Detection of cell mediated immune response to avian influenza viruses
USDA-ARS?s Scientific Manuscript database
In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...
Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad
2017-06-01
Intravenous transfer of LPS-treated bone marrow-derived dendritic cells blocks development of autoimmunity induced by CD4 + T cells in vivo. However, cellular mechanisms of dendritic cell-mediated immune tolerance have not yet been fully elucidated. Here, we report that there are two new subpopulations of CD4 + CD25 + FoxP3 + GITR + regulatory T cells (CD127 + 3G11 + and CD127 + 3G11 - cells). LPS-treated dendritic cells facilitate development of CD4 + CD127 + 3G11 - regulatory T cells but inhibit that of CD4 + CD127 + 3G11 + regulatory T cells. LPS-induced tolerogenic dendritic cells may cause immune tolerance through modulating balance of different subsets of CD4 + regulatory T cells mediated by CD127 and 3G11. Our results imply a new potential cellular mechanism of dendritic cell-mediated immune tolerance.
Cell-Mediated Immune Function and Cytokine Regulation During Space Flight
NASA Technical Reports Server (NTRS)
Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)
2000-01-01
The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusuf, Nabiha; Skin Diseases Research Center, University of Alabama at Birmingham, 1530 Third Avenue South, Birmingham, AL 35294-0009; Timares, Laura
Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8{sup +} T cells are effector cells in the response, whereasmore » CD4{sup +} T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents.« less
Tima, Hermann Giresse; Huygen, Kris; Romano, Marta
2016-11-01
Pathogen recognition receptors (PRRs) recognize pathogen-associated molecular patterns, triggering the induction of inflammatory innate responses and contributing to the development of specific adaptive immune responses. Novel adjuvants have been developed based on agonists of PRRs. Areas covered: Lipid pathogen-associated molecular patterns (PAMPs) present in the cell wall of mycobacteria are revised, with emphasis on agonists of C-type lectin receptors, signaling pathways, and preclinical data supporting their use as novel adjuvants inducing cell-mediated immune responses. Their potential use as lipid antigens in novel tuberculosis subunit vaccines is also discussed. Expert commentary: Few adjuvants are licensed for human use and mainly favour antibody-mediated protective immunity. Use of lipid PAMPs that trigger cell-mediated immune responses could lead to the development of adjuvants for vaccines against intracellular pathogens and cancer.
Russell, A S; Percy, J S; Grace, M
1975-01-01
It has been postulated that autoantibody formation occurs as a consequence of a depression of function of certain thymus-derived lymphocytes (T cells). We have examined cell-mediated immunity, a T-cell function, in infectious mononucleosis, a condition in which autoantibodies are known to develop. We have shown some evidence of depressed cell-mediated immunity in patients with infectious mononucleosis but have been unable to correlate this with autoantibody production. These results do not support the hypothesis that depression of T-cell function leads to autoantibody formation. PMID:1081930
Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance.
Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi
2017-01-01
Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.
Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance
Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi
2017-01-01
Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL. PMID:28424702
The role of B cells and humoral immunity in Mycobacterium tuberculosis infection.
Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M; Casadevall, Arturo; Flynn, JoAnne
2014-12-01
Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
The role of B cells and humoral immunity in Mycobacterium tuberculosis infection
Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M.; Casadevall, Arturo; Flynn, JoAnne
2014-01-01
Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. PMID:25458990
Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István
2014-01-01
In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.
Potentiation of T-cell mediated immunity by levamisole.
Renoux, G; Renoux, M; Teller, M N; McMahon, S; Guillaumin, J M
1976-01-01
Cell-mediated immunity is a requirement for recognition and elimination of cells and for prevention or treatment of a variety of diseases. Therefore, the development of a product potentially active in increasing immunity involves its testing in assays specific for cell-mediated immunity. The effectiveness of a single administration of levamisole was demonstrated in the rejection of isografts in a male to female C57BL/6 system, and on the enhancement of levels of the delayed type hypersensitivity (DTH) to sheep red cells (SRBC). Indeed, in five on nine tests, an injection of 25 mg/kg of levamisole to female recipients either on the day of grafting or 7 days after grafting resulted in a RT50% rejection time of 25 days, compared with 46 days in untreated controls. Levamisole administered at the time of immunization with various doses of SRBC elicited earlier, higher and more sustained DTH levels than in untreated controls. Such induction of T-cell activation was accompanied by a switch on anti-SRBC antibodies from IgM to IgG. These findings confirm and extend data evidencing the ability of levamisole to recruit and activate T cells for an increased or restored cell-mediated immunity. PMID:782749
Antitumor immune responses mediated by dendritic cells
Spel, Lotte; Boelens, Jaap-Jan; Nierkens, Stefan; Boes, Marianne
2013-01-01
Dendritic cells (DCs) are essential for the induction of adaptive immune responses against malignant cells by virtue of their capacity to effectively cross-present exogenous antigens to T lymphocytes. Dying cancer cells are indeed a rich source of antigens that may be harnessed for the development of DC-based vaccines. In particular, malignant cells succumbing to apoptosis, rather than necrosis, appear to release antigens in a manner that allows for the elicitation of adaptive immune responses. In this review, we describe the processes that mediate the cross-presentation of antigens released by apoptotic cancer cells to CD8+ T lymphocytes, resulting in the activation of protective tumor-specific immune responses. PMID:24482744
Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.
Mei, Yunhua; Wang, Ying; Xu, Lingyun
2007-05-15
Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.
The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation
Huang, Weishan; August, Avery
2015-01-01
T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115
de Alencar, Bruna C G; Persechini, Pedro M; Haolla, Filipe A; de Oliveira, Gabriel; Silverio, Jaline C; Lannes-Vieira, Joseli; Machado, Alexandre V; Gazzinelli, Ricardo T; Bruna-Romero, Oscar; Rodrigues, Mauricio M
2009-10-01
A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-gamma) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8(+) T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-gamma or IFN-gamma/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-gamma in the presence of highly cytotoxic T cells. Vaccinated IFN-gamma-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-gamma in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.
de Alencar, Bruna C. G.; Persechini, Pedro M.; Haolla, Filipe A.; de Oliveira, Gabriel; Silverio, Jaline C.; Lannes-Vieira, Joseli; Machado, Alexandre V.; Gazzinelli, Ricardo T.; Bruna-Romero, Oscar; Rodrigues, Mauricio M.
2009-01-01
A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4+ and CD8+ T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4+ and CD8+ T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-γ) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8+ T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-γ or IFN-γ/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-γ in the presence of highly cytotoxic T cells. Vaccinated IFN-γ-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-γ in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy. PMID:19651871
Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation
Nikolaev, Alexander
2016-01-01
To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications. PMID:27529074
Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis
NASA Astrophysics Data System (ADS)
Mitchell, Michael J.; Webster, Jamie; Chung, Amanda; Guimarães, Pedro P. G.; Khan, Omar F.; Langer, Robert
2017-03-01
Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces.
Immunopathology of inflammatory bowel disease
Wallace, Kori L; Zheng, Li-Bo; Kanazawa, Yoshitake; Shih, David Q
2014-01-01
Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed. PMID:24415853
Immunopathology of inflammatory bowel disease.
Wallace, Kori L; Zheng, Li-Bo; Kanazawa, Yoshitake; Shih, David Q
2014-01-07
Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed.
White, Katie D.; Chung, Wen-Hung; Hung, Shuen-Iu; Mallal, Simon; Phillips, Elizabeth J.
2015-01-01
Immune-mediated adverse drug reactions (IM-ADRs) are an underrecognized source of preventable morbidity, mortality, and cost. Increasingly, genetic variation in the HLA loci is associated with risk of severe reactions, highlighting the importance of T-cell immune responses in the mechanisms of both B-cell mediated and primary T-cell mediated IM-ADRs. In this review, we summarize the role of host genetics, microbes and drugs in the development of IM-ADRs, expand upon the existing models of IM-ADR pathogenesis to address multiple unexplained observations, discuss the implications of this work in clinical practice today, and describe future applications for pre-clinical drug toxicity screening, drug design, and development. PMID:26254049
Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity.
Weber, Alexander N R; Bittner, Zsofia; Liu, Xiao; Dang, Truong-Minh; Radsak, Markus Philipp; Brunner, Cornelia
2017-01-01
Bruton's tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.
Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches
Hawley, Dana M; Sydenstricker, Keila V; Kollias, George V; Dhondt, André A
2005-01-01
Evidence is accumulating that genetic variation within individual hosts can influence their susceptibility to pathogens. However, there have been few opportunities to experimentally test this relationship, particularly within outbred populations of non-domestic vertebrates. We performed a standardized pathogen challenge in house finches (Carpodacus mexicanus) to test whether multilocus heterozygosity across 12 microsatellite loci predicts resistance to a recently emerged strain of the bacterial pathogen, Mycoplasma gallisepticum (MG). We simultaneously tested whether the relationship between heterozygosity and pathogen susceptibility is mediated by differences in cell-mediated or humoral immunocompetence. We inoculated 40 house finches with MG under identical conditions and assayed both humoral and cell-mediated components of the immune response. Heterozygous house finches developed less severe disease when infected with MG, and they mounted stronger cell-mediated immune responses to phytohaemagglutinin. Differences in cell-mediated immunocompetence may, therefore, partly explain why more heterozygous house finches show greater resistance to MG. Overall, our results underscore the importance of multilocus heterozygosity for individual pathogen resistance and immunity. PMID:17148199
Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas
Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.
2000-01-01
Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a detectable immune response in green turtles.
Christian, Lisa M.
2011-01-01
It is well-established that psychological stress promotes immune dysregulation in nonpregnant humans and animals. Stress promotes inflammation, impairs antibody responses to vaccination, slows wound healing, and suppresses cell-mediated immune function. Importantly, the immune system changes substantially to support healthy pregnancy, with attenuation of inflammatory responses and impairment of cell-mediated immunity. This adaptation is postulated to protect the fetus from rejection by the maternal immune system. Thus, stress-induced immune dysregulation during pregnancy has unique implications for both maternal and fetal health, particularly preterm birth. However, very limited research has examined stress-immune relationships in pregnancy. The application of psychoneuroimmunology research models to the perinatal period holds great promise for elucidating biological pathways by which stress may affect adverse pregnancy outcomes, maternal health, and fetal development. PMID:21787802
NASA Astrophysics Data System (ADS)
Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan
2017-11-01
Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.
The Role of B Cells and Humoral Immunity in Mycobacterium tuberculosis Infection
Kozakiewicz, Lee; Phuah, Jiayao; Flynn, JoAnne
2014-01-01
Tuberculosis (TB) remains a serious threat to public health, causing 2 million deaths annually world-wide. The control of TB has been hindered by the requirement of long duration of treatment involving multiple chemotherapeutic agents, the increased susceptibility to Mycobacterium tuberculosis infection in the HIV-infected population, and the development of multi-drug resistant and extensively resistant strains of tubercle bacilli. An efficacious and cost-efficient way to control TB is the development of effective anti-TB vaccines. This measure requires thorough understanding of the immune response to M. tuberculosis. While the role of cell-mediated immunity in the development of protective immune response to the tubercle bacillus has been well established, the role of B cells in this process is not clearly understood. Emerging evidence suggests that B cells and humoral immunity can modulate the immune response to various intracellular pathogens, including M. tuberculosis. These lymphocytes form conspicuous aggregates in the lungs of tuberculous humans, non-human primates, and mice, which display features of germinal center B cells. In murine TB, it has been shown that B cells can regulate the level of granulomatous reaction, cytokine production, and the T cell response. This chapter discusses the potential mechanisms by which specific functions of B cells and humoral immunity can shape the immune response to intracellular pathogens in general, and to M. tuberculosis in particular. Knowledge of the B cell-mediated immune response to M. tuberculosis may lead to the design of novel strategies, including the development of effective vaccines, to better control TB. PMID:23468112
Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W
2015-05-01
Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tumor-related interleukins: old validated targets for new anti-cancer drug development.
Setrerrahmane, Sarra; Xu, Hanmei
2017-09-19
In-depth knowledge of cancer molecular and cellular mechanisms have revealed a strong regulation of cancer development and progression by the inflammation which orchestrates the tumor microenvironment. Immune cells, residents or recruited, in the inflammation milieu can have rather contrasting effects during cancer development. Accumulated clinical and experimental data support the notion that acute inflammation could exert an immunoprotective effect leading to tumor eradication. However, chronic immune response promotes tumor growth and invasion. These reactions are mediated by soluble mediators or cytokines produced by either host immune cells or tumor cells themselves. Herein, we provide an overview of the current understanding of the role of the best-validated cytokines involved in tumor progression, IL-1, IL-4 and IL-6; in addition to IL-2 cytokines family, which is known to promote tumor eradication by immune cells. Furthermore, we summarize the clinical attempts to block or bolster the effect of these tumor-related interleukins in anti-cancer therapy development.
Cell-Mediated Immunity and Its Role in Resistance to Infection
Wing, Edward J.; Remington, Jack S.
1977-01-01
The recently acquired knowledge of the importance of cell-mediated immunity in many illnesses and the discovery of a variety of substances that can restore certain cell-mediated immune functions has served to focus the attention of physicians on this area of immunity. It is important for practicing physicians to have a clear understanding of current knowledge of the role of cell-mediated immunity in resistance to infection and how this arm of the immune system relates to the diagnosis and therapy of infectious diseases. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:318786
NASA Astrophysics Data System (ADS)
Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle
1992-07-01
Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.
A number of allergic and autoimmune disorders, such as Crohn’s disease, asthma, type I diabetes and multiple sclerosis, are associated with polymorphisms in a gene encoding the transcription factor, BACH2. Despite this, the mechanism Bach2 uses to prevent immune-mediated diseases was not known. To function appropriately, the immune system relies on a delicate balance between immune-stimulating and immune-regulating cells. When immune-stimulating cells become too active, or immune-regulating cells become ineffective, autoimmune and allergic diseases can ensue.
NK cells interactions with dendritic cells shape innate and adaptive immunity.
Brilot, Fabienne; Strowig, Till; Munz, Christian
2008-05-01
While natural killer (NK) cells received their name from their ability to mediate spontaneous cytotoxicity, it has recently become clear that they require activation to target most transformed and infected cells. Dendritic cells (DCs) have been shown to mediate NK cell activation during innate immune responses. Surprisingly, this interaction was recently reported to be required to restrict infections by NK cells, and to take place in secondary lymphoid organs. Here we review these recent studies on NK cell interactions with DCs, discuss the molecular mechanisms underlying the cross-talk between these two innate lymphocyte populations, and out-line how DCs and NK cells synergize to enhance innate immunity against microbes and tumors as well as shape the adaptive immune system. Based on this better understanding, we propose that NK cells should be targeted for their protective functions and as an adjuvant during immunotherapy development.
Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete
2009-07-30
The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.
Protein S is inducible by interleukin 4 in T cells and inhibits lymphoid cell procoagulant activity
Smiley, Stephen T.; Boyer, Sarah N.; Heeb, Mary J.; Griffin, John H.; Grusby, Michael J.
1997-01-01
Extravascular procoagulant activity often accompanies cell-mediated immune responses and systemic administration of pharmacologic anticoagulants prevents cell-mediated delayed-type hypersensitivity reactions. These observations suggest a direct association between coagulation and cell-mediated immunity. The cytokine interleukin (IL)-4 potently suppresses cell-mediated immune responses, but its mechanism of action remains to be determined. Herein we demonstrate that the physiologic anticoagulant protein S is IL-4-inducible in primary T cells. Although protein S was known to inhibit the classic factor Va-dependent prothrombinase assembled by endothelial cells and platelets, we found that protein S also inhibits the factor Va-independent prothrombinase assembled by lymphoid cells. Thus, protein S-mediated down-regulation of lymphoid cell procoagulant activity may be one mechanism by which IL-4 antagonizes cell-mediated immunity. PMID:9326636
Burkitt Lymphoma: Pathogenesis and Immune Evasion
God, Jason M.; Haque, Azizul
2010-01-01
B-cell lymphomas arise at distinct stages of cellular development and maturation, potentially influencing antigen (Ag) presentation and T-cell recognition. Burkitt lymphoma (BL) is a highly malignant B-cell tumor associated with Epstein-Barr Virus (EBV) infection. Although BL can be effectively treated in adults and children, leading to high survival rates, its ability to mask itself from the immune system makes BL an intriguing disease to study. In this paper, we will provide an overview of BL and its association with EBV and the c-myc oncogene. The contributions of EBV and c-myc to B-cell transformation, proliferation, or attenuation of cellular network and immune recognition or evasion will be summarized. We will also discuss the various pathways by which BL escapes immune detection by inhibiting both HLA class I- and II-mediated Ag presentation to T cells. Finally, we will provide an overview of recent developments suggesting the existence of BL-associated inhibitory molecules that may block HLA class II-mediated Ag presentation to CD4+ T cells, facilitating immune escape of BL. PMID:20953370
Immunosuppression associated with chronic inflammation in the tumor microenvironment
Wang, Dingzhi; DuBois, Raymond N.
2015-01-01
Chronic inflammation contributes to cancer development via multiple mechanisms. One potential mechanism is that chronic inflammation can generate an immunosuppressive microenvironment that allows advantages for tumor formation and progression. The immunosuppressive environment in certain chronic inflammatory diseases and solid cancers is characterized by accumulation of proinflammatory mediators, infiltration of immune suppressor cells and activation of immune checkpoint pathways in effector T cells. In this review, we highlight recent advances in our understanding of how immunosuppression contributes to cancer and how proinflammatory mediators induce the immunosuppressive microenvironment via induction of immunosuppressive cells and activation of immune checkpoint pathways. PMID:26354776
Immune mechanism: a 'double-edged sword'.
Musa, Mustaffa
2013-05-01
Immunology has now developed into an independent discipline in medicine which covers not only germ infection which is related to immunity solely but also covers a lot of non-infectious diseases such as autoimmune disease, allergies, and others. Therefore, "The Immune Mechanism: "A Double-Edged Sword" means that the immune mechanism (consisted of antibody mediated mechanism and T cell mediated mechanism), just like one edge playing the role of giving benefit (immunity) as it destroys the agent of infection, and another one can be detrimental as it will cause tissue/cell damages and then give rise to immune diseases (immunopathology). Now, the prevalence of these immune diseases is on the rise and has become a new challenge to our country towards developed country in 2020. Therefore, we have to make ample preparation (laboratory facilities/services, main power, and research) from now on in order to face the problems and challenges.
Kamran, Neha; Kadiyala, Padma; Saxena, Meghna; Candolfi, Marianela; Li, Youping; Moreno-Ayala, Mariela A; Raja, Nicholas; Shah, Diana; Lowenstein, Pedro R; Castro, Maria G
2017-01-04
Survival of glioma (GBM) patients treated with the current standard of care remains dismal. Immunotherapeutic approaches that harness the cytotoxic and memory potential of the host immune system have shown great benefit in other cancers. GBMs have developed multiple strategies, including the accumulation of myeloid-derived suppressor cells (MDSCs) to induce immunosuppression. It is therefore imperative to develop multipronged approaches when aiming to generate a robust anti-tumor immune response. Herein, we tested whether combining MDSC depletion or checkpoint blockade would augment the efficacy of immune-stimulatory herpes simplex type-I thymidine kinase (TK) plus Fms-like tyrosine kinase ligand (Flt3L)-mediated immune stimulatory gene therapy. Our results show that MDSCs constitute >40% of the tumor-infiltrating immune cells. These cells express IL-4Rα, inducible nitric oxide synthase (iNOS), arginase, programmed death ligand 1 (PDL1), and CD80, molecules that are critically involved in antigen-specific T cell suppression. Depletion of MDSCs strongly enhanced the TK/Flt3L gene therapy-induced tumor-specific CD8 T cell response, which lead to increased median survival and percentage of long-term survivors. Also, combining PDL1 or CTLA-4 immune checkpoint blockade greatly improved the efficacy of TK/Flt3L gene therapy. Our results, therefore, indicate that blocking MDSC-mediated immunosuppression holds great promise for increasing the efficacy of gene therapy-mediated immunotherapies for GBM. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
A Proinflammatory Role of Type 2 Innate Lymphoid Cells in Murine Immune-Mediated Hepatitis.
Neumann, Katrin; Karimi, Khalil; Meiners, Jana; Voetlause, Ruth; Steinmann, Silja; Dammermann, Werner; Lüth, Stefan; Asghari, Farahnaz; Wegscheid, Claudia; Horst, Andrea K; Tiegs, Gisa
2017-01-01
Type 2 innate lymphoid cells (ILC2) mediate inflammatory immune responses in the context of diseases triggered by the alarmin IL-33. In recent years, IL-33 has been implicated in the pathogenesis of immune-mediated liver diseases. However, the immunoregulatory function of ILC2s in the inflamed liver remains elusive. Using the murine model of Con A-induced immune-mediated hepatitis, we showed that selective expansion of ILC2s in the liver was associated with highly elevated hepatic IL-33 expression, severe liver inflammation, and infiltration of eosinophils. CD4 + T cell-mediated tissue damage and subsequent IL-33 release were responsible for the activation of hepatic ILC2s that produced the type 2 cytokines IL-5 and IL-13 during liver inflammation. Interestingly, ILC2 depletion correlated with less severe hepatitis and reduced accumulation of eosinophils in the liver, whereas adoptive transfer of hepatic ILC2s aggravated liver inflammation and tissue damage. We further showed that, despite expansion of hepatic ILC2s, 3-d IL-33 treatment before Con A challenge potently suppressed development of immune-mediated hepatitis. We found that IL-33 not only activated hepatic ILC2s but also expanded CD4 + Foxp3 + regulatory T cells (Treg) expressing the IL-33 receptor ST2 in the liver. This Treg subset also accumulated in the liver during resolution of immune-mediated hepatitis. In summary, hepatic ILC2s are poised to respond to the release of IL-33 upon liver tissue damage through expression of type 2 cytokines thereby participating in the pathogenesis of immune-mediated hepatitis. Inflammatory activity of ILC2s might be regulated by IL-33-elicited ST2 + Tregs that also arise in immune-mediated hepatitis. Copyright © 2016 by The American Association of Immunologists, Inc.
Finlay, Conor M; Walsh, Kevin P; Mills, Kingston H G
2014-05-01
Helminth parasites are highly successful pathogens, chronically infecting a quarter of the world's population, causing significant morbidity but rarely causing death. Protective immunity and expulsion of helminths is mediated by T-helper 2 (Th2) cells, type 2 (M2) macrophages, type 2 innate lymphoid cells, and eosinophils. Failure to mount these type 2 immune responses can result in immunopathology mediated by Th1 or Th17 cells. Helminths have evolved a wide variety of approaches for immune suppression, especially the generation of regulatory T cells and anti-inflammatory cytokines interleukin-10 and transforming growth factor-β. This is a very effective strategy for subverting protective immune responses to prolong their survival in the host but has the bystander effect of modulating immune responses to unrelated antigens. Epidemiological studies in humans have shown that infection with helminth parasites is associated with a low incidence of allergy/asthma and autoimmunity in developing countries. Experimental studies in mice have demonstrated that regulatory immune responses induced by helminth can suppress Th2 and Th1/Th17 responses that mediate allergy and autoimmunity, respectively. This has provided a rational explanation of the 'hygiene hypothesis' and has also led to the exploitation of helminths or their immunomodulatory products in the development of new immunosuppressive therapies for inflammatory diseases in humans. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B.; Zhang, Donna D.; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu
2016-01-01
Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity. PMID:27573825
Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B; Zhang, Donna D; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu
2016-09-13
Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity.
Host Immune Response to Influenza A Virus Infection.
Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long
2018-01-01
Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.
Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies.
Sun, Chuang; Dotti, Gianpietro; Savoldo, Barbara
2016-06-30
Hematologic malignancies provide a suitable testing environment for cell-based immunotherapies, which were pioneered by the development of allogeneic hematopoietic stem cell transplant. All types of cell-based therapies, from donor lymphocyte infusion to dendritic cell vaccines, and adoptive transfer of tumor-specific cytotoxic T cells and natural killer cells, have been clinically translated for hematologic malignancies. The recent success of chimeric antigen receptor-modified T lymphocytes in B-cell malignancies has stimulated the development of this approach toward other hematologic tumors. Similarly, the remarkable activity of checkpoint inhibitors as single agents has created enthusiasm for potential combinations with other cell-based immune therapies. However, tumor cells continuously develop various strategies to evade their immune-mediated elimination. Meanwhile, the recruitment of immunosuppressive cells and the release of inhibitory factors contribute to the development of a tumor microenvironment that hampers the initiation of effective immune responses or blocks the functions of immune effector cells. Understanding how tumor cells escape from immune attack and favor immunosuppression is essential for the improvement of immune cell-based therapies and the development of rational combination approaches. © 2016 by The American Society of Hematology.
IL-9-producing cells in the development of IgE-mediated food allergy.
Shik, Dana; Tomar, Sunil; Lee, Jee-Boong; Chen, Chun-Yu; Smith, Andrew; Wang, Yui-Hsi
2017-01-01
Food allergy is a harmful immune reaction driven by uncontrolled type 2 immune responses. Considerable evidence demonstrates the key roles of mast cells, IgE, and TH2 cytokines in mediating food allergy. However, this evidence provides limited insight into why only some, rather than all, food allergic individuals are prone to develop life-threatening anaphylaxis. Clinical observations suggest that patients sensitized to food through the skin early in life may later develop severe food allergies. Aberrant epidermal thymic stromal lymphopoietin and interleukin (IL) 33 production and genetic predisposition can initiate an allergic immune response mediated by dendritic cells and CD4 + TH2 cells in inflamed skin. After allergic sensitization, intestinal IL-25 and food ingestion enhance concerted interactions between type 2 innate lymphoid cells (ILC2s) and CD4 + TH2 cells, which perpetuate allergic reactions from the skin to the gut. IL-4 and cross-linking of antigen/IgE/FcεR complexes induce emigrated mast cell progenitors to develop into the multi-functional IL-9-producing mucosal mast cells, which produce prodigious amounts of IL-9 and mast cell mediators to drive intestinal mastocytosis in an autocrine loop. ILC2s and TH9 cells may also serve as alternative cellular sources of IL-9 to augment the amplification of intestinal mastocytosis, which is the key cellular checkpoint in developing systemic anaphylaxis. These findings provide a plausible view of how food allergy develops and progresses in a stepwise manner and that atopic signals, dietary allergen ingestion, and inflammatory cues are fundamental in promoting life-threatening anaphylaxis. This information will aid in improving diagnosis and developing more effective therapies for food allergy-triggered anaphylaxis.
IL-9–producing cells in the development of IgE-mediated food allergy
Shik, Dana; Tomar, Sunil; Lee, Jee-Boong; Chen, Chun-Yu; Smith, Andrew; Wang, Yui-Hsi
2016-01-01
Food allergy is a harmful immune reaction driven by uncontrolled type-2 immune responses. Considerable evidence demonstrates the key roles of mast cells, IgE, and TH2 cytokines in mediating food allergy. However, this evidence provides limited insight into why only some, rather than all, food allergic individuals are prone to develop life-threatening anaphylaxis. Clinical observations suggest that patients sensitized to food through the skin early in life may later develop severe food allergies. Aberrant epidermal thymic stromal lymphopoietin and interleukin (IL) 33 production and genetic predisposition can initiate an allergic immune response mediated by dendritic cells and CD4+TH2 cells in inflamed skin. After allergic sensitization, intestinal IL-25 and food ingestion enhance concerted interactions between type-2 innate lymphoid cells (ILC2s) and CD4+TH2 cells, which perpetuate allergic reactions from skin to the gut. IL-4 and crosslinking of antigen/IgE/FcεR complexes induce emigrated mast cell progenitors to develop into the multi-functional IL-9–producing mucosal mast cells, which produce prodigious amounts of IL-9 and mast cell mediators to drive intestinal mastocytosis in an autocrine loop. ILC2s and TH9 cells may also serve as alternative cellular sources of IL-9 to augment the amplification of intestinal mastocytosis, which is the key cellular checkpoint in developing systemic anaphylaxis. These findings provide a plausible view of how food allergy develops and progresses in a stepwise manner and that atopic signals, dietary allergen ingestion, and inflammatory cues are fundamental in promoting life-threatening anaphylaxis. This information will aid in improving diagnosis and developing more effective therapies for food allergy–triggered anaphylaxis. PMID:27909880
B cell function in the immune response to helminths
Harris, Nicola
2010-01-01
Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556
The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.
Matlung, Hanke L; Szilagyi, Katka; Barclay, Neil A; van den Berg, Timo K
2017-03-01
Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Teng, Y-T A
2006-03-01
Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.
Neutrophils Are Central to Antibody-Mediated Protection against Genital Chlamydia.
Naglak, Elizabeth K; Morrison, Sandra G; Morrison, Richard P
2017-10-01
Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia -specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo , natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response. Copyright © 2017 Naglak et al.
Seasonal changes in the relationship between ornamentation and immune response in red jungle fowl
Zuk, M.; Johnsen, T. S.
1998-01-01
Resistance to disease is frequently suggested to be important in mate choice, but information about how immune status can be conveyed is lacking. During the breeding season, male red jungle fowl with large combs, a sexually selected trait, have lower levels of lymphocytes, but greater cell-mediated immunity, indicated by a cutaneous hypersensitivity response. Before the breeding season, however, both cell-mediated immunity and proportion of lymphocytes are positively correlated with comb length. Cell-mediated immunity is particularly important to jungle fowl during the breeding season, because the likelihood of injury during sexual competition is high and cell-mediated immunity is essential for healing wounds and resisting infection. This seasonal change in one aspect of immunity but not another suggests that the birds adaptively maintain certain immune system abilities, and that it can be misleading to use a single aspect of immune response in evaluating immunocompetence.
Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.
Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon
2018-03-01
B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.
Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death
Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P
2010-01-01
Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858
A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.
Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O
2010-12-02
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.
Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.
2011-01-01
This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell–mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 μg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell– and B cell–dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 μg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell–dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 μg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell–dependent histological correlates. We conclude that T cell–mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.
Nizhenkovska, Iryna V; Pidchenko, Vitalii T; Bychkova, Nina G; Bisko, Nina A; Rodnichenko, Angela Y; Kozyko, Natalya O
2015-09-01
The article presents the results of the investigation of the effect of biomass powder of the fungus Ganoderma lucidum on T-cell-mediated immunity in normal and immunosuppressed mice CBA/Ca. Delayed-type hypersensitivity assay was used. Experimental immunodeficiency was established with intraperitoneal injection of the immunosuppressant cyclophosphamide at a single dose of 150 mg/kg on the first day of the experiment. Results of the study show that the administration of biomass powder of Ganoderma lucidum in a dose of 0.5 mg/kg orally for 10 days increases the delayed-type hypersensitivity response in normal mice CBA/Ca. Administration of 0.5 mg/kg of biomass powder of the fungus Ganoderma lucidum for 10 days blocked the development of the T-cell-mediated immunosuppression, induced by administration of cyclophosphamide and restored the delayed-type hypersensitivity response in immunosuppressed mice. Key words: fungus Ganoderma lucidum cyclophosphamide immunodeficiency T-cell-mediated immunity delayed-type hypersensitivity.
Selva, Kevin J; Kent, Stephen J; Parsons, Matthew S
2017-01-28
Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.
Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.
2016-01-01
Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913
Eosinophils in mucosal immune responses
Travers, J; Rothenberg, M E
2015-01-01
Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184
Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S
2013-12-12
Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance. Copyright © 2013 Elsevier Inc. All rights reserved.
Li, Ju-Pi; Yang, Chia-Yu; Chuang, Huai-Chia; Lan, Joung-Liang; Chen, Der-Yuan; Chen, Yi-Ming; Wang, Xiaohong; Chen, Alice J; Belmont, John W; Tan, Tse-Hua
2014-04-09
JNK pathway-associated phosphatase (JKAP, also known as DUSP22 or JSP-1) is a JNK activator. The in vivo role of JKAP in immune regulation remains unclear. Here we report that JKAP directly inactivates Lck by dephosphorylating tyrosine-394 residue during T-cell receptor (TCR) signalling. JKAP-knockout T cells display enhanced cell proliferation and cytokine production. JKAP-knockout mice show enhanced T-cell-mediated immune responses and are more susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, the recipient mice that are adoptively transferred with JKAP-knockout T cells show exacerbated EAE symptoms. Aged JKAP-knockout mice spontaneously develop inflammation and autoimmunity. Thus, our results indicate that JKAP is an important phosphatase that inactivates Lck in the TCR signalling turn-off stage, leading to suppression of T-cell-mediated immunity and autoimmunity.
Metabolism of murine TH 17 cells: Impact on cell fate and function.
Wang, Ran; Solt, Laura A
2016-04-01
An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Utility of Clostridium difficile toxin B for inducing anti-tumor immunity.
Huang, Tuxiong; Li, Shan; Li, Guangchao; Tian, Yuan; Wang, Haiying; Shi, Lianfa; Perez-Cordon, Gregorio; Mao, Li; Wang, Xiaoning; Wang, Jufang; Feng, Hanping
2014-01-01
Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.
Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen
2013-01-01
Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415
Kong, Hongmei; Dong, Chunsheng; Xiong, Sidong
2014-01-01
Development of effective anti-tuberculosis (TB) vaccines is one of the important steps to improve control of TB. Cell-mediated immune response significantly affects the control of M. tuberculosis infection. Thus, vaccines able to elicit strong cellular immune response hold special advantages against TB. In this study, three well-defined mycobacterial antigens (Rv3615c, Mtb10.4 [Rv0228], and Rv2660c) were engineered as a novel triple-antigen fusion DNA vaccine p846. The p846 vaccine consists of a high density of CD4(+) and CD8(+) T-cell epitopes. Intramuscular immunization of p846 induced robust T cells mediated immune response comparable to that of bacillus Calmette-Guérin (BCG) vaccination but more effective than that of individual antigen vaccination. After mycobacterial challenge, p846 immunization decreased bacterial burden at least 15-fold compared with individual antigen-based vaccination. Notably, the lungs of mice immunized with p846 exhibited fewer inflammatory cell infiltrates and less damage than those of control group mice. Our data demonstrate that the potential of p846 vaccine to protect against TB and the feasibility of this design strategy for further TB vaccine development.
Innate cell communication kick-starts pathogen-specific immunity
Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.
2016-01-01
Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843
Hix, Laura M.; Shi, Yihui H.; Brutkiewicz, Randy R.; Stein, Paul L.; Wang, Chyung-Ru; Zhang, Ming
2011-01-01
Background Tumor tolerance and immune suppression remain formidable obstacles to the efficacy of immunotherapies that harness the immune system to eradicate breast cancer. A novel syngeneic mouse model of breast cancer metastasis was developed in our lab to investigate mechanisms of immune regulation of breast cancer. Comparative analysis of low-metastatic vs. highly metastatic tumor cells isolated from these mice revealed several important genetic alterations related to immune control of cancer, including a significant downregulation of cd1d1 in the highly metastatic tumor cells. The cd1d1 gene in mice encodes the MHC class I-like molecule CD1d, which presents glycolipid antigens to a specialized subset of T cells known as natural killer T (NKT) cells. We hypothesize that breast cancer cells, through downregulation of CD1d and subsequent evasion of NKT-mediated antitumor immunity, gain increased potential for metastatic tumor progression. Methodology/Principal Findings In this study, we demonstrate in a mouse model of breast cancer metastasis that tumor downregulation of CD1d inhibits iNKT-mediated antitumor immunity and promotes metastatic breast cancer progression in a CD1d-dependent manner in vitro and in vivo. Using NKT-deficient transgenic mouse models, we demonstrate important differences between type I and type II NKT cells in their ability to regulate antitumor immunity of CD1d-expressing breast tumors. Conclusions/Significance The results of this study emphasize the importance of determining the CD1d expression status of the tumor when tailoring NKT-based immunotherapies for the prevention and treatment of metastatic breast cancer. PMID:21695190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramshaw, I.A.; Woodsworth, M.; Eidinger, D.
1979-01-01
When normal mouse spleen cells are cultured in vitro, large numbers of cells develop that produce antibody toward antigens found on bromelain-treated mouse erythrocytes (BrMRBC). The in vitro culture also generates T cells that mediate DTH toward these antigens. We have suggested that under in vivo conditions, suppressor T cells maintain these immune responses at a low level but that this suppression wanes when the cells are cultured in vitro. The present study examines the effect of concanavalin A (Con A) on the in vitro development of humoral and cell-mediated immunity to BrMRBC. Mitogenic concentrations of Con A prevented themore » development of both the PFC and T/sub DTH/ responses toward BrMRBC. The Con A-induced suppression was due to the induction of suppressor T cells; thus the addition of Con A-activated cells to fresh spleen cell cultures prevented the development of both the PFC and T/sub DTH/ response against BrMRBC.« less
B cell biology: implications for treatment of systemic lupus erythematosus.
Anolik, J H
2013-04-01
B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread utilization of B cell depletion therapy in autoimmune diseases and the need for new therapeutic approaches in SLE, a better understanding of human B cell subsets and the balance of pathogenic and regulatory functions is of the essence.
RORC2 is involved in T cell polarization through interaction with the FOXP3 promoter.
Burgler, Simone; Mantel, Pierre-Yves; Bassin, Claudio; Ouaked, Nadia; Akdis, Cezmi A; Schmidt-Weber, Carsten B
2010-06-01
The process of Th cell differentiation toward polarized effector T cells tailors specific immunity against invading pathogens while allowing tolerance against commensal microorganisms, harmless allergens, or autologous Ags. Identification of the mechanisms underlying this polarization process is therefore central to understand how the immune system confers immunity and tolerance. The present study demonstrates that retinoic acid receptor-related orphan receptor C2 (RORC2), a key transcription factor in Th17 cell development, inhibits FOXP3 expression in human T cells. Although overexpression of RORC2 in naive T cells reduces levels of FOXP3, small interfering RNA-mediated knockdown of RORC2 enhances its expression. RORC2 mediates this inhibition at least partially by binding to two out of four ROR-responsive elements on the FOXP3 promoter. Knockdown of RORC2 promotes high FOXP3 levels and decreased expression of proinflammatory cytokines beta form of pro-IL-1, IL-6, IL-17A, IFN-gamma, and TNF-alpha in differentiating naive T cells, suggesting that the role of RORC2 in Th17 cell development involves not only induction of Th17-characteristic genes, but also suppression of regulatory T cell-specific programs. Together, this study identifies RORC2 as a polarizing factor in transcriptional cross-regulation and provides novel viewpoints on the control of immune tolerance versus effector immune responses.
Hata, Atsuko; Inoue, Fukue; Yamasaki, Midori; Fujikawa, Jun; Kawasaki, Yukiko; Hamamoto, Yoshiyuki; Honjo, Sachiko; Moriishi, Eiko; Mori, Yasuko; Koshiyama, Hiroyuki
2013-09-01
To evaluate varicella zoster virus-specific cell-mediated immunity and humoral immunogenicity against the herpes zoster vaccine, which is licensed as the Live Varicella Vaccine (Oka Strain) in Japan, in elderly people with or without diabetes mellitus. A pilot study was conducted between May 2010 and November 2010 at Kitano Hospital, a general hospital in the city of Osaka in Japan. A varicella skin test, interferon-gamma enzyme-linked immunospot assay and immunoadherence hemagglutination tests were performed 0, 3, and 6 months after vaccination. Vaccine safety was also assessed using questionnaires for 42 days and development of zoster during the one-year observational period. We enrolled 10 healthy volunteers and 10 patients with diabetes mellitus aged 60-70 years. The live herpes zoster vaccine boosted virus-specific, cell-mediated and humoral immunity between elderly people, with or without diabetes. Moreover, no systemic adverse reaction was found. None of the study participants developed herpes zoster. The live herpes zoster vaccine was used safely. It effectively enhanced specific immunity to varicella zoster virus in older people with or without diabetes mellitus. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Vitamin D, the immune system and asthma
Lange, Nancy E; Litonjua, Augusto; Hawrylowicz, Catherine M; Weiss, Scott
2010-01-01
The effects of vitamin D on bone metabolism and calcium homeostasis have long been recognized. Emerging evidence has implicated vitamin D as a critical regulator of immunity, playing a role in both the innate and cell-mediated immune systems. Vitamin D deficiency has been found to be associated with several immune-mediated diseases, susceptibility to infection and cancer. Recently, there has been increasing interest in the possible link between vitamin D and asthma. Further elucidation of the role of vitamin D in lung development and immune system function may hold profound implications for the prevention and treatment of asthma. PMID:20161622
Bennett, M W; O'connell, J; O'sullivan, G C; Roche, D; Brady, C; Kelly, J; Collins, J K; Shanahan, F
1999-02-01
Despite being immunogenic, gastric cancers overcome antitumour immune responses by mechanisms that have yet to be fully elucidated. Fas ligand (FasL) is a molecule that induces Fas receptor mediated apoptosis of activated immunocytes, thereby mediating normal immune downregulatory roles including immune response termination, tolerance acquisition, and immune privilege. Colon cancer cell lines have previously been shown to express FasL and kill lymphoid cells by Fas mediated apoptosis in vitro. Many diverse tumours have since been found to express FasL suggesting that a "Fas counterattack" against antitumour immune effector cells may contribute to tumour immune escape. To ascertain if human gastric tumours express FasL in vivo, as a potential mediator of immune escape in stomach cancer. Thirty paraffin wax embedded human gastric adenocarcinomas. FasL protein was detected in gastric tumours using immunohistochemistry; FasL mRNA was detected in the tumours using in situ hybridisation. Cell death was detected in situ in tumour infiltrating lymphocytes using terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL). Prevalent expression of FasL was detected in all 30 resected gastric adenocarcinomas examined. In the tumours, FasL protein and mRNA were co-localised to neoplastic gastric epithelial cells, confirming expression by the tumour cells. FasL expression was independent of tumour stage, suggesting that it may be expressed throughout gastric cancer progression. TUNEL staining disclosed a high level of cell death among lymphocytes infiltrating FasL positive areas of tumour. Human gastric adenocarcinomas express the immune downregulatory molecule, FasL. The results suggest that FasL is a prevalent mediator of immune privilege in stomach cancer.
Nakatsuka, Yoshinari; Vandenbon, Alexis; Mino, Takashi; Yoshinaga, Masanori; Uehata, Takuya; Cui, Xiaotong; Sato, Ayuko; Tsujimura, Tohru; Suzuki, Yutaka; Sato, Atsuyasu; Handa, Tomohiro; Chin, Kazuo; Sawa, Teiji; Hirai, Toyohiro; Takeuchi, Osamu
2018-04-25
Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against P. aeruginosa infection. Intratracheal treatment of mice with heat-killed P. aeruginosa resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against P. aeruginosa but also enhanced secretion of Pseudomonas-specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against P. aeruginosa re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.
2015-09-01
Award Number: W81XWH-11-1-0384 TITLE: Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for...Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy 5b. GRANT NUMBER CA100463 5c...Listeria monocytogenes (Lm) on human dendritic cells (DCs) to optimize Lm-based DC cancer vaccines. The project aims are: 1) Compare the activation and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fullerton, Aaron M., E-mail: fuller22@msu.edu; Roth, Robert A., E-mail: rothr@msu.edu; Ganey, Patricia E., E-mail: ganey@msu.edu
Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injurymore » resulting from moderate doses of Con A (4–10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell–cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression. -- Highlights: ► TCDD pretreatment sensitizes mice to Con A-induced hepatotoxicity. ► TCDD pretreatment increased concentration of IFNγ in plasma after Con A. ► Con A-induced activation of NKT cells was increased by TCDD pretreatment. ► FasL-positive NKT cells increased with TCDD pretreatment versus Con A alone. ► IFNγ and FasL are critical to the development of liver injury from TCDD/Con A.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yong, E-mail: yongzhao@uic.edu; Guo, Chengshan; Hwang, David
2010-09-03
Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model inmore » NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.« less
Barrier Epithelial Cells and the Control of Type 2 Immunity.
Hammad, Hamida; Lambrecht, Bart N
2015-07-21
Type-2-cell-mediated immunity, rich in eosinophils, basophils, mast cells, CD4(+) T helper 2 (Th2) cells, and type 2 innate lymphoid cells (ILC2s), protects the host from helminth infection but also drives chronic allergic diseases like asthma and atopic dermatitis. Barrier epithelial cells (ECs) represent the very first line of defense and express pattern recognition receptors to recognize type-2-cell-mediated immune insults like proteolytic allergens or helminths. These ECs mount a prototypical response made up of chemokines, innate cytokines such as interleukin-1 (IL-1), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), as well as the alarmins uric acid, ATP, HMGB1, and S100 proteins. These signals program dendritic cells (DCs) to mount Th2-cell-mediated immunity and in so doing boost ILC2, basophil, and mast cell function. Here we review the general mechanisms of how different stimuli trigger type-2-cell-mediated immunity at mucosal barriers and how this leads to protection or disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Hamilton, Duane H; McCampbell, Kristen K; Palena, Claudia
2018-01-01
The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8 + T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8 + T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial-mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of brachyury could be alleviated via the use of a WEE1 inhibitor. Several vaccine platforms targeting brachyury have been developed and are undergoing clinical evaluation. These studies provide further rationale for the use of WEE1 inhibition in combination with brachyury-based immunotherapeutic approaches.
Hamilton, Duane H.; McCampbell, Kristen K.; Palena, Claudia
2018-01-01
The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8+ T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8+ T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial–mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of brachyury could be alleviated via the use of a WEE1 inhibitor. Several vaccine platforms targeting brachyury have been developed and are undergoing clinical evaluation. These studies provide further rationale for the use of WEE1 inhibition in combination with brachyury-based immunotherapeutic approaches. PMID:29774202
Microbiota regulate the development and function of the immune cells.
Yu, Qing; Jia, Anna; Li, Yan; Bi, Yujing; Liu, Guangwei
2018-03-04
Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.
Regulatory immune cells and functions in autoimmunity and transplantation immunology.
Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit
2017-05-01
In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
76 FR 49776 - The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
... antibodies and cell- mediated immune responses, with both clinical and immunological outcomes similar to... appropriate, and to comparative human immune response data. As for any biologic product, licensure of new...
Frawley, Rachel P; Smith, Matthew J; White, Kimber L; Elmore, Susan A; Herbert, Ron; Moore, Rebecca; Staska, Lauren M; Behl, Mamta; Hooth, Michelle J; Kissling, Grace E; Germolec, Dori R
2016-09-01
Tungsten is a naturally occurring, high-tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0-2000 mg STD/L in their drinking water for 28 d, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3(+) T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely affect cell-mediated immunity.
Frawley, Rachel P.; Smith, Matthew J.; White, Kimber L; Elmore, Susan; Herbert, Ron; Moore, Rebecca; Staska, Lauren M.; Behl, Mamta; Hooth, Michelle J.; Kissling, Grace E.; Germolec, Dori R.
2018-01-01
Tungsten is a naturally occurring, high tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0–2000 mg STD/L in their drinking water for 28 days, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3+ T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely effect cell-mediated immunity. PMID:27223060
Gurung, Ratna B.; Begg, Douglas J.; Purdie, Auriol C.; de Silva, Kumudika; Bannantine, John P.
2014-01-01
Johne's disease in ruminants is a chronic infection of the intestines caused by Mycobacterium avium subsp. paratuberculosis. An important strategy to control disease is early detection, and a potentially efficient method for early detection is measurement of cell-mediated immune responses developed by the host in response to exposure or infection. One method is to measure lymphoproliferation and cytokine release from the host cells when exposed to the organism or parts of the organism. In this study, 10 recombinant M. avium subsp. paratuberculosis proteins known to be upregulated under in vitro stress conditions were evaluated by examining their ability to evoke memory as a result of exposure by vaccination or oral challenge with live Mycobacterium avium subsp. paratuberculosis. Out of 10 proteins, MAP2698c was found to induce higher cell-mediated immune responses in vaccinated and challenged sheep in comparison to healthy controls. The findings suggest that not all stress-regulated proteins have the diagnostic potential to detect cell-mediated immune responses in ovine paratuberculosis. PMID:24695774
Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.
Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E
2009-11-01
Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.
Biology of the blood-nerve barrier and its alteration in immune mediated neuropathies.
Kanda, Takashi
2013-02-01
The blood-nerve barrier (BNB) is a dynamic and competent interface between the endoneurial microenvironment and the surrounding extracellular space or blood. It is localised at the innermost layer of the multilayered ensheathing perineurium and endoneurial microvessels, and is the key structure that controls the internal milieu of the peripheral nerve parenchyma. Since the endoneurial BNB is the point of entry for pathogenic T cells and various soluble factors, including cytokines, chemokines and immunoglobulins, understanding this structure is important to prevent and treat human immune mediated neuropathies such as Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein and skin changes) syndrome and a subset of diabetic neuropathy. However, compared with the blood-brain barrier, only limited knowledge has been accumulated regarding the function, cell biology and clinical significance of the BNB. This review describes the basic structure and functions of the endoneurial BNB, provides an update of the biology of the cells comprising the BNB, and highlights the pathology and pathomechanisms of BNB breakdown in immune mediated neuropathies. The human immortalised cell lines of BNB origin established in our laboratory will facilitate the future development of BNB research. Potential therapeutic strategies for immune mediated neuropathies manipulating the BNB are also discussed.
Ion Channels in Innate and Adaptive Immunity
Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.
2016-01-01
Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976
Nutritionally mediated programming of the developing immune system.
Palmer, Amanda C
2011-09-01
A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.
USDA-ARS?s Scientific Manuscript database
The innate immune cell populations that mediate metazoan parasite expulsion remain largely undefined. We examined the role of innate cells in the immune response to the nematode parasite Nippostrongylus brasiliensis hypothesizing that they may mediate the markedly accelerated CD4+ T cell-independen...
Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells.
Rydyznski, Carolyn; Daniels, Keith A; Karmele, Erik P; Brooks, Taylor R; Mahl, Sarah E; Moran, Michael T; Li, Caimei; Sutiwisesak, Rujapak; Welsh, Raymond M; Waggoner, Stephen N
2015-02-27
The goal of most vaccines is the induction of long-lived memory T and B cells capable of protecting the host from infection by cytotoxic mechanisms, cytokines and high-affinity antibodies. However, efforts to develop vaccines against major human pathogens such as HIV and HCV have not been successful, thereby highlighting the need for novel approaches to circumvent immunoregulatory mechanisms that limit the induction of protective immunity. Here, we show that mouse natural killer (NK) cells inhibit generation of long-lived virus-specific memory T- and B cells as well as virus-specific antibody production after acute infection. Mechanistically, NK cells suppressed CD4 T cells and follicular helper T cells (T(FH)) in a perforin-dependent manner during the first few days of infection, resulting in a weaker germinal centre (GC) response and diminished immune memory. We anticipate that innovative strategies to relieve NK cell-mediated suppression of immunity should facilitate development of efficacious new vaccines targeting difficult-to-prevent infections.
Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel
Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.
2009-01-01
Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579
Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications
Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu
2017-01-01
The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809
Liu, Chengwen; Lou, Yanyan; Lizée, Gregory; Qin, Hong; Liu, Shujuan; Rabinovich, Brian; Kim, Grace J; Wang, Yi-Hong; Ye, Yang; Sikora, Andrew G; Overwijk, Willem W; Liu, Yong-Jun; Wang, Gang; Hwu, Patrick
2008-03-01
A prerequisite for strong adaptive antiviral immunity is the robust initial activation of the innate immune system, which is frequently mediated by TLR-activated plasmacytoid DCs (pDCs). Natural antitumor immunity is often comparatively weak, potentially due to the lack of TLR-mediated activation signals within the tumor microenvironment. To assess whether pDCs are capable of directly facilitating effective antitumor immune responses, mice bearing established subcutaneous B16 melanoma tumors were administered TLR9-activated pDCs directly into the tumor. We found that TLR9-activated pDCs induced robust, spontaneous CTL cross-priming against multiple B16 tumor antigens, leading to the regression of both treated tumors and untreated tumors at distant contralateral sites. This T cell cross-priming was mediated by conventional DCs (cDCs) and was completely dependent upon the early recruitment and activation of NK cells at the tumor site. NK cell recruitment was mediated by CCR5 via chemokines secreted by pDCs, and optimal IFN-gamma production by NK cells was mediated by OX40L expressed by pDCs. Our data thus demonstrated that activated pDCs are capable of initiating effective and systemic antitumor immunity through the orchestration of an immune cascade involving the sequential activation of NK cells, cDCs, and CD8(+) T cells.
Jiménez de Bagüés, M P; Elzer, P H; Jones, S M; Blasco, J M; Enright, F M; Schurig, G G; Winter, A J
1994-01-01
Vaccination of BALB/c mice with live Brucella abortus RB51, a stable rough mutant, produced protection against challenge with virulent strains of Brucella abortus, Brucella melitensis, and Brucella ovis. Passive-transfer experiments indicated that vaccinated mice were protected against B. abortus 2308 through cell-mediated immunity, against B. ovis PA through humoral immunity, and against B. melitensis 16M through both forms of immunity. Live bacteria were required for the induction of protective cell-mediated immunity; vaccination with whole killed cells of strain RB51 failed to protect mice against B. abortus 2308 despite development of good delayed-type hypersensitivity reactions. Protective antibodies against the heterologous species were generated in vaccinated mice primarily through anamnestic responses following challenge infections. Growth of the antigenically unrelated bacterium Listeria monocytogenes in the spleens of vaccinated mice indicated that nonspecific killing by residual activated macrophages contributed minimally to protection. These results encourage the continued investigation of strain RB51 as an alternative vaccine against heterologous Brucella species. However, its usefulness against B. ovis would be limited if, as suggested here, epitopes critical for protective cell-mediated immunity are not shared between B. abortus and B. ovis. Images PMID:7927779
Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby
2016-02-01
Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk. Copyright © 2016 Chenery et al.
Regulatory T cells: mechanisms of differentiation and function.
Josefowicz, Steven Z; Lu, Li-Fan; Rudensky, Alexander Y
2012-01-01
The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.
Chlamydia suis and Chlamydia trachomatis induce multifunctional CD4 T cells in pigs.
Käser, T; Pasternak, J A; Delgado-Ortega, M; Hamonic, G; Lai, K; Erickson, J; Walker, S; Dillon, J R; Gerdts, V; Meurens, F
2017-01-03
Chlamydia trachomatis infections are the most prominent bacterial sexually-transmitted disease world-wide and a lot of effort is put into the development of an effective vaccine. Pigs have been shown to be a valuable animal model for C. trachomatis vaccine development. The aim of this study was to decipher the T-cell-mediated immune response to chlamydial infections including C. trachomatis and C. suis, the chlamydia species naturally infecting pigs with a demonstrated zoonotic potential. Vaginal infection of pigs with C. suis and C. trachomatis lasted from 3 to 21days and intra-uterine infection was still present after 21days in 3 out of 5 C. suis- and 4 out of 5 C. trachomatis-inoculated animals and caused severe pathological changes. Humoral immune responses including neutralizing antibodies were found predominantly in response to C. suis starting at 14days post inoculation. The T-cell-mediated immune responses to C. trachomatis and C. suis-infections started at 7days post inoculation and consisted mainly of CD4 + T cells which were either IFN-γ single cytokine-producing or IFN-γ/TNF-α double cytokine-producing T-helper 1 cells. IL-17-producing CD4 + T cells were rare or completely absent. The T-cell-mediated immune responses were triggered by both homologous or heterologous re-stimulation indicating that cross-protection between the two chlamydia species is possible. Thus, having access to a working genital C. suis and C. trachomatis infection model, efficient monitoring of the host-pathogen interactions, and being able to accurately assess the responses to infection makes the pig an excellent animal model for vaccine development which also could bridge the gap to the clinical phase for C. trachomatis vaccine research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Melo, Rossana C N; Weller, Peter F
2016-10-01
Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles - EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. Copyright © 2016 Elsevier Inc. All rights reserved.
Tumor immune evasion arises through loss of TNF sensitivity.
Kearney, Conor J; Vervoort, Stephin J; Hogg, Simon J; Ramsbottom, Kelly M; Freeman, Andrew J; Lalaoui, Najoua; Pijpers, Lizzy; Michie, Jessica; Brown, Kristin K; Knight, Deborah A; Sutton, Vivien; Beavis, Paul A; Voskoboinik, Ilia; Darcy, Phil K; Silke, John; Trapani, Joseph A; Johnstone, Ricky W; Oliaro, Jane
2018-05-18
Immunotherapy has revolutionized outcomes for cancer patients, but the mechanisms of resistance remain poorly defined. We used a series of whole-genome clustered regularly interspaced short palindromic repeat (CRISPR)-based screens performed in vitro and in vivo to identify mechanisms of tumor immune evasion from cytotoxic lymphocytes [CD8 + T cells and natural killer (NK) cells]. Deletion of key genes within the tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways provided protection of tumor cells from CD8 + T cell-mediated killing and blunted antitumor immune responses in vivo. Deletion of a number of genes in the TNF pathway also emerged as the key mechanism of immune evasion from primary NK cells. Our screens also identified that the metabolic protein 2-aminoethanethiol dioxygenase (Ado) modulates sensitivity to TNF-mediated killing by cytotoxic lymphocytes and is required for optimal control of tumors in vivo. Remarkably, we found that tumors delete the same genes when exposed to perforin-deficient CD8 + T cells, demonstrating that the dominant immune evasion strategy used by tumor cells is acquired resistance to T cell-derived cytokine-mediated antitumor effects. We demonstrate that TNF-mediated bystander killing is a potent T cell effector mechanism capable of killing antigen-negative tumor cells. In addition to highlighting the importance of TNF in CD8 + T cell- and NK cell-mediated killing of tumor cells, our study also provides a comprehensive picture of the roles of the TNF, IFN, and antigen presentation pathways in immune-mediated tumor surveillance. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
2014-07-01
and J.W. Young, Human dendritic cells : potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol, 2005. 175(3): p...by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine
The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.
Wang, Dashan
2018-06-01
The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.
The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases
Liu, Meifang; Zhang, Cai
2017-01-01
Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927
[Integration of Internal and Clinical Laboratory Medicine].
Hirokawa, Makoto
2015-03-01
The mission of our department is to contribute to diagnostic improvement in medicine in order to promote better outcomes. We have clinical expertise in internal medicine including primary care medicine, hematology, allergy, rheumatology, and nephrology. We also have expertise in clinical laboratory medicine and hospital infection control. Specific areas of academic interest include immune-mediated hematological diseases, allergic diseases, autoimmune diseases, and chronic kidney disease. Immune recovery following hematopoietic stem cell transplantation and the immunopathophysiology of bone marrow failure syndrome have been our main topics of interest, and we have been applying our knowledge of T-cell receptor diversity to these areas in order to explore the mechanisms of immunodeficiency and autoimmunity in hematological disorders. We have found that the peripheral expansion of mature T cells in grafts plays an important role in immune reconstitution after stem cell transplantation in humans, and have also found altered T-cell repertoires in immune-mediated chronic acquired pure red cell aplasia. Thus, quantitative and qualitative analyses of immune receptors could be a promising method for assessing immunocompetence and exploring the pathophysiology of autoimmune diseases. Research and development of novel approaches in this field should be intensively conducted.
Invariant natural killer T cells trigger adaptive lymphocytes to churn up bile.
Joyce, Sebastian; Van Kaer, Luc
2008-05-15
How innate immune response causes autoimmunity has remained an enigma. In this issue of Cell Host & Microbe, Mattner et al. demonstrate that invariant natural killer T cells activated by the mucosal commensal Novosphingobium aromaticivorans precipitate chronic T cell-mediated autoimmunity against small bile ducts that mirrors human primary biliary cirrhosis. These findings provide a mechanistic understanding of the role of innate immunity toward a microbe in the development of autoimmunity.
Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir
Montaner, Luis J.
2017-01-01
Abstract Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. PMID:28520969
CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity.
Kumamoto, Yosuke; Linehan, Melissa; Weinstein, Jason S; Laidlaw, Brian J; Craft, Joseph E; Iwasaki, Akiko
2013-10-17
Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity. Copyright © 2013 Elsevier Inc. All rights reserved.
Santoni, Giorgio; Farfariello, Valerio; Liberati, Sonia; Morelli, Maria B.; Nabissi, Massimo; Santoni, Matteo; Amantini, Consuelo
2013-01-01
The transient receptor potential vanilloid type-2 (TRPV2), belonging to the transient receptor potential channel family, is a specialized ion channel expressed in human and other mammalian immune cells. This channel has been found to be expressed in CD34+ hematopoietic stem cells, where its cytosolic Ca2+ activity is crucial for stem/progenitor cell cycle progression, growth, and differentiation. In innate immune cells, TRPV2 is expressed in granulocytes, macrophages, and monocytes where it stimulates fMet-Leu-Phe migration, zymosan-, immunoglobulin G-, and complement-mediated phagocytosis, and lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-6 production. In mast cells, activation of TRPV2 allows intracellular Ca2+ ions flux, thus stimulating protein kinase A-dependent degranulation. In addition, TRPV2 is highly expressed in CD56+ natural killer cells. TRPV2 orchestrates Ca2+ signal in T cell activation, proliferation, and effector functions. Moreover, messenger RNA for TRPV2 are expressed in CD4+ and CD8+ T lymphocytes. Finally, TRPV2 is expressed in CD19+ B lymphocytes where it regulates Ca2+ release during B cell development and activation. Overall, the specific expression of TRPV2 in immune cells suggests a role in immune-mediated diseases and offers new potential targets for immunomodulation. PMID:23420671
Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model.
Yeung, Hing-Yuen; Lo, Pui-Chi; Ng, Dennis K P; Fong, Wing-Ping
2017-02-01
In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity.
Antitumor immunity and cancer stem cells.
Schatton, Tobias; Frank, Markus H
2009-09-01
Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5(+) MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy.
Antitumor Immunity and Cancer Stem Cells
Schatton, Tobias; Frank, Markus H.
2010-01-01
Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5+ MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy. PMID:19796244
Dixit, Saurabh; Sahu, Rajnish; Verma, Richa; Duncan, Skyla; Giambartolomei, Guillermo H; Singh, Shree R; Dennis, Vida A
2018-03-01
We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3 + lymphoproliferation, CD3 + CD4 + IFN-γ-secreting cells along with CD3 + CD4 + memory (CD44 high and CD62L high ) and effector (CD44 high and CD62L low ) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4 + T cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Immune Interventions to Eliminate the HIV Reservoir.
Hsu, Denise C; Ananworanich, Jintanat
2017-10-26
Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.
Lee, Jee-Boong
2016-08-01
Due to the increasing prevalence and number of life-threatening cases, food allergy has emerged as a major health concern. The classic immune response seen during food allergy is allergen-specific IgE sensitization and hypersensitivity reactions to foods occur in the effector phase with often severe and deleterious outcomes. Recent research has advanced understanding of the immunological mechanisms occurring during the effector phase of allergic reactions to ingested food. Therefore, this review will not only cover the mucosal immune system of the gastrointestinal tract and the immunological mechanisms underlying IgE-mediated food allergy, but will also introduce cells recently identified to have a role in the hypersensitivity reaction to food allergens. These include IL-9 producing mucosal mast cells (MMC9s) and type 2 innate lymphoid cells (ILC2s). The involvement of these cell types in potentiating the type 2 immune response and developing the anaphylactic response to food allergens will be discussed. In addition, it has become apparent that there is a collaboration between these cells that contributes to an individual's susceptibility to IgE-mediated food allergy.
Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment
Irshad, Sheeba; Gordon, Peter; Wong, Felix; Sheriff, Ibrahim; Tutt, Andrew; Ng, Tony
2016-01-01
Our knowledge and understanding of the tumor microenvironment (TME) have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC). Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies. PMID:27882334
Qu, Baoxi; Rosenberg, Roger N; Li, Liping; Boyer, Philip J; Johnston, Stephen A
2004-12-01
The amyloid-beta (Abeta) peptide has a central role in the neurodegeneration of Alzheimer disease (AD). Immunization of AD transgenic mice with Abeta(1-42) (Abeta(42)) peptide reduces both the spatial memory impairments and AD-like neuropathologic changes in these mice. Therapeutic immunization with Abeta in patients with AD was shown to be effective in reducing Abeta deposition, but studies were discontinued owing to the development of an autoimmune, cell-mediated meningoencephalitis. We hypothesized that gene vaccination could be used to generate an immune response to Abeta(42) that produced antibody response but avoided an adverse cell-mediated immune effect. To develop an effective genetic immunization approach for treatment and prevention of AD without causing an autoimmune, cell-mediated meningoencephalitis. Mice were vaccinated with a plasmid that encodes Abeta(42), administered by gene gun. The immune response of the mice to Abeta(42) was monitored by measurement of (1) antibody levels by enzyme-linked immunosorbent assay (ELISA) and Western blot and (2) Abeta(42)-specific T-cell response as measured by interferon-gamma enzyme-linked immunospot (ELISPOT) assay. Gene-gun delivery of the mouse Abeta(42) dimer gene induced significant humoral immune responses in BALB/c wild-type mice after 3 vaccinations in 10-day intervals. All 3 mice in the treated group showed significant humoral immune responses. The ELISPOT assay for interferon-gamma release with mouse Abeta(42) peptide and Abeta(9-18) showed no evident cytotoxic T-lymphocyte response. We further tested the responses of wild-type BALB/c mice to the monomer Abeta(42) gene vaccine. Western blot evaluation showed both human and mouse Abeta monomer gene vaccine elicited detectable humoral immune responses. We also introduced the human Abeta(42) monomer gene vaccine into AD double transgenic mice APPswe/PSEN1(A246E). Mice were vaccinated with plasmids that encode Abeta(1-42) and Abeta(1-16), or with plasmid without the Abeta gene. Treated mice showed significant humoral immune responses as demonstrated by ELISA and by Western blot. These mice also showed no significant cellular immune response as tested by ELISPOT. One of the treated mice was killed at 7 months of age for histological observations, and scattered amyloid plaques were noted in all layers of the cerebral cortex and in the hippocampus in both Abeta(42)- and control-vaccinated mice. No definite difference was discerned between the experimental and control animals. Gene-gun-administered genetic immunization with the Abeta(42) gene in wild-type BALB/c and AD transgenic mice can effectively elicit humoral immune responses without a significant T-cell-mediated immune response to the Abeta peptide. This immunotherapeutic approach could provide an alternative active immunization method for therapy and prevention of AD.
Intervention of PKC-θ as an immunosuppressive regimen
Sun, Zuoming
2012-01-01
PKC-θ is selectively enriched in T cells and specifically translocates to immunological synapse where it mediates critical T cell receptor signals required for T cell activation, differentiation, and survival. T cells deficient in PKC-θ are defective in their ability to differentiate into inflammatory effector cells that mediate actual immune responses whereas, their differentiation into regulatory T cells (Treg) that inhibits the inflammatory T cells is enhanced. Therefore, the manipulation of PKC-θ activity can shift the ratio between inflammatory effector T cells and inhibitory Tregs, to control T cell-mediated immune responses that are responsible for autoimmunity and allograft rejection. Indeed, PKC-θ-deficient mice are resistant to the development of several Th2 and Th17-dependent autoimmune diseases and are defective in mounting alloimmune responses required for rejection of transplanted allografts and graft-versus-host disease. Selective inhibition of PKC-θ is therefore considered as a potential treatment for prevention of autoimmune diseases and allograft rejection. PMID:22876242
5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity
Hedi, Harizi
2004-01-01
5-lipoxygenase (5-LO) pathway is the major source of potent proinflammatory leukotrienes (LTs) issued from the metabolism of arachidonic acid (AA), and best known for their roles in the pathogenesis of asthma. These lipid mediators are mainly released from myeloid cells and may act as physiological autocrine and paracrine signalling molecules, and play a central role in regulating the interaction between innate and adaptive immunity. The biological actions of LTs including their immunoregulatory and proinflammatory effects are mediated through extracellular specific G-protein-coupled receptors. Despite their role in inflammatory cells, such as neutrophils and macrophages, LTs may have important effects on dendritic cells (DC)-mediated adaptive immunity. Several lines of evidence show that DC not only are important source of LTs, but also become targets of their actions by producing other lipid mediators and proinflammatory molecules. This review focuses on advances in 5-LO pathway biology, the production of LTs from DC and their role on various cells of immune system and in adaptive immunity. PMID:15240920
Human influenza viruses and CD8(+) T cell responses.
Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine
2016-02-01
Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations. Copyright © 2016 Elsevier B.V. All rights reserved.
Efficacy of live zoster vaccine in preventing zoster and postherpetic neuralgia
Gilden, D.
2011-01-01
Declining cell-mediated immunity to varicella zoster virus (VZV) in elderly individuals results in virus reactivation manifest by zoster (shingles) and postherpetic neuralgia (PHN). To prevent virus reactivation, a new VZV vaccine (Zostavax, Merck) that boosts cell-mediated immunity to VZV was developed. The 3-year Shingles Prevention Study showed that Zostavax significantly reduced burden of disease due to zoster and PHN. Despite its cost-effectiveness for adults ages 65 to 75 years, as determined in the US, Canada and UK, less than 2% of immunocompetent adults over age 60 years in the US were immunized in 2007. This was due to a combination of lack of patient awareness of the vaccine, physicians’ uncertainty about the duration of protection, and different cost-sharing plans for immunization. Nevertheless, zoster vaccine is safe, effective, and highly recommended for immunization of immunocompetent individuals over age 60 years with no history of recent zoster. PMID:21294791
Th9 cells: differentiation and disease
Kaplan, Mark H.
2014-01-01
Summary CD4+ T-helper cells regulate immunity and inflammation through the acquisition of potential to secrete specific cytokines. The acquisition of cytokine-secreting potential, in a process termed T-helper cell differentiation, is a response to multiple environmental signals including the cytokine milieu. The most recently defined subset of T-helper cells are termed Th9 and are identified by the potent production of interleukin-9 (IL-9). Given the pleiotropic functions of IL-9, Th9 cells might be involved in pathogen immunity and immune-mediated disease. In this review, I focus on recent developments in understanding the signals that promote Th9 differentiation, the transcription factors that regulate IL-9 expression, and finally the potential roles for Th9 cells in immunity in vivo. PMID:23405898
Robbins, Marjorie; Judge, Adam; MacLachlan, Ian
2009-06-01
Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.
Perruche, Sylvain; Kleinclauss, François; Bittencourt, Marcelo de Carvalho; Paris, Dominique; Tiberghien, Pierre; Saas, Philippe
2004-08-01
Intravenous infusion of apoptotic donor or third-party leukocytes simultaneously with an allogeneic donor bone marrow (BM) graft favors engraftment across major histocompatibility barriers. While verifying that such apoptotic cell infusion might not also be associated with antibody (Ab)-mediated allo-immune responses, we found, rather strikingly, that apoptotic cell infusion could in fact successfully prevent a humoral allo-immunization against a BM graft in mice. Indeed, among recipients having rejected their BM graft, prior apoptotic cell infusion was associated with a near absence of Ab-mediated allo-responses, while such an immunization was frequently observed in the absence of apoptotic cell infusion. This was also observed when infusing host apoptotic cells, thus showing that the prevention of immunization was linked to the apoptotic state of the cells rather than mediated by residual anti-recipient activity. In vivo anti-transforming growth factor-beta (TGF-beta) treatment resulted in the loss of this apoptotic cell infusion-associated protective effect on humoral allo-responses. Further studies will determine whether apoptotic cell infusion, in addition to hematopoietic graft facilitation might also contribute to preventing deleterious Ab-mediated allo-responses in various transplantation settings.
Meyer, Sonja Izquierdo; Fuglsang, Katrine; Blaakaer, Jan
2014-12-01
This clinical review aims to assess the efficacy of human papillomavirus 16/18 (HPV16/18) vaccination on the cell-mediated immune response in women with existing cervical intraepithelial neoplasia or cervical cancer induced by HPV16 or HPV18. A focused and thorough literature search conducted in five different databases found 996 publications. Six relevant articles were chosen for further review. In total, 154 patients (>18 years of age) were enrolled in prospective study trials with 3-15 months of follow up. The vaccine applications were administered two to four times. The vaccines contained different combinations of HPV16 and HPV18 and early proteins, E6 and E7. The primary outcome was the cell-mediated immune response. Correlation to clinical outcome (histopathology) and human leukocyte antigen genes were secondary endpoints. All vaccines triggered a detectable cell-mediated immune response, some of which were statistically significant. Correlations between immunological response and clinical outcome (histopathology) were not significant, so neoplasms may not be susceptible to vaccine-generated cytotoxic T cells (CD8(+)). Prophylactic HPV vaccines have been introduced to reduce the incidence of cervical cancer in young women. Women already infected with HPV could benefit from a therapeutic HPV vaccination. Hence, it is important to continue the development of therapeutic HPV vaccines to lower the rate of HPV-associated malignancies and crucial to evaluate vaccine efficacy clinically. This clinical review represents an attempt to elucidate the theories supporting the development of an HPV vaccine with a therapeutic effect on human papillomavirus-induced malignancies of the cervix. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.
Using process algebra to develop predator-prey models of within-host parasite dynamics.
McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel
2013-07-21
As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nutritionally Mediated Programming of the Developing Immune System12
Palmer, Amanda C.
2011-01-01
A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease. PMID:22332080
McIlvried, Lisa A; Borghesi, Lisa A; Gold, Michael S
2015-01-01
Background Migraine attacks are associated with sterile inflammation of the dura. Immune cells are a primary source of inflammatory mediators, and we therefore sought to further explore the link between dural immune cells and migraine. Objective Based on the observations that migraine is more common in women than in men, stress is the most common trigger for a migraine attack, and sympathetic post-ganglionic innervation of the dura enables local control of dural immune cells, we hypothesized that stress shifts the balance of inflammatory mediator expression in dural immune cells toward those that trigger a migraine attack, where these changes are larger in females and dependent, at least in part, on sympathetic post-ganglionic innervation of the dura. Our objective was to test this hypothesis. Methods Dura were obtained from naïve or stressed, intact or surgically sympathectomized, adult male and female rats. Dura were assessed immediately or 24 hrs after termination of four continuous days of unpredictable, mild stressors. Following enzymatic digestion of each dura, myeloid and lymphoid derived dural immune cells were isolated by fluorescence activated cell sorting for semi-quantitative polymerase chain reaction analysis. Results In myeloid derived dural immune cells there was an increase in pro-inflammatory mediator mRNA following stress, particularly in females, which remained elevated with a 24 hr delay after stress. There was a stress-induced decrease in anti-inflammatory mediator mRNA immediately after stress in females, but not males. The stress-induced changes were attenuated in sympathectomized females. In lymphoid derived dural immune cells, there was a persistent increase in pro-inflammatory mediator mRNA following stress, particularly in females. A stress-induced increase in anti-inflammatory mediator mRNA was also observed in both males and females, and was further attenuated in sympathectomized females. Conclusions Consistent with our hypothesis, there is a stress-induced shift in the balance of pro- and anti-inflammatory mediator expression in dural immune cells that is more pronounced in females, and is dependent, at least in part, on sympathetic post-ganglionic innervation in females. This shift in the balance of inflammatory mediator expression may not only play an important role in triggering migraine attacks, but suggests it may be possible, if not necessary to employ different strategies to most effectively treat migraine in men and women. PMID:26126992
RADWAN, FAISAL F. Y.; ZHANG, LIXIA; HOSSAIN, AZIM; DOONAN, BENTLY P.; GOD, JASON; HAQUE, AZIZUL
2015-01-01
Malignant B-cells express measurable levels of HLA class II proteins, but often escape immune recognition by CD4+ T cells. Resveratrol (Resv) has been the focus of numerous investigations due to its potential chemopreventive and anti-cancer effects, but it has never been tested in the regulation of immune components in B-cell tumors. Here, we show for the first time that Resv treatment enhances HLA class II-mediated immune detection of B-cell lymphomas by altering immune components and class II presentation in tumor cells. Resv treatment induced an upregulation of both classical and non-classical HLA class II proteins (DR and DM) in B-lymphoma cells. Resv also altered endolysosomal cathepsins (Cat S, B and D) and a thiol reductase (GILT), increasing HLA class II-mediated antigen (Ag) processing in B-cell lymphomas and their subsequent recognition by CD4+ T cells. Mechanistic study demonstrated that Resv treatment activated the recycling class II pathway of Ag presentation through upregulation of Rab 4B protein expression in B-lymphoma cells. These findings suggest that HLA class II-mediated immune recognition of malignant B-cells can be improved by Resv treatment, thus encouraging its potential use in chemoimmunotherapy of B-cell lymphoma. PMID:21854084
Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W
2003-01-17
T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.
Effect of space flight on cell-mediated immunity
NASA Technical Reports Server (NTRS)
Mandel, A. D.; Balish, E.
1977-01-01
The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.
Cheng, Qianqian; Zhang, Qingfeng; Xu, Xindong; Yin, Lan; Sun, Lin; Lin, Xin; Dong, Chen; Pan, Weiqing
2014-04-15
Cell-mediated immunity plays a crucial role in the development of host resistance to asexual blood-stage malaria infection. However, little is known of the regulatory factors involved in this process. In this study, we investigated the impact of MAPK phosphotase 5 (MKP5) on protective immunity against a lethal Plasmodium yoelii 17XL blood-stage infection using MKP5 knockout C57BL/6 mice. Compared with wild-type control mice, MKP5 knockout mice developed significantly lower parasite burdens with prolonged survival times. We found that this phenomenon correlated with a rapid and strong IFN-γ-dependent cellular immune response during the acute phase of infection. Inactivation of IFN-γ by the administration of a neutralizing Ab significantly reduced the protective effects in MKP5 knockout mice. By analyzing IFN-γ production in innate and adaptive lymphocyte subsets, we observed that MKP5 deficiency specifically enhanced the IFN-γ response mediated by CD4+ T cells, which was attributable to the increased stimulatory capacity of splenic CD11c+ dendritic cells. Furthermore, following vaccination with whole blood-stage soluble plasmodial Ag, MKP5 knockout mice acquired strongly enhanced Ag-specific immune responses and a higher level of protection against subsequent P. yoelii 17XL challenge. Finally, we found the enhanced response mediated by MKP5 deficiency resulted in a lethal consequence in mice when infected with nonlethal P. yoelii 17XNL. Thus, our data indicate that MKP5 is a potential regulator of immune resistance against Plasmodium infection in mice, and that an understanding of the role of MKP5 in manipulating anti-malaria immunity may provide valuable information on the development of better control strategies for human malaria.
Kragh, M; Larsen, J M; Thysen, A H; Rasmussen, M A; Wolsk, H M; Bisgaard, H; Brix, S
2016-03-01
First-born children are at higher risk of developing a range of immune-mediated diseases. The underlying mechanism of 'birth-order effects' on disease risk is largely unknown, but in utero programming of the child's immune system may play a role. We studied the association between birth order and the functional response of stimulated cord blood T cells. Purified cord blood T cells were polyclonally activated with anti-CD3-/anti-CD28-coated beads in a subgroup of 28 children enrolled in the COPSAC2010 birth cohort. Expression levels of seven activation markers on helper and cytotoxic T cells as well as the percentage of CD4(+) CD25(+) T cells were assessed by flow cytometry. Production of IFN-γ, TNF-α, IL-17, IL-4, IL-5, IL-13, and IL-10 was measured in the supernatants. IL-10 secretion (P = 0.007) and CD25 expression on CD4(+) helper T cells (P = 0.0003) in the activated cord blood T cells were selectively reduced in first-born children, while the percentage of circulating CD4(+) CD25(+) cord blood T cells was independent of birth order. First-born infants display a reduced anti-inflammatory profile in T cells at birth. This possible in utero 'birth-order' T-cell programming may contribute to later development of immune-mediated diseases by increasing overall immune reactivity in first-born children as compared to younger siblings. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Giacomet, Vania; Masetti, Michela; Nannini, Pilar; Forlanini, Federica; Clerici, Mario; Zuccotti, Gian Vincenzo; Trabattoni, Daria
2018-01-01
HBV vaccine induces protective antibodies only in 23-56% of HIV-infected children. The aim of our study is to evaluate the immunologic effects of a booster dose of HBV vaccine in HIV-infected youth. 53 young HIV-infected patients in whom HBV vaccination did not elicit protective Ab titers were enrolled. All patients were on ART with optimal immunological and viral response. All patients received a booster dose of HBV vaccine (HBVAXPRO 10 μg i.m.). HBV-specific Ab titer, viral load and CD4+ T cells were measured at baseline (T0), T1, T6 and T12 months. In a subgroup of 16 patients HBV-specific cell mediated immune responses were evaluated at baseline, at T1 and T6. The booster dose induced seroconversion in 51% of patients at T1, 57% at T6, and49% at T12; seroconversion rate was significantly correlated with CD4+T cells at T0 and to the CD4 nadir. The booster dose induced HBV-specific cell mediated immunity at T6 mainly in Responders (Rs): Effector Memory CD8+T cells, HBV-specific TNFα-, IFNγ-, granzyme secreting CD8+ T cells and IL2-secreting CD4+ T cells were significantly increased in Rs compared to T0. In Non Responders (NRs), HBV-specific IL2-secreting CD4+ T cells, Central and Effector Memory CD8+ T cells were the only parameters modified at T6. Seroconversion induced by a booster dose of vaccine correlates with the development of T cell immunological memory in HIV-infected patients who did not respond to the standard immunization. Alternate immunization schedules need to be considered in NRs.
Mjösberg, Jenny; Spits, Hergen
2016-11-01
Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Neuropeptide Substance P and the Immune Response
Tehrani, Mohsen; Grace, Peter M.; Pothoulakis, Charalabos; Dana, Reza
2016-01-01
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of activity of immune cells. This Review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immuno-biology of substance P and we discuss the clinical implications of its ability to modulate the immune response. PMID:27314883
Neuropeptide substance P and the immune response.
Mashaghi, Alireza; Marmalidou, Anna; Tehrani, Mohsen; Grace, Peter M; Pothoulakis, Charalabos; Dana, Reza
2016-11-01
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.
Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin
2017-08-01
We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.
Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215; Weller, Peter F.
Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombreromore » Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.« less
Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong
2017-03-22
This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.
Gaffal, E; Cron, M; Glodde, N; Tüting, T
2013-08-01
∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors. We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro. Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner. Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection.
Harris, Nicola L; Loke, P'ng
2017-12-19
Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology. Copyright © 2017 Elsevier Inc. All rights reserved.
Gurung, Ratna B; Begg, Douglas J; Purdie, Auriol C; de Silva, Kumudika; Bannantine, John P; Whittington, Richard J
2014-06-01
Johne's disease in ruminants is a chronic infection of the intestines caused by Mycobacterium avium subsp. paratuberculosis. An important strategy to control disease is early detection, and a potentially efficient method for early detection is measurement of cell-mediated immune responses developed by the host in response to exposure or infection. One method is to measure lymphoproliferation and cytokine release from the host cells when exposed to the organism or parts of the organism. In this study, 10 recombinant M. avium subsp. paratuberculosis proteins known to be upregulated under in vitro stress conditions were evaluated by examining their ability to evoke memory as a result of exposure by vaccination or oral challenge with live Mycobacterium avium subsp. paratuberculosis. Out of 10 proteins, MAP2698c was found to induce higher cell-mediated immune responses in vaccinated and challenged sheep in comparison to healthy controls. The findings suggest that not all stress-regulated proteins have the diagnostic potential to detect cell-mediated immune responses in ovine paratuberculosis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Taking a Toll on Self-Renewal: TLR-Mediated Innate Immune Signaling in Stem Cells.
Alvarado, Alvaro G; Lathia, Justin D
2016-07-01
Innate immunity has evolved as the front-line cellular defense mechanism to acutely sense and decisively respond to microenvironmental alterations. The Toll-like receptor (TLR) family activates signaling pathways in response to stimuli and is well-characterized in both resident and infiltrating immune cells during neural inflammation, injury, and degeneration. Innate immune signaling has also been observed in neural cells during development and disease, including in the stem and progenitor cells that build the brain and are responsible for its homeostasis. Recently, the activation of developmental programs in malignant brain tumors has emerged as a driver for growth via cancer stem cells. In this review we discuss how innate immune signaling interfaces with stem cell maintenance in the normal and neoplastic brain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.
2011-01-01
Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids the development of solutions to current obstacles of immunization programmes. PMID:21799855
Baril, L; Dietemann, J; Essevaz-Roulet, M; Béniguel, L; Coan, P; Briles, D E; Guy, B; Cozon, G
2006-01-01
Humoral immune response is essential for protection against invasive pneumococcal disease and this property is the basis of the polysaccharide-based anti-pneumococcal vaccines. Pneumococcal surface protein A (PspA), a cell-wall-associated surface protein, is a promising component for the next generation of pneumococcal vaccines. This PspA antigen has been shown to stimulate an antibody-based immunity. In the present study, we evaluated the capacity of PspA to stimulate CD4+ T cells which are needed for the correct development of a B cell based immune response in humans. Cellular immunity to PspA was evaluated by whole-blood culture with different pneumococcal antigens, followed by flow cytometric detection of activated CD4+CD25+ T cells. T cell-mediated immune responses to recombinant PspA proteins were assessed in acute-phase and convalescent blood from adults with invasive pneumococcal disease and in blood from healthy subjects. All cases had detectable antibodies against PspA on admission. We found that invasive pneumococcal disease induced transient T cell depletion but adaptive immune responses strengthened markedly during convalescence. The increased production of both interleukin (IL)-10 and interferon (IFN)-γ during convalescence suggests that these cytokines may be involved in modulating antibody-based immunity to pneumococcal disease. We demonstrated that PspA is efficient at eliciting T cell immune responses and antibodies to PspA. This study broadens the applicability of recombinant PspA as potent pneumococcal antigen for vaccination against S. pneumoniae. PMID:16879247
Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells
Novobrantseva, Tatiana I; Borodovsky, Anna; Wong, Jamie; Klebanov, Boris; Zafari, Mohammad; Yucius, Kristina; Querbes, William; Ge, Pei; Ruda, Vera M; Milstein, Stuart; Speciner, Lauren; Duncan, Rick; Barros, Scott; Basha, Genc; Cullis, Pieter; Akinc, Akin; Donahoe, Jessica S; Narayanannair Jayaprakash, K; Jayaraman, Muthusamy; Bogorad, Roman L; Love, Kevin; Whitehead, Katie; Levins, Chris; Manoharan, Muthiah; Swirski, Filip K; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G; de Fougerolles, Antonin; Nahrendorf, Matthias; Koteliansky, Victor
2012-01-01
Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells. PMID:23344621
Kerr, P J; Perkins, H D; Inglis, B; Stagg, R; McLaughlin, E; Collins, S V; Van Leeuwen, B H
2004-06-20
Rabbit IL-4 was expressed in the virulent standard laboratory strain (SLS) and the attenuated Uriarra (Ur) strain of myxoma virus with the aim of creating a Th2 cytokine environment and inhibiting the development of an antiviral cell-mediated response to myxomatosis in infected rabbits. This allowed testing of a model for genetic resistance to myxomatosis in wild rabbits that have undergone 50 years of natural selection for resistance to myxomatosis. Expression of IL-4 significantly enhanced virulence of both virulent and attenuated virus strains in susceptible (laboratory) and resistant (wild) rabbits. SLS-IL-4 completely overcame genetic resistance in wild rabbits. The pathogenesis of SLS-IL-4 was compared in susceptible and resistant rabbits. The results support a model for resistance to myxomatosis of an enhanced innate immune response controlling virus replication and allowing an effective antiviral cell-mediated immune response to develop in resistant rabbits. Expression of IL-4 did not overcome immunity to myxomatosis induced by immunization.
Carrasco, Fábio Ricardo; Schmidt, Gustavo; Romero, Adriano Lopez; Sartoretto, Juliano Luiz; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura
2009-07-01
The immunomodulatory effect of ginger, Zingiber officinale (Zingiberaceae), sage, Salvia officinalis (Lamiaceae) and clove, Syzygium aromaticum (Myrtaceae), essential oils were evaluated by studying humor- and cell-mediated immune responses. Essential oils were administered to mice (once a day, orally, for a week) previously immunized with sheep red blood cells (SRBCs). Clove essential oil increased the total white blood cell (WBC) count and enhanced the delayed-type hypersensitivity (DTH) response in mice. Moreover, it restored cellular and humoral immune responses in cyclophosphamide-immunosuppressed mice in a dose-dependent manner. Ginger essential oil recovered the humoral immune response in immunosuppressed mice. Contrary to the ginger essential oil response, sage essential oil did not show any immunomodulatory activity. Our findings establish that the immunostimulatory activity found in mice treated with clove essential oil is due to improvement in humor- and cell-mediated immune response mechanisms.
Prevention strategies for herpes zoster and post-herpetic neuralgia
Levin, Myron J.; Gershon, Anne A.; Dworkin, Robert H.; Brisson, Marc; Stanberry, Lawrence
2017-01-01
SUMMARY Impairment of varicella zoster virus (VZV)-specific cell-mediated immunity, including impairment due to immunosenescence, is associated with an increased risk of developing herpes zoster (HZ), whereas levels of anti-VZV antibodies do not correlate with HZ risk. This crucial role of VZV-specific cell-mediated immunity suggests that boosting these responses by vaccination will be an effective strategy for reducing the burden of HZ. Other strategies focus on preventing the major complication of HZ – post-herpetic neuralgia. These strategies include pre-emptive treatment with drugs such as tricyclic antidepressants, anticonvulsants and analgesics. PMID:20510262
Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir.
Riley, James L; Montaner, Luis J
2017-03-15
Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Zhu, Conghui; Xie, Qunhui; Zhao, Bin
2014-01-01
AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems. Since the AhR signaling pathway represents an important link between environmental stimulators and immune-mediated inflammatory disorder, it has become the object of great interest among researchers recently. The current review discusses new insights into the mechanisms of action of a select group of inflammatory autoimmune diseases and the ligand-activated AhR signaling pathway. Representative ligands of AhR, both exogenous and endogenous, are also reviewed relative to their potential use as tools for understanding the role of AhR and as potential therapeutics for the treatment of various inflammatory autoimmune diseases, with a focus on CD4 helper T cells, which play important roles both in self-immune tolerance and in inflammatory autoimmune diseases. Evidence indicating the potential use of these ligands in regulating inflammation in various diseases is highlighted, and potential mechanisms of action causing immune system effects mediated by AhR signaling are also discussed. The current review will contribute to a better understanding of the role of AhR and its signaling pathway in CD4 helper T cell mediated inflammatory disorder. Considering the established importance of AhR in immune regulation and its potential as a therapeutic target, we also think that both further investigation into the molecular mechanisms of immune regulation that are mediated by the ligand-specific AhR signaling pathway, and integrated research and development of new therapeutic drug candidates targeting the AhR signaling pathway should be pursued urgently. PMID:24905409
Pelly, Victoria S; Coomes, Stephanie M; Kannan, Yashaswini; Gialitakis, Manolis; Entwistle, Lewis J; Perez-Lloret, Jimena; Czieso, Stephanie; Okoye, Isobel S; Rückerl, Dominik; Allen, Judith E; Brombacher, Frank; Wilson, Mark S
2017-06-05
Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4 + Foxp3 + regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex-T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3 + cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus Through selective deletion of Il4ra on Foxp3 + cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell-mediated suppression. © 2017 Pelly et al.
Gut commensalism, cytokines, and central nervous system demyelination.
Telesford, Kiel; Ochoa-Repáraz, Javier; Kasper, Lloyd H
2014-08-01
There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination.
Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses
Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl
2014-01-01
Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209
Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths
Coomes, Stephanie M.; Kannan, Yashaswini; Entwistle, Lewis J.; Perez-Lloret, Jimena; Czieso, Stephanie
2017-01-01
Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4+Foxp3+ regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex–T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3+ cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus. Through selective deletion of Il4ra on Foxp3+ cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell–mediated suppression. PMID:28507062
AllergoOncology - the impact of allergy in oncology: EAACI position paper.
Jensen-Jarolim, E; Bax, H J; Bianchini, R; Capron, M; Corrigan, C; Castells, M; Dombrowicz, D; Daniels-Wells, T R; Fazekas, J; Fiebiger, E; Gatault, S; Gould, H J; Janda, J; Josephs, D H; Karagiannis, P; Levi-Schaffer, F; Meshcheryakova, A; Mechtcheriakova, D; Mekori, Y; Mungenast, F; Nigro, E A; Penichet, M L; Redegeld, F; Saul, L; Singer, J; Spicer, J F; Siccardi, A G; Spillner, E; Turner, M C; Untersmayr, E; Vangelista, L; Karagiannis, S N
2017-06-01
Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both antitumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Coincident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intratumoral innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the crosstalk between allergic response and cancer is paving the way for new avenues of treatment. © 2016 John Wiley & Sons A/S . Published by John Wiley & Sons Ltd.
AllergoOncology - The impact of Allergy in Oncology. EAACI Position Paper
Jensen-Jarolim, E; Bax, HJ; Bianchini, R; Capron, M; Corrigan, C; Castells, M; Dombrowicz, D; Daniels-Wells, TR; Fazekas, J; Fiebiger, E; Gatault, S; Gould, HJ; Janda, J; Josephs, DH; Karagiannis, P; Levi-Schaffer, F; Meshcheryakova, A; Mechtcheriakova, D; Mekori, Y; Mungenast, F; Nigro, EA; Penichet, ML; Redegeld, F; Saul, L; Singer, J; Spicer, JF; Siccardi, AG; Spillner, E; Turner, MC; Untersmayr, E; Vangelista, L; Karagiannis, SN
2017-01-01
Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both anti-tumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Co-incident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intra-tumoural innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the cross-talk between allergic response and cancer is paving the way for new avenues of treatment. PMID:28032353
Paula Neto, Heitor A.; Ausina, Priscila; Gomez, Lilian S.; Leandro, João G. B.; Zancan, Patricia; Sola-Penna, Mauro
2017-01-01
Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of “lean homeostasis” and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited. PMID:29163542
Paula Neto, Heitor A; Ausina, Priscila; Gomez, Lilian S; Leandro, João G B; Zancan, Patricia; Sola-Penna, Mauro
2017-01-01
Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.
The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes
Pearson, James A; Wong, F. Susan; Wen, Li
2016-01-01
Type 1 Diabetes (T1D) is an autoimmune disease characterized by the pancreatic infiltration of immune cells resulting in T cell-mediated destruction of the insulin-producing beta cells. The successes of the Non Obese Diabetic (NOD) mouse model have come in multiple forms including identifying key genetic and environmental risk factors e.g. Idd loci and effects of microorganisms including the gut microbiota, respectively, and how they may contribute to disease susceptibility and pathogenesis. Furthermore, the NOD model also provides insights into the roles of the innate immune cells as well as the B cells in contributing to the T cell-mediated disease. Unlike many autoimmune disease models, the NOD mouse develops spontaneous disease and has many similarities to human T1D. Through exploiting these similarities many targets have been identified for immune-intervention strategies. Although many of these immunotherapies did not have a significant impact on human T1D, they have been shown to be effective in the NOD mouse in early stage disease, which is not equivalent to trials in newly-diagnosed patients with diabetes. However, the continued development of humanized NOD mice would enable further clinical developments, bringing T1D research to a new translational level. Therefore, it is the aim of this review to discuss the importance of the NOD model in identifying the roles of the innate immune system and the interaction with the gut microbiota in modifying diabetes susceptibility. In addition, the role of the B cells will also be discussed with new insights gained through B cell depletion experiments and the impact on translational developments. Finally, this review will also discuss the future of the NOD mice and the development of humanized NOD mice, providing novel insights into human T1D. PMID:26403950
Immunology and Immunotherapy of Head and Neck Cancer
Ferris, Robert L.
2015-01-01
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. PMID:26351330
Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin
2011-01-01
Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.
Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor
Li, Shiyang; Bostick, John W.; Zhou, Liang
2018-01-01
With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host–environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease. PMID:29354125
HIF Transcription Factors, Inflammation, and Immunity
Palazon, Asis; Goldrath, Ananda; Nizet, Victor
2015-01-01
The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors that play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity. PMID:25367569
HIF transcription factors, inflammation, and immunity.
Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S
2014-10-16
The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.
Immune Response to Dengue and Zika.
Ngono, Annie Elong; Shresta, Sujan
2018-04-26
Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.
Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.
Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos
2018-03-01
Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.
TAM receptor knockout mice are susceptible to retinal autoimmune induction.
Ye, Fei; Li, Qiutang; Ke, Yan; Lu, Qingjun; Han, Lixia; Kaplan, Henry J; Shao, Hui; Lu, Qingxian
2011-06-16
TAM receptors are expressed mainly by dendritic cells and macrophages in the immune system, and mice lacking TAM receptors develop systemic autoimmune diseases because of inefficient negative control of the cytokine signaling in those cells. This study aims to test the susceptibility of the TAM triple knockout (tko) mice to the retina-specific autoantigen to develop experimental autoimmune uveoretinitis (EAU). TAM tko mice that were or were not immunized with interphotoreceptor retinoid-binding protein (IRBP) peptides were evaluated for retinal infiltration of the macrophages and CD3(+) T cells by immunohistochemistry, spontaneous activation of CD4(+) T cells, and memory T cells by flow cytometry and proliferation of IRBP-specific CD4(+) T cells by [(3)H]thymidine incorporation assay. Ocular inflammation induced by IRBP peptide immunization and specific T cell transfer were observed clinically by funduscopy and confirmed by histology. Tko mice were found to have less naive, but more activated, memory T cells, among which were exhibited high sensitivity to ocular IRBP autoantigens. Immunization with a low dose of IRBP and adoptive transfer of small numbers of IRBP-specific T cells from immunized tko mice caused the infiltration of lymphocytes, including CD3(+) T cells, into the tko retina. Mice without TAM receptor spontaneously develop IRBP-specific CD4(+) T cells and are more susceptible to retinal autoantigen immunization. This TAM knockout mouse line provides an animal model with which to study the role of antigen-presenting cells in the development of T cell-mediated uveitis.
Th17 cell cytokine secretion profile in host defense and autoimmunity.
Graeber, Kristen E; Olsen, Nancy J
2012-02-01
The goal of this review is to examine the effector functions of Th17 cells in host defense and autoimmunity. Published literature on Th17 cells was reviewed with a focus on the secreted products that mediate effector activities of these cells. Th17 cells secrete an array of cytokines that contribute to host defense and that bridge the innate and adaptive arms of the immune response. When this subset of T cells is dysregulated, autoimmune phenomena develop that contribute to the manifestations of many autoimmune diseases. Th17 cells are positioned at a crossroads between innate and adaptive immunity and provide mediators that are essential for host defense. Current interest in harnessing this system for treatment of autoimmune disease will be challenged by the need to avoid abrogating these many protective functions.
Development and characterization of monoclonal antibodies specific for chicken IL-8
USDA-ARS?s Scientific Manuscript database
Limited information on chicken cytokines and chemokines hinders progress in understaidng the role of cell-mediated immunity in infections. Interleukin-8/CXCL8 (IL-8) is a CXC-family chemokine produced by fibroblasts and other cell types, including epithelial cells, endothelial cells, neutrophils, a...
Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity
Pedros, Christophe; Canonigo-Balancio, Ann J.; Kong, Kok-Fai
2017-01-01
The ability of Tregs to control the development of immune responses is essential for maintaining immune system homeostasis. However, Tregs also inhibit the development of efficient antitumor responses. Here, we explored the characteristics and mechanistic basis of the Treg-intrinsic CTLA4/PKCη signaling pathway that we recently found to be required for contact-dependent Treg-mediated suppression. We show that PKCη is required for the Treg-mediated suppression of tumor immunity in vivo. The presence of PKCη-deficient (Prkch–/–) Tregs in the tumor microenvironment was associated with a significantly increased expression of the costimulatory molecule CD86 on intratumoral CD103+ DCs, enhanced priming of antigen-specific CD8+ T cells, and greater levels of effector cytokines produced by these cells. Similar to mouse Tregs, the GIT/PAK/PIX complex also operated downstream of CTLA4 and PKCη in human Tregs, and GIT2 knockdown in Tregs promoted antitumor immunity. Collectively, our data suggest that targeting the CTLA4/PKCη/GIT/PAK/PIX signaling pathway in Tregs could represent a novel immunotherapeutic strategy to alleviate the negative impact of Tregs on antitumor immune responses. PMID:29212947
Tsukamoto, Hirotake; Senju, Satoru; Matsumura, Keiko; Swain, Susan L; Nishimura, Yasuharu
2015-04-07
Decline in immune function and inflammation concomitantly develop with ageing. Here we focus on the impact of this inflammatory environment on T cells, and demonstrate that in contrast to successful tumour elimination in young mice, replenishment of tumour-specific CD4(+) T cells fails to induce tumour regression in aged hosts. The impaired antitumour effect of CD4(+) T cells with their defective Th1 differentiation in an aged environment is restored by interleukin (IL)-6 blockade or IL-6 deficiency. IL-6 blockade also restores the impaired ability of CD4(+) T cells to promote CD8(+) T-cell-dependent tumour elimination in aged mice, which requires IFN-γ. Furthermore, IL-6-stimulated production of IL-4/IL-21 through c-Maf induction is responsible for impaired Th1 differentiation. IL-6 also contributes to IL-10 production from CD4(+) T cells in aged mice, causing attenuated responses of CD8(+) T cells. These findings suggest that IL-6 serves as an extrinsic factor counteracting CD4(+) T-cell-mediated immunity against tumour in old age.
Kimura, Yoshitaka; Inoue, Asuka; Hangai, Sho; Saijo, Shinobu; Negishi, Hideo; Nishio, Junko; Yamasaki, Sho; Iwakura, Yoichiro; Yanai, Hideyuki; Taniguchi, Tadatsugu
2016-12-06
Tumor metastasis is the cause of most cancer deaths. Although metastases can form in multiple end organs, the liver is recognized as a highly permissive organ. Nevertheless, there is evidence for immune cell-mediated mechanisms that function to suppress liver metastasis by certain tumors, although the underlying mechanisms for the suppression of metastasis remain elusive. Here, we show that Dectin-2, a C-type lectin receptor (CLR) family of innate receptors, is critical for the suppression of liver metastasis of cancer cells. We provide evidence that Dectin-2 functions in resident macrophages in the liver, known as Kupffer cells, to mediate the uptake and clearance of cancer cells. Interestingly, Kupffer cells are selectively endowed with Dectin-2-dependent phagocytotic activity, with neither bone marrow-derived macrophages nor alveolar macrophages showing this potential. Concordantly, subcutaneous primary tumor growth and lung metastasis are not affected by the absence of Dectin-2. In addition, macrophage C-type lectin, a CLR known to be complex with Dectin-2, also contributes to the suppression of liver metastasis. Collectively, these results highlight the hitherto poorly understood mechanism of Kupffer cell-mediated control of metastasis that is mediated by the CLR innate receptor family, with implications for the development of anticancer therapy targeting CLRs.
Zhao, Xiumin; Zhu, Danyang; Ye, Jiangbin; Li, Xingqun; Wang, Zhibin; Zhang, Lifang; Xu, Wen
2015-05-01
Th22 cells are a novel class of lymphocytes characterized by the secretion of both IL-22 and TNF-α. In summary, Th22 cells have little or no direct impact on other immune cells, but exert selective effects on epithelia. It is not known, however, whether Th22 cells play a role in genital mucosal immunity. Here, we demonstrate that IL-22 and TNF-α synergistically induce several immunomodulatory molecules, such as the antimicrobial peptide mBD-2 (murine β-defensin 2) and the antimicrobial chemokines CXCL-9, -10, and -11 in primary murine oviduct epithelial cells (MOECs). The induction of innate immunity is relevant in an in vitro infection model, in which MOECs stimulated with Th22 cell supernatants or recombinant IL-22 and TNF-α effectively inhibit the growth of Chlamydia trachomatis and maintain the survival of the epithelia compared with IL-22 or TNF-α alone. In summary, we demonstrate that the Th22 cell cytokines IL-22 and TNF-α play important roles in genital tract infection. The potential for Th22 cell cytokines to modulate innate immune mediators may lead to the development of new topical agents to treat and/or prevent immune-mediated sexually transmitted diseases (STDs). In summary, we demonstrate that IL-22 and TNF-α represent a potent, synergistic cytokine combination for inducing genital mucosal immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saha, Asim; Chatterjee, Sunil K; Foon, Kenneth A; Bhattacharya-Chatterjee, Malaya
2006-08-01
In the present study, we have analysed the detailed cellular immune mechanisms involved in tumour rejection in carcinoembryonic antigen (CEA) transgenic mice after immunization with dendritic cells (DC) pulsed with an anti-idiotype (Id) antibody, 3H1, which mimics CEA. 3H1-pulsed DC vaccinations resulted in induction of CEA specific cytotoxic T lymphocyte (CTL) responses in vitro and the rejection of CEA-transfected MC-38 murine colon carcinoma cells, C15, in vivo (Saha et al.,Cancer Res 2004; 64: 4995-5003). These CTL mediated major histocompatibility complex (MHC) class I-restricted tumour cell lysis, production of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), and expression of Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) in response to C15 cells. CTL used perforin-, FasL-, and TRAIL-mediated death pathways to lyse C15 cells, although perforin-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha synergistically enhanced surface expression of Fas, TRAIL receptor, MHC class I and class II on C15 cells that increased the sensitivity of tumour cells to CTL lysis. CTL activity generated in 3H1-pulsed DC immunized mice was directed against an epitope defined by the idio-peptide LCD-2, derived from 3H1. In vivo lymphocyte depletion experiments demonstrated that induction of CTL response and antitumour immunity was dependent on both CD4+ and CD8+ T cells. The analysis of splenocytes of immunized mice that had rejected C15 tumour growth revealed up-regulated surface expression of memory phenotype Ly-6C and CD44 on both CD4+ and CD8+ T cells. The adoptive transfer experiments also suggested the role of both CD4+ and CD8+ T cells in this model system. Furthermore, mice that had rejected C15 tumour growth, developed tumour-specific immunological memory.
Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav
2017-03-01
Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K
2011-08-01
The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. Copyright © 2011 John Wiley & Sons, Ltd.
Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.
Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S
2016-01-01
Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.
USDA-ARS?s Scientific Manuscript database
Obesity is associated with low-grade inflammation and impaired immune response. Caloric restriction (CR) has been shown to inhibit inflammatory response and enhance cell-mediated immune function. Curcumin, the bioactive phenolic component of turmeric spice, is proposed to have anti-obesity and anti-...
Chen, Shasha; Cai, Chenxu; Li, Zehua; Liu, Guangao; Wang, Yuande; Blonska, Marzenna; Li, Dan; Du, Juan; Lin, Xin; Yang, Meixiang; Dong, Zhongjun
2017-02-01
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (T FH ) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in T FH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient T FH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. © 2017 Chen et al.
Cai, Chenxu; Liu, Guangao; Wang, Yuande; Du, Juan; Lin, Xin; Yang, Meixiang
2017-01-01
Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. PMID:28049627
Oral testosterone in male rats and the development of experimental autoimmune encephalomyelitis.
Macció, Daniela R; Calfa, Gastón; Roth, German A
2005-01-01
Considering that sex steroids can influence the immune system, we studied the development of experimental autoimmune encephalomyelitis (EAE), a T-cell-mediated autoimmune disease of the central nervous system, and the concomitant cell-mediated immunity in gonadally intact and gonadectomized male Wistar rats given testosterone supplementation. Sham-operated rats and surgically castrated animals were orally self-administered with vehicle or testosterone added in the water bottle for 20 days before EAE induction. The androgenic effect of oral testosterone self-administration was evidenced by changes in body weight, and in the weights of androgen-dependent testes and seminal vesicles. Testosterone administration reduced the incidence of clinical signs of EAE in sham-operated animals and reversed the clinical symptoms of the disease associated with castrated EAE animals. The clinical signs observed in the different groups correlated with changes in delayed-type hypersensitivity and mononuclear cell-proliferative responses to the encephalitogenic myelin basic protein. Moreover, testosterone but not cholesterol supplementation in vitro suppressed the proliferative response of mononuclear cells to myelin basic protein suggesting that testosterone may affect specific immune functions through direct actions on immune cells. Finally, self-administration of testosterone induced also elevated corticosterone levels that in sham-operated rats correlated with the low incidence of the disease and in gonadectomized animals could be involved in the remission of clinical symptoms of EAE. These results suggest that orally self-administered testosterone can modulate specific cellular immune responses and serum corticosterone levels leading to changes in the development of EAE. Copyright 2005 S. Karger AG, Basel.
The immune system and skin cancer.
Yu, Sherry H; Bordeaux, Jeremy S; Baron, Elma D
2014-01-01
Carcinogenesis involves multiple mechanisms that disturb genomic integrity and encourage abnormal proliferation. The immune system plays an integral role in maintaining homeostasis and these mechanisms may arrest or enhance dysplasia. There exists a large body of evidence from organ transplantation literature supporting the significance of the immune suppression in the development of skin cancer. Nonmelanoma skin cancers are the most frequent neoplasms after organ transplantation, with organ transplant recipients having a 65-fold increase in squamous cell carcinoma incidence and 10-fold increase in basal cell carcinoma incidence. Similarly, UV-radiation (UVR) induced immunosuppression is correlated with the development of cutaneous malignancies in a dose-dependent manner. This was first shown several decades ago by Margaret Kripke, when transplanted tumors were rejected in mice with competent immune systems, but grew unchecked in immunosuppressed specimens. After UV exposure, chromophores initiate a cascade that leads to immunosuppression via derangement of Langerhans cells' antigen-presenting capacity. UV-irradiated Langerhans cells present antigens to Th2 cells, but fail to stimulate Th1 cells. A subset of T regulatory cells, specific for the antigen encountered after UVR, is also stimulated to proliferate. In general UV irradiation leads to a greater number of T regulatory cells and fewer effector T cells in the skin, shiftingthe balance from T-cell-mediated immunity to immunosuppression. These regulatory cells have the phenotype CD4+, CD25+, Foxp3+, CTLA-4+. These and many other changes in local immunity lead to a suppressed immune state, which allow for skin cancer development.
NKT Cell Networks in the Regulation of Tumor Immunity
Robertson, Faith C.; Berzofsky, Jay A.; Terabe, Masaki
2014-01-01
CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting. PMID:25389427
Heal, Karen G; Taylor-Robinson, Andrew W
2010-01-01
The glycoalkaloid tomatine, derived from the wild tomato, can act as a powerful adjuvant to elicit an antigen-specific cell-mediated immune response to the circumsporozoite (CS) protein, a major pre-erythrocytic stage malaria vaccine candidate antigen. Using a defined MHC-class-I-restricted CS epitope in a Plasmodium berghei rodent model, antigen-specific cytotoxic T lymphocyte activity and IFN-gamma secretion ex vivo were both significantly enhanced compared to responses detected from similarly stimulated splenocytes from naive and tomatine-saline-immunized mice. Further, through lymphocyte depletion it is demonstrated that antigen-specific IFN-gamma is produced exclusively by the CD8(+) T cell subset. We conclude that the processing of the P. berghei CS peptide as an exogenous antigen and its presentation via MHC class I molecules to CD8(+) T cells leads to an immune response that is an in vitro correlate of protection against pre-erythrocytic malaria. Further characterization of tomatine as an adjuvant in malaria vaccine development is indicated.
Bergmann-Leitner, Elke S.; Leitner, Wolfgang W.
2014-01-01
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This “depot” was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner. PMID:26344620
USDA-ARS?s Scientific Manuscript database
Intestinal infection with Eimeria, the etiologic agent of avian coccidiosis, stimulates protective immunity to subsequent colonization by the homologous parasite, whilst cross-protection against heterologous species is poor. As a first step toward the development of a broad specificity Eimeria vacci...
Klei, T R; Chapman, M R; Dennis, V A
1992-06-01
The adherence of equine leukocytes to Strongylus vulgaris infective larvae (L3) in the presence of normal and immune sera was examined in vitro. Immune sera promoted adherence of buffy coat cells from ponies with S. vulgaris-induced eosinophilia (eosinophilic ponies) to S. vulgaris L3. However, eosinophils in the buffy coat cells were the predominant adherent cell type. Studies using leukocyte populations enriched for eosinophils, neutrophils, and mononuclear cells from eosinophilic ponies support the observations using buffy coat cells that eosinophils were the main effector cells. Adherent eosinophils from eosinophilic ponies immobilized L3. Neutrophils were less adherent and did not immobilize L3. Mononuclear cells failed to adhere. Normal eosinophils from strongly-naive ponies did not immobilize S. vulgaris L3 in the presence of immune serum, suggesting the in vivo activation of eosinophils in eosinophilic animals. Immune serum promoted less adherence of buffy coat cells to Strongylus edentatus or mixed species of Cyathostominae L3, suggesting that the serum-mediated cellular adherence phenomenon was species-specific. Normal serum promoted less cellular adherence to S. vulgaris L3 than immune serum. The adherence mediated by normal serum was removed by heat inactivation, suggesting that this nonspecific phenomenon was a complement-mediated reaction. Immune globulins promoted reactions similar to that seen using heat-inactivated immune serum, whereas normal globulins did not promote adherence. Immune globulins absorbed with pieces of S. vulgaris adult worms did not promote the adherence of buffy coat cells to S. vulgaris L3, suggesting that adult and L3 stages share antigens important in this phenomenon that resulted in the removal of specific adherence antibody during absorption.
Cancer immunoediting by the innate immune system in the absence of adaptive immunity
O’Sullivan, Timothy; Saddawi-Konefka, Robert; Vermi, William; Koebel, Catherine M.; Arthur, Cora; White, J. Michael; Uppaluri, Ravi; Andrews, Daniel M.; Ngiow, Shin Foong; Teng, Michele W.L.; Smyth, Mark J.; Schreiber, Robert D.
2012-01-01
Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3′methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2−/−, and RAG2−/−x γc−/− mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2−/−x γc−/− mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting. PMID:22927549
Cyclooxygenase-1 and -2 Play Contrasting Roles in Listeria-Stimulated Immunity.
Theisen, Erin; McDougal, Courtney E; Nakanishi, Masako; Stevenson, David M; Amador-Noguez, Daniel; Rosenberg, Daniel W; Knoll, Laura J; Sauer, John-Demian
2018-06-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are commonly used for pain relief and fever reduction. NSAIDs are used following childhood vaccinations and cancer immunotherapies; however, how NSAIDs influence the development of immunity following these therapies is unknown. We hypothesized that NSAIDs would modulate the development of an immune response to Listeria monocytogenes -based immunotherapy. Treatment of mice with the nonspecific COX inhibitor indomethacin impaired the generation of cell-mediated immunity. This phenotype was due to inhibition of the inducible COX-2 enzyme, as treatment with the COX-2-selective inhibitor celecoxib similarly inhibited the development of immunity. In contrast, loss of COX-1 activity improved immunity to L. monocytogenes Impairments in immunity were independent of bacterial burden, dendritic cell costimulation, or innate immune cell infiltrate. Instead, we observed that PGE 2 production following L. monocytogenes is critical for the formation of an Ag-specific CD8 + T cell response. Use of the alternative analgesic acetaminophen did not impair immunity. Taken together, our results suggest that COX-2 is necessary for optimal CD8 + T cell responses to L. monocytogenes , whereas COX-1 is detrimental. Use of pharmacotherapies that spare COX-2 activity and the production of PGE 2 like acetaminophen will be critical for the generation of optimal antitumor responses using L. monocytogenes . Copyright © 2018 by The American Association of Immunologists, Inc.
Letellier, Carine; Boxus, Mathieu; Rosar, Laurent; Toussaint, Jean-François; Walravens, Karl; Roels, Stefan; Meyer, Gilles; Letesson, Jean-Jacques; Kerkhofs, Pierre
2008-09-02
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in both cattle and young children. Despite the development of vaccines against bovine (B)RSV, incomplete protection and exacerbation of subsequent RSV disease have occurred. In order to circumvent these problems, calves were vaccinated with the nucleocapsid protein, known to be a major target of CD8(+) T cells in cattle. This was performed according to a DNA prime-protein boost strategy. The results showed that DNA vaccination primed a specific T-cell-mediated response, as indicated by both a lymphoproliferative response and IFN-gamma production. These responses were enhanced after protein boost. After challenge, mock-vaccinated calves displayed gross pneumonic lesions and viral replication in the lungs. In contrast, calves vaccinated by successive administrations of plasmid DNA and protein exhibited protection against the development of pneumonic lesions and the viral replication in the BAL fluids and the lungs. The protection correlated to the cell-mediated immunity and not to the antibody response.
Fungal mediated innate immune memory, what have we learned?
Quintin, Jessica
2018-05-30
The binary classification of mammalian immune memory is now obsolete. Innate immune cells carry memory characteristics. The overall capacity of innate immune cells to remember and alter their responses is referred as innate immune memory and the induction of a non-specific memory resulting in an enhanced immune status is termed "trained immunity". Historically, trained immunity was first described as triggered by the human fungal pathogen Candida albicans. Since, numerous studies have accumulated and deciphered the main characteristics of trained immunity mediated by fungi and fungal components. This review aims at presenting the newly described aspect of memory in innate immunity with an emphasis on the historically fungal mediated one, covering the known molecular mechanisms associated with training. In addition, the review uncovers the numerous non-specific effect that β-glucans trigger in the context of infectious diseases and septicaemia, inflammatory diseases and cancer. Copyright © 2018. Published by Elsevier Ltd.
2012-07-01
Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, M D , Ph D...CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy 5b...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on
Immunomodulation: the future cure for allergic diseases.
Tsitoura, Daphne C; Tassios, Yannis
2006-11-01
Allergies are the result of aberrant immune reactivity against common innocuous environmental proteins (allergens). A pivotal component of allergic pathogenesis is the generation of allergen-specific Th cells with an effector phenotype. These Th cells activate a complex immune cascade that triggers the release of potent mediators and enhances the mobilization of several inflammatory cells types, which in turn elicit the acute allergic reactions and promote the development of chronic inflammation. The current therapies for allergic diseases focus primarily on pharmacological control of symptoms and suppression of inflammation. This approach is beneficial, but not curative, since the underlying immune pathology is not inhibited. In an attempt to develop more effective therapeutic strategies, the scientific interest has been directed toward methods down-modulating the immune mechanisms that initiate and maintain the allergic cascade. Today, the only widely used disease-modifying form of allergy treatment is the specific immunotherapy with allergen extracts. More recently the use of anti-IgE has been approved for patients with allergic asthma. Other immunomodulatory methods being currently explored are the administration of microbial adjuvants that inhibit Th2 reactivity and the design of molecules that interrupt the activity of key allergic cytokines, chemokines, or other Th2 effector mediators.
Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.
2016-01-01
Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843
Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer.
Prendergast, George C; Smith, Courtney; Thomas, Sunil; Mandik-Nayak, Laura; Laury-Kleintop, Lisa; Metz, Richard; Muller, Alexander J
2014-07-01
Genetic and pharmacological studies of indoleamine 2,3-dioxygenase (IDO) have established this tryptophan catabolic enzyme as a central driver of malignant development and progression. IDO acts in tumor, stromal and immune cells to support pathogenic inflammatory processes that engender immune tolerance to tumor antigens. The multifaceted effects of IDO activation in cancer include the suppression of T and NK cells, the generation and activation of T regulatory cells and myeloid-derived suppressor cells, and the promotion of tumor angiogenesis. Mechanistic investigations have defined the aryl hydrocarbon receptor, the master metabolic regulator mTORC1 and the stress kinase Gcn2 as key effector signaling elements for IDO, which also exerts a non-catalytic role in TGF-β signaling. Small-molecule inhibitors of IDO exhibit anticancer activity and cooperate with immunotherapy, radiotherapy or chemotherapy to trigger rapid regression of aggressive tumors otherwise resistant to treatment. Notably, the dramatic antitumor activity of certain targeted therapeutics such as imatinib (Gleevec) in gastrointestinal stromal tumors has been traced in part to IDO downregulation. Further, antitumor responses to immune checkpoint inhibitors can be heightened safely by a clinical lead inhibitor of the IDO pathway that relieves IDO-mediated suppression of mTORC1 in T cells. In this personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer, we provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer.
A dendritic cell-stromal axis maintains immune responses in lymph nodes
Kumar, Varsha; Dasoveanu, Dragos C.; Chyou, Susan; Tzeng, Te-Chen; Rozo, Cristina; Liang, Yong; Stohl, William; Fu, Yang-Xin; Ruddle, Nancy; Lu, Theresa T.
2015-01-01
Summary Within secondary lymphoid tissues, stromal reticular cells support lymphocyte function, and targeting reticular cells is a potential strategy for controlling pathogenic lymphocytes in disease. However, the mechanisms that regulate reticular cell function are not well understood. Here we found that during an immune response in lymph nodes, dendritic cells (DCs) maintain reticular cell survival in multiple compartments. DC-derived lymphotoxin beta receptor (LTβR) ligands were critical mediators, and LTβR signaling on reticular cells mediated cell survival by modulating podoplanin (PDPN). PDPN modulated integrin-mediated cell adhesion, which maintained cell survival. This DC-stromal axis maintained lymphocyte survival and the ongoing immune response. Our findings provide insight into the functions of DCs, LTβR, and PDPN and delineate a DC-stromal axis that can potentially be targeted in autoimmune or lymphoproliferative diseases. PMID:25902483
Mueller, Tobias; Beutler, Claudia; Picó, Almudena Hurtado; Shibolet, Oren; Pratt, Daniel S; Pascher, Andreas; Neuhaus, Peter; Wiedenmann, Bertram; Berg, Thomas; Podolsky, Daniel K
2011-11-01
Pattern recognition receptors (PRRs) orchestrate the innate immune defence in human biliary epithelial cells (BECs). Tight control of PRR signalling provides tolerance to physiological amounts of intestinal endotoxins in human bile to avoid constant innate immune activation in BECs. We wanted to determine whether inappropriate innate immune responses to intestinal endotoxins contribute to the development and perpetuation of chronic biliary inflammation. We examined PRR-mediated innate immune responses and protective endotoxin tolerance in primary BECs isolated from patients with primary sclerosing cholangitis (PSC), alcoholic liver disease and patients without chronic liver disease. Expression studies comprised northern blots, RT-PCR, Western blots and immunocytochemistry. Functional studies comprised immuno-precipitation Western blots, FACS for endotoxin uptake, and NF-κB activation assays and ELISA for secreted IL-8 and tumour necrosis factor (TNF)-α. Primary BECs from explanted PSC livers showed reversibly increased TLR and NOD protein expression and activation of the MyD88/IRAK signalling complex. Consecutively, PSC BECs exhibited inappropriate innate immune responses to endotoxins and did not develop immune tolerance after repeated endotoxin exposures. This endotoxin hyper-responsiveness was probably because of the stimulatory effect of abundantly expressed IFN-γ and TNF-α in PSC livers, which stimulated TLR4-mediated endotoxin signalling in BECs, leading to increased TLR4-mediated endotoxin incorporation and impaired inactivation of the TLR4 signalling cascade. As TNF-α inhibition partly restored protective innate immune tolerance, endogenous TNF-α secretion probably contributed to inappropriate endotoxin responses in BECs. Inappropriate innate immune responses to intestinal endotoxins and subsequent endotoxin intolerance because of enhanced PRR signalling in BECs probably contribute to chronic cholangitis. © 2011 John Wiley & Sons A/S.
An Animal Model of Abacavir-Induced HLA-Mediated Liver Injury.
Song, Binbin; Aoki, Shigeki; Liu, Cong; Susukida, Takeshi; Ito, Kousei
2018-04-01
Genome-wide association studies indicate that several idiosyncratic adverse drug reactions are highly associated with specific human leukocyte antigen (HLA) alleles. For instance, abacavir, a human immunodeficiency virus reverse transcriptase inhibitor, induces multiorgan toxicity exclusively in patients carrying the HLA-B*57:01 allele. However, the underlying mechanism is unclear due to a lack of appropriate animal models. Previously, we developed HLA-B*57:01 transgenic mice and found that topical application of abacavir to the ears induced proliferation of CD8+ lymphocytes in local lymph nodes. Here, we attempted to reproduce abacavir-induced liver injury in these mice. However, oral administration of abacavir alone to HLA-B*57:01 transgenic mice did not increase levels of the liver injury marker alanine aminotransferase. Considering the importance of innate immune activation in mouse liver, we treated mice with CpG oligodeoxynucleotide, a toll-like receptor 9 agonist, plus abacavir. This resulted in a marked increase in alanine aminotransferase, pathological changes in liver, increased numbers of activated CD8+ T cells, and tissue infiltration by immune cells exclusively in HLA-B*57:01 transgenic mice. These results indicate that CpG oligodeoxynucleotide-induced inflammatory reactions and/or innate immune activation are necessary for abacavir-induced HLA-mediated liver injury characterized by infiltration of CD8+ T cells. Thus, we developed the first mouse model of HLA-mediated abacavir-induced idiosyncratic liver injury. Further investigation will show that the proposed HLA-mediated liver injury model can be applied to other combinations of drugs and HLA types, thereby improving drug development and contributing to the development of personalized medicine.
Harizi, H; Gualde, N
2005-06-01
The innate immune response is essentially the first line of defense against an invading pathogen. Through specialized receptors, known as pattern recognition receptors, especially Toll-like receptors, specialized cells of myeloid origin, including macrophages and dendritic cells (DCs) are able to phagocytose microorganisms and induce an innate inflammatory response. Although B and T lymphocytes recognize tissue antigens with high specificity, they are unable to initiate immune responses. The decision to activate an appropriate immune response is made by unique DC, the most professional antigen-presenting cells (APCs) which control the responses of several types of lymphocytes and play central role in the transition between innate and adaptive immunity. Increased secretion of inflammatory endogenous mediators such as cytokines and arachidonic acid-derived lipid mediators, also termed eicosanoids, can activate APC, particularly DC, which in turn induce an adaptive immune response. There is an increasing evidence that eicosanoids play an important role in connecting innate and adaptive immunity by acting on cells of both systems. Prostanoids, a major class of eicosanoids, have a great impact on inflammatory and immune responses. PGE(2) is one of the best known and most well-characterized prostanoids in terms of immunomodulation. Although cytokines are known as key regulators of immunity, eicosanoids, including PGE(2), PGD(2), LTB(4), and LTC(4), may also affect cells of immune system by modulating cytokine release, cell differentiation, survival, migration, antigen presentation, and apoptosis. By acting on various aspects of immune and inflammatory reactions, these lipid mediators emerge as key regulators of the crosstalk between innate and adaptive immunity.
Immunology and Immunotherapy of Head and Neck Cancer.
Ferris, Robert L
2015-10-10
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. © 2015 by American Society of Clinical Oncology.
Immunological modes of pregnancy loss: inflammation, immune effectors, and stress.
Kwak-Kim, Joanne; Bao, Shihua; Lee, Sung Ki; Kim, Joon Woo; Gilman-Sachs, Alice
2014-08-01
Inflammatory immune response plays a key role in reproductive failures such as multiple implantation failures (MIF), early pregnancy loss, and recurrent pregnancy losses (RPL). Cellular immune responses particularly mediated by natural killer (NK), and T cells are often dysregulated in these conditions. Excessive or inappropriate recruitment of peripheral blood NK cells to the uterus may lead to cytotoxic environment in utero, in which proliferation and differentiation of trophoblast is hampered. In addition, inadequate angiogenesis by uterine NK cells often leads to abnormal vascular development and blood flow patterns, which, in turn, leads to increased oxidative stress or ischemic changes in the invading trophoblast. T-cell abnormalities with increased Th1 and Th17 immunity, and decreased Th2 and T regulatory immune responses may play important roles in RPL and MIF. A possible role of stress in inflammatory immune response is also reviewed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Efficacy of live zoster vaccine in preventing zoster and postherpetic neuralgia.
Gilden, D
2011-05-01
Declining cell-mediated immunity to varicella zoster virus (VZV) in elderly individuals results in virus reactivation manifest by zoster (shingles) and postherpetic neuralgia (PHN). To prevent virus reactivation, a new VZV vaccine (Zostavax; Merck) that boosts cell-mediated immunity to VZV was developed. The 3-year Shingles Prevention Study showed that Zostavax significantly reduced burden of disease because of zoster and PHN. Despite its cost-effectiveness for adults aged 65-75 years, as determined in the United States, Canada and UK, <2% of immunocompetent adults over age 60 years in the United States were immunized in 2007. This was because of a combination of lack of patient awareness of the vaccine, physicians' uncertainty about the duration of protection and different cost-sharing plans for immunization. Nevertheless, zoster vaccine is safe, effective and highly recommended for immunization of immunocompetent individuals over age 60 years with no history of recent zoster. © 2011 The Association for the Publication of the Journal of Internal Medicine.
Dendritic cells exposed in vitro to TGF-β1 ameliorate experimental autoimmune myasthenia gravis
YARILIN, D; DUAN, R; HUANG, Y-M; XIAO, B-G
2002-01-01
Experimental autoimmune myasthenia gravis (EAMG) is an animal model for human myasthenia gravis (MG), characterized by an autoaggressive T-cell-dependent antibody-mediated immune response directed against the acetylcholine receptor (AChR) of the neuromuscular junction. Dendritic cells (DC) are unique antigen-presenting cells which control T- and B-cell functions and induce immunity or tolerance. Here, we demonstrate that DC exposed to TGF-β1 in vitro mediate protection against EAMG. Freshly prepared DC from spleen of healthy rats were exposed to TGF-β1 in vitro for 48 h, and administered subcutaneously to Lewis rats (2 × 106DC/rat) on day 5 post immunization with AChR in Freund’s complete adjuvant. Control EAMG rats were injected in parallel with untreated DC (naive DC) or PBS. Lewis rats receiving TGF-β1-exposed DC developed very mild symptoms of EAMG without loss of body weight compared with control EAMG rats receiving naive DC or PBS. This effect of TGF-β1-exposed DC was associated with augmented spontaneous and AChR-induced proliferation, IFN-γ and NO production, and decreased levels of anti-AChR antibody-secreting cells. Autologous DC exposed in vitro to TGF-β1 could represent a new opportunity for DC-based immunotherapy of antibody-mediated autoimmune diseases. PMID:11876742
Tolerance to the Intestinal Microbiota Mediated by ROR(γt)(+) Cells.
Ohnmacht, Caspar
2016-07-01
Harmless microbes colonizing the gut require the establishment of a well-equilibrated symbiosis between this microbiota and its host. However, the immune system is primed to recognize both conserved microbial patterns and foreign antigens, and therefore developed strong tolerance mechanisms to prevent potential fatal immune reactivity to symbiotic microbes. The transcription factor RAR-related orphan-like γt [ROR(γt); encoded by Rorc] plays a key role in the gut for lymphoid tissue organogenesis, development of innate lymphoid cells type 3 (ILC3s) and proinflammatory type 17 T helper (Th17) cells. Surprisingly, recent research has revealed a contribution of ROR(γt)-expressing cells in a variety of tolerance mechanisms in both the innate and adaptive immune system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moreno, Javier; Vouldoukis, Ioannis; Martin, Virginie; McGahie, David; Cuisinier, Anne-Marie; Gueguen, Sylvie
2012-01-01
Canine leishmaniasis is an important zoonotic disease of dogs. The clinical outcome of infection is variable, with the efficiency of the immune response being the key determining factor. There is now a general consensus that a predominant Th1 immune profile in an overall mixed Th1/Th2 response is associated with resistance in dogs, and the absence of a strong Th1 influence is associated with a progression to clinical disease. As a result, there has been a growing demand for vaccines that can induce a specific, strong Th1 response. In this study, we measured the impact of a primary course of a newly available LiESP/QA-21 vaccine on selected humoral and cellular markers of the canine immune response during the onset of immunity. All vaccinated dogs developed a humoral response characterised by IgG2 production. More importantly, vaccinated dogs developed significantly stronger cell-mediated immunity responses than did control dogs. Vaccination induced specific cellular reactivity to soluble Leishmania antigens, with a Leishmania-specific lymphoproliferation (p = 0.0072), characterised by an increased population of T lymphocytes producing IFN-γ (p = 0.0021) and a significant ability of macrophages to reduce intracellular parasite burdens in vitro after co-culture with autologous lymphocytes (p = 0.0014). These responses were correlated with induction of the NOS pathway and production of NO derivatives, which has been shown to be an important leishmanicidal mechanism. These results confirm that vaccination with LiESP/QA-21 induces an appropriate Th1-profile cell-mediated response within three weeks of completing the primary course, and that this response effectively reduces the parasite load in pre-infected macrophages in vitro. PMID:22724031
CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?
dos Santos Virgilio, Fernando; Pontes, Camila; Dominguez, Mariana Ribeiro; Ersching, Jonatan; Rodrigues, Mauricio Martins; Vasconcelos, José Ronnie
2014-01-01
MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine. PMID:25104879
Activation of cell-mediated immunity by Morinda citrifolia fruit extract and its constituents.
Murata, Kazuya; Abe, Yumi; Futamura-Masudaa, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki
2014-04-01
Morinda citrifolia, commonly known as noni, is a traditional natural medicine in French Polynesia and Hawaii. Functional foods derived from M. citrifolia fruit have been marketed to help prevent diseases and promote good health. The objective of this study was to assess the effects of M. citrifolia fruit on cell-mediated immunity. In the picryl chloride-induced contact dermatitis test, M. citrifolia fruit extract (Noni-ext) inhibited the suppression of cell-mediated immunity by immunosuppressive substances isolated from freeze-dried ascites of Ehrlich carcinoma-bearing mice (EC-sup). In addition, Noni-ext inhibited reduction of IL-2 production in EC-sup-treated mice and activated natural killer cells in normal mice. These results suggest that Noni-ext has multiple effects on the recovery of cell-mediated immunity. Furthermore, we investigated the active principles of Noni-ext and identified an iridoid glycoside, deacetylasperulosidic acid. Oral administration of deacetylasperulosidic acid inhibited the reduction of ear swelling, and also cancelled the suppression of IL-2 production along with the activation of natural killer cells in the same manner as that of Noni-ext.
Lee, Byung-Cheol; Lee, Jongsoon
2013-01-01
There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. PMID:23707515
Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J.; Patz, Edward F.; Li, Shi-You; He, You-Wen
2016-01-01
In contrast to its inhibitory effects on many cells, IL-10 activates CD8+ tumor infiltrating lymphocytes (TILs) and enhances their antitumor activity. However, CD8+ TILs do not routinely express IL-10 as autocrine complement C3 inhibits IL-10 production through complement receptors C3aR and C5aR. CD8+ TILs from C3-deficient mice, however, express IL-10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T cell- and IL-10-dependent manner; human TILs expanded with IL-2 plus IL-10 increase the killing of primary tumors in vitro compared to IL-2 treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the PD-1/PD-L1 immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8+ TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL-10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. PMID:27297552
NASA Astrophysics Data System (ADS)
Das, Ishani; Padhi, Avinash; Mukherjee, Sitabja; Dash, Debi P.; Kar, Santosh; Sonawane, Avinash
2017-04-01
The activation of cell-mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) is critical for protection against the pathogen and nanoparticle-mediated delivery of antigens is a more potent way to induce different immune responses. Herein, we show that mice immunized with Mtb lipid-bound chitosan nanoparticles (NPs) induce secretion of prominent type-1 T-helper (Th-1) and type-2 T-helper (Th-2) cytokines in lymph node and spleen cells, and also induces significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T-cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid-coated chitosan NPs as compared to mice immunized with chitosan NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher numbers of CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid-coated chitosan NPs. In conclusion, this study represents a promising new strategy for the efficient delivery of Mtb lipids using chitosan NPs to trigger an enhanced cell-mediated and antibody response against Mtb lipids.
Toussirot, Eric; Béreau, Matthieu; Vauchy, Charline; Saas, Philippe
2018-01-01
Immune mediated diseases (IMDs) are complex chronic inflammatory diseases involving genetic and environmental factors. Salt intake has been proposed as a diet factor that can influence the immune response. Indeed, experimental data report the influence of sodium chloride on the differentiation of naive CD4+ T cells into IL-17 secreting T helper (Th) cells (Th17 cells), by a mechanism involving the serum glucocorticoid kinase-1 (SGK1) that promotes the expression of the IL-23 receptor (IL-23R). The IL-23/IL-23R is critical for pathogenic inflammatory Th17 cell differentiation. Experimental data in murine models of arthritis, colitis and encephalomyelitis corroborate these findings. This manuscript reviews the current knowledge on the effects of sodium chloride on innate and adaptive immunity. We also performed a systematic literature review for clinical studies examining the relationships between salt consumption and the development or the activity/severity of the most common IMDs mediated by the IL-23/Th17 pathway, i.e., rheumatoid arthritis (RA), multiple sclerosis (MS), and Crohn's disease (CD). Nine studies were found, 4 in RA, 4 in MS and 1 in CD. An association was found between developments of anti-citrullinated protein antibody (ACPA) positive RA in smokers and salt intake, but these results were not confirmed in another study. For MS, no association was observed in pediatric subjects while in adult patients, a link was found between salt intake and disease activity. However, this result was not confirmed in another study. These conflicting results highlight the fact that further evaluation in human IMDs is required. Moreover, physicians need to develop clinical trials with diet interventions to evaluate the impact of low salt intake on disease activity/severity of IMDs. PMID:29740348
Toussirot, Eric; Béreau, Matthieu; Vauchy, Charline; Saas, Philippe
2018-01-01
Immune mediated diseases (IMDs) are complex chronic inflammatory diseases involving genetic and environmental factors. Salt intake has been proposed as a diet factor that can influence the immune response. Indeed, experimental data report the influence of sodium chloride on the differentiation of naive CD4 + T cells into IL-17 secreting T helper (Th) cells (Th17 cells), by a mechanism involving the serum glucocorticoid kinase-1 (SGK1) that promotes the expression of the IL-23 receptor (IL-23R). The IL-23/IL-23R is critical for pathogenic inflammatory Th17 cell differentiation. Experimental data in murine models of arthritis, colitis and encephalomyelitis corroborate these findings. This manuscript reviews the current knowledge on the effects of sodium chloride on innate and adaptive immunity. We also performed a systematic literature review for clinical studies examining the relationships between salt consumption and the development or the activity/severity of the most common IMDs mediated by the IL-23/Th17 pathway, i.e., rheumatoid arthritis (RA), multiple sclerosis (MS), and Crohn's disease (CD). Nine studies were found, 4 in RA, 4 in MS and 1 in CD. An association was found between developments of anti-citrullinated protein antibody (ACPA) positive RA in smokers and salt intake, but these results were not confirmed in another study. For MS, no association was observed in pediatric subjects while in adult patients, a link was found between salt intake and disease activity. However, this result was not confirmed in another study. These conflicting results highlight the fact that further evaluation in human IMDs is required. Moreover, physicians need to develop clinical trials with diet interventions to evaluate the impact of low salt intake on disease activity/severity of IMDs.
The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.
Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D
2016-02-01
During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.
Hsu, Peter; Nanan, Ralph
2014-10-01
In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside
Saburi, Ehsan; Saburi, Amin; Ghanei, Mostafa
2017-01-01
Immunotherapy has been used for years in many types of cancer therapy. Recently, cancer immunotherapy has focused on mechanisms which can enhance the development of cell-mediated immunity. Anticancer medications are administered to inhibit immunosuppressive factors such as nagalase enzyme, which is produced by neoplastic cells and destroys macrophage activating factor (Gc-MAF). Anti-neoplastics medications can also enhance immune-cell activity against tumors. Such medications show great potential in cancer immunotherapy using natural human mechanisms against neoplasms. PMID:29201312
Vaccinia Virus: A Tool for Research and Vaccine Development
NASA Astrophysics Data System (ADS)
Moss, Bernard
1991-06-01
Vaccinia virus is no longer needed for smallpox immunization, but now serves as a useful vector for expressing genes within the cytoplasm of eukaryotic cells. As a research tool, recombinant vaccinia viruses are used to synthesize biologically active proteins and analyze structure-function relations, determine the targets of humoral- and cell-mediated immunity, and investigate the immune responses needed for protection against specific infectious diseases. When more data on safety and efficacy are available, recombinant vaccinia and related poxviruses may be candidates for live vaccines and for cancer immunotherapy.
Vasilevsky, Sam; Greub, Gilbert; Nardelli-Haefliger, Denise
2014-01-01
SUMMARY Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies. PMID:24696438
McMaster, Sean R; Wilson, Jarad J; Wang, Hong; Kohlmeier, Jacob E
2015-07-01
CD8 airway resident memory T (TRM) cells are a distinctive TRM population with a high turnover rate and a unique phenotype influenced by their localization within the airways. Their role in mediating protective immunity to respiratory pathogens, although suggested by many studies, has not been directly proven. This study provides definitive evidence that airway CD8 TRM cells are sufficient to mediate protection against respiratory virus challenge. Despite being poorly cytolytic in vivo and failing to expand after encountering Ag, airway CD8 TRM cells rapidly express effector cytokines, with IFN-γ being produced most robustly. Notably, established airway CD8 TRM cells possess the ability to produce IFN-γ faster than systemic effector memory CD8 T cells. Furthermore, naive mice receiving intratracheal transfer of airway CD8 TRM cells lacking the ability to produce IFN-γ were less effective at controlling pathogen load upon heterologous challenge. This direct evidence of airway CD8 TRM cell-mediated protection demonstrates the importance of these cells as a first line of defense for optimal immunity against respiratory pathogens and suggests they should be considered in the development of future cell-mediated vaccines. Copyright © 2015 by The American Association of Immunologists, Inc.
Eva, Megan M; Yuki, Kyoko E; Dauphinee, Shauna M; Schwartzentruber, Jeremy A; Pyzik, Michal; Paquet, Marilène; Lathrop, Mark; Majewski, Jacek; Vidal, Silvia M; Malo, Danielle
2014-01-01
Salmonella enterica is a ubiquitous Gram-negative intracellular bacterium that continues to pose a global challenge to human health. The etiology of Salmonella pathogenesis is complex and controlled by pathogen, environmental, and host genetic factors. In fact, patients immunodeficient in genes in the IL-12, IL-23/IFN-γ pathway are predisposed to invasive nontyphoidal Salmonella infection. Using a forward genomics approach by N-ethyl-N-nitrosourea (ENU) germline mutagenesis in mice, we identified the Ity14 (Immunity to Typhimurium locus 14) pedigree exhibiting increased susceptibility following in vivo Salmonella challenge. A DNA-binding domain mutation (p.G418_E445) in Stat4 (Signal Transducer and Activator of Transcription Factor 4) was the causative mutation. STAT4 signals downstream of IL-12 to mediate transcriptional regulation of inflammatory immune responses. In mutant Ity14 mice, the increased splenic and hepatic bacterial load resulted from an intrinsic defect in innate cell function, IFN-γ-mediated immunity, and disorganized granuloma formation. We further show that NK and NKT cells play an important role in mediating control of Salmonella in Stat4(Ity14/Ity14) mice. Stat4(Ity14/Ity14) mice had increased expression of genes involved in cell-cell interactions and communication, as well as increased CD11b expression on a subset of splenic myeloid dendritic cells, resulting in compromised recruitment of inflammatory cells to the spleen during Salmonella infection. Stat4(Ity14/Ity14) presented upregulated compensatory mechanisms, although inefficient and ultimately Stat4(Ity14/Ity14) mice develop fatal bacteremia. The following study further elucidates the pathophysiological impact of STAT4 during Salmonella infection.
Oral candidosis in relation to oral immunity.
Feller, L; Khammissa, R A G; Chandran, R; Altini, M; Lemmer, J
2014-09-01
Symptomatic oral infection with Candida albicans is characterized by invasion of the oral epithelium by virulent hyphae that cause tissue damage releasing the inflammatory mediators that initiate and sustain local inflammation. Candida albicans triggers pattern-recognition receptors of keratinocytes, macrophages, monocytes and dendritic cells, stimulating the production of IL-1β, IL-6 and IL-23. These cytokines induce the differentiation of Th17 cells and the generation of IL-17- and/or IL-22-mediated antifungal protective immuno-inflammatory responses in infected mucosa. Some immune cells including NKT cells, γδ T cells and lymphoid cells that are innate to the oral mucosa have the capacity to produce large quantities of IL-17 in response to C. albicans, sufficient to mediate effective protective immunity against C. albicans. On the other hand, molecular structures of commensal C. albicans blastoconidia, although detected by pattern-recognition receptors, are avirulent, do not invade the oral epithelium, do not elicit inflammatory responses in a healthy host, but induce regulatory immune responses that maintain tissue tolerance to the commensal fungi. The type, specificity and sensitivity of the protective immune response towards C. albicans is determined by the outcome of the integrated interactions between the intracellular signalling pathways of specific combinations of activated pattern-recognition receptors (TLR2, TLR4, Dectin-1 and Dectin-2). IL-17-mediated protective immune response is essential for oral mucosal immunity to C. albicans infection. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Liang, Sihui; Liang, Ruihong; Zhou, Xiaogang; Chen, Zhixiong; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Yuan, Can; Miyamoto, Koji; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Wang, Wenming; Wu, Xianjun; Yamane, Hisakazu; Zhu, Lihuang; Li, Shigui; Chen, Xuewei
2016-01-01
Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. PMID:27618555
Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*
Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva
2018-01-01
Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367
Sa, Qila; Woodward, Jerold; Suzuki, Yasuhiro
2013-01-01
Chronic infection with Toxoplasma gondii induces a potent resistance against re-infection, and IFN-γ production by CD8+ T cells is crucial for the protective immunity. However, the molecular mechanisms that regulate the secondary response remain to be elucidated. In the present study, we examined the role of IL-2 in IFN-γ production by CD8+ immune T cells in their secondary responses using T. gondii-specific CD8+ T cell hybridomas and splenic CD8+ immune T cells from chronically infected mice. The majority (92 %) of CD8+ T cell hybridomas produced large amounts of IFN-γ only when a low amount (0.5 ng/ml) of exogenous IL-2 was provided in combination with T. gondii antigens. Inhibition of cell proliferation by mitomycin C (MMC) did not affect the enhancing effect of IL-2 on the IFN-γ production, and significant increases in transcription factor T-bet expression were associated with the IL-2-mediated IFN-γ amplification. Splenic CD8+ immune T cells produced similar low levels of IL-2 in the secondary response to T. gondii, and a blocking of IL-2 signaling by anti-IL-2Rα antibody or inhibitors of JAK1 and JAK3 significantly reduced IFN-γ production of the T cells. This IL-2-mediated upregulation of IFN-γ production was observed in MMC-treated CD8+ immune T cells, thus independent from their cell division. Therefore, endogenous IL-2 produced by CD8+ immune T cells can play an important autocrine enhancing role on their IFN-γ production in the secondary responses to T. gondii, suggesting an importance of induction of CD8+ immune T cells with an appropriate IL-2 production for vaccine development. PMID:23359502
Colonic Immune Stimulation by Targeted Oral Vaccine
Kathania, Mahesh; Zadeh, Mojgan; Lightfoot, Yaíma L.; Roman, Robert M.; Sahay, Bikash; Abbott, Jeffrey R.; Mohamadzadeh, Mansour
2013-01-01
Background Currently, sufficient data exist to support the use of lactobacilli as candidates for the development of new oral targeted vaccines. To this end, we have previously shown that Lactobacillus gasseri expressing the protective antigen (PA) component of anthrax toxin genetically fused to a dendritic cell (DC)-binding peptide (DCpep) induced efficacious humoral and T cell-mediated immune responses against Bacillus anthracis Sterne challenge. Methodology/Principal Finding In the present study, we investigated the effects of a dose dependent treatment of mice with L. gasseri expressing the PA-DCpep fusion protein on intestinal and systemic immune responses and confirmed its safety. Treatment of mice with different doses of L. gasseri expressing PA-DCpep stimulated colonic immune responses, resulting in the activation of innate immune cells, including dendritic cells, which induced robust Th1, Th17, CD4+Foxp3+ and CD8+Foxp3+ T cell immune responses. Notably, high doses of L. gasseri expressing PA-DCpep (1012 CFU) were not toxic to the mice. Treatment of mice with L. gasseri expressing PA-DCpep triggered phenotypic maturation and the release of proinflammatory cytokines by dendritic cells and macrophages. Moreover, treatment of mice with L. gasseri expressing PA-DCpep enhanced antibody immune responses, including IgA, IgG1, IgG2b, IgG2c and IgG3. L. gasseri expressing PA-DCpep also increased the gene expression of numerous pattern recognition receptors, including Toll-like receptors, C-type lectin receptors and NOD-like receptors. Conclusion/Significance These findings suggest that L. gasseri expressing PA-DCpep has substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration and may be used as a safe oral vaccine against anthrax challenge. PMID:23383086
Cruz, P E; Khalil, P L; Dryden, T D; Chiou, H C; Fink, P S; Berberich, S J; Bigley, N J
1999-03-05
DNA molecules complexed with an asialoglycoprotein-polycation conjugate, consisting of asialoorosomucoid (ASOR) coupled to poly-L-lysine, can enter hepatocytes which bear receptors for ASOR. We used this receptor-mediated DNA delivery system to deliver plasmid DNA encoding glycoprotein D (gD) of herpes simplex virus type 1 to ASOR-positive cells. Maximum expression of gD protein was seen at 3 days after injection of this preparation in approximately 13% of cells from BALB/c mice [hepatocytes from mice injected intravenously (i.v.) or peritoneal exudate cells from mice injected intraperitoneally (i.p.)]. In comparison with mice injected with either the plasmid vector alone or the gD-containing plasmid uncomplexed to ASOR, mice immunized with gD-containing plasmid complexed with ASOR-poly-L-lysine induced marked antigen-specific CTL responses. BALB/c mice immunized with gD-DNA developed a T-cell-mediated CTL response against target cells expressing gD and MHC class II glycoproteins, but not against cells expressing only gD and MHC class I molecules. In C3H mice, gD-DNA induced a T-cell-mediated CTL response against target cells expressing gD and class I MHC molecules. Serum anti-gD antibody in low titers were produced in both strains of mice. DNA complexed with ASOR-poly-L-lysine induced CTL responses in mice.
Ma, Jingwei; Cai, Wenqian; Zhang, Yi; Huang, Chunmei; Zhang, Huafeng; Liu, Jing; Tang, Ke; Xu, Pingwei; Katirai, Foad; Zhang, Jianmin; He, Wei; Ye, Duyun; Shen, Guan-Xin; Huang, Bo
2013-09-15
Mechanisms by which tumor cells metastasize to distant organs still remain enigmatic. Immune cells have been assumed to be the root of metastasis by their fusing with tumor cells. This fusion theory, although interpreting tumor metastasis analogically and intriguingly, is arguable to date. We show in this study an alternative explanation by immune cell-derived microparticles (MPs). Upon stimulation by PMA or tumor cell-derived supernatants, immune cells released membrane-based MPs, which were taken up by H22 tumor cells, leading to tumor cell migration in vitro and metastasis in vivo. The underlying molecular basis was involved in integrin α(M)β₂ (CD11b/CD18), which could be effectively relayed from stimulated innate immune cells to MPs, then to tumor cells. Blocking either CD11b or CD18 led to significant decreases in MP-mediated tumor cell metastasis. This MP-mediated transfer of immune phenotype to tumor cells might also occur in vivo. These findings suggest that tumor cells may usurp innate immune cell phenotypes via MP pathway for their metastasis, providing new insight into tumor metastatic mechanism.
Famakin, Bolanle M.
2014-01-01
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490
Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses
Hossain, Fokhrul; Majumder, Samarpan; Ucar, Deniz A.; Rodriguez, Paulo C.; Golde, Todd E.; Minter, Lisa M.; Osborne, Barbara A.; Miele, Lucio
2018-01-01
Cancer immunotherapy, which stimulates or augments host immune responses to treat malignancies, is the latest development in the rapidly advancing field of cancer immunology. The basic principles of immunotherapies are either to enhance the functions of specific components of the immune system or to neutralize immune-suppressive signals produced by cancer cells or tumor microenvironment cells. When successful, these approaches translate into long-term survival for patients. However, durable responses are only seen in a subset of patients and so far, only in some cancer types. As for other cancer treatments, resistance to immunotherapy can also develop. Numerous research groups are trying to understand why immunotherapy is effective in some patients but not others and to develop strategies to enhance the effectiveness of immunotherapy. The Notch signaling pathway is involved in many aspects of tumor biology, from angiogenesis to cancer stem cell maintenance to tumor immunity. The role of Notch in the development and modulation of the immune response is complex, involving an intricate crosstalk between antigen-presenting cells, T-cell subpopulations, cancer cells, and other components of the tumor microenvironment. Elegant studies have shown that Notch is a central mediator of tumor-induced T-cell anergy and that activation of Notch1 in CD8 T-cells enhances cancer immunotherapy. Tumor-infiltrating myeloid cells, including myeloid-derived suppressor cells, altered dendritic cells, and tumor-associated macrophages along with regulatory T cells, are major obstacles to the development of successful cancer immunotherapies. In this article, we focus on the roles of Notch signaling in modulating tumor-infiltrating myeloid cells and discuss implications for therapeutic strategies that modulate Notch signaling to enhance cancer immunotherapy.
Host response mechanisms in periodontal diseases
SILVA, Nora; ABUSLEME, Loreto; BRAVO, Denisse; DUTZAN, Nicolás; GARCIA-SESNICH, Jocelyn; VERNAL, Rolando; HERNÁNDEZ, Marcela; GAMONAL, Jorge
2015-01-01
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors. PMID:26221929
Zhai, Lijie; Ladomersky, Erik; Dostal, Carlos R; Lauing, Kristen L; Swoap, Kathleen; Billingham, Leah K; Gritsina, Galina; Wu, Meijing; McCusker, Robert H; Binder, David C; Wainwright, Derek A
2017-05-01
Glioblastoma (GBM) is the most common malignant brain tumor in adults with a median survival of 14.6months. A contributing factor to GBM aggressiveness is the intratumoral expression of the potently immunosuppressive enzyme, indoleamine 2,3 dioxygenase 1 (IDO1). The enzymatic activity of IDO1 is associated with the conversion of tryptophan into downstream kynurenine (Kyn), which has previously been hypothesized to contribute toward the suppression of tumor immunity. Utilizing the syngeneic, immunocompetent, intracranial GL261 cell GBM model, we previously demonstrated that tumor cell, but not non-tumor cell IDO1, suppresses T cell-mediated brain tumor regression in mice. Paradoxically, we also showed that the survival advantage mediated by immune checkpoint blockade is abrogated by non-tumor cell IDO1 deficiency. Here, we have built on our past observations and confirm the maladaptive role of tumor cell IDO1 in a novel mouse GBM model. We also demonstrate that, non-tumor cells, rather than mouse GBM cells, are the dominant contributor to IDO1-mediated enzyme activity. Finally, we show the novel associations between maximally-effective immune-checkpoint blockade-mediated survival, non-tumor cell IDO1 and intra-GBM Kyn levels. These data suggest for the first time that, GBM cell-mediated immunosuppression is IDO1 enzyme independent, while the survival benefits of immune checkpoint blockade require non-tumor cell IDO1 enzyme activity. Given that current clinical inhibitors vary in their mechanism of action, in terms of targeting IDO1 enzyme activity versus enzyme-independent effects, this work suggests that choosing an appropriate IDO1 pharmacologic will maximize the effectiveness of future immune checkpoint blockade approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
Cross-presentation of IgG-containing immune complexes
Baker, Kristi; Rath, Timo; Lencer, Wayne I.; Fiebiger, Edda
2012-01-01
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4+ T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8+ T cells. PMID:22847331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caulada-Benedetti, Z.; Al-Zamel, F.; Sher, A.
1991-03-01
Mice immunized against Schistosoma mansoni by a single percutaneous exposure to radiation-attenuated parasite larvae demonstrate partial resistance to challenge infection that has been shown to correlate with development of cell-mediated immunity, whereas mice hyperimmunized by multiple exposure to attenuated larvae produce antibodies capable of transferring partial protection to naive recipients. Measurement of Ag-specific lymphokine responses in these animals suggested that the difference in resistance mechanisms may be due to the differential induction of Th subset response by the two immunization protocols. Thus, upon Ag stimulation, singly immunized mice predominantly demonstrated responses associated with Th1 reactivity, including IL-2 and IFN-gamma production,more » whereas multiply immunized animals showed increased IL-5, IL-4, and IgG1 antibody production associated with enhanced Th2 response. These responses demonstrated some degree of organ compartmentalization, with splenocytes demonstrating higher Th1-related lymphokine production and cells from draining lymph nodes showing stronger proliferation and Th2 type reactivity. However, hyperimmunized mice also continued to demonstrate substantial Th1-associated immune reactivity. Moreover, in vivo Ag challenge elicited activated larvacidal macrophages in hyperimmunized animals. These observations indicate that protective cell-mediated mechanisms associated with induction of CD4+ Th1 cell reactivity predominate in singly vaccinated mice. Further vaccination stimulates Th2 responses, such as enhanced IgG1 production, that may also contribute to protective immunity.« less
Stephen, Sasha; Morrissey, Kelly A; Benoit, Bernice M; Kim, Ellen J; Vittorio, Carmela C; Nasta, Sunita D; Showe, Louise C; Wysocka, Maria; Rook, Alain H
2012-02-01
Several histone deacetylase inhibitors (HDACi), including vorinostat, have been approved for the therapy of cutaneous T-cell lymphoma (CTCL). Emerging data suggest that HDACi may exert immune suppressive effects which would be disadvantageous for therapy of CTCL. We describe a patient with Sezary syndrome who was monitored for drug-induced immunosuppression while undergoing treatment with vorinostat. Analysis of the patient's natural killer cell function before and after initiation of treatment confirmed inhibition of this important cell-mediated immune function. In addition, the in vitro effects of vorinostat on the immunity of healthy volunteers confirmed that this class of drug can profoundly suppress multiple arms of the cellular immune response. These findings raise concerns of increased susceptibility to infection in this high-risk population.
Animal Models of Inflammasomopathies Reveal Roles for Innate but not Adaptive Immunity
Brydges, Susannah D; Mueller, James L; McGeough, Matthew D; Pena, Carla A; Misaghi, Amirhossein; Gandhi, Chhavi; Putnam, Chris D; Boyle, David L; Firestein, Gary S; Horner, Anthony A; Soroosh, Pejman; Watford, Wendy T; O’Shea, John J; Kastner, Daniel L; Hoffman, Hal M
2009-01-01
SUMMARY Cryopyrin (NALP3) mediates formation of the inflammasome, a protein complex responsible for cleavage of pro-IL-1β to its active form. Mutations in the cryopyrin gene, NLRP3, cause the autoinflammatory disease spectrum: cryopyrin-associated periodic syndromes (CAPS). The central role of IL-1β in CAPS is supported by the remarkable response to IL-1 targeted therapy. We developed two novel Nlrp3 mutant knock-in mouse strains to model CAPS to examine the role of other inflammatory mediators and adaptive immune responses in an innate immune driven disease. These mice had systemic inflammation and poor growth, similar to some human CAPS patients, and demonstrated early mortality, primarily mediated by myeloid cells. Mating these mutant mice to various knock-out backgrounds confirmed the mouse disease phenotype required an intact inflammasome, was only partially dependent on IL-1β, and was independent of T cells. This data suggests CAPS are true inflammasomopathies and provide insight for more common inflammatory disorders. PMID:19501000
Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity
Anel, Alberto; Aguiló, Juan I.; Catalán, Elena; Garaude, Johan; Rathore, Moeez G.; Pardo, Julián; Villalba, Martín
2012-01-01
The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized. PMID:22783260
Lombardo, Fabrizio; Ghani, Yasmeen; Kafatos, Fotis C.; Christophides, George K.
2013-01-01
Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca2+ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens. PMID:23382679
Anderson, Per; Delgado, Mario
2008-01-01
Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and lipid mediators that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. Here we examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. On the other hand, we also focus on lipid mediators biosynthesized from ω-3 and ω-6 polyunsaturated fatty-acids in inflammatory exudates that promote the resolution phase of acute inflammation by regulating leucocyte influx to and efflux from local inflamed sites. Both anti-inflammatory neuropeptides and pro-resolving lipid mediators have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents. PMID:18554314
Tse, Sze-Wah; Radtke, Andrea J.; Espinosa, Diego A.; Cockburn, Ian A.; Zavala, Fidel
2014-01-01
It is well established that immunization with attenuated malaria sporozoites induces CD8+ T cells that eliminate parasite-infected hepatocytes. Liver memory CD8+ T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8+ T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8+ T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8+ T cells in the liver. PMID:24823625
Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy
Elsegeiny, Waleed; Marr, Kieren A.; Williamson, Peter R.
2018-01-01
Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related deaths worldwide and is currently the most common cause of non-viral meningitis in the US, affecting both previously healthy and people with immune suppression caused by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 30–50% attributable mortality, recommended therapeutic strategies have remained largely unchanged since the 1950s. Recent murine models and human studies examining the role of the immune system in both susceptibility to the infection as well as host damage have begun to influence patient care decisions. The Damage Framework Response, originally proposed in 1999, was recently used to discuss dichotomous etiologies of host damage in cryptococcal disease. These include patients suffering microbiological damage with low host immunity (especially those immunosuppressed with HIV) and those having low (live) microbiological burden but high immune-mediated damage (HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflammatory response syndrome). Cryptococcal disease in previously healthy hosts, albeit rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity for recognition and T-cell activation pathways including increased levels of HLA-DR and CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens demonstrated an M2 alternative macrophage polarization and poor phagocytosis of fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility to include a prominent role for immune-mediated damage and suggest a need for careful individual consideration of immune activation during therapy of cryptococcal disease in diverse hosts. PMID:29670625
Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy.
Elsegeiny, Waleed; Marr, Kieren A; Williamson, Peter R
2018-01-01
Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related deaths worldwide and is currently the most common cause of non-viral meningitis in the US, affecting both previously healthy and people with immune suppression caused by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 30-50% attributable mortality, recommended therapeutic strategies have remained largely unchanged since the 1950s. Recent murine models and human studies examining the role of the immune system in both susceptibility to the infection as well as host damage have begun to influence patient care decisions. The Damage Framework Response, originally proposed in 1999, was recently used to discuss dichotomous etiologies of host damage in cryptococcal disease. These include patients suffering microbiological damage with low host immunity (especially those immunosuppressed with HIV) and those having low (live) microbiological burden but high immune-mediated damage (HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflammatory response syndrome). Cryptococcal disease in previously healthy hosts, albeit rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity for recognition and T-cell activation pathways including increased levels of HLA-DR and CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens demonstrated an M2 alternative macrophage polarization and poor phagocytosis of fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility to include a prominent role for immune-mediated damage and suggest a need for careful individual consideration of immune activation during therapy of cryptococcal disease in diverse hosts.
The new numerology of immunity mediated by virus-specific CD8(+) T cells.
Doherty, P C
1998-08-01
Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.
T lymphocyte-mediated protection against Pseudomonas aeruginosa infection in granulocytopenic mice.
Powderly, W G; Pier, G B; Markham, R B
1986-01-01
BALB/c mice immunized with Pseudomonas aeruginosa immunotype 1 polysaccharide develop protective T cell immunity to bacterial challenge. In vitro, T cells from immunized mice kill P. aeruginosa by production of a bactericidal lymphokine. The present study demonstrates that adoptive transfer of T cells from immunized BALB/c mice to granulocytopenic mice resulted in 97% survival on challenge with P. aeruginosa, compared with 17% survival with adoptive transfer of T cells from nonimmune BALB/c mice. This protection is specifically elicited by reexposure to the original immunizing antigen; adoptive recipients cannot withstand challenge with immunotype 3 P. aeruginosa. However, the adoptive recipients do survive simultaneous infection with both P. aeruginosa immunotypes 1 and 3. Adoptive transfer of T cells from the congenic CB.20 mice, which are unable to kill P. aeruginosa in vitro, provides only 20% protection to granulocytopenic mice. These studies indicate that transfer of specific immune T lymphocytes can significantly enhance the resistance to P. aeruginosa infection in granulocytopenic mice. PMID:2426306
Dendritic cells: key to fetal tolerance?
Blois, Sandra M; Kammerer, Ulrike; Alba Soto, Catalina; Tometten, Mareike C; Shaikly, Valerie; Barrientos, Gabriela; Jurd, Richard; Rukavina, Daniel; Thomson, Angus W; Klapp, Burghard F; Fernández, Nelson; Arck, Petra C
2007-10-01
Pregnancy is a unique event in which a fetus, despite being genetically and immunologically different from the mother (a hemi-allograft), develops in the uterus. Successful pregnancy implies avoidance of rejection by the maternal immune system. Fetal and maternal immune cells come into direct contact at the decidua, which is a highly specialized mucous membrane that plays a key role in fetal tolerance. Uterine dendritic cells (DC) within the decidua have been implicated in pregnancy maintenance. DC serve as antigen-presenting cells with the unique ability to induce primary immune responses. Just as lymphocytes comprise different subsets, DC subsets have been identified that differentially control lymphocyte function. DC may also act to induce immunologic tolerance and regulation of T cell-mediated immunity. Current understanding of DC immunobiology within the context of mammalian fetal-maternal tolerance is reviewed and discussed herein.
Gardner, Thomas J.
2016-01-01
SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580
Xiao, Fang; Ma, Liang; Zhao, Min; Huang, Guocai; Mirenda, Vincenzo; Dorling, Anthony
2014-01-01
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo. PMID:24594640
Whary, M T; Palley, L S; Batchelder, M; Murphy, J C; Yan, L; Taylor, N S; Fox, J G
1997-06-01
The purpose of this study was to determine whether oral immunization of ferret kits with a whole-cell sonicate of Helicobacter mustelae lysate (Hml) and the adjuvant muramyl dipeptide (MDP) would reduce the incidence of natural colonization with H. mustelae and the extent of Helicobacter-associated gastritis by enhancing the host mucosal immune response. Between the ages of 4 and 11 weeks, 44 ferret kits were gavaged with Hml and various doses of MDP. The extent of gastritis and duodenitis and the immune response to H. mustelae were evaluated. All kits became colonized naturally with H. mustelae and the majority developed mild to severe gastritis and duodenitis. Kits that received Hml with MDP developed significantly greater inflammation of the gastric antrum and duodenum, as compared to kits vaccinated with Hml alone. Vaccination with Hml and 50 micrograms of MDP was associated with severe lesions in the proximal duodenum characterized by accumulation of mononuclear inflammatory cells, mucosal erosion, and ulceration. Although serum antibody specific for H. mustelae in 4-week-old kits was approximately 50% of adult levels, a finding attributable to passively acquired maternal antibody, both systemic and mucosal antibody levels became depressed over time despite oral vaccination. The humoral immune response was sufficiently low to prevent detection of any significant dose effect of MDP on antibody levels among experimental groups. Oral vaccination of young ferrets with Hml and 50 micrograms MDP increased the risk of Helicobacter-associated mucosal ulceration in the proximal duodenum, which was associated with low humoral (but significant cell-mediated) immune responses to H. mustelae. In retrospect, the frequency of vaccination may have suppressed the systemic humoral immune response, thereby promoting mucosal damage by H. mustelae. The 50-microgram dose of MDP enhanced the cell-mediated immune response, which indirectly contributed to development of severe lesions. The increased frequency of mucosal damage associated with this vaccination regimen enhances the value of the ferret model for studying duodenal ulceration secondary to Helicobacter infection.
Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla
2017-01-01
A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450
Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia
2017-01-01
A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.
The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy.
Ghiringhelli, François; Apetoh, Lionel
2014-01-01
Preclinical studies have revealed an unexpected ability of the immune system to contribute to the success of chemotherapy and radiotherapy. Anticancer therapies can trigger immune system activation by promoting the release of danger signals from dying tumor cells and/or the elimination of immunosuppressive cells. We have, however, recently discovered that some chemotherapies, such as 5-fluorouracil and gemcitabine, exert conflicting effects on anticancer immune responses. Although 5-fluorouracil and Gem selectively eliminated myeloid-derived suppressive cells in tumor-bearing rodents, these chemotherapies promoted the release of IL-1β and the development of pro-angiogenic IL-17-producing CD4 T cells. The ambivalent effects of chemotherapy on immune responses should thus be carefully considered to design effective combination therapies based on chemotherapy and immune modulators. Herein, we discuss how the initial findings underscoring the key role of the immune system in mediating the antitumor efficacy of anticancer agents could begin to translate into effective therapies in humans.
Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar
2017-01-01
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
USDA-ARS?s Scientific Manuscript database
Cell spreading is an integral component of insect hemocytic immune reactions to infections and invasions. Cell spreading is accomplished by cytoskeleton rearrangement, which is activated by three major immune mediators, biogenic monoamines, plasmatocyte-spreading peptide (PSP), and eicosanoids, part...
Uicker, William C; Doyle, Hester A; McCracken, James P; Langlois, Mary; Buchanan, Kent L
2005-02-01
Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.
Zimara, Nicole; Chanyalew, Menberework; Aseffa, Abraham; van Zandbergen, Ger; Lepenies, Bernd; Schmid, Maximilian; Weiss, Richard; Rascle, Anne; Wege, Anja Kathrin; Jantsch, Jonathan; Schatz, Valentin; Brown, Gordon D.; Ritter, Uwe
2018-01-01
Resistant mouse strains mount a protective T cell-mediated immune response upon infection with Leishmania (L.) parasites. Healing correlates with a T helper (Th) cell-type 1 response characterized by a pronounced IFN-γ production, while susceptibility is associated with an IL-4-dependent Th2-type response. It has been shown that dermal dendritic cells are crucial for inducing protective Th1-mediated immunity. Additionally, there is growing evidence that C-type lectin receptor (CLR)-mediated signaling is involved in directing adaptive immunity against pathogens. However, little is known about the function of the CLR Dectin-1 in modulating Th1- or Th2-type immune responses by DC subsets in leishmaniasis. We characterized the expression of Dectin-1 on CD11c+ DCs in peripheral blood, at the site of infection, and skin-draining lymph nodes of L. major-infected C57BL/6 and BALB/c mice and in peripheral blood of patients suffering from cutaneous leishmaniasis (CL). Both mouse strains responded with an expansion of Dectin-1+ DCs within the analyzed tissues. In accordance with the experimental model, Dectin-1+ DCs expanded as well in the peripheral blood of CL patients. To study the role of Dectin-1+ DCs in adaptive immunity against L. major, we analyzed the T cell stimulating potential of bone marrow-derived dendritic cells (BMDCs) in the presence of the Dectin-1 agonist Curdlan. These experiments revealed that Curdlan induces the maturation of BMDCs and the expansion of Leishmania-specific CD4+ T cells. Based on these findings, we evaluated the impact of Curdlan/Dectin-1 interactions in experimental leishmaniasis and were able to demonstrate that the presence of Curdlan at the site of infection modulates the course of disease in BALB/c mice: wild-type BALB/c mice treated intradermally with Curdlan developed a protective immune response against L. major whereas Dectin-1−/− BALB/c mice still developed the fatal course of disease after Curdlan treatment. Furthermore, the vaccination of BALB/c mice with a combination of soluble L. major antigens and Curdlan was able to provide a partial protection from severe leishmaniasis. These findings indicate that the ligation of Dectin-1 on DCs acts as an important checkpoint in adaptive immunity against L. major and should therefore be considered in future whole-organism vaccination strategies. PMID:29535708
Mannosylated poly(beta-amino esters) for targeted antigen presenting cell immune modulation
Jones, Charles H.; Chen, Mingfu; Ravikrishnan, Anitha; Reddinger, Ryan; Zhang, Guojian; Hakansson, Anders P.; Pfeifer, Blaine A.
2014-01-01
Given the rise of antibiotic resistance and other difficult-to-treat diseases, genetic vaccination is a promising preventative approach that can be tailored and scaled according to the vector chosen for gene delivery. However, most vectors currently utilized rely on ubiquitous delivery mechanisms that ineffectively target important immune effectors such as antigen presenting cells (APCs). As such, APC targeting allows the option for tuning the direction (humoral vs cell-mediated) and strength of the resulting immune responses. In this work, we present the development and assessment of a library of mannosylated poly(beta-amino esters) (PBAEs) that represent a new class of easily synthesized APC-targeting cationic polymers. Polymeric characterization and assessment methodologies were designed to provide a more realistic physiochemical profile prior to in vivo evaluation. Gene delivery assessment in vitro showed significant improvement upon PBAE mannosylation and suggested that mannose-mediated uptake and processing influence the magnitude of gene delivery. Furthermore, mannosylated PBAEs demonstrated a strong, efficient, and safe in vivo humoral immune response without use of adjuvants when compared to genetic and protein control antigens. In summary, the gene delivery effectiveness provided by mannosylated PBAE vectors offers specificity and potency in directing APC activation and subsequent immune responses. PMID:25453962
Hua, Susan; Cabot, Peter J
2010-09-01
Peripheral mechanisms of endogenous pain control are significant. In peripheral inflamed tissue, an interaction between immune-cell-derived opioids and opioid receptors localized on sensory nerve terminals results in potent, clinically measurable analgesia. Opioid peptides and the mRNA encoding their precursor proteins are present in immune cells. These cells 'home' preferentially to injured tissue, where they secrete opioids to reduce pain. Investigation of the mechanisms underlying the migration of opioid-containing immune cells to inflamed tissue is an active area of research, with recent data demonstrating the importance of cell adhesion molecules in leukocyte adhesion to both the endothelium in vascular transmigration and to neurons within peripheral inflamed tissue. This review summarizes the physiological mechanisms and clinical significance of this unique endogenous peripheral analgesic pathway and discusses therapeutic implications for the development of novel targeted peripheral analgesics. Copyright 2010 Elsevier Ltd. All rights reserved.
HIV-derived vectors for gene therapy targeting dendritic cells.
Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella
2013-01-01
Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.
Cutaneous defenses against dermatophytes and yeasts.
Wagner, D K; Sohnle, P G
1995-01-01
Predispositions to the superficial mycoses include warmth and moisture, natural or iatrogenic immunosuppression, and perhaps some degree of inherited susceptibility. Some of these infections elicit a greater inflammatory response than others, and the noninflammatory ones are generally more chronic. The immune system is involved in the defense against these infections, and cell-mediated immunity appears to be particularly important. The mechanisms involved in generating immunologic reactions in the skin are complex, with epidermal Langerhans cells, other dendritic cells, lymphocytes, microvascular endothelial cells, and the keratinocytes themselves all participating in one way or another. A variety of defects in the immunologic response to the superficial mycoses have been described. In some cases the defect may be preexistent, whereas in others the infection itself may interfere with protective cell-mediated immune responses against the organisms. A number of different mechanisms may underlie these immunologic defects and lead to the development of chronic superficial fungal infection in individual patients. Although the immunologic defects appear to be involved in the chronicity of certain types of cutaneous fungal infections, treatment of these defects remains experimental at the present time. PMID:7553568
Curiel, Tyler J; Coukos, George; Zou, Linhua; Alvarez, Xavier; Cheng, Pui; Mottram, Peter; Evdemon-Hogan, Melina; Conejo-Garcia, Jose R; Zhang, Lin; Burow, Matthew; Zhu, Yun; Wei, Shuang; Kryczek, Ilona; Daniel, Ben; Gordon, Alan; Myers, Leann; Lackner, Andrew; Disis, Mary L; Knutson, Keith L; Chen, Lieping; Zou, Weiping
2004-09-01
Regulatory T (T(reg)) cells mediate homeostatic peripheral tolerance by suppressing autoreactive T cells. Failure of host antitumor immunity may be caused by exaggerated suppression of tumor-associated antigen-reactive lymphocytes mediated by T(reg) cells; however, definitive evidence that T(reg) cells have an immunopathological role in human cancer is lacking. Here we show, in detailed studies of CD4(+)CD25(+)FOXP3(+) T(reg) cells in 104 individuals affected with ovarian carcinoma, that human tumor T(reg) cells suppress tumor-specific T cell immunity and contribute to growth of human tumors in vivo. We also show that tumor T(reg) cells are associated with a high death hazard and reduced survival. Human T(reg) cells preferentially move to and accumulate in tumors and ascites, but rarely enter draining lymph nodes in later cancer stages. Tumor cells and microenvironmental macrophages produce the chemokine CCL22, which mediates trafficking of T(reg) cells to the tumor. This specific recruitment of T(reg) cells represents a mechanism by which tumors may foster immune privilege. Thus, blocking T(reg) cell migration or function may help to defeat human cancer.
Collaborating with the enemy: function of macrophages in the development of neoplastic disease.
Eljaszewicz, Andrzej; Wiese, Małgorzata; Helmin-Basa, Anna; Jankowski, Michal; Gackowska, Lidia; Kubiszewska, Izabela; Kaszewski, Wojciech; Michalkiewicz, Jacek; Zegarski, Wojciech
2013-01-01
Due to the profile of released mediators (such as cytokines, chemokines, growth factors, etc.), neoplastic cells modulate the activity of immune system, directly affecting its components both locally and peripherally. This is reflected by the limited antineoplastic activity of the immune system (immunosuppressive effect), induction of tolerance to neoplastic antigens, and the promotion of processes associated with the proliferation of neoplastic tissue. Most of these responses are macrophages dependent, since these cells show proangiogenic properties, attenuate the adaptive response (anergization of naïve T lymphocytes, induction of Treg cell formation, polarization of immune response towards Th2, etc.), and support invasion and metastases formation. Tumor-associated macrophages (TAMs), a predominant component of leukocytic infiltrate, "cooperate" with the neoplastic tissue, leading to the intensified proliferation and the immune escape of the latter. This paper characterizes the function of macrophages in the development of neoplastic disease.
Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.
Dantzer, Robert
2018-01-01
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Indoleamine 2,3-dioxygenase pathways of pathgenic inflammation and immune escape in cancer
Prendergast, George C.; Smith, Courtney; Thomas, Sunil; Mandik-Nayak, Laura; Laury-Kleintop, Lisa; Metz, Richard; Muller, Alexander J.
2014-01-01
Genetic and pharmacological studies of indoleamine 2,3-dioxygenase (IDO) have established this tryptophan catabolic enzyme as a central driver of malignant development and progression. IDO acts in tumor, stromal and immune cells to support pathogenic inflammatory processes that engender immune tolerance to tumor antigens. The multifaceted effects of IDO activation in cancer include the suppression of T and NK cells, the generation and activation of T regulatory cells (Treg) and myeloid-derived suppressor cells (MDSC), and the promotion of tumor angiogenesis. Mechanistic investigations have defined the aryl hydrocarbon receptor AhR, the master metabolic regulator mTORC1 and the stress kinase Gcn2 as key effector signaling elements for IDO, which also exerts a non-catalytic role in TGF-β signaling. Small molecule inhibitors of IDO exhibit anticancer activity and cooperate with immunotherapy, radiotherapy or chemotherapy to trigger rapid regression of aggressive tumors otherwise resistant to treatment. Notably, the dramatic antitumor activity of certain targeted therapeutics such as imatinib (Gleevec) in GIST has been traced in part to IDO downregulation. Further, antitumor responses to immune checkpoint inhibitors can be heightened safely by a clinical lead inhibitor of the IDO pathway that relieves IDO-mediated suppression of mTORC1 in T cells. In this personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer, we provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer. PMID:24711084
γδ T cell and other immune cells crosstalk in cellular immunity.
He, Ying; Wu, Kangni; Hu, Yongxian; Sheng, Lixia; Tie, Ruxiu; Wang, Binsheng; Huang, He
2014-01-01
γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell.
Sadtler, Kaitlyn; Allen, Brian W; Estrellas, Kenneth; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H
2017-10-01
The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b + F4/80 + CD11c +/- CD206 hi CD86 + MHCII + that are characteristic of an M2-like cell (CD206 hi ) with high antigen presentation capabilities (MHCII + ). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.
Carbonic anhydrase enzymes regulate mast cell–mediated inflammation
Soteropoulos, Patricia
2016-01-01
Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine–mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2–associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy–like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell–mediated inflammation. PMID:27526715
Virus infection, antiviral immunity, and autoimmunity
Getts, Daniel R.; Chastain, Emily M. L.; Terry, Rachael L.; Miller, Stephen D.
2014-01-01
Summary As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity. PMID:23947356
Khalifeh, M S; Amawi, M M; Abu-Basha, E A; Yonis, I Bani
2009-10-01
The effect of tilmicosin, florfenicol, or enrofloxacin on humoral and cell-mediated immune response induced by Newcastle disease (ND) vaccination was evaluated in 20-wk-old specific-pathogen-free layer chickens. Humoral immunity was measured by detection of ND virus (NDV) antibody titer and anti-NDV IgG response using the hemagglutination inhibition (HI) test and ELISA, respectively, whereas cell-mediated immunity was evaluated by measurement of chicken interferon gamma (ChIFN-gamma) produced in splenocytes cell culture stimulated with concanavalin A, inactivated NDV antigen, or live attenuated La Sota strain using ELISA. Florfenicol hampered the ND antibody production measured by both HI and ELISA. Tilmicosin and enrofloxacin reduced the production of ND antibody in the first 3 wk after the last ND vaccination measured by HI test, which suggests that these antibiotics exert their effect mainly on the IgM isotype. The ND-vaccinated, but not treated group, showed an increase in ChIFN-gamma production after NDV antigen-specific stimulation above the nonstimulated cell culture, whereas this effect was masked in all the antibiotic-treated groups due to the stronger ChIFN-gamma production background value reported in the nonstimulated cell culture. In conclusion, our results showed, for the first time, that tilmicosin, florfenicol, or enrofloxacin reduced the humoral immune response and had beneficial effects on the cell-mediated immune response. In addition, we demonstrated that the combination of both inactivated and attenuated ND vaccine gave a strong immune response at both the humoral and cellular level.
Lee, Eun Jung; Nam, Gi-Hoon; Lee, Na Kyeong; Kih, Minwoo; Koh, Eunee; Kim, Yoon Kyoung; Hong, Yeonsun; Kim, Soyoun; Park, Seung-Yoon; Jeong, Cherlhyun; Yang, Yoosoo; Kim, In-San
2018-03-01
A growing appreciation of the relationship between the immune system and the tumorigenesis has led to the development of strategies aimed at "re-editing" the immune system to kill tumors. Here, a novel tactic is reported for overcoming the activation-energy threshold of the immunosuppressive tumor microenvironment and mediating the delivery and presentation of tumor neoantigens to the host's immune system. This nature-derived nanocage not only efficiently presents ligands that enhance cancer cell phagocytosis, but also delivers drugs that induce immunogenic cancer cell death. The designed nanocage-therapeutics induce the release of neoantigens and danger signals in dying tumor cells, and leads to enhancement of tumor cell phagocytosis and cross-priming of tumor specific T cells by neoantigen peptide-loaded antigen-presenting cells. Potent inhibition of tumor growth and complete eradication of tumors is observed through systemic tumor-specific T cell responses in tumor draining lymph nodes and the spleen and further, infiltration of CD8+ T cells into the tumor site. Remarkably, after removal of the primary tumor, all mice treated with this nanocage-therapeutics are protected against subsequent challenge with the same tumor cells, suggesting development of lasting, tumor-specific responses. This designed nanocage-therapeutics "awakens" the host's immune system and provokes a durable systemic immune response against cancer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exploring the interplay between autoimmunity and cancer to find the target therapeutic hotspots.
Kumar, Neeraj; Chugh, Heerak; Tomar, Ravi; Tomar, Vartika; Singh, Vimal Kishor; Chandra, Ramesh
2018-06-01
Autoimmunity arises when highly active immune responses are developed against the tissues or substances of one's own body. It is one of the most prevalent disorders among the old-age population with prospects increasing with age. The major cause of autoimmunity and associated diseases is the dysregulation of host immune surveillance. Impaired repairment of immune system and apoptosis regulation can be seen as major landmarks in autoimmune disorders such as the mutation of p53 gene which results in rheumatoid arthritis, bowel disease which consequently lead to tissue destruction, inflammation and dysfunctioning of body organs. Cytokines mediated apoptosis and proliferation of cells plays a regulatory role in cell cycle and further in cancer development. Anti-TNF therapy, Treg therapy and stem cell therapy have been used for autoimmune diseases, however, with the increase in the use of immunomodulatory therapies and their development for autoimmune diseases and cancer, the understanding of human immune system tends to become an increasing requirement. Hence, the findings associated with the relationship between autoimmune diseases and cancer may prove to be beneficial for the improvement in the health of suffering patients. Here in, we are eliciting the underlying mechanisms which result in autoimmune disorders causing the onset of cancer, exploration of interactome to find the pathways which are mutual to both, and recognition of hotspots which might play important role in autoimmunity mediated therapeutics with different therapies such as anti-TNF therapy, Treg therapy and stem cell therapy.
Kalathil, Suresh; Lugade, Amit A; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin
2013-04-15
The extent to which T-cell-mediated immune surveillance is impaired in human cancer remains a question of major importance, given its potential impact on the development of generalized treatments of advanced disease where the highest degree of heterogeneity exists. Here, we report the first global analysis of immune dysfunction in patients with advanced hepatocellular carcinoma (HCC). Using multi-parameter fluorescence-activated cell sorting analysis, we quantified the cumulative frequency of regulatory T cells (Treg), exhausted CD4(+) helper T cells, and myeloid-derived suppressor cells (MDSC) to gain concurrent views on the overall level of immune dysfunction in these inoperable patients. We documented augmented numbers of Tregs, MDSC, PD-1(+)-exhausted T cells, and increased levels of immunosuppressive cytokines in patients with HCC, compared with normal controls, revealing a network of potential mechanisms of immune dysregulation in patients with HCC. In dampening T-cell-mediated antitumor immunity, we hypothesized that these processes may facilitate HCC progression and thwart the efficacy of immunotherapeutic interventions. In testing this hypothesis, we showed that combined regimens to deplete Tregs, MDSC, and PD-1(+) T cells in patients with advanced HCC restored production of granzyme B by CD8(+) T cells, reaching levels observed in normal controls and also modestly increased the number of IFN-γ producing CD4(+) T cells. These clinical findings encourage efforts to restore T-cell function in patients with advanced stage disease by highlighting combined approaches to deplete endogenous suppressor cell populations that can also expand effector T-cell populations. ©2013 AACR.
Dendritic Cells and Programmed Death-1 Blockade: A Joint Venture to Combat Cancer.
Versteven, Maarten; Van den Bergh, Johan M J; Marcq, Elly; Smits, Evelien L J; Van Tendeloo, Viggo F I; Hobo, Willemijn; Lion, Eva
2018-01-01
Two decades of clinical cancer research with dendritic cell (DC)-based vaccination have proved that this type of personalized medicine is safe and has the capacity to improve survival, but monotherapy is unlikely to cure the cancer. Designed to empower the patient's antitumor immunity, huge research efforts are set to improve the efficacy of next-generation DC vaccines and to find synergistic combinations with existing cancer therapies. Immune checkpoint approaches, aiming to breach immune suppression and evasion to reinforce antitumor immunity, have been a revelation in the immunotherapy field. Early success of therapeutic antibodies blocking the programmed death-1 (PD-1) pathway has sparked the development of novel inhibitors and combination therapies. Hence, merging immunoregulatory tumor-specific DC strategies with PD-1-targeted approaches is a promising path to explore. In this review, we focus on the role of PD-1-signaling in DC-mediated antitumor immunity. In the quest of exploiting the full potential of DC therapy, different strategies to leverage DC immunopotency by impeding PD-1-mediated immune regulation are discussed, including the most advanced research on targeted therapeutic antibodies, lessons learned from chemotherapy-induced immune activation, and more recent developments with soluble molecules and gene-silencing techniques. An overview of DC/PD-1 immunotherapy combinations that are currently under preclinical and clinical investigation substantiates the clinical potential of such combination strategies.
Dendritic Cells and Programmed Death-1 Blockade: A Joint Venture to Combat Cancer
Versteven, Maarten; Van den Bergh, Johan M. J.; Marcq, Elly; Smits, Evelien L. J.; Van Tendeloo, Viggo F. I.; Hobo, Willemijn; Lion, Eva
2018-01-01
Two decades of clinical cancer research with dendritic cell (DC)-based vaccination have proved that this type of personalized medicine is safe and has the capacity to improve survival, but monotherapy is unlikely to cure the cancer. Designed to empower the patient’s antitumor immunity, huge research efforts are set to improve the efficacy of next-generation DC vaccines and to find synergistic combinations with existing cancer therapies. Immune checkpoint approaches, aiming to breach immune suppression and evasion to reinforce antitumor immunity, have been a revelation in the immunotherapy field. Early success of therapeutic antibodies blocking the programmed death-1 (PD-1) pathway has sparked the development of novel inhibitors and combination therapies. Hence, merging immunoregulatory tumor-specific DC strategies with PD-1-targeted approaches is a promising path to explore. In this review, we focus on the role of PD-1-signaling in DC-mediated antitumor immunity. In the quest of exploiting the full potential of DC therapy, different strategies to leverage DC immunopotency by impeding PD-1-mediated immune regulation are discussed, including the most advanced research on targeted therapeutic antibodies, lessons learned from chemotherapy-induced immune activation, and more recent developments with soluble molecules and gene-silencing techniques. An overview of DC/PD-1 immunotherapy combinations that are currently under preclinical and clinical investigation substantiates the clinical potential of such combination strategies. PMID:29599770
T cells play an essential role in anti-F1 mediated rapid protection against bubonic plague.
Levy, Yinon; Flashner, Yehuda; Tidhar, Avital; Zauberman, Ayelet; Aftalion, Moshe; Lazar, Shirley; Gur, David; Shafferman, Avigdor; Mamroud, Emanuelle
2011-09-16
Plague, which is initiated by Yersinia pestis infection, is a fatal disease that progresses rapidly and leads to high mortality rates if not treated. Antibiotics are an effective plague therapy, but antibiotic-resistant Y. pestis strains have been reported and therefore alternative countermeasures are needed. In the present study, we assessed the potential of an F1 plus LcrV-based vaccine to provide protection shortly pre- or post-exposure to a lethal Y. pestis infection. Mice vaccinated up to one day before or even several hours after subcutaneous challenge were effectively protected. Mice immunized one or three days pre-challenge were protected even though their anti-F1 and anti-LcrV titers were below detection levels at the day of challenge. Moreover, using B-cell deficient μMT mice, we found that rapidly induced protective immunity requires the integrity of the humoral immune system. Analysis of the individual contributions of vaccine components to protection revealed that rF1 is responsible for the observed rapid antibody-mediated immunity. Applying anti-F1 passive therapy in the mouse model of bubonic plague demonstrated that anti-F1 F(ab')(2) can delay mortality, but it cannot provide long-lasting protection, as do intact anti-F1 molecules. Fc-dependent immune components, such as the complement system and (to a lesser extent) neutrophils, were found to contribute to mouse survival. Interestingly, T cells but not B cells were found to be essential for the recovery of infected animals following passive anti-F1 mediated therapy. These data extend our understanding of the immune mechanisms required for the development of a rapid and effective post-exposure therapy against plague. Copyright © 2011 Elsevier Ltd. All rights reserved.
Roselli, Giuliana; Martini, Elisa; Lougaris, Vassilios; Badolato, Raffaele; Viola, Antonella; Kallikourdis, Marinos
2017-01-01
The Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is an immunodeficiency caused by mutations in chemokine receptor CXCR4. WHIM patient adaptive immunity defects remain largely unexplained. We have previously shown that WHIM-mutant T cells form unstable immunological synapses, affecting T cell activation. Here, we show that, in WHIM patients and WHIM CXCR4 knock-in mice, B cells are more apoptosis prone. Intriguingly, WHIM-mutant B cells were also characterized by spontaneous activation. Searching for a mechanistic explanation for these observations, we uncovered a novel costimulatory effect of CXCL12, the CXCR4 ligand, on WHIM-mutant but not wild-type B cells. The WHIM CXCR4-mediated costimulation led to increased B-cell activation, possibly involving mTOR, albeit without concurrently promoting survival. A reduction in antigenic load during immunization in the mouse was able to circumvent the adaptive immunity defects. These results suggest that WHIM-mutant CXCR4 may lead to spontaneous aberrant B-cell activation, via CXCL12-mediated costimulation, impairing B-cell survival and thus possibly contributing to the WHIM syndrome defects in adaptive immunity. PMID:28928741
Guo, Huaijian; Cruz-Munoz, Mario-Ernesto; Wu, Ning; Robbins, Michael; Veillette, André
2015-01-01
Signaling lymphocytic activation molecule F7 (SLAMF7) is a receptor present on immune cells, including natural killer (NK) cells. It is also expressed on multiple myeloma (MM) cells. This led to development of an anti-SLAMF7 antibody, elotuzumab, showing efficacy against MM. SLAMF7 mediates activating or inhibitory effects in NK cells, depending on whether cells express or do not express the adaptor EAT-2. Since MM cells lack EAT-2, we elucidated the inhibitory effectors of SLAMF7 in EAT-2-negative NK cells and tested whether these effectors were triggered in MM cells. SLAMF7-mediated inhibition in NK cells lacking EAT-2 was mediated by SH2 domain-containing inositol phosphatase 1 (SHIP-1), which was recruited via tyrosine 261 of SLAMF7. Coupling of SLAMF7 to SHIP-1 required Src kinases, which phosphorylated SLAMF7. Although MM cells lack EAT-2, elotuzumab did not induce inhibitory signals in these cells. This was at least partly due to a lack of CD45, a phosphatase required for Src kinase activation. A defect in SLAMF7 function was also observed in CD45-deficient NK cells. Hence, SLAMF7-triggered inhibition is mediated by a mechanism involving Src kinases, CD45, and SHIP-1 that is defective in MM cells. This defect might explain why elotuzumab eliminates MM cells by an indirect mechanism involving the activation of NK cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Vascular, glial, and lymphatic immune gateways of the central nervous system.
Engelhardt, Britta; Carare, Roxana O; Bechmann, Ingo; Flügel, Alexander; Laman, Jon D; Weller, Roy O
2016-09-01
Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer's disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.
Lorton, Dianne; Bellinger, Denise L.
2015-01-01
Cross-talk between the sympathetic nervous system (SNS) and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE) in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs) in immune cells activates the cAMP-protein kinase A (PKA) intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK) pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells. PMID:25768345
Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard
2018-02-01
Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nie, Yuanyang; Cao, Mei; Wu, Daoyan; Li, Ningzhe; Peng, Jingshan; Yi, Sijun; Yang, Xiaofan; Zhang, Mao; Hu, Guoku; Zhao, Jian
2018-05-04
Salmonella enteritidis infection occurs in enterogenous diseases, such as gastroenteritis and parenteral focal infection, which often involve inflammation of intestinal epithelial cells. The nuclear factor kappa B (NF-κB) pathway participates in the innate immune response to many gram-negative pathogenic bacteria and initiates inflammation in epithelial cells. KH-type splicing regulatory protein (KSRP) is a multi-domain RNA-binding protein that recruits the exosome-containing mRNA degradation complex to mRNAs coding for inflammatory response factors. However, it remains unclear whether KSRP is regulated by NF-κB signaling pathway in response to S. enteritidis infection and affects the development of inflammation. Accordingly, in this study, we investigated the role of KSRP in mediating the response to S. enteritidis in Caco-2 cells. The data revealed that S. enteritidis infection decreased KSRP expression, which was suppressed by blocking the NF-κB pathway. Additionally, S. enteritidis infection significantly increased the expression of inducible nitric oxide synthase and cyclooxygenase-2. Overexpression of KSRP reduced the expression levels of inflammatory factors in Caco-2 cells. KSRP was regulated by the NF-κB signaling pathway and participated in mediating the innate immune response to S. enteritidis infection in Caco-2 cells, and KSRP acted as a negative regulator of inflammatory gene expression.
Immune modulation following immunization with polyvalent vaccines in dogs.
Strasser, Alois; May, Bettina; Teltscher, Andrea; Wistrela, Eva; Niedermüller, Hans
2003-08-15
A decline in T-cell-mediated immunity and transient state of immunosuppression after immunization has been reported in dogs. Nevertheless, dogs are still routinely vaccinated with polyvalent live vaccines and severe disease does not generally occur. In order to investigate these effects on the canine immune system and to elucidate possible mechanisms we determined the following immune parameters in the blood of 33 clinically sound German shepherd dogs before and after standard vaccination with a polyvalent vaccine against distemper, parvovirus, viral hepatitis, leptospirosis, kennel cough and rabies: white and differential blood cell count, the serum concentrations and/or activities of IL-1, IL-2, IFN-gamma, TNF-alpha, neopterin and IgG, natural killer (NK) cell activity, bactericidal activity and complement hemolytic activity, lymphocyte proliferation test (LPT) and nitroblue tetrazolium test (NBT). Our major findings were that significant postvaccinal decreases in T-cell mitogenic response to PHA and in neutrophil function and neopterin serum concentration were accompanied by simultaneous increase in plasma IgG and hemolytic complement activity. This suggests a transient shift in the balance between cell-mediated and humoral (T(H)1/T(H)2) immunity rather than immunosuppression. These results do not imply that dogs should not receive live vaccines, as the response to vaccines just seems to create a state of altered homeostasis when immunization elicits protection by humoral and cell-mediated immunity. However, these recognized compromises of immune function should be considered and vaccines still be applied only in healthy animals and strictly according to the rules and regulations given by the manufacturer.
Antigen-Specific CD8+ T Cells and Protective Immunity to Tuberculosis
2017-01-01
The continuing HIV/AIDS epidemic and the spread of multi-drug resistant Mycobacterium tuberculosis has led to the perpetuation of the worldwide tuberculosis epidemic. While M. bovis BCG is widely used as a vaccine, it lacks efficacy in preventing pulmonary tuberculosis in adults [1]. To combat this ongoing scourge, vaccine development for tuberculosis is a global priority. Most infected individuals develop long-lived protective immunity, which controls and contains M. tuberculosis in a T cell-dependent manner. An effective T cells response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions, and evaluating whether vaccination can elicit these T cells subsets and induce protective immunity. CD4+ T cells are critical for resistance to M. tuberculosis in both humans and rodent models. CD4+ T cells are required to control the initial infection as well as to prevent recrudescence in both humans and mice [2]. While it is generally accepted that class II MHC-restricted CD4+ T cells are essential for immunity to tuberculosis, M. tuberculosis infection elicits CD8+ T cells responses in both people and in experimental animals. CD8+ T cells are also recruited to the lung during M. tuberculosis infection and are found in the granulomas of infected people. Thus, how CD8+ T cells contribute to overall immunity to tuberculosis and whether antigens recognized by CD8+ T cells would enhance the efficacy of vaccine strategies continue to be important questions. PMID:23468108
O'Connor, Brian P.; Gleeson, Michael W.; Noelle, Randolph J.; Erickson, Loren D.
2010-01-01
Summary Long-lived humoral immune responses are a hallmark of thymus-dependent immunity. The cellular basis for enduring antibody-mediated immunity is long-lived memory B cells and plasma cells (PCs). Both of these cell populations acquire longevity as a result of antigen-specific, CD40–dependent, cognate interactions with helper T cells within germinal centers (GCs). At the molecular level, defined functional domains of CD40 control the post-GC fate of B cells. PC precursors that emerge from these GC reactions are highly proliferative and terminally differentiate to end-stage cells within the bone marrow (BM). The striking phenotypic similarities between the PC precursors and the putative malignant cell in multiple myeloma (MM) suggests that MM may result from the transformation of PC precursors. Within the domain of autoimmune disease, recent studies have shown that dysregulated migration of PCs to the BM may impact immune homeostasis and the development of lupus. Understanding the processes of normal PC differentiation will provide strategic insights into identifying therapeutic targets for the treatment of differentiated B-cell disorders. PMID:12846808
Immune system stimulation in rats by Lactobacillus sp. isolates from Raffia wine (Raphia vinifera).
Flore, Tiepma N E; François, Zambou N; Félicité, Tchouanguep M
2010-01-01
The immune system consists of organs and several cell types. Antigen interaction with these cells induces a cellular immune response mediated by activated cells. The effects of lactic acid bacteria on the systemic immune response and on the secretory immune system are described. The current investigation sets out to examine the possible effects of isolated wine lacto-bacilli upon various hematologic and immunologic parameters in rats. We have fed rats with probiotic isolates from Raffia wine and challenged with castor oil; two control groups were fed with castor oil and others were not. We counted blood cells at the end of the experiment; all isolates seemed to cause a decrease of circulating white blood cells. The percentage of lymphocytes and the total protein in the spleen increased in the treated animals; also a normal aspect of faeces was observed compared to the control. These isolates of Lactobacillus seem to occur to immune cell-mediated responses in rats.
Apoptosis in the homeostasis of the immune system and in human immune mediated diseases.
Giovannetti, A; Pierdominici, M; Di Iorio, A; Cianci, R; Murdaca, G; Puppo, F; Pandolfi, F; Paganelli, R
2008-01-01
The immune system has evolved sophisticated mechanisms controlling the development of responses to dangerous antigens while avoiding unnecessary attacks to innocuous, commensal or self antigens. The risk of autoimmunity is continuously checked and balanced against the risk of succumbing to exogenous infectious agents. It is therefore of paramount importance to understand the molecular events linking the breakdown of tolerance and the development of immunodeficiency. Apoptotic mechanisms are used to regulate the development of thymocytes, the shaping of T cell repertoire, its selection and the coordinate events leading to immune responses in the periphery. Moreover, they are at the heart of the homeostatic controls restoring T cell numbers and establishing T cell memory. T lymphocytes shift continuously from survival to death signals to ensure immune responsiveness without incurring in autoimmune damage. In this review we shall consider some key facts on the relationship of lymphopenia to autoreactivity, the mechanisms controlling positive and negative selection in the thymus, the role of apoptosis in selected primary immunodeficiency states and in systemic and organ-specific autoimmunity, with examples from human diseases and their animal models.
ALA-PDT mediated DC vaccine for skin squamous cell carcinoma
NASA Astrophysics Data System (ADS)
Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Wang, Xiuli; Chen, Wei R.
2015-03-01
Dendritic cell (DC) based vaccine has emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have only achieved limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secret INF-Υ and IL-12). ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumor in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing DC-based cancer vaccine, which could improve the clinical application of PDT- DC vaccines.
Kapina, Marina A; Rubakova, Elvira I; Majorov, Konstantin B; Logunova, Nadezhda N; Apt, Alexander S
2013-01-01
The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC) are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg), an essential element of a general immune regulatory network. However, direct experimental data demonstrating inhibition of immune responses by stroma-instructed immature DCreg in infectious models are scarce, and virtually nothing is known about functioning of this axis of immunity during tuberculosis (TB) infection. In this study, we demonstrate that lung stromal cells are capable of supporting the development in culture of immature CD11b(+)CD11c(low)CD103(-) DCreg from lineage-negative (lin(-)) bone marrow precursors. DCreg developed on lung stroma isolated from mice of genetically TB-hyper-susceptible I/St and relatively resistant B6 inbred strains inhibited proliferative response of mycobacteria-specific CD4(+) T-cell lines a dose-dependent manner. Importantly, the inhibitory activity of B6 DCreg was substantially higher than that of I/St Dcreg. Moreover, when the donors of stromal cells were chronically infected with virulent mycobacteria, the capacity to instruct inhibitory DCreg was retained in B6, but further diminished in I/St stromal cells. DCreg-provided suppression was mediated by a few soluble mediators, including PGE2, NO and IL-10. The content of CD4(+)Foxp3(+) Treg cells in the mediastinal, lung-draining lymph nodes at the advanced stages of chronic infection did not change in I/St, but increased 2-fold in B6 mice, and lung pathology was much more pronounced in the former mice. Taken together, these data provide genetic evidence that the capacity to maintain populations of regulatory cells during M. tuberculosis infection is a part of the host protective strategy.
Symbiont-induced odorant binding proteins mediate insect host hematopoiesis
Benoit, Joshua B; Vigneron, Aurélien; Broderick, Nichole A; Wu, Yineng; Sun, Jennifer S; Carlson, John R; Aksoy, Serap; Weiss, Brian L
2017-01-01
Symbiotic bacteria assist in maintaining homeostasis of the animal immune system. However, the molecular mechanisms that underlie symbiont-mediated host immunity are largely unknown. Tsetse flies (Glossina spp.) house maternally transmitted symbionts that regulate the development and function of their host’s immune system. Herein we demonstrate that the obligate mutualist, Wigglesworthia, up-regulates expression of odorant binding protein six in the gut of intrauterine tsetse larvae. This process is necessary and sufficient to induce systemic expression of the hematopoietic RUNX transcription factor lozenge and the subsequent production of crystal cells, which actuate the melanotic immune response in adult tsetse. Larval Drosophila’s indigenous microbiota, which is acquired from the environment, regulates an orthologous hematopoietic pathway in their host. These findings provide insight into the molecular mechanisms that underlie enteric symbiont-stimulated systemic immune system development, and indicate that these processes are evolutionarily conserved despite the divergent nature of host-symbiont interactions in these model systems. DOI: http://dx.doi.org/10.7554/eLife.19535.001 PMID:28079523
The complex pathophysiology of acquired aplastic anaemia
Zeng, Y; Katsanis, E
2015-01-01
Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8+ cytotoxic T cells, CD4+ T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-β, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure. PMID:25683099
Exosomes and nanotubes: control of immune cell communication
McCoy-Simandle, Kessler; Hanna, Samer J.; Cox, Dianne
2015-01-01
Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature. PMID:26704468
Jang, Seung I; Lillehoj, Hyun S; Lee, Sung Hyen; Lee, Kyung Woo; Park, Myeong Seon; Cha, Sung-Rok; Lillehoj, Erik P; Subramanian, B Mohana; Sriraman, R; Srinivasan, V A
2010-04-09
Intestinal infection with Eimeria, the etiologic agent of avian coccidiosis, stimulates protective immunity to subsequent colonization by the homologous parasite, while cross-protection against heterologous species is poor. As a first step toward the development of a broad specificity Eimeria vaccine, this study was designed to assess a purified recombinant protein from Eimeria maxima gametocytes (Gam82) in stimulating immunity against experimental infection with live parasites. Following Gam82 intramuscular immunization and oral parasite challenge, body weight gain, fecal oocyst output, lesion scores, serum antibody response, and cytokine production were assessed to evaluate vaccination efficacy. Animals vaccinated with Gam82 and challenged with E. maxima showed lower oocyst shedding and reduced intestinal pathology compared with non-vaccinated and parasite-challenged animals. Gam82 vaccination also stimulated the production of antigen-specific serum antibodies and induced greater levels of IL-2 and IL-15 mRNAs compared with non-vaccinated controls. These results demonstrate that the Gam82 recombinant protein protects against E. maxima and augments humoral and cell-mediated immunity. Published by Elsevier Ltd.
Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo.
Ulges, Alexander; Klein, Matthias; Reuter, Sebastian; Gerlitzki, Bastian; Hoffmann, Markus; Grebe, Nadine; Staudt, Valérie; Stergiou, Natascha; Bohn, Toszka; Brühl, Till-Julius; Muth, Sabine; Yurugi, Hajime; Rajalingam, Krishnaraj; Bellinghausen, Iris; Tuettenberg, Andrea; Hahn, Susanne; Reißig, Sonja; Haben, Irma; Zipp, Frauke; Waisman, Ari; Probst, Hans-Christian; Beilhack, Andreas; Buchou, Thierry; Filhol-Cochet, Odile; Boldyreff, Brigitte; Breloer, Minka; Jonuleit, Helmut; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias
2015-03-01
The quality of the adaptive immune response depends on the differentiation of distinct CD4(+) helper T cell subsets, and the magnitude of an immune response is controlled by CD4(+)Foxp3(+) regulatory T cells (Treg cells). However, how a tissue- and cell type-specific suppressor program of Treg cells is mechanistically orchestrated has remained largely unexplored. Through the use of Treg cell-specific gene targeting, we found that the suppression of allergic immune responses in the lungs mediated by T helper type 2 (TH2) cells was dependent on the activity of the protein kinase CK2. Genetic ablation of the β-subunit of CK2 specifically in Treg cells resulted in the proliferation of a hitherto-unexplored ILT3(+) Treg cell subpopulation that was unable to control the maturation of IRF4(+)PD-L2(+) dendritic cells required for the development of TH2 responses in vivo.
Pratheeshkumar, P; Kuttan, Girija
2011-09-01
One of the major reasons for the rapid progression of cancers is the ability of tumor cells to escape from the immune surveillance mechanism of the body. Modulation of immune responses is highly relevant in tumor cell destruction. Effect of vernolide-A on the cell-mediated immune (CMI) response in metastatic condition was studied using C57BL/6 mice model. Administration of vernolide-A enhanced natural killer (NK) cell activity, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent complement-mediated cytotoxicity (ACC) and the activity was observed in treated group much earlier compared with the metastatic tumor-bearing control. Administration of vernolide-A significantly enhanced the production of interleukin (IL)-2 and interferon-gamma (IFN-γ) in metastatic tumor-bearing animals. In addition, vernolide-A significantly down-regulated the serum levels of proinflammatory cytokines such as IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) during metastasis. All these results demonstrate that vernolide-A could enhance the immune response against metastatic progression of B16F-10 melanoma cells in mice.
Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan
2011-09-09
Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.
Attenuated Shigella as a DNA Delivery Vehicle for DNA-Mediated Immunization
NASA Astrophysics Data System (ADS)
Sizemore, Donata R.; Branstrom, Arthur A.; Sadoff, Jerald C.
1995-10-01
Direct inoculation of DNA, in the form of purified bacterial plasmids that are unable to replicate in mammalian cells but are able to direct cell synthesis of foreign proteins, is being explored as an approach to vaccine development. Here, a highly attenuated Shigella vector invaded mammalian cells and delivered such plasmids into the cytoplasm of cells, and subsequent production of functional foreign protein was measured. Because this Shigella vector was designed to deliver DNA to colonic mucosa, the method is a potential basis for oral and other mucosal DNA immunization and gene therapy strategies.
Bao, Bin; Thakur, Archana; Li, Yiwei; Ahmad, Aamir; Azmi, Asfar S.; Banerjee, Sanjeev; Kong, Dejuan; Ali, Shadan; Lum, Lawrence G.; Sarkar, Fazlul H.
2013-01-01
Over decades, cancer treatment has been mainly focused on targeting cancer cells and not much attention to host tumor microenvironment. Recent advances suggest that the tumor microenvironment requires in-depth investigation for understanding the interactions between tumor cell biology and immunobiology in order to optimize therapeutic approaches. Tumor microenvironment consists of cancer cells and tumor associated reactive fibroblasts, infiltrating non-cancer cells, secreted soluble factors or molecules, and non-cellular support materials. Tumor associated host immune cells such as Th1, Th2, Th17, regulatory cells, dendritic cells, macrophages, and myeloid-derived suppressor cells are major components of the tumor microenvironment. Accumulating evidence suggests that these tumor associated immune cells may play important roles in cancer development and progression. However, the exact functions of these cells in the tumor microenvironment are poorly understood. In the tumor microenvironment, NF-κB plays an important role in cancer development and progression because this is a major transcription factor which regulates immune functions within the tumor microenvironment. In this review, we will focus our discussion on the immunological contribution of NF-κB in tumor associated host immune cells within the tumor microenvironment. We will also discuss the potential protective role of zinc, a well-known immune response mediator, in the regulation of these immune cells and cancer cells in the tumor microenvironment especially because zinc could be useful for conditioning the tumor microenvironment toward innovative cancer therapy. PMID:22155217
Memory CD4+ T cells: beyond “helper” functions
Boonnak, Kobporn; Subbarao, Kanta
2012-01-01
In influenza virus infection, antibodies, memory CD8+ T cells, and CD4+ T cells have all been shown to mediate immune protection, but how they operate and interact with one another to mediate efficient immune responses against virus infection is not well understood. In this issue of the JCI, McKinstry et al. have identified unique functions of memory CD4+ T cells beyond providing “help” for B cell and CD8+ T cell responses during influenza virus infection. PMID:22820285
Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N
2016-12-01
Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency. Copyright © 2016 Elsevier B.V. All rights reserved.
Hypercholesterolemia induces T cell expansion in humanized immune mice.
Proto, Jonathan D; Doran, Amanda C; Subramanian, Manikandan; Wang, Hui; Zhang, Mingyou; Sozen, Erdi; Rymond, Christina C; Kuriakose, George; D'Agati, Vivette; Winchester, Robert; Sykes, Megan; Yang, Yong-Guang; Tabas, Ira
2018-06-01
Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system-reconstituted mice (hu-mice) rendered hypercholesterolemic by treatment with adeno-associated virus 8-proprotein convertase subtilisin/kexin type 9 (AAV8-PCSK9) and a high-fat/high-cholesterol Western-type diet (WD). These mice had a high percentage of human T cells and moderate hypercholesterolemia. Compared with hu-mice that had lower plasma cholesterol, the PCSK9-WD mice developed a T cell-mediated inflammatory response in the lung and liver. Human CD4+ and CD8+ T cells bearing an effector memory phenotype were significantly elevated in the blood, spleen, and lungs of PCSK9-WD hu-mice, whereas splenic and circulating regulatory T cells were reduced. These data show that moderately high plasma cholesterol can disrupt human T cell homeostasis in vivo. This process may not only exacerbate atherosclerosis, but also contribute to T cell-mediated inflammatory diseases in the hypercholesterolemia setting.
Prostanoids and their receptors that modulate dendritic cell-mediated immunity.
Gualde, Norbert; Harizi, Hedi
2004-08-01
Dendritic cells (DC) are essential for the initiation of immune responses by capturing, processing and presenting antigens to T cells. In addition to their important role as professional APC, they are able to produce immunosuppressive and pro-inflammatory prostanoids from arachidonic acid (AA) by the action of cyclooxygenase (COX) enzymes. In an autocrine and paracrine fashion, the secreted lipid mediators subsequently modulate the maturation, cytokine production, Th-cell polarizing ability, chemokine receptor expression, migration, and apoptosis of these extremely versatile APC. The biological actions of prostanoids, including their effects on APC-mediated immunity and acute inflammatory responses, are exerted by G protein-coupled receptors on plasma membrane. Some COX metabolites act as anti-inflammatory lipid mediators by binding to nuclear receptors and modulating DC functions. Although the role of cytokines in DC function has been studied extensively, the effects of prostanoids on DC biology have only recently become the focus of investigation. This review summarizes the current knowledge about the role of prostanoids and their receptors in modulating DC function and the subsequent immune responses.
Tumor-Associated Neutrophils in Human Lung Cancer
2017-10-01
tumor inflammation, anti-tumor neutrophils, anti-tumor innate immune response. anti-tumor adaptive immune response, neutrophil and T cell interaction...Ottonello, 1992; van Egmond and Bakema, 2013) and by producing factors to recruit and acti- vate cells of the innate and adaptive immune system...dependent cell -mediated cytotoxicity (ADCC) [16], (iii) produce factors to recruit and activate cells of the innate and adaptive immune systems [17], and
Kalymbetova, Tatiana V; Selvakumar, Balachandar; Rodríguez-Castillo, José Alberto; Gunjak, Miša; Malainou, Christina; Heindl, Miriam Ruth; Moiseenko, Alena; Chao, Cho-Ming; Vadász, István; Mayer, Konstantin; Lohmeyer, Jürgen; Bellusci, Saverio; Böttcher-Friebertshäuser, Eva; Seeger, Werner; Herold, Susanne; Morty, Rory E
2018-06-01
Trophic functions for macrophages are emerging as key mediators of developmental processes, including bone, vessel, and mammary gland development. Yolk sac-derived macrophages mature in the distal lung shortly after birth. Myeloid-lineage macrophages are recruited to the lung and are activated under pathological conditions. These pathological conditions include bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by stunted lung development, where the formation of alveoli is blocked. No study has addressed causal roles for immune cells in lung alveolarization. We employed antibody-based and transgenic death receptor-based depletion approaches to deplete or prevent lung recruitment of immune cell populations in a hyperoxia-based mouse model of BPD. Neither neutrophils nor exudate macrophages (which might include lung interstitial macrophages) contributed to structural perturbations to the lung that were provoked by hyperoxia; however, cells of the Csf1r-expressing monocyte/macrophage lineage were implicated as causal mediators of stunted lung development. We propose that resident alveolar macrophages differentiate into a population of CD45 + CD11c + SiglecF + CD11b + CD68 + MHCII + cells, which are activated by hyperoxia, and contribute to disturbances to the structural development of the immature lung. This is the first report that causally implicates immune cells in pathological disturbances to postnatal lung organogenesis. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
T lymphocyte-derived TNF and IFN-γ repress HFE expression in cancer cells.
Reuben, Alexandre; Godin-Ethier, Jessica; Santos, Manuela M; Lapointe, Réjean
2015-06-01
The immune system and tumors are closely intertwined initially upon tumor development. During this period, tumors evolve to promote self-survival through immune escape, including by targeting crucial components involved in the presentation of antigens to the immune system in order to avoid recognition. Accordingly, components involved in MHC I presentation of tumor antigens are often mutated and down-regulated targets in tumors. On the other hand, the immune system has been shown to influence tumors through production of immunosuppressive cytokines, recruitment and polarization of cells favoring or impeding tumor escape or through production of anti-tumor cytokines promoting tumor rejection. We previously discovered that the hemochromatosis protein HFE, a negative regulator of iron absorption, dampens classical MHC I antigen presentation. In this study, we evaluated the impact of activated T lymphocytes purified from peripheral blood mononuclear cells (PBMC) on HFE expression in tumor cell lines. We co-cultured tumor cell lines from melanoma, lung, and kidney cancers with anti-CD3-activated PBMC and established that HFE expression is increased in tumor cell lines compared to healthy tissues, whilst being down-regulated significantly upon exposure to activated PBMC. HFE down-regulation was mediated by both CD4 and CD8 T lymphocytes, through production of soluble mediators, namely TNF and IFN-γ. These results suggest that the immune system may modulate tumor HFE expression in inflammatory conditions in order to regulate MHC I antigen presentation and promote tumor clearance. Copyright © 2015. Published by Elsevier Ltd.
Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells
Sung, Julia A.M.; Pickeral, Joy; Liu, Liqin; Stanfield-Oakley, Sherry A.; Lam, Chia-Ying Kao; Garrido, Carolina; Pollara, Justin; LaBranche, Celia; Bonsignori, Mattia; Moody, M. Anthony; Yang, Yinhua; Parks, Robert; Archin, Nancie; Allard, Brigitte; Kirchherr, Jennifer; Kuruc, JoAnn D.; Gay, Cynthia L.; Cohen, Myron S.; Ochsenbauer, Christina; Soderberg, Kelly; Liao, Hua-Xin; Montefiori, David; Moore, Paul; Johnson, Syd; Koenig, Scott; Haynes, Barton F.; Nordstrom, Jeffrey L.; Margolis, David M.; Ferrari, Guido
2015-01-01
Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell–mediated clearance of HIV-1–infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity–mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected–patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals. PMID:26413868
An integrated view of suppressor T cell subsets in immunoregulation
Jiang, Hong; Chess, Leonard
2004-01-01
The immune system evolved to protect organisms from a virtually infinite variety of disease-causing agents but to avoid harmful responses to self. Because immune protective mechanisms include the elaboration of potent inflammatory molecules, antibodies, and killer cell activation — which together can not only destroy invading microorganisms, pathogenic autoreactive cells, and tumors, but also mortally injure normal cells — the immune system is inherently a “double-edged sword” and must be tightly regulated. Immune response regulation includes homeostatic mechanisms intrinsic to the activation and differentiation of antigen-triggered immunocompetent cells and extrinsic mechanisms mediated by suppressor cells. This review series will focus on recent advances indicating that distinct subsets of regulatory CD4+ and CD8+ T cells as well as NK T cells control the outgrowth of potentially pathogenic antigen-reactive T cells and will highlight the evidence that these suppressor T cells may play potentially important clinical roles in preventing and treating immune-mediated disease. Here we provide a historical overview of suppressor cells and the experimental basis for the existence of functionally and phenotypically distinct suppressor subsets. Finally, we will speculate on how the distinct suppressor cell subsets may function in concert to regulate immune responses. PMID:15520848
Inflammation and regeneration in the dentin-pulp complex: a double-edged sword.
Cooper, Paul R; Holder, Michelle J; Smith, Anthony J
2014-04-01
Dental tissue infection and disease result in acute and chronic activation of the innate immune response, which is mediated by molecular and cellular signaling. Different cell types within the dentin-pulp complex are able to detect invading bacteria at all stages of the infection. Indeed, at relatively early disease stages, odontoblasts will respond to bacterial components, and as the disease progresses, core pulpal cells including fibroblasts, stems cells, endothelial cells, and immune cells will become involved. Pattern recognition receptors, such as Toll-like receptors expressed on these cell types, are responsible for detecting bacterial components, and their ligand binding leads to the activation of the nuclear factor-kappa B and p38 mitogen-activated protein (MAP) kinase intracellular signaling cascades. Subsequent nuclear translocation of the transcription factor subunits from these pathways will lead to proinflammatory mediator expression, including increases in cytokines and chemokines, which trigger host cellular defense mechanisms. The complex molecular signaling will result in the recruitment of immune system cells targeted at combating the invading microbes; however, the trafficking and antibacterial activity of these cells can lead to collateral tissue damage. Recent evidence suggests that if inflammation is resolved relatively low levels of proinflammatory mediators may promote tissue repair, whereas if chronic inflammation ensues repair mechanisms become inhibited. Thus, the effects of mediators are temporal context dependent. Although containment and removal of the infection are keys to enable dental tissue repair, it is feasible that the development of anti-inflammatory and immunomodulatory approaches, based on molecular, epigenetic, and photobiomodulatory technologies, may also be beneficial for future endodontic treatments. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Innate immune activation in neurodegenerative disease.
Heneka, Michael T; Kummer, Markus P; Latz, Eicke
2014-07-01
The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.
Salk's HIV immunogen: an immune-based therapy in human trials since 1988.
Jonas Salk, the developer of the first polio vaccine, has created a therapeutic vaccine for HIV which helps the immune system fight disease progression. Salk uses inactivated HIV-1 virus combined with Incomplete Freund's Adjuvant (IFA) in the vaccine preparation. The resulting HIV-1 immunogen was first studied in 1987, and since then, 235 seropositive individuals have received inoculations without serious adverse effects. Data from the first 25 subjects indicate that immunization with the HIV-1 immunogen results in improvement of cell-mediated response against the virus, a slower increase in the amount of virus present, and a reduced rate of clinical progression. Subsequent studies also show that higher doses of immunogen may produce stronger cell-mediated responses and high HIV-DTH (delayed-type hypersensitivity responsiveness immunogen) is associated with better outcome. Additional trials of HIV-1 immunogen are awaiting Food and Drug Administration approval.
Mace, Thomas A.; King, Samantha A.; Ameen, Zeenath; Elnaggar, Omar; Young, Gregory; Riedl, Kenneth M.; Schwartz, Steven J.; Clinton, Steven K.; Knobloch, Thomas J.; Weghorst, Christopher M.; Lesinski, Gregory B.
2014-01-01
Bioactive phyotochemicals from natural products, such as black raspberries (BRB; Rubus occidentalis) have direct anti-cancer properties on malignant cells in culture and in xenograft models. BRB components inhibit cancer progression in more complex rodent carcinogenesis models. Although mechanistic targets for BRB phytochemicals in cancer cells are beginning to emerge, the potential role in modulating host immune processes impacting cancer have not been systematically examined. We hypothesized that BRB contain compounds capable of eliciting potent immunomodulatory properties that impact cellular mediators relevant to chronic inflammation and tumor progression. We studied both an ethanol extract from black raspberries (BRB-E) containing a diverse mixture of phytochemicals and two abundant phytochemical metabolites of BRB produced upon ingestion (Cyanidin-3-Rutinoside, C3R; Quercitin-3-Rutinoside, Q3R). BRB-E inhibited proliferation and viability of CD3/CD28 activated human CD4+ and CD8+ T lymphocytes. BRB-E also limited in vitro expansion of myeloid-derived suppressor cells (MDSC) and their suppressive capacity. Pre-treatment of immune cells with BRB-E attenuated IL-6-mediated phosphorylation of signal transducer and activator of transcription-3 (STAT3) and IL-2 induced STAT5 phosphorylation. In contrast, pre-treatment of immune cells with the C3R and Q3R metabolites inhibited MDSC expansion, IL-6-mediated STAT3 signaling, but not IL-2 induced STAT5 phosphorylation and were less potent inhibitors of T cell viability. Together these data indicate that BRB extracts and their physiologically-relevant metabolites contain phytochemicals that affect immune processes relevant to carcinogenesis and immunotherapy. Furthermore, specific BRB components and their metabolites may be a source of lead compounds for drug development that exhibit targeted immunological outcomes or inhibition of specific STAT-regulated signaling pathways. PMID:24893859
Pathogenesis and spectrum of autoimmunity.
Perl, Andras
2012-01-01
The immune system specifically recognizes and eliminates foreign antigens and, thus, protects integrity of the host. During maturation of the immune system, tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. Autoreactive B and T cells that are generated during immune responses are eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. However, autoreactive cells may survive due to failure of apoptosis or molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens, or aberrant lymphokine production. Preservation of the host requires the development of immune responses to foreign antigen and tolerance to self-antigens. Autoimmunity results from a breakdown of tolerance to self-antigens through an interplay of genetic and environmental factors.One of the basic functions of the immune system is to specifically recognize and eliminate foreign antigens and, thus, protect integrity of the host. Through rearrangements and somatic mutations of various gene segments encoding T and B cell receptors and antibody molecules, the immune system acquires tremendous diversity. During maturation of the immune system, recognition of self-antigens plays an important role in shaping the repertoires of immune receptors. Tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. These self-defense mechanisms are mediated on the levels of central and peripheral tolerance, i.e., autoreactive T cells are either eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. Likewise, autoreactive B cells are eliminated in the bone marrow or peripheral lymphoid organs. However, immune responses triggered by foreign antigens may be sustained by molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens. Further downstream, execution of immune responses depends on the functioning of intracellular signaling networks and the cooperation of many cell types communicating via surface receptors, cytokines, chemokines, and antibody molecules. Therefore, autoimmunity represents the end result of the breakdown of one or multiple basic mechanisms of immune tolerance (Table 1).
LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways.
Zhao, Ke; Du, Juan; Peng, Yanfeng; Li, Peng; Wang, Shaohua; Wang, Yu; Hou, Jingwei; Kang, Jian; Zheng, Wenwen; Hua, Shucheng; Yu, Xiao-Fang
2018-06-01
Improper host immune activation leads to the development of the autoimmune disease Aicardi-Goutières syndrome (AGS), which is attributed to defined genetic mutations in such proteins as TREX1 and ADAR1. The mechanism of immune activation in AGS patients has not been thoroughly elucidated to date. In this study, we report that endogenous LINE1 components trigger IFNβ production in multiple human cell types, including those defective for cGAS/STING-mediated DNA sensing. In these cells, LINE1 DNA synthesis and retrotransposition were not required for LINE1-triggered immune activation, but RNA sensing pathways were essential. LINE1-triggered immune activation could be suppressed by diverse LINE1 inhibitors, including AGS-associated proteins targeting LINE1 RNA or proteins. However, AGS-associated ADAR1 or TREX1 mutants were defective in suppressing LINE1 retrotransposition or LINE1-triggered immune activation. Therefore, we have revealed a new function for LINE1 as an endogenous trigger of innate immune activation, which is important for understanding the molecular basis of IFN-based autoimmune diseases and may offer new intervention strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.
David, Rachel; Ma, Liang; Ivetic, Aleksandar; Takesono, Aya; Ridley, Anne J.; Chai, Jian-Guo; Tybulewicz, Victor; Marelli-Berg, Federica M.
2016-01-01
Localization of primed T cells to antigenic tissue is essential for the development of effective immunity. Together with tissue-selective homing molecules, T-cell receptor (TCR)- and CD28-mediated signals have been shown to promote transendothelial migration of specific T cells into non-lymphoid antigen-rich tissue tissue. However, the cellular and molecular requirements for T-cell accumulation to target tissue following their recruitment are largely undefined. The guanine nucleotide exchange factor (GEF) Vav1 has an integral role in coupling TCR and CD28 to signalling pathways that regulate T cell activation and migration. Here, we have investigated the contribution of TCR- and CD28-induced Vav1 activity to the trafficking and localization of primed HY-specific CD4+ T cells to antigenic sites. Severe migratory defects displayed by Vav1-/- T cells in vitro were fully compensated by a combination of shear flow and chemokines, leading to normal recruitment of Vav1-/- T cells in vivo. In contrast, Vav1-/- T-cell retention into antigen-rich tissue was severely impaired, reflecting their inability to engage in sustained TCR- and CD28-mediated interactions with tissue-resident antigen-presenting cells (APCs). This novel function of APC-induced, TCR- and CD28-mediated Vav1 activity in the regulation of effector T-cell immunity highlights its potential as a therapeutic target in T-cell-mediated tissue damage. PMID:19060239
The Therapeutic Effect of Anti-HER2/neu Antibody Depends on Both Innate and Adaptive Immunity
Park, SaeGwang; Jiang, Zhujun; Mortenson, Eric D.; Deng, Liufu; Radkevich-Brown, Olga; Yang, Xuanming; Sattar, Husain; Wang, Yang; Brown, Nicholas K.; Greene, Mark; Liu, Yang; Tang, Jie; Wang, Shengdian; Fu, Yang-Xin
2010-01-01
SUMMARY Anti-HER2/neu antibody therapy is reported to mediate tumor regression by interrupting oncogenic signals and/or inducing FcR-mediated cytotoxicity. Here, we demonstrate that the mechanisms of tumor regression by this therapy also require the adaptive immune response. Activation of innate immunity and T cells, initiated by antibody treatment, was necessary. Intriguingly, the addition of chemotherapeutic drugs, while capable of enhancing the reduction of tumor burden, could abrogate antibody-initiated immunity leading to decreased resistance to re-challenge or earlier relapse. Increased influx of both innate and adaptive immune cells into the tumor microenvironment by a selected immunotherapy further enhanced subsequent antibody-induced immunity, leading to increased tumor eradication and resistance to re-challenge. Therefore, this study proposes a model and strategy for anti-HER2/neu antibody-mediated tumor clearance. PMID:20708157
Ramirez, Karina; Ditamo, Yanina; Rodriguez, Liliana; Picking, Wendy L.; van Roosmalen, Maarten L.; Leenhouts, Kees; Pasetti, Marcela F.
2010-01-01
Safe and effective immunization of newborns and infants can significantly reduce childhood mortality, yet conventional vaccines have been largely unsuccessful in stimulating the neonatal immune system. We explored the capacity of a novel mucosal antigen delivery system consisting of non-living, non-genetically modified Lactococcus lactis particles, designated Gram-positive Enhancer Matrix (GEM), to induce immune responses in the neonatal setting. Yersinia pestis LcrV, used as model protective antigen, was displayed on the GEM particles. Newborn mice immunized intranasally with GEM-LcrV developed LcrV-specific antibodies, Th1-type cell-mediated immunity, and were protected against lethal Y. pestis (plague) infection. The GEM particles activated and enhanced the maturation of neonatal dendritic cells both in vivo and in vitro. These dendritic cells showed increased capacities for secretion of pro-inflammatory and Th1-cell polarizing cytokines, antigen presentation and stimulation of CD4+ and CD8+ T cells. These data show that mucosal immunization with L. lactis GEM particles carrying vaccine antigens represents a promising approach to prevent infectious diseases early in life. PMID:19924118
Induction of innate immunity in control of mucosal transmission of HIV.
Wang, Yufei; Lehner, Thomas
2011-09-01
To present evidence of the role of innate mucosal immunity and to harness this arm of immunity in protection against HIV infection. Dendritic cells, monocytes, natural killer (NK) cells and γδ T cells are critical in innate immunity, which is mediated by Toll-like receptor (TLR) and recently identified stress pathways. Complement factors, cytokines and chemokines have diverse functions usually affecting HIV infection indirectly. A novel group of innate intracellular HIV restriction factors has been identified - APOBEC3G, TRIM5α and tetherin - all of which are upregulated by type I interferons and some by vaccination and TLR agonists. Whereas innate immunity conventionally lacks memory, recent evidence suggests that some of the cells and intracellular factors may express immunological memory-like features. Innate mucosal immunity may provide early effective control of HIV transmission and replication. Some vaccines can enhance innate immune factors, such as APOBEC3G and control HIV during the eclipse period, allowing full weight of neutralizing and/or cytotoxic T cells to develop and prevent mucosal HIV infection. The next generation of vaccines should be designed to target both innate and adaptive immune memory responses.
[T-lymphocytes--do they control rheumatic immune responses?].
Wagner, U; Schulze-Koops, H
2005-09-01
T cells, in particular CD4(+) T cells, have been implicated in mediating many aspects of rheumatoid inflammation. In rheumatoid arthritis (RA), CD4(+) T cells display various functional abnormalities in the synovium as well as in the peripheral circulation. Current evidence suggests, however, that the role of CD4(+) T cells in the development of rheumatoid inflammation exceeds that of activated pro-inflammatory effector T cells that drive the chronic autoimmune response. Subsets of CD4(+) T cells with regulatory capacity, such as CD25(+) Tregs, have been identified in mice and man, and recent observations suggest that in RA, the function of these regulatory T cells is severely impaired. Thus, in RA, defective regulatory immune mechanisms might allow the breakdown of peripheral tolerance, following which the detrimental CD4(+) T-cell-driven immune response evolves and proceeds to chronic inflammation. Here, we review the functional abnormalities and the contribution of different T-cell subsets to rheumatoid inflammation.
Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy
Li, Ying-Ying; Feun, Lynn G.; Thongkum, Angkana; Tu, Chiao-Hui; Chen, Shu-Mei; Wangpaichitr, Medhi; Wu, Chunjing; Kuo, Macus T.; Savaraj, Niramol
2017-01-01
Autophagy, a self-eating machinery, has been reported as an adaptive response to maintain metabolic homeostasis when cancer cells encounter stress. It has been appreciated that autophagy acts as a double-edge sword to decide the fate of cancer cells upon stress factors, molecular subtypes, and microenvironmental conditions. Currently, the majority of evidence support that autophagy in cancer cells is a vital mechanism bringing on resistance to current and prospective treatments, yet whether autophagy affects the anticancer immune response remains unclear and controversial. Accumulated studies have demonstrated that triggering autophagy is able to facilitate anticancer immunity due to an increase in immunogenicity, whereas other studies suggested that autophagy is likely to disarm anticancer immunity mediated by cytotoxic T cells and nature killer (NK) cells. Hence, this contradiction needs to be elucidated. In this review, we discuss the role of autophagy in cancer cells per se and in cancer microenvironment as well as its dual regulatory roles in immune surveillance through modulating presentation of tumor antigens, development of immune cells, and expression of immune checkpoints. We further focus on emerging roles of autophagy induced by current treatments and its impact on anticancer immune response, and illustrate the pros and cons of utilizing autophagy in cancer immunotherapy based on preclinical references. PMID:28629173
Myeloid IKKβ Promotes Antitumor Immunity by Modulating CCL11 and the Innate Immune Response
Yang, Jinming; Hawkins, Oriana E.; Barham, Whitney; Gilchuk, Pavlo; Boothby, Mark; Ayers, Gregory D.; Joyce, Sebastian; Karin, Michael; Yull, Fiona E.; Richmond, Ann
2015-01-01
Myeloid cells are capable of promoting or eradicating tumor cells and the nodal functions that contribute to their different roles are still obscure. Here, we show that mice with myeloid-specific genetic loss of the NF-κB pathway regulatory kinase IKKβ exhibit more rapid growth of cutaneous and lung melanoma tumors. In a BRAFV600E/PTEN−/− allograft model, IKKβ loss in macrophages reduced recruitment of myeloid cells into the tumor, lowered expression of MHC class II molecules, and enhanced production of the chemokine CCL11, thereby negatively regulating dendritic-cell maturation. Elevated serum and tissue levels of CCL11 mediated suppression of dendritic-cell differentiation/maturation within the tumor microenvironment, skewing it toward a Th2 immune response and impairing CD8+ T cell–mediated tumor cell lysis. Depleting macrophages or CD8+ T cells in mice with wild-type IKKβ myeloid cells enhanced tumor growth, where the myeloid cell response was used to mediate antitumor immunity against melanoma tumors (with less dependency on a CD8+ T-cell response). In contrast, myeloid cells deficient in IKKβ were compromised in tumor cell lysis, based on their reduced ability to phagocytize and digest tumor cells. Thus, mice with continuous IKKβ signaling in myeloid-lineage cells (IKKβCA) exhibited enhanced antitumor immunity and reduced melanoma outgrowth. Collectively, our results illuminate new mechanisms through which NF-κB signaling in myeloid cells promotes innate tumor surveillance. PMID:25336190
Tse, Sze-Wah; Radtke, Andrea J; Espinosa, Diego A; Cockburn, Ian A; Zavala, Fidel
2014-11-01
It is well established that immunization with attenuated malaria sporozoites induces CD8(+) T cells that eliminate parasite-infected hepatocytes. Liver memory CD8(+) T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8(+) T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8(+) T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8(+) T cells in the liver. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ahmed, Md Selim; Kang, Myeong-Ho; Lee, Ezra; Park, Yujin; Jeong, Yideul; Bae, Yong-Soo
2017-01-01
The Src homology 2 domain-containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo . However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow-derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHB KD ) BMDCs in a mouse atopic dermatitis model. SHB was steadily expressed in mouse splenic DCs and in in vitro -generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHB KD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHB KD in BMDCs significantly induced CD4 + T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHB KD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization.
Role of T cell death in maintaining immune tolerance during persistent viral hepatitis.
Larrubia, Juan Ramón; Lokhande, Megha Uttam; García-Garzón, Silvia; Miquel, Joaquín; Subirá, Dolores; Sanz-de-Villalobos, Eduardo
2013-03-28
Virus-specific T cells play an important role in the resolution of hepatic infection. However, during chronic hepatitis infection these cells lack their effector functions and fail to control the virus. Hepatitis B virus and hepatitis C virus have developed several mechanisms to generate immune tolerance. One of these strategies is the depletion of virus-specific T cells by apoptosis. The immunotolerogenic liver has unique property to retain and activate naïve T cell to avoid the over reactivation of immune response against antigens which is exploited by hepatotropic viruses to persist. The deletion of the virus-specific T cells occurs by intrinsic (passive) apoptotic mechanism. The pro-apoptotic molecule Bcl-2 interacting mediator (Bim) has attracted increasing attention as a pivotal involvement in apoptosis, as a regulator of tissue homeostasis and an enhancer for the viral persistence. Here, we reviewed our current knowledge on the evidence showing critical role of Bim in viral-specific T cell death by apoptotic pathways and helps in the immune tolerance.
Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.
Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W; Wolf, Matthew T; Fan, Hongni; Tam, Ada J; Patel, Chirag H; Luber, Brandon S; Wang, Hao; Wagner, Kathryn R; Powell, Jonathan D; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H
2016-04-15
Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4-dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. Copyright © 2016, American Association for the Advancement of Science.
Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells
Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W.; Wolf, Matthew T.; Fan, Hongni; Tam, Ada J.; Patel, Chirag H.; Luber, Brandon S.; Wang, Hao; Wagner, Kathryn R.; Powell, Jonathan D.; Housseau, Franck; Pardoll, Drew M.
2016-01-01
Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4–dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. PMID:27081073
Claser, Carla; Malleret, Benoît; Gun, Sin Yee; Wong, Alicia Yoke Wei; Chang, Zi Wei; Teo, Pearline; See, Peter Chi Ee; Howland, Shanshan Wu; Ginhoux, Florent; Rénia, Laurent
2011-01-01
Background Infection with Plasmodium berghei ANKA (PbA) in susceptible mice induces a syndrome called experimental cerebral malaria (ECM) with severe pathologies occurring in various mouse organs. Immune mediators such as T cells or cytokines have been implicated in the pathogenesis of ECM. Red blood cells infected with PbA parasites have been shown to accumulate in the brain and other tissues during infection. This accumulation is thought to be involved in PbA–induced pathologies, which mechanisms are poorly understood. Methods and Findings Using transgenic PbA parasites expressing the luciferase protein, we have assessed by real-time in vivo imaging the dynamic and temporal contribution of different immune factors in infected red blood cell (IRBC) accumulation and distribution in different organs during PbA infection. Using deficient mice or depleting antibodies, we observed that CD8+ T cells and IFN-γ drive the rapid increase in total parasite biomass and accumulation of IRBC in the brain and in different organs 6–12 days post-infection, at a time when mice develop ECM. Other cells types like CD4+ T cells, monocytes or neutrophils or cytokines such as IL-12 and TNF-α did not influence the early increase of total parasite biomass and IRBC accumulation in different organs. Conclusions CD8+ T cells and IFN-γ are the major immune mediators controlling the time-dependent accumulation of P. berghei-infected red blood cells in tissues. PMID:21494565
A canine distemper model of virus-induced anergy.
Mangi, R J; Munyer, T P; Krakowka, S; Jacoby, R O; Kantor, F S
1976-05-01
For development of an animal model of virus-induced anergy, the effect of canine distemper virus (CDV) upon cell-mediated immunity in dogs was investigated. First, canine cutaneous reactions and in vitro lymphocyte responses to soluble protein antigens were characterized. Dogs immunized with picryl guinea pig albumin and with keyhole limpet hemocyanin (both in complete Freund's adjuvant) responded reproducibly to intracutaneous challenge with these antigens. Reactivity peaked in 20-40 days (maximal induration, 6-50 mm). Lymphocytes from these animals responded in vitro to stimulation with keyhole limpet hemocyanin or purified protein derivative. This stimulation was antigen-specific and was maximal on day 6 of culture. Infection with CDV depressed cutaneous reactivity and lymphocyte response in vitro to antigens and mitogens. This effect was transient in animals previously vaccinated with attenuated CDV; however, gnotobiotic puppies (susceptible to CDV) had prolonged depression of cell-mediated immunity and lymphopenia. Some of these animals developed neurologic symptoms and died. The findings indicate that CDV infection is a potentially useful model for study of virus-induced depression of T (thymus)-cell responses and support the hypothesis that there is more than one mechanism responsible for this phenomenon.
Xu, Xiu-Ping; Yao, Yong-Ming; Zhao, Guang-Ju; Wu, Zong-Sheng; Li, Jun-Cong; Jiang, Yun-Long; Lu, Zhong-Qiu; Hong, Guang-Liang
2018-02-05
Mitofusin-2 (MFN2), a well-known mitochondrial fusion protein, has been shown to participate in innate immunity, but its role in mediating adaptive immunity remains poorly characterized. In this study, we explored the potential role of MFN2 in mediating the immune function of T lymphocytes. We manipulated MFN2 gene expression in Jurkat cells via lentiviral transduction of MFN2 small interfering RNA (siRNA) or full-length MFN2. After transduction, the immune response and its underlying mechanism were determined in Jurkat cells. One-way analysis of variance and Student's t-test were performed to determine the statistical significance between the groups. Overexpression of MFN2 enhanced the immune response of T lymphocytes by upregulating Ca2+ (359.280 ± 10.130 vs. 266.940 ± 10.170, P = 0.000), calcineurin (0.513 ± 0.014 vs. 0.403 ± 0.020 nmol/L, P = 0.024), and nuclear factor of activated T cells (NFATs) activation (1.040 ± 0.086 vs. 0.700 ± 0.115, P = 0.005), whereas depletion of MFN2 impaired the immune function of T lymphocytes by downregulating Ca2+ (141.140 ± 14.670 vs. 267.060 ± 9.230, P = 0.000), calcineurin (0.054 ± 0.030 nmol/L vs. 0.404 ± 0.063 nmol/L, P = 0.000), and NFAT activation (0.500 ± 0.025 vs. 0.720 ± 0.061, P = 0.012). Furthermore, upregulated calcineurin partially reversed the negative effects of MFN2 siRNA on T cell-mediated immunity evidenced by elevations in T cell proliferation (1.120 ± 0.048 vs. 0.580 ± 0.078, P = 0.040), interleukin-2 (IL-2) production (473.300 ± 24.100 vs. 175.330 ± 12.900 pg/ml, P = 0.000), and the interferon-γ/IL-4 ratio (3.080 ± 0.156 vs. 0.953 ± 0.093, P = 0.000). Meanwhile, calcineurin activity inhibitor depleted the positive effects of overexpressed MFN2 on T cells function. Our findings suggest that MFN2 may regulate T cell immune functions primarily through the Ca2+-calcineurin-NFAT pathway. MFN2 may represent a potential therapeutic target for T cell immune dysfunction-related diseases.
Platelet Factor 4 Mediates Inflammation in Cerebral Malaria
Srivastava, Kalyan; Cockburn, Ian A.; Swaim, AnneMarie; Thompson, Laura E.; Tripathi, Abhai; Fletcher, Craig A.; Shirk, Erin M.; Sun, Henry; Kowalska, M. Anna; Fox-Talbot, Karen; Sullivan, David; Zavala, Fidel; Morrell, Craig N.
2008-01-01
Summary Cerebral malaria is a major complication of Plasmodium falciparum infection in children. The pathogenesis of cerebral malaria involves vascular inflammation, immune stimulation and obstruction of cerebral capillaries. Platelets have a prominent role in both immune responses and vascular obstruction. We now demonstrate that the platelet derived chemokine, platelet factor 4 (PF4)/CXCL4, promotes the development of experimental cerebral malaria. Plasmodium infected red blood cells (RBC) activated platelets independent of vascular effects, resulting in increased plasma PF4. PF4 or CXCR3 null mice had less ECM, decreased brain T-cell recruitment, and platelet depletion or aspirin treatment reduced the development of ECM. We conclude that Plasmodium infected RBC can activate platelets and platelet derived PF4 then contributes to immune activation and T-cell trafficking as part of the pathogenesis of ECM. PMID:18692777
Integrating Novel Therapeutic Monoclonal Antibodies into the Management of Head and Neck Cancer
Bauman, Julie E.; Ferris, Robert L.
2014-01-01
Head and neck squamous cell carcinoma (HNSCC) is an immunosuppressive malignancy. Interest in developing novel immunotherapies in HNSCC has been reawakened by the success of cetuximab, a therapeutic monoclonal antibody (mAb) against the epidermal growth factor receptor which likely relies on immune as well as anti-signaling mechanisms. We focus on novel therapeutic mAb in current clinical development against established mechanisms of immune evasion in HNSCC, targeting: tumor antigens (TA), with resultant potential to induce antibody-dependent cell-mediated cytotoxicity and T cell activation; immunosuppressive cytokines; co-stimulatory Tumor Necrosis Factor (TNF)-family receptors; and co-inhibitory immune checkpoint receptors. Clinical trials of immunotherapeutic mAb as monotherapy, in combination with cytolytic standard therapies exposing TA or in combination with other immunomodulatory mAb, are urgently needed in HNSCC. PMID:24222079
Watson, Alan M; Lam, L K Metthew; Klimstra, William B; Ryman, Kate D
2016-07-01
A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.
Lam, L. K. Metthew; Klimstra, William B.
2016-01-01
A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines. PMID:27463517
Lum, Fok-Moon; Lye, David C B; Tan, Jeslin J L; Lee, Bernett; Chia, Po-Ying; Chua, Tze-Kwang; Amrun, Siti N; Kam, Yiu-Wing; Yee, Wearn-Xin; Ling, Wei-Ping; Lim, Vanessa W X; Pang, Vincent J X; Lee, Linda K; Mok, Esther W H; Chong, Chia-Yin; Leo, Yee-Sin; Ng, Lisa F P
2018-04-16
The unexpected re-emergence of Zika virus (ZIKV) has caused numerous outbreaks globally. This study characterized the host immune responses during ZIKV infection. Patient samples were collected longitudinally during the acute, convalescence and recovery phases of ZIKV infection over 6 months during the Singapore outbreak in late 2016. Plasma immune mediators were profiled via multiplex micro-bead assay, while changes in blood cell numbers were determined with immune-phenotyping. Data showed the involvement of various immune mediators during acute ZIKV infection accompanied by a general reduction in blood cell numbers for all immune subsets except CD14+ monocytes. Importantly, viremic patients experiencing moderate symptoms had significantly higher quantities of IP-10, MCP-1, IL-1RA, IL-8 and PIGF-1, accompanied by reduced numbers of peripheral CD8+, CD4+ and DNT cells. Levels of T-cell associated mediators including IP-10, IFNγ, and IL-10 were high in recovery phases of ZIKV infection, suggesting a functional role for T-cells. The identification of different markers at specific disease phases emphasizes the dynamics of a balanced cytokine environment in disease progression. This is the first comprehensive study that highlights specific cellular changes and immune signatures during ZIKV disease progression and provides valuable insights into ZIKV immuno-pathogenesis.
Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection
NASA Astrophysics Data System (ADS)
Elahi, Shokrollah; Ertelt, James M.; Kinder, Jeremy M.; Jiang, Tony T.; Zhang, Xuzhe; Xin, Lijun; Chaturvedi, Vandana; Strong, Beverly S.; Qualls, Joseph E.; Steinbrecher, Kris A.; Kalfa, Theodosia A.; Shaaban, Aimen F.; Way, Sing Sing
2013-12-01
Newborn infants are highly susceptible to infection. This defect in host defence has generally been ascribed to the immaturity of neonatal immune cells; however, the degree of hyporesponsiveness is highly variable and depends on the stimulation conditions. These discordant responses illustrate the need for a more unified explanation for why immunity is compromised in neonates. Here we show that physiologically enriched CD71+ erythroid cells in neonatal mice and human cord blood have distinctive immunosuppressive properties. The production of innate immune protective cytokines by adult cells is diminished after transfer to neonatal mice or after co-culture with neonatal splenocytes. Neonatal CD71+ cells express the enzyme arginase-2, and arginase activity is essential for the immunosuppressive properties of these cells because molecular inhibition of this enzyme or supplementation with L-arginine overrides immunosuppression. In addition, the ablation of CD71+ cells in neonatal mice, or the decline in number of these cells as postnatal development progresses parallels the loss of suppression, and restored resistance to the perinatal pathogens Listeria monocytogenes and Escherichia coli. However, CD71+ cell-mediated susceptibility to infection is counterbalanced by CD71+ cell-mediated protection against aberrant immune cell activation in the intestine, where colonization with commensal microorganisms occurs swiftly after parturition. Conversely, circumventing such colonization by using antimicrobials or gnotobiotic germ-free mice overrides these protective benefits. Thus, CD71+ cells quench the excessive inflammation induced by abrupt colonization with commensal microorganisms after parturition. This finding challenges the idea that the susceptibility of neonates to infection reflects immune-cell-intrinsic defects and instead highlights processes that are developmentally more essential and inadvertently mitigate innate immune protection. We anticipate that these results will spark renewed investigation into the need for immunosuppression in neonates, as well as improved strategies for augmenting host defence in this vulnerable population.
Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors
2016-06-01
BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions on central...primitive innate immune system is the first line of defense against pathogens and toxins; it is always present and it depends upon diverse cell types that...adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two innate immune
Liver-inherent immune system: its role in blood-stage malaria
Wunderlich, Frank; Al-Quraishy, Saleh; Dkhil, Mohamed A.
2014-01-01
The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main “antipodal” functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with “self” and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of “protective” autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system. PMID:25408684
Non-IgE mediated mast cell activation.
Redegeld, Frank A; Yu, Yingxin; Kumari, Sangeeta; Charles, Nicolas; Blank, Ulrich
2018-03-01
Mast cells (MCs) are innate immune cells that are scattered in tissues throughout the organism being particularly abundant at sites exposed to the environment such as the skin and mucosal surfaces. Generally known for their role in IgE-mediated allergies, they have also important functions in the maintenance of tissue integrity by constantly sensing their microenvironment for signals by inflammatory triggers that can comprise infectious agents, toxins, hormones, alarmins, metabolic states, etc. When triggered their main function is to release a whole set of inflammatory mediators, cytokines, chemokines, and lipid products. This allows them to organize the ensuing innate immune and inflammatory response in tight coordination with resident tissue cells, other rapidly recruited immune effector cells as well as the endocrine and exocrine systems of the body. To complete these tasks, MCs are endowed with a large repertoire of receptors allowing them to respond to multiple stimuli or directly interact with other cells. Here we review some of the receptors expressed on MCs (ie, receptors for Immunoglobulins, pattern recognition receptors, nuclear receptors, receptors for alarmins, and a variety of other receptors) and discuss their functional implication in the immune and inflammatory response focusing on non-IgE-mediated activation mechanisms. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models
Watson, Alan M.; Klimstra, William B.
2017-01-01
The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253
T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.
Watson, Alan M; Klimstra, William B
2017-04-11
The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.
Bowen, David G; Zen, Monica; Holz, Lauren; Davis, Thomas; McCaughan, Geoffrey W; Bertolino, Patrick
2004-09-01
Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for primary activation of CD8+ T cells between the liver and secondary lymphoid tissues, with the immune outcome determined by the initial site of activation. Using a transgenic mouse model in which antigen is expressed within both liver and lymph nodes, we show that while naive CD8+ T cells activated within the lymph nodes were capable of mediating hepatitis, cells undergoing primary activation within the liver exhibited defective cytotoxic function and shortened half-life and did not mediate hepatocellular injury. The implications of these novel findings may pertain not only to the normal maintenance of peripheral tolerance, but also to hepatic allograft tolerance and the immunopathogenesis of chronic viral hepatitis.
GVHD prevents NK-cell-dependent leukemia and virus-specific innate immunity.
Bunting, Mark D; Varelias, Antiopi; Souza-Fonseca-Guimaraes, Fernando; Schuster, Iona S; Lineburg, Katie E; Kuns, Rachel D; Fleming, Peter; Locke, Kelly R; Huntington, Nicholas D; Blazar, Bruce R; Lane, Steven W; Tey, Siok-Keen; MacDonald, Kelli P A; Smyth, Mark J; Degli-Esposti, Mariapia A; Hill, Geoffrey R
2017-02-02
Allogeneic bone marrow transplantation (allo-BMT) is a curative therapy for hematological malignancies, but is associated with significant complications, principally graft-versus-host disease (GVHD) and opportunistic infections. Natural killer (NK) cells mediate important innate immunity that provides a temporal bridge until the reconstruction of adaptive immunity. Here, we show that the development of GVHD after allo-BMT prevented NK-cell reconstitution, particularly within the maturing M1 and M2 NK-cell subsets in association with exaggerated activation, apoptosis, and autophagy. Donor T cells were critical in this process by limiting the availability of interleukin 15 (IL-15), and administration of IL-15/IL-15Rα or immune suppression with rapamycin could restore NK-cell reconstitution. Importantly, the NK-cell defect induced by GVHD resulted in the failure of NK-cell-dependent in vivo cytotoxicity and graft-versus-leukemia effects. Control of cytomegalovirus infection after allo-BMT was also impaired during GVHD. Thus, during GVHD, donor T cells compete with NK cells for IL-15 thereby inducing profound defects in NK-cell reconstitution that compromise both leukemia and pathogen-specific immunity. © 2017 by The American Society of Hematology.
Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel
2016-11-01
Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vallejo, Abbe N
2007-03-01
Immunological studies of aging and of patients with chronic immune-mediated diseases document overlap of immune phenotypes. Here, the term "immune remodeling" refers to these phenotypes that are indicative of biological processes of deterioration and repair. This concept is explored through lessons from studies about the changes in the T-cell repertoire and the functional diversity of otherwise oligoclonal, senescent T cells. Immune remodeling suggests a gradual process that occurs throughout life. However, similar but more drastic remodeling occurs disproportionately among young patients with chronic disease. In this article, I propose that immune remodeling is a beneficial adaptation of aging to promote healthy survival beyond reproductive performance, but acute remodeling poses risk of premature exhaustion of the immune repertoire and, thus, is detrimental in young individuals.
Nyman, Tuula A; Lorey, Martina B; Cypryk, Wojciech; Matikainen, Sampsa
2017-05-01
The immune system is our defense system against microbial infections and tissue injury, and understanding how it works in detail is essential for developing drugs for different diseases. Mass spectrometry-based proteomics can provide in-depth information on the molecular mechanisms involved in immune responses. Areas covered: Summarized are the key immunology findings obtained with MS-based proteomics in the past five years, with a focus on inflammasome activation, global protein secretion, mucosal immunology, immunopeptidome and T cells. Special focus is on extracellular vesicle-mediated protein secretion and its role in immune responses. Expert commentary: Proteomics is an essential part of modern omics-scale immunology research. To date, MS-based proteomics has been used in immunology to study protein expression levels, their subcellular localization, secretion, post-translational modifications, and interactions in immune cells upon activation by different stimuli. These studies have made major contributions to understanding the molecular mechanisms involved in innate and adaptive immune responses. New developments in proteomics offer constantly novel possibilities for exploring the immune system. Examples of these techniques include mass cytometry and different MS-based imaging approaches which can be widely used in immunology.
Ecdysone mediates the development of immunity in the Drosophila embryo.
Tan, Kiri Louise; Vlisidou, Isabella; Wood, Will
2014-05-19
Beyond their role in cell metabolism, development, and reproduction, hormones are also important modulators of the immune system. In the context of inflammatory disorders, systemic administration of pharmacological doses of synthetic glucocorticoids (GCs) is widely used as an anti-inflammatory treatment [1, 2]. However, not all actions of GCs are immunosuppressive, and many studies have suggested that physiological concentrations of GCs can have immunoenhancing effects [3-7]. For a more comprehensive understanding of how steroid hormones regulate immunity and inflammation, a simple in vivo system is required. The Drosophila embryo has recently emerged as a powerful model system to study the recruitment of immune cells to sterile wounds [8] and host-pathogen dynamics [9]. Here we investigate the immune response of the fly embryo to bacterial infections and find that the steroid hormone 20-hydroxyecdysone (20-HE) can regulate the quality of the immune response and influence the resolution of infection in Drosophila embryos. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Jobbings, Catherine E.; Sandig, Hilary; Whittingham-Dowd, Jayde K.; Roberts, Ian S.; Bulfone-Paus, Silvia
2013-01-01
Whilst mast cells participate in the immune defence against the intracellular bacterium Listeria monocytogenes, there is conflicting evidence regarding the ability of L. monocytogenes to infect mast cells. It is known that the pore-forming toxin listeriolysin (LLO) is important for mast cell activation, degranulation and the release of pro-inflammatory cytokines. Mast cells, however, are a potential source of a wide range of cytokines, chemokines and other mediators including osteopontin, which contributes to the clearing of L. monocytogenes infections in vivo, although its source is unknown. We therefore aimed to resolve the controversy of mast cell infection by L. monocytogenes and investigated the extent of mediator release in response to the bacterium. In this paper we show that the infection of bone marrow-derived mast cells by L. monocytogenes is inefficient and LLO-independent. LLO, however, is required for calcium-independent mast cell degranulation as well as for the transient and selective downregulation of cell surface CD117 (c-kit) on mast cells. We demonstrate that in addition to the key pro-inflammatory cytokines TNF-α and IL-6, mast cells release a wide range of other mediators in response to L. monocytogenes. Osteopontin, IL-2, IL-4, IL-13 and granulocyte macrophage colony-stimulating factor (GM-CSF), and chemokines including CCL2, CCL3, CCL4 and CCL5 are released in a MyD88-dependent manner. The wide range of mediators released by mast cells in response to L. monocytogenes may play an important role in the recruitment and activation of a variety of immune cells in vivo. The cocktail of mediators, however, is unlikely to skew the immune response to a particular effector response. We propose that mast cells provide a hitherto unreported source of osteopontin, and may provide an important role in co-ordinating the immune response during Listeria infection. PMID:23460827
Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation
NASA Astrophysics Data System (ADS)
Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.
2017-03-01
The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcɛRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.
Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W; Tabas, Ira
2015-01-01
Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.
Lee, Byung-Cheol; Lee, Jongsoon
2014-03-01
There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.
Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke.
Shichita, Takashi; Ago, Tetsuro; Kamouchi, Masahiro; Kitazono, Takanari; Yoshimura, Akihiko; Ooboshi, Hiroaki
2012-11-01
Post-ischemic inflammation is an essential step in the progression of ischemic stroke. This review focuses on the function of infiltrating immune cells, macrophages, and T cells, in ischemic brain injury. The brain is a sterile organ; however, the activation of Toll-like receptor (TLR) 2 and TLR4 is pivotal in the beginning of post-ischemic inflammation. Some endogenous TLR ligands are released from injured brain cells, including high mobility group box 1 and peroxiredoxin family proteins, and activate the infiltrating macrophages and induce the expression of inflammatory cytokines. Following this step, T cells also infiltrate into the ischemic brain and mediate post-ischemic inflammation in the delayed phase. Various cytokines from helper T cells and γδT cells function as neurotoxic (IL-23/IL-17, IFN-γ) or neuroprotective (IL-10, IL-4) mediators. Novel neuroprotective strategies should therefore be developed through more detailed understanding of this process and the regulation of post-ischemic inflammation. © 2012 The Authors Journal of Neurochemistry © International Society for Neurochemistry.
Effects of Malignant Melanoma Initiating Cells on T-Cell Activation
Schatton, Tobias; Schütte, Ute; Frank, Markus H.
2016-01-01
Although human malignant melanoma is a highly immunogenic cancer, both the endogenous antitumor immune response and melanoma immunotherapy often fail to control neoplastic progression. Accordingly, characterizing melanoma cell subsets capable of evading antitumor immunity could unravel optimized treatment strategies that might reduce morbidity and mortality from melanoma. By virtue of their preferential capacity to modulate antitumor immune responses and drive inexorable tumor growth and progression, malignant melanoma-initiating cells (MMICs) warrant closer investigation to further elucidate the cellular and molecular mechanisms underlying melanoma immune evasion and immunotherapy resistance. Here we describe methodologies that enable the characterization of immunoregulatory effects of purified MMICs versus melanoma bulk populations in coculture with syngeneic or allogeneic lymphocytes, using [3H] thymidine incorporation, enzyme-linked immunosorbent spot (ELISPOT), or ELISA assays. These assays were traditionally developed to analyze alloimmune processes and we successfully adapted them for the study of tumor-mediated immunomodulatory functions. PMID:26786883
Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin
2014-01-01
CD1d-restricted NKT cells can be divided into two groups: type I NKT cells utilize a semi-invariant TCR whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the central nervous system tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. Here we have addressed the mechanism of regulation as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of PLP139-151/I-As–tetramer+ cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells in the periphery as well as CNS-resident microglia are inactivated following sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not αGalCer, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Since CD1 molecules are non-polymorphic, the sulfatide-mediated immune regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. PMID:24973441
Immune Monitoring for CMV in Transplantation.
Yong, Michelle K; Lewin, Sharon R; Manuel, Oriol
2018-03-14
Immune monitoring to determine when and how the recovery of cytomegalovirus (CMV)-specific T-cells occurs post-transplantation may help clinicians to risk stratify individuals at risk of complications from CMV. We aimed to review all recent clinical studies using CMV immune monitoring in the pre- and post-transplant setting including the use of recently developed standardized assays (Quantiferon-CMV and the CMV ELISPOT) to better understand in whom, when, and how immune monitoring is best used. Pre-transplant assessment of CMV immunity in solid-organ transplant recipients where CMV seropositive recipients had undetectable cell-mediated responses despite past immunity has shown that they are at a much higher risk of developing CMV reactivation. Post-transplant CMV immune monitoring can guide (shorten or prolong) the duration of antiviral prophylaxis, identify recipients at risk of post-prophylaxis CMV disease, and predict recurrent CMV reactivation. Thus, CMV immune monitoring, in addition to current clinical and DNA-based monitoring for CMV, has the potential to be incorporated into routine clinical care to better improve CMV management in both the stem and solid-organ transplant population.
Aubrecht, Taryn G; Weil, Zachary M; Nelson, Randy J
2014-10-01
Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for survival and reproduction in small animals. However, during the past century, urban and suburban development has rapidly expanded and filled the night sky with light from various sources, obscuring crucial light-dark signals, which alters physiological interpretation of day lengths. Furthermore, reduced space, increased proximity to people, and the presence of light at night may act as stressors for small animals. Whereas acute stressors typically enhance immune responses, chronic exposure to stressors often impairs immune responses. Therefore, we hypothesized that the combination of dim light at night and chronic stress interferes with enhanced cell-mediated immunity observed during short days. Siberian hamsters (Phodopus sungorus) were assigned to short or long days with dark nights (0 lux) or dim (5 lux) light at night for 10 weeks. Following 2 weeks of chronic restraint (6 hr/day), a model of chronic stress, delayed type hypersensitivity (DTH) responses were assessed. Both dim light at night and restraint reduced the DTH response. Dim light at night during long nights produced an intermediate short day phenotype. These results suggest the constant presence of light at night could negatively affect survival of photoperiodic rodents by disrupting the timing of breeding and immune responses. © 2014 Wiley Periodicals, Inc.
Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer
2011-11-23
Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.
Choi, Sun-Shim; Chung, Eunkyung; Jung, Yu-Jin
2010-08-01
Bacterial CpG motifs are known to induce both innate and adaptive immunity in infected hosts via toll-like receptor 9 (TLR9). Because small oligonucleotides (ODNs) mimicking bacterial CpG motifs are easily synthesized, they have found use as immunomodulatory agents in a number of disease models. We have developed a novel bioinformatics approach to identify effective CpG ODN sequences and evaluate their function as TLR9 ligands in a murine system. Among the CpG ODNs we identified, M5-30 and M6-395 showed significant ability to stimulate TNF-alpha and IFN-gamma production in a mouse macrophage cell line and mouse splenocytes, respectively. We also found that these CpG ODNs activated cells through the canonical NF-kappa B signaling pathway. Moreover, both CpG ODNs were able to induce Th1-mediated immunity in Mycobacterium tuberculosis (Mtb)-infected mice. Our results demonstrate that M5-30 and M6-395 function as TLR9-specific ligands, making them useful in the study of TLR9 functionality and signaling in mice.
A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders
Ślusarczyk, Joanna; Trojan, Ewa; Chwastek, Jakub; Głombik, Katarzyna; Basta-Kaim, Agnieszka
2016-01-01
In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies. PMID:26893168
Negative regulators of the RIG-I-like receptor signaling pathway
Quicke, Kendra M.; Diamond, Michael S.; Suthar, Mehul S.
2017-01-01
SUMMARY Upon recognition of specific molecular patterns on viruses, bacteria and fungi, host cells trigger an innate immune response, which culminates in the production of type I interferons (IFN), pro-inflammatory cytokines and chemokines, and restricts pathogen replication and spread within the host. At each stage of the immune response, there are stimulatory and inhibitory signals that regulate the magnitude, quality, and character of the response. Positive regulation promotes an antiviral state to control and eventually clear infection whereas negative regulation dampens inflammation and prevents immune-mediated tissue damage. An over-exuberant innate immune response can lead to the destruction of cells and tissues, and the development of spontaneous autoimmunity. The RIG-I-like receptors (RLRs) retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) belong to a family of cytosolic host RNA helicases that recognize distinct non-self RNA signatures and trigger innate immune responses against several RNA virus infections. The RLR signaling pathway is tightly regulated to achieve a well-orchestrated response aimed at maximizing antiviral immunity and minimizing immune-mediated pathology. This review highlights contemporary findings on negative regulators of the RLR signaling pathway, with specific focus on the proteins and biological processes that directly regulate RIG-I, MDA5 and MAVS function. PMID:28295214
Liu, Si; Shi, DanYang; Wang, Hai-Chao; Yu, Yun-Zhou; Xu, Qing; Sun, Zhi-Wei
2015-01-14
Active immunotherapy targeting β-amyloid (Aβ) is the most promising strategy to prevent or treat Alzheimer's disease (AD). Based on pre-clinical studies and clinical trials, a safe and effective AD vaccine requires a delicate balance between providing therapeutically adequate anti-Aβ antibodies and eliminating or suppressing unwanted adverse T cell-mediated inflammatory reactions. We describe here the immunological characterization and protective efficacy of co-immunization with a 6Aβ15-T DNA and protein mixture without adjuvant as an AD immunotherapeutic strategy. Impressively, this co-immunization induced robust Th2-polarized Aβ-specific antibodies while simultaneously suppressed unwanted inflammatory T cell reactions and avoiding Aβ42-specific T cell-mediated autoimmune responses in immunized mice. Co-immunization with the DNA + protein vaccine could overcome Aβ42-associated hypo-responsiveness and elicit long-term Aβ-specific antibody responses, which helped to maintain antibody-mediated clearance of amyloid and accordingly alleviated AD symptoms in co-immunized PDAPP mice. Our DNA and protein combined vaccine, which could induce an anti-inflammatory Th2 immune response with high level Aβ-specific antibodies and low level IFN-γ production, also demonstrated the capacity to inhibit amyloid accumulation and prevent cognitive dysfunction. Hence, co-immunization with antigen-matched DNA and protein may represent a novel and efficacious strategy for AD immunotherapy to eliminate T cell inflammatory reactions while retaining high level antibody responses.
Ludlow, Martin; Lemon, Ken; de Vries, Rory D.; McQuaid, Stephen; Millar, Emma L.; van Amerongen, Geert; Yüksel, Selma; Verburgh, R. Joyce; Osterhaus, Albert D. M. E.; Duprex, W. Paul
2013-01-01
Measles virus (MV), one of the most contagious viruses infecting humans, causes a systemic infection leading to fever, immune suppression, and a characteristic maculopapular rash. However, the specific mechanism or mechanisms responsible for the spread of MV into the respiratory epithelium in the late stages of the disease are unknown. Here we show the crucial role of PVRL4 in mediating the spread of MV from immune to epithelial cells by generating a PVRL4 “blind” recombinant wild-type MV and developing a novel in vitro coculture model of B cells with primary differentiated normal human bronchial epithelial cells. We utilized the macaque model of measles to analyze virus distribution in the respiratory tract prior to and at the peak of MV replication. Expression of PVRL4 was widespread in both the lower and upper respiratory tract (URT) of macaques, indicating MV transmission can be facilitated by more than only epithelial cells of the trachea. Analysis of tissues collected at early time points after experimental MV infection demonstrated the presence of MV-infected lymphoid and myeloid cells contacting respiratory tract epithelium in the absence of infected epithelial cells, suggesting that these immune cells seed the infection in vivo. Thereafter, lateral cell-to-cell spread of MV led to the formation of large foci of infected cells in the trachea and high levels of MV infection in the URT, particularly in the nasal cavity. These novel findings have important implications for our understanding of the high transmissibility of measles. PMID:23365435
2012-01-01
Background Merkel cell carcinoma (MCC) is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV). The MCPyV-encoded large T (LT) antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT) encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT), as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the immunodominant LT epitope as aa19-27 (IAPNCYGNI) and found that it is H-2kb-restricted. Conclusion The results of this study can facilitate the development of other modes of MCC treatment such as peptide-based vaccines and adoptive transfer of LT-specific CD8+ T cells. Likewise, the MCC DNA vaccine has great potential for clinical translation as the immunologic specificity is high and the treatment strategy can be exported to address other virus-induced tumors. PMID:23095249
Tian, Tian; Dubin, Krista; Jin, Qiushuang; Qureshi, Ali; King, Sandra L.; Liu, Luzheng; Jiang, Xiaodong; Murphy, George F.; Kupper, Thomas S.; Fuhlbrigge, Robert C.
2012-01-01
One strategy adopted by vaccinia virus (VV) to evade the host immune system is to encode homologs of TNF receptors (TNFR) that block TNFα function. The response to VV skin infection under conditions of TNFα deficiency, however, has not been reported. We found that TNFR1−/− mice developed larger primary lesions, numerous satellite lesions and higher skin virus levels after VV scarification. Following their recovery, these TNFR1−/− mice were fully protected against challenge with a lethal intranasal dose of VV, suggesting these mice developed an effective memory immune response. A functional systemic immune response of TNFR1−/− mice was further demonstrated by enhanced production of VV-specific IFNγ and VV-specific CD8+ T cells in spleens and draining lymph nodes. Interestingly, bone marrow (BM) reconstitution studies using WT BM in TNFR1−/− host mice, but not TNFR1−/− BM in WT host mice, reproduced the original results seen in TNFR1−/− mice, indicating that TNFR1 deficiency in resident skin cells, rather than hematopoietic cells, accounts for the impaired cutaneous immune response. Our data suggest that lack of TNFR1 leads to a skin-specific immune deficiency and that resident skin cells play a crucial role in mediating an optimal immune defense to VV cutaneous infection via TNFα/TNFR1 signaling. PMID:22318381
Transfer of T-cell mediated immunity to Hymenolepis nana from mother mice to their neonates.
Asano, K; Okamoto, K
1992-01-15
Administration of lymph node cells from Hymenolepis nana-infected mice into lactating mothers, or directly suckling neonates successfully transferred immunity to the neonates. The capacity of lymph node cells to transfer immunity was completely abrogated by pretreatment with anti-Thy-1.2 monoclonal antibody and complement.
Wang, Xinhai; Kochetkova, Irina; Haddad, Asmahan; Hoyt, Teri; Hone, David M; Pascual, David W
2005-05-31
Receptor-mediated gene transfer using an M cell ligand has been shown to be an efficient method for mucosal DNA immunization. To investigate further into alternative M cell ligands, the plant lectin, Ulex europaeus agglutinin I (UEA-1), was tested. UEA-1 binds to human intestinal Caco-2 cells, and these cells can be transfected with poly-l-lysine (PL)-conjugated UEA-1 for expression of reporter cDNAs. When tested in vivo, mice nasally immunized with UEA-1-PL complexed to plasmid encoding HIV-1 envelope showed elevated systemic and mucosal antibody responses, and these were supported by tissue antibody-forming cells. Likewise, elevated envelope-specific CTLs were induced. Thus, UEA-1 mediated DNA delivery represents an alternative mucosal formulation for inducing humoral and cellular immunity against HIV-1.
Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes.
Calvo, Víctor; Izquierdo, Manuel
2018-01-01
Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.
Oliphant, Christopher J.; Hwang, You Yi; Walker, Jennifer A.; Salimi, Maryam; Wong, See Heng; Brewer, James M.; Englezakis, Alexandros; Barlow, Jillian L.; Hams, Emily; Scanlon, Seth T.; Ogg, Graham S.; Fallon, Padraic G.; McKenzie, Andrew N.J.
2014-01-01
Summary Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity. PMID:25088770
Glennie, Nelson D.; Volk, Susan W.
2017-01-01
Tissue-resident memory T cells are required for establishing protective immunity against a variety of different pathogens, although the mechanisms mediating protection by CD4+ resident memory T cells are still being defined. In this study we addressed this issue with a population of protective skin-resident, IFNγ-producing CD4+ memory T cells generated following Leishmania major infection. We previously found that resident memory T cells recruit circulating effector T cells to enhance immunity. Here we show that resident memory CD4+ T cells mediate the delayed-hypersensitivity response observed in immune mice and provide protection without circulating T cells. This protection occurs rapidly after challenge, and requires the recruitment and activation of inflammatory monocytes, which limit parasites by production of both reactive oxygen species and nitric oxide. Overall, these data highlight a novel role for tissue-resident memory cells in recruiting and activating inflammatory monocytes, and underscore the central role that skin-resident T cells play in immunity to cutaneous leishmaniasis. PMID:28419151
Basic science for the clinician 53: mast cells.
Sigal, Leonard H
2011-10-01
Mast cells stand at the interface between the innate immune system and the acquired (adaptive) immune response, serving as sentinels detecting invaders and directing a concerted and coordinated response. Mast cells reside immediately under body surfaces and within lymph nodes, near blood vessels and nerves, perfectly situated to for early detection and defense. They secrete a wide array of prostanoids, cytokines, chemokines, and other proteins mediators and modifiers of a variety of immune and inflammatory functions and bear surface markers suggesting broad functions, including as antigen-presenting cells. Although usually not given their due in medical school lectures, there is great likelihood that mast cells will be implicated in the pathogenesis of rheumatoid arthritis, scleroderma, multiple sclerosis, and perhaps cancer. Thus, better insights into mast cell functions and mast cell-derived effector molecules should command our attention as we move forward in better understanding disease immunopathogenesis and directed intelligent therapeutics development.
Tai, Ningwen; Wong, F. Susan; Wen, Li
2016-01-01
Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by T cell-mediated destruction of the insulin-producing pancreatic β cells. A combination of genetic and environmental factors eventually leads to the loss of functional β cells mass and hyperglycemia. Both innate and adaptive immunity are involved in the development of T1D. In this review, we have highlighted the most recent findings on the role of innate immunity, especially the pattern recognition receptors (PRRs), in disease development. In murine models and human studies, different PRRs, such as toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat-containing (or NOD-like) receptors (NLRs), have different roles in the pathogenesis of T1D. These PRRs play a critical role in defending against infection by sensing specific ligands derived from exogenous microorganisms to induce innate immune responses and shape adaptive immunity. Animal studies have shown that TLR7, TLR9, MyD88 and NLPR3 play a disease-predisposing role in T1D, while controversial results have been found with other PRRs, such as TLR2, TLR3, TLR4, TLR5 and others. Human studies also shown that TLR2, TLR3 and TLR4 are expressed in either islet β cells or infiltrated immune cells, indicating the innate immunity plays a role in β cell autoimmunity. Furthermore, some human genetic studies showed a possible association of TLR3, TLR7, TLR8 or NLRP3 genes, at single nucleotide polymorphism (SNP) level, with human T1D. Increasing evidence suggest that the innate immunity modulates β cell autoimmunity. Thus, targeting pathways of innate immunity may provide novel therapeutic strategies to fight this disease. PMID:27021275
Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B
2014-11-01
Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production.
Hao, Jianlei; Dong, Siyuan; Xia, Siyuan; He, Weifeng; Jia, Hao; Zhang, Song; Wei, Jun; O'Brien, Rebecca L; Born, Willi K; Wu, Zhenzhou; Wang, Puyue; Han, Jihong; Hong, Zhangyong; Zhao, Liqing; Yin, Zhinan
2011-11-15
It has been demonstrated that the two main subsets of peripheral γδ T cells, Vγ1 and Vγ4, have divergent functions in many diseases models. Recently, we reported that Vγ4 γδ T cells played a protective role in tumor immunity through eomesodermin-controlled mechanisms. However, the precise roles of Vγ1 γδ T cells in tumor immunity, especially whether Vγ1 γδ T cells have any interaction with Vγ4 γδ T cells, remain unknown. We demonstrated in this paper that Vγ1 γδ T cells suppressed Vγ4 γδ T cell-mediated antitumor function both in vitro and in vivo, and this suppression was cell contact independent. Using neutralizing anti-IL-4 Ab or IL-4(-/-) mice, we determined the suppressive factor derived from Vγ1 γδ T cells was IL-4. Indeed, treatment of Vγ4 γδ T cells with rIL-4 significantly reduced expression levels of NKG2D, perforin, and IFN-γ. Finally, Vγ1 γδ T cells produced more IL-4 and expressed significantly higher level of GATA-3 upon Th2 priming in comparison with Vγ4 γδ T cells. Therefore, to our knowledge, our results established for the first time a negative regulatory role of Vγ1 γδ T cells in Vγ4 γδ T cell-mediated antitumor immunity through cell contact-independent and IL-4-mediated mechanisms. Selective depletion of this suppressive subset of γδ T cells may be beneficial for tumor immune therapy.
Premalignant lesions skew spleen cell responses to immune modulation by adipocytes.
Vielma, Silvana A; Klein, Richard L; Levingston, Corinne A; Young, M Rita I
2013-05-01
Obesity can promote a chronic inflammatory state and is associated with an increased risk for cancer. Since adipocytes can produce mediators that can regulate conventional immune cells, this study sought to determine if the presence of premalignant oral lesions would skew how immune cells respond to adipocyte-derived mediators to create an environment that may be more favorable for their progression toward cancer. While media conditioned by adipocytes stimulated normal spleen cell production of the T helper (Th) type-1 cytokines interleukin (IL)-2, interferon-γ (IFN-γ), IL-12 and granulocyte-monocyte colony-stimulating factor (GM CSF), media from premalignant lesion cells either blocked or had no added affect on the adipocyte-stimulated Th1 cytokine production. In contrast, media conditioned by premalignant lesion cells exacerbated adipocyte-stimulated spleen cell production of the Th2 cytokines IL-10 and IL-13, although it did not further enhance the adipocyte-stimulated spleen cell production of IL-4 and TGF-β. The premalignant lesion environment also heightened the adipocyte-stimulated spleen cell production of the inflammatory mediators IL 1α, IL-1β, IL-6 and IL-9, although it did not further increase the adipocyte-stimulated production of tumor necrosis factor-α (TNF-α). IL 17 production was unaffected by the adipocyte-derived mediators, but was synergistically triggered by adding media from premalignant lesion cells. These stimulatory effects on spleen cell production of Th2 and inflammatory mediators were not induced in the absence of media conditioned by adipocytes. In contrast, media conditioned by adipocytes did not stimulate production of predominantly monocyte-derived chemokine C-X-C motif ligand (CXCL)9, chemokine C-C motif ligand (CCL)3 or CCL4, although it stimulated production of CCL2 and the predominantly T cell-derived chemokine CCL5, which was the only chemokine whose production was further increased by media from premalignant lesions. These results suggest that the responsiveness of spleen cells to adipocyte-derived mediators is influenced by mediators from premalignant lesion cells to favor conventional immune cell production of a Th2 and inflammatory cytokines.
Yan Zhang, Elizabeth; Kong, Kok-Fai; Altman, Amnon
2014-01-01
Protein kinase C-θ (PKCθ) is a PKC family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq−/−) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors NF-κB, AP-1 and NFAT, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq−/− mice, it became clear that PKCθ has a selective role in the immune system: It is required for experimental Th2 and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-vs.-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells (Tregs) and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed. PMID:23433459
IL-23 Blockade for Crohn s disease: next generation of anti-cytokine therapy.
Furfaro, Federica; Gilardi, Daniela; Allocca, Mariangela; Cicerone, Clelia; Correale, Carmen; Fiorino, Gionata; Danese, Silvio
2017-05-01
Adaptive immunity in intestinal inflammation may play a key role in the pathogenesis of Crohn's disease. In particular, interleukin (IL)-23 may be a key mediator in chronic intestinal inflammation by inducing the differentiation of naïve CD4 + T cells into Th17, with the production of several pro-inflammatory cytokines. Furthermore, IL-23 induces interferon-γ (IFN- γ) production from activated T cells, a critical cytokine in innate and adaptive immunity against infections. Areas covered: We aim to review the available data from literature regarding the role of IL-23, with a more specific focus on the recent progresses in the therapeutic modulation of this cytokine. Expert commentary: Increased knowledge regarding the role of IL-23 has allowed for the development of effective therapeutic progresses by blocking the IL-23 mediated pathways. Primary or secondary loss of response to anti-TNF therapies in Crohn's disease patients during the first year is widely described in literature: the development of new drugs, with alternative mechanisms of action, is thus a key point to consider for the optimal management of these subjects. Drugs blocking the IL-12/23 pathway showed a good efficacy and safety profile in immune-mediated diseases Further studies are necessary regarding the role of the single blockade of IL-23.
Rey-Ladino, Jose; Ross, Allen GP; Cripps, Allan W
2014-01-01
This review examines the immunity, immunopathology, and contemporary problems of vaccine development against sexually transmitted Chlamydia trachomatis. Despite improved surveillance and treatment initiatives, the incidence of C. trachomatis infection has increased dramatically over the past 30 years in both the developed and developing world. Studies in animal models have shown that protective immunity to C. trachomatis is largely mediated by Th1 T cells producing IFN-γ which is needed to prevent dissemination of infection. Similar protection appears to develop in humans but in contrast to mice, immunity in humans may take years to develop. Animal studies and evidence from human infection indicate that immunity to C. trachomatis is accompanied by significant pathology in the upper genital tract. Although no credible evidence is currently available to indicate that autoimmunity plays a role, nevertheless, this underscores the necessity to design vaccines strictly based on chlamydial-specific antigens and to avoid those displaying even minimal sequence homologies with host molecules. Current advances in C. trachomatis vaccine development as well as alternatives for designing new vaccines for this disease are discussed. A novel approach for chlamydia vaccine development, based on targeting endogenous dendritic cells, is described. PMID:25483666
Development of a simplified and convenient assay for cell-mediated immunity to the mumps virus.
Otani, Naruhito; Shima, Masayuki; Nakajima, Kazuhiko; Takesue, Yoshio; Okuno, Toshiomi
2014-09-01
Because methods for measuring cell-mediated immunity (CMI) to the mumps virus are expensive, time-consuming, and technically demanding, the role of CMI in mumps virus infection remains unclear. To address this issue, we report here the development of a simplified method for measuring mumps virus-specific CMI that is suitable for use in diverse laboratory and clinical settings. A mumps vaccine was cultured with whole blood, and interferon (IFN)-γ released into the culture supernatant was measured using an enzyme-linked immunosorbent assay. IFN-γ production in blood from vaccinated subjects markedly increased in response to the vaccine and decreased before the antibody titer decreased in some cases, suggesting that this assay may be used as a simple surrogate method for measuring CMI specific for the mumps virus. Copyright © 2014 Elsevier B.V. All rights reserved.
Hanachi, Mouna; Bohem, Vanessa; Bemer, Pauline; Kayser, Nadja; de Truchis, Pierre; Melchior, Jean-Claude
2018-06-01
It is generally acknowledged that malnutrition is a propensity factor for secondary infections in different clinical situations (malnutrition-associated infections in hospitalized patients and malnourished children in developing countries). However, it is not clear how malnutrition might facilitate the development of opportunistic infections in human immunodeficiency virus (HIV)-negative patients without a definite etiology (disease or treatment) of impaired cell-mediated immune response. We report here on a case of Pneumocystis jirovecii pneumonia in an HIV-negative patient suffering from anorexia nervosa with extreme malnutrition, which had a favorable outcome despite the severity of her respiratory failure. This report indicates the need for the early screening of nutritional status and rapid treatment initiation in patients with malnutrition, as well as the determination of opportunistic infections in the event of a low lymphocyte count. Copyright © 2018. Published by Elsevier Ltd.
Ischaemia–reperfusion injury in liver transplantation—from bench to bedside
Zhai, Yuan; Petrowsky, Henrik; Hong, Johnny C.; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.
2013-01-01
Ischaemia–reperfusion injury (IRI) in the liver, a major complication of haemorrhagic shock, resection and transplantation, is a dynamic process that involves the two interrelated phases of local ischaemic insult and inflammation-mediated reperfusion injury. This Review highlights the latest mechanistic insights into innate–adaptive immune crosstalk and cell activation cascades that lead to inflammation-mediated injury in livers stressed by ischaemia–reperfusion, discusses progress in large animal experiments and examines efforts to minimize liver IRI in patients who have received a liver transplant. The interlinked signalling pathways in multiple hepatic cell types, the IRI kinetics and positive versus negative regulatory loops at the innate–adaptive immune interface are discussed. The current gaps in our knowledge and the pathophysiology aspects of IRI in which basic and translational research is still required are stressed. An improved appreciation of cellular immune events that trigger and sustain local inflammatory responses, which are ultimately responsible for organ injury, is fundamental to developing innovative strategies for treating patients who have received a liver transplant and developed ischaemia–reperfusion inflammation and organ dysfunction. PMID:23229329
Designing oral vaccines targeting intestinal dendritic cells.
Devriendt, Bert; De Geest, Bruno G; Cox, Eric
2011-04-01
Most pathogens colonize and invade the host at mucosal surfaces, such as the lung and the intestine. To combat intestinal pathogens the induction of local adaptive immune responses is required, which is mainly achieved through oral vaccination. However, most vaccines are ineffective when given orally owing to the hostile environment in the gastrointestinal tract. The encapsulation of antigens in biodegradable microparticulate delivery systems enhances their immunogenicity; however, the uptake of these delivery systems by intestinal immune cells is rather poor. Surface decoration of the particulates with targeting ligands could increase the uptake and mediate the selective targeting of the vaccine to intestinal antigen-presenting cells, including dendritic cells. In this review, current knowledge on dendritic cell subsets is discussed, along with progress in the development of selective antigen targeting to these cells, in addition to focusing on data obtained in mice and, where possible, the pig, as a non-rodent animal model for humans. Moreover, the potential use and benefits of Fcγ receptor-mediated targeting of antigen delivery systems are highlighted. In conclusion, dendritic cell targeting ligands grafted on antigen carrier systems should preferably bind to a conserved endocytotic receptor, facilitating the design of a multispecies vaccine platform, which could elicit robust protective immune responses against enteric pathogens.
Teymouri, Manouchehr; Pirro, Matteo; Fallarino, Francesca; Gargaro, Marco; Sahebkar, Amirhosein
2018-03-25
Cytokine members of the IL-12 family have attracted enormous attention in the last few years, with IL-35 being the one of the most attractive-suppressive cytokine. IL-35 is an important mediator of regulatory T cell function. Regulatory T cells play key roles in restoring immune homeostasis after facing challenges such as infection by specific pathogens. Moreover, a crucial role for regulatory T cell populations has been demonstrated in several physiological processes, including establishment of fetal-maternal tolerance, maintenance of self-tolerance and prevention of autoimmune diseases. However, a deleterious involvement of immune regulatory T cells has been documented in specific inhibition of immune responses against tumor cells, promotion of chronic infections and establishment of chronic inflammatory disorders. In this review, we attempt to shed light on the concept of immune-homoeostasis on the aforementioned issues, taking IL-35 as the hallmark of regulatory responses. The dilemma between immune-mediated cancer treatment and inflammation is discussed. Histopathological indications of chronic vs. acute infections are elaborated. Moreover, the evidence that IL-35 requires additional immune-regulatory cytokines, such as IL-10 and TGF-β, to induce effective and maximal anti-inflammatory effects suggest that immune-regulation requires multi-factorial analysis of many immune playmakers rather than a specific immune target. © 2018 UICC.
Utermöhlen, Olaf; Krönke, Martin
2007-06-15
This review focuses on our current knowledge of the mechanisms employed by embryonic stem (ES) cells to avoid destruction by cell-mediated immune responses. Recently, ES cells have been found to shield themselves against cytotoxic effector cells by expressing CD95L and serine protease inhibitor SPI-6 mediating apoptosis of the cytotoxic cells and inactivation of granzyme B, respectively. These findings are discussed in view of their implications for using ES cell-derived transplants in regenerative medicine as well as for our understanding of early embryonic stages during invasion and implantation.
A number of allergic and autoimmune disorders, such as Crohn’s disease, asthma, type I diabetes and multiple sclerosis, are associated with polymorphisms in a gene encoding the transcription factor, BACH2. Despite this, the mechanism Bach2 uses to prevent immune-mediated diseases was not known. To function appropriately, the immune system relies on a delicate balance between
Peggs, K S
2006-01-01
Allogeneic hematopoietic stem cell transplantation is a potentially curative treatment modality for a number of hematologic malignancies, as well as inherited immunodeficiencies and hemoglobinopathies, and may also have a role in selected acquired autoimmune disorders. The complete or near-complete ablation of host immunity and subsequent establishment of donor-derived immunity that is required for successful engraftment and long-term outcomes provide a major obstacle to such transplantation approaches. A delicate balance exists between the need for the reconstituted donor-derived immunity to provide both protection against pathogenic challenges and graft-versus-malignancy activity, and the potentially harmful expansion of alloreactive T-cell clones mediating GvHD. The search for interventions that would allow more rapid and selective reconstitution of beneficial immune specificities continues to be informed by the development of new tools enabling a more precise dissection of the kinetics of reconstituting populations. This review summarizes more recent data on immune reconstitution following allogeneic transplantation in humans.
B Cells and Humoral Immunity in Atherosclerosis
Tsiantoulas, Dimitrios; Diehl, Cody J.; Witztum, Joseph L.; Binder, Christoph J.
2014-01-01
Insights into the important contribution of inflammation and immune functions in the development and progression of atherosclerosis have greatly improved our understanding of this disease. Although the role of T cells has been extensively studied for decades, only recently has the role of B cells gained more attention. Recent studies have identified differential effects of different B-cell subsets and helped to clarify the still poorly understood mechanisms by which these act. B1 cells have been shown to prevent lesion formation, whereas B2 cells have been suggested to promote it. Natural IgM antibodies, mainly derived from B1 cells, have been shown to mediate atheroprotective effects, but the functional role of other immunoglobulin classes, particularly IgG, still remains elusive. In this review, we will focus on recent insights on the role of B cells and various immunoglobulin classes and how these may mediate their effects in atherosclerotic lesion formation. Moreover, we will highlight potential therapeutic approaches focusing on B-cell depletion that could be used to translate experimental evidence to human disease. PMID:24855199
Excessive expression of miR-27 impairs Treg-mediated immunological tolerance
Cruz, Leilani O.; Hashemifar, Somaye Sadat; Wu, Cheng-Jang; Cho, Sunglim; Nguyen, Duc T.; Lin, Ling-Li; Khan, Aly Azeem
2017-01-01
MicroRNAs (miRs) are tightly regulated in the immune system, and aberrant expression of miRs often results in hematopoietic malignancies and autoimmune diseases. Previously, it was suggested that elevated levels of miR-27 in T cells isolated from patients with multiple sclerosis facilitate disease progression by inhibiting Th2 immunity and promoting pathogenic Th1 responses. Here we have demonstrated that, although mice with T cell–specific overexpression of miR-27 harbor dysregulated Th1 responses and develop autoimmune pathology, these disease phenotypes are not driven by miR-27 in effector T cells in a cell-autonomous manner. Rather, dysregulation of Th1 responses and autoimmunity resulted from a perturbed Treg compartment. Excessive miR-27 expression in murine T cells severely impaired Treg differentiation. Moreover, Tregs with exaggerated miR-27–mediated gene regulation exhibited diminished homeostasis and suppressor function in vivo. Mechanistically, we determined that miR-27 represses several known as well as previously uncharacterized targets that play critical roles in controlling multiple aspects of Treg biology. Collectively, our data show that miR-27 functions as a key regulator in Treg development and function and suggest that proper regulation of miR-27 is pivotal to safeguarding Treg-mediated immunological tolerance. PMID:28067667
Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A.; Wan, Yisong Y.
2014-01-01
Summary Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. While Smad4 was dispensable for T cell generation, homeostasis and effector function, it was essential for T cell proliferation following activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity and anti-tumor immunity. PMID:25577439
Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y
2015-01-20
Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.
OVA-bound nanoparticles induce OVA-specific IgG1, IgG2a, and IgG2b responses with low IgE synthesis.
Yanase, Noriko; Toyota, Hiroko; Hata, Kikumi; Yagyu, Seina; Seki, Takahiro; Harada, Mitsunori; Kato, Yasuki; Mizuguchi, Junichiro
2014-10-14
There is an urgent requirement for a novel vaccine that can stimulate immune responses without unwanted toxicity, including IgE elevation. We examined whether antigen ovalbumin (OVA) conjugated to the surface of nanoparticles (NPs) (OVA-NPs) with average diameter of 110nm would serve as an immune adjuvant. When BALB/c mice were immunized with OVA-NPs, they developed sufficient levels of OVA-specific IgG1 antibody responses with low levels of IgE synthesis, representing helper T (Th)2-mediated humoral immunity. OVA-specific IgG2a and IgG2b responses (i.e., Th1-mediated immunity) were also induced by secondary immunization with OVA-NPs. As expected, immunization with OVA in alum (OVA-alum) stimulated humoral immune responses, including IgG1 and IgE antibodies, with only low levels of IgG2a/IgG2b antibodies. CD4-positive T cells from mice primed with OVA-NPs produced substantial levels of IL-21 and IL-4, comparable to those from OVA-alum group. The irradiated mice receiving OVA-NPs-primed B cells together with OVA-alum-primed T cells exhibited enhanced anti-OVA IgG2b responses relative to OVA-alum-primed B cells and T cells following stimulation with OVA-NPs. Moreover, when OVA-NPs-primed, but not OVA-alum-primed, B cells were cultured in the presence of anti-CD40 monoclonal antibody, IL-4, and IL-21, or LPS plus TGF-β in vitro, OVA-specific IgG1 or IgG2b antibody responses were elicited, suggesting that immunization with OVA-NPs modulates B cells to generate IgG1 and IgG2b responses. Thus, OVA-NPs might exert their adjuvant action on B cells, and they represent a promising potential vaccine for generating both IgG1 and IgG2a/IgG2b antibody responses with low IgE synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Leukemia cell-rhabdovirus vaccine: personalized immunotherapy for acute lymphoblastic leukemia.
Conrad, David P; Tsang, Jovian; Maclean, Meaghan; Diallo, Jean-Simon; Le Boeuf, Fabrice; Lemay, Chantal G; Falls, Theresa J; Parato, Kelley A; Bell, John C; Atkins, Harold L
2013-07-15
Acute lymphoblastic leukemia (ALL) remains incurable in most adults. It has been difficult to provide effective immunotherapy to improve outcomes for the majority of patients. Rhabdoviruses induce strong antiviral immune responses. We hypothesized that mice administered ex vivo rhabdovirus-infected ALL cells [immunotherapy by leukemia-oncotropic virus (iLOV)] would develop robust antileukemic immune responses capable of controlling ALL. Viral protein production, replication, and cytopathy were measured in human and murine ALL cells exposed to attenuated rhabdovirus. Survival following injection of graded amounts of ALL cells was compared between cohorts of mice administered γ-irradiated rhabdovirus-infected ALL cells (iLOV) or multiple control vaccines to determine key immunotherapeutic components and characteristics. Host immune requirements were assessed in immunodeficient and bone marrow-transplanted mice or by adoptive splenocyte transfer from immunized donors. Antileukemic immune memory was ascertained by second leukemic challenge in long-term survivors. Human and murine ALL cells were infected and killed by rhabdovirus; this produced a potent antileukemia vaccine. iLOV protected mice from otherwise lethal ALL by developing durable leukemia-specific immune-mediated responses (P < 0.0001), which required an intact CTL compartment. Preexisting antiviral immunity augmented iLOV potency. Splenocytes from iLOV-vaccinated donors protected 60% of naïve recipients from ALL challenge (P = 0.0001). Injecting leukemia cells activated by, or concurrent with, multiple Toll-like receptor agonists could not reproduce the protective effect of iLOV. Similarly, injecting uninfected irradiated viable, apoptotic, or necrotic leukemia cells with/without concurrent rhabdovirus administration was ineffective. Rhabdovirus-infected leukemia cells can be used to produce a vaccine that induces robust specific immunity against aggressive leukemia.
Cancer Immunotherapy and Breaking Immune Tolerance-New Approaches to an Old Challenge
Makkouk, Amani; Weiner, George
2014-01-01
Cancer immunotherapy has proven to be challenging as it depends on overcoming multiple mechanisms that mediate immune tolerance to self-antigens. A growing understanding of immune tolerance has been the foundation for new approaches to cancer immunotherapy. Adoptive transfer of immune effectors such as antitumor monoclonal antibodies and Chimeric Antigen Receptor T cells bypasses many of the mechanisms involved in immune tolerance by allowing for expansion of tumor specific effectors ex vivo. Vaccination with whole tumor cells, protein, peptide, or dendritic cells has proven challenging, yet may be more useful when combined with other cancer immunotherapeutic strategies. Immunomodulatory approaches to cancer immunotherapy include treatment with agents that enhance and maintain T cell activation. Recent advances in the use of checkpoint blockade to block negative signals and so maintain the antitumor response are particularly exciting. With our growing knowledge of immune tolerance and ways to overcome it, combination treatments are being developed, tested and have particular promise. One example is in situ immunization that is designed to break tolerance within the tumor microenvironment. Progress in all these areas is continuing based on clear evidence that cancer immunotherapy designed to overcome immune tolerance can be useful for a growing number of cancer patients. PMID:25524899
Cellular immunity for prevention and clearance of HIV infection.
Kalams, Spyros A
2003-05-01
Despite the major strides that have been made in HIV therapy with the advent of potent anti-retroviral drugs, these medications are quite expensive and are still not readily available for the vast majority of infected individuals worldwide. Even when available, the long-term toxicities associated with anti-retroviral medications and the frequent emergence of drug-resistance mutations can complicate therapy, making the formulation of effective vaccines imperative. This chapter will review the current state of understanding regarding cell-mediated immune responses that are associated with control of HIV replication. This knowledge has generated sound hypotheses regarding the prospects for augmenting cell-mediated immunity through immune-based therapies. With regard to prophylactic vaccines, it is presently unclear which vaccine-induced immune responses will protect against infection. While much progress has been made in formulating vaccine constructs designed to elicit cell-mediated immune responses, sterilizing immunity is unlikely to be achieved with the current vaccines. However, the ability to control viremia and prevent disease progression in animal infection models looks promising. The ability to measure immune responses has also advanced markedly over the past few years and will allow investigators to more accurately measure the immunogenicity of vaccine constructs, and correlate the magnitude and breadth of these responses with protection.
Immunology of Gut Mucosal Vaccines
Pasetti, Marcela F.; Simon, Jakub K.; Sztein, Marcelo B.; Levine, Myron M.
2011-01-01
Summary Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines. PMID:21198669
Bonamichi, Beatriz Dal Santo Francisco; Lee, Jongsoon
2017-08-01
The notion that obesity-induced inflammation mediates the development of insulin resistance in animal models and humans has been gaining strong support. It has also been shown that immune cells in local tissues, in particular in visceral adipose tissue, play a major role in the regulation of obesity-induced inflammation. Specifically, obesity increases the numbers and activation of proinflammatory immune cells, including M1 macrophages, neutrophils, Th1 CD4 T cells, and CD8 T cells, while simultaneously suppressing anti-inflammatory cells such as M2 macrophages, CD4 regulatory T cells, regulatory B cells, and eosinophils. Recently, however, new cell types have been shown to participate in the development of obesity-induced inflammation and insulin resistance. Some of these cell types also appear to regulate obesity. These cells are natural killer (NK) cells and innate lymphoid cells (ILCs), which are closely related, and invariant natural killer T (iNKT) cells. It should be noted that, although iNKT cells resemble NK cells in name, they are actually a completely different cell type in terms of their development and functions in immunity and metabolism. In this review, we will focus on the roles that these relatively new players in the metabolism field play in obesity-induced insulin resistance and the regulation of obesity. Copyright © 2017 Korean Diabetes Association.
The role of Th1 and Th17 cells in glomerulonephritis.
Azadegan-Dehkordi, Fatemeh; Bagheri, Nader; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud
2015-04-01
T helper (Th) cells as an important part of the immune is responsible for elimination of invading pathogens. But, if Th cell responses are not regulated effectively, the autoimmune diseases might develop. The Th17 subset usually produces interleukin-17A which in experimental models of organ-specific autoimmune inflammation is very important. Directory of open access journals (DOAJ), Google Scholar, Embase, Scopus, PubMed and Web of Science have been searched. Fifty-six articles were found and searched. In the present review article, we tried to summarize the recently published data about characteristics and role of Th1 and Th17 cells and discuss in detail, the potential role of these T helpers immune responses in renal inflammation and renal injury, focusing on glomerulonephritis. Published papers in animal and human studies indicated that autoimmune diseases such as rheumatoid arthritis and multiple sclerosis, classically believed to be Th1-mediated, are mainly derived from a Th17 immune response. Identification of the Th17 subgroup has explained seemingly paradoxical observations and improved our understanding of immune-mediated inflammatory responses. Secretion of IL-17A, as well as IL-17F, IL-21, IL-22, suggests that Th17 subset may play a crucial role as a pleiotropic pro-inflammatory Th subset. There is experimental evidence to support the notion that Th1 and Th17 cells contribute to kidney injury in renal inflammatory diseases like glomerulonephritis.
Interactions of Cryptococcus with Dendritic Cells
Wozniak, Karen L.
2018-01-01
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis. PMID:29543719
Interactions of Cryptococcus with Dendritic Cells.
Wozniak, Karen L
2018-03-15
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.
Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines.
Lee, Yu-Na; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Kang, Sang-Moo
2015-10-01
Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to develop effective vaccines and vaccination strategies conferring a broad range of cross protection. The extracellular domain of M2 (M2e) is highly conserved among human influenza A viruses and has been utilized to develop new vaccines inducing cross protection against different subtypes of influenza A virus. However, immune mechanisms of cross protection by M2e-based vaccines still remain to be fully elucidated. Here, we review immune correlates and mechanisms conferring cross protection by M2e-based vaccines. Molecular and cellular immune components that are known to be involved in M2 immune-mediated protection include antibodies, B cells, T cells, alveolar macrophages, Fc receptors, complements, and natural killer cells. Better understanding of protective mechanisms by immune responses induced by M2e vaccination will help facilitate development of broadly cross protective vaccines against influenza A virus.
Involvement of NK cells against tumors and parasites.
Papazahariadou, M; Athanasiadis, G I; Papadopoulos, E; Symeonidou, I; Hatzistilianou, M; Castellani, M L; Bhattacharya, K; Shanmugham, L N; Conti, P; Frydas, S
2007-01-01
Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells' surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.
Seppanen, Elke; Tan, Dino; Corscadden, Karli J.; Currie, Andrew J.; Richmond, Peter C.; Thornton, Ruth B.
2018-01-01
Otitis media (OM) remains a common paediatric disease, despite advances in vaccinology. Susceptibility to recurrent acute OM (rAOM) has been postulated to involve defective cell-mediated immune responses to common otopathogenic bacteria. We compared the composition of peripheral blood mononuclear cells (PBMC) from 20 children with a history of rAOM (otitis-prone) and 20 healthy non-otitis-prone controls, and assessed innate and cell-mediated immune responses to the major otopathogen nontypeable Haemophilus influenzae (NTHi). NTHi was a potent stimulator of inflammatory cytokine secretion from PBMC within 4 hours, with no difference in cytokine levels produced between PBMC from cases or controls. In the absence of antigen stimulation, otitis-prone children had more circulating Natural Killer (NK) cells (p<0.01), particularly NKdim (CD56lo) cells (p<0.01), but fewer CD4+ T cells (p<0.01) than healthy controls. NTHi challenge significantly increased the proportion of activated (CD107a+) NK cells in otitis-prone and non-otitis-prone children (p<0.01), suggesting that NK cells from otitis-prone children are functional and respond to NTHi. CD8+ T cells and NK cells from both cases and controls produced IFNγ in response to polyclonal stimulus (Staphylococcal enterotoxin B; SEB), with more IFNγ+ CD8+ T cells present in cases than controls (p<0.05) but similar proportions of IFNγ+ NK cells. Otitis-prone children had more circulating IFNγ-producing NK cells (p<0.05) and more IFNγ-producing CD4+ (p<0.01) or CD8+ T-cells (p<0.05) than healthy controls. In response to SEB, more CD107a-expressing CD8+ T cells were present in cases than controls (p<0.01). Despite differences in PBMC composition, PBMC from otitis-prone children mounted innate and T cell-mediated responses to NTHi challenge that were comparable to healthy children. These data provide evidence that otitis-prone children do not have impaired functional cell mediated immunity. PMID:29621281
Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors
2014-10-01
disruption of the BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions...recently evolved adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two... innate immune functions have been emphasized traditionally: 1) the recruitment of cells and proteins to destroy pathogens and toxins, and 2) increases
Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R
2008-01-01
The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liew, F.Y.; Howard, J.G.; Hale, C.
1984-01-01
Protective immunity against fatal L. tropica infection in genetically vulnerable BALB/c mice can be induced by prophylactic immunization with irradiated promastigotes even when heat-killed. Such immunity is adoptively transferable transiently into intact or durably into sub-lethally irradiated (200 or 550 rad) syngeneic recipients by splenic T but not B cells. The effector T cells are of the Lyt-1/sup +/2/sup -/ phenotype, devoid of demonstrable cytotoxic activity. The immune splenic T cell population expresses specific helper activity for antibody synthesis. A causal role for helper T cells in this capacity, however, seems unlikely, because it was shown that antibody does notmore » determine the protective immunity against L. tropica. The immunized donors show no detectable cutaneous DTH or its early memory recall in response to live or killed promastigotes or a soluble L. tropica antigen preparation. Spleen, lymph node, and peritoneal exudate cells from protectively immunized donors similarly fail to transfer DTH locally or systemically. These cells also lack demonstrable suppressive activity against the expression or induction of DTH to L. tropica. Thus, protection against L. tropica induced by prophylactic i.v. immunization with irradiated promastigotes appears to be conferred by Lyt-1/sup +/2/sup -/ T cells that are distinguishable from T cells mediating either both DTH and T help, or cytotoxicity.« less
Targeting dendritic cells--why bother?
Kreutz, Martin; Tacken, Paul J; Figdor, Carl G
2013-04-11
Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.
Danelli, Luca; Frossi, Barbara; Gri, Giorgia; Mion, Francesca; Guarnotta, Carla; Bongiovanni, Lucia; Tripodo, Claudio; Mariuzzi, Laura; Marzinotto, Stefania; Rigoni, Alice; Blank, Ulrich; Colombo, Mario P; Pucillo, Carlo E
2015-01-01
Inflammation plays crucial roles at different stages of tumor development and may lead to the failure of immune surveillance and immunotherapy. Myeloid-derived suppressor cells (MDSC) are one of the major components of the immune-suppressive network that favors tumor growth, and their interaction with mast cells is emerging as critical for the outcome of the tumor-associated immune response. Herein, we showed the occurrence of cell-to-cell interactions between MDSCs and mast cells in the mucosa of patients with colon carcinoma and in the colon and spleen of tumor-bearing mice. Furthermore, we demonstrated that the CT-26 colon cancer cells induced the accumulation of CD11b(+)Gr1(+) immature MDSCs and the recruitment of protumoral mast cells at the tumor site. Using ex vivo analyses, we showed that mast cells have the ability to increase the suppressive properties of spleen-derived monocytic MDSCs, through a mechanism involving IFNγ and nitric oxide production. In addition, we demonstrated that the CD40:CD40L cross-talk between the two cell populations is responsible for the instauration of a proinflammatory microenvironment and for the increase in the production of mediators that can further support MDSC mobilization and tumor growth. In light of these results, interfering with the MDSC:mast cell axis could be a promising approach to abrogate MDSC-related immune suppression and to improve the antitumor immune response. ©2014 American Association for Cancer Research.
Liu, Zuqiang; Falo, Louis D; You, Zhaoyang
2011-07-01
Although high mobility group box 1 (HMGB1) in tumor cells is involved in many aspects of tumor progression, its role in tumor immune suppression remains elusive. Host cell-derived IL-10 suppressed a naturally acquired CD8 T cell-dependent antitumor response. The suppressive activity of tumor-associated Foxp3(+)CD4(+)CD25(+) regulatory T cells (Treg) was IL-10 dependent. Neutralizing HMGB1 impaired tumor cell-promoted IL-10 production by Treg. Short hairpin RNA-mediated knockdown of HMGB1 (HMGB1 KD) in tumor cells did not affect tumor cell growth but uncovered naturally acquired long-lasting tumor-specific IFN-γ- or TNF-α-producing CD8 T cell responses and attenuated their ability to induce Treg, leading to naturally acquired CD8 T cell- or IFN-γ-dependent tumor rejection. The data suggest that tumor cell-derived HMGB1 may suppress naturally acquired CD8 T cell-dependent antitumor immunity via enhancing Treg to produce IL-10, which is necessary for Treg-mediