, including cancer, inflammation, and glaucoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Lentiviral vectors for gene therapy of heart disease.

    PubMed

    Higuchi, Koji; Medin, Jeffrey A

    2007-01-01

    Technological advances in genetic engineering developed over the past few years have been applied to the research and treatment of cardiovascular diseases. In many animal models, gene therapy has been shown to be an effective treatment schema. Some of these gene therapy treatments are now being applied in clinical trials. Also, as the science of gene therapy has progressed, alternative vector systems such as lentiviruses have been developed and implemented. Here we focus on the emerging role of lentiviral vectors in the treatment of cardiovascular disease.

  9. 38 CFR 4.104 - Schedule of ratings-cardiovascular system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cardiovascular system. 4.104 Section 4.104 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Cardiovascular System § 4.104 Schedule of ratings—cardiovascular system. Diseases of the Heart Rating Note (1): Evaluate cor pulmonale, which is a form of...

  10. The Emerging Role of Outdoor and Indoor Air Pollution in Cardiovascular Disease

    PubMed Central

    Uzoigwe, Jacinta C.; Prum, Thavaleak; Bresnahan, Eric; Garelnabi, Mahdi

    2013-01-01

    Outdoor and indoor air pollution poses a significant cardiovascular risk, and has been associated with atherosclerosis, the main underlying pathology in many cardiovascular diseases. Although, it is well known that exposure to air pollution causes pulmonary disease, recent studies have shown that cardiovascular health consequences of air pollution generally equal or exceed those due to pulmonary diseases. The objective of this article is to evaluate the current evidence on the emerging role of environmental air pollutions in cardiovascular disease, with specific focus on the types of air pollutants and mechanisms of air pollution-induced cardiotoxicity. Published literature on pollution was systematically reviewed and cited in this article. It is hoped that this review will provide a better understanding of the harmful cardiovascular effects induced by air pollution exposure. This will help to bring a better understanding on the possible preventive health measures and will also serve regulatory agencies and researchers. In addition, elucidating the biological mechanisms underlying the link between air pollution and cardiovascular disease is an essential target in developing novel pharmacological strategies aimed at decreasing adverse effects of air pollution on cardiovascular system. PMID:24083218

  11. Advances in the study on endogenous sulfur dioxide in the cardiovascular system.

    PubMed

    Tian, Hong

    2014-01-01

    This review summarized the current advances in understanding the role of the novel gasotransmitter, sulfur dioxide (SO2), in the cardiovascular system. Articles on the advances in the study of the role of endogenous sulfur dioxide in the cardiovascular system were accessed from PubMed and CNKI from 2003 to 2013, using keywords such as "endogenous sulfur dioxide" and "cardiovascular system". Articles with regard to the role of SO2 in the regulation of cardiovascular system were selected. Recently, scientists discovered that an endogenous SO2 pathway is present in the cardiovascular system and exerts physiologically significant effects, such as regulation of the cardiac function and the pathogenesis of various cardiopulmonary diseases such as hypoxic pulmonary hypertension, hypertension, coronary atherosclerosis, and cardiac ischemia-reperfusion (I/R) injury, in the cardiovascular system. Endogenous SO2 is a novel member of the gasotransmitter family in addition to the nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Studies indicated that it has a role in regulating the cardiovascular disease.

  12. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series).

    PubMed

    Loscalzo, Joseph; Handy, Diane E

    2014-06-01

    Epigenetics refers to heritable traits that are not a consequence of DNA sequence. Three classes of epigenetic regulation exist: DNA methylation, histone modification, and noncoding RNA action. In the cardiovascular system, epigenetic regulation affects development, differentiation, and disease propensity or expression. Defining the determinants of epigenetic regulation offers opportunities for novel strategies for disease prevention and treatment.

  13. Applicability of implantable telemetry systems in cardiovascular research.

    NASA Technical Reports Server (NTRS)

    Krutz, R. W.; Rader, R. D.; Meehan, J. P.; Henry, J. P.

    1971-01-01

    This paper briefly describes the results of an experimental program undertaken to develop and apply implanted telemetry to cardiovascular research. Because of the role the kidney may play in essential hypertension, emphasis is placed on telemetry's applicability in the study of renal physiology. Consequently, the relationship between pressure, flow, and hydraulic impedance are stressed. Results of an exercise study are given.

  14. Zinc restriction during different periods of life: influence in renal and cardiovascular diseases.

    PubMed

    Tomat, Analía Lorena; Costa, María de los Ángeles; Arranz, Cristina Teresa

    2011-04-01

    Micronutrient undernutrition during critical periods of growth has become an important health issue in developing and developed countries, particularly among pregnant women and children having an imbalanced diet. Zinc is a widely studied microelement in infant feeding because it is a component of several enzymes involved in intermediary metabolism ranging from growth to cell differentiation and metabolism of proteins, carbohydrates, and lipids. Human and experimental studies have reported an association between zinc deficiency and the etiopathogenesis of cardiovascular and renal diseases like hypertension, atherosclerosis, congestive heart failure, coronary heart disease, and diabetes. The main links between the development of these pathologies and zinc deficiency are multiple mechanisms involving oxidative stress damage, apoptosis, and inflammation. A substantial body of evidence suggests that a poor in utero environment elicited by maternal dietary or placental insufficiency may "programme" susceptibility in the fetus to later development of cardiovascular, renal, metabolic, and endocrine diseases. Zinc deficiency in rats during intrauterine and postnatal growth can also be considered a model of fetal programming of cardiovascular and renal diseases in adult life. Dietary zinc restriction during fetal life, lactation, and/or postweaning induces an increase in arterial blood pressure and impairs renal function in adult life. This review focuses on the contributions of experimental and clinical studies to current knowledge of the physiologic role of zinc in the cardiovascular and renal systems. Moreover, this review examines the relationship between zinc deficiency during different periods of life and the development of cardiovascular and renal diseases in adult life. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Differential Effects of Leptin and Adiponectin in Endothelial Angiogenesis

    PubMed Central

    Adya, Raghu; Tan, Bee K.; Randeva, Harpal S.

    2015-01-01

    Obesity is a major health burden with an increased risk of cardiovascular morbidity and mortality. Endothelial dysfunction is pivotal to the development of cardiovascular disease (CVD). In relation to this, adipose tissue secreted factors termed “adipokines” have been reported to modulate endothelial dysfunction. In this review, we focus on two of the most abundant circulating adipokines, that is, leptin and adiponectin, in the development of endothelial dysfunction. Leptin has been documented to influence a multitude of organ systems, that is, central nervous system (appetite regulation, satiety factor) and cardiovascular system (endothelial dysfunction leading to atherosclerosis). Adiponectin, circulating at a much higher concentration, exists in different molecular weight forms, essentially made up of the collagenous fraction and a globular domain, the latter being investigated minimally for its involvement in proinflammatory processes including activation of NF-κβ and endothelial adhesion molecules. The opposing actions of the two forms of adiponectin in endothelial cells have been recently demonstrated. Additionally, a local and systemic change to multimeric forms of adiponectin has gained importance. Thus detailed investigations on the potential interplay between these adipokines would likely result in better understanding of the missing links connecting CVD, adipokines, and obesity. PMID:25650072

  16. Exploring the Crosstalk between Adipose Tissue and the Cardiovascular System.

    PubMed

    Akoumianakis, Ioannis; Akawi, Nadia; Antoniades, Charalambos

    2017-09-01

    Obesity is a clinical entity critically involved in the development and progression of cardiovascular disease (CVD), which is characterised by variable expansion of adipose tissue (AT) mass across the body as well as by phenotypic alterations in AT. AT is able to secrete a diverse spectrum of biologically active substances called adipocytokines, which reach the cardiovascular system via both endocrine and paracrine routes, potentially regulating a variety of physiological and pathophysiological responses in the vasculature and heart. Such responses include regulation of inflammation and oxidative stress as well as cell proliferation, migration and hypertrophy. Furthermore, clinical observations such as the "obesity paradox," namely the fact that moderately obese patients with CVD have favourable clinical outcome, strongly indicate that the biological "quality" of AT may be far more crucial than its overall mass in the regulation of CVD pathogenesis. In this work, we describe the anatomical and biological diversity of AT in health and metabolic disease; we next explore its association with CVD and, importantly, novel evidence for its dynamic crosstalk with the cardiovascular system, which could regulate CVD pathogenesis.

  17. Exploring the Crosstalk between Adipose Tissue and the Cardiovascular System

    PubMed Central

    2017-01-01

    Obesity is a clinical entity critically involved in the development and progression of cardiovascular disease (CVD), which is characterised by variable expansion of adipose tissue (AT) mass across the body as well as by phenotypic alterations in AT. AT is able to secrete a diverse spectrum of biologically active substances called adipocytokines, which reach the cardiovascular system via both endocrine and paracrine routes, potentially regulating a variety of physiological and pathophysiological responses in the vasculature and heart. Such responses include regulation of inflammation and oxidative stress as well as cell proliferation, migration and hypertrophy. Furthermore, clinical observations such as the “obesity paradox,” namely the fact that moderately obese patients with CVD have favourable clinical outcome, strongly indicate that the biological “quality” of AT may be far more crucial than its overall mass in the regulation of CVD pathogenesis. In this work, we describe the anatomical and biological diversity of AT in health and metabolic disease; we next explore its association with CVD and, importantly, novel evidence for its dynamic crosstalk with the cardiovascular system, which could regulate CVD pathogenesis. PMID:28955384

  18. The use of soft robotics in cardiovascular therapy.

    PubMed

    Wamala, Isaac; Roche, Ellen T; Pigula, Frank A

    2017-10-01

    Robots have been employed in cardiovascular therapy as surgical tools and for automation of hospital systems. Soft robots are a new kind of robot made of soft deformable materials, that are uniquely suited for biomedical applications because they are inherently less likely to injure body tissues and more likely to adapt to biological environments. Awareness of the soft robotic systems under development will help promote clinician involvement in their successful clinical translation. Areas covered: The most advanced soft robotic systems, across the size scale from nano to macro, that have shown the most promise for clinical application in cardiovascular therapy because they offer solutions where a clear therapeutic need still exists. We discuss nano and micro scale technology that could help improve targeted therapy for cardiac regeneration in ischemic heart disease, and soft robots for mechanical circulatory support. Additionally, we suggest where the gaps in the technology currently lie. Expert commentary: Soft robotic technology has now matured from the proof-of-concept phase to successful animal testing. With further refinement in materials and clinician guided application, they will be a useful complement for cardiovascular therapy.

  19. Clinical utility of sympathetic blockade in cardiovascular disease management.

    PubMed

    Park, Chan Soon; Lee, Hae-Young

    2017-04-01

    A dysregulated sympathetic nervous system is a major factor in the development and progression of cardiovascular disease; thus, understanding the mechanism and function of the sympathetic nervous system and appropriately regulating sympathetic activity to treat various cardiovascular diseases are crucial. Areas covered: This review focused on previous studies in managing hypertension, atrial fibrillation, coronary artery disease, heart failure, and perioperative management with sympathetic blockade. We reviewed both pharmacological and non-pharmacological management. Expert commentary: Chronic sympathetic nervous system activation is related to several cardiovascular diseases mediated by various pathways. Advancement in measuring sympathetic activity makes visualizing noninvasively and evaluating the activation level even in single fibers possible. Evidence suggests that sympathetic blockade still has a role in managing hypertension and controlling the heart rate in atrial fibrillation. For ischemic heart disease, beta-adrenergic receptor antagonists have been considered a milestone drug to control symptoms and prevent long-term adverse effects, although its clinical implication has become less potent in the era of successful revascularization. Owing to pathologic involvement of sympathetic nervous system activation in heart failure progression, sympathetic blockade has proved its value in improving the clinical course of patients with heart failure.

  20. Toll-like Receptors in the Vascular System: Sensing the Dangers Within

    PubMed Central

    McCarthy, Cameron G.; Webb, R. Clinton

    2016-01-01

    Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study. PMID:26721702

  1. New Sides of Aldosterone Action in Cardiovascular System as Potential Targets for Therapeutic Intervention.

    PubMed

    Kolodziejczyk, Patrycjusz; Gromotowicz-Poplawska, Anna; Aleksiejczuk, Michal; Chabielska, Ewa; Tutka, Piotr; Miltyk, Wojciech

    2018-03-26

    Aldosterone, the main mineralocorticoid hormone, plays a crucial role in the regulation of electrolyte homeostasis and blood pressure. Although, this role is undoubtedly important, it is not a hormonal action that attracts the most attention. Aldosterone seems to be very important important as a local messenger in the pathology of cardiovascular diseases (CVD). In the last few years, the attention was focused on the correlation between raised aldosterone level and increased risk of cardiovascular events. It has been demonstrated that aldosterone contributes to fibrosis, inflammation, endothelial dysfunction, fibrinolytic disordes, and oxidative stress leading to CVD development and progression. It used to be thought that the effects of aldosterone are mediated via classic nuclear receptors - mineralocorticoid receptors (MR). Now we know that the mechanism of aldosterone action in cardiovascular system is much more complex, since experimental and clinical studies indicate that MR blockade may be not sufficient to abolish aldosterone-incuced harmful effects in the cardiovascular system. Therefore, the involvement of some other than MR, receptors and factors is suggested. Moreover, in addition to the generally known genomic action of aldosterone, which involves MR activation, the nongenomic pathways are postulated in the mode of hormone action. More and more attention is focused on the membrane-coupled receptors, which mediate the rapid effects of aldosterone and have been already confirmed in different cells and tissues of a cardiovascular system. The confirmation of multiple mechanisms of aldosterone action opens a new perspective for more effective therapeutic intervention in aldosterone-related CVD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Towards Robot-Assisted Echocardiographic Monitoring in Catheterization Laboratories : Usability-Centered Manipulator for Transesophageal Echocardiography.

    PubMed

    Pahl, Christina; Ebelt, Henning; Sayahkarajy, Mostafa; Supriyanto, Eko; Soesanto, Amiliana

    2017-08-15

    This paper proposes a robotic Transesophageal Echocardiography (TOE) system concept for Catheterization Laboratories. Cardiovascular disease causes one third of all global mortality. TOE is utilized to assess cardiovascular structures and monitor cardiac function during diagnostic procedures and catheter-based structural interventions. However, the operation of TOE underlies various conditions that may cause a negative impact on performance, the health of the cardiac sonographer and patient safety. These factors have been conflated and evince the potential of robot-assisted TOE. Hence, a careful integration of clinical experience and Systems Engineering methods was used to develop a concept and physical model for TOE manipulation. The motion of different actuators of the fabricated motorized system has been tested. It is concluded that the developed medical system, counteracting conflated disadvantages, represents a progressive approach for cardiac healthcare.

  3. Cardiovascular autonomic adaptation in lunar and martian gravity during parabolic flight.

    PubMed

    Widjaja, Devy; Vandeput, Steven; Van Huffel, Sabine; Aubert, André E

    2015-06-01

    Weightlessness has a well-known effect on the autonomic control of the cardiovascular system. With future missions to Mars in mind, it is important to know what the effect of partial gravity is on the human body. We aim to study the autonomic response of the cardiovascular system to partial gravity levels, as present on the Moon and on Mars, during parabolic flight. ECG and blood pressure were continuously recorded during parabolic flight. A temporal analysis of blood pressure and heart rate to changing gravity was conducted to study the dynamic response. In addition, cardiovascular autonomic control was quantified by means of heart rate (HR) and blood pressure (BP) variability measures. Zero and lunar gravity presented a biphasic cardiovascular response, while a triphasic response was noted during martian gravity. Heart rate and blood pressure are positively correlated with gravity, while the general variability of HR and BP, as well as vagal indices showed negative correlations with increasing gravity. However, the increase in vagal modulation during weightlessness is not in proportion when compared to the increase during partial gravity. Correlations were found between the gravity level and modulations in the autonomic nervous system during parabolic flight. Nevertheless, with future Mars missions in mind, more studies are needed to use these findings to develop appropriate countermeasures.

  4. PFA-100-measured aspirin resistance is the predominant risk factor for hospitalized cardiovascular events in aspirin-treated patients: A 5-year cohort study.

    PubMed

    Chen, H Y; Chou, P

    2018-04-01

    Aspirin therapy is the clinical gold standard for the prevention of cardiovascular events. However, cardiovascular events still develop in some patients undergoing aspirin therapy. Many laboratory methods exist for measuring aspirin resistance. Using the platelet Function Analyzer (PFA)-100 system, we aimed to determine the effect of aspirin resistance on hospitalized cardiovascular events (hCVE) in a 5-year follow-up cohort. We also sought to determine the impact of aspirin resistance on the relationship between common cardiovascular risk factors and cardiovascular hospitalization. Aspirin resistance was evaluated in aspirin-treated patients from the outpatient department. A total of 465 patients during a 5-year follow-up period were included in this study. The primary endpoint of the study was hospitalization for any acute cardiovascular event. The prevalence and associated risk factors of acute cardiovascular events were evaluated. Aspirin resistance was prevalent in 91 (20.0%) of 465 patients. Prior hospitalization history of cardiovascular events was highly associated with aspirin resistance (P = .001). At the 5-year follow-up, cardiovascular events were found to have developed in 11 patients (8 stroke and 3 myocardial infarction) who exhibited aspirin resistance (12.1%) and in 9 (4 stroke and 5 myocardial infarction) patients who did not exhibit aspirin resistance (2.4%) (P < .001). At the 5-year follow-up, multivariate logistic regression analysis results showed a strong association between aspirin resistance and cardiovascular events (adjusted odds ratio 4.28; 95% CI: 1.64-11.20; P = .03). PFA-100 measurements of aspirin resistance correlate with hCVE, as evidenced by both the past medical history and the 5-year follow-up. The logistic regression analysis results showed that aspirin resistance plays a larger role in hospitalized cardiovascular disease than do other cardiovascular risk factors. © 2017 John Wiley & Sons Ltd.

  5. Aquaporins in Cardiovascular System.

    PubMed

    Tie, Lu; Wang, Di; Shi, Yundi; Li, Xuejun

    2017-01-01

    Recent studies have shown that some aquaporins (AQPs ), including AQP1, AQP4, AQP7 and AQP9, are expressed in endothelial cells, vascular smooth muscle cells and heart of cardiovascular system. These AQPs are involved in the cardiovascular function and in pathological process of related diseases, such as cerebral ischemia , congestion heart failure , hypertension and angiogenesis. Therefore, it is important to understand the accurate association between AQPs and cardiovascular system, which may provide novel approaches to prevent and treat related diseases. Here we will discuss the expression and physiological function of AQPs in cardiovascular system and summarize recent researches on AQPs related cardiovascular diseases.

  6. Nitric oxide and related factors linked to oxidation and inflammation as possible biomarkers of heart failure.

    PubMed

    Bonafede, Roberto; Manucha, Walter

    As a prevalent cardiovascular disease, heart failure is one of the leading causes of morbidity and premature mortality. Therefore, there is a special interest in the study of efficient markers associated with risk and / or prediction of cardiovascular events. Multiple candidates are proposed, especially those involved in oxidative and inflammatory processes typical of cardiovascular disease, such as superoxide anion, nitric oxide, and peroxynitrite. There is a lack of knowledge on the potential usefulness of these systems as biomarkers. This review aims to contribute to a better understanding of these systems, as well as an improved patient profile. Furthermore, a deep knowledge of these complex systems would also allow proposing new lines of research for the development of new therapeutic tools as a promising start for new approaches to this disease. Copyright © 2018 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  8. Psoriasis and Cardiovascular Comorbidities: Focusing on Severe Vascular Events, Cardiovascular Risk Factors and Implications for Treatment

    PubMed Central

    Hu, Stephen Chu-Sung; Lan, Cheng-Che E.

    2017-01-01

    Psoriasis is a common and chronic inflammatory disease of the skin. It may impair the physical and psychosocial function of patients and lead to decreased quality of life. Traditionally, psoriasis has been regarded as a disease affecting only the skin and joints. More recently, studies have shown that psoriasis is a systemic inflammatory disorder which can be associated with various comorbidities. In particular, psoriasis is associated with an increased risk of developing severe vascular events such as myocardial infarction and stroke. In addition, the prevalence rates of cardiovascular risk factors are increased, including hypertension, diabetes mellitus, dyslipidemia, obesity, and metabolic syndrome. Consequently, mortality rates have been found to be increased and life expectancy decreased in patients with psoriasis, as compared to the general population. Various studies have also shown that systemic treatments for psoriasis, including methotrexate and tumor necrosis factor-α inhibitors, may significantly decrease cardiovascular risk. Mechanistically, the presence of common inflammatory pathways, secretion of adipokines, insulin resistance, angiogenesis, oxidative stress, microparticles, and hypercoagulability may explain the association between psoriasis and cardiometabolic disorders. In this article, we review the evidence regarding the association between psoriasis and cardiovascular comorbidities, focusing on severe vascular events, cardiovascular risk factors and implications for treatment. PMID:29065479

  9. Fibroblast Growth Factor-23: A Novel Biomarker for Cardiovascular Disease in Chronic Kidney Disease Patients.

    PubMed

    Papagianni, Aikaterini

    2017-09-01

    Fibroblast Growth Factor (FGF)-23 increase is considered one of the earliest biochemical abnormalities in chronic kidney disease-mineral bone disorder (CKD-MBD). Furthermore, accumulating data have provided evidence of a link between increased FGF-23 levels and cardiovascular morbidity and mortality in CKD patients as well as in several other populations including cardiology patients and general population. The cellular and molecular mechanisms underlying the deleterious effect of FGF-23 on the cardiovascular system are not yet completely defined and are the focus of intense research. However, animal and human studies have demonstrated important actions of FGF-23 in the heart and vessels through which could promote the development of cardiovascular complications in uremia. Moreover, significant interactions have been reported between FGF-23 and other well recognized cardiovascular risk factors such as renin-angiotensin system and inflammation which could account, at least in part, for the observed associations between FGF-23 and adverse clinical outcomes. Further studies are needed to clarify the mechanisms responsible for the pleiotropic actions of FGF-23 and moreover to identify whether it is a modifiable risk factor and a potential target of therapeutic interventions which could probably help to reduce the unacceptably high cardiovascular morbidity and mortality of CKD patients.

  10. The emerging role of the endocannabinoid system in cardiovascular disease

    PubMed Central

    2009-01-01

    Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders. PMID:19357846

  11. [Thyroid hormones and cardiovascular system].

    PubMed

    Límanová, Zdeňka; Jiskra, Jan

    Cardiovascular system is essentially affected by thyroid hormones by way of their genomic and non-genomic effects. Untreated overt thyroid dysfunction is associated with higher cardiovascular risk. Although it has been studied more than 3 decades, in subclinical thyroid dysfunction the negative effect on cardiovascular system is much more controversial. Large meta-analyses within last 10 years have shown that subclinical hyperthyroidism is associated with higher cardiovascular risk than subclinical hypothyroidism. Conversely, in patients of age > 85 years subclinical hypothyroidism was linked with lower mortality. Therefore, subclinical hyperthyroidism should be rather treated in the elderly while subclinical hypothyroidism in the younger patients and the older may be just followed. An important problem on the border of endocrinology and cardiology is amiodarone thyroid dysfunction. Effective and safe treatment is preconditioned by distinguishing of type 1 and type 2 amiodarone induced hyperthyroidism. The type 1 should be treated with methimazol, therapeutic response is prolonged, according to recent knowledge immediate discontinuation of amiodarone is not routinely recommended and patient should be usually prepared to total thyroidectomy, or rather rarely 131I radioiodine ablation may be used if there is appropriate accumulation. In the type 2 there is a promt therapeutic response on glucocorticoids (within 1-2 weeks) with permanent remission or development of hypothyroidism. If it is not used for life-threatening arrhytmias, amiodarone may be discontinuated earlier (after several weeks). Amiodarone induced hypothyroidism is treated with levothyroxine without amiodarone interruption.Key words: amiodarone induced thyroid dysfunction - atrial fibrillation - cardiovascular risk - heart failure - hyperthyroidism - hypothyroidism - thyroid stimulating hormone.

  12. Cardiometabolic diseases of civilization: history and maturation of an evolving global threat. An update and call to action.

    PubMed

    Kones, Richard; Rumana, Umme

    2017-05-01

    Despite striking extensions of lifespan, leading causes of death in most countries now constitute chronic, degenerative diseases which outpace the capacity of health systems. Cardiovascular disease is the most common cause of death in both developed and undeveloped countries. In America, nearly half of the adult population has at least one chronic disease, and polypharmacy is commonplace. Prevalence of ideal cardiovascular health has not meaningfully improved over the past two decades. The fall in cardiovascular deaths in Western countries, half due to a fall in risk factors and half due to improved treatments, have plateaued, and this reversal is due to the dual epidemics of obesity and diabetes type 2. High burdens of cardiovascular risk factors are also evident globally. Undeveloped nations bear the burdens of both infectious diseases and high childhood death rates. Unacceptable rates of morbidity and mortality arise from insufficient resources to improve sanitation, pure water, and hygiene, ultimately linked to poverty and disparities. Simultaneously, about 80% of cardiovascular deaths now occur in low- and middle-income nations. For these reasons, risk factors for noncommunicable diseases, including poverty, health illiteracy, and lack of adherence, must be targeted with unprecedented vigor worldwide. Key messages In developed and relatively wealthy countries, chronic "degenerative" diseases have attained crisis proportions that threaten to reverse health gains made within the past decades. Although poverty, disparities, and poor sanitation still cause unnecessary death and despair in developing nations, they are now also burdened with increasing cardiovascular mortality. Poor adherence and low levels of health literacy contribute to the high background levels of cardiovascular risk.

  13. Pharmacological Strategies to Retard Cardiovascular Aging

    PubMed Central

    Alfaras, Irene; Di Germanio, Clara; Bernier, Michel; Csiszar, Anna; Ungvari, Zoltan; Lakatta, Edward G.; de Cabo, Rafael

    2016-01-01

    Aging is the major risk factor for cardiovascular diseases (CVD), which are the leading cause of death in the United States. Traditionally, the effort to prevent CVD has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat CVD. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the pro-longevity benefits of various therapeutic strategies that support cardiovascular health. PMID:27174954

  14. CHD associated with syndromic diagnoses: peri-operative risk factors and early outcomes

    PubMed Central

    Landis, Benjamin J.; Cooper, David S.; Hinton, Robert B.

    2016-01-01

    CHD is frequently associated with a genetic syndrome. These syndromes often present specific cardiovascular and non-cardiovascular co-morbidities that confer significant peri-operative risks affecting multiple organ systems. Although surgical outcomes have improved over time, these co-morbidities continue to contribute substantially to poor peri-operative mortality and morbidity outcomes. Peri-operative morbidity may have long-standing ramifications on neurodevelopment and overall health. Recognising the cardiovascular and non-cardiovascular risks associated with specific syndromic diagnoses will facilitate expectant management, early detection of clinical problems, and improved outcomes – for example, the development of syndrome-based protocols for peri-operative evaluation and prophylactic actions may improve outcomes for the more frequently encountered syndromes such as 22q11 deletion syndrome. PMID:26345374

  15. Circadian rhythm, sleep pattern, and metabolic consequences: an overview on cardiovascular risk factors.

    PubMed

    Machado, Roberta Marcondes; Koike, Marcia Kiyomi

    2014-04-01

    Sleep duration is a risk factor for cardiovascular disease. Alteration in sleep pattern can induce the loss of circadian rhythmicity. Chronically, this desynchronization between endogenous rhythm and behavioral cycles can lead to an adverse metabolic profile, a proinflammatory condition and can increase the risk of cardiovascular disease. The circadian cycle can vary due to environmental cues. The circadian pacemaker is located in the suprachiasmatic nuclei; this central clock coordinates the circadian rhythm in the central nervous system and peripheral tissues. The mechanisms involved in sleep disturbance, circadian misalignment and adverse metabolic effects have yet to be fully elucidated. This review looks over the association among sleep alteration, circadian rhythm and the development of risk factors implicated in cardiovascular disease.

  16. Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15

    NASA Image and Video Library

    2007-05-01

    ISS015-E-08661 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, collects medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  17. Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15

    NASA Image and Video Library

    2007-05-01

    ISS015-E-08660 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, collects medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  18. Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15

    NASA Image and Video Library

    2007-05-01

    ISS015-E-08659 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, checks procedures checklists while collecting medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  19. Nutrition in Cardioskeletal Health123

    PubMed Central

    Hill Gallant, Kathleen M; Weaver, Connie M; Towler, Dwight A; Thuppal, Sowmyanarayanan V; Bailey, Regan L

    2016-01-01

    Bone and heart health are linked through a variety of cellular, endocrine, and metabolic mechanisms, including the bidirectional effects of mineral-regulating hormones parathyroid hormone and fibroblast growth factor 23. Nutrition plays an important role in the development of both cardiovascular and bone disease. This review describes current knowledge on the relations between the cardiovascular system and bone and the influence of key nutrients involved in mineral metabolism—calcium, vitamin D, and phosphorus—on heart and bone health, as well as the racial/ethnic differences in cardiovascular disease and osteoporosis and the influence that nutrition has on these disparities. PMID:27184281

  20. Cardiovascular function during sustained +G/z/ stress

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Sandler, H.; Stone, H. L.

    1976-01-01

    The development of aerospace systems capable of very high levels of positive vertical accelerators stress has created a need for a better understanding of the cardiovascular responses to acceleration. Using a canine model, the heart and cardiovascular system were instrumented to continuously measure coronary blood flow, cardiac output, left ventricular and aortic root pressure, and oxygen saturation in the aorta, coronary sinus, and right ventricle. The animals were exposed to acceleration profiles up to +6 G, 120 s at peak G; a seatback angle of 45 deg was simulated in some experiments. Radiopaque contrast medium was injected to visualize the left ventricular chamber, coronary vasculature, aorta, and branches of the aorta. The results suggest mechanisms responsible for arrhythmias which may occur, and subendocardial hemorrhage which has been reported in other animals.

  1. Cardiovascular and Metabolic Diseases Comorbid with Psoriasis: Beyond the Skin

    PubMed Central

    Furue, Masutaka; Tsuji, Gaku; Chiba, Takahito; Kadono, Takafumi

    2017-01-01

    A close association of systemic inflammation with cardiovascular diseases and metabolic syndrome is recently a popular topic in medicine. Psoriasis is a chronic inflammatory skin disease with a prevalence of approximately 0.1-0.5% in Asians. It is characterized by widespread scaly erythematous macules that cause significant physical and psychological burdens for the affected individuals. The accelerated inflammation driven by the TNF-α/IL-23/IL-17A axis is now known to be the major mechanism in the development of psoriasis. Psoriasis is not a mere skin disease; it is significantly associated with cardiovascular diseases and metabolic syndrome, which suggests that the chronic skin inflammation extends the systemic inflammation beyond the skin. In this article, we review the epidemiological and pathological aspects of psoriasis and its comorbidities. PMID:28674347

  2. Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system

    PubMed Central

    Imanaka-Yoshida, Kyoko; Aoki, Hiroki

    2014-01-01

    Living tissue is composed of cells and extracellular matrix (ECM). In the heart and blood vessels, which are constantly subjected to mechanical stress, ECM molecules form well-developed fibrous frameworks to maintain tissue structure. ECM is also important for biological signaling, which influences various cellular functions in embryonic development, and physiological/pathological responses to extrinsic stimuli. Among ECM molecules, increased attention has been focused on matricellular proteins. Matricellular proteins are a growing group of non-structural ECM proteins highly up-regulated at active tissue remodeling, serving as biological mediators. Tenascin-C (TNC) is a typical matricellular protein, which is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion. The expression is tightly regulated, dependent on the microenvironment, including various growth factors, cytokines, and mechanical stress. In the heart, TNC appears in a spatiotemporal-restricted manner during early stages of development, sparsely detected in normal adults, but transiently re-expressed at restricted sites associated with tissue injury and inflammation. Similarly, in the vascular system, TNC is strongly up-regulated during embryonic development and under pathological conditions with an increase in hemodynamic stress. Despite its intriguing expression pattern, cardiovascular system develops normally in TNC knockout mice. However, deletion of TNC causes acute aortic dissection (AAD) under strong mechanical and humoral stress. Accumulating reports suggest that TNC may modulate the inflammatory response and contribute to elasticity of the tissue, so that it may protect cardiovascular tissue from destructive stress responses. TNC may be a key molecule to control cellular activity during development, adaptation, or pathological tissue remodeling. PMID:25120494

  3. Understanding the impact of hypoglycemia on the cardiovascular system

    PubMed Central

    Davis, Ian Charles; Ahmadizadeh, Ida; Randell, Jacqueline; Younk, Lisa; Davis, Stephen N

    2017-01-01

    Introduction Hypoglycemia occurs commonly in insulin requiring individuals with either Type 1 or Type 2 Diabetes. Areas Covered This article will review recent information on the pro-inflammatory and pro-atherothrombotic effects of hypoglycemia. Additionally, effects of hypoglycemia on arrhythmogenic potential and arterial endothelial dysfunction will be discussed. Effects of hypoglycemia on cardiovascular morbidity and mortality from large clinical studies in Type 1 and Type 2 DM will also be reviewed. Expert Commentary The relative and absolute risk of severe hypoglycemia leading to death and serious adverse events in both cardiovascular and other organ systems has been highlighted following the publication of recent large clinical trials focused on glucose control and outcomes. It would be helpful if future studies could develop broader end points to include minor and moderate hypoglycemia as well as more robust methods for capturing hypoglycemia contemporaneously with adverse events. In addition, perhaps consideration of including hypoglycemia as a primary outcome, may help identify the possible cause and effect of hypoglycemia on cardiovascular morbidity and mortality. PMID:29109754

  4. It is time to reconsider the cardiovascular protection afforded by RAAS blockade -- overview of RAAS systems.

    PubMed

    Tsukamoto, Osamu; Kitakaze, Masafumi

    2013-04-01

    More than a century has passed since the renin-angiotensin-aldosterone system (RAAS) was discovered in 1897. Both circulatory and tissue RAAS have been found to be essential for regulation of the functions of the whole body, organs, tissues and cells. There is no doubt that the RAAS plays fundamental physiological roles in maintaining homeostasis, but it can also contribute to organ pathophysiology and tissue damages in some situations. Today, the usefulness of RAAS blockade is well-established in the management of a variety of cardiovascular disorders worldwide. However, the latest findings in this field are still providing us with new and unexpected insights into the pathophysiology of cardiovascular diseases. Such developments include dual blockade therapy with angiotensin I converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs), and a new class of RAAS blockers, renin inhibitors. These give us the opportunity to revisit the basic principles of the RAAS and reconsider the strategies of RAAS blockade for cardiovascular protection.

  5. Complement Activation: An Emerging Player in the Pathogenesis of Cardiovascular Disease

    PubMed Central

    Carter, Angela M.

    2012-01-01

    A wealth of evidence indicates a fundamental role for inflammation in the pathogenesis of cardiovascular disease (CVD), contributing to the development and progression of atherosclerotic lesion formation, plaque rupture, and thrombosis. An increasing body of evidence supports a functional role for complement activation in the pathogenesis of CVD through pleiotropic effects on endothelial and haematopoietic cell function and haemostasis. Prospective and case control studies have reported strong relationships between several complement components and cardiovascular outcomes, and in vitro studies and animal models support a functional effect. Complement activation, in particular, generation of C5a and C5b-9, influences many processes involved in the development and progression of atherosclerosis, including promotion of endothelial cell activation, leukocyte infiltration into the extracellular matrix, stimulation of cytokine release from vascular smooth muscle cells, and promotion of plaque rupture. Complement activation also influences thrombosis, involving components of the mannose-binding lectin pathway, and C5b-9 in particular, through activation of platelets, promotion of fibrin formation, and impairment of fibrinolysis. The participation of the complement system in inflammation and thrombosis is consistent with the physiological role of the complement system as a rapid effector system conferring protection following vessel injury. However, in the context of CVD, these same processes contribute to development of atherosclerosis, plaque rupture, and thrombosis. PMID:24278688

  6. SAP: structure, function, and its roles in immune-related diseases.

    PubMed

    Xi, Dan; Luo, TianTian; Xiong, Haowei; Liu, Jichen; Lu, Hao; Li, Menghao; Hou, Yuqing; Guo, Zhigang

    2015-01-01

    Serum amyloid P component (SAP), also known as pentraxin-2, is a member of the pentraxin protein family with an established relationship to the immune response. In the last century, SAP has been used as a diagnostic marker in amyloidosis diagnosis and patient follow-up. SAP has been thought to have potential for treating and curing amyloidosis and fibrosis diseases. More recently, it has been shown that SAP may serve as both a diagnostic marker and a therapeutic target for many immune-related diseases, such as cardiovascular, pulmonary, nephritic, neurological and autoimmune diseases. In the cardiovascular system, SAP has been defined as the culprit in amyloidosis in the heart. SAP may also exert a protective role during the early stage of atherosclerosis and myocardial fibrosis. In noncardiovascular system diseases, SAP is being developed for the treatment of pulmonary fibrosis. In this review, we summarize SAP history, structure, and its roles in immune-related diseases in different systems with emphasis on the cardiovascular system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. 75 FR 47819 - Workshop on Optimizing Clinical Trial Design for the Development of Pediatric Cardiovascular Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ...] Workshop on Optimizing Clinical Trial Design for the Development of Pediatric Cardiovascular Devices AGENCY... (AAP), the American College of Cardiology (ACC), and the Society for Cardiovascular Angiography and... Development of Pediatric Cardiovascular Devices.'' The topic to be discussed is pediatric cardiovascular...

  8. Angiopoietin–Tie signalling in the cardiovascular and lymphatic systems

    PubMed Central

    Eklund, Lauri; Kangas, Jaakko; Saharinen, Pipsa

    2016-01-01

    Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)–Tie system is a second endothelial cell specific ligand–receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang–Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang–Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang–Tie system in vascular development and pathogenesis of vascular diseases. PMID:27941161

  9. Automatic signal extraction, prioritizing and filtering approaches in detecting post-marketing cardiovascular events associated with targeted cancer drugs from the FDA Adverse Event Reporting System (FAERS).

    PubMed

    Xu, Rong; Wang, Quanqiu

    2014-02-01

    Targeted drugs dramatically improve the treatment outcomes in cancer patients; however, these innovative drugs are often associated with unexpectedly high cardiovascular toxicity. Currently, cardiovascular safety represents both a challenging issue for drug developers, regulators, researchers, and clinicians and a concern for patients. While FDA drug labels have captured many of these events, spontaneous reporting systems are a main source for post-marketing drug safety surveillance in 'real-world' (outside of clinical trials) cancer patients. In this study, we present approaches to extracting, prioritizing, filtering, and confirming cardiovascular events associated with targeted cancer drugs from the FDA Adverse Event Reporting System (FAERS). The dataset includes records of 4,285,097 patients from FAERS. We first extracted drug-cardiovascular event (drug-CV) pairs from FAERS through named entity recognition and mapping processes. We then compared six ranking algorithms in prioritizing true positive signals among extracted pairs using known drug-CV pairs derived from FDA drug labels. We also developed three filtering algorithms to further improve precision. Finally, we manually validated extracted drug-CV pairs using 21 million published MEDLINE records. We extracted a total of 11,173 drug-CV pairs from FAERS. We showed that ranking by frequency is significantly more effective than by the five standard signal detection methods (246% improvement in precision for top-ranked pairs). The filtering algorithm we developed further improved overall precision by 91.3%. By manual curation using literature evidence, we show that about 51.9% of the 617 drug-CV pairs that appeared in both FAERS and MEDLINE sentences are true positives. In addition, 80.6% of these positive pairs have not been captured by FDA drug labeling. The unique drug-CV association dataset that we created based on FAERS could facilitate our understanding and prediction of cardiotoxic events associated with targeted cancer drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Tissue engineering therapy for cardiovascular disease.

    PubMed

    Nugent, Helen M; Edelman, Elazer R

    2003-05-30

    The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.

  11. Psoriasis: the visible killer.

    PubMed

    Torres, Tiago; Bettencourt, Nuno

    2014-02-01

    Psoriasis is a common chronic inflammatory disease associated with serious comorbidities. In recent years, increased mortality due to cardiovascular disease (myocardial infarction and stroke) has been documented in patients with severe psoriasis. Patients with psoriasis have a higher prevalence of traditional cardiovascular risk factors such as diabetes, hypertension, dyslipidemia and obesity, but it has been suggested that the chronic inflammatory nature of psoriasis is also a contributing and potentially an independent risk factor for the development of cardiovascular disease. The authors highlight the need for early identification and treatment of psoriasis-related comorbidities and cardiovascular disease, as well as effective treatment of psoriasis, in order to reduce the underlying systemic inflammation, and also the importance of a multidisciplinary approach of severe psoriasis patients to optimize the diagnosis, monitoring and treatment of various comorbidities, so as to prevent cardiovascular events. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  12. Cardiovascular Countermeasures for Exploration-Class Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2004-01-01

    Astronaut missions to Mars may be many years or even decades in thc future but current and planned efforts can be extrapolated to required treatments and prophylaxis for delerious efforts of prolonged space flight on the cardiovascular system. The literature of candidate countermeasures was considered in combination with unpublished plans for countermeasure implementation. The scope of cardiovascular countermeasures will be guided by assessments of the efficacy of mechanical, physiological and pharmacological approaches in protecting the cardiovascular capacities of interplanetary crewmembers. Plans for countermeasure development, evaluation and validation will exploit synergies among treatment modalities with the goal of maximizing protective effects while minimizing crew time and in-flight resource use. Protection of the cardiovascular capacity of interplanetary crewmembers will become more effective and efficient over the next few decades, but trade-offs between cost and effectiveness of efficiency are always possible if the increased level of risk can be accepted.

  13. Knockout of the Na,K-ATPase α2-isoform in cardiac myocytes delays pressure overload-induced cardiac dysfunction

    PubMed Central

    Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.

    2013-01-01

    The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327

  14. CardioTF, a database of deconstructing transcriptional circuits in the heart system

    PubMed Central

    2016-01-01

    Background: Information on cardiovascular gene transcription is fragmented and far behind the present requirements of the systems biology field. To create a comprehensive source of data for cardiovascular gene regulation and to facilitate a deeper understanding of genomic data, the CardioTF database was constructed. The purpose of this database is to collate information on cardiovascular transcription factors (TFs), position weight matrices (PWMs), and enhancer sequences discovered using the ChIP-seq method. Methods: The Naïve-Bayes algorithm was used to classify literature and identify all PubMed abstracts on cardiovascular development. The natural language learning tool GNAT was then used to identify corresponding gene names embedded within these abstracts. Local Perl scripts were used to integrate and dump data from public databases into the MariaDB management system (MySQL). In-house R scripts were written to analyze and visualize the results. Results: Known cardiovascular TFs from humans and human homologs from fly, Ciona, zebrafish, frog, chicken, and mouse were identified and deposited in the database. PWMs from Jaspar, hPDI, and UniPROBE databases were deposited in the database and can be retrieved using their corresponding TF names. Gene enhancer regions from various sources of ChIP-seq data were deposited into the database and were able to be visualized by graphical output. Besides biocuration, mouse homologs of the 81 core cardiac TFs were selected using a Naïve-Bayes approach and then by intersecting four independent data sources: RNA profiling, expert annotation, PubMed abstracts and phenotype. Discussion: The CardioTF database can be used as a portal to construct transcriptional network of cardiac development. Availability and Implementation: Database URL: http://www.cardiosignal.org/database/cardiotf.html. PMID:27635320

  15. CardioTF, a database of deconstructing transcriptional circuits in the heart system.

    PubMed

    Zhen, Yisong

    2016-01-01

    Information on cardiovascular gene transcription is fragmented and far behind the present requirements of the systems biology field. To create a comprehensive source of data for cardiovascular gene regulation and to facilitate a deeper understanding of genomic data, the CardioTF database was constructed. The purpose of this database is to collate information on cardiovascular transcription factors (TFs), position weight matrices (PWMs), and enhancer sequences discovered using the ChIP-seq method. The Naïve-Bayes algorithm was used to classify literature and identify all PubMed abstracts on cardiovascular development. The natural language learning tool GNAT was then used to identify corresponding gene names embedded within these abstracts. Local Perl scripts were used to integrate and dump data from public databases into the MariaDB management system (MySQL). In-house R scripts were written to analyze and visualize the results. Known cardiovascular TFs from humans and human homologs from fly, Ciona, zebrafish, frog, chicken, and mouse were identified and deposited in the database. PWMs from Jaspar, hPDI, and UniPROBE databases were deposited in the database and can be retrieved using their corresponding TF names. Gene enhancer regions from various sources of ChIP-seq data were deposited into the database and were able to be visualized by graphical output. Besides biocuration, mouse homologs of the 81 core cardiac TFs were selected using a Naïve-Bayes approach and then by intersecting four independent data sources: RNA profiling, expert annotation, PubMed abstracts and phenotype. The CardioTF database can be used as a portal to construct transcriptional network of cardiac development. Database URL: http://www.cardiosignal.org/database/cardiotf.html.

  16. P2X and P2Y nucleotide receptors as targets in cardiovascular disease.

    PubMed

    Kennedy, Charles; Chootip, Krongkarn; Mitchell, Callum; Syed, Nawazish-i-Husain; Tengah, Asrin

    2013-03-01

    Endogenous nucleotides have widespread actions in the cardiovascular system, but it is only recently that the P2X and P2Y receptor subtypes, at which they act, have been identified and subtype-selective agonists and antagonists developed. These advances have greatly increased our understanding of the physiological and pathophysiological functions of P2X and P2Y receptors, but investigation of the clinical usefulness of selective ligands is at an early stage. Nonetheless, the evidence considered in this review demonstrates clearly that various cardiovascular disorders, including vasospasm, hypertension, congestive heart failure and cardiac damage during ischemic episodes, may be viable targets. With further development of novel, selective agonists and antagonists, our understanding will continue to improve and further therapeutic applications are likely to be discovered.

  17. A Multiscale Closed-Loop Cardiovascular Model, with Applications to Heart Pacing and Hemorrhage

    NASA Astrophysics Data System (ADS)

    Canuto, Daniel; Eldredge, Jeff; Chong, Kwitae; Benharash, Peyman; Dutson, Erik

    2017-11-01

    A computational tool is developed for simulating the dynamic response of the human cardiovascular system to various stressors and injuries. The tool couples zero-dimensional models of the heart, pulmonary vasculature, and peripheral vasculature to one-dimensional models of the major systemic arteries. To simulate autonomic response, this multiscale circulatory model is integrated with a feedback model of the baroreflex, allowing control of heart rate, cardiac contractility, and peripheral impedance. The performance of the tool is demonstrated in two scenarios: increasing heart rate by stimulating the sympathetic nervous system, and an acute 10 percent hemorrhage from the left femoral artery.

  18. Human Cardiovascular Responses to Passive Heat Stress

    PubMed Central

    Crandall, Craig G.; Wilson, Thad E.

    2016-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263

  19. Antioxidative diet supplementation reverses high-fat diet-induced increases of cardiovascular risk factors in mice.

    PubMed

    Vargas-Robles, Hilda; Rios, Amelia; Arellano-Mendoza, Monica; Escalante, Bruno A; Schnoor, Michael

    2015-01-01

    Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion) would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD). Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  20. Prevention and Control of Cardiovascular Disease in the Rapidly Changing Economy of China.

    PubMed

    Wu, Yangfeng; Benjamin, Emelia J; MacMahon, Stephen

    2016-06-14

    With one-fifth of the world's total population, China's prevention and control of cardiovascular disease (CVD) may affect the success of worldwide efforts to achieve sustainable CVD reduction. Understanding China's current cardiovascular epidemic requires awareness of the economic development in the past decades. The rapid economic transformations (industrialization, marketization, urbanization, globalization, and informationalization) contributed to the aging demography, unhealthy lifestyles, and environmental changes. The latter have predisposed to increasing cardiovascular risk factors and the CVD pandemic. Rising CVD rates have had a major economic impact, which has challenged the healthcare system and the whole society. With recognition of the importance of health, initial political steps and national actions have been taken to address the CVD epidemic. Looking to the future, we recommend that 4 priorities should be taken: pursue multisectorial government and nongovernment strategies targeting the underlying causes of CVD (the whole-of-government and whole-of-society policy); give priority to prevention; reform the healthcare system to fit the nature of noncommunicable diseases; and conduct research for evidence-based, low-cost, simple, sustainable, and scalable interventions. By pursuing the 4 priorities, the pandemic of CVD and other major noncommunicable diseases in China will be reversed and the global sustainable development goal achieved. © 2016 American Heart Association, Inc.

  1. Prevention and Control of Cardiovascular Disease in the Rapidly Changing Economy of China

    PubMed Central

    Wu, Yangfeng; Benjamin, Emelia J.; MacMahon, Stephen

    2016-01-01

    With one fifth of the world’s total population, China’s prevention and control of cardiovascular disease (CVD) may affect the success of worldwide efforts to achieve sustainable CVD reduction. To understand China’s current cardiovascular epidemic, requires awareness of the economic development in the past decades. The rapid economic transformations (industrialization, marketization, urbanization, globalization, and informationalization) contributed to the aging demography, unhealthy lifestyles, and environmental changes. The later have predisposed to increasing cardiovascular risk factors and the CVD pandemic. Rising CVD rates have had a major economic impact, which has challenged the health care system and the whole society. With recognition of the importance of health, initial political steps and national actions have been taken to address the CVD epidemic. Looking to the future, we recommend that four priorities should be taken: pursue multi-sectorial government and non-government strategies targeting the underlying causes of CVD (the “whole-of-government and whole-of-society” policy); give priority to prevention; reform the health care system to fit the nature of noncommunicable diseases; and conduct research for evidence-based, low-cost, simple, sustainable, and scalable interventions. By pursuing the four priorities, the pandemic of CVD and other major NCDs in China will be reversed and the global sustainable development goal achieved. PMID:27297347

  2. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  3. Localized Scleroderma, Systemic Sclerosis and Cardiovascular Risk: A Danish Nationwide Cohort Study.

    PubMed

    Hesselvig, Jeanette Halskou; Kofoed, Kristian; Wu, Jashin J; Dreyer, Lene; Gislason, Gunnar; Ahlehoff, Ole

    2018-03-13

    Recent findings indicate that patients with systemic sclerosis have an increased risk of cardiovascular disease. To determine whether patients with systemic sclerosis or localized scleroderma are at increased risk of cardiovascular disease, a cohort study of the entire Danish population aged ≥ 18 and ≤ 100 years was conducted, followed from 1997 to 2011 by individual-level linkage of nationwide registries. Multivariable adjusted Cox regression models were used to estimate the hazard ratios (HRs) for a composite cardiovascular disease endpoint. A total of 697 patients with localized scleroderma and 1,962 patients with systemic sclerosis were identified and compared with 5,428,380 people in the reference population. In systemic sclerosis, the adjusted HR was 2.22 (95% confidence interval 1.99-2.48). No association was seen between patients with localized scleroderma and cardiovascular disease. In conclusion, systemic sclerosis is a significant cardiovascular disease risk factor, while patients with localized scleroderma are not at increased risk of cardiovascular disease.

  4. Evolution and physiology of neural oxygen sensing

    PubMed Central

    Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.

    2014-01-01

    Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625

  5. Leveraging model-informed approaches for drug discovery and development in the cardiovascular space.

    PubMed

    Dockendorf, Marissa F; Vargo, Ryan C; Gheyas, Ferdous; Chain, Anne S Y; Chatterjee, Manash S; Wenning, Larissa A

    2018-06-01

    Cardiovascular disease remains a significant global health burden, and development of cardiovascular drugs in the current regulatory environment often demands large and expensive cardiovascular outcome trials. Thus, the use of quantitative pharmacometric approaches which can help enable early Go/No Go decision making, ensure appropriate dose selection, and increase the likelihood of successful clinical trials, have become increasingly important to help reduce the risk of failed cardiovascular outcomes studies. In addition, cardiovascular safety is an important consideration for many drug development programs, whether or not the drug is designed to treat cardiovascular disease; modeling and simulation approaches also have utility in assessing risk in this area. Herein, examples of modeling and simulation applied at various stages of drug development, spanning from the discovery stage through late-stage clinical development, for cardiovascular programs are presented. Examples of how modeling approaches have been utilized in early development programs across various therapeutic areas to help inform strategies to mitigate the risk of cardiovascular-related adverse events, such as QTc prolongation and changes in blood pressure, are also presented. These examples demonstrate how more informed drug development decisions can be enabled by modeling and simulation approaches in the cardiovascular area.

  6. NO Signaling in the Cardiovascular System and Exercise.

    PubMed

    Fernandes, Tiago; Gomes-Gatto, Camila V; Pereira, Noemy P; Alayafi, Yahya R; das Neves, Vander J; Oliveira, Edilamar M

    2017-01-01

    Nitric oxide (NO) is a small molecule implicated in multiple signal transduction pathways thus contributing to the regulation of many cellular functions. The identification of NO synthase (NOS) isoforms and the subsequent characterization of the mechanisms of cell activation of the enzymes permitted the partial understanding of both the physiological and pathological processes. NO bioavailability plays an important role in the pathophysiology of cardiovascular disease and its reduction in endothelial cells is strictly associated to endothelial dysfunction which, in turn, correlates with cardiovascular mortality. Indeed, endothelial NO synthase (eNOS) has a key role in limiting cardiac dysfunction and remodeling in heart diseases, in part by decreasing myocyte hypertrophy. Conversely, exercise training is recommended to prevent and treat cardiovascular diseases-associated disorders at least by enhanced NO synthase activity and expression, and increased production of antioxidants, which prevents premature breakdown of NO. Exercise training may cause an improvement in endothelial function for both experimental animals and humans; Studies in both healthy subjects and patients with impaired NO-related vasorelaxation remarked exercise training ability to improve vascular structure and function and endothelial homeostasis. This chapter will briefly consider the importance of NO signaling in the maintenance of cardiovascular physiology, and discuss recent insights into the effect of exercise training on the signaling pathways that modulate NO synthesis and degradation in health and cardiovascular disease. In addition, we will highlight the molecular mechanisms via which microRNAs (miRs) target NO signaling in the cardiovascular system, and NO as a candidate molecule for development of new therapies.

  7. Estrogen in cardiovascular disease during systemic lupus erythematosus.

    PubMed

    Gilbert, Emily L; Ryan, Michael J

    2014-12-01

    Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in adulthood. In addition, increasing evidence suggests that estrogen may have distinct temporal effects on cardiovascular risk factors during SLE. Data from experimental models of lupus suggest that estrogens may have an important permissive role for developing SLE early in life. However, their role in adulthood remains unclear, particularly for the effect on cardiovascular disease and its risk factors. Additional work is needed to understand the effect of estrogens in human SLE, and preclinical studies in experimental models of SLE may contribute important mechanistic insight to further advance the field. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.

  8. Estrogen in Cardiovascular Disease during Systemic Lupus Erythematosus

    PubMed Central

    Gilbert, Emily L.; Ryan, Michael J.

    2015-01-01

    Purpose Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. Methods PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. Findings The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in adulthood. In addition, increasing evidence suggests that estrogen may have distinct temporal effects on cardiovascular risk factors during SLE. Implications Data from experimental models of lupus suggest that estrogens may have an important permissive role for developing SLE early in life. However, their role in adulthood remains unclear, particularly for the effect on cardiovascular disease and its risk factors. Additional work is needed to understand the effect of estrogens in human SLE, and preclinical studies in experimental models of SLE may contribute important mechanistic insight to further advance the field. PMID:25194860

  9. Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Marks, Daniel L.; Ralston, Tyler S.; Boppart, Stephen A.

    2006-03-01

    Optical coherence tomography (OCT) is an emerging high-resolution real-time biomedical imaging technology that has potential as a novel investigational tool in developmental biology and functional genomics. In this study, murine embryos and embryonic hearts are visualized with an OCT system capable of 2-µm axial and 15-µm lateral resolution and with real-time acquisition rates. We present, to our knowledge, the first sets of high-resolution 2- and 3-D OCT images that reveal the internal structures of the mammalian (murine) embryo (E10.5) and embryonic (E14.5 and E17.5) cardiovascular system. Strong correlations are observed between OCT images and corresponding hematoxylin- and eosin-stained histological sections. Real-time in vivo embryonic (E10.5) heart activity is captured by spectral-domain optical coherence tomography, processed, and displayed at a continuous rate of five frames per second. With the ability to obtain not only high-resolution anatomical data but also functional information during cardiovascular development, the OCT technology has the potential to visualize and quantify changes in murine development and in congenital and induced heart disease, as well as enable a wide range of basic in vitro and in vivo research studies in functional genomics.

  10. Antioxidant effects of statins in the management of cardiometabolic disorders.

    PubMed

    Lim, Soo; Barter, Philip

    2014-01-01

    Redox systems are key players in vascular health. A shift in redox homeostasis-that results in an imbalance between reactive oxygen species (ROS) generation and endogenous antioxidant defenses has the potential to create a state of oxidative stress that subsequently plays a role in the pathogenesis of a number of diseases, including those of the cardiovascular and metabolic system. Statins, which are primarily used to reduce the concentration of low-density lipoprotein cholesterol, have also been shown to reduce oxidative stress by modulating redox systems. Studies conducted both in vitro and in vivo support the role of oxidative stress in the development of atherosclerosis and cardiovascular diseases. Oxidative stress may also be responsible for various diabetic complications and the development of fatty liver. Statins reduce oxidative stress by blocking the generation of ROS and reducing the NAD+/NADH ratio. These drugs also have effects on nitric oxide synthase, lipid peroxidation and the adiponectin levels. It is possible that the antioxidant properties of statins contribute to their protective cardiovascular effects, independent of the lipid-lowering actions of these agents. However, possible adverse effects of statins on glucose homeostasis may be related to the redox system. Therefore, studies investigating the modulation of redox signaling by statins are warranted.

  11. Light and Dark of Reactive Oxygen Species for Vascular Function: 2014 ASVB (Asian Society of Vascular Biology).

    PubMed

    Shimokawa, Hiroaki; Satoh, Kimio

    2015-05-01

    Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.

  12. Direct and Indirect Effects of PM on the Cardiovascular System

    PubMed Central

    Nelin, Timothy D.; Joseph, Allan M.; Gorr, Matthew W.; Wold, Loren E.

    2011-01-01

    Human exposure to particulate matter (PM) elicits a variety of responses on the cardiovascular system through both direct and indirect pathways. Indirect effects of PM on the cardiovascular system are mediated through the autonomic nervous system, which controls heart rate variability, and inflammatory responses, which augment acute cardiovascular events and atherosclerosis. Recent research demonstrates that PM also affects the cardiovascular system directly by entry into the systemic circulation. This process causes myocardial dysfunction through mechanisms of reactive oxygen species production, calcium ion interference, and vascular dysfunction. In this review, we will present key evidence in both the direct and indirect pathways, suggest clinical applications of the current literature, and recommend directions for future research. PMID:22119171

  13. Neural crest contribution to the cardiovascular system.

    PubMed

    Brown, Christopher B; Baldwin, H Scott

    2006-01-01

    Normal cardiovascular development requires complex remodeling of the outflow tract and pharyngeal arch arteries to create the separate pulmonic and systemic circulations. During remodeling, the outflow tract is septated to form the ascending aorta and the pulmonary trunk. The initially symmetrical pharyngeal arch arteries are remodeled to form the aortic arch, subclavian and carotid arteries. Remodeling is mediated by a population of neural crest cells arising between the mid-otic placode and somite four called the cardiac neural crest. Cardiac neural crest cells form smooth muscle and pericytes in the great arteries, and the neurons of cardiac innervation. In addition to the physical contribution of smooth muscle to the cardiovascular system, cardiac neural crest cells also provide signals required for the maintenance and differentiation of the other cell layers in the pharyngeal apparatus. Reciprocal signaling between the cardiac neural crest cells and cardiogenic mesoderm of the secondary heart field is required for elaboration of the conotruncus and disruption in this signaling results in primary myocardial dysfunction. Cardiovascular defects attributed to the cardiac neural crest cells may reflect either cell autonomous defects in the neural crest or defects in signaling between the neural crest and adjacent cell layers.

  14. Cardiovascular and fluid volume control in humans in space.

    PubMed

    Norsk, Peter

    2005-08-01

    The human cardiovascular system and regulation of fluid volume are heavily influenced by gravity. When decreasing the effects of gravity in humans such as by anti-orthostatic posture changes or immersion into water, venous return is increased by some 25%. This leads to central blood volume expansion, which is accompanied by an increase in renal excretion rates of water and sodium. The mechanisms for the changes in renal excretory rates include a complex interaction of cardiovascular reflexes, neuroendocrine variables, and physical factors. Weightlessness is unique to obtain more information on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control is of importance for understanding pathophysiology of heart failure, where gravity plays a strong role in fluid and sodium retention.

  15. Autonomic control of circulation in fish: a comparative view.

    PubMed

    Sandblom, Erik; Axelsson, Michael

    2011-11-16

    The autonomic nervous system has a central role in the control and co-ordination of the cardiovascular system in all vertebrates. In fish, which represent the largest and most diverse vertebrate group, the autonomic control of the circulation displays a vast variation with a number of interesting deviations from the typical vertebrate pattern. This diversity ranges from virtually no known nervous control of the circulation in hagfish, to a fully developed dual control from both cholinergic and adrenergic nerves in teleost, much resembling the situation found in other vertebrate groups. This review summarizes current knowledge on the role of the autonomic nervous system in the control of the cardiovascular system in fish. We set out by providing an overview of the general trends and patterns in the major fish groups, and then a summary of how the autonomic nervous control is involved in normal daily activities such as barostatic control of blood pressure, as well as adjustments of the cardiovascular system during feeding and environmental hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Primary prevention of cardiovascular disease in patients with systemic lupus erythematosus: case series and literature review.

    PubMed

    Fasano, S; Margiotta, D P; Navarini, L; Pierro, L; Pantano, I; Riccardi, A; Afeltra, A; Valentini, G

    2017-12-01

    Background Systemic lupus erythematosus is associated with an increased risk of cardiovascular disease. Low-dose aspirin, hydroxychloroquine and statins have been suggested to play a prophylactic role of cardiovascular events. This study is devoted to reviewing the literature on the topic and assessing the effects of these drugs in preventing a first cardiovascular event in a two-centre Italian series. Methods A PubMed search on cardiovascular prevention in systemic lupus erythematosus was performed. Moreover, systemic lupus erythematosus patients admitted to two centres from 2000-2015, who at admission had not experienced any cardiovascular event, were investigated. Aspirin, hydroxychloroquine and statin use, and the occurrence of any cardiovascular event, were recorded at each visit. Kaplan-Meier and Cox regression analyses were performed to evaluate the role of traditional, disease-related cardiovascular risk factors and of each of the three drugs in the occurrence of new cardiovascular events. Results The literature search produced conflicting results. Two hundred and ninety-one systemic lupus erythematosus patients were included in the study and followed for a median of eight years. During follow-up, 16 cardiovascular events occurred. At multivariate analysis, taking aspirin (hazard ratio: 0.24) and hydroxychloroquine for more than five years (hazard ratio: 0.27) reduced, while antiphospholipid antibody positivity (hazard ratio: 4.32) increased, the risk of a first cardiovascular event. No effect of statins emerged. Conclusion Our study confirms an additive role of aspirin and hydroxychloroquine in the primary prophylaxis of cardiovascular events in Italian patients with systemic lupus erythematosus. The lack of any detected effect in previous reports may depend on the design of studies and their short follow-up period.

  17. Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions

    PubMed Central

    Mendizábal, V E; Adler-Graschinsky, E

    2007-01-01

    In addition to their classical known effects, such as analgesia, impairment of cognition and learning and appetite enhancement, cannabinoids have also been related to the regulation of cardiovascular responses and implicated in cardiovascular pathology. Elevated levels of endocannabinoids have been related to the extreme hypotension associated with various forms of shock as well as to the cardiovascular abnormalities that accompany cirrhosis. In contrast, cannabinoids have also been associated with beneficial effects on the cardiovascular system, such as a protective role in atherosclerosis progression and in cerebral and myocardial ischaemia. In addition, it has also been suggested that the pharmacological manipulation of the endocannabinoid system may offer a novel approach to antihypertensive therapy. During the last decades, the tremendous increase in the understanding of the molecular basis of cannabinoid activity has encouraged many pharmaceutical companies to develop more potent synthetic cannabinoid analogues and antagonists, leading to an explosion of basic research and clinical trials. Consequently. not only the synthetic THC dronabinol (Marinol) and the synthetic THC analogue nabilone (Cesamet) have been approved in the United States, but also the standardized cannabis extract (Sativex) in Canada. At least three strategies can be foreseen in the future clinical use of cannabinoid-based drugs: (a) the use of CB1 receptor antagonists, such as the recently approved rimonabant (b) the use of CB2-selective agonists, and (c) the use of inhibitors of endocannabinoid degradation. In this context, the present review examines the effects of cannabinoids and of the pharmacological manipulation of the endocannabinoid system, in cardiovascular pathophysiology. PMID:17450170

  18. Role of antioxidants in redox regulation of diabetic cardiovascular complications.

    PubMed

    Turan, Belma

    2010-12-01

    Cardiovascular dysfunction is leading cause for the mortality of diabetic individuals, in part due to a specific cardiomyopathy, and due to altered endothelial dependent/independent vascular reactivity. Cardiovascular complications result from multiple parameters including glucotoxicity, lipotoxicity, fibrosis and mitochondrial uncoupling. Oxidative stress arises from an imbalance between the production of reactive oxygen and nitrogen species (ROS and RNS) and the capability of biological system to readily detoxify reactive intermediates. Several studies have reported beneficial effects of a therapy with antioxidant agents, including trace elements and other antioxidants, against the cardiovascular system dysfunction due to the diabetes. Antioxidants act through different mechanisms to prevent oxidant-induced cell damages acting either directly or indirectly. They can reduce the generation of ROS, scavenge ROS, or interfere with ROS-induced alterations. Modulating mitochondrial activity is an important possibility to control ROS production. Hence, the use of PPARα agonist to reduce fatty acid oxidation and of trace elements such as selenium as antioxidant and other antioxidants such as vitamins E and C, contribute to the prevention of diabetes-induced cardiovascular dysfunction. The paradigm that, inhibiting the overproduction of superoxides and peroxides would prevent cardiac dysfunction in diabetes has been difficult to verify using conventional antioxidants like vitamins E and C. That led to use of catalytic antioxidants such as SOD/CAT mimetics. Hence, well-tuned, balanced and responsive antioxidant defence systems are vital for proper prevention against diabetic damage. Myocardial cell death is observed in the hearts of diabetic patients and animal models; however, its importance in the development of diabetic cardiomyopathy is not completely understood. This review aims to summarize our present knowledge on various strategies to control oxidative stress and antagonize cardiovascular dysfunction during diabetes. In here, we consider aspects of redox signaling in the cardiovascular system, focusing on the molecular basis of redox sensing by proteins and the array of post-translational oxidative modifications that can occur. In addition, we discuss studies identify redox-sensitive cardiac proteins, as well as those assessing redox signalling in cardiovascular disease.

  19. Thioredoxin: a key regulator of cardiovascular homeostasis.

    PubMed

    Yamawaki, Hideyuki; Haendeler, Judith; Berk, Bradford C

    2003-11-28

    The thioredoxin (TRX) system (TRX, TRX reductase, and NADPH) is a ubiquitous thiol oxidoreductase system that regulates cellular reduction/oxidation (redox) status. The oxidation mechanism for disease pathogenesis states that an imbalance in cell redox state alters function of multiple cell pathways. In this study, we review the essential role for TRX to limit oxidative stress directly via antioxidant effects and indirectly by protein-protein interaction with key signaling molecules, such as apoptosis signal-regulating kinase 1. We propose that TRX and its endogenous regulators are important future targets to develop clinical therapies for cardiovascular disorders associated with oxidative stress.

  20. Multiparametric Imaging of Organ System Interfaces

    PubMed Central

    Vandoorne, Katrien; Nahrendorf, Matthias

    2017-01-01

    Cardiovascular diseases are a consequence of genetic and environmental risk factors that together generate arterial wall and cardiac pathologies. Blood vessels connect multiple systems throughout the entire body and allow organs to interact via circulating messengers. These same interactions facilitate nervous and metabolic system influence on cardiovascular health. Multiparametric imaging offers the opportunity to study these interfacing systems’ distinct processes, to quantify their interactions and to explore how these contribute to cardiovascular disease. Noninvasive multiparametric imaging techniques are emerging tools that can further our understanding of this complex and dynamic interplay. PET/MRI and multichannel optical imaging are particularly promising because they can simultaneously sample multiple biomarkers. Preclinical multiparametric diagnostics could help discover clinically relevant biomarker combinations pivotal for understanding cardiovascular disease. Interfacing systems important to cardiovascular disease include the immune, nervous and hematopoietic systems. These systems connect with ‘classical’ cardiovascular organs, like the heart and vasculature, and with the brain. The dynamic interplay between these systems and organs enables processes such as hemostasis, inflammation, angiogenesis, matrix remodeling, metabolism and fibrosis. As the opportunities provided by imaging expand, mapping interconnected systems will help us decipher the complexity of cardiovascular disease and monitor novel therapeutic strategies. PMID:28360260

  1. A case of acute myocardial infarction due to the use of cayenne pepper pills.

    PubMed

    Sayin, Muhammet Rasit; Karabag, Turgut; Dogan, Sait Mesut; Akpinar, Ibrahim; Aydin, Mustafa

    2012-04-01

    The use of weight loss pills containing cayenne pepper has ever been increasing. The main component of cayenne pepper pills is capsaicin. There are conflicting data about the effects of capsaicin on the cardiovascular system. In this paper, we present the case of a 41 year old male patient with no cardiovascular risk factors who took cayenne pepper pills to lose weight and developed acute myocardial infarction.

  2. Programming of endocrine mechanisms of cardiovascular control and growth.

    PubMed

    Green, L R

    2001-01-01

    Several epidemiologic studies have linked size at birth to health in adult life. One school of thought centers on the part that periconceptual or intrauterine events play in this relationship. The idea is that an event, or several events, during critical periods of development can program, or permanently alter, fetal physiology resulting in altered size at birth and subsequent adult disease, including that of the cardiovascular system. Maternal diet or body composition at the time of conception can influence placental development and subsequent transfer of nutrients and substrates to the fetus. Alterations to the maternal diet or body composition throughout gestation are then seen as challenges that are superimposed on this backdrop of periconceptual events. One task is to find an animal model that replicates the major features of the epidemiologic data: for adult cardiovascular disease this would be altered fetal size and the development of postnatal hypertension. In addition, a critical issue is to investigate the mechanisms underlying this Fetal Origins of Adult Disease hypothesis. The multiple mechanisms that constitute fetal cardiovascular responses to hypoxia in late gestation at neuronal, endocrine, and local tissue levels have been studied extensively, and there is evidence from several different experimental paradigms that these control mechanisms can be programmed by intrauterine challenges. This review synthesizes the current knowledge in this area and considers how the programming of cardiovascular control relates to fetal growth.

  3. The role of the apelinergic and vasopressinergic systems in the regulation of the cardiovascular system and the pathogenesis of cardiovascular disease.

    PubMed

    Czarzasta, Katarzyna; Cudnoch-Jedrzejewska, Agnieszka

    2014-01-01

    Research studies indicate a role of the apelinergic and vasopressinergic systems both in the regulation of the cardiovascular system and the pathogenesis of CVD, including in such settings as obesity and stress. Based on these data, it may be suggested that interactions between these systems underlie numerous physiological and pathophysiological processes, some of them related to the cardiovascular system. Better understanding of the role of these systems and their interactions, both physiological and related to the pathogenesis of CVD, will allow further advances in prevention and drug therapy.

  4. Care delivery for Filipino Americans using the Neuman systems model.

    PubMed

    Angosta, Alona D; Ceria-Ulep, Clementina D; Tse, Alice M

    2014-04-01

    Filipino Americans are at risk of coronary heart disease due to the presence of multiple cardiometabolic factors. Selecting a framework that addresses the factors leading to coronary heart disease is vital when providing care for this population. The Neuman systems model is a comprehensive and wholistic framework that offers an innovative method of viewing clients, their families, and the healthcare system across multiple dimensions. Using the Neuman systems model, advanced practice nurses can develop and implement interventions that will help reduce the potential cardiovascular problems of clients with multiple risk factors. The authors in this article provides insight into the cardiovascular health of Filipino Americans and has implications for nurses and other healthcare providers working with various Southeast Asian groups in the United States.

  5. Mammalian Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics

    NASA Astrophysics Data System (ADS)

    Anderson, Gregory Arthur

    Cardiovascular development is a process that involves the timing of multiple molecular events, and numerous subtle three-dimensional conformational changes. Traditional developmental biology techniques have provided large quantities of information as to how these complex organ systems develop. However, the major drawback of the majority of current developmental biological imaging is that they are two-dimensional in nature. It is now well recognized that circulation of blood is required for normal patterning and remodeling of blood vessels. Normal blood vessel formation is dependent upon a complex network of signaling pathways, and genetic mutations in these pathways leads to impaired vascular development, heart failure, and lethality. As such, it is not surprising that mutant mice with aberrant cardiovascular patterning are so common, since normal development requires proper coordination between three systems: the heart, the blood, and the vasculature. This thesis describes the implementation of a three-dimensional imaging technique, optical projection tomography (OPT), in conjunction with a computer-based registration algorithm to statistically analyze developmental differences in groups of wild-type mouse embryos. Embryos that differ by only a few hours' gestational time are shown to have developmental differences in blood vessel formation and heart development progression that can be discerned. This thesis describes how we analyzed mouse models of cardiovascular perturbation by OPT to detect morphological differences in embryonic development in both qualitative and quantitative ways. Both a blood vessel specific mutation and a cardiac specific mutation were analyzed, providing evidence that developmental defects of these types can be quantified. Finally, we describe the implementation of OPT imaging to identify statistically significant phenotypes from three different mouse models of cardiovascular perturbation across a range of developmental time points. Image registration methods, combined with intensity- and deformation-based analyses are described and utilized to fully characterize myosin light chain 2a (Mlc2a), delta-like ligand 4 (Dll4), and Endoglin (Eng) mutant mouse embryos. We show that Eng mutant embryos are statistically similar to the Mlc2a phenotype, confirming that these mouse mutants suffer from a primary cardiac developmental defect. Thus, a loss of hemodynamic force caused by defective pumping of the heart is the primary developmental defect affecting these mice.

  6. Dyslipidemia and Diabetes Increase the OPG/TRAIL Ratio in the Cardiovascular System.

    PubMed

    Toffoli, Barbara; Fabris, Bruno; Bartelloni, Giacomo; Bossi, Fleur; Bernardi, Stella

    2016-01-01

    Background . Dyslipidemia and diabetes are two of the most well established risk factors for the development of cardiovascular disease (CVD). Both of them usually activate a complex range of pathogenic pathways leading to organ damage. Here we hypothesized that dyslipidemia and diabetes could affect osteoprotegerin (OPG) and TNF-related apoptosis-inducing ligand (TRAIL) expression in the vessels and the heart. Materials and Methods . Gene and protein expression of OPG, TRAIL, and OPG/TRAIL ratio were quantified in the aorta and the hearts of control mice, dyslipidemic mice, and diabetic mice. Results . Diabetes significantly increased OPG and the OPG/TRAIL ratio expression in the aorta, while dyslipidemia was the major determinant of the changes observed in the heart, where it significantly increased OPG and reduced TRAIL expression, thus increasing cardiac OPG/TRAIL ratio. Conclusions . This work shows that both dyslipidemia and diabetes affect OPG/TRAIL ratio in the cardiovascular system. This could contribute to the changes in circulating OPG/TRAIL which are observed in patients with diabetes and CVD. Most importantly, these changes could mediate/contribute to atherosclerosis development and cardiac remodeling.

  7. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    PubMed

    Riley, Callum James; Gavin, Matthew

    2017-06-01

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  8. Klinefelter syndrome, cardiovascular system, and thromboembolic disease: review of literature and clinical perspectives.

    PubMed

    Salzano, Andrea; Arcopinto, Michele; Marra, Alberto M; Bobbio, Emanuele; Esposito, Daniela; Accardo, Giacomo; Giallauria, Francesco; Bossone, Eduardo; Vigorito, Carlo; Lenzi, Andrea; Pasquali, Daniela; Isidori, Andrea M; Cittadini, Antonio

    2016-07-01

    Klinefelter syndrome (KS) is the most frequently occurring sex chromosomal aberration in males, with an incidence of about 1 in 500-700 newborns. Data acquired from large registry-based studies revealed an increase in mortality rates among KS patients when compared with mortality rates among the general population. Among all causes of death, metabolic, cardiovascular, and hemostatic complication seem to play a pivotal role. KS is associated, as are other chromosomal pathologies and genetic diseases, with cardiac congenital anomalies that contribute to the increase in mortality. The aim of the current study was to systematically review the relationships between KS and the cardiovascular system and hemostatic balance. In summary, patients with KS display an increased cardiovascular risk profile, characterized by increased prevalence of metabolic abnormalities including Diabetes mellitus (DM), dyslipidemia, and alterations in biomarkers of cardiovascular disease. KS does not, however, appear to be associated with arterial hypertension. Moreover, KS patients are characterized by subclinical abnormalities in left ventricular (LV) systolic and diastolic function and endothelial function, which, when associated with chronotropic incompetence may led to reduced cardiopulmonary performance. KS patients appear to be at a higher risk for cardiovascular disease, attributing to an increased risk of thromboembolic events with a high prevalence of recurrent venous ulcers, venous insufficiency, recurrent venous and arterial thromboembolism with higher risk of deep venous thrombosis or pulmonary embolism. It appears that cardiovascular involvement in KS is mainly due to chromosomal abnormalities rather than solely on low serum testosterone levels. On the basis of evidence acquisition and authors' own experience, a flowchart addressing the management of cardiovascular function and prognosis of KS patients has been developed for clinical use. © 2016 European Society of Endocrinology.

  9. Analysis of changes in leg volume parameters, and orthostatic tolerance in response to lower body negative pressure during 28-days exposure to zero gravity Skylab 2

    NASA Technical Reports Server (NTRS)

    Barnett, R. D.; Gowen, R. J.; Carroll, D. R.

    1975-01-01

    The design of the leg volume measuring system employed for the M092 portion of the Skylab missions required the development of a system sensitive to large and small volume changes at the calf of the leg. These changes in volume were produced in response to the orthostatic stress of a Lower Body Negative Pressure Device (LBNPD) or by venous occlusion. The cardiovascular responses of the Apollo crewman associated with the postflight evaluations indicate varying decrements of orthostatic tolerance. The postflight changes indicate a slightly diminished ability of the cardiovascular system to function effectively against gravity following exposure to weightlessness. The objective of the Skylab LBNP experiments (M092) was to provide information about the magnitude and time course of the cardiovascular changes associated with prolonged periods of exposure to weightlessness. The equipment, signal processing, and analysis of the leg volume data obtained from the M092 experiment of the Skylab 2 Mission are described.

  10. Technological innovations in the development of cardiovascular clinical information systems.

    PubMed

    Hsieh, Nan-Chen; Chang, Chung-Yi; Lee, Kuo-Chen; Chen, Jeen-Chen; Chan, Chien-Hui

    2012-04-01

    Recent studies have shown that computerized clinical case management and decision support systems can be used to assist surgeons in the diagnosis of disease, optimize surgical operation, aid in drug therapy and decrease the cost of medical treatment. Therefore, medical informatics has become an extensive field of research and many of these approaches have demonstrated potential value for improving medical quality. The aim of this study was to develop a web-based cardiovascular clinical information system (CIS) based on innovative techniques, such as electronic medical records, electronic registries and automatic feature surveillance schemes, to provide effective tools and support for clinical care, decision-making, biomedical research and training activities. The CIS developed for this study contained monitoring, surveillance and model construction functions. The monitoring layer function provided a visual user interface. At the surveillance and model construction layers, we explored the application of model construction and intelligent prognosis to aid in making preoperative and postoperative predictions. With the use of the CIS, surgeons can provide reasonable conclusions and explanations in uncertain environments.

  11. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system.

    PubMed

    Cai, Anping; Li, Liwen; Zhou, Yingling

    2016-01-01

    In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.

  12. Mobile Health Devices as Tools for Worldwide Cardiovascular Risk Reduction and Disease Management

    PubMed Central

    Piette, John D.; List, Justin; Rana, Gurpreet K.; Townsend, Whitney; Striplin, Dana; Heisler, Michele

    2015-01-01

    We examined evidence on whether mobile health (mHealth) tools, including Interactive Voice Response (IVR) calls, short message service (SMS) or text messaging, and smartphones, can improve lifestyle behaviors and management related to cardiovascular diseases throughout the world. We conducted a state-of-the-art review and literature synthesis of peer-reviewed and grey literature published since 2004. The review prioritized randomized trials and studies focused on cardiovascular diseases and risk factors, but included other reports when they represented the best available evidence. The search emphasized reports on the potential benefits of mHealth interventions implemented in low- and middle-income countries (LMICs). IVR and SMS interventions can improve cardiovascular preventive care in developed countries by addressing risk factors including weight, smoking, and physical activity. IVR and SMS-based interventions for cardiovascular disease management also have shown benefits with respect to hypertension management, hospital readmissions, and diabetic glycemic control. Multi-modal interventions including web-based communication with clinicians and mHealth-enabled clinical monitoring with feedback also have shown benefits. The evidence regarding the potential benefits of interventions using smartphones and social media is still developing. Studies of mHealth interventions have been conducted in more than 30 LMICs, and evidence to date suggests that programs are feasible and may improve medication adherence and disease outcomes. Emerging evidence suggests that mHealth interventions may improve cardiovascular-related lifestyle behaviors and disease management. Next generation mHealth programs developed worldwide should be based on evidence-based behavioral theories and incorporate advances in artificial intelligence for adapting systems automatically to patients’ unique and changing needs. PMID:25690685

  13. Mobile Health Devices as Tools for Worldwide Cardiovascular Risk Reduction and Disease Management

    PubMed Central

    Piette, John D.; List, Justin; Rana, Gurpreet K.; Townsend, Whitney; Striplin, Dana; Heisler, Michele

    2016-01-01

    We examined evidence on whether mobile health (mHealth) tools, including Interactive Voice Response (IVR) calls, short message service (SMS) or text messaging, and smartphones, can improve lifestyle behaviors and management related to cardiovascular diseases throughout the world. We conducted a state-of-the-art review and literature synthesis of peer-reviewed and grey literature published since 2004. The review prioritized randomized trials and studies focused on cardiovascular diseases and risk factors, but included other reports when they represented the best available evidence. The search emphasized reports on the potential benefits of mHealth interventions implemented in low- and middle-income countries (LMICs). IVR and SMS interventions can improve cardiovascular preventive care in developed countries by addressing risk factors including weight, smoking, and physical activity. IVR and SMS-based interventions for cardiovascular disease management also have shown benefits with respect to hypertension management, hospital readmissions, and diabetic glycemic control. Multi-modal interventions including web-based communication with clinicians and mHealth-enabled clinical monitoring with feedback also have shown benefits. The evidence regarding the potential benefits of interventions using smartphones and social media is still developing. Studies of mHealth interventions have been conducted in more than 30 LMICs, and evidence to date suggests that programs are feasible and may improve medication adherence and disease outcomes. Emerging evidence suggests that mHealth interventions may improve cardiovascular-related lifestyle behaviors and disease management. Next generation mHealth programs developed worldwide should be based on evidence-based behavioral theories and incorporate advances in artificial intelligence for adapting systems automatically to patients’ unique and changing needs. PMID:26596977

  14. The relevance of central command for the neural cardiovascular control of exercise.

    PubMed

    Williamson, J W

    2010-11-01

    This paper briefly reviews the role of central command in the neural control of the circulation during exercise. While defined as a feedforward component of the cardiovascular control system, central command is also associated with perception of effort or effort sense. The specific factors influencing perception of effort and their effect on autonomic regulation of cardiovascular function during exercise can vary according to condition. Centrally mediated integration of multiple signals occurring during exercise certainly involves feedback mechanisms, but it is unclear whether or how these signals modify central command via their influence on perception of effort. As our understanding of central neural control systems continues to develop, it will be important to examine more closely how multiple sensory signals are prioritized and processed centrally to modulate cardiovascular responses during exercise. The purpose of this article is briefly to review the concepts underlying central command and its assessment via perception of effort, and to identify potential areas for future studies towards determining the role and relevance of central command for neural control of exercise.

  15. The relevance of central command for the neural cardiovascular control of exercise

    PubMed Central

    Williamson, J W

    2010-01-01

    This paper briefly reviews the role of central command in the neural control of the circulation during exercise. While defined as a feedfoward component of the cardiovascular control system, central command is also associated with perception of effort or effort sense. The specific factors influencing perception of effort and their effect on autonomic regulation of cardiovascular function during exercise can vary according to condition. Centrally mediated integration of multiple signals occurring during exercise certainly involves feedback mechanisms, but it is unclear whether or how these signals modify central command via their influence on perception of effort. As our understanding of central neural control systems continues to develop, it will be important to examine more closely how multiple sensory signals are prioritized and processed centrally to modulate cardiovascular responses during exercise. The purpose of this article is briefly to review the concepts underlying central command and its assessment via perception of effort, and to identify potential areas for future studies towards determining the role and relevance of central command for neural control of exercise. PMID:20696787

  16. P2 receptors in cardiovascular regulation and disease

    PubMed Central

    Erlinge, David

    2007-01-01

    The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development. PMID:18368530

  17. Improving hemodynamics of cardiovascular system under a novel intraventricular assist device support via modeling and simulations.

    PubMed

    Zhu, Shidong; Luo, Lin; Yang, Bibo; Li, Xinghui; Wang, Xiaohao

    2017-12-01

    Ventricular assist devices (LVADs) are increasingly recognized for supporting blood circulation in heart failure patients who are non-transplant eligible. Because of its volume, the traditional pulsatile device is not easy to implant intracorporeally. Continuous flow LVADs (CF-LVADs) reduce arterial pulsatility and only offer continuous flow, which is different from physiological flow, and may cause long-term complications in the cardiovascular system. The aim of this study was to design a new pulsatile assist device that overcomes this disadvantage, and to test this device in the cardiovascular system. Firstly, the input and output characteristics of the new device were tested in a simple cardiovascular mock system. A detailed mathematical model was established by fitting the experimental data. Secondly, the model was tested in four pathological cases, and was simulated and coupled with a fifth-order cardiovascular system and a new device model using Matlab software. Using assistance of the new device, we demonstrated that the left ventricle pressure, aortic pressure, and aortic flow of heart failure patients improved to the levels of a healthy individual. Especially, in state IV level heart failure patients, the systolic blood pressure increased from 81.34 mmHg to 132.1 mmHg, whereas the diastolic blood pressure increased from 54.28 mmHg to 78.7 mmHg. Cardiac output increased from 3.21 L/min to 5.16 L/min. The newly-developed assist device not only provided a physiological flow that was similar to healthy individuals, but also effectively improved the ability of the pathological ventricular volume. Finally, the effects of the new device on other hemodynamic parameters are discussed.

  18. A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship

    PubMed Central

    2013-01-01

    Background The end-systolic pressure-volume relationship is often considered as a load-independent property of the heart and, for this reason, is widely used as an index of ventricular contractility. However, many criticisms have been expressed against this index and the underlying time-varying elastance theory: first, it does not consider the phenomena underlying contraction and second, the end-systolic pressure volume relationship has been experimentally shown to be load-dependent. Methods In place of the time-varying elastance theory, a microscopic model of sarcomere contraction is used to infer the pressure generated by the contraction of the left ventricle, considered as a spherical assembling of sarcomere units. The left ventricle model is inserted into a closed-loop model of the cardiovascular system. Finally, parameters of the modified cardiovascular system model are identified to reproduce the hemodynamics of a normal dog. Results Experiments that have proven the limitations of the time-varying elastance theory are reproduced with our model: (1) preload reductions, (2) afterload increases, (3) the same experiments with increased ventricular contractility, (4) isovolumic contractions and (5) flow-clamps. All experiments simulated with the model generate different end-systolic pressure-volume relationships, showing that this relationship is actually load-dependent. Furthermore, we show that the results of our simulations are in good agreement with experiments. Conclusions We implemented a multi-scale model of the cardiovascular system, in which ventricular contraction is described by a detailed sarcomere model. Using this model, we successfully reproduced a number of experiments that have shown the failing points of the time-varying elastance theory. In particular, the developed multi-scale model of the cardiovascular system can capture the load-dependence of the end-systolic pressure-volume relationship. PMID:23363818

  19. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    PubMed Central

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  20. Nitrergic system and plasmatic methylarginines: Evidence of their role in the perinatal programming of cardiovascular diseases.

    PubMed

    Bassareo, Pier Paolo; Mussap, Michele; Bassareo, Valentina; Flore, Giovanna; Mercuro, Giuseppe

    2015-12-07

    Atherosclerosis, in turn preceded by endothelial dysfunction, underlies a series of important cardiovascular diseases. Reduced bioavailability of endothelial nitric oxide, by increasing vascular tone and promoting platelet aggregation, leukocyte adhesion, and smooth muscle cell proliferation, plays a key role in the onset of the majority of cardiovascular diseases. In addition, high blood levels of asymmetric dimethylarginine, a potent inhibitor of nitric oxide synthesis, are associated with future development of adverse cardiovascular events and cardiac death. Recent reports have demonstrated that another methylarginine, i.e., symmetric dimethylarginine, is also involved in the onset of endothelial dysfunction and hypertension. Almost a decade ago, prematurity at birth and intrauterine growth retardation were first associated with a potential negative influence on the cardiovascular apparatus, thus constituting risk factors or leading to early onset of cardiovascular diseases. This condition is referred to as cardiovascular perinatal programming. Accordingly, cardiovascular morbidity and mortality are higher among former preterm adults than in those born at term. The aim of this paper was to undertake a comprehensive literature review focusing on cellular and biochemical mechanisms resulting in both reduced nitric oxide bioavailability and increased methylarginine levels in subjects born preterm. Evidence of the involvement of these compounds in the perinatal programming of cardiovascular risk are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Contrast-enhanced postmortem computed tomography in clinical pathology: enhanced value of 20 clinical autopsies.

    PubMed

    Westphal, Saskia E; Apitzsch, Jonas C; Penzkofer, Tobias; Kuhl, Christiane K; Mahnken, Andreas H; Knüchel, Ruth

    2014-09-01

    Postmortem computed tomography (PMCT) is a modern tool that complements autopsy diagnostics. In clinical autopsies, a major cause of death is cardiovascular disease. To improve the performance of PMCT in cardiovascular disease, full body angiography was developed (PMCT angiography [PMCTA]). Twenty PMCTA scans generated before autopsy were compared with native PMCT and clinical autopsy. The objective of the study was to quantify the additional diagnostic value of adding angiography to native imaging and to compare PMCT and PMCTA findings to autopsy findings. The diagnosis of the cause of death was identical or overlapped in 80% of the cases that used PMCTA and 70% that used PMCT. The additional diagnostic yield given by PMCT and PMCTA in combination with autopsy was 55%. PMCT yielded additional diagnoses in the musculoskeletal system. The greatest additional diagnostic value of PMCTA was in association with cardiovascular diagnoses. The accuracy of PMCTA for cardiac causes of death was 80%, and the positive predictive value was 90%. The findings indicate that native PMCT cannot display the cardiovascular system sufficiently clearly for high-quality diagnostic assessment. However, PMCTA is a powerful tool in autopsy cases with a history of cardiovascular disease and/or a suspected cardiovascular cause of death. The combination of PMCTA and clinical autopsy enhances diagnostic quality and completeness of the autopsy report. Furthermore, in cases without consent or with a restricted consent for clinical autopsy, PMCTA has the potential to provide information on cardiovascular causes of death. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A systematic review of 3-D printing in cardiovascular and cerebrovascular diseases

    PubMed Central

    Sun, Zhonghua; Lee, Shen-Yuan

    2017-01-01

    Objective: The application of 3-D printing has been increasingly used in medicine, with research showing many applications in cardiovascular disease. This systematic review analyzes those studies published about the applications of 3-D printed, patient-specific models in cardiovascular and cerebrovascular diseases. Methods: A search of PubMed/Medline and Scopus databases was performed to identify studies investigating the 3-D printing in cardiovascular and cerebrovascular diseases. Only studies based on patient’s medical images were eligible for review, while reports on in vitro phantom or review articles were excluded. Results: A total of 48 studies met selection criteria for inclusion in the review. A range of patient-specific 3-D printed models of different cardiovascular and cerebrovascular diseases were generated in these studies with most of them being developed using cardiac CT and MRI data, less commonly with 3-D invasive angiographic or echocardiographic images. The review of these studies showed high accuracy of 3-D printed, patient-specific models to represent complex anatomy of the cardiovascular and cerebrovascular system and depict various abnormalities, especially congenital heart diseases and valvular pathologies. Further, 3-D printing can serve as a useful education tool for both parents and clinicians, and a valuable tool for pre-surgical planning and simulation. Conclusion: This systematic review shows that 3-D printed models based on medical imaging modalities can accurately replicate complex anatomical structures and pathologies of the cardiovascular and cerebrovascular system. 3-D printing is a useful tool for both education and surgical planning in these diseases. PMID:28430115

  3. A non-contact capacitance based electrocardiograph and associated heart-rate detection using enhanced Fourier interpolation method.

    PubMed

    Kumar Thakur, Rupak; Anoop, C S

    2015-08-01

    Cardio-vascular health monitoring has gained considerable attention in the recent years. Principle of non-contact capacitive electrocardiograph (ECG) and its applicability as a valuable, low-cost, easy-to-use scheme for cardio-vascular health monitoring has been demonstrated in some recent research papers. In this paper, we develop a complete non-contact ECG system using a suitable front-end electronic circuit and a heart-rate (HR) measurement unit using enhanced Fourier interpolation technique. The front-end electronic circuit is realized using low-cost, readily available components and the proposed HR measurement unit is designed to achieve fairly accurate results. The entire system has been extensively tested to verify its efficacy and test results show that the developed system can estimate HR with an accuracy of ±2 beats. Detailed tests have been conducted to validate the performance of the system for different cloth thicknesses of the subject. Some basic tests which illustrate the application of the proposed system for heart-rate variability estimation has been conducted and results reported. The developed system can be used as a portable, reliable, long-term cardiac health monitoring device and can be extended to human drowsiness detection.

  4. Effects of extreme temperatures on cardiovascular emergency hospitalizations in a Mediterranean region: a self-controlled case series study.

    PubMed

    Ponjoan, Anna; Blanch, Jordi; Alves-Cabratosa, Lia; Martí-Lluch, Ruth; Comas-Cufí, Marc; Parramon, Dídac; Del Mar Garcia-Gil, María; Ramos, Rafel; Petersen, Irene

    2017-04-04

    Cold spells and heatwaves increase mortality. However little is known about the effect of heatwaves or cold spells on cardiovascular morbidity. This study aims to assess the effect of cold spells and heatwaves on cardiovascular diseases in a Mediterranean region (Catalonia, Southern Europe). We conducted a population-based retrospective study. Data were obtained from the System for the Development of Research in Primary Care and from the Catalan Meteorological Service. The outcome was first emergency hospitalizations due to coronary heart disease, stroke, or heart failure. Exposures were: cold spells; cold spells and 3 or 7 subsequent days; and heatwaves. Incidence rate ratios (IRR) and 95% confidence intervals were calculated using the self-controlled case series method. We accounted for age, time trends, and air pollutants; results were shown by age groups, gender or cardiovascular event type. There were 22,611 cardiovascular hospitalizations in winter and 17,017 in summer between 2006 and 2013. The overall incidence of cardiovascular hospitalizations significantly increased during cold spells (IRR = 1.120; CI 95%: 1.10-1.30) and the effect was even stronger in the 7 days subsequent to the cold spell (IRR = 1.29; CI 95%: 1.22-1.36). Conversely, cardiovascular hospitalizations did not increase during heatwaves, neither in the overall nor in the stratified analysis. Cold spells but not heatwaves, increased the incidence of emergency cardiovascular hospitalizations in Catalonia. The effect of cold spells was greater when including the 7 subsequent days. Such knowledge might be useful to develop strategies to reduce the impact of extreme temperature episodes on human health.

  5. Methotrexate in Atherogenesis and Cholesterol Metabolism

    PubMed Central

    Coomes, Eric; Chan, Edwin S. L.; Reiss, Allison B.

    2011-01-01

    Methotrexate is a disease-modifying antirheumatic drug commonly used to treat inflammatory conditions such as rheumatoid arthritis which itself is linked to increased cardiovascular risk. Treatments that target inflammation may also impact the cardiovascular system. While methotrexate improves cardiovascular risk, inhibition of the cyclooxygenase (COX)-2 enzyme promotes atherosclerosis. These opposing cardiovascular influences may arise from differing effects on the expression of proteins involved in cholesterol homeostasis. These proteins, ATP-binding cassette transporter (ABC) A1 and cholesterol 27-hydroxylase, facilitate cellular cholesterol efflux and defend against cholesterol overload. Methotrexate upregulates expression of cholesterol 27-hydroxylase and ABCA1 via adenosine release, while COX-2 inhibition downregulates these proteins. Adenosine, acting through the A2A and A3 receptors, may upregulate proteins involved in reverse cholesterol transport by cAMP-PKA-CREB activation and STAT inhibition, respectively. Elucidating underlying cardiovascular mechanisms of these drugs provides a framework for developing novel cardioprotective anti-inflammatory medications, such as selective A2A receptor agonists. PMID:21490773

  6. Fabrication and evaluation of novel rabbit model cardiovascular simulator with 3D printer

    NASA Astrophysics Data System (ADS)

    Jang, Min; Lee, Min-Woo; Seo, See-Yoon; Shin, Sang-Hoon

    2017-03-01

    Simulators allow researchers to study the hemodynamics of the cardiovascular system in a reproducible way without using complicated equations. Previous simulators focused on heart functions. However, a detailed model of the vessels is required to replicate the pulse wave of the arterial system. A computer simulation was used to simplify the arterial branch because producing every small artery is neither possible nor necessary. A 3D-printed zig was used to make a hand-made arterial tree. The simulator that was developed was evaluated by comparing its results to in-vivo data, in terms of the hemodynamic parameters (waveform, augmentation index, impedance, etc.) that were measured at three points: the ascending aorta, the thoracic aorta, and the brachiocephalic artery. The results from the simulator showed good agreement with the in-vivo data. Therefore, this simulator can be used as a research tool for the cardiovascular study of animal models, specifically rabbits.

  7. [Thyroid and cardiovascular disorders].

    PubMed

    Zyśko, Dorota; Gajek, Jacek

    2004-05-01

    In this study three problems concerning interactions between thyroid and cardiovascular system are discussed. Cardiac arrhythmias, congestive heart failure, pleural effusion, hyperlipidaemia, arterial hypertension may be consequences of thyroid disorders leading to inappropriate hormone secretion. During such illnesses as heart failure, myocardial infarction and in patients undergoing coronary artery bypass surgery profound changes may occur in thyroid hormone metabolism known as sick euthyroid syndrome. Treatment with amiodarone may lead to changes in thyroid tests results and to development of hypothyroidism or thyrotoxicosis.

  8. Thymosin β4: Roles in Development, Repair, and Engineering of the Cardiovascular System.

    PubMed

    Marks, E D; Kumar, A

    2016-01-01

    The burden of cardiovascular disease is a growing worldwide issue that demands attention. While many clinical trials are ongoing to test therapies for treating the heart after myocardial infarction (MI) and heart failure, there are few options doctors able to currently give patients to repair the heart. This eventually leads to decreased ventricular contractility and increased systemic disease, including vascular disorders that could result in stroke. Small peptides such as thymosin β4 (Tβ4) are upregulated in the cardiovascular niche during fetal development and after injuries such as MI, providing increased neovasculogenesis and paracrine signals for endogenous stem cell recruitment to aid in wound repair. New research is looking into the effects of in vivo administration of Tβ4 through injections and coatings on implants, as well as its effect on cell differentiation. Results so far demonstrate Tβ4 administration leads to robust increases in angiogenesis and wound healing in the heart after MI and the brain after stroke, and can differentiate adult stem cells toward the cardiac lineage for implantation to the heart to increase contractility and survival. Future work, some of which is currently in clinical trials, will demonstrate the in vivo effect of these therapies on human patients, with the goal of helping the millions of people worldwide affected by cardiovascular disease. © 2016 Elsevier Inc. All rights reserved.

  9. O-GlcNAc and the Cardiovascular System

    PubMed Central

    Dassanayaka, Sujith; Jones, Steven P.

    2014-01-01

    The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. PMID:24287310

  10. O-GlcNAc and the cardiovascular system.

    PubMed

    Dassanayaka, Sujith; Jones, Steven P

    2014-04-01

    The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Lack of association of Chlamydia pneumoniae with cardiovascular diseases in virologically suppressed HIV patients.

    PubMed

    Sessa, Rosa; Di Pietro, Marisa; Filardo, Simone; Bressan, Alessia; Mazzuti, Laura; Serafino, Sara; Fantauzzi, Alessandra; Turriziani, Ombretta

    2017-01-01

    Cardiovascular disease (CVD) is a major public health problem in developed countries with over 17 million deaths per year. In the last decade, several infectious agents rather than any single pathogen, including Chlamydia pneumoniae and human immunodeficiency virus (HIV), have been shown to contribute to the development of atherosclerosis and subsequent cardiovascular events by inducing systemic inflammation and/or acting directly on the vascular wall. For the first time, we evaluated C. pneumonia DNA in peripheral blood mononuclear cells from HIV patients by real-time polymerase chain reaction in order to shed light on C. pneumonia as a co-factor with HIV in the development of CVDs. C. pneumonia DNA was not detected in our virologically suppressed HIV patients (<37 copies/mL). This finding may be related to high CD4+T cell count (>500 cells/μl) found in HIV patients suggesting functional cell-mediated immunity as a fundamental mechanism for the clearance of chlamydial infection in this population. Larger studies are needed to confirm this hypothesis.

  12. [The implementation of the method of enhanced external counter pulsation for the treatment of cardiovascular diseases].

    PubMed

    Badtieva, V A; Voroshilova, D N

    2018-05-21

    The cardiovascular diseases occupy a leading place in the structure of overall morbidity affecting the population not only of Russia but also of the majority of the developed countries throughout the world; they thus impose the heavy social and economic burden on both the public healthcare services and the modern society in general. At the same time, systemic atherosclerosis is considered to be one of the most common, severe, and life-threatening condition. Despite the presence of a large number of pharmaceutical and surgical methods for the treatment of this pathology, they are not infrequently lacking the desired effectiveness. The use of the shunting operations and endovascular methods failed to radically resolve the problem of managing systemic atherosclerosis and atherosclerosis of the lower limbs. A relatively novel approach which currently begins to find the ever increasing application for the treatment of patients presenting with cardiovascular pathology is based on the enhanced external counter-pulsation method although both the clinical and theoretical prerequisites of its application were developed rather long ago. This non-invasive therapeutic method allows to increase the perfusion pressure in the coronary arteries in diastole and to reduce the resistance to the cardiac ejection in the systole. The objective of this review article was to perform the analysis of the available literature publications on the use of the enhanced external counter-pulsation technique for the treatment of the patients presenting with the diseases of the cardiovascular system and to evaluate the clinical effectiveness of this approach as well as the availability of the treatment for the patients.

  13. Lymphatic System in Cardiovascular Medicine.

    PubMed

    Aspelund, Aleksanteri; Robciuc, Marius R; Karaman, Sinem; Makinen, Taija; Alitalo, Kari

    2016-02-05

    The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease. © 2016 American Heart Association, Inc.

  14. Monitors Enable Medication Management in Patients' Homes

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Glenn Research Center awarded SBIR funding to ZIN Technologies to develop a platform that could incorporate sensors quantifying an astronaut’s health status and then communicate with the ground. ZIN created a device, developed the system further, and then formed Cleveland-based FlexLife Health to commercialize the technology. Today it is part of an anti-coagulation management system for people with cardiovascular disease.

  15. Effect of environmental air pollution on cardiovascular diseases.

    PubMed

    Meo, S A; Suraya, F

    2015-12-01

    Environmental air pollution has become a leading health concern especially in the developing countries with more urbanization, industrialization and rapidly growing population. Prolonged exposure to air pollution is a risk factor for cardiovascular diseases. The present study aimed to investigate the effects of environmental air pollution on progression of cardiovascular problems. In this study, we identified 6880 published articles through a systematic database including ISI-Web of Science, PubMed and EMBASE. The allied literature was searched by using the key words such as environmental pollution, air pollution, particulate matter pollutants PM 2.5 μm-PM 10 μm. Literature in which environmental air pollution and cardiac diseases were discussed was included. Descriptive information was retrieved from the selected literature. Finally, we included 67 publications and remaining studies were excluded. Environmental pollution can cause high blood pressure, arrhythmias, enhanced coagulation, thrombosis, acute arterial vasoconstriction, atherosclerosis, ischemic heart diseases, myocardial infarction and even heart failure. Environmental air pollution is associated with increased risk of cardiovascular diseases. Environmental pollution exerts its detrimental effects on the heart by developing pulmonary inflammation, systemic inflammation, oxidative stress, endothelial dysfunction and prothrombotic changes. Environmental protection officials must take high priority steps to minimize the air pollution to decrease the prevalence of cardiovascular diseases.

  16. Metal Nanomaterial Toxicity Variations Within the Vascular System

    PubMed Central

    Abukabda, Alaeddin B.; Stapleton, Phoebe A.; Nurkiewicz, Timothy R.

    2016-01-01

    Engineered nanomaterials (ENM) are anthropogenic materials with at least one dimension less than 100 nm. Their ubiquitous employment in biomedical and industrial applications in the absence of full toxicological assessments raises significant concerns over their safety on human health. This is a significant concern, especially for metal and metal oxide ENM as they may possess the greatest potential to impair human health. A large body of literature has developed that reflects adverse systemic effects associated with exposure to these materials, but an integrated mechanistic framework for how ENM exposure influences morbidity remains elusive. This may be due in large part to the tremendous diversity of existing ENM and the rate at which novel ENM are produced. In this review, the influence of specific ENM physicochemical characteristics and hemodynamic factors on cardiovascular toxicity are discussed. Additionally, the toxicity of metallic, and metal oxide ENM is presented in the context of the cardiovascular system and its discrete anatomical and functional components. Finally, future directions and understudied topics are presented. While it is clear that the nanotechnology boom has increased our interest in ENM toxicity, it is also evident that the field of cardiovascular nanotoxicology remains in its infancy and continued, expansive research is necessary in order to determine the mechanisms via which ENM exposure contributes to cardiovascular morbidity. PMID:27686080

  17. An Integrative Model of the Cardiovascular System Coupling Heart Cellular Mechanics with Arterial Network Hemodynamics

    PubMed Central

    Kim, Young-Tae; Lee, Jeong Sang; Youn, Chan-Hyun; Choi, Jae-Sung

    2013-01-01

    The current study proposes a model of the cardiovascular system that couples heart cell mechanics with arterial hemodynamics to examine the physiological role of arterial blood pressure (BP) in left ventricular hypertrophy (LVH). We developed a comprehensive multiphysics and multiscale cardiovascular model of the cardiovascular system that simulates physiological events, from membrane excitation and the contraction of a cardiac cell to heart mechanics and arterial blood hemodynamics. Using this model, we delineated the relationship between arterial BP or pulse wave velocity and LVH. Computed results were compared with existing clinical and experimental observations. To investigate the relationship between arterial hemodynamics and LVH, we performed a parametric study based on arterial wall stiffness, which was obtained in the model. Peak cellular stress of the left ventricle and systolic blood pressure (SBP) in the brachial and central arteries also increased; however, further increases were limited for higher arterial stiffness values. Interestingly, when we doubled the value of arterial stiffness from the baseline value, the percentage increase of SBP in the central artery was about 6.7% whereas that of the brachial artery was about 3.4%. It is suggested that SBP in the central artery is more critical for predicting LVH as compared with other blood pressure measurements. PMID:23960442

  18. Redox signaling in cardiovascular health and disease

    PubMed Central

    Madamanchi, Nageswara R.; Runge, Marschall S.

    2013-01-01

    Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyper-activation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia–reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD. PMID:23583330

  19. Anti-Hyperglycemic Agents for the Treatment of Type 2 Diabetes Mellitus: Role in Cardioprotection During the Last Decade.

    PubMed

    Kocyigit, Duygu; Gurses, Kadri Murat; Yalcin, Muhammed Ulvi; Tokgozoglu, Lale

    2017-01-01

    Type 2 diabetic patients are known to have a tendency to develop cardiovascular (CV) disease (CVD), and related unfavourable outcomes such as heart failure, myocardial infarction (MI), cerebrovascular events (e.g. stroke), and related mortality. Long- term clinical trials have revealed contradictory findings regarding the relationship between glycemic control and CV benefits due to variations in the key characteristics of the study population. During the last decade, number of pharmacological agents used for glucose- lowering in the treatment of type 2 diabetes mellitus (T2DM) has increased owing to the introduction of dipeptidyl peptidase- IV (DPP- IV) inhibitors, glucagon- like peptide- 1 (GLP- 1) receptor agonists, and sodium-glucose co-transporter 2 (SGLT- 2) inhibitors. This review aims to focus on the mechanisms of action of these drugs in the cardiovascular system and the trials evaluating their impact on CVD. Furthermore, trials in the last decade evaluating the impact of traditional glucose- lowering drugs on CVD are included. For this purpose, we searched PubMed for articles in English using the search terms "type 2 diabetes mellitus, glucose- lowering drugs, antidiabetic medications, cardiovascular, cardiovascular disease, cardiovascular system" between inception to September 2016. We also searched separately for each medication in addition to the keyword "cardiovascular disease" on PubMed. To identify further articles, we hand searched related citations in review articles and commentaries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Asymmetric Dimethylarginine as a Surrogate Marker of Endothelial Dysfunction and Cardiovascular Risk in Patients with Systemic Rheumatic Diseases

    PubMed Central

    Dimitroulas, Theodoros; Sandoo, Aamer; Kitas, George D.

    2012-01-01

    The last few decades have witnessed an increased life expectancy of patients suffering with systemic rheumatic diseases, mainly due to improved management, advanced therapies and preventative measures. However, autoimmune disorders are associated with significantly enhanced cardiovascular morbidity and mortality not fully explained by traditional cardiovascular disease (CVD) risk factors. It has been suggested that interactions between high-grade systemic inflammation and the vasculature lead to endothelial dysfunction and atherosclerosis, which may account for the excess risk for CVD events in this population. Diminished nitric oxide synthesis—due to down regulation of endothelial nitric oxide synthase—appears to play a prominent role in the imbalance between vasoactive factors, the consequent impairment of the endothelial hemostasis and the early development of atherosclerosis. Asymmetric dimethylarginine (ADMA) is one of the most potent endogenous inhibitors of the three isoforms of nitric oxide synthase and it is a newly discovered risk factor in the setting of diseases associated with endothelial dysfunction and adverse cardiovascular events. In the context of systemic inflammatory disorders there is increasing evidence that ADMA contributes to the vascular changes and to endothelial cell abnormalities, as several studies have revealed derangement of nitric oxide/ADMA pathway in different disease subsets. In this article we discuss the role of endothelial dysfunction in patients with rheumatic diseases, with a specific focus on the nitric oxide/ADMA system and we provide an overview on the literature pertaining to ADMA as a surrogate marker of subclinical vascular disease. PMID:23202900

  1. Emerging drugs which target the renin-angiotensin-aldosterone system.

    PubMed

    Steckelings, Ulrike Muscha; Paulis, Ludovit; Unger, Thomas; Bader, Michael

    2011-12-01

    The renin-angiotensin-aldosterone system (RAAS) is already the most important target for drugs in the cardiovascular system. However, still new developments are underway to interfere with the system on different levels. The novel strategies to interfere with RAAS aim to reduce the synthesis of the two major RAAS effector hormones, angiotensin (Ang) II and aldosterone, or interfere with their receptors, AT1 and mineralocorticoid receptor, respectively. Moreover, novel targets have been identified in RAAS, such as the (pro)renin receptor, and molecules, which counteract the classical actions of Ang II and are therefore beneficial in cardiovascular diseases. These include the AT2 receptor and the ACE2/Ang-(1-7)/Mas axis. The search for drugs activating these tissue-protective arms of RAAS is therefore the most innovative field in RAAS pharmacology. Most of the novel pharmacological strategies to inhibit the classical RAAS need to prove their superiority above the existing treatment in clinical trials and then have to compete against these now quite cheap drugs in a competitive market. The newly discovered targets have functions beyond the cardiovascular system opening up novel therapeutic areas for drugs interfering with RAAS components.

  2. Android based self-diagnostic electrocardiogram system for mobile healthcare.

    PubMed

    Choo, Kan-Yeep; Ling, Huo-Chong; Lo, Yew-Chiong; Yap, Zuo-Han; Pua, Jun-Sheng; Phan, Raphael C-W; Goh, Vik-Tor

    2015-01-01

    Cardiovascular diseases are the most common cause of death worldwide and are characterized by arrhythmia (i.e. irregular rhythm of heartbeat). Arrhythmia occasionally happens under certain conditions, such as stress. Therefore, it is difficult to be diagnosed using electrocardiogram (ECG) devices available in hospitals for just a few minutes. Constant diagnosis and monitoring of heartbeat is required to reduce death caused by cardiovascular diseases. Mobile healthcare system has emerged as a potential solution to assist patients in monitoring their own heart condition, especially those who are isolated from the reference hospital. This paper proposes a self-diagnostic electrocardiogram system for mobile healthcare that has the capability to perform a real-time ECG diagnostic. The self-diagnostic capability of a real-time ECG signal is achieved by implementing a detrended fluctuation analysis (DFA) method. The result obtained from DFA is used to display the patient's health condition on a smartphone anytime and anywhere. If the health condition is critical, the system will alert the patient and his medical practitioner for further diagnosis. Experimental results verified the validity of the developed ECG diagnostic application on a smartphone. The proposed system can potentially reduce death caused by cardiovascular diseases by alerting the patient possibly undergoing a heart attack.

  3. Can a bank crisis break your heart?

    PubMed Central

    Stuckler, David; Meissner, Christopher M; King, Lawrence P

    2008-01-01

    Background To assess whether a banking system crisis increases short-term population cardiovascular mortality rates. Methods International, longitudinal multivariate regression analysis of cardiovascular disease mortality data from 1960 to 2002 Results A system-wide banking crisis increases population heart disease mortality rates by 6.4% (95% CI: 2.5% to 10.2%, p < 0.01) in high income countries, after controlling for economic change, macroeconomic instability, and population age and social distribution. The estimated effect is nearly four times as large in low income countries. Conclusion Banking crises are a significant determinant of short-term increases in heart disease mortality rates, and may have more severe consequences for developing countries. PMID:18197979

  4. Care Delivery for Filipino Americans Using the Neuman Systems Model

    PubMed Central

    Angosta, Alona D.; Ceria-Ulep, Clementina D.; Tse, Alice M.

    2016-01-01

    Filipino Americans are at risk of coronary heart disease due to the presence of multiple cardiometabolic factors. Selecting a framework that addresses the factors leading to coronary heart disease is vital when providing care for this population. The Neuman systems model is a comprehensive and wholistic framework that offers an innovative method of viewing clients, their families, and the healthcare system across multiple dimensions. Using the Neuman systems model, advanced practice nurses can develop and implement interventions that will help reduce the potential cardiovascular problems of clients with multiple risk factors. The authors in this article provides insight into the cardiovascular health of Filipino Americans and has implications for nurses and other healthcare providers working with various Southeast Asian groups in the United States. PMID:24740949

  5. Community-Based ECG Monitoring System for Patients with Cardiovascular Diseases.

    PubMed

    Lin, Bor-Shyh; Wong, Alice M; Tseng, Kevin C

    2016-04-01

    This study aims to develop a community-based electrocardiogram (ECG) monitoring system for cardiac outpatients to wirelessly detect heart rate, provide personalized healthcare, and enhance interactive social contact because of the prevalence of deaths from cardiovascular disease and the growing problem of aging in the world. The system not only strengthens the performance of the ECG monitoring system but also emphasizes the ergonomic design of wearable devices and user interfaces. In addition, it enables medical professionals to diagnose cardiac symptoms remotely and electronically manage medical reports and suggestions. The experimental result shows high performance of the dry electrode, even in dynamic conditions. The comparison result with different ECG healthcare systems shows the essential factors that the system should possess and the capability of the proposed system. Finally, a user survey was conducted based on the unified theory of acceptance and users of technology (UTAUT) model.

  6. Investigations of the Cardiovascular and Respiratory Systems on Board the International Space Station: Experiments Puls and Pneumocard

    NASA Astrophysics Data System (ADS)

    Baranov, V. M.; Baevsky, R. M.; Drescher, J.; Tank, J.

    parameters describing the results of the function of these systems like heart rate, arterial pressure, cardiac output, or breathing frequency, concentration of O2 and CO2 , etc. Missing significant changes of these parameters during weightlessness supports the hypothesis that adaptational and compensatory mechanisms are sufficient and guarantee cardiovascular homeostasis under changing environmental conditions. characteristic changes of the vegetative balance and of the activity of different regulatory elements at the brainstem and subcortical level. This changes guaranteed the adaptation to long term weightlessness. However, it remains unclear to what extent the different levels are involved. Moreover, the criteria describing the efficacy of cardiorespiratory interaction for the different functional states are not defined yet. The investigation of this problems is highly relevant in order to improve the medical control, especially if considering that the disruption of regulatory systems mostly precedes dangerous destruction of homeostasis. cardiovascular and respiratory function on Board the International Space Station (ISS) aiming to obtain new insights into the interaction between different regulatory elements. "Puls" is measures ECG, photoplethysmogram (PPG), and the pneumotachogram (PTG). The ECG is used to measure time series of R-R intervals and to analyse HRV. PPG is used to define the pulse wave velocity, phases of the cardiac cycle, and an estimate of the filling of finger vessels. The variability of these parameters is also calculated and compared to HRV. The analysis of the PTG allows to describe the interaction of the regulatory parameters of the cardiovascular and respiratory systems. Hence, an important feature of the experiment "Puls" is the investigation of regulatory mechanisms rather than of cardiovascular homeostasis. cardiography) and left ventricular contractility (seismocardiography) will be obtained. This expansion is of major importance because, it allows us to get deeper insight into regulatory mechanisms of the cardiorespiratory system and into the state of cardiovascular homeostasis. have the same size (90 x 60 x 20 mm), identical technology, and identical interfaces with the computer. the onboard experiment and to store the obtained data; 2) "Editor": to archive and dearchive the obtained data, to edit them and to insert necessary comments and markers; 3) "Earth": to edit and analyse the data under laboratory conditions.The subprogram "Earth" is an original software package for data analysis, peak detection, calculation of a variety of parameters, time series forming and editing, statistical and spectral time series analysis. Furthermore, a specialized data base is designated for storing of the biosignals, results of analysis, information about the investigated subjects and comments of simple autonomic function tests will allow to assess different elements of the regulatory mechanisms. Special interest will be given to respiratory tests in order to evaluate the interaction between the cardiovascular system and respiration. volunteers and in patients with different cardiovascular diseases. The results were used to establish normal values and criteria for the prognosis of pathologic changes. These materials will be used at valuation the data obtained during researches on ISS. respiratory systems onboard the ISS are the following: 1) definition of the most important parameters, which can be measured simple and reliable during weightlessness; 2) development of miniaturized devices which can be kept on the astronauts body and which could be used in future as an autonomic system of operational medical control; 3) development of original software packages which allow to detect prognostic changes of the regulatory pattern preceding diseases and based on time series analysis of a large number of cardiorespiratory parameters.

  7. Large Mammalian Animal Models of Heart Disease

    PubMed Central

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians. PMID:29367573

  8. Consequences of cardiovascular adaptation to spaceflight: implications for the use of pharmacological countermeasures

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    2005-01-01

    There is little evidence obtained from space flight to support the notion that occurrence of cardiac dysrhythmias, impaired cardiac and vascular function, and manifestation of asymptomatic cardiovascular disease represent serious risks during space flight. Therefore, the development of orthostatic hypotension and instability immediately after return from spaceflight probably reflect the most significant operational risks associated with the cardiovascular system of astronauts. Significant reductions in stroke volume and lower reserve for increasing peripheral vascular resistance contribute to ineffective maintenance of systemic arterial blood pressure during standing after spaceflight despite compensatory elevations in heart rate. The primary mechanism underlying reduced stroke volume appears to be a reduction in preload associated with less circulating blood volume while inadequate peripheral vasoconstriction may be caused partly by hyporeactivity of receptors that control arterial smooth muscle function. A focus for development of future countermeasures for hemodynamic responses to central hypovolemia includes the potential application of pharmacological agents that specifically target and restore blood volume (e.g., fludrocortisone, electrolyte-containing beverages) and reserve for vasoconstriction (e.g., midodrine, vasopressin). Based on systematic evaluations, acute physical exercise designed to elicit maximal effort or inspiratory resistance have shown promise as successful countermeasures that provide protection against development of orthostatic hypotension and intolerance without potential risks and side effects associated with specific pharmacological interventions.

  9. Combination therapy for treatment or prevention of atherosclerosis: Focus on the lipid-RAAS interaction☆

    PubMed Central

    Koh, Kwang Kon; Han, Seung Hwan; Oh, Pyung Chun; Shin, Eak Kyun; Quon, Michael J.

    2010-01-01

    Large clinical trials demonstrate that control of blood pressure or hyperlipidemia reduces risk for cardiovascular events by ~30%. Factors that may further reduce remaining risk are not definitively established. One potential target is atherosclerosis, a crucial feature in the pathogenesis of cardiovascular diseases whose development is determined by multiple mechanism including complex interactions between endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin–angiotensin–aldosterone system may contribute to development of atherosclerosis. Therefore, one appealing strategy for prevention or treatment of atherosclerosis may be to simultaneously address several risk factors with combination therapies that target multiple pathogenic mechanisms. Combination therapy with statins, peroxisome proliferators-activated receptor agonists, and rennin–angiotensin–aldosterone system blockers demonstrate additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors. Additive beneficial effects of combined therapy are mediated by both distinct and interrelated mechanisms, consistent with both pre-clinical and clinical investigations. Thus, combination therapy may be an important concept in developing more effective strategies to treat and prevent atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance. PMID:19800624

  10. Regulation of the Cardiovascular System by Histamine.

    PubMed

    Hattori, Yuichi; Hattori, Kohshi; Matsuda, Naoyuki

    2017-01-01

    Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H 1 - and H 2 -receptors has become recognized adequately. Besides the recognized H 1 - and H 2 -receptor-mediated cardiovascular responses, novel roles of H 3 - and H 4 -receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H 3 - and H 4 -receptors, their potential mechanisms of action, and their pathological significance.

  11. The significance of the psychosocial factors influence in pathogenesis of cardiovascular disease.

    PubMed

    Masic, Izet; Alajbegovic, Jasmin

    2013-11-01

    Cardiovascular diseases (CVD) are the leading cause of death in the world today. Risk factors are those factors that influence the development of CVD. Risk factors can be divided into materialistic (genetic predisposition, smoking, alcohol) and non-materialistic (psychosocial factors). Our goal is to note the role of the health system, to emphasize the importance of psychosocial factors in the pathogenesis of CVD, explain the relationship between psychosocial factors and other risk factors, stress the importance of prevention through the provision of management of the cardiovascular system (CVS) diseases. A DESCRIPTIVE ANALYSIS WAS PERFORMED ON SCIENTIFIC STUDIES IN SEVERAL PUBLISHED ARTICLES IN JOURNALS ON CVS: Public Health Reviews, CVD, European Heart Journal, Materia Socio Medica and other indexed journals that publish articles on CVS. THE IMPORTANCE AND ROLE OF THE HEALTH SYSTEM IN THE EARLY DETECTION, DIAGNOSIS, THERAPY AND CVS DISEASE PREVENTION IS PRESENTED THROUGH THREE THEMATIC AREAS: (a) The incidence and prevalence of CVS diseases; (b) treatment of CVS diseases and (c) promotion of health in patients with CVS disease and those the risk of their occurrence. Health promotion is the most important aspect of the health system monitoring. Health promotion is adequately implemented ifthe management ofCVD is proper. The main objectives of CVD management are: Preventing or delaying the occurrence of CVD, reducing the number and severity of worsening and complications of CVD. Management Includes: Individual and family, the health system and the community. Materialistic and non-materialistic risk factors together contribute to the development of CVD.

  12. Serious Allergic Reactions (Anaphylaxis)

    MedlinePlus

    ... more of these body systems: skin digestive system respiratory system cardiovascular system For example, someone may feel tightness or closing in the throat (respiratory system) together with a fast heartbeat (cardiovascular system). Here ...

  13. A review on cardiovascular diseases originated from subclinical hypothyroidism.

    PubMed

    Mansourian, Azad Reza

    2012-01-15

    Thyroid hormones play an important role on the cardiovascular systems and thyroid disorder ultimately have a profound adverse effects on myocardium and vascular functions. There are extensive reports on the role of overt thyroid dysfunction which adversely can modify the cardiovascular metabolism but even at the present of some controversial reports, the subclinical thyroid disorders are able also to manipulate cardiovascular system to some extent. The aim of this study is to review the cardiovascular disorders accompanied with subclinical hypothyroidism. It is concluded that adverse effect of thyroid malfunction on myocardium and vascular organs are through the direct role of thyroid hormone and dyslipidemia on heart muscle cells at nuclear level and vascular system, respectively. It seems many cardiovascular disorders initially would not have been occurred in the first place if the thyroid of affected person had functioned properly, therefore thyroid function tests should be one of a prior laboratory examinations in cardiovascular disorders.

  14. The impact of cardiovascular drugs on the efficacy of local anesthesia in dentistry.

    PubMed

    Milosavljevic, Мarko J; Jankovic, Slobodan M

    2016-12-01

    Drugs used chronically by patients with diseases of the cardiovascular system (group C of the ATC classification) may act on adrenergic receptors and/or certain ion channels, which gives them the potential to interact with the action of local dental anesthetics. The aim of the study was to investigate the effect of systemically administered chronic cardiovascular medication (oral route) on the efficacy of intraoral local anesthesia in patients with diseases of the cardiovascular system. This was a prospective cohort study which analyzed the efficacy of local terminal anesthesia (onset of anesthesia, duration anesthetized area) in the upper jaw of 70 patients: 40 patients on medication for cardiovascular system disorders and 30 patients who were not using these drugs (the control group). The following cardiovascular drugs were used: beta blockers, angiotensin converting enzyme inhibitors, calcium channel blockers, vasodilatators, diuretics, angiotensin receptor blockers, antiarrhythmics, statins and alfa blockers. The onset of anesthesia on the vestibular side was faster in those taking cardiovascular drugs (40.50±19.87 s) than the control patients (58.93±31.07 s; P = 0.004) and duration of anesthesia on this side was shorter. Although the difference was not significant, it was evident that on vestibular and palatal side the anesthetized area was more rapidly reduced in the patients taking cardiovascular drugs. The duration of cardiovascular therapy also had a significant impact on the anesthetized area. Drugs acting on cardiovascular system may influence the effect of local anesthetics used in dentistry, possibly through interaction with autonomic receptors and ion channels.

  15. Giraffe genome sequence reveals clues to its unique morphology and physiology

    PubMed Central

    Agaba, Morris; Ishengoma, Edson; Miller, Webb C.; McGrath, Barbara C.; Hudson, Chelsea N.; Bedoya Reina, Oscar C.; Ratan, Aakrosh; Burhans, Rico; Chikhi, Rayan; Medvedev, Paul; Praul, Craig A.; Wu-Cavener, Lan; Wood, Brendan; Robertson, Heather; Penfold, Linda; Cavener, Douglas R.

    2016-01-01

    The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. PMID:27187213

  16. Identification of Putative Cardiovascular System Developmental Toxicants using a Classification Model based on Signaling Pathway-Adverse Outcome Pathways

    EPA Science Inventory

    An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...

  17. Mobile Health Devices as Tools for Worldwide Cardiovascular Risk Reduction and Disease Management.

    PubMed

    Piette, John D; List, Justin; Rana, Gurpreet K; Townsend, Whitney; Striplin, Dana; Heisler, Michele

    2015-11-24

    We examined evidence on whether mobile health (mHealth) tools, including interactive voice response calls, short message service, or text messaging, and smartphones, can improve lifestyle behaviors and management related to cardiovascular diseases throughout the world. We conducted a state-of-the-art review and literature synthesis of peer-reviewed and gray literature published since 2004. The review prioritized randomized trials and studies focused on cardiovascular diseases and risk factors, but included other reports when they represented the best available evidence. The search emphasized reports on the potential benefits of mHealth interventions implemented in low- and middle-income countries. Interactive voice response and short message service interventions can improve cardiovascular preventive care in developed countries by addressing risk factors including weight, smoking, and physical activity. Interactive voice response and short message service-based interventions for cardiovascular disease management also have shown benefits with respect to hypertension management, hospital readmissions, and diabetic glycemic control. Multimodal interventions including Web-based communication with clinicians and mHealth-enabled clinical monitoring with feedback also have shown benefits. The evidence regarding the potential benefits of interventions using smartphones and social media is still developing. Studies of mHealth interventions have been conducted in >30 low- and middle-income countries, and evidence to date suggests that programs are feasible and may improve medication adherence and disease outcomes. Emerging evidence suggests that mHealth interventions may improve cardiovascular-related lifestyle behaviors and disease management. Next-generation mHealth programs developed worldwide should be based on evidence-based behavioral theories and incorporate advances in artificial intelligence for adapting systems automatically to patients' unique and changing needs. © 2015 American Heart Association, Inc.

  18. Space radiation and cardiovascular disease risk

    PubMed Central

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-01-01

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293

  19. Lipids and lipid changes with synthetic and biologic disease-modifying antirheumatic drug therapy in rheumatoid arthritis: implications for cardiovascular risk.

    PubMed

    Myasoedova, Elena

    2017-05-01

    To highlight recently published studies addressing lipid changes with disease-modifying antirheumatic drug use and outline implications on cardiovascular outcomes in rheumatoid arthritis (RA). Growing evidence suggests lower lipid levels are present in patients with active RA vs. general population, and significant modifications of lipid profile with inflammation suppression. Increase in lipid levels in patients with RA on synthetic and biological disease-modifying antirheumatic drugs may be accompanied by antiatherogenic changes in lipid composition and function. The impact of lipid changes on cardiovascular outcomes in RA is a subject of active research. The role of lipids in cardiovascular risk in RA may be overpowered by the benefits of inflammation suppression with antirheumatic medication use. Recommendations on lipid management in RA are evolving but uncertainty exists regarding frequency of lipid testing and goals of treatment. Knowledge about quantitative and qualitative lipid changes in RA is expanding. The relative role of lipids in cardiovascular risk in the context of systemic inflammation and antirheumatic therapy remains uncertain, delaying development of effective strategies for cardiovascular risk management in RA. Studies are underway to address these knowledge gaps and may be expected to inform cardiovascular risk management in RA and the general population.

  20. Space radiation and cardiovascular disease risk.

    PubMed

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-12-26

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.

  1. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes

    2012-04-01

    Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.

  2. The Representation of Heart Development in the Gene Ontology

    PubMed Central

    Khodiyar, Varsha K.; Hill, David P.; Howe, Doug; Berardini, Tanya Z.; Tweedie, Susan; Talmud, Philippa J.; Breckenridge, Ross; Bhattarcharya, Shoumo; Riley, Paul; Scambler, Peter; Lovering, Ruth C.

    2012-01-01

    An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development and aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area. PMID:21419760

  3. A Follow-Up Study of Medical Students' Biomedical Understanding and Clinical Reasoning Concerning the Cardiovascular System

    ERIC Educational Resources Information Center

    Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Olkinuora, Erkki; Kaapa, Pekka

    2011-01-01

    Novice medical students usually hold initial conceptions concerning medical domains, such as the cardiovascular system, which may contradict scientific explanations and thus hinder learning. The purpose of this study was to investigate which kinds of biomedical representations medical students constructed of the central cardiovascular system in…

  4. Computer model of cardiovascular control system responses to exercise

    NASA Technical Reports Server (NTRS)

    Croston, R. C.; Rummel, J. A.; Kay, F. J.

    1973-01-01

    Approaches of systems analysis and mathematical modeling together with computer simulation techniques are applied to the cardiovascular system in order to simulate dynamic responses of the system to a range of exercise work loads. A block diagram of the circulatory model is presented, taking into account arterial segments, venous segments, arterio-venous circulation branches, and the heart. A cardiovascular control system model is also discussed together with model test results.

  5. The role of PPARδ signaling in the cardiovascular system.

    PubMed

    Ding, Yishu; Yang, Kevin D; Yang, Qinglin

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARα, β/δ, and γ), members of the nuclear receptor transcription factor superfamily, play important roles in the regulation of metabolism, inflammation, and cell differentiation. All three PPAR subtypes are expressed in the cardiovascular system with various expression patterns. Among the three PPAR subtypes, PPARδ is the least studied but has arisen as a potential therapeutic target for cardiovascular and many other diseases. It is known that PPARδ is ubiquitously expressed and abundantly expressed in cardiomyocytes. Accumulated evidence illustrates the role of PPARδ in regulating cardiovascular function and determining pathological progression. In this chapter, we will discuss the current knowledge in the role of PPARδ in the cardiovascular system, the mechanistic insights, and the potential therapeutic utilization for treating cardiovascular disease. © 2014 Elsevier Inc. All rights reserved.

  6. Workplace wellness recognition for optimizing workplace health: a presidential advisory from the American Heart Association.

    PubMed

    Fonarow, Gregg C; Calitz, Chris; Arena, Ross; Baase, Catherine; Isaac, Fikry W; Lloyd-Jones, Donald; Peterson, Eric D; Pronk, Nico; Sanchez, Eduardo; Terry, Paul E; Volpp, Kevin G; Antman, Elliott M

    2015-05-19

    The workplace is an important setting for promoting cardiovascular health and cardiovascular disease and stroke prevention in the United States. Well-designed, comprehensive workplace wellness programs have the potential to improve cardiovascular health and to reduce mortality, morbidity, and disability resulting from cardiovascular disease and stroke. Nevertheless, widespread implementation of comprehensive workplace wellness programs is lacking, and program composition and quality vary. Several organizations provide worksite wellness recognition programs; however, there is variation in recognition criteria, and they do not specifically focus on cardiovascular disease and stroke prevention. Although there is limited evidence to suggest that company performance on employer health management scorecards is associated with favorable healthcare cost trends, these data are not currently robust, and further evaluation is needed. As a recognized national leader in evidence-based guidelines, care systems, and quality programs, the American Heart Association/American Stroke Association is uniquely positioned and committed to promoting the adoption of comprehensive workplace wellness programs, as well as improving program quality and workforce health outcomes. As part of its commitment to improve the cardiovascular health of all Americans, the American Heart Association/American Stroke Association will promote science-based best practices for comprehensive workplace wellness programs and establish benchmarks for a national workplace wellness recognition program to assist employers in applying the best systems and strategies for optimal programming. The recognition program will integrate identification of a workplace culture of health and achievement of rigorous standards for cardiovascular health based on Life's Simple 7 metrics. In addition, the American Heart Association/American Stroke Association will develop resources that assist employers in meeting these rigorous standards, facilitating access to high-quality comprehensive workplace wellness programs for both employees and dependents, and fostering innovation and additional research. © 2015 American Heart Association, Inc.

  7. A new Web-based medical tool for assessment and prevention of comprehensive cardiovascular risk

    PubMed Central

    Franchi, Daniele; Cini, Davide; Iervasi, Giorgio

    2011-01-01

    Background: Multifactor cardiovascular disease is the leading cause of death; besides well-known cardiovascular risk factors, several emerging factors such as mental stress, diet type, and physical inactivity, have been associated to cardiovascular disease. To date, preventive strategies are based on the concept of absolute risk calculated by different algorithms and scoring systems. However, in general practice the patient’s data collection represents a critical issue. Design: A new multipurpose computer-based program has been developed in order to:1) easily calculate and compare the absolute cardiovascular risk by the Framingham, Procam, and Progetto Cuore algorithms; 2) to design a web-based computerized tool for prospective collection of structured data; 3) to support the doctor in the decision-making process for patients at risk according to recent international guidelines. Methods: During a medical consultation the doctor utilizes a common computer connected by Internet to a medical server where all the patient’s data and software reside. The program evaluates absolute and relative cardiovascular risk factors, personalized patient’s goals, and multiparametric trends, monitors critical parameter values, and generates an automated medical report. Results: In a pilot study on 294 patients (47% males; mean age 60 ± 12 years [±SD]) the global time to collect data at first consultation was 13 ± 11 minutes which declined to 8 ± 7 minutes at the subsequent consultation. In 48.2% of cases the program revealed 2 or more primary risk factor parameters outside guideline indications and gave specific clinical suggestions to return altered parameters to target values. Conclusion: The web-based system proposed here may represent a feasible and flexible tool for clinical management of patients at risk of cardiovascular disease and for epidemiological research. PMID:21445280

  8. Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease

    PubMed Central

    Yao, Longbiao; Herlea-Pana, Oana; Heuser-Baker, Janet; Chen, Yitong; Barlic-Dicen, Jana

    2014-01-01

    The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies. PMID:24741577

  9. Cannabinoids in the Cardiovascular System.

    PubMed

    Ho, Wing S V; Kelly, Melanie E M

    2017-01-01

    Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells. The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB 1 and CB 2 receptors or non-CB 1/2 receptor targets. Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis. In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation. © 2017 Elsevier Inc. All rights reserved.

  10. Development of a mathematical model of the human cardiovascular system: An educational perspective

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce Allen

    A mathematical model of the human cardiovascular system will be a useful educational tool in biological sciences and bioengineering classrooms. The goal of this project is to develop a mathematical model of the human cardiovascular system that responds appropriately to variations of significant physical variables. Model development is based on standard fluid statics and dynamics principles, pressure-volume characteristics of the cardiac cycle, and compliant behavior of blood vessels. Cardiac cycle phases provide the physical and logical model structure, and Boolean algebra links model sections. The model is implemented using VisSim, a highly intuitive and easily learned block diagram modeling software package. Comparisons of model predictions of key variables to published values suggest that the model reasonably approximates expected behavior of those variables. The model responds plausibly to variations of independent variables. Projected usefulness of the model as an educational tool is threefold: independent variables which determine heart function may be easily varied to observe cause and effect; the model is used in an interactive setting; and the relationship of governing equations to model behavior is readily viewable and intuitive. Future use of this model in classrooms may give a more reasonable indication of its value as an educational tool.* *This dissertation includes a CD that is multimedia (contains text and other applications that are not available in a printed format). The CD requires the following applications: CorelPhotoHouse, CorelWordPerfect, VisSinViewer (included on CD), Internet access.

  11. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.

    PubMed

    Yang, Chao; Sodian, Ralf; Fu, Ping; Lüders, Cora; Lemke, Thees; Du, Jing; Hübler, Michael; Weng, Yuguo; Meyer, Rudolf; Hetzer, Roland

    2006-01-01

    One approach to tissue engineering has been the development of in vitro conditions for the fabrication of functional cardiovascular structures intended for implantation. In this experiment, we developed a pulsatile flow system that provides biochemical and biomechanical signals in order to regulate autologous, human patch-tissue development in vitro. We constructed a biodegradable patch scaffold from porous poly-4-hydroxy-butyrate (P4HB; pore size 80 to 150 microm). The scaffold was seeded with pediatric aortic cells. The cell-seeded patch constructs were placed in a self-developed bioreactor for 7 days to observe potential tissue formation under dynamic cell culture conditions. As a control, cell-seeded scaffolds were not conditioned in the bioreactor system. After maturation in vitro, the analysis of the tissue engineered constructs included biochemical, biomechanical, morphologic, and immunohistochemical examination. Macroscopically, all tissue engineered constructs were covered by cells. After conditioning in the bioreactor, the cells were mostly viable, had grown into the pores, and had formed tissue on the patch construct. Electron microscopy showed confluent smooth surfaces. Additionally, we demonstrated the capacity to generate collagen and elastin under in vitro pulsatile flow conditions in biochemical examination. Biomechanical testing showed mechanical properties of the tissue engineered human patch tissue without any statistical differences in strength or resistance to stretch between the static controls and the conditioned patches. Immunohistochemical examination stained positive for alpha smooth muscle actin, collagen type I, and fibronectin. There was minor tissue formation in the nonconditioned control samples. Porous P4HB may be used to fabricate a biodegradable patch scaffold. Human vascular cells attached themselves to the polymeric scaffold, and extracellular matrix formation was induced under controlled biomechanical and biodynamic stimuli in a self-developed pulsatile bioreactor system.

  12. CHARACTERIZING THE ROLE OF THE NELL1 GENE IN CARDIOVASCULAR DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. Y.; Culiat, C.

    Nell1{sup 6R} is a chemically-induced point mutation in a novel cell-signaling gene, Nell1, which results in truncation of the protein and degradation of the Nell16R transcript. Earlier studies revealed that loss of Nell1 function reduces expression of numerous extracellular matrix (ECM) proteins required for differentiation of bone and cartilage precursor cells, thereby causing severe skull and spinal defects. Since skeletal and cardiovascular development are closely linked biological processes, this research focused on: a) examining Nell16R mutant mice for cardiovascular defects, b) determining Nell1 expression in fetal and adult hearts, and c) establishing how ECM genes affected by Nell1 infl uencemore » heart development. Structural heart defects in Nell16R mutant fetuses were analyzed by heart length and width measurements and standard histological methods (haematoxylin and eosin staining). Nell1 expression was assayed in fetal and adult hearts using reverse transcription polymerase chain reaction (RT-PCR). A comprehensive bioinformatics analysis using public databases (Stanford SOURCE Search, Integrated Cartilage Gene Database, Mouse Genome Informatics, and NCBI UniGene) was undertaken to investigate the relationship between cardiovascular development and each of twentyeight genes affected by Nell1. Nell1-defi cient mice have signifi cantly enlarged hearts (particularly the heart width), dramatically reduced blood fl ow out of the heart and unexpanded lungs. Isolation of total RNAs from hearts of adult (control and heterozygote) and fetal (control and homozygous mutant) mice have been completed and RT-PCR assays are in progress. The bioinformatics analysis showed that the majority of genes with reduced expression in Nell1-defi cient mice are normally expressed in the heart (79%; 22/28), blood vessels (71%; 20/28) and bone marrow (61%; 17/28). Moreover, mouse mutations in seven of these genes (Col15a1, Osf-2, Bmpr1a, Pkd1, Mfge8, Ptger4, Col5a1) manifest abnormalities in cardiovascular development. These data demonstrate for the fi rst time that Nell1 has a role in early mammalian cardiovascular development, mediated by its regulation of ECM proteins necessary for normal cell growth and differentiation. In addition, understanding the mechanisms by which Nell1 and its associated ECM genes affect the cardiovascular system can provide future strategies for the treatment of heart and blood vessel defects.« less

  13. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease.

    PubMed

    Rastogi, Neelesh; Smith, R Theodore

    2016-01-01

    Age-related macular degeneration is the leading cause of adult blindness in the developed world. Thus, major endeavors to understand the risk factors and pathogenesis of this disease have been undertaken. Reticular macular disease is a proposed subtype of age-related macular degeneration correlating histologically with subretinal drusenoid deposits located between the retinal pigment epithelium and the inner segment ellipsoid zone. Reticular lesions are more prevalent in females and in older age groups and are associated with a higher mortality rate. Risk factors for developing age-related macular degeneration include hypertension, smoking, and angina. Several genes related to increased risk for age-related macular degeneration and reticular macular disease are also associated with cardiovascular disease. Better understanding of the clinical and genetic risk factors for age-related macular degeneration and reticular macular disease has led to the hypothesis that these eye diseases are systemic. A systemic origin may help to explain why reticular disease is diagnosed more frequently in females as males suffer cardiovascular mortality at an earlier age, before the age of diagnosis of reticular macular disease and age-related macular degeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases

    PubMed Central

    Sallam, Nada

    2016-01-01

    Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential. PMID:26823952

  15. Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases.

    PubMed

    Sallam, Nada; Laher, Ismail

    2016-01-01

    Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.

  16. High-Frequency Ultrasound for the Study of Early Mouse Embryonic Cardiovascular System.

    PubMed

    Greco, Adelaide; Coda, Anna Rita Daniela; Albanese, Sandra; Ragucci, Monica; Liuzzi, Raffaele; Auletta, Luigi; Gargiulo, Sara; Lamagna, Francesco; Salvatore, Marco; Mancini, Marcello

    2015-12-01

    An accurate diagnosis of congenital heart defects during fetal development is critical for interventional planning. Mice can be used to generate animal models with heart defects, and high-frequency ultrasound (HFUS) imaging enables in utero imaging of live mouse embryos. A wide range of physiological measurements is possible using Doppler-HFUS imaging; limitations of any single measurement warrant a multiparameter approach to characterize cardiovascular function. Doppler-HFUS was used to explore the embryonic (heart, aorta) and extraembryonic (umbilical blood flow) circulatory systems to create a database in normal mouse embryos between 9.5 and 16.5 days of gestation. Multivariate analyses were performed to explore correlations between gestational age and embryo echocardiographic parameters. Heart rate and peak velocity in the aorta were positively correlated with gestational time, whereas cardiac cycle length, isovolumetric relaxation time, myocardial performance index, and arterial deceleration time of the umbilical cord were negatively correlated with it. Doppler-HFUS facilitated detailed characterization of the embryonic mouse circulation and represents a useful tool for investigation of the early mouse embryonic cardiovascular system. © The Author(s) 2015.

  17. Systems Pharmacology Dissection of Traditional Chinese Medicine Wen-Dan Decoction for Treatment of Cardiovascular Diseases.

    PubMed

    Lan, Tao-Hua; Zhang, Lu-Lu; Wang, Yong-Hua; Wu, Huan-Lin; Xu, Dan-Ping

    2018-01-01

    Cardiovascular diseases (CVDs) have been recognized as first killer of human health. The underlying mechanisms of CVDs are extremely complicated and not fully revealed, leading to a challenge for CVDs treatment in modern medicine. Traditional Chinese medicine (TCM) characterized by multiple compounds and targets has shown its marked effects on CVDs therapy. However, system-level understanding of the molecular mechanisms is still ambiguous. In this study, a system pharmacology approach was developed to reveal the underlying molecular mechanisms of a clinically effective herb formula (Wen-Dan Decoction) in treating CVDs. 127 potential active compounds and their corresponding 283 direct targets were identified in Wen-Dan Decoction. The networks among active compounds, targets, and diseases were built to reveal the pharmacological mechanisms of Wen-Dan Decoction. A "CVDs pathway" consisted of several regulatory modules participating in therapeutic effects of Wen-Dan Decoction in CVDs. All the data demonstrates that Wen-Dan Decoction has multiscale beneficial activity in CVDs treatment, which provides a new way for uncovering the molecular mechanisms and new evidence for clinical application of Wen-Dan Decoction in cardiovascular disease.

  18. Polyphenols isolated from virgin coconut oil attenuate cadmium-induced dyslipidemia and oxidative stress due to their antioxidant properties and potential benefits on cardiovascular risk ratios in rats.

    PubMed

    Famurewa, Ademola Clement; Ejezie, Fidelis Ebele

    2018-01-01

    Literature has confirmed the pathogenic role of cadmium (Cd) and its exposure in the induction of dyslipidemia implicated in the development and increasing incidence of cardiovascular diseases. The current study explored whether polyphenolics isolated from virgin coconut oil (VCO) prevent Cd-induced dyslipidemia and investigate the underlying mechanism of action, in rats. Rats were pretreated with VCO polyphenols (10, 20 and 50 mg/kg body weight; orally) 2 weeks prior to concurrent Cd administration (5 mg/kg) for 5 weeks. Subsequently, serum concentrations of lipid and lipoprotein cholesterol and cardiovascular risk ratios were determined. Hepatic activities of superoxide dismutase (SOD) and catalase (CAT) as well as reduced glutathione (GSH) and malondialdehyde (MDA) contents were analyzed. Sub-chronic Cd administration significantly increased the serum levels of total cholesterol, triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol while markedly reduced high density lipoprotein cholesterol. Hepatic activities of SOD and CAT as well as GSH content were suppressed by Cd, whereas MDA level was obviously increased. The co-administration of VCO polyphenol with Cd remarkably restored lipid profile and cardiovascular risk ratios and stabilized antioxidant defense systems comparable to control group. This is the first study presenting that polyphenols isolated from VCO prevent Cd-induced lipid abnormalities and cardiovascular risk ratios by improving antioxidant defense systems.

  19. Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology.

    PubMed

    Chistiakov, Dimitry A; Grechko, Andrey V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Orekhov, Alexander N

    2017-08-01

    Cardiac obesity makes an important contribution to the pathogenesis of cardiovascular disease. One of the important pathways of this contribution is the inflammatory process that takes place in the adipose tissue. In this review, we consider the role of the cardiovascular system-associated fat in atherosclerotic cardiovascular pathology and a non-atherosclerotic cause of coronary artery disease, such as atrial fibrillation. Cardiovascular system-associated fat not only serves as the energy store, but also releases adipokines that control local and systemic metabolism, heart/vascular function and vessel tone, and a number of vasodilating and anti-inflammatory substances. Adipokine appears to play an important protective role in cardiovascular system. Under chronic inflammation conditions, the repertoire of signaling molecules secreted by cardiac fat can be altered, leading to a higher amount of pro-inflammatory messengers, vasoconstrictors, profibrotic modulators. This further aggravates cardiovascular inflammation and leads to hypertension, induction of the pathological tissue remodeling and cardiac fibrosis. Contemporary imaging techniques showed that epicardial fat thickness correlates with the visceral fat mass, which is an established risk factor and predictor of cardiovascular disease in obese subjects. However, this correlation is no longer present after adjustment for other covariates. Nevertheless, recent studies showed that pericardial fat volume and epicardial fat thickness can probably serve as a better indicator for atrial fibrillation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module VI. Cardiovascular System.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on the cardiovascular system is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Seven units of study are presented: (1) the anatomy and physiology of the cardiovascular system; (2) patient assessment for the cardiac patient; (3) pathophysiology; (4) reading…

  1. [THE CHARACTERISTICS OF CARDIOVASCULAR SYSTEM IN CHILDREN WITH INFLUENZA INFECTION].

    PubMed

    Dudnik, V; Mantak, G; Andrikevych, I; Roizman, A

    2015-01-01

    Clinical changes in the cardiovascular system observed in most patients. The extent and nature of these changes may depend on the characteristics of epidemic outbreaks, such as virus, immune responsiveness, age composition patients. Flu-like lesions of the cardiovascular system in most cases occurring beneficial--quickly disappear change of heart, normal pulse and blood pressure.

  2. Evidence for sex differences in cardiovascular aging and adaptive responses to physical activity.

    PubMed

    Parker, Beth A; Kalasky, Martha J; Proctor, David N

    2010-09-01

    There are considerable data addressing sex-related differences in cardiovascular system aging and disease risk/progression. Sex differences in cardiovascular aging are evident during resting conditions, exercise, and other acute physiological challenges (e.g., orthostasis). In conjunction with these sex-related differences-or perhaps even as an underlying cause-the impact of cardiorespiratory fitness and/or physical activity on the aging cardiovascular system also appears to be sex-specific. Potential mechanisms contributing to sex-related differences in cardiovascular aging and adaptability include changes in sex hormones with age as well as sex differences in baseline fitness and the dose of activity needed to elicit cardiovascular adaptations. The purpose of the present paper is thus to review the primary research regarding sex-specific plasticity of the cardiovascular system to fitness and physical activity in older adults. Specifically, the paper will (1) briefly review known sex differences in cardiovascular aging, (2) detail emerging evidence regarding observed cardiovascular outcomes in investigations of exercise and physical activity in older men versus women, (3) explore mechanisms underlying the differing adaptations to exercise and habitual activity in men versus women, and (4) discuss implications of these findings with respect to chronic disease risk and exercise prescription.

  3. Evidence for sex differences in cardiovascular aging and adaptive responses to physical activity

    PubMed Central

    Parker, Beth A.; Kalasky, Martha J.; Proctor, David N.

    2010-01-01

    There are considerable data addressing sex-related differences in cardiovascular system aging and disease risk/progression. Sex differences in cardiovascular aging are evident during resting conditions, exercise, and other acute physiological challenges (e.g., orthostasis). In conjunction with these sex-related differences—or perhaps even as an underlying cause—the impact of cardiorespiratory fitness and/or physical activity on the aging cardiovascular system also appears to be sex-specific. Potential mechanisms contributing to sex-related differences in cardiovascular aging and adaptability include changes in sex hormones with age as well as sex differences in baseline fitness and the dose of activity needed to elicit cardiovascular adaptations. The purpose of the present paper is thus to review the primary research regarding sex-specific plasticity of the cardiovascular system to fitness and physical activity in older adults. Specifically, the paper will (1) briefly review known sex differences in cardiovascular aging, (2) detail emerging evidence regarding observed cardiovascular outcomes in investigations of exercise and physical activity in older men versus women, (3) explore mechanisms underlying the differing adaptations to exercise and habitual activity in men versus women, and (4) discuss implications of these findings with respect to chronic disease risk and exercise prescription. PMID:20480371

  4. Evaluation of the electromechanical properties of the cardiovascular system

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.

    1974-01-01

    Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.

  5. Protein O-GlcNAcylation and Cardiovascular (Patho)physiology*

    PubMed Central

    Marsh, Susan A.; Collins, Helen E.; Chatham, John C.

    2014-01-01

    Our understanding of the role of protein O-GlcNAcylation in the regulation of the cardiovascular system has increased rapidly in recent years. Studies have linked increased O-GlcNAc levels to glucose toxicity and diabetic complications; conversely, acute activation of O-GlcNAcylation has been shown to be cardioprotective. However, it is also increasingly evident that O-GlcNAc turnover plays a central role in the delicate regulation of the cardiovascular system. Therefore, the goals of this minireview are to summarize our current understanding of how changes in O-GlcNAcylation influence cardiovascular pathophysiology and to highlight the evidence that O-GlcNAc cycling is critical for normal function of the cardiovascular system. PMID:25336635

  6. Local Renin Angiotensin Aldosterone Systems and Cardiovascular Diseases.

    PubMed

    De Mello, Walmor C

    2017-01-01

    The presence of local renin angiotensin aldosterone systems (RAAS) in the cardiovascular and renal tissues and their influence in cardiovascular and renal diseases are described. The fundamental role of ACE/Ang II/AT1 receptor axis activation as well the counterregulatory role of ACE2/Ang (1-7)/Mas receptor activation on cardiovascular and renal physiology and pathology are emphasized. The presence of a local RAS and its influence on hypertension is discussed, and finally, the hypothesis that epigenetic factors change the RAAS in utero and induce the expression of renin or Ang II inside the cells of the cardiovascular system is presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Laser-based optoelectronic system for therapy by medical treatment of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Chtchoupak, Oleg S.; Spilevoi, Boris N.; Zapaeva, Natlia L.

    1996-04-01

    The method and system's design for the laser treatment of the heart ischemia is presented. Our conceptual approach to the development of the system is based on the theoretical and experimental works about positive influence of low intensity near infrared laser irradiation by treatment of cardiovascular diseases. The method and system allow it to influence the subepicardial collateral blood circulation with near infrared (NIR) laser irradiation in wavelength ranges of 0.86 - 1.06 mkm. The presented techniques make it possible to achieve a higher effectiveness of treatment. First, due to individual choice of radiation parameters on the basis of analysis of the patient's conditions before and after laser therapy. Second, due to simultaneous influence at several points of the human body. Finally, results of the clinical tests are presented, which confirm the discussed methods.

  8. Critical Windows of Cardiovascular Susceptibility to Developmental Hypoxia in Common Snapping Turtle (Chelydra serpentina) Embryos.

    PubMed

    Tate, Kevin B; Kohl, Zachary F; Eme, John; Rhen, Turk; Crossley, Dane A

    2015-01-01

    Environmental conditions fluctuate dramatically in some reptilian nests. However, critical windows of environmental sensitivity for cardiovascular development have not been identified. Continuous developmental hypoxia has been shown to alter cardiovascular form and function in embryonic snapping turtles (Chelydra serpentina), and we used this species to identify critical periods during which hypoxia modifies the cardiovascular phenotype. We hypothesized that incubation in 10% O2 during specific developmental periods would have differential effects on the cardiovascular system versus overall somatic growth. Two critical windows were identified with 10% O2 from 50% to 70% of incubation, resulting in relative heart enlargement, either via preservation of or preferential growth of this tissue, while exposure to 10% O2 from 20% to 70% of incubation resulted in a reduction in arterial pressure. The deleterious or advantageous aspects of these embryonic phenotypes in posthatching snapping turtles have yet to be explored. However, identification of these critical windows has provided insight into how the developmental environment alters the phenotype of reptiles and will also be pivotal in understanding its impact on the fitness of egg-laying reptiles.

  9. Tetrahydrobiopterin in Cardiovascular Health and Disease

    PubMed Central

    Bendall, Jennifer K.; Douglas, Gillian; McNeill, Eileen; Channon, Keith M.

    2014-01-01

    Abstract Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases. Antioxid. Redox Signal. 20, 3040–3077. PMID:24294830

  10. IL-17 in psoriasis: Implications for therapy and cardiovascular co-morbidities

    PubMed Central

    Golden, Jackelyn B.; McCormick, Thomas S.; Ward, Nicole L.

    2013-01-01

    Psoriasis is a prevalent, chronic inflammatory disease of the skin mediated by cross-talk occurring between epidermal keratinocytes, dermal vascular cells and immunocytes, including activated antigen presenting cells (APCs), monocytes/macrophages, and Th1 and Th17 cells. Increased proliferation of keratinocytes and endothelial cells in conjunction with immune cell infiltration leads to the distinct epidermal and vascular hyperplasia that is characteristic of lesional psoriatic skin. Interaction of activated T cells with monocytes/macrophages occurs via the Th17/IL-23 axis and is crucial for maintaining the chronic inflammation. Recent epidemiological evidence has demonstrated that psoriasis patients have an increased risk of developing and dying of cardiovascular disease. Similar pathology between psoriasis and cardiovascular disease, including involvement of key immunologic cell populations together with release of common inflammatory mediators such as IL-17A suggest a mechanistic link between the two diseases. This review will focus on concepts critical to psoriasis pathogenesis, systemic manifestations of psoriasis, the role of IL-17 in psoriasis and cardiovascular disease and the potential role for IL-17 in mediating cardiovascular co-morbidities in psoriasis patients. PMID:23562549

  11. Epigenetic Biomarkers and Cardiovascular Disease: Circulating MicroRNAs.

    PubMed

    de Gonzalo-Calvo, David; Iglesias-Gutiérrez, Eduardo; Llorente-Cortés, Vicenta

    2017-09-01

    MicroRNAs (miRNAs) are a class of small noncoding RNA (20-25 nucleotides) involved in gene regulation. In recent years, miRNAs have emerged as a key epigenetic mechanism in the development and physiology of the cardiovascular system. These molecular species regulate basic functions in virtually all cell types, and are therefore directly associated with the pathophysiology of a large number of cardiovascular diseases. Since their relatively recent discovery in extracellular fluids, miRNAs have been studied as potential biomarkers of disease. A wide array of studies have proposed miRNAs as circulating biomarkers of different cardiovascular pathologies (eg, myocardial infarction, coronary heart disease, and heart failure, among others), which may have superior physicochemical and biochemical properties than the conventional protein indicators currently used in clinical practice. In the present review, we provide a brief introduction to the field of miRNAs, paying special attention to their potential clinical application. This includes their possible role as new diagnostic or prognostic biomarkers in cardiovascular disease. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Relationship between the oral cavity and cardiovascular diseases and metabolic syndrome

    PubMed Central

    Carramolino-Cuéllar, Esther; Tomás, Inmaculada

    2014-01-01

    The components of the human body are closely interdependent; as a result, disease conditions in some organs or components can influence the development of disease in other body locations. The effect of oral health upon health in general has been investigated for decades by many epidemiological studies. In this context, there appears to be a clear relationship between deficient oral hygiene and different systemic disorders such as cardiovascular disease and metabolic syndrome. The precise relationship between them is the subject of ongoing research, and a variety of theories have been proposed, though most of them postulate the mediation of an inflammatory response. This association between the oral cavity and disease in general requires further study, and health professionals should be made aware of the importance of adopting measures destined to promote correct oral health. The present study conducts a Medline search with the purpose of offering an update on the relationship between oral diseases and cardiovascular diseases, together with an evaluation of the bidirectional relationship between metabolic syndrome and periodontal disease. Most authors effectively describe a moderate association between the oral cavity and cardiovascular diseases, though they also report a lack of scientific evidence that oral alterations constitute an independent cause of cardiovascular diseases, or that their adequate treatment can contribute to prevent such diseases. In the case of metabolic syndrome, obesity and particularly diabetes mellitus may be associated to an increased susceptibility to periodontitis. However, it is not clear whether periodontal treatment is able to improve the systemic conditions of these patients. Key words:Cardiovascular diseases, periodontitis, metabolic syndrome, obesity, diabetes mellitus. PMID:24121926

  13. Effects of Interleukin 17 on the cardiovascular system.

    PubMed

    Robert, Marie; Miossec, Pierre

    2017-09-01

    Cardiovascular diseases remain the leading cause of death worldwide and account for most of the premature mortality observed in chronic inflammatory diseases. Common mechanisms underlie these two types of disorders, where the contribution of Interleukin (IL)-17A, the founding member of the IL-17 family, is highly suspected. While the local effects of IL-17A in inflammatory disorders have been well described, those on the cardiovascular system remain less studied. This review focuses on the effects of IL-17 on the cardiovascular system both on isolated cells and in vivo. IL-17A acts on vessel and cardiac cells, leading to inflammation, coagulation and thrombosis. In vivo and clinical studies have shown its involvement in the pathogenesis of cardiovascular diseases including atherosclerosis and myocardial infarction that occur prematurely in chronic inflammatory disorders. As new therapeutic approaches are targeting the IL-17 pathway, this review should help to better understand their positive and negative outcomes on the cardio-vascular system. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Thrombospondins: old players, new games.

    PubMed

    Stenina-Adognravi, Olga

    2013-10-01

    Thrombospondins (TSPs) are secreted extracellular matrix (ECM) proteins from TSP family, which consists of five homologous members. They share a complex domain structure and have numerous binding partners in ECM and multiple cell surface receptors. Information that has emerged over the past decade identifies TSPs as important mediators of cellular homeostasis, assigning new important roles in cardiovascular pathology to these proteins. Recent studies of the functions of TSP in the cardiovascular system, diabetes and aging, which placed several TSPs in a position of critical regulators, demonstrated the involvement of these proteins in practically every aspect of cardiovascular pathophysiology related to atherosclerosis: inflammation, immunity, leukocyte recruitment and function, function of vascular cells, angiogenesis, and responses to hypoxia, ischemia and hyperglycemia. TSPs are also critically important in the development and ultimate outcome of the complications associated with atherosclerosis--myocardial infarction, and heart hypertrophy and failure. Their expression and significance increase with age and with the progression of diabetes, two major contributors to the development of atherosclerosis and its complications. This overview of recent literature examines the latest information on the newfound functions of TSPs that emphasize the importance of ECM in cardiovascular homeostasis and pathology. The functions of TSPs in myocardium, vasculature, vascular complications of diabetes, aging and immunity are discussed.

  15. A System Dynamics Model for Planning Cardiovascular Disease Interventions

    PubMed Central

    Homer, Jack; Evans, Elizabeth; Zielinski, Ann

    2010-01-01

    Planning programs for the prevention and treatment of cardiovascular disease (CVD) is a challenge to every community that wants to make the best use of its limited resources. Selecting programs that provide the greatest impact is difficult because of the complex set of causal pathways and delays that link risk factors to CVD. We describe a system dynamics simulation model developed for a county health department that incorporates and tracks the effects of those risk factors over time on both first-time and recurrent events. We also describe how the model was used to evaluate the potential impacts of various intervention strategies for reducing the county's CVD burden and present the results of those policy tests. PMID:20167899

  16. Natriuretic Peptides as Biomarkers in Heart Failure

    PubMed Central

    Januzzi, James L.

    2014-01-01

    Following the initial discovery of a natriuretic and diuretic peptide factor present in atrial myocardial tissue homogenates, subsequent elucidation of the natriuretic peptide family has led to substantial advances in the understanding of the autocrine, paracrine, and endocrine regulation of the cardiovascular system. Furthermore, with the development of assays for the measurement of the natriuretic peptides, these important biomarkers have gone from being regarded as biological mediators of the cardiovascular system to now represent important clinical tools for the diagnostic and prognostic evaluation of patients with heart failure, and may have potential as a therapeutic target in this setting as well. An historical perspective on the natriuretic peptides from bench to bedside translation will be discussed. PMID:23661103

  17. [Pathophysiological role of tissue renin-angiotensin-aldosterone system (RAAS) in human atherosclerosis].

    PubMed

    Fukui, Kensuke; Yamada, Hiroyuki; Matsubara, Hiroaki

    2012-09-01

    Renin-angiotensin-aldosterone system (RAAS) has been demonstrated to play an important role in the pathogenesis of atherosclerosis development both in animal experiments and in clinical studies. Numerous clinical studies have shown that blockade of RAAS exerts beneficial effects to restore the impaired endothelial function and to reduce the mortality and morbidity of cardiovascular diseases beyond their blood pressure lowering effect. However, the underlying mechanisms of stabilizing vulnerable plaque and inhibiting plaque rupture associated with acute coronary syndrome have not yet been fully elucidated. Here, we summarized the characteristics of tissue RAAS expressions in human atherosclerotic lesions and assessed their therapeutic relevance in the prevention of atherosclerotic cardiovascular diseases.

  18. Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system: review.

    PubMed

    Zaporozhets, Tatyana; Besednova, Natalia

    2016-12-01

    Fucoidans are water-soluble, highly sulfated, branched homo- and hetero-polysaccharides derived from the fibrillar cell walls and intercellular spaces of brown seaweeds of the class Phaeophyceae. Fucoidans possess mimetic properties of the natural ligands of protein receptors and regulate functions of biological systems via key signaling molecules. The aim of this review was to collect and combine all available scientific literature about the potential use of the fucoidans for diseases of cardiovascular system. The review has been compiled using references from major databases such as Web of Science, PubMed, Scopus, Elsevier, Springer and Google Scholar (up to September 2015). After obtaining all reports from database (a total number is about 580), the papers were carefully analyzed in order to find data related to the topic of this review (129 references). An exhaustive survey of literature revealed that fucoidans possess a broad spectrum of biological activity, including anti-coagulant, hypolipidemic, anti-thrombotic, anti-inflammatory, immunomodulatory, anti-tumor, anti-adhesive and anti-hypertensive properties. Numerous investigations of fucoidans in diseases of the cardiovascular system mainly focus on pleiotropic anti-inflammatory effects. Fucoidans also possess pro-angiogenic and pro-vasculogenic properties. A great number of investigations in the past years have demonstrated that fucoidans has great potential for in-depth investigation of their effects on cardiovascular system. Through this review, the authors hope to attract the attention of researchers to use fucoidan as mimetic of natural ligand receptor protein with the view of developing new formulations with an improved therapeutic value.

  19. Cyclophilin A in cardiovascular homeostasis and diseases.

    PubMed

    Satoh, Kimio

    2015-01-01

    Vascular homeostasis is regulated by complex interactions between many vascular cell components, including endothelial cells, vascular smooth muscle cells (VSMCs), adventitial inflammatory cells, and autonomic nervous system. The balance between oxidant and antioxidant systems determines intracellular redox status, and their imbalance can cause oxidative stress. Excessive oxidative stress is one of the important stimuli that induce cellular damage and dysregulation of vascular cell components, leading to vascular diseases through multiple pathways. Cyclophilin A (CyPA) is one of the causative proteins that mediate oxidative stress-induced cardiovascular dysfunction. CyPA was initially discovered as the intracellular receptor of the immunosuppressive drug cyclosporine 30 years ago. However, recent studies have established that CyPA is secreted from vascular cell components, such as endothelial cells and VSMCs. Extracellular CyPA augments the development of cardiovascular diseases. CyPA secretion is regulated by Rho-kinase, which contributes to the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. We recently reported that plasma CyPA levels are significantly higher in patients with coronary artery disease, which is associated with increased numbers of stenotic coronary arteries and the need for coronary intervention in such patients. Furthermore, we showed that the vascular erythropoietin (Epo)/Epo receptor system plays an important role in production of nitric oxide and maintenance of vascular redox state and homeostasis, with a potential mechanistic link to the Rho-kinase-CyPA pathway. In this article, I review the data on the protective role of the vascular Epo/Epo receptor system and discuss the roles of the CyPA/Rho-kinase system in cardiovascular diseases.

  20. [Secondary cardiovascular prevention after acute coronary syndrome in clinical practice].

    PubMed

    Colivicchi, Furio; Di Roma, Angelo; Uguccioni, Massimo; Scotti, Emilio; Ammirati, Fabrizio; Arcas, Marcello; Avallone, Aniello; Bonaccorso, Orazio; Germanò, Giuseppe; Letizia, Claudio; Manfellotto, Dario; Minardi, Giovanni; Pristipino, Christian; D'Amore, Francesco; Di Veroli, Claudio; Fierro, Aldo; Pastorellio, Ruggero; Tozzi, Quinto; Tubaro, Marco; Santini, Massimo; Angelico, Francesco; Azzolini, Paolo; Bellasi, Antonio; Brocco, Paola; Calò, Leonardo; Cerquetani, Elena; De Biase, Luciano; Di Napoli, Mauro; Galati, Alfonso; Gallieni, Maurizio; Jesi, Anna Patrizia; Lombardo, Antonella; Loricchio, Vincenzo; Menghini, Fabio; Mezzanotte, Roberto; Minutolos, Roberto; Mocini, David; Patti, Giuseppe; Patrizi, Roberto; Pajes, Giuseppe; Pulignano, Giovanni; Ricci, Renato Pietro; Ricci, Roberto; Sardella, Gennaro; Strano, Stefano; Terracina, David; Testa, Marco; Tomai, Fabrizio; Volpes, Roberto; Volterrani, Maurizio

    2010-05-01

    Secondary prevention after acute coronary syndromes should be aimed at reducing the risk of further adverse cardiovascular events, thereby improving quality of life, and lengthening survival. Despite compelling evidence from large randomized controlled trials, secondary prevention is not fully implemented in most cases after hospitalization for acute coronary syndrome. The Lazio Region (Italy) has about 5.3 million inhabitants (9% of the entire Italian population). Every year about 11 000 patients are admitted for acute coronary syndrome in hospitals of the Lazio Region. Most of these patients receive state-of-the art acute medical and interventional care during hospitalization. However, observational data suggest that after discharge acute coronary syndrome patients are neither properly followed nor receive all evidence-based treatments. This consensus document has been developed by 11 Scientific Societies of Cardiovascular and Internal Medicine in order develop a sustainable and effective clinical approach for secondary cardiovascular prevention after acute coronary syndrome in the local scenario of the Lazio Region. An evidence-based simplified decalogue for secondary cardiovascular prevention is proposed as the cornerstone of clinical intervention, taking into account regional laws and relative shortage of resources. The following appropriate interventions should be consistently applied: smoking cessation, blood pressure control (blood pressure < 130/80 mmHg), optimal lipid management (LDL cholesterol < 80 mmHg), weight and diabetes management, promotion of physical activity and rehabilitation, correct use of antiplatelet agents, beta-blockers, renin-angiotensin-aldosterone system blockers.

  1. Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease

    PubMed Central

    Strait, James

    2015-01-01

    Important changes occur in the cardiovascular system with advancing age, even in apparently healthy individuals. Thickening and stiffening of the large arteries develop due to collagen and calcium deposition and loss of elastic fibers in the medial layer. These arterial changes cause systolic blood pressure to rise with age, while diastolic blood pressure generally declines after the sixth decade. In the left ventricle, modest concentric wall thickening occurs due to cellular hypertrophy, but cavity size does not change. Although left ventricular systolic function is preserved across the age span, early diastolic filling rate declines 30–50% between the third and ninth decades. Conversely, an age-associated increase in late diastolic filling due to atrial contraction preserves end-diastolic volume. Aerobic exercise capacity declines approximately 10% per decade in cross-sectional studies; in longitudinal studies, however, this decline is accelerated in the elderly. Reductions in peak heart rate and peripheral oxygen utilization but not stroke volume appear to mediate the age-associated decline in aerobic capacity. Deficits in both cardiac b-adrenergic receptor density and in the efficiency of postsynaptic b-adrenergic signaling contribute significantly to the reduced cardiovascular performance during exercise in older adults. Although these cardiovascular aging changes are considered “normative”, they lower the threshold for the development of cardiovascular disease, which affects the majority of older adults. PMID:21809160

  2. Mammalian Krüppel-Like Factors in Health and Diseases

    PubMed Central

    McConnell, Beth B.; Yang, Vincent W.

    2010-01-01

    The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles. PMID:20959618

  3. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors.

    PubMed

    Thayer, Julian F; Yamamoto, Shelby S; Brosschot, Jos F

    2010-05-28

    Cardiovascular disease (CVD) is the leading cause of death and disability worldwide. The understanding of the risk factors for CVD may yield important insights into the prevention, etiology, course, and treatment of this major public health concern. Autonomic imbalance, characterized by a hyperactive sympathetic system and a hypoactive parasympathetic system, is associated with various pathological conditions. Over time, excessive energy demands on the system can lead to premature aging and diseases. Therefore, autonomic imbalance may be a final common pathway to increased morbidity and mortality from a host of conditions and diseases, including cardiovascular disease. Heart rate variability (HRV) may be used to assess autonomic imbalances, diseases and mortality. Parasympathetic activity and HRV have been associated with a wide range of conditions including CVD. Here we review the evidence linking HRV to established and emerging modifiable and non-modifiable CVD risk factors such as hypertension, obesity, family history and work stress. Substantial evidence exists to support the notion that decreased HRV precedes the development of a number of risk factors and that lowering risk profiles is associated with increased HRV. We close with a suggestion that a model of autonomic imbalance may provide a unifying framework within which to investigate the impact of risk factors, including psychosocial factors and work stress, on cardiovascular disease. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  4. [Adverse effects of ultrafine particles on the cardiovascular system and its mechanisms].

    PubMed

    Yi, Tie-ci; Li, Jian-ping

    2014-12-18

    Cardiovascular disease is one of the major threats to human. Air pollution, which , as it become a problem too serious to be ignored in China, is known to be an important risk factor for cardiovascular disease. Among all pollutants, ultrafine particles ( UFPs) , defined as particles with their diameter less than 0. 1 f.Lm, are a specific composition. They are very small in size, large in quantity and surface area, and most important, capable of passing through the air-blood barrier. These unique features of UFPs make them special in their impact on cardiovascular system. Nowadays, the influence of UFPs on the cardiovascular system has become a hot topic. On the one side, studies have shown that UFPs can cause inflammation and oxidative stress in the lung, and then induce systemic inflammation by releasing cytokine and reactive oxygen species into the circulation. On the other side, UFPs themselves can "spillout"into the circulation and interact with their targets. By this way, UFPs directly affect endothelial cells, myocardial cells and the autonomic nervous system, which ultimately result in increased cardiovascular events. We intend to make an overview about the recent progress about the influence of UFPs on human cardiovascular disease and the related mechanisms, and argue for more attention to this issue.

  5. Exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126) ...

    EPA Pesticide Factsheets

    Effects of exposure to coplanar polychlorinated biphenyls (PCBs) and other dioxin-like chemicals on developing vertebrates involve many organ systems, including the skeletal and cardiovascular systems. Apex predators, including those from the class Chondrichthyes (sharks, skates, and rays), accumulate high body burdens of PCBs through biomagnification of chemicals moving through food webs. There are no published reports of the effects of dioxin-like chemicals on the development of sharks, skates, or rays. A study was undertaken to assess developmental effects of 3, 3’, 4, 4’, 5 pentachlorobiphenyl (PCB 126) exposure in little skate, Leucoraja erinacea, a model for oviparous elasmobranchs. Skate embryos cultured outside of their egg cases were exposed to 0.02 - 20 ng/ml PCB 126 for 6 days and then grown in clean seawater for up to 29 days. Gas chromatography was used to measure PCB 126 in the exposures water and quantify its accumulation in the embryo. Digital still and video imaging was performed to assess growth, identify developmental abnormalities, and cardiovascular function. Embryos accumulated approximately 50% of PCB 126 exposure mass in the embryonic tissues and yolk sac. All embryos in the control and 0.02 ng/ml treatment survived; mortality rates were 14, 52, and 40% of embryos exposed to 0.2, 2.0, and 20.0 ng/ml, respectively. PCB 126 exposure induced yolk sac edema, deformities of the jaw, cranium, and fins, and cardiovascular system failure in

  6. What determines blood vessel structure? Genetic prespecification vs. hemodynamics.

    PubMed

    Jones, Elizabeth A V; le Noble, Ferdinand; Eichmann, Anne

    2006-12-01

    Vascular network remodeling, angiogenesis, and arteriogenesis play an important role in the pathophysiology of ischemic cardiovascular diseases and cancer. Based on recent studies of vascular network development in the embryo, several novel aspects to angiogenesis have been identified as crucial to generate a functional vascular network. These aspects include specification of arterial and venous identity in vessels and network patterning. In early embryogenesis, vessel identity and positioning are genetically hardwired and involve neural guidance genes expressed in the vascular system. We demonstrated that, during later stages of embryogenesis, blood flow plays a crucial role in regulating vessel identity and network remodeling. The flow-evoked remodeling process is dynamic and involves a high degree of vessel plasticity. The open question in the field is how genetically predetermined processes in vessel identity and patterning balance with the contribution of blood flow in shaping a functional vascular architecture. Although blood flow is essential, it remains unclear to what extent flow is able to act on the developing cardiovascular system. There is significant evidence that mechanical forces created by flowing blood are biologically active within the embryo and that the level of mechanical forces and the type of flow patterns present in the embryo are able to affect gene expression. Here, we highlight the pivotal role for blood flow and physical forces in shaping the cardiovascular system.

  7. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases.

    PubMed

    Mascolo, A; Sessa, M; Scavone, C; De Angelis, A; Vitale, C; Berrino, L; Rossi, F; Rosano, G; Capuano, A

    2017-01-15

    It is commonly accepted that the renin-angiotensin-aldosterone system (RAAS) is a cardiovascular circulating hormonal system that plays also an important role in the modulation of several patterns in the brain. The pathway of the RAAS can be divided into two classes: the traditional pathway of RAAS, also named classic RAAS, and the non-classic RAAS. Both pathways play a role in both cardiovascular and neurological diseases through a peripheral or central control. In this regard, renewed interest is growing in the last years for the consideration that the brain RAAS could represent a new important therapeutic target to regulate not only the blood pressure via central nervous control, but also neurological diseases. However, the development of compounds able to cross the blood-brain barrier and to act on the brain RAAS is challenging, especially if the metabolic stability and the half-life are taken into consideration. To date, two drug classes (aminopeptidase type A inhibitors and angiotensin IV analogues) acting on the brain RAAS are in development in pre-clinical or clinical stages. In this article, we will present an overview of the biological functions played by peripheral and brain classic and non-classic pathways of the RAAS in several clinical conditions, focusing on the brain RAAS and on the new pharmacological targets of the RAAS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Congenital heart defects in Williams syndrome.

    PubMed

    Yuan, Shi-Min

    2017-01-01

    Yuan SM. Congenital heart defects in Williams syndrome. Turk J Pediatr 2017; 59: 225-232. Williams syndrome (WS), also known as Williams-Beuren syndrome, is a rare genetic disorder involving multiple systems including the circulatory system. However, the etiologies of the associated congenital heart defects in WS patients have not been sufficiently elucidated and represent therapeutic challenges. The typical congenital heart defects in WS were supravalvar aortic stenosis, pulmonary stenosis (both valvular and peripheral), aortic coarctation and mitral valvar prolapse. The atypical cardiovascular anomalies include tetralogy of Fallot, atrial septal defects, aortic and mitral valvular insufficiencies, bicuspid aortic valves, ventricular septal defects, total anomalous pulmonary venous return, double chambered right ventricle, Ebstein anomaly and arterial anomalies. Deletion of the elastin gene on chromosome 7q11.23 leads to deficiency or abnormal deposition of elastin during cardiovascular development, thereby leading to widespread cardiovascular abnormalities in WS. In this article, the distribution, treatment and surgical outcomes of typical and atypical cardiac defects in WS are discussed.

  9. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System

    PubMed Central

    Menazza, Sara; Murphy, Elizabeth

    2016-01-01

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to two nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue specific co-activators and co-repressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as GPER to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long term effects. The kinase signaling pathways can also mediate transcriptional changes, and can synergize with the estrogen receptor to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER-membrane signaling mechanisms. PMID:26838792

  10. Feeling the right force: How to contextualize the cell mechanical behavior in physiologic turnover and pathologic evolution of the cardiovascular system.

    PubMed

    Pesce, Maurizio; Santoro, Rosaria

    2017-03-01

    Although traditionally linked to the physiology of tissues in 'motion', the ability of the cells to transduce external forces into coordinated gene expression programs is emerging as an integral component of the fundamental structural organization of multicellular organisms with consequences for cell differentiation even from the beginning of embryonic development. The ability of the cells to 'feel' the surrounding mechanical environment, even in the absence of tissue motion, is then translated into 'positional' or 'social' sensing that instructs, before the organ renewal, the correct patterning of the embryos. In the present review, we will highlight how these basic concepts, emerging from the employment of novel cell engineering tools, can be linked to pathophysiology of the cardiovascular system, and may contribute to understanding the molecular bases of some of the major cardiovascular diseases like heart failure, heart valve stenosis and failure of the venous aorto-coronary bypass. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Loneliness, Social Isolation, and Cardiovascular Health.

    PubMed

    Xia, Ning; Li, Huige

    2018-03-20

    Social and demographic changes have led to an increased prevalence of loneliness and social isolation in modern society. Recent Advances: Population-based studies have demonstrated that both objective social isolation and the perception of social isolation (loneliness) are correlated with a higher risk of mortality and that both are clearly risk factors for cardiovascular disease (CVD). Lonely individuals have increased peripheral vascular resistance and elevated blood pressure. Socially isolated animals develop more atherosclerosis than those housed in groups. Molecular mechanisms responsible for the increased cardiovascular risk are poorly understood. In recent reports, loneliness and social stress were associated with activation of the hypothalamic-pituitary-adrenocortical axis and the sympathetic nervous system. Repeated and chronic social stress leads to glucocorticoid resistance, enhanced myelopoiesis, upregulated proinflammatory gene expression, and oxidative stress. However, the causal role of these mechanisms in the development of loneliness-associated CVD remains unclear. Elucidation of the molecular mechanisms of how CVD is induced by loneliness and social isolation requires additional studies. Understanding of the pathomechanisms is essential for the development of therapeutic strategies to prevent the detrimental effects of social stress on health. Antioxid. Redox Signal. 28, 837-851.

  12. Improving clinical trials for cardiovascular diseases: a position paper from the Cardiovascular Round Table of the European Society of Cardiology.

    PubMed

    Jackson, Neville; Atar, Dan; Borentain, Maria; Breithardt, Günter; van Eickels, Martin; Endres, Matthias; Fraass, Uwe; Friede, Tim; Hannachi, Hakima; Janmohamed, Salim; Kreuzer, Jörg; Landray, Martin; Lautsch, Dominik; Le Floch, Chantal; Mol, Peter; Naci, Huseyin; Samani, Nilesh J; Svensson, Anders; Thorstensen, Cathrine; Tijssen, Jan; Vandzhura, Victoria; Zalewski, Andrew; Kirchhof, Paulus

    2016-03-01

    Cardiovascular disease is the most common cause of mortality and morbidity in the world, but the pharmaceutical industry's willingness to invest in this field has declined because of the many challenges involved with bringing new cardiovascular drugs to market, including late-stage failures, escalating regulatory requirements, bureaucracy of the clinical trial business enterprise, and limited patient access after approval. This contrasts with the remaining burden of cardiovascular disease in Europe and in the world. Thus, clinical cardiovascular research needs to adapt to address the impact of these challenges in order to ensure development of new cardiovascular medicines. The present paper is the outcome of a two-day workshop held by the Cardiovascular Round Table of the European Society of Cardiology. We propose strategies to improve development of effective new cardiovascular therapies. These can include (i) the use of biomarkers to describe patients who will benefit from new therapies more precisely, achieving better human target validation; (ii) targeted, mechanism-based approaches to drug development for defined populations; (iii) the use of information technology to simplify data collection and follow-up in clinical trials; (iv) streamlining adverse event collection and reducing monitoring; (v) extended patent protection or limited rapid approval of new agents to motivate investment in early phase development; and (vi) collecting data needed for health technology assessment continuously throughout the drug development process (before and after approval) to minimize delays in patient access. Collaboration across industry, academia, regulators, and payers will be necessary to enact change and to unlock the existing potential for cardiovascular clinical drug development. A coordinated effort involving academia, regulators, industry, and payors will help to foster better and more effective conduct of clinical cardiovascular trials, supporting earlier availability of innovative therapies and better management of cardiovascular diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  13. Development of a New ICT-Based Multisensor Blood Pressure Monitoring System for Use in Hemodynamic Biomarker-Initiated Anticipation Medicine for Cardiovascular Disease: The National IMPACT Program Project.

    PubMed

    Kario, Kazuomi; Tomitani, Naoko; Kanegae, Hiroshi; Yasui, Nobuhiko; Nishizawa, Masafumi; Fujiwara, Takeshi; Shigezumi, Takeya; Nagai, Ryozo; Harada, Hiroshi

    We have developed a multisensor home and ambulatory blood pressure (BP) monitoring system for monitoring 24-h central and brachial BP variability concurrent with physical activity (PA), temperature, and atmospheric pressure. The new BP monitoring system utilizes our recently developed biological and environmental signal monitoring Information Communication Technology/Internet of Things system, which can simultaneously monitor the environment (temperature, illumination, etc.) of different rooms in a house (entryway, bedroom, living room, bathing room, and toilet), and a wrist-type high-sensitivity actigraph for identifying the location of patients. By collecting both data on BP and environmental parameters, the system can assess the brachial and central hemodynamic BP reactivity profiles of patients, such as actisensitivity (BP change with PA), thermosensitivity (with temperature), and atmospheric sensitivity (with atmospheric pressure). We used this new system to monitor ambulatory BP variability in outpatients with one or more cardiovascular disease (CVD) risk factors both in summer and winter. Actisensitivity (the slope of the regression line of ambulatory BP against the log-physical activity) was higher in winter than summer. By multi-level analysis using the parameters monitored by this system, we estimated the ambulatory BPs under different conditions. The individual time-series big data collected by this system will contribute to anticipation medicine for CVD. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Noninvasive detection of cardiovascular pulsations by optical Doppler techniques

    NASA Astrophysics Data System (ADS)

    Hong, HyunDae; Fox, Martin D.

    1997-10-01

    A system has been developed based on the measurement of skin surface vibration that can be used to detect the underlying vascular wall motion of superficial arteries and the chest wall. Data obtained from tissue phantoms suggested that the detected signals were related to intravascular pressure, an important clinical and physiological parameter. Unlike the conventional optical Doppler techniques that have been used to measure blood perfusion in skin layers and blood flow within superficial arteries, the present system was optimized to pick up skin vibrations. An optical interferometer with a 633-nm He:Ne laser was utilized to detect micrometer displacements of the skin surface. Motion velocity profiles of the skin surface near each superficial artery and auscultation points on a chest for the two heart valve sounds exhibited distinctive profiles. The theoretical and experimental results demonstrated that the system detected the velocity of skin movement, which is related to the time derivative of the pressure. The system also reduces the loading effect on the pulsation signals and heart sounds produced by the conventional piezoelectric vibration sensors. The system's sensitivity, which could be optimized further, was 366.2 micrometers /s for the present research. Overall, optical cardiovascular vibrometry has the potential to become a simple noninvasive approach to cardiovascular screening.

  15. The Significance of the Psychosocial Factors Influence in Pathogenesis of Cardiovascular Disease

    PubMed Central

    Masic, Izet; Alajbegovic, Jasmin

    2013-01-01

    Background: Cardiovascular diseases (CVD) are the leading cause of death in the world today. Risk factors are those factors that influence the development of CVD. Risk factors can be divided into materialistic (genetic predisposition, smoking, alcohol) and non-materialistic (psychosocial factors). Our goal is to note the role of the health system, to emphasize the importance of psychosocial factors in the pathogenesis of CVD, explain the relationship between psychosocial factors and other risk factors, stress the importance of prevention through the provision of management of the cardiovascular system (CVS) diseases. Methods: A descriptive analysis was performed on scientific studies in several published articles in journals on CVS: Public Health Reviews, CVD, European Heart Journal, Materia Socio Medica and other indexed journals that publish articles on CVS. Results and Conclusions: The importance and role of the health system in the early detection, diagnosis, therapy and CVS disease prevention is presented through three thematic areas: (a) The incidence and prevalence of CVS diseases; (b) treatment of CVS diseases and (c) promotion of health in patients with CVS disease and those the risk of their occurrence. Health promotion is the most important aspect of the health system monitoring. Health promotion is adequately implemented ifthe management ofCVD is proper. The main objectives of CVD management are: Preventing or delaying the occurrence of CVD, reducing the number and severity of worsening and complications of CVD. Management Includes: Individual and family, the health system and the community. Materialistic and non-materialistic risk factors together contribute to the development of CVD. PMID:24404370

  16. Theoretical rationale of community intervention for the prevention and control of cardiovascular disease.

    PubMed

    MacLean, D R

    1994-01-01

    Cardiovascular disease is the leading cause of death and disability in the developed world, accounting for slightly more than 40% of all mortality. Along with the resultant disability of those who survive with the disease it costs the health care system in Canada approximately $17 billion on an annual basis. The known risk factors for cardiovascular disease are widespread within the population; in Canada, approximately 70% of individuals have one or more of the major risk factors. Research over the past 25 years has disclosed that a significant proportion of the cause of heart disease and its risk factors are rooted in the unhealthy habits of average living in conjunction with unfavorable physical, economic and psychosocial environments. The primary prevention of cardiovascular disease has focused on individual risk factor change combined with approaches to community organization in an effort to produce a more conducive environment for behavior change to be carried out. First-generation community programs for cardiovascular disease prevention, as illustrated by the North Karelia Project, Stanford Five City Project and others in the United States, have relied heavily on social learning theory as advanced by Bandura, from Stanford University. Second-generation prevention programs, such as the Nova Scotia Heart Health Program, have relied on these theories as well as theories of participation and community development in the prevention of major noncommunicable diseases. This paper gives an overview of the theoretical basis of community intervention programs for cardiovascular disease. Included will be a discussion of some of the various theoretical approaches used in Canada and the United States and elsewhere over the past 25 years.

  17. Cardiovascular safety of biologic therapies for the treatment of RA.

    PubMed

    Greenberg, Jeffrey D; Furer, Victoria; Farkouh, Michael E

    2011-11-15

    Cardiovascular disease represents a major source of extra-articular comorbidity in patients with rheumatoid arthritis (RA). A combination of traditional cardiovascular risk factors and RA-related factors accounts for the excess risk in RA. Among RA-related factors, chronic systemic inflammation has been implicated in the pathogenesis and progression of atherosclerosis. A growing body of evidence--mainly derived from observational databases and registries--suggests that specific RA therapies, including methotrexate and anti-TNF biologic agents, can reduce the risk of future cardiovascular events in patients with RA. The cardiovascular profile of other biologic therapies for the treatment of RA has not been adequately studied, including of investigational drugs that improve systemic inflammation but alter traditional cardiovascular risk factors. In the absence of large clinical trials adequately powered to detect differences in cardiovascular events between biologic drugs in RA, deriving firm conclusions on cardiovascular safety is challenging. Nevertheless, observational research using large registries has emerged as a promising approach to study the cardiovascular risk of emerging RA biologic therapies.

  18. Studies of the effects of gravitational and inertial forces on cardiovascular and respiratory dynamics

    NASA Technical Reports Server (NTRS)

    Ritman, E. L.; Wood, E. H.

    1973-01-01

    The current status and application are described of the biplane video roentgen densitometry, videometry and video digitization systems. These techniques were developed, and continue to be developed for studies of the effects of gravitational and inertial forces on cardiovascular and respiratory dynamics in intact animals and man. Progress is reported in the field of lung dynamics and three-dimensional reconstruction of the dynamic thoracic contents from roentgen video images. It is anticipated that these data will provide added insight into the role of shape and internal spatial relationships (which is altered particularly by acceleration and position of the body) of these organs as an indication of their functional status.

  19. Recent advances in the Laboratory of Molecular and Cellular Cardiology.

    PubMed

    Breitbart, R E; London, B; Nguyen, H T; Satler, C A

    1995-12-01

    This article highlights some of the research in cardiac molecular biology in progress in the Department of Cardiology at Children's Hospital. It provides a sampling of investigative approaches to key questions in cardiovascular development and function and, as such, is intended as an overview rather than a comprehensive treatment of these problems. The featured projects, encompassing four different "model" systems, include (1) genetic analysis of the mef2 gene required for fruit fly cardial cell differentiation, (2) cardiac-specific homeobox factors in zebrafish cardiovascular development, (3) mouse transgenic and gene knockout models of cardiac potassium ion channel function, and (4) mapping and identification of human gene mutations causing long QT syndrome.

  20. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  1. Cardiovascular and pulmonary dynamics by quantitative imaging

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.

  2. Genetic and epigenetic mechanisms in the early development of the vascular system

    PubMed Central

    Ribatti, Domenico

    2006-01-01

    The cardiovascular system plays a critical role in vertebrate development and homeostasis. Vascular development is a highly organized sequence of events that requires the correct spatial and temporal expression of specific sets of genes leading to the development of a primary vascular network. There have been intensive efforts to determine the molecular mechanisms regulating vascular growth and development, and much of the rationale for this has stemmed from the increasing clinical importance and therapeutic potential of modulating vascular formation during various disease states. PMID:16441559

  3. The effects of preterm birth and its antecedents on the cardiovascular system.

    PubMed

    Bensley, Jonathan G; De Matteo, Robert; Harding, Richard; Black, Mary J

    2016-06-01

    Preterm birth occurs in approximately 10% of all births worldwide. It prematurely exposes the developing cardiovascular system to the hemodynamic transition that occurs at birth and to the subsequent functional demands of life ex utero. This review describes the current knowledge of the effects of preterm birth, and some of its common antecedents (chorioamnionitis, intra-uterine growth restriction, and maternal antenatal corticosteroid administration), on the structure of the myocardium. A thorough literature search was conducted for articles relating to how preterm birth, and its antecedents, affect development of the heart. Given that sheep are an excellent model for the studies of cardiac development, this review has focused on experimental studies in sheep as well as clinical findings. Our review of the literature demonstrates that individuals born preterm are at an increased risk of cardiovascular disease later in life, including increased mean arterial pressure, abnormally shaped and sub-optimally performing hearts and changes in the vasculature. The review highlights how antenatal corticosteroids, intra-uterine growth restriction, and exposure to chorioamnionitis also have the potential to impact cardiac growth in the preterm newborn. Preterm birth and its common antecedents (antenatal corticosteroids, intra-uterine growth restriction, and chorioamnionitis) have the potential to adversely impact cardiac structure immediately following birth and in later life. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  4. Spotlight on valsartan-sacubitril fixed-dose combination for heart failure: the evidence to date.

    PubMed

    Vilela-Martin, José Fernando

    2016-01-01

    Heart failure is a global problem with elevated prevalence, and it is associated with substantial cardiovascular morbidity and mortality. Treating heart-failure patients has been a very challenging task. This review highlights the main pharmacological developments in the field of heart failure with reduced ejection fraction, giving emphasis to a drug that has a dual-acting inhibition of the neprilysin and renin-angiotensin-aldosterone system. Neprilysin is an enzyme that participates in the breakdown of biologically active natriuretic peptides and several other vasoactive compounds. The inhibition of neprilysin has been a therapeutic target for several drugs tested in cardiovascular disease, mainly for heart failure and/or hypertension. However, side effects and a lack of efficacy led to discontinuation of their development. LCZ696 is a first-in-class neprilysin- and angiotensin-receptor inhibitor that has been developed for use in heart failure. This drug is composed of two molecular moieties in a single crystalline complex: a neprilysin-inhibitor prodrug (sacubitril) and the angiotensin-receptor blocker (valsartan). The PARADIGM-HF trial demonstrated that this drug was superior to an angiotensin-converting enzyme inhibitor (enalapril) in reducing mortality in patients with heart failure with reduced ejection fraction. The ability to block the angiotensin receptor and augment the endogenous natriuretic peptide system provides a distinctive mechanism of action in cardiovascular disease.

  5. Spotlight on valsartan–sacubitril fixed-dose combination for heart failure: the evidence to date

    PubMed Central

    Vilela-Martin, José Fernando

    2016-01-01

    Heart failure is a global problem with elevated prevalence, and it is associated with substantial cardiovascular morbidity and mortality. Treating heart-failure patients has been a very challenging task. This review highlights the main pharmacological developments in the field of heart failure with reduced ejection fraction, giving emphasis to a drug that has a dual-acting inhibition of the neprilysin and renin–angiotensin–aldosterone system. Neprilysin is an enzyme that participates in the breakdown of biologically active natriuretic peptides and several other vasoactive compounds. The inhibition of neprilysin has been a therapeutic target for several drugs tested in cardiovascular disease, mainly for heart failure and/or hypertension. However, side effects and a lack of efficacy led to discontinuation of their development. LCZ696 is a first-in-class neprilysin- and angiotensin-receptor inhibitor that has been developed for use in heart failure. This drug is composed of two molecular moieties in a single crystalline complex: a neprilysin-inhibitor prodrug (sacubitril) and the angiotensin-receptor blocker (valsartan). The PARADIGM-HF trial demonstrated that this drug was superior to an angiotensin-converting enzyme inhibitor (enalapril) in reducing mortality in patients with heart failure with reduced ejection fraction. The ability to block the angiotensin receptor and augment the endogenous natriuretic peptide system provides a distinctive mechanism of action in cardiovascular disease. PMID:27274196

  6. The Applicability of Nonlinear Systems Dynamics Chaos Measures to Cardiovascular Physiology Variables

    NASA Technical Reports Server (NTRS)

    Hooker, John C.

    1991-01-01

    Three measures of nonlinear chaos (fractal dimension, Approximate Entropy (ApEn), and Lyapunov exponents) were studied as potential measures of cardiovascular condition. It is suggested that these measures have potential in the assessment of cardiovascular condition in environments of normal cardiovascular stress (normal gravity on the Earth surface), cardiovascular deconditioning (microgravity of space), and increased cardiovascular stress (lower body negative pressure (LBNP) treatments).

  7. Orbital atherectomy: device evolution and clinical data.

    PubMed

    Staniloae, Cezar S; Korabathina, Ravikiran

    2014-05-01

    A number of atherectomy devices were developed in the last few years. Among them, the DiamondBack 360° Peripheral Orbital Atherectomy System (Cardiovascular Systems, Inc) was specifically designed to work in severely calcified plaque. This article reviews the history, mechanism of action, evolution, clinical data, and future applications of this particular atherectomy device.

  8. Recent NASA aerospace medicine technology developments

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1973-01-01

    Areas of life science are being studied to obtain baseline data, strategies, and technology to permit life research in the space environment. The reactions of the cardiovascular system to prolonged weightlessness are also being investigated. Particle deposition in the human lung, independent respiratory support system, food technology, and remotely controlled manipulators are mentioned briefly.

  9. [The characteristics of the geroprotective action of magnetotherapy in elderly patients with combined cardiovascular pathology].

    PubMed

    Abramovich, S G; Fedotchenko, A A; Koriakina, A V; Pogodin, K V; Smirnov, S N

    1999-01-01

    Central hemodynamics, diastolic and pumping functions of the heart, myocardial reactivity, microcirculation and biological age of cardiovascular system were studied in 66 elderly patients suffering from hypertension and ischemic heart disease. The patients received systemic magnetotherapy which produced a geroprotective effect as shown by improved microcirculation, myocardial reactivity, central hemodynamics reducing biological age of cardiovascular system and inhibiting its ageing.

  10. The Role of Cardiovascular Muscle Cell Na+-K+ Pump Activity in the Development and Maintenance of Reduced Renal Mass Hypertension in Rats

    DTIC Science & Technology

    1981-09-28

    hypertension (Finch and Leach, 1970; Haeusler et al. 1972) depending on whether the peripheral or the central sympathetic nevous system was destroyed...Dissertation directed by: Motllal B. Pamnanl, M.D., Ph.D. Associate Professor, Department of Physiology The mechanism of the elevated systemic arterial...vascular Na"*"-K̂ pump activity and development of hypertension; and 4) investigate the role of the sympathetic nervous system and the AV3V region

  11. Do arterial stiffness and wave reflection underlie cardiovascular risk in ethnic minorities?

    PubMed

    Faconti, Luca; Nanino, Elisa; Mills, Charlotte E; Cruickshank, Kennedy J

    2016-01-01

    Increasing evidence indicates that remarkable differences in cardiovascular risk between ethnic groups cannot be fully explained by traditional risk factors such as hypertension, diabetes or dislipidemia measured in midlife. Therefore, the underlying pathophysiology leading to this "excess risk" in ethnic minority groups is still poorly understood, and one way to address this issue is to shift the focus from "risk" to examine target organs, particularly blood vessels and their arterial properties more directly. In fact, structural and functional changes of the vascular system may be identifiable at very early stages of life when traditional factors are not yet developed. Arterial stiffening, measured as aortic pulse wave velocity, and wave reflection parameters, especially augmentation index, seem to be an important pathophysiological mechanism for the development of cardiovascular disease and predict mortality independent of other risk factors. However, data regarding these arterial indices in ethnic minorities are relatively rare and the heterogeneity between populations, techniques and statistical methods make it difficult to fully understand their role.

  12. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion

    PubMed Central

    Quétier, Ivan; Marshall, Jacqueline J.T.; Spencer-Dene, Bradley; Lachmann, Sylvie; Casamassima, Adele; Franco, Claudio; Escuin, Sarah; Worrall, Joseph T.; Baskaran, Priththivika; Rajeeve, Vinothini; Howell, Michael; Copp, Andrew J.; Stamp, Gordon; Rosewell, Ian; Cutillas, Pedro; Gerhardt, Holger; Parker, Peter J.; Cameron, Angus J.M.

    2016-01-01

    Summary In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality. PMID:26774483

  13. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion.

    PubMed

    Quétier, Ivan; Marshall, Jacqueline J T; Spencer-Dene, Bradley; Lachmann, Sylvie; Casamassima, Adele; Franco, Claudio; Escuin, Sarah; Worrall, Joseph T; Baskaran, Priththivika; Rajeeve, Vinothini; Howell, Michael; Copp, Andrew J; Stamp, Gordon; Rosewell, Ian; Cutillas, Pedro; Gerhardt, Holger; Parker, Peter J; Cameron, Angus J M

    2016-01-26

    In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The Mid America Heart Institute: part II.

    PubMed

    McCallister, Ben D; Steinhaus, David M

    2003-01-01

    The Mid America Heart Institute (MAHI) is one of the first and largest hospitals developed and designed specifically for cardiovascular care. The MAHI hybrid model, which is a partnership between the not-for-profit Saint Luke's Health System, an independent academic medical center, and a private practice physician group, has been extremely successful in providing high-quality patient care as well as developing strong educational and research programs. The Heart Institute has been the leader in providing cardiovascular care in the Kansas City region since its inception in 1975. Although challenges in the future are substantial, it is felt that the MAHI is in an excellent position to deal with the serious issues in health care because of the Heart Institute, its facility, organization, administration, dedicated medical and support staff, and its unique business model of physician management. In part I, the authors described the background and infrastructure of the Heart Institute. In part II, cardiovascular research and benefits of physician management are addressed.

  15. The Mid America Heart Institute: part 1.

    PubMed

    McCallister, Ben D; Steinhaus, David M

    2003-01-01

    The Mid America Heart Institute (MAHI) is one of the first and largest hospitals developed and designed specifically for cardiovascular care. The MAHI hybrid model, which is a partnership between the not-for-profit Saint Luke's Health System, an independent academic medical center, and a private practice physician group, has been extremely successful in providing high-quality patient care as well as developing strong educational and research programs. The Heart Institute has been the leader in providing cardiovascular care in the Kansas City region since its inception in 1975. Although challenges in the future are substantial, it is felt that the MAHI is in an excellent position to deal with the serious issues in health care because of the Heart Institute, its facility, organization, administration, dedicated medical and support staff, and its unique business model of physician management. In part I, the authors describe the background and infrastructure of the Heart Institute. In part II, cardiovascular research and benefits of physician management will be addressed.

  16. Endothelial dysfunction: the early predictor of atherosclerosis.

    PubMed

    Mudau, Mashudu; Genis, Amanda; Lochner, Amanda; Strijdom, Hans

    2012-05-01

    Since the discovery in the 1980s that nitric oxide (NO) is in fact the elusive endothelium-derived relaxing factor, it has become evident that NO is not only a major cardiovascular signalling molecule, but that changes in its bioavailability are crucial in determining whether atherosclerosis will develop or not. Sustained high levels of harmful circulating stimuli associated with cardiovascular risk factors such as diabetes mellitus elicit responses in endothelial cells that appear sequentially, namely endothelial cell activation and endothelial dysfunction (ED). ED, characterised by reduced NO bioavailability, is now recognised by many as an early, reversible precursor of atherosclerosis. The pathogenesis of ED is multifactorial; however, oxidative stress appears to be the common underlying cellular mechanism in the ensuing loss of vaso-active, inflammatory, haemostatic and redox homeostasis in the body's vascular system. The role of ED as a pathophysiological link between early endothelial cell changes associated with cardiovascular risk factors and the development of ischaemic heart disease is of importance to basic scientists and clinicians alike.

  17. Cardiovascular system diseases in patients with polycystic ovary syndrome - the role of inflammation process in this pathology and possibility of early diagnosis and prevention.

    PubMed

    Marciniak, Aleksandra; Nawrocka Rutkowska, Jolanta; Brodowska, Agnieszka; Wiśniewska, Berenika; Starczewski, Andrzej

    2016-12-23

    Polycystic ovary syndrome is a disorder which affects 5-10% of women in reproductive age. PCOS is a cause of hyperandrogenism, menstrual disorders and infertility. The most common clinical symptoms are hirsutism, acne and obesity. Patients often suffer from metabolic disorders: insulin resistance, hyperinsulinemia, dislipidemia, leading to atherosclerosis and others irregularities of the metabolic syndrome. Patients are in the high risk group for cardiovascular diseases (CVD) development because of the metabolic abnormalities. Obesity is observed in 35-60% of women with PCOS. Lean women with PCOS are also exposed to a greater risk of glucose intolerance development and abnormalities in lipid profile than women without PCOS with comparable BMI. Adipocytes are the source of many compounds of the paracrine and endocrine activity. Some of them are also markers and mediators of inflammation. Increased levels of proinflammatory cytokines in blood can promote atherosclerosis and cardiovascular disease. Markers: IL-18, TNF, IL-6 and hs-CRP are often elevated in patients with polycystic ovary syndrome. An increase in inflammatory markers may be an early indicator of the risk of developing insulin resistance and atherosclerosis, and may become a useful prognostic and therapeutic tool for monitoring patients with PCOS: lean and those with overweight and obesity. Assessment of the concentrations of inflammatory markers may become a very useful test in evaluating the risk of developing atherosclerosis and cardiovascular disease, long before their clinical manifestation. It will also allow for the appropriate prophylaxis.

  18. The management of cardiovascular disease in the Netherlands: analysis of different programmes

    PubMed Central

    Cramm, Jane M.; Tsiachristas, Apostolos; Walters, Bethany H.; Adams, Samantha A.; Bal, Roland; Huijsman, Robbert; Rutten-Van Mölken, Maureen P.M.H.; Nieboer, Anna P.

    2013-01-01

    Background Disease management programmes are increasingly used to improve the efficacy and effectiveness of chronic care delivery. But, disease management programme development and implementation is a complex undertaking that requires effective decision-making. Choices made in the earliest phases of programme development are crucial, as they ultimately impact costs, outcomes and sustainability. Methods To increase our understanding of the choices that primary healthcare practices face when implementing such programmes and to stimulate successful implementation and sustainability, we compared the early implementation of eight cardiovascular disease management programmes initiated and managed by healthcare practices in various regions of the Netherlands. Using a mixed-methods design, we identified differences in and challenges to programme implementation in terms of context, patient characteristics, disease management level, healthcare utilisation costs, development costs and health-related quality of life. Results Shifting to a multidisciplinary, patient-centred care pathway approach to disease management is demanding for organisations, professionals and patients, and is especially vulnerable when sustainable change is the goal. Funding is an important barrier to sustainable implementation of cardiovascular disease management programmes, although development costs of the individual programmes varied considerably in relation to the length of the development period. The large number of professionals involved in combination with duration of programme development was the largest cost drivers. While Information and Communication Technology systems to support the new care pathways did not directly contribute to higher costs, delays in implementation indirectly did. Conclusions Developing and implementing cardiovascular disease management programmes is time-consuming and challenging. Multidisciplinary, patient-centred care demands multifaceted changes in routine care. As care pathways become more complex, they also become more expensive. Better preparedness and training can prevent unnecessary delays during the implementation period and are crucial to reducing costs. PMID:24167456

  19. The management of cardiovascular disease in the Netherlands: analysis of different programmes.

    PubMed

    Cramm, Jane M; Tsiachristas, Apostolos; Walters, Bethany H; Adams, Samantha A; Bal, Roland; Huijsman, Robbert; Rutten-Van Mölken, Maureen P M H; Nieboer, Anna P

    2013-01-01

    Disease management programmes are increasingly used to improve the efficacy and effectiveness of chronic care delivery. But, disease management programme development and implementation is a complex undertaking that requires effective decision-making. Choices made in the earliest phases of programme development are crucial, as they ultimately impact costs, outcomes and sustainability. To increase our understanding of the choices that primary healthcare practices face when implementing such programmes and to stimulate successful implementation and sustainability, we compared the early implementation of eight cardiovascular disease management programmes initiated and managed by healthcare practices in various regions of the Netherlands. Using a mixed-methods design, we identified differences in and challenges to programme implementation in terms of context, patient characteristics, disease management level, healthcare utilisation costs, development costs and health-related quality of life. Shifting to a multidisciplinary, patient-centred care pathway approach to disease management is demanding for organisations, professionals and patients, and is especially vulnerable when sustainable change is the goal. Funding is an important barrier to sustainable implementation of cardiovascular disease management programmes, although development costs of the individual programmes varied considerably in relation to the length of the development period. The large number of professionals involved in combination with duration of programme development was the largest cost drivers. While Information and Communication Technology systems to support the new care pathways did not directly contribute to higher costs, delays in implementation indirectly did. Developing and implementing cardiovascular disease management programmes is time-consuming and challenging. Multidisciplinary, patient-centred care demands multifaceted changes in routine care. As care pathways become more complex, they also become more expensive. Better preparedness and training can prevent unnecessary delays during the implementation period and are crucial to reducing costs.

  20. Cardiovascular risk in women with polycystic ovary syndrome.

    PubMed

    Cho, L W; Atkin, S L

    2007-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women that has received an immense amount of attention in the recent years due to the possible associated risk of cardiovascular disease. Women with PCOS demonstrate an adverse cardiovascular profile characteristic of the cardiometabolic syndrome and an established risk of progression to type 2 diabetes. Despite the presence of cardiovascular risk factors and increased surrogate markers of cardiovascular disease, it is unclear if they develop accelerated atherosclerosis. This article summarized the recent development and findings of cardiovascular risk in women with PCOS, and finally the therapeutic options will be discussed.

  1. Who Must We Target Now to Minimize Future Cardiovascular Events and Total Mortality?: Lessons From the Surveillance, Prevention and Management of Diabetes Mellitus (SUPREME-DM) Cohort Study.

    PubMed

    Desai, Jay R; Vazquez-Benitez, Gabriela; Xu, Zhiyuan; Schroeder, Emily B; Karter, Andrew J; Steiner, John F; Nichols, Gregory A; Reynolds, Kristi; Xu, Stanley; Newton, Katherine; Pathak, Ram D; Waitzfelder, Beth; Lafata, Jennifer Elston; Butler, Melissa G; Kirchner, H Lester; Thomas, Abraham; O'Connor, Patrick J

    2015-09-01

    Examining trends in cardiovascular events and mortality in US health systems can guide the design of targeted clinical and public health strategies to reduce cardiovascular events and mortality rates. We conducted an observational cohort study from 2005 to 2011 among 1.25 million diabetic subjects and 1.25 million nondiabetic subjects from 11 health systems that participate in the Surveillance, Prevention and Management of Diabetes Mellitus (SUPREME-DM) DataLink. Annual rates (per 1000 person-years) of myocardial infarction/acute coronary syndrome (International Classification of Diseases-Ninth Revision, 410.0–410.91, 411.1–411.8), stroke (International Classification of Diseases-Ninth Revision, 430–432.9, 433–434.9), heart failure (International Classification of Diseases-Ninth Revision, 428–428.9), and all-cause mortality were monitored by diabetes mellitus (DM) status, age, sex, race/ethnicity, and a prior cardiovascular history. We observed significant declines in cardiovascular events and mortality rates in subjects with and without DM. However, there was substantial variation by age, sex, race/ethnicity, and prior cardiovascular history. Mortality declined from 44.7 to 27.1 (P<0.0001) for those with DM and cardiovascular disease (CVD), from 11.2 to 10.9 (P=0.03) for those with DM only, and from 18.9 to 13.0 (P<0.0001) for those with CVD only. Yet, in the [almost equal to]85% of subjects with neither DM nor CVD, overall mortality (7.0 to 6.8; P=0.10) and stroke rates (1.6–1.6; P=0.77) did not decline and heart failure rates increased (0.9–1.15; P=0.0005). To sustain improvements in myocardial infarction, stroke, heart failure, and mortality, health systems that have successfully focused on care improvement in high-risk adults with DM or CVD must broaden their improvement strategies to target lower risk adults who have not yet developed DM or CVD.

  2. Effects of artificial gravity on the cardiovascular system: Computational approach

    NASA Astrophysics Data System (ADS)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected steady-state cardiovascular behavior during sustained artificial gravity and exercise. Further validation of the model was performed using experimental data from the combined exercise and artificial gravity experiments conducted on the MIT CRC, and these results will be presented separately in future publications. This unique computational framework can be used to simulate a variety of centrifuge configuration and exercise intensities to improve understanding and inform decisions about future implementation of artificial gravity in space.

  3. A Systematic Review of Occupational Exposure to Particulate Matter and Cardiovascular Disease

    PubMed Central

    Fang, Shona C.; Cassidy, Adrian; Christiani, David C.

    2010-01-01

    Exposure to ambient particulate air pollution is a recognized risk factor for cardiovascular disease; however the link between occupational particulate exposures and adverse cardiovascular events is less clear. We conducted a systematic review, including meta-analysis where appropriate, of the epidemiologic association between occupational exposure to particulate matter and cardiovascular disease. Out of 697 articles meeting our initial criteria, 37 articles published from January 1990 to April 2009 (12 mortality; 5 morbidity; and 20 intermediate cardiovascular endpoints) were included. Results suggest a possible association between occupational particulate exposures and ischemic heart disease (IHD) mortality as well as non-fatal myocardial infarction (MI), and stronger evidence of associations with heart rate variability and systemic inflammation, potential intermediates between occupational PM exposure and IHD. In meta-analysis of mortality studies, a significant increase in IHD was observed (meta-IRR = 1.16; 95% CI: 1.06–1.26), however these data were limited by lack of adequate control for smoking and other potential confounders. Further research is needed to better clarify the magnitude of the potential risk of the development and aggravation of IHD associated with short and long-term occupational particulate exposures and to clarify the clinical significance of acute and chronic changes in intermediate cardiovascular outcomes. PMID:20617059

  4. vEmbryo In Silico Models: Predicting Vascular Developmental Toxicity

    EPA Science Inventory

    The cardiovascular system is the first to function in the vertebrate embryo, reflecting the critical need for nutrient delivery and waste removal during organogenesis. Blood vessel development occurs by complex interacting signaling networks, including extra-cellular matrix remod...

  5. Laser-based optoelectronic system for therapy by medical treatment of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Chtchoupak, Oleg S.; Shpilevoj, Boris N.; Zapaeva, Natlia L.

    1996-01-01

    The method and design of a system for the laser treatment of ischemic heart disease is presented. Our conceptual approach to the development of the system is based on the theoretical and experimental works of the east and west scientists about positive influence of low intensity laser irradiation in the near infrared range by treatment of cardiovascular diseases. The method and system allow active influence on the subepicardial collateral blood circulation with near infrared (NIR) laser irradiation in wavelength ranges of 0.86-1.06 mkm. The presented technique makes it possible to achieve a higher effectiveness of treatment due to individual choice of radiation parameters on the basis of analysis of the patient conditions before and after laser therapy and due to simultaneous affection at several points of the human body. Finally, results of the tests are presented, which prove given methods.

  6. Current understanding of the relationship between periodontal and systemic diseases

    PubMed Central

    Mawardi, Hani H.; Elbadawi, Lena S.; Sonis, Stephen T.

    2015-01-01

    Periodontal disease (PD) is among the most common infectious diseases affecting humans. While the burden of periodontal disease on oral health has been extensively investigated, a possible specific relationship between the disease and systemic health is a relatively new area of interest. More recently it has been suggested that PD has an etiological role in the development of atherosclerotic cardiovascular disease, diabetes mellitus, and preterm low-birth weight, among others. In this review, we critically evaluate the current knowledge on the relation between PD and systemic diseases overall, and specifically with cardiovascular diseases. The best available evidence today suggests that the infection and inflammatory reaction associated with PD may contribute toward systemic disease. It is critical that dentists and physicians are well informed of the potential general health impact of periodontal disease so that they are in a position to knowledgeably counsel patients. PMID:25719577

  7. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities.

    PubMed

    Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek

    2016-02-01

    There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed.

  8. Prehypertension: risk stratification and management considerations.

    PubMed

    Egan, Brent M; Julius, Stevo

    2008-10-01

    Approximately 37% of US adults are prehypertensive; about 31 million have blood pressures in the range of 130-139/85-89 mm Hg. These stage 2 prehypertensives have threefold greater risk for developing hypertension and twofold higher risk for cardiovascular events than normotensives. Lifestyle changes only are recommended for most prehypertensives, but evidence for community-wide effectiveness is limited. Projected numbers needed to treat to prevent a cardiovascular event are similar for stage 2 prehypertension and stage 1 hypertension when both groups are matched for concomitant risk factors. However, no clinical trials document that pharmacotherapy reduces cardiovascular events in stage 2 prehypertension. The Trial of Preventing Hypertension demonstrated that angiotensin receptor blockade safely lowers blood pressure and prevents or delays progression to hypertension in stage 2 prehypertensives. We believe it is reasonable for clinicians to identify stage 2 prehypertensives at high absolute risk for progression to hypertension and cardiovascular events, and to treat them with a renin-angiotensin system blocker when lifestyle changes alone are ineffective.

  9. Air Pollution and Stroke

    PubMed Central

    Lee, Kuan Ken; Miller, Mark R.; Shah, Anoop S. V.

    2018-01-01

    The adverse health effects of air pollution have long been recognised; however, there is less awareness that the majority of the morbidity and mortality caused by air pollution is due to its effects on the cardiovascular system. Evidence from epidemiological studies have demonstrated a strong association between air pollution and cardiovascular diseases including stroke. Although the relative risk is small at an individual level, the ubiquitous nature of exposure to air pollution means that the absolute risk at a population level is on a par with “traditional” risk factors for cardiovascular disease. Of particular concern are findings that the strength of this association is stronger in low and middle income countries where air pollution is projected to rise as a result of rapid industrialisation. The underlying biological mechanisms through which air pollutants exert their effect on the vasculature are still an area of intense discussion. A greater understanding of the effect size and mechanisms is necessary to develop effective strategies at individual and policy levels to mitigate the adverse cardiovascular effects of air pollution. PMID:29402072

  10. Air Pollution and Stroke.

    PubMed

    Lee, Kuan Ken; Miller, Mark R; Shah, Anoop S V

    2018-01-01

    The adverse health effects of air pollution have long been recognised; however, there is less awareness that the majority of the morbidity and mortality caused by air pollution is due to its effects on the cardiovascular system. Evidence from epidemiological studies have demonstrated a strong association between air pollution and cardiovascular diseases including stroke. Although the relative risk is small at an individual level, the ubiquitous nature of exposure to air pollution means that the absolute risk at a population level is on a par with "traditional" risk factors for cardiovascular disease. Of particular concern are findings that the strength of this association is stronger in low and middle income countries where air pollution is projected to rise as a result of rapid industrialisation. The underlying biological mechanisms through which air pollutants exert their effect on the vasculature are still an area of intense discussion. A greater understanding of the effect size and mechanisms is necessary to develop effective strategies at individual and policy levels to mitigate the adverse cardiovascular effects of air pollution.

  11. Role of TRP channels in the cardiovascular system

    PubMed Central

    Yue, Zhichao; Xie, Jia; Yu, Albert S.; Stock, Jonathan; Du, Jianyang

    2014-01-01

    The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca2+-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca2+ entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. PMID:25416190

  12. Role of TRP channels in the cardiovascular system.

    PubMed

    Yue, Zhichao; Xie, Jia; Yu, Albert S; Stock, Jonathan; Du, Jianyang; Yue, Lixia

    2015-02-01

    The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  13. Kinect system in home-based cardiovascular rehabilitation.

    PubMed

    Vieira, Ágata; Gabriel, Joaquim; Melo, Cristina; Machado, Jorge

    2017-01-01

    Cardiovascular diseases lead to a high consumption of financial resources. An important part of the recovery process is the cardiovascular rehabilitation. This study aimed to present a new cardiovascular rehabilitation system to 11 outpatients with coronary artery disease from a Hospital in Porto, Portugal, later collecting their opinions. This system is based on a virtual reality game system, using the Kinect sensor while performing an exercise protocol which is integrated in a home-based cardiovascular rehabilitation programme, with a duration of 6 months and at the maintenance phase. The participants responded to a questionnaire asking for their opinion about the system. The results demonstrated that 91% of the participants (n = 10) enjoyed the artwork, while 100% (n = 11) agreed on the importance and usefulness of the automatic counting of the number of repetitions, moreover 64% (n = 7) reported motivation to continue performing the programme after the end of the study, and 100% (n = 11) recognized Kinect as an instrument with potential to be an asset in cardiovascular rehabilitation. Criticisms included limitations in motion capture and gesture recognition, 91% (n = 10), and the lack of home space, 27% (n = 3). According to the participants' opinions, the Kinect has the potential to be used in cardiovascular rehabilitation; however, several technical details require improvement, particularly regarding the motion capture and gesture recognition.

  14. How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines?

    PubMed Central

    Laverty, HG; Benson, C; Cartwright, EJ; Cross, MJ; Garland, C; Hammond, T; Holloway, C; McMahon, N; Milligan, J; Park, BK; Pirmohamed, M; Pollard, C; Radford, J; Roome, N; Sager, P; Singh, S; Suter, T; Suter, W; Trafford, A; Volders, PGA; Wallis, R; Weaver, R; York, M; Valentin, JP

    2011-01-01

    Given that cardiovascular safety liabilities remain a major cause of drug attrition during preclinical and clinical development, adverse drug reactions, and post-approval withdrawal of medicines, the Medical Research Council Centre for Drug Safety Science hosted a workshop to discuss current challenges in determining, understanding and addressing ‘Cardiovascular Toxicity of Medicines’. This article summarizes the key discussions from the workshop that aimed to address three major questions: (i) what are the key cardiovascular safety liabilities in drug discovery, drug development and clinical practice? (ii) how good are preclinical and clinical strategies for detecting cardiovascular liabilities? and (iii) do we have a mechanistic understanding of these liabilities? It was concluded that in order to understand, address and ultimately reduce cardiovascular safety liabilities of new therapeutic agents there is an urgent need to: Fully characterize the incidence, prevalence and impact of drug-induced cardiovascular issues at all stages of the drug development process. Ascertain the predictive value of existing non-clinical models and assays towards the clinical outcome. Understand the mechanistic basis of cardiovascular liabilities; by addressing areas where it is currently not possible to predict clinical outcome based on preclinical safety data. Provide scientists in all disciplines with additional skills to enable them to better integrate preclinical and clinical data and to better understand the biological and clinical significance of observed changes. Develop more appropriate, highly relevant and predictive tools and assays to identify and wherever feasible to eliminate cardiovascular safety liabilities from molecules and wherever appropriate to develop clinically relevant and reliable safety biomarkers. PMID:21306581

  15. Polyphenols isolated from virgin coconut oil attenuate cadmium-induced dyslipidemia and oxidative stress due to their antioxidant properties and potential benefits on cardiovascular risk ratios in rats

    PubMed Central

    Famurewa, Ademola Clement; Ejezie, Fidelis Ebele

    2018-01-01

    Objective: Literature has confirmed the pathogenic role of cadmium (Cd) and its exposure in the induction of dyslipidemia implicated in the development and increasing incidence of cardiovascular diseases. The current study explored whether polyphenolics isolated from virgin coconut oil (VCO) prevent Cd-induced dyslipidemia and investigate the underlying mechanism of action, in rats. Materials and Methods: Rats were pretreated with VCO polyphenols (10, 20 and 50 mg/kg body weight; orally) 2 weeks prior to concurrent Cd administration (5 mg/kg) for 5 weeks. Subsequently, serum concentrations of lipid and lipoprotein cholesterol and cardiovascular risk ratios were determined. Hepatic activities of superoxide dismutase (SOD) and catalase (CAT) as well as reduced glutathione (GSH) and malondialdehyde (MDA) contents were analyzed. Results: Sub-chronic Cd administration significantly increased the serum levels of total cholesterol, triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol while markedly reduced high density lipoprotein cholesterol. Hepatic activities of SOD and CAT as well as GSH content were suppressed by Cd, whereas MDA level was obviously increased. The co-administration of VCO polyphenol with Cd remarkably restored lipid profile and cardiovascular risk ratios and stabilized antioxidant defense systems comparable to control group. Conclusion: This is the first study presenting that polyphenols isolated from VCO prevent Cd-induced lipid abnormalities and cardiovascular risk ratios by improving antioxidant defense systems. PMID:29387575

  16. Pharmacological effects of Chinese herb aconite (fuzi) on cardiovascular system.

    PubMed

    Zhao, Dandan; Wang, Jie; Cui, Yanjing; Wu, Xinfang

    2012-09-01

    Fuzi (aconite, Radix Aconiti praeparata), a widely used Chinese herb, plays a significant role in the cardiovascular system. This is mainly reflected by Fuzi's cardiotonic effect, its protective effect on myocardial cells, and its effect on heart rate and rhythm, blood pressure, and hemodynamics. In this article, the pharmacological effects and the corresponding mechanisms of Fuzi (aconite) and its active components on cardiovascular system are reviewed.

  17. Association of cardiovascular system medications with cognitive function and dementia in older adults living in nursing homes in Australia.

    PubMed

    Liu, Enwu; Dyer, Suzanne M; O'Donnell, Lisa Kouladjian; Milte, Rachel; Bradley, Clare; Harrison, Stephanie L; Gnanamanickam, Emmanuel; Whitehead, Craig; Crotty, Maria

    2017-06-01

    To examine associations between cardiovascular system medication use with cognition function and diagnosis of dementia in older adults living in nursing homes in Australia. As part of a cross-sectional study of 17 Australian nursing homes examining quality of life and resource use, we examined the association between cognitive impairment and cardiovascular medication use (identified using the Anatomical Therapeutic Classification System) using general linear regression and logistic regression models. People who were receiving end of life care were excluded. Participants included 541 residents with a mean age of 85.5 years (± 8.5), a mean Psychogeriatric Assessment Scale-Cognitive Impairment (PAS-Cog) score of 13.3 (± 7.7), a prevalence of cardiovascular diseases of 44% and of hypertension of 47%. Sixty-four percent of participants had been diagnosed with dementia and 72% had received cardiovascular system medications within the previous 12 months. Regression models demonstrated the use of cardiovascular medications was associated with lower (better) PAS-Cog scores [Coefficient (β) = -3.7; 95% CI: -5.2 to -2.2; P < 0.0001] and a lower probability of a dementia diagnosis (OR = 0.44; 95% CI: 0.26 to 0.75, P = 0.0022). Analysis by subgroups of medications showed cardiac therapy medications (C01), beta blocking agents (C07), and renin-angiotensin system agents (C09) were associated with lower PAS-Cog scores (better cognition) and lower dementia diagnosis probability. This analysis has demonstrated an association between greater cardiovascular system medication use and better cognitive status among older adults living in nursing homes. In this population, there may be differential access to health care and treatment of cardiovascular risk factors. This association warrants further investigation in large cohort studies.

  18. Environmental Exposures and Cardiovascular Disease: A Challenge for Health and Development in Low- and Middle-Income Countries

    PubMed Central

    Burroughs Peña, Melissa S.; Rollins, Allman

    2016-01-01

    Summary Environmental exposures in low- and middle-income countries lie at the intersection of increased economic development and the rising public health burden of cardiovascular disease. Increasing evidence suggests an association of exposure to ambient air pollution, household air pollution from biomass fuel, lead, arsenic, and cadmium with multiple cardiovascular disease outcomes including hypertension, coronary heart disease, stroke, and cardiovascular mortality. While populations in low- and middle-income countries are disproportionately exposed to environmental pollution, the bulk of evidence that links these exposures to cardiovascular disease is derived from populations in high-income countries. More research is needed to further characterize the extent of environmental exposures and develop targeted interventions towards reducing cardiovascular disease in at-risk populations in low- and middle-income countries. PMID:27886791

  19. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System

    PubMed Central

    2011-01-01

    Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models, and this application is also addressed. As an example of 0D cardiovascular modelling, a small selection of simple models have been represented in the CellML mark-up language and uploaded to the CellML model repository http://models.cellml.org/. They are freely available to the research and education communities. Conclusion Each published cardiovascular model has merit for particular applications. This review categorises 0D and 1D models, highlights their advantages and disadvantages, and thus provides guidance on the selection of models to assist various cardiovascular modelling studies. It also identifies directions for further development, as well as current challenges in the wider use of these models including service to represent boundary conditions for local 3D models and translation to clinical application. PMID:21521508

  20. 21 CFR 870.1270 - Intracavitary phonocatheter system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intracavitary phonocatheter system. 870.1270... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary phonocatheter system. (a) Identification. An intracavitary phonocatheter system is a system that includes a...

  1. 21 CFR 870.1270 - Intracavitary phonocatheter system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intracavitary phonocatheter system. 870.1270... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary phonocatheter system. (a) Identification. An intracavitary phonocatheter system is a system that includes a...

  2. 21 CFR 870.1270 - Intracavitary phonocatheter system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intracavitary phonocatheter system. 870.1270... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary phonocatheter system. (a) Identification. An intracavitary phonocatheter system is a system that includes a...

  3. Cardiovascular system

    MedlinePlus Videos and Cool Tools

    The cardiovascular system is composed of the heart and the network of arteries, veins, and capillaries that transport blood throughout the ... carries waste products from the tissues to the systems of the body through which they are eliminated. ...

  4. Cardiovascular Complications of Marijuana and Related Substances: A Review.

    PubMed

    Singh, Amitoj; Saluja, Sajeev; Kumar, Akshat; Agrawal, Sahil; Thind, Munveer; Nanda, Sudip; Shirani, Jamshid

    2018-06-01

    The recreational use of cannabis has sharply increased in recent years in parallel with its legalization and decriminalization in several countries. Commonly, the traditional cannabis has been replaced by potent synthetic cannabinoids and cannabimimetics in various forms. Despite overwhelming public perception of the safety of these substances, an increasing number of serious cardiovascular adverse events have been reported in temporal relation to recreational cannabis use. These have included sudden cardiac death, vascular (coronary, cerebral and peripheral) events, arrhythmias and stress cardiomyopathy among others. Many of the victims of these events are relatively young men with few if any cardiovascular risk factors. However, there are reasons to believe that older individuals and those with risk factors for or established cardiovascular disease are at even higher danger of such events following exposure to cannabis. The pathophysiological basis of these events is not fully understood and likely encompasses a complex interaction between the active ingredients (particularly the major cannabinoid, Δ 9 -tetrahydrocannabinol), and the endo-cannabinoid system, autonomic nervous system, as well as other receptor and non-receptor mediated pathways. Other complicating factors include opposing physiologic effects of other cannabinoids (predominantly cannabidiol), presence of regulatory proteins that act as metabolizing enzymes, binding molecules, or ligands, as well as functional polymorphisms of target receptors. Tolerance to the effects of cannabis may also develop on repeated exposures at least in part due to receptor downregulation or desensitization. Moreover, effects of cannabis may be enhanced or altered by concomitant use of other illicit drugs or medications used for treatment of established cardiovascular diseases. Regardless of these considerations, it is expected that the current cannabis epidemic would add significantly to the universal burden of cardiovascular diseases.

  5. A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing.

    PubMed

    Jansen-Park, So-Hyun; Hsu, Po-Lin; Müller, Indra; Steinseifer, Ulrich; Abel, Dirk; Autschbach, Rüdiger; Rossaint, Rolf; Schmitz-Rode, Thomas

    2017-04-01

    Mock heart circulation loops (MHCLs) serve as in-vitro platforms to investigate the physiological interaction between circulatory systems and cardiovascular devices. A mock heart (MH) engineered with silicone walls and helical aramid fibers, to mimic the complex contraction of a natural heart, has been developed to advance the MHCL previously developed in our group. A mock aorta with an anatomical shape enables the evaluation of a cannulation method for ventricular assist devices (VADs) and investigation of the usage of clinical measurement systems like pressure-volume catheters. Ventricle and aorta molds were produced based on MRI data and cast with silicone. Aramid fibers were layered in the silicone ventricle to reproduce ventricle torsion. A rotating hollow shaft was connected to the apex enabling the rotation of the MH and the connection of a VAD. Silicone wall thickness, aramid fiber angle and fiber pitch were varied to generate different MH models. All MH models were placed in a tank filled with variable amounts of water and air simulating the compliance. In this work, physiological ventricular torsion angles (15°-26°) and physiological pressure-volume loops were achieved. This MHCL can serve as a comprehensive testing platform for cardiovascular devices, such as artificial heart valves and cannulation of VADs.

  6. Mathematical modelling of the human cardiovascular system in the presence of stenosis

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1993-01-01

    This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.

  7. Influence of the Circadian System on Disease Severity

    PubMed Central

    Litinski, Mikhail; Scheer, Frank AJL; Shea, Steven A

    2009-01-01

    Synopsis The severity of many diseases varies across the day and night. For example, adverse cardiovascular incidents peak in the morning, asthma is often worse at night and temporal lobe epileptic seizures are most prevalent in the afternoon. These patterns may be due to the day/night rhythm in environment and behavior, and/or endogenous circadian rhythms in physiology. Furthermore, chronic misalignment between the endogenous circadian timing system and the behavioral cycles could be a cause of increased risk of diabetes, obesity, cardiovascular disease and certain cancers in shift workers. Here we describe the magnitude, relevance and potential biological basis of such daily changes in disease severity and of circadian/behavioral misalignment, and present how these insights may help in the development of appropriate chronotherapy. PMID:20161149

  8. A fabric wrist patch sensor for continuous and comprehensive monitoring of the cardiovascular system.

    PubMed

    Kwonjoon Lee; Kiseok Song; Taehwan Roh; Hoi-Jun Yoo

    2016-08-01

    The wrist patch-type ECG/APW sensor system is proposed for continuous and comprehensive monitoring of the patient's cardiovascular system. The wrist patch-type ECG/APW sensor system is consists of ECG/APW sensor, ECG/APW electrodes, and base station for real-time monitoring of the patient's status. The ECG/APW sensor and electrodes are composed of wrist patch, bandage-type ECG electrode and fabric APW electrode, respectively so that the patient's cardiovascular system can be continuously monitored in daily life with free hand-movement. Since the proposed wrist patchtype ECG/APW sensor simultaneously measures ECG/APW, the cardiac indicators, such as HR and PAT, can be extracted for comprehensive and accurate monitoring of the patient's cardiovascular system. The proposed wrist patch-type ECG/APW sensor system is successfully verified using the commercial PPG sensor (RP520) and demonstrated with the customized Android application on the smart phone.

  9. Diagnosis and management of adult hereditary cardio-neuromuscular disorders: A model for the multidisciplinary care of complex genetic disorders.

    PubMed

    Sommerville, R Brian; Vincenti, Margherita Guzzi; Winborn, Kathleen; Casey, Anne; Stitziel, Nathan O; Connolly, Anne M; Mann, Douglas L

    2017-01-01

    Genetic disorders that disrupt the structure and function of the cardiovascular system and the peripheral nervous system are common enough to be encountered in routine cardiovascular practice. Although often these patients are diagnosed in childhood and come to the cardiologist fully characterized, some patients with hereditary neuromuscular disease may not manifest until adulthood and will present initially to the adult cardiologist for an evaluation of an abnormal ECG, unexplained syncope, LV hypertrophy, and or a dilated cardiomyopathy of unknown cause. Cardiologists are often ill-equipped to manage these patients due to lack of training and exposure as well as the complete absence of practice guidelines to aid in the diagnosis and management of these disorders. Here, we review three key neuromuscular diseases that affect the cardiovascular system in adults (myotonic dystrophy type 1, Friedreich ataxia, and Emery-Dreifuss muscular dystrophy), with an emphasis on their clinical presentation, genetic and molecular pathogenesis, and recent important research on medical and interventional treatments. We also advocate the development of interdisciplinary cardio-neuromuscular clinics to optimize the care for these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The effect of bedding system selected by manual muscle testing on sleep-related cardiovascular functions.

    PubMed

    Kuo, Terry B J; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C H

    2013-01-01

    Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.

  11. The Effect of Bedding System Selected by Manual Muscle Testing on Sleep-Related Cardiovascular Functions

    PubMed Central

    Kuo, Terry B. J.; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C. H.

    2013-01-01

    Background. Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. Methods. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Results and Conclusion. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT. PMID:24371836

  12. Bulbospinal substance P and sympathetic regulation of the cardiovascular system: a review.

    PubMed

    Helke, C J; Charlton, C G; Keeler, J R

    1985-01-01

    The neurotransmitter role of substance P in mediating sympathoexcitatory effects in the spinal cord and cardiovascular effects elicited from the ventral medulla is presented. SP neurons located in the ventral medulla project to the intermediolateral cell column (IML) of the thoracic spinal cord. Intrathecal administration of a SP analog excites sympathetic outflow to the cardiovascular system. Likewise, activation of the ventral medulla results in sympathetically mediated increases in blood pressure and heart rate which are blocked with SP antagonists. The IML contained a high density of SP binding sites through which the peptide likely exerts its sympathoexcitatory influence on the cardiovascular system.

  13. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease

    PubMed Central

    Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; Reyes-Hernández, Cynthia G.; López de Pablo, Angel L.; González, M. Carmen; Arribas, Silvia M.

    2018-01-01

    Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria. PMID:29875698

  14. Recognizing global burden of cardiovascular disease and related chronic diseases.

    PubMed

    Kelly, Bridget B; Narula, Jagat; Fuster, Valentín

    2012-01-01

    Cardiovascular disease is the leading cause of death worldwide, affecting not only high-income but also low- and middle-income countries. Nearly 80 percent of all estimated cardiovascular disease-related deaths worldwide now occur in low- and middle-income countries, where nearly 30 percent of all deaths are attributable to cardiovascular disease. The health burden of cardiovascular disease and other chronic diseases is also accompanied by a significant deleterious economic impact at the level of both national economies and households. The global trends in the health and economic burden of cardiovascular disease provide a compelling argument in support of prioritizing urgent yet carefully planned efforts to prevent and control cardiovascular disease worldwide-and especially in low- and middle-income countries. After decades of escalating efforts to draw attention to the high burden of cardiovascular disease and other chronic diseases, this critically important issue is now emerging as a more central part of the global health and development agenda. The breadth of behavioral, biological, social, environmental, and systems-level factors that contribute to cardiovascular disease necessitates multisectoral approaches across the lifecourse that promote healthful lifestyles, reduce risk, and reduce cardiovascular-disease morbidity and mortality through the delivery of quality health care services. Given that the complex interactions among the determinants of cardiovascular disease vary in different contexts, real progress in control efforts will come through approaches that are driven by a country's disease burden and risk profile, capacities, resources, and priorities-approaches that are led by a country's key decision-makers and stakeholders, including governments, civil society, the private sector, and communities. Many countries are already establishing efforts to address chronic diseases. In addition to these locally driven efforts, success will require active engagement and sustained action from a wide array of stakeholders operating at global and regional levels. © 2012 Mount Sinai School of Medicine.

  15. Measured outcomes with hypnosis as an experimental tool in a cardiovascular physiology laboratory.

    PubMed

    Casiglia, Edoardo; Tikhonoff, Valérie; Giordano, Nunzia; Andreatta, Elisa; Regaldo, Giuseppe; Tosello, Maria T; Rossi, Augusto M; Bordin, Daniele; Giacomello, Margherita; Facco, Enrico

    2012-01-01

    The authors detail their multidisciplinary collaboration of cardiologists, physiologists, neurologists, psychologists, engineers, and statisticians in researching the effects of hypnosis on the cardiovascular system and their additions to that incomplete literature. The article details their results and provides guidelines for researchers interested in replicating their research on hypnosis' effect on the cardiovascular system.

  16. [Socioeconomic status and inflammatory biomarkers of cardiovascular diseases: How do education, occupation and income operate?].

    PubMed

    Rosenbach, F; Richter, M; Pförtner, T-K

    2015-05-01

    In light of the consistent SES gradient in cardiovascular diseases, current research is focusing on possible pathways through which the socioeconomic status (SES) may impact health. Inflammatory processes play a critical role in the development of cardiovascular diseases and are associated with stress. Therefore, they might be one psychobiological pathway explaining how the SES gets under the skin. Considering the different meanings of education, occupation and income, this article gives an overview of the association between inflammatory biomarkers and socioeconomic status. There is high evidence for associations between indicators of SES - education, occupation and income - and inflammatory biomarkers. Possible pathways are health status, health behavior and psychobiological processes as a result of increased exposure to psychosocial stress. The SES gradient in cardiovascular diseases reflects behavioral as well as physiological pathways and systemic inflammation seems to be involved. Low SES is associated with an increased exposure to adverse circumstances of life, which can trigger biological responses and result in an increased risk of cardiovascular diseases. Medical history taking in cardiology should focus on socio-structural exposures and thereby reflect the different meanings of education, occupation and income.

  17. Proceedings of the Symposium Teaching Cardiovascular Physiology Outside the Lecture Hall.

    ERIC Educational Resources Information Center

    Michael, Joel A.; Rovick, Allen A., Eds.

    1983-01-01

    Provided are 10 papers presented during a symposium on teaching cardiovascular physiology outside the lecture hall. Topics addressed include a mechanical model of the cardiovascular system for effective teaching, separate course for experiments in cardiovascular physiology, selective laboratory (alternative to cookbook experiments), cardiovascular…

  18. Vitamin D in the Spectrum of Prediabetes and Cardiovascular Autonomic Dysfunction.

    PubMed

    Dimova, Rumyana; Tankova, Tsvetalina; Chakarova, Nevena

    2017-09-01

    Vitamin D is a fat-soluble secosteroid hormone with pleiotropic effects. 1,25-Dihydroxyvitamin D coordinates the biosynthesis of neurotransmitters in the central nervous system, which regulate cardiovascular autonomic function and may explain its putative role in the development of cardiovascular autonomic neuropathy (CAN). CAN is an independent risk factor for mortality in patients with diabetes and prediabetes and is associated with an increased risk of developing type 2 diabetes and cardiovascular disease. Accumulating data indicate the presence of peripheral nerve injury at these early stages of dysglycemia and its multifactorial pathogenesis. Prediabetes is associated with vitamin D insufficiency. Vitamin D is proposed to prevent the progression of glucose intolerance. The putative underlying mechanisms include maintenance of the intracellular calcium concentration, direct stimulation of insulin receptor expression, and enhancement of the insulin response to glucose transporters. Vitamin D exerts a protective effect on peripheral nerve fibers by decreasing the demyelination process and inducing axonal regeneration. The effects of vitamin D supplementation on glucose tolerance and related autonomic nerve dysfunction have been a recent focus of scientific interest. Although well-designed observational studies are available, the causative relation between vitamin D deficiency, glucose intolerance, and CAN is still debatable. One reason might be that interventional studies are unpersuasive with regard to the beneficial clinical effects of vitamin D supplementation. Because of its favorable side effect profile, vitamin D supplementation might represent an attractive therapeutic option for treating the pandemic prevalence of prediabetes and vitamin D deficiency. Vitamin D supplementation can improve glucose tolerance and cardiovascular autonomic function and can thus reduce cardiovascular mortality among subjects with different stages of glucose intolerance and autonomic dysfunction. However, more patient-centered trials on the use of vitamin D supplementation in different conditions are needed. © 2017 American Society for Nutrition.

  19. Proceedings of a conference on Cardiovascular Bioinstrumentation

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Fuller, Charles A.; Mains, Richard; Finger, Herbert J.

    1988-01-01

    The Ames Research Center (ARC) has a long history in the development of cardiovascular (CV) instrumentation for human and animal research. The ARC Cardiovascular Research Lab under the Space Physiology Branch, Space Research Directorate, supports both ground-based and space-based animal and human research goals. The Cardiovascular Research Laboratory was established at ARC in the mid 1960's to conduct ground-based animal research and support development of advanced cardiovascular instrumentation applicable to spaceflight. The ARC Biomedical Research Program also conducts human studies with a CV instrumentation focus.

  20. An experimental design for quantification of cardiovascular responses to music stimuli in humans.

    PubMed

    Chang, S-H; Luo, C-H; Yeh, T-L

    2004-01-01

    There have been several researches on the relationship between music and human physiological or psychological responses. However, there are cardiovascular index factors that have not been explored quantitatively due to the qualitative nature of acoustic stimuli. This study proposes and demonstrates an experimental design for quantification of cardiovascular responses to music stimuli in humans. The system comprises two components: a unit for generating and monitoring quantitative acoustic stimuli and a portable autonomic nervous system (ANS) analysis unit for quantitative recording and analysis of the cardiovascular responses. The experimental results indicate that the proposed system can exactly achieve the goal of full control and measurement for the music stimuli, and also effectively support many quantitative indices of cardiovascular response in humans. In addition, the analysis results are discussed and predicted in the future clinical research.

  1. 21 CFR 870.5900 - Thermal regulating system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thermal regulating system. 870.5900 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Therapeutic Devices § 870.5900 Thermal regulating system. (a) Identification. A thermal regulating system is an external system consisting of a device that...

  2. 21 CFR 870.5900 - Thermal regulating system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thermal regulating system. 870.5900 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Therapeutic Devices § 870.5900 Thermal regulating system. (a) Identification. A thermal regulating system is an external system consisting of a device that...

  3. 21 CFR 870.5900 - Thermal regulating system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thermal regulating system. 870.5900 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Therapeutic Devices § 870.5900 Thermal regulating system. (a) Identification. A thermal regulating system is an external system consisting of a device that...

  4. 21 CFR 870.5900 - Thermal regulating system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thermal regulating system. 870.5900 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Therapeutic Devices § 870.5900 Thermal regulating system. (a) Identification. A thermal regulating system is an external system consisting of a device that...

  5. Optical Interferometric Measurement of Skin Vibration for the Diagnosis of Cardiovascular Diseases.

    NASA Astrophysics Data System (ADS)

    Hong, Hyundae

    A system has been developed based on the measurement of skin surface vibration which is related to the underlying vascular wall motion for the superficial arteries and coronary movement for the chest wall. Data obtained suggests that the information detected by such measurements can be related to the derivative of the intravascular pressure, an important physiological parameter. These results are in contrast to conventional optical Doppler techniques which have been utilized to measure blood perfusion in the skin layers and blood flow within the superficial arteries. These techniques relied on the interaction between incident photons and moving red blood cells. The present system uses an optical interferometer with a 633 nm HeNe laser to detect μm displacements of the skin surface. A photodiode detects an optical Doppler shift signal of frequency, 2 v/ lambda, where v and lambda are the skin vibration velocity and the wavelength of the laser, respectively. The electronic processing system we developed enhances, cleans and processes the raw Doppler signal to produce two main outputs: Doppler audio, and a time domain profile of the skin velocity. The audio signal changes its tone according to the velocity of skin movement which is related to the first derivative of the intravascular pressure, and the internal structure of the intervening tissue layers between the vessel and the surface. The results obtained demonstrated that the skin velocity waveforms near each artery and the chest signals at the auscultation points for the four heart valve sounds were unique in their profiles. It also proved to be possible to measure the magnitude, harmonics, and the cardiovascular propagation delay for pulse waves. The theoretical and experimental results demonstrated that the system detected the skin velocity, which is related to the time derivative of the pressure. It also reduces the loading effect on the pulsation signals and heart sounds produced by the conventional piezoelectric vibration sensors. The system sensitivity, which could potentially be optimized further was 366.2 mum/sec for the present research. Overall, optical cardiovascular vibrometry has the potential to become a simple non invasive approach to cardiovascular screening.

  6. [MODERN TRENDS IN THE PHYSICAL DEVELOPMENT AND THE STATE OF THE CARDIOVASCULAR SYSTEM IN YOUNG MEN OF THE CITY OF MAGADAN].

    PubMed

    Sukhanova, I V; Maksimov, A L

    2015-01-01

    In the conditions of the northern region there was performed the comparative study of indices of the physical development and state of the cardiovascular system in young male European subjects, born in the city of Magadan in the 1-2 generation over a period from 2004 to 2013. The main tendencies of physical development ofyoung male subjects in the city of Magadan were established to be the ongoing acceleration of growth process, asthenization and dysharmonization of the somatotype. It was determined increase of systolic and diastolic pressure during the last decade. Confirmed changes of cardiohemodynamics data on the back of aggravation of physical development and ongoing somatotype asthenization were shown by young male subjects, born in 90-ies of the last century. It was revealed that over the past 10 years there has been an increase in systolic and diastolic blood pressure indices. Established by us the changes in the indices of cardiac hemodynamics on the background of deteriorating physical development and ongoing asthenization of the somatotype appeared to be more pronounced in young men born in the 90-ies of the last century.

  7. Cardiovascular System Sonographic Evaluation Algorithm: A New Sonographic Algorithm for Evaluation of the Fetal Cardiovascular System in the Second Trimester.

    PubMed

    De León-Luis, Juan; Bravo, Coral; Gámez, Francisco; Ortiz-Quintana, Luis

    2015-07-01

    To evaluate the reproducibility and feasibility of the new cardiovascular system sonographic evaluation algorithm for studying the extended fetal cardiovascular system, including the portal, thymic, and supra-aortic areas, in the second trimester of pregnancy (19-22 weeks). We performed a cross-sectional study of pregnant women with healthy fetuses (singleton and twin pregnancies) attending our center from March to August 2011. The extended fetal cardiovascular system was evaluated by following the new algorithm, a sequential acquisition of axial views comprising the following (caudal to cranial): I, portal sinus; II, ductus venosus; III, hepatic veins; IV, 4-chamber view; V, left ventricular outflow tract; VI, right ventricular outflow tract; VII, 3-vessel and trachea view; VIII, thy-box; and IX, subclavian arteries. Interobserver agreement on the feasibility and exploration time was estimated in a subgroup of patients. The feasibility and exploration time were determined for the main cohort. Maternal, fetal, and sonographic factors affecting both features were evaluated. Interobserver agreement was excellent for all views except view VIII; the difference in the mean exploration time between observers was 1.5 minutes (95% confidence interval, 0.7-2.1 minutes; P < .05). In 184 fetuses (mean gestational age ± SD, 20 ± 0.6 weeks), the feasibility of all views was close to 99% except view VIII (88.7%). The complete feasibility of the algorithm was 81.5%. The mean exploration time was 5.6 ± 4.2 minutes. Only the occiput anterior fetal position was associated with a lower frequency of visualization and a longer exploration time (P < .05). The cardiovascular system sonographic evaluation algorithm is a reproducible and feasible approach for exploration of the extended fetal cardiovascular system in a second-trimester scan. It can be used to explore these areas in normal and abnormal conditions and provides an integrated image of extended fetal cardiovascular anatomy. © 2015 by the American Institute of Ultrasound in Medicine.

  8. [Air pollution and cardiovascular toxicity: known risks].

    PubMed

    Kostrzewa, A; Filleul, L; Eilstein, D; Harrabi, I; Tessier, J F

    2004-03-01

    Review of studies about epidemiological and physiopathological knowledge of ambient air particles short-term cardio-vascular effects. CURRENTS AND STRONG POINTS: Many studies, in contrasted countries for pollution's sources, meteorological conditions or socio-demographical characteristics, have shown health effects due to ambient air particles. After having studied mainly the respiratory effects of particulate air pollution, epidemiologists are now interested in the cardio-vascular effects of ambient air particles. In fact, serious effects seem to exist in fragile people which can get to emergency department visits, hospitalisation and even death. In addition, studies have shown less serious effects, but likely to be frequent (cardiac symptoms, and stoppages for cardio-vascular causes, notably). The exact mechanism by which particles have cardio-vascular adverse health effects is unknown, but experimental and epidemiological studies have led to several hypotheses: local pulmonary effects seem to be followed by systemic effects, which would be responsible for effects on the electrical activity of the heart through cardiac autonomic dysfunction and effects on the blood supply to the heart. The objective of this work is to summarise epidemiological and physiopathological knowledge about the cardio-vascular effects of ambient air particles. To evaluate the real importance of cardio-vascular effects due to particulate air pollution and to identify their exact mechanism, a more precise knowledge of detailed causes of deaths and hospitalisations and a better knowledge of less serious effects, but likely to be frequent, is necessary. Equally, a detailed identification of fragile people is essential for developing preventive actions.

  9. 2016 Consensus statement on prevention of atherosclerotic cardiovascular disease in the Hong Kong population.

    PubMed

    Cheung, B My; Cheng, C H; Lau, C P; Wong, C Ky; Ma, R Cw; Chu, D Ws; Ho, D Hk; Lee, K Lf; Tse, H F; Wong, A Sp; Yan, B Py; Yan, V Wt

    2017-04-01

    In Hong Kong, the prevalence of atherosclerotic cardiovascular disease has increased markedly over the past few decades, and further increases are expected. In 2008, the Hong Kong Cardiovascular Task Force released a consensus statement on preventing cardiovascular disease in the Hong Kong population. The present article provides an update on these recommendations. A multidisciplinary group of clinicians comprising the Hong Kong Cardiovascular Task Force-10 cardiologists, an endocrinologist, and a family physician-met in September 2014 and June 2015 in Hong Kong. Guidelines from the American College of Cardiology/American Heart Association, the European Society of Hypertension/European Society of Cardiology, and the Eighth Joint National Committee for the Management of High Blood Pressure were reviewed. Group members reviewed the 2008 Consensus Statement and relevant international guidelines. At the meetings, each topical recommendation of the 2008 Statement was assessed against the pooled recommendations on that topic from the international guidelines. A final recommendation on each topic was generated by consensus after discussion. It is recommended that a formal risk scoring system should be used for risk assessment of all adults aged 40 years or older who have at least one cardiovascular risk factor. Individuals can be classified as having a low, moderate, or high risk of developing atherosclerotic cardiovascular disease, and appropriate interventions selected accordingly. Recommended lifestyle modifications include adopting a healthy eating pattern; maintaining a low body mass index; quitting smoking; and undertaking regular, moderate-intensity physical activity. Pharmacological interventions should be selected as appropriate after lifestyle modification.

  10. Cardiovascular Deconditioning in Humans: Human Studies Core

    NASA Technical Reports Server (NTRS)

    Williams, Gordon

    1999-01-01

    Major cardiovascular problems, secondary to cardiovascular deconditioning, may occur on extended space missions. While it is generally assumed that the microgravity state is the primary cause of cardiovascular deconditioning, sleep deprivation and disruption of diurnal rhythms may also play an important role. Factors that could be modified by either or both of these perturbations include: autonomic function and short-term cardiovascular reflexes, vasoreactivity, circadian rhythm of cardiovascular hormones (specifically the renin-angiotensin system) and renal sodium handling and hormonal influences on that process, venous compliance, cardiac mass, and cardiac conduction processes. The purpose of the Human Studies Core is to provide the infrastructure to conduct human experiments which will allow for the assessment of the likely role of such factors in the space travel associated cardiovascular deconditioning process and to develop appropriate countermeasures. The Core takes advantage of a newly-created Intensive Physiologic Monitoring (IPM) Unit at the Brigham and Women's Hospital, Boston, MA, to perform these studies. The Core includes two general experimental protocols. The first protocol involves a head down tilt bed-rest study to simulate microgravity. The second protocol includes the addition of a disruption of circadian rhythms to the simulated microgravity environment. Before and after each of these environmental manipulations, the subjects will undergo acute stressors simulating changes in volume and/or stress, which could occur in space and on return to Earth. The subjects are maintained in a rigidly controlled environment with fixed light/dark cycles, activity pattern, and dietary intake of nutrients, fluids, ions and calories.

  11. Effects of acepromazine and trazodone on anesthetic induction dose of propofol and cardiovascular variables in dogs undergoing general anesthesia for orthopedic surgery.

    PubMed

    Murphy, Lindsey A; Barletta, Michele; Graham, Lynelle F; Reichl, Lorna J; Duxbury, Margaret M; Quandt, Jane E

    2017-02-15

    OBJECTIVE To compare the doses of propofol required to induce general anesthesia in dogs premedicated with acepromazine maleate or trazodone hydrochloride and compare the effects of these premedicants on cardiovascular variables in dogs anesthetized for orthopedic surgery. DESIGN Prospective, randomized study. ANIMALS 30 systemically healthy client-owned dogs. PROCEDURES 15 dogs received acepromazine (0.01 to 0.03 mg/kg [0.005 to 0.014 mg/lb], IM) 30 minutes before anesthetic induction and 15 received trazodone (5 mg/kg [2.27 mg/lb] for patients > 10 kg or 7 mg/kg [3.18 mg/lb] for patients ≤ 10 kg, PO) 2 hours before induction. Both groups received morphine sulfate (1 mg/kg [0.45 mg/lb], IM) 30 minutes before induction. Anesthesia was induced with propofol (4 to 6 mg/kg [1.82 to 2.73 mg/lb], IV, to effect) and maintained with isoflurane or sevoflurane in oxygen. Bupivacaine (0.5 mg/kg [0.227 mg/lb]) and morphine (0.1 mg/kg [0.045 mg/lb]) were administered epidurally. Dogs underwent tibial plateau leveling osteotomy (n = 22) or tibial tuberosity advancement (8) and were monitored throughout anesthesia. Propofol induction doses and cardiovascular variables (heart rate and systemic, mean, and diastolic arterial blood pressures) were compared between groups. RESULTS The mean dose of propofol required for anesthetic induction and all cardiovascular variables evaluated did not differ between groups. Intraoperative hypotension developed in 6 and 5 dogs of the acepromazine and trazodone groups, respectively; bradycardia requiring intervention developed in 3 dogs/group. One dog that received trazodone had priapism 24 hours later and was treated successfully. No other adverse effects were reported. CONCLUSIONS AND CLINICAL RELEVANCE At the described dosages, cardiovascular effects of trazodone were similar to those of acepromazine in healthy dogs undergoing anesthesia for orthopedic surgery.

  12. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods.

    PubMed

    Barbosa, José Augusto A; Rodrigues, Alexandre B; Mota, Cleonice Carvalho C; Barbosa, Márcia M; Simões e Silva, Ana C

    2011-01-01

    Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.

  13. Towards a personalized and dynamic CRT-D. A computational cardiovascular model dedicated to therapy optimization.

    PubMed

    Di Molfetta, A; Santini, L; Forleo, G B; Minni, V; Mafhouz, K; Della Rocca, D G; Fresiello, L; Romeo, F; Ferrari, G

    2012-01-01

    In spite of cardiac resynchronization therapy (CRT) benefits, 25-30% of patients are still non responders. One of the possible reasons could be the non optimal atrioventricular (AV) and interventricular (VV) intervals settings. Our aim was to exploit a numerical model of cardiovascular system for AV and VV intervals optimization in CRT. A numerical model of the cardiovascular system CRT-dedicated was previously developed. Echocardiographic parameters, Systemic aortic pressure and ECG were collected in 20 consecutive patients before and after CRT. Patient data were simulated by the model that was used to optimize and set into the device the intervals at the baseline and at the follow up. The optimal AV and VV intervals were chosen to optimize the simulated selected variable/s on the base of both echocardiographic and electrocardiographic parameters. Intervals were different for each patient and in most cases, they changed at follow up. The model can well reproduce clinical data as verified with Bland Altman analysis and T-test (p > 0.05). Left ventricular remodeling was 38.7% and left ventricular ejection fraction increasing was 11% against the 15% and 6% reported in literature, respectively. The developed numerical model could reproduce patients conditions at the baseline and at the follow up including the CRT effects. The model could be used to optimize AV and VV intervals at the baseline and at the follow up realizing a personalized and dynamic CRT. A patient tailored CRT could improve patients outcome in comparison to literature data.

  14. A graphical simulation software for instruction in cardiovascular mechanics physiology.

    PubMed

    Wildhaber, Reto A; Verrey, François; Wenger, Roland H

    2011-01-25

    Computer supported, interactive e-learning systems are widely used in the teaching of physiology. However, the currently available complimentary software tools in the field of the physiology of cardiovascular mechanics have not yet been adapted to the latest systems software. Therefore, a simple-to-use replacement for undergraduate and graduate students' education was needed, including an up-to-date graphical software that is validated and field-tested. Software compatible to Windows, based on modified versions of existing mathematical algorithms, has been newly developed. Testing was performed during a full term of physiological lecturing to medical and biology students. The newly developed CLabUZH software models a reduced human cardiovascular loop containing all basic compartments: an isolated heart including an artificial electrical stimulator, main vessels and the peripheral resistive components. Students can alter several physiological parameters interactively. The resulting output variables are printed in x-y diagrams and in addition shown in an animated, graphical model. CLabUZH offers insight into the relations of volume, pressure and time dependency in the circulation and their correlation to the electrocardiogram (ECG). Established mechanisms such as the Frank-Starling Law or the Windkessel Effect are considered in this model. The CLabUZH software is self-contained with no extra installation required and runs on most of today's personal computer systems. CLabUZH is a user-friendly interactive computer programme that has proved to be useful in teaching the basic physiological principles of heart mechanics.

  15. Emerging role of neurotensin in regulation of the cardiovascular system.

    PubMed

    Osadchii, Oleg E

    2015-09-05

    There is increasing evidence in support of an important role played by neurotensin (NT), a tridecapeptide originally found in bovine hypothalamus, in regulation of cardiovascular system. Elevated systemic levels of NT may contribute to pathogenesis of acute circulatory disoders, and predict the risk for cardiovascular morbidity and mortality in population-based studies. Within cardiovascular system, NT-containing neural fibers are found in close contact with atrial and ventricular cardiac myocytes, cardiac conduction system, intracardiac ganglia, as well as coronary vessels in humans and various animal species. The density of NT-immunoreactive innervation is reduced in cardiac disease. NT produces a variety of cardiovascular actions including effects on heart rate, myocardial contractility, systemic blood pressure, coronary vascular tone, venous smooth muscle tone, and regional blood flow in gastrointestinal tract, cutaneous and adipose tissue. NT could trigger cardiovascular reflexes by stimulating primary visceral afferents synaptically connected with preganglionic sympathetic neurons at the spinal cord. Structural determinants of biological activity of NT reside primarily in the C-terminal portion of its molecule which is responsible for receptor activation. NT effects are mediated via activation of NT receptors, or produced indirectly via stimulation of release of various endogenous neuromodulators/neurotransmitters such as histamine, catecholamines and prostaglandins. Three subtypes of NT receptor (NTS1, NTS2 and NTS3) have been shown to be expressed in the myocardium. NTS1, a high-affinity NT binding site coupled to phospholipase C-inositoltrisphosphate transduction pathway, is thought to mediate NT-induced cardiovascular responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Stimulation of cardiovascular adaptability during prolonged space exposure

    NASA Technical Reports Server (NTRS)

    Gorman, H. A.

    1971-01-01

    The deconditioning effects of weightlessness on the cardiovascular system of astronauts are discussed. It is believed that man cannot tolerate indefinite exposure to weightlessness without considerable circulatory deterioration. Analyses of data collected from space flights to date substantiate these beliefs, and confirm the fact that some form of compensation must be provided to keep the cardiovascular system of space travelers properly conditioned. Sequential pulsatile devices were investigated to produce periodic hydrostatic pressure gradients in the venous system of eight subhuman primates. Intermittent venous pooling of blood in the extremities triggers and stimulates the vascular reflex mechanisms of the cardiovascular system that may have significant benefits in maintaining the circulatory system in proper tone under weightless conditions. Electrocardiograms, blood pressure measurements, cardiac output and stroke volume determinations were used to evaluate the efficiency of the described technique. Results were amazingly consistent to indicate an efficient system for intermittently exercising the heart within safe and medically acceptable limits.

  17. Neuro-Cardio Mechanisms in Huntington's Disease and Other Neurodegenerative Disorders.

    PubMed

    Critchley, Bethan J; Isalan, Mark; Mielcarek, Michal

    2018-01-01

    Although Huntington's disease is generally considered to be a neurological disorder, there is mounting evidence that heart malfunction plays an important role in disease progression. This is perhaps not unexpected since both cardiovascular and nervous systems are strongly connected - both developmentally and subsequently in health and disease. This connection occurs through a system of central and peripheral neurons that control cardiovascular performance, while in return the cardiovascular system works as a sensor for the nervous system to react to physiological events. Hence, given their permanent interconnectivity, any pathological events occurring in one system might affect the second. In addition, some pathological signals from Huntington's disease might occur simultaneously in both the cardiovascular and nervous systems, since mutant huntingtin protein is expressed in both. Here we aim to review the source of HD-related cardiomyopathy in the light of recently published studies, and to identify similarities between HD-related cardiomyopathy and other neuro-cardio disorders.

  18. Future perspectives of a cardiac non-neuronal acetylcholine system targeting cardiovascular diseases as an adjunctive tool for metabolic intervention.

    PubMed

    Kakinuma, Yoshihiko

    2015-11-01

    It has been several years since the function of the non-neuronal cholinergic system was independently reported in cardiomyocytes by several research groups. Although these findings initially seemed to be negligible and insignificant, extraordinary findings about cardiomyocytes were subsequently reported in studies involving the knockdown of the non-neuronal cholinergic system. These studies provide the evidence that this system may be indispensable for maintaining principal cardiac functions. Despite the absence of an appropriate and reliable technology to detect cellular ACh in real time in cardiomyocytes, studies of this system have progressed, albeit very slowly, to gradually consolidate the significance of this system. Based on the many significant findings regarding this system, these will be critical to develop adjunctive intervention therapy against cardiovascular diseases, including peripheral artery disease and heart failure. In this study, previous studies focusing on the non-neuronal cholinergic system are reviewed along with our studies, both indicating the biologically significant roles of the cardiac non-neuronal acetylcholine system from a clinical perspective. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic... consists of an inflatable balloon, which is placed in the aorta to improve cardiovascular functioning...

  20. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic... consists of an inflatable balloon, which is placed in the aorta to improve cardiovascular functioning...

  1. Effect of blockage of the endocannabinoid system by CB(1) antagonism on cardiovascular risk.

    PubMed

    Mach, François; Montecucco, Fabrizio; Steffens, Sabine

    2009-01-01

    The endocannabinoid system is a crucial player in the inflammatory processes underlying atherosclerosis. Recently, basic research studies and animal models have strongly supported the role of the endocannabinoid system not only in the regulation of classical cardiovascular risk factors (including lipid profile and glucose homeostasis), but also in the activation of immune cells and inflammatory mediators. Clinical trials investigating treatment with rimonabant (a selective antagonist of the cannabinoid type 1 receptor) have suggested a beneficial effect of this drug in the management of obesity. Further studies are needed to explore a possible use for rimonabant in treating type 2 diabetes and acute and chronic cardiovascular disease. Despite the slight increase in adverse events (mainly psychiatric), which has led to the recent withdrawal of rimonabant from the market, CB(1) receptor antagonism might represent a very promising therapeutic strategy to reduce the cardiovascular risk. In the present review, we focused on the most important experimental investigations into the role of the endocannabinoid system in atherosclerosis and cardiovascular risk.

  2. Open source cardiology electronic health record development for DIGICARDIAC implementation

    NASA Astrophysics Data System (ADS)

    Dugarte, Nelson; Medina, Rubén.; Huiracocha, Lourdes; Rojas, Rubén.

    2015-12-01

    This article presents the development of a Cardiology Electronic Health Record (CEHR) system. Software consists of a structured algorithm designed under Health Level-7 (HL7) international standards. Novelty of the system is the integration of high resolution ECG (HRECG) signal acquisition and processing tools, patient information management tools and telecardiology tools. Acquisition tools are for management and control of the DIGICARDIAC electrocardiograph functions. Processing tools allow management of HRECG signal analysis searching for indicative patterns of cardiovascular pathologies. Telecardiology tools incorporation allows system communication with other health care centers decreasing access time to the patient information. CEHR system was completely developed using open source software. Preliminary results of process validation showed the system efficiency.

  3. 21 CFR 870.3460 - Endovascular Suturing System.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endovascular Suturing System. 870.3460 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3460 Endovascular Suturing System. (a) Identification. An endovascular suturing system is a medical device intended to provide...

  4. 21 CFR 870.3460 - Endovascular Suturing System.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endovascular Suturing System. 870.3460 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3460 Endovascular Suturing System. (a) Identification. An endovascular suturing system is a medical device intended to provide...

  5. 21 CFR 870.1290 - Steerable catheter control system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Steerable catheter control system. 870.1290... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable catheter control system. (a) Identification. A steerable catheter control system is a device that is...

  6. 21 CFR 870.1290 - Steerable catheter control system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Steerable catheter control system. 870.1290... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable catheter control system. (a) Identification. A steerable catheter control system is a device that is...

  7. 21 CFR 870.3460 - Endovascular Suturing System.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endovascular Suturing System. 870.3460 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3460 Endovascular Suturing System. (a) Identification. An endovascular suturing system is a medical device intended to provide...

  8. 21 CFR 870.1290 - Steerable catheter control system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Steerable catheter control system. 870.1290... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable catheter control system. (a) Identification. A steerable catheter control system is a device that is...

  9. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    EPA Science Inventory

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  10. Loneliness, Social Isolation, and Cardiovascular Health

    PubMed Central

    Xia, Ning

    2018-01-01

    Abstract Significance: Social and demographic changes have led to an increased prevalence of loneliness and social isolation in modern society. Recent Advances: Population-based studies have demonstrated that both objective social isolation and the perception of social isolation (loneliness) are correlated with a higher risk of mortality and that both are clearly risk factors for cardiovascular disease (CVD). Lonely individuals have increased peripheral vascular resistance and elevated blood pressure. Socially isolated animals develop more atherosclerosis than those housed in groups. Critical Issues: Molecular mechanisms responsible for the increased cardiovascular risk are poorly understood. In recent reports, loneliness and social stress were associated with activation of the hypothalamic–pituitary–adrenocortical axis and the sympathetic nervous system. Repeated and chronic social stress leads to glucocorticoid resistance, enhanced myelopoiesis, upregulated proinflammatory gene expression, and oxidative stress. However, the causal role of these mechanisms in the development of loneliness-associated CVD remains unclear. Future Directions: Elucidation of the molecular mechanisms of how CVD is induced by loneliness and social isolation requires additional studies. Understanding of the pathomechanisms is essential for the development of therapeutic strategies to prevent the detrimental effects of social stress on health. Antioxid. Redox Signal. 28, 837–851. PMID:28903579

  11. Thyroid disease and the cardiovascular system.

    PubMed

    Danzi, Sara; Klein, Irwin

    2014-06-01

    Thyroid hormones, specifically triiodothyronine (T3), have significant effects on the heart and cardiovascular system. Hypothyroidism, hyperthyroidism, subclinical thyroid disease, and low T3 syndrome each cause cardiac and cardiovascular abnormalities through both genomic and nongenomic effects on cardiac myocytes and vascular smooth muscle cells. In compromised health, such as occurs in heart disease, alterations in thyroid hormone metabolism may further impair cardiac and cardiovascular function. Diagnosis and treatment of cardiac disease may benefit from including analysis of thyroid hormone status, including serum total T3 levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Cardiovascular magnetic resonance in systemic hypertension

    PubMed Central

    2012-01-01

    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension. PMID:22559053

  13. SenseMyHeart: A cloud service and API for wearable heart monitors.

    PubMed

    Pinto Silva, P M; Silva Cunha, J P

    2015-01-01

    In the era of ubiquitous computing, the growing adoption of wearable systems and body sensor networks is trailing the path for new research and software for cardiovascular intensity, energy expenditure and stress and fatigue detection through cardiovascular monitoring. Several systems have received clinical-certification and provide huge amounts of reliable heart-related data in a continuous basis. PhysioNet provides equally reliable open-source software tools for ECG processing and analysis that can be combined with these devices. However, this software remains difficult to use in a mobile environment and for researchers unfamiliar with Linux-based systems. In the present paper we present an approach that aims at tackling these limitations by developing a cloud service that provides an API for a PhysioNet-based pipeline for ECG processing and Heart Rate Variability measurement. We describe the proposed solution, along with its advantages and tradeoffs. We also present some client tools (windows and Android) and several projects where the developed cloud service has been used successfully as a standard for Heart Rate and Heart Rate Variability studies in different scenarios.

  14. Cardiovascular Ultrasound of Neonatal Long Evans Rats ...

    EPA Pesticide Factsheets

    This abstract describes the use of a relatively new technology, cardiovascular ultrasound (echocardiography) for evaluating developmental toxicity affecting heart development. The abstract describes the effects of two known cardiac teratogens, trichloroacetic acid and dimethadione, and their effects as determined by echocardiography. This abstract describes the use and development of a relatively new technology, cardiovascular ultrasound (echocardiography) for evaluating developmental toxicity affecting heart development.

  15. Effects of androgens on cardiovascular remodeling.

    PubMed

    Ikeda, Yasumasa; Aihara, Ken-ichi; Yoshida, Sumiko; Akaike, Masashi; Matsumoto, Toshio

    2012-07-01

    Androgens, the male sex hormones, exert various biological effects on many target organs through the transcriptional effects of the nuclear androgen receptor (AR). ARs are expressed not only in classical target organs, such as the brain, genital organs, bone, and skeletal muscles, but also in the cardiovascular system. Because the female sex hormones estrogens are well-known to protect against cardiovascular disease, sex has been considered to have a significant clinical impact on cardiovascular mortality. However, the influence of androgens on the cardiovascular system has not been fully elucidated. To clarify this issue, we analyzed the effects of administration of angiotensin II and doxorubicin, an anticancer agent, in a loading model in male wild-type and AR-deficient mice. In this review, we focus on the actions of androgens as potential targets for the prevention of cardiovascular diseases in males.

  16. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes.

    PubMed

    Golbidi, Saeid; Frisbee, Jefferson C; Laher, Ismail

    2015-06-15

    Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies. Copyright © 2015 the American Physiological Society.

  17. Antenatal Steroids and the IUGR Fetus: Are Exposure and Physiological Effects on the Lung and Cardiovascular System the Same as in Normally Grown Fetuses?

    PubMed Central

    Morrison, Janna L.; Botting, Kimberley J.; Soo, Poh Seng; McGillick, Erin V.; Hiscock, Jennifer; Zhang, Song; McMillen, I. Caroline; Orgeig, Sandra

    2012-01-01

    Glucocorticoids are administered to pregnant women at risk of preterm labour to promote fetal lung surfactant maturation. Intrauterine growth restriction (IUGR) is associated with an increased risk of preterm labour. Hence, IUGR babies may be exposed to antenatal glucocorticoids. The ability of the placenta or blood brain barrier to remove glucocorticoids from the fetal compartment or the brain is compromised in the IUGR fetus, which may have implications for lung, brain, and heart development. There is conflicting evidence on the effect of exogenous glucocorticoids on surfactant protein expression in different animal models of IUGR. Furthermore, the IUGR fetus undergoes significant cardiovascular adaptations, including altered blood pressure regulation, which is in conflict with glucocorticoid-induced alterations in blood pressure and flow. Hence, antenatal glucocorticoid therapy in the IUGR fetus may compromise regulation of cardiovascular development. The role of cortisol in cardiomyocyte development is not clear with conflicting evidence in different species and models of IUGR. Further studies are required to study the effects of antenatal glucocorticoids on lung, brain, and heart development in the IUGR fetus. Of specific interest are the aetiology of IUGR and the resultant degree, duration, and severity of hypoxemia. PMID:23227338

  18. Visit-to-visit blood pressure variability as a prognostic marker in patients with cardiovascular and cerebrovascular diseases--relationships and comparisons with vascular markers of atherosclerosis.

    PubMed

    Lau, Kui Kai; Wong, Yuen Kwun; Chan, Yap Hang; Teo, Kay Cheong; Chan, Koon Ho; Wai Li, Leonard Sheung; Cheung, Raymond Tak Fai; Siu, Chung Wah; Ho, Shu Leong; Tse, Hung Fat

    2014-07-01

    Visit-to-visit blood pressure variability (BPV) is a simple surrogate marker for the development of atherosclerotic diseases, cardiovascular and all-cause mortality. Nevertheless, the relative prognostic value of BPV in comparison with other established vascular assessments remain uncertain. We prospectively followed-up 656 high-risk patients with diabetes or established cardiovascular or cerebrovascular diseases for the occurrence of major adverse cardiovascular events (MACEs). Baseline brachial endothelial function, carotid intima-media thickness (IMT) and plaque burden, ankle-brachial index and arterial stiffness were determined. Visit-to-visit BPV were recorded during a mean 18 ± 9 outpatient clinic visits. After a mean 81 ± 12 month's follow-up, 123 patients (19%) developed MACEs. Patients who developed a MACE had significantly higher systolic BPV, more severe endothelial function, arterial stiffness and systemic atherosclerotic burden compared to patients who did not develop a MACE (all P<0.01). BPV significantly correlated with all of the vascular assessments (P<0.01). A high carotid IMT had the greatest prognostic value in predicting development of a MACE (area under receiver operating characteristic curve (AUC) 0.69 ± 0.03, P<0.01). A high BPV also had moderate prognostic value in prediction of MACE (AUC 0.65 ± 0.03, P<0.01). After adjustment of confounding factors, a high BPV remained a significant independent predictor of MACE (hazards ratio 1.67, 95% confidence interval 1.14-2.43, P<0.01). Compared with established surrogate markers of atherosclerosis, visit-to-visit BPV provides similar prognostic information and may represent a new and simple marker for adverse outcomes in patients with vascular diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects?

    PubMed

    Burnett, Karen G; Burnett, Louis E

    2015-11-01

    Extensive similarities in the molecular architecture of the crustacean immune system to that of insects give credence to the current view that the Hexapoda, including Insecta, arose within the clade Pancrustacea. The crustacean immune system is mediated largely by hemocytes, relying on suites of pattern recognition receptors, effector functions, and signaling pathways that parallel those of insects. In crustaceans, as in insects, the cardiovascular system facilitates movement of hemocytes and delivery of soluble immune factors, thereby supporting immune surveillance and defense along with other physiological functions such as transport of nutrients, wastes, and hormones. Crustaceans also rely heavily on their cardiovascular systems to mediate gas exchange; insects are less reliant on internal circulation for this function. Among the largest crustaceans, the decapods have developed a condensed heart and a highly arteriolized cardiovascular system that supports the metabolic demands of their often large body size. However, recent studies indicate that mounting an immune response can impair gas exchange and metabolism in their highly developed vascular system. When circulating hemocytes detect the presence of potential pathogens, they aggregate rapidly with each other and with the pathogen. These growing aggregates can become trapped in the microvasculature of the gill where they are melanized and may be eliminated at the next molt. Prior to molting, trapped aggregates of hemocytes also can impair hemolymph flow and oxygenation at the gill. Small shifts to anaerobic metabolism only partially compensate for this decrease in oxygen uptake. The resulting metabolic depression is likely to impact other energy-expensive cellular processes and whole-animal performance. For crustaceans that often live in microbially-rich, but oxygen-poor aquatic environments, there appear to be distinct tradeoffs, based on the gill's multiple roles in respiration and immunity. Insects have developed a separate tracheal system for the delivery of oxygen to tissues, so this particular tradeoff between oxygen transport and immune function is avoided. Few studies in crustaceans or insects have tested whether mounting an immune response might impact other functions of the cardiovascular system or alter integrity of the gut, respiratory, and reproductive epithelia where processes of the attack on pathogens, defense by the host, and physiological functions play out. Such tradeoffs might be fruitfully addressed by capitalizing on the ease of molecular and genetic manipulation in insects. Given the extensive similarities between the insect and the crustacean immune systems, such models of epithelial infection could benefit our understanding of the physiological consequences of immune defense in all of the Pancrustacea. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. Comprehensive quality assurance phantom for cardiovascular imaging systems

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Jan P.

    1998-07-01

    With the advent of high heat loading capacity x-ray tubes, high frequency inverter type generators, and the use of spectral shaping filters, the automatic brightness/exposure control (ABC) circuit logic employed in the new generation of angiographic imaging equipment has been significantly reprogrammed. These new angiographic imaging systems are designed to take advantage of the power train capabilities to yield higher contrast images while maintaining, or lower, the patient exposure. Since the emphasis of the imaging system design has been significantly altered, the system performance parameters one is interested and the phantoms employed for the quality assurance must also change in order to properly evaluate the imaging capability of the cardiovascular imaging systems. A quality assurance (QA) phantom has been under development in this institution and was submitted to various interested organizations such as American Association of Physicists in Medicine (AAPM), Society for Cardiac Angiography & Interventions (SCA&I), and National Electrical Manufacturers Association (NEMA) for their review and input. At the same time, in an effort to establish a unified standard phantom design for the cardiac catheterization laboratories (CCL), SCA&I and NEMA have formed a joint work group in early 1997 to develop a suitable phantom. The initial QA phantom design has since been accepted to serve as the base phantom by the SCA&I- NEMA Joint Work Group (JWG) from which a comprehensive QA Phantom is being developed.

  1. Development of an integrated e-health tool for people with, or at high risk of, cardiovascular disease: The Consumer Navigation of Electronic Cardiovascular Tools (CONNECT) web application.

    PubMed

    Neubeck, Lis; Coorey, Genevieve; Peiris, David; Mulley, John; Heeley, Emma; Hersch, Fred; Redfern, Julie

    2016-12-01

    Cardiovascular disease is the leading killer globally and secondary prevention substantially reduces risk. Uptake of, and adherence to, face-to-face preventive programs is often low. Alternative models of care are exploiting the prominence of technology in daily life to facilitate lifestyle behavior change. To inform the development of a web-based application integrated with the primary care electronic health record, we undertook a collaborative user-centered design process to develop a consumer-focused e-health tool for cardiovascular disease risk reduction. A four-phase iterative process involved ten multidisciplinary clinicians and academics (primary care physician, nurses and allied health professionals), two design consultants, one graphic designer, three software developers and fourteen proposed end-users. This 18-month process involved, (1) defining the target audience and needs, (2) pilot testing and refinement, (3) software development including validation and testing the algorithm, (4) user acceptance testing and beta testing. From this process, researchers were able to better understand end-user needs and preferences, thereby improving and enriching the increasingly detailed system designs and prototypes for a mobile responsive web application. We reviewed 14 relevant applications/websites and sixteen observational and interventional studies to derive a set of core components and ideal features for the system. These included the need for interactivity, visual appeal, credible health information, virtual rewards, and emotional and physical support. The features identified as essential were: (i) both mobile and web-enabled 'apps', (ii) an emphasis on medication management, (iii) a strong psychosocial support component. Subsequent workshops (n=6; 2×1.5h) informed the development of functionality and lo-fidelity sketches of application interfaces. These ideas were next tested in consumer focus groups (n=9; 3×1.5h). Specifications for the application were refined from this feedback and a graphic designer iteratively developed the interface. Concurrently, the electronic health record was linked to the consumer portal. A written description of the final algorithms for all decisions and outputs was provided to software programmers. These algorithmic outputs to the app were first validated against those obtained from an independently programmed version in STATA 11. User acceptance testing (n=5, 2×1.0h) and beta testing revealed technical bugs and interface concerns across commonly-used web browsers and smartphones. These were resolved and re-tested until functionality was optimized. End-users of a cardiovascular disease prevention program have complex needs. A user-centered design approach aided the integration of these needs into the concept, specifications, development and refinement of a responsive web application for risk factor reduction and disease prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. 21 CFR 870.2600 - Signal isolation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Signal isolation system. 870.2600 Section 870.2600...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation system. (a) Identification. A signal isolation system is a device that electrically isolates the patient...

  3. 21 CFR 870.2600 - Signal isolation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Signal isolation system. 870.2600 Section 870.2600...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation system. (a) Identification. A signal isolation system is a device that electrically isolates the patient...

  4. 21 CFR 870.2600 - Signal isolation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Signal isolation system. 870.2600 Section 870.2600...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation system. (a) Identification. A signal isolation system is a device that electrically isolates the patient...

  5. Computational fluid dynamics modelling in cardiovascular medicine

    PubMed Central

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019

  6. Cardiovascular effects of air pollution.

    PubMed

    Brook, Robert D

    2008-09-01

    Air pollution is a heterogeneous mixture of gases, liquids and PM (particulate matter). In the modern urban world, PM is principally derived from fossil fuel combustion with individual constituents varying in size from a few nanometres to 10 microm in diameter. In addition to the ambient concentration, the pollution source and chemical composition may play roles in determining the biological toxicity and subsequent health effects. Nevertheless, studies from across the world have consistently shown that both short- and long-term exposures to PM are associated with a host of cardiovascular diseases, including myocardial ischaemia and infarctions, heart failure, arrhythmias, strokes and increased cardiovascular mortality. Evidence from cellular/toxicological experiments, controlled animal and human exposures and human panel studies have demonstrated several mechanisms by which particle exposure may both trigger acute events as well as prompt the chronic development of cardiovascular diseases. PM inhaled into the pulmonary tree may instigate remote cardiovascular health effects via three general pathways: instigation of systemic inflammation and/or oxidative stress, alterations in autonomic balance, and potentially by direct actions upon the vasculature of particle constituents capable of reaching the systemic circulation. In turn, these responses have been shown to trigger acute arterial vasoconstriction, endothelial dysfunction, arrhythmias and pro-coagulant/thrombotic actions. Finally, long-term exposure has been shown to enhance the chronic genesis of atherosclerosis. Although the risk to one individual at any single time point is small, given the prodigious number of people continuously exposed, PM air pollution imparts a tremendous burden to the global public health, ranking it as the 13th leading cause of morality (approx. 800,000 annual deaths).

  7. Trends in cardiovascular diseases in Bosnia and Herzegovina and perspectives with heartscore programme.

    PubMed

    Masic, Izet; Dilic, Mirza; Raljevic, Enver; Vulic, Dusko; Mott, Dario

    2010-01-01

    Cardiovascular diseases are still the major cause of death, morbidity, mortality and loss of quality of life in European countries and worldwide. In Bosnia and Herzegovina we have burden of cardiovascular diseases with higher rate of morbidity and mortality than in the countries of EU zone or broader Europe. The cause of mortality is in close relation to multiple risk factors but also with specific conditions in our country; post war situation, transition and overall economic position. The main mission of European Society of Cardiology is to improve quality of life in the European population by reducing the impact of cardiovascular diseases. HeartScore web based program and PS Standalone program are introduce to assesses the overall risk of cardiovascular death for a period of 10 years, based on variables such as age, sex, smoking, systolic blood pressure and cholesterol levels in the blood, or total cholesterol/HDL ratio. Standalone PS HeartScore is practical to use, requires no permanent internet connection, the system offers its own database for each patient and the print version of the guidelines to reduce risk factors, based on evidence based medicine Program is tailored to patients, the system provides a graphical representation of the absolute risk of CVD, a version for our country is developed on the principle of high-risk populations and is available in the languages of the peoples of Bosnia and Herzegovina. Program is available for all types of medical practice which is equipped with computers, the laptop, and suitable for community nursing service as well.

  8. A computerized test battery for the assessment of cardiovascular reactivity.

    PubMed

    Debski, T T; Kamarck, T W; Jennings, J R; Young, L W; Eddy, M J; Zhang, Y X

    1991-01-01

    Recent evidence has suggested a possible relationship between the tendency to exhibit excessive cardiovascular reactions during psychological challenge and the risk of cardiovascular disease. Valid techniques for reliably assessing such reactions are, however, minimally available. A test battery for the assessment of cardiovascular reactivity to experimental challenge is currently being developed at the University of Pittsburgh in conjunction with the University of Miami and Duke University. An IBM-AT compatible microcomputer is being used for the concurrent collection of physiological data and presentation of the laboratory stressors. Digitized cardiovascular data being collected include EKG, Impedance Cardiogram (ICG), phonocardiogram, and a peripheral pulse wave measure. Blood pressure readings are also being collected and stored on disk. The computer presents three challenging video games, each designed to elicit cardiovascular reactions. Processing programs are being used and developed for the standardized scoring of the digitized signals. To assist in epidemiological research a mobile testing unit has been assembled for the easy administration of the test battery in varying geographical locations. The test battery being developed will increase the feasibility of epidemiological and clinical assessment of stress-induced cardiovascular responses which may substantiate a link between reactivity and cardiovascular disease.

  9. Melatonin, mitochondria and hypertension.

    PubMed

    Baltatu, Ovidiu C; Amaral, Fernanda G; Campos, Luciana A; Cipolla-Neto, Jose

    2017-11-01

    Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.

  10. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4380... device used that incorporates an electrical system or a mechanical system, or both, and is used to...

  11. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4380... device used that incorporates an electrical system or a mechanical system, or both, and is used to...

  12. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4380... device used that incorporates an electrical system or a mechanical system, or both, and is used to...

  13. [Assessment of cardiovascular risk in population groups. Comparison of Score system and Framingham in hypertensive patients].

    PubMed

    Cosín Aguilar, J; Hernándiz Martínez, A; Rodríguez Padial, L; Zamorano Gómez, J L; Arístegui Urrestarazu, R; Armada Peláez, B; Aguilar Llopis, A; Masramon Morell, X

    2006-04-01

    Calculation of cardiovascular risk in populations allows for developing and assessing of intervention programs and adapting health resources. While the Framingham System has been used in the past, a group of European researchers have proposed a different method called the Score project. The purpose of this paper is to compare the value of both methods for assessing cardiovascular risk. In 6,775 evaluable hypertensive patients distributed over the 17 Spanish autonomous communities (ACs), the 10-year risk of experiencing a coronary event (CR) was calculated using the Framingham equation, while risk of coronary death (RCD) and vascular death (RVD) was calculated using the Score project system, both at baseline and after one year of blood pressure control with amlodipine at the required dose. A comparison was made of the capacity to detect risk differences by both methods between populations with known different risks, and in the same population as a result of blood pressure control. Both the Score and the Framingham systems detected the significant decrease in both CR and RCD or RVD at one year of application of the CORONARIA study protocol. Risk decrease measured by any of the two methods was significant (p < 0.05) overall, by genders, and by ACs. However, the Score System, unlike the Framingham system, could not detect the reported differences in the mortality risk for coronary and vascular disease between the ACs of the North and the South-East parts of Spain.

  14. [China expert consensus on the management of dyslipidemia in postmenopausal patients with early-stage breast cancer].

    PubMed

    2017-01-23

    Estrogen has an impact on the type of lipoproteins and the blood lipid levels, thus protecting the cardiovascular system. Postmenopausal breast cancer patients suffer a significant decrease in estrogen levels due to both physiological changes and the use of drugs, and thus have a higher risk of atherosclerotic cardiovascular diseases. Therefore, strict lipid management is required for postmenopausal breast cancer patients receiving endocrine therapy. However, no guidelines have been developed in terms of lipid management and intervention for postmenopausal breast cancer patients. The Chinese expert group of multidisciplinary management of dyslipidemia in breast cancer patients with endocrine therapy, after deep investigation into the management of dyslipidemia in postmenopausal patients with early-stage breast cancer, has developed the China Expert Consensus on Dyslipidemia Management in Postmenopausal Patients with Early-stage Breast Cancer. The Consensus clearly defines the goals and measures of interventions for dyslipidemia, hoping to effectively reduce the risk of atherosclerotic cardiovascular disease in postmenopausal breast cancer patients and further improve the long-term survival of the patients.

  15. Time to foster a rational approach to preventing cardiovascular morbid events.

    PubMed

    Cohn, Jay N; Duprez, Daniel A

    2008-07-29

    Efforts to prevent atherosclerotic morbid events have focused primarily on risk factor prevention and intervention. These approaches, based on the statistical association of risk factors with events, have dominated clinical practice in the last generation. Because the cardiovascular abnormalities eventuating in morbid events are detectable in the arteries and heart before the development of symptomatic disease, recent efforts have focused on identifying the presence of these abnormalities as a more sensitive and specific guide to the need for therapy. Advances in noninvasive techniques for studying the vasculature and the left ventricle now provide the opportunity to use early disease rather than risk factors as the tool for clinical decision making. A disease scoring system has been developed using 10 tests of vascular and cardiac function and structure. More extensive data to confirm the sensitivity and specificity of this scoring system and to demonstrate its utility in tracking the response to therapy are needed to justify widespread application in clinical practice.

  16. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    PubMed

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  17. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    PubMed Central

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940

  18. Soy protein supports cardiovascular health by downregulating hydroxymethylglutaryl-coenzyme A reductase and sterol regulatory element-binding protein-2 and increasing antioxidant enzyme activity in rats with dextran sodium sulfate-induced mild systemic inflammation.

    PubMed

    Marsh, Tanya G; Straub, Rachel K; Villalobos, Fatima; Hong, Mee Young

    2011-12-01

    Animal and human studies have indicated that the presence of soy in the diet improves cardiovascular health. Inflammation plays a pivotal role in the progression of cardiovascular disease (CVD). However, little is known about how dextran sodium sulfate (DSS)-induced systemic inflammation impacts overall heart health and, correspondingly, how soy protein modulates risk of CVD development in DSS-induced systemic inflammation. We hypothesized that soy protein-fed rats would have a lower risk of CVD by beneficial alteration of gene expression involving lipid metabolism and antioxidant capacity in DSS-induced systemic inflammation. Forty Sprague-Dawley rats were divided into 4 groups: casein, casein + DSS, soy protein, and soy protein + DSS. After 26 days, inflammation was induced in one group from each diet by incorporating 3% DSS in drinking water for 48 hours. Soy protein-fed rats had lower final body weights (P = .010), epididymal fat weights (P = .049), total cholesterol (P < .001), and low-density lipoprotein cholesterol (P < .001). In regard to gene expression, soy protein-fed rats had lower sterol regulatory element-binding protein-2 (P = .032) and hydroxymethylglutaryl-coenzyme A reductase (P = .028) levels and higher low-density lipoprotein receptor levels (P = .036). Antioxidant enzyme activity of superoxide dismutase and catalase was higher among the soy protein groups (P = .037 and P = .002, respectively). These results suggest that soy protein positively influences cardiovascular health by regulating serum lipids through modified expression of sterol regulatory element-binding protein-2 and its downstream genes (ie, hydroxymethylglutaryl-coenzyme A reductase and low-density lipoprotein receptor) and by promoting the antioxidant enzyme activity of superoxide dismutase and catalase. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. MECHANISMS INVOLVED IN THE ASSOCIATION BETWEEN PERIDONTAL DISEASES AND CARDIOVASCULAR DISEASE

    PubMed Central

    Teles, Ricardo; Wang, Cun-Yu

    2012-01-01

    It is now well accepted that besides the cholesterol associated mechanisms of atherogenesis, inflammation plays a crucial role in all stages of the development of the atherosclerotic lesion. This “inflammation hypothesis” raises the possibility that, through systemic elevations of pro-inflammatory cytokines, periodontal diseases might also contribute to systemic inflammation and, therefore, to atherogenesis. In fact, there is evidence that periodontal diseases are associated with higher systemic levels of high-sensitivity C-reactive protein and a low grade systemic inflammation. This phenomenon has been explained based on mechanisms associated with either the infectious or the inflammatory nature of periodontal diseases. The purposes of this article are to review (1) the evidence suggesting a role for oral bacterial species, particularly periodontal pathogens, in atherogenesis; (2) the potential mechanisms explaining an etiological role for oral bacteria in atherosclerosis; (3) the evidence suggesting that periodontal infections are accompanied by a heightened state of systemic inflammation; (4) the potential sources of systemic inflammatory biomarkers associated with periodontal diseases; and (5) the effects of periodontal therapy on systemic inflammatory biomarkers and cardiovascular risk. PMID:21223455

  20. The Endocannabinoid System and Plant-Derived Cannabinoids in Diabetes and Diabetic Complications

    PubMed Central

    Horváth, Béla; Mukhopadhyay, Partha; Haskó, György; Pacher, Pál

    2012-01-01

    Oxidative stress and inflammation play critical roles in the development of diabetes and its complications. Recent studies provided compelling evidence that the newly discovered lipid signaling system (ie, the endocannabinoid system) may significantly influence reactive oxygen species production, inflammation, and subsequent tissue injury, in addition to its well-known metabolic effects and functions. The modulation of the activity of this system holds tremendous therapeutic potential in a wide range of diseases, ranging from cancer, pain, neurodegenerative, and cardiovascular diseases to obesity and metabolic syndrome, diabetes, and diabetic complications. This review focuses on the role of the endocannabinoid system in primary diabetes and its effects on various diabetic complications, such as diabetic cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy, particularly highlighting the mechanisms beyond the metabolic consequences of the activation of the endocannabinoid system. The therapeutic potential of targeting the endocannabinoid system and certain plant-derived cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabivarin, which are devoid of psychotropic effects and possess potent anti-inflammatory and/or antioxidant properties, in diabetes and diabetic complications is also discussed. PMID:22155112

  1. Predictors of cardiovascular damage in patients with systemic lupus erythematosus: data from LUMINA (LXVIII), a multiethnic US cohort.

    PubMed

    Pons-Estel, Guillermo J; González, Luis A; Zhang, Jie; Burgos, Paula I; Reveille, John D; Vilá, Luis M; Alarcón, Graciela S

    2009-07-01

    To determine the features predictive of atherosclerotic cardiovascular damage in patients with SLE. SLE LUMINA (LUpus in MInorities: NAture vs nurture) patients (n = 637), aged >or=16 years, disease duration

  2. Preliminary Evidence for the Impact of Combat Experiences on Gray Matter Volume of the Posterior Insula

    PubMed Central

    Clausen, Ashley N.; Billinger, Sandra A.; Sisante, Jason-Flor V.; Suzuki, Hideo; Aupperle, Robin L.

    2017-01-01

    Background: Combat-exposed veteran populations are at an increased risk for developing cardiovascular disease. The anterior cingulate cortex (ACC) and insula have been implicated in both autonomic arousal to emotional stressors and homeostatic processes, which may contribute to cardiovascular dysfunction in combat veteran populations. The aim of the present study was to explore the intersecting relationships of combat experiences, rostral ACC and posterior insula volume, and cardiovascular health in a sample of combat veterans. Method: Twenty-four male combat veterans completed clinical assessment of combat experiences and posttraumatic stress symptoms. Subjects completed a magnetic resonance imaging scan and autosegmentation using FreeSurfer was used to estimate regional gray matter volume (controlling for total gray matter volume) of the rostral ACC and posterior insula. Flow-mediated dilation (FMD) was conducted to assess cardiovascular health. Theil-sen robust regressions and Welch's analysis of variance were used to examine relationships of combat experiences and PTSD symptomology with (1) FMD and (2) regional gray matter volume. Results: Increased combat experiences, deployment duration, and multiple deployments were related to smaller posterior insula volume. Combat experiences were marginally associated with poorer cardiovascular health. However, cardiovascular health was not related to rostral ACC or posterior insula volume. Conclusion: The present study provides initial evidence for the relationships of combat experiences, deployment duration, and multiple deployments with smaller posterior insula volume. Results may suggest that veterans with increased combat experiences may exhibit more dysfunction regulating the autonomic nervous system, a key function of the posterior insula. However, the relationship between combat and cardiovascular health was not mediated by regional brain volume. Future research is warranted to further clarify the cardiovascular or functional impact of smaller posterior insula volume in combat veterans. PMID:29312038

  3. Predictors of cardiovascular damage in patients with systemic lupus erythematosus: data from LUMINA (LXVIII), a multiethnic US cohort

    PubMed Central

    Pons-Estel, Guillermo J.; González, Luis A.; Zhang, Jie; Burgos, Paula I.; Reveille, John D.; Vilá, Luis M.

    2009-01-01

    Objective. To determine the features predictive of atherosclerotic cardiovascular damage in patients with SLE. Methods. SLE LUMINA (LUpus in MInorities: NAture vs nurture) patients (n = 637), aged ⩾16 years, disease duration ⩽5 years at baseline (T0), of African–American, Hispanic and Caucasian ethnicity were studied. Atherosclerotic cardiovascular damage was defined by the following items of the SLICC Damage Index (SDI) cardiovascular domain: angina or coronary artery by pass surgery, myocardial infarction and/or congestive heart failure; factors associated with its occurrence were examined by univariable and multivariable regression analyses. Results. Forty-three (6.8%) of 637 patients developed cardiovascular damage over a mean ± s.d. total disease duration of 6.6 ± 3.6 years. Nearly 90% of the patients were women with a mean ± s.d. age of 36.5 (12.6) years; all ethnic groups were represented. By multivariable analyses, after adjusting for the cardiovascular manifestations present, age [odds ratio (OR) = 1.06; 95% CI 1.03, 1.09], male gender (OR = 3.57; 95% CI 1.35, 9.09) SDI at baseline (OR = 1.28; 95% CI 1.09, 1.50) and CRP levels [highest tertile (OR = 2.63; 95% CI 1.17, 5.91)] were associated with the occurrence of cardiovascular damage, whereas the number of years of education was negatively associated with such outcome (OR = 0.85; 95% CI 0.74, 0.94). Conclusions. Our data suggest that atherosclerotic cardiovascular damage in SLE is multifactorial; traditional (age, gender) and disease-related factors (CRP levels, SDI at baseline) appear to be important contributors to such an occurrence. Tight control of the inflammatory process must be achieved to prevent it. PMID:19454606

  4. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronco, Ana Maria, E-mail: amronco@inta.cl; Montenegro, Marcela; Castillo, Paula

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remainedmore » unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.« less

  5. A prognostic scoring system for arm exercise stress testing.

    PubMed

    Xie, Yan; Xian, Hong; Chandiramani, Pooja; Bainter, Emily; Wan, Leping; Martin, Wade H

    2016-01-01

    Arm exercise stress testing may be an equivalent or better predictor of mortality outcome than pharmacological stress imaging for the ≥50% for patients unable to perform leg exercise. Thus, our objective was to develop an arm exercise ECG stress test scoring system, analogous to the Duke Treadmill Score, for predicting outcome in these individuals. In this retrospective observational cohort study, arm exercise ECG stress tests were performed in 443 consecutive veterans aged 64.1 (11.1) years. (mean (SD)) between 1997 and 2002. From multivariate Cox models, arm exercise scores were developed for prediction of 5-year and 12-year all-cause and cardiovascular mortality and 5-year cardiovascular mortality or myocardial infarction (MI). Arm exercise capacity in resting metabolic equivalents (METs), 1 min heart rate recovery (HRR) and ST segment depression ≥1 mm were the stress test variables independently associated with all-cause and cardiovascular mortality by step-wise Cox analysis (all p<0.01). A score based on the relation HRR (bpm)+7.3×METs-10.5×ST depression (0=no; 1=yes) prognosticated 5-year cardiovascular mortality with a C-statistic of 0.81 before and 0.88 after adjustment for significant demographic and clinical covariates. Arm exercise scores for the other outcome end points yielded C-statistic values of 0.77-0.79 before and 0.82-0.86 after adjustment for significant covariates versus 0.64-0.72 for best fit pharmacological myocardial perfusion imaging models in a cohort of 1730 veterans who were evaluated over the same time period. Arm exercise scores, analogous to the Duke Treadmill Score, have good power for prediction of mortality or MI in patients who cannot perform leg exercise.

  6. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis.

    PubMed

    Russell, James C; Proctor, Spencer D

    2006-01-01

    Cardiovascular disease, the leading cause of death in much of the modern world, is the common symptomatic end stage of a number of distinct diseases and, therefore, is multifactorial and polygenetic in character. The two major underlying causes are disorders of lipid metabolism and metabolic syndrome. The ability to develop preventative and ameliorative treatments will depend on animal models that mimic human disease processes. The focus of this review is to identify suitable animal models and insights into cardiovascular disease achieved to date using such models. The ideal animal model of cardiovascular disease will mimic the human subject metabolically and pathophysiologically, will be large enough to permit physiological and metabolic studies, and will develop end-stage disease comparable to those in humans. Given the complex multifactorial nature of cardiovascular disease, no one species will be suitable for all studies. Potential larger animal models are problematic due to cost, ethical considerations, or poor pathophysiological comparability to humans. Rabbits require high-cholesterol diets to develop cardiovascular disease, and there are no rabbit models of metabolic syndrome. Spontaneous mutations in rats provide several complementary models of obesity, hyperlipidemia, insulin resistance, and type 2 diabetes, one of which spontaneously develops cardiovascular disease and ischemic lesions. The mouse, like normal rats, is characteristically resistant to cardiovascular disease, although genetically altered strains respond to cholesterol feeding with atherosclerosis, but not with end-stage ischemic lesions. The most useful and valid species/strains for the study of cardiovascular disease appear to be small rodents, rats, and mice. This fragmented field would benefit from a consensus on well-characterized appropriate models for the study of different aspects of cardiovascular disease and a renewed emphasis on the biology of underlying diseases.

  7. 21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...

  8. 21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...

  9. 21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...

  10. The cardiovascular macrophage: a missing link between gut microbiota and cardiovascular diseases?

    PubMed

    Chen, X; Zheng, L; Zheng, Y-Q; Yang, Q-G; Lin, Y; Ni, F-H; Li, Z-H

    2018-03-01

    The prevalence of cardiovascular diseases is on the rise. Interventions that would aid prevention or treatment of these diseases are essential. The microbes residing in the gut, collectively called "gut microbiota", produce a plethora of compounds that enter the bloodstream and affect the cardiovascular system. Signals ascending from gut microbiome are believed to modulate differentiation and functional activity of macrophages residing in perivascular tissue, atherosclerotic plaques, and perivascular areas of the brain. Cardiovascular macrophages may be the key players that transform the signals ascending from gut microbiome into increased predisposition to cardiovascular diseases. The present review summarizes the knowledge to date on potential relationships between gut microbiota, cardiovascular macrophages, and cardiovascular diseases.

  11. Assessment of cardiovascular risk of new drugs for the treatment of diabetes mellitus: risk assessment vs. risk aversion

    PubMed Central

    Zannad, Faiez; Stough, Wendy Gattis; Lipicky, Raymond J.; Tamargo, Juan; Bakris, George L.; Borer, Jeffrey S.; Alonso García, Maria de los Angeles; Hadjadj, Samy; Koenig, Wolfgang; Kupfer, Stuart; McCullough, Peter A.; Mosenzon, Ofri; Pocock, Stuart; Scheen, André J.; Sourij, Harald; Van der Schueren, Bart; Stahre, Christina; White, William B.; Calvo, Gonzalo

    2016-01-01

    The Food and Drug Administration issued guidance for evaluating the cardiovascular risk of new diabetes mellitus drugs in 2008. Accumulating evidence from several completed trials conducted within this framework raises questions as to whether requiring safety outcome studies for all new diabetes mellitus therapies remains justified. Given the burden of cardiovascular disease in patients with diabetes, the focus should shift towards cardiovascular outcome studies designed to evaluate efficacy (i.e. to determine the efficacy of a drug over placebo or standard care) rather than demonstrating that risk is not increased by a pre-specified safety margin. All stakeholders are responsible for ensuring that new drug approvals occur under conditions of appropriate safety and effectiveness. It is also a shared responsibility to avoid unnecessary hurdles that may compromise access to useful drugs and threaten the sustainability of health systems. It is critical to renew this debate so that stakeholders can collectively determine the optimal approach for developing new drugs to treat type 2 diabetes mellitus. PMID:27418973

  12. Autonomic and inflammatory consequences of posttraumatic stress disorder and the link to cardiovascular disease.

    PubMed

    Brudey, Chevelle; Park, Jeanie; Wiaderkiewicz, Jan; Kobayashi, Ihori; Mellman, Thomas A; Marvar, Paul J

    2015-08-15

    Stress- and anxiety-related disorders are on the rise in both military and general populations. Over the next decade, it is predicted that treatment of these conditions, in particular, posttraumatic stress disorder (PTSD), along with its associated long-term comorbidities, will challenge the health care system. Multiple organ systems are adversely affected by PTSD, and PTSD is linked to cancer, arthritis, digestive disease, and cardiovascular disease. Evidence for a strong link between PTSD and cardiovascular disease is compelling, and this review describes current clinical data linking PTSD to cardiovascular disease, via inflammation, autonomic dysfunction, and the renin-angiotensin system. Recent clinical and preclinical evidence regarding the role of the renin-angiotensin system in the extinction of fear memory and relevance in PTSD-related immune and autonomic dysfunction is also addressed. Copyright © 2015 the American Physiological Society.

  13. [Atmospheric pollution and cardiovascular damage].

    PubMed

    Román, Oscar; Prieto, María José; Mancilla, Pedro

    2004-06-01

    The damaging effect of atmospheric pollution with particulate matter and toxic gases on the respiratory system and its effect in the incidence and severity of respiratory diseases, is well known. A similar effect on the cardiovascular system is currently under investigation. Epidemiological studies have demonstrated that the inhalation of particulate matter can increase cardiovascular disease incidence and mortality, specially ischemic heart disease. The damage would be mediated by alterations in the autonomic nervous system, inflammation, infections and free radicals. In human studies, environmental pollution is associated with alterations in cardiac frequency variability and blood pressure and with changes in ventricular repolarization. Experimentally, an enhancement of ischemia, due to coronary obstruction, has been demonstrated. The study of the toxic effects of environmental pollution over the cardiovascular system, is an open field, specially in Chile, were the big cities have serious contamination problems.

  14. Management of cardiovascular risk in systemic lupus erythematosus: a systematic review.

    PubMed

    Andrades, C; Fuego, C; Manrique-Arija, S; Fernández-Nebro, A

    2017-11-01

    Systemic lupus erythematosus is associated with accelerated atherosclerosis and increased risk of cardiovascular complications. The aim of this study was to review the effectiveness of interventions for primary and secondary prevention of cardiovascular events and mortality and to review the effectiveness of interventions for cardiovascular risk factor reduction in systemic lupus erythematosus patients. A systematic review was conducted. Electronic databases Medline and Embase (1961-2015) were searched. Nineteen articles met the inclusion criteria and were selected. Low-calorie and/or low glycaemic index calories may be a useful option for secondary prevention in obese patients with systemic lupus erythematosus, and exercise would be useful in improving the endothelial function measured by flow-mediated dilation in this group of patients. The use of lipid-lowering drugs may improve the lipid profile in patients with systemic lupus erythematosus and hyperlipidaemia, but the effect of this treatment on overall cardiovascular mortality remains unknown. Antiplatelets, anticoagulants, antimalarials and lipid-lowering drugs may be effective in the primary and secondary prevention of major cardiovascular events, such as acute myocardial infarction or stroke. Similarly, lipid-lowering drugs and antimalarial drugs appear to reduce the serum levels of total cholesterol, low-density lipoprotein, glucose, diastolic blood pressure and calcium deposition at the coronary arteries. They may also improve insulin resistance and the level of high-density lipoproteins. It appears that treatment with antihypertensive drugs reduces blood pressure in patients with systemic lupus erythematosus, but the available studies are of low quality.

  15. [Effect of underground work on cardiovascular system 
in coal miners].

    PubMed

    Lai, Zhiwei; Wang, Xiaoye; Tan, Hongzhuan; Huang, Yaoyu; Lu, Changcheng

    2015-10-01

    To study the effect of underground work on cardiovascular system health in coal miners.
 Male coal miners, who received electrocardiographic examinations between June, 2013 and August, 2014 in Hunan Prevention and Treatment Institute for Occupational Diseases to exclude pneumoconiosis, were enrolled for this study (n=3 134). Miners with 2 years or more underground work experience were selected as the exposed group (n=2 370), while miners without underground work experience were selected as the control group (n=764). The prevalence of electrocardiographic abnormalities and the influential factors were compared between the 2 groups.
 The prevalences of electrocardiographic abnormalities, hypertension, heart rate abnormalities and cardiovascular system abnormalities in the exposed group vs the control group were 37.6% vs 25.4%, 20.5% vs 13.4%, 5.7% vs 6.0%, 49.8% vs 35.2%, respectively. The cardiovascular system abnormalities were correlated with the underground work (OR=3.128, 95% CI: 1.969-4.970), the underground work experience (OR=1.205, 95% CI: 1.070-1.358) and the type of works (mining worker OR=1.820, 95% CI: 1.527-2.169; auxiliary worker OR=1.937, 95% CI: 1.511-2.482; other worker OR=3.291, 95%CI: 2.120-5.109).
 Underground work may increase the prevalence of cardiovascular system abnormalities for coal miners. The longer the coal miners work in underground, the higher the risk of the cardiovascular system abnormalities they are.

  16. Implementation strategies of Systems Medicine in clinical research and home care for cardiovascular disease patients.

    PubMed

    Montecucco, Fabrizio; Carbone, Federico; Dini, Frank Lloyd; Fiuza, Manuela; Pinto, Fausto J; Martelli, Antonietta; Palombo, Domenico; Sambuceti, Gianmario; Mach, François; De Caterina, Raffaele

    2014-11-01

    Insights from the "-omics" science have recently emphasized the need to implement an overall strategy in medical research. Here, the development of Systems Medicine has been indicated as a potential tool for clinical translation of basic research discoveries. Systems Medicine also gives the opportunity of improving different steps in medical practice, from diagnosis to healthcare management, including clinical research. The development of Systems Medicine is still hampered however by several challenges, the main one being the development of computational tools adequate to record, analyze and share a large amount of disparate data. In addition, available informatics tools appear not yet fully suitable for the challenge because they are not standardized, not universally available, or with ethical/legal concerns. Cardiovascular diseases (CVD) are a very promising area for translating Systems Medicine into clinical practice. By developing clinically applied technologies, the collection and analysis of data may improve CV risk stratification and prediction. Standardized models for data recording and analysis can also greatly broaden data exchange, thus promoting a uniform management of CVD patients also useful for clinical research. This advance however requires a great organizational effort by both physicians and health institutions, as well as the overcoming of ethical problems. This narrative review aims at providing an update on the state-of-art knowledge in the area of Systems Medicine as applied to CVD, focusing on current critical issues, providing a road map for its practical implementation. Copyright © 2014 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  17. Ambient carbon monoxide and cardiovascular mortality: a nationwide time-series analysis in 272 cities in China.

    PubMed

    Liu, Cong; Yin, Peng; Chen, Renjie; Meng, Xia; Wang, Lijun; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Kan, Haidong; Zhou, Maigeng

    2018-01-01

    Evidence of the acute health effects of ambient carbon monoxide air pollution in developing countries is scarce and mixed. We aimed to evaluate short-term associations between carbon monoxide and daily cardiovascular disease mortality in China. We did a nationwide time-series analysis in 272 major cities in China from January, 2013, to December, 2015. We extracted daily cardiovascular disease mortality data from China's Disease Surveillance Points system. Data on daily carbon monoxide concentrations for each city were obtained from the National Urban Air Quality Real-time Publishing Platform. City-specific associations between carbon monoxide concentrations and daily mortality from cardiovascular disease, coronary heart disease, and stroke were estimated with over-dispersed generalised linear models. Bayesian hierarchical models were used to obtain national and regional average associations. Exposure-response association curves and potential effect modifiers were evaluated. Two-pollutant models were fit to evaluate the robustness of the effects of carbon monoxide on cardiovascular mortality. The average annual mean carbon monoxide concentration in these cities from 2013 to 2015 was 1·20 mg/m 3 , ranging from 0·43 mg/m 3 to 2·45 mg/m 3 . For a 1 mg/m 3 increase in average carbon monoxide concentrations on the present day and previous day (lag 0-1), we observed significant increments in mortality of 1·12% (95% posterior interval [PI] 0·42-1·83) from cardiovascular disease, 1·75% (0·85-2·66) from coronary heart disease, and 0·88% (0·07-1·69) from stroke. These associations did not vary substantially by city, region, and demographic characteristics (age, sex, and level of education), and the associations for cardiovascular disease and coronary heart disease were robust to the adjustment of criteria co-pollutants. We did not find a threshold below which carbon monoxide exposure had no effect on cardiovascular disease mortality. This analysis is, to our knowledge, the largest study done in a developing country, and provides robust evidence of the association between short-term exposure to ambient carbon monoxide and increased cardiovascular disease mortality, especially coronary heart disease mortality. Public Welfare Research Program. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  18. The Importance of Global Health Experiences in the Development of New Cardiologists

    PubMed Central

    Abdalla, Marwah; Kovach, Neal; Liu, Connie; Damp, Julie B.; Jahangir, Eiman; Hilliard, Anthony; Gopinathannair, Rakesh; Abu-Fadel, Mazen S.; El Chami, Mikhael F.; Gafoor, Sameer; Vedanthan, Rajesh; Sanchez-Shields, Monica; George, Jon C.; Priester, Tiffany; Alasnag, Mirvat; Barker, Colin; Freeman, Andrew M.

    2016-01-01

    As the global burden of cardiovascular disease continues to increase worldwide, nurturing the development of early-career cardiologists interested in global health is essential in order to create a cadre of providers with the skill set to prevent and treat cardiovascular diseases in international settings. As such, interest in global health has increased among cardiology trainees and early-career cardiologists over the past decade. International clinical and research experiences abroad present an additional opportunity for growth and development beyond traditional cardiovascular training. We describe the American College of Cardiology International Cardiovascular Exchange Database, a new resource for cardiologists interested in pursuing short-term clinical exchange opportunities abroad, and report some of the benefits and challenges of global health cardiovascular training in both resource-limited and resource-abundant settings. PMID:26763797

  19. Successes and future outlook for microfluidics-based cardiovascular drug discovery.

    PubMed

    Skommer, Joanna; Wlodkowic, Donald

    2015-03-01

    The greatest advantage of using microfluidics as a platform for the assessment of cardiovascular drug action is its ability to finely regulate fluid flow conditions, including flow rate, shear stress and pulsatile flow. At the same time, microfluidics provide means for modifying the vessel geometry (bifurcations, stenoses, complex networks), the type of surface of the vessel walls, and for patterning cells in 3D tissue-like architecture, including generation of lumen walls lined with cells and heart-on-a-chip structures for mimicking ventricular cardiomyocyte physiology. In addition, owing to the small volume of required specimens, microfluidics is ideally suited to clinical situations whereby monitoring of drug dosing or efficacy needs to be coupled with minimal phlebotomy-related drug loss. In this review, the authors highlight potential applications for the currently existing and emerging technologies and offer several suggestions on how to close the development cycle of microfluidic devices for cardiovascular drug discovery. The ultimate goal in microfluidics research for drug discovery is to develop 'human-on-a-chip' systems, whereby several organ cultures, including the vasculature and the heart, can mimic complex interactions between the organs and body systems. This would provide in vivo-like pharmacokinetics and pharmacodynamics for drug ADMET assessment. At present, however, the great variety of available designs does not go hand in hand with their use by the pharmaceutical community.

  20. Cardiovascular function and basics of physiology in microgravity.

    PubMed

    Aubert, André E; Beckers, Frank; Verheyden, Bart

    2005-04-01

    Space exploration is a dream of mankind. However, this intriguing environment is not without risks. Life, and the human body, has developed all over evolution in the constant presence of gravity, especially from the moment on when living creatures left the ocean. When this gravitational force is no longer acting on the body, drastic changes occur. Some of these changes occur immediately, others progress only slowly. In the past 40 years of human space flight (first orbital flight by Yuri Gagarin on 12 April, 1961) several hazards for the human body have been identified. Bone mineral density is lost, muscle atrophy and cardiovascular deconditioning occur; pulmonary function, fluid regulating systems of the body, the sensory and the balance system are all disturbed by the lack of gravity. These changes in human physiology have to be reversed again when astronauts return to earth. This can cause adaptation problems, especially after long-duration space flights. Also the reaction of human physiology to radiation in space poses a huge risk at this moment. In this review the accent will be on cardiovascular function in space: how normal function is modified to reach a new equilibrium in space after short- and long-duration exposure to microgravity. In order to make long-duration space flight possible the mechanisms of this physiological adaptation must be understood to full extent. Only with this knowledge, effective countermeasures can be developed.

Top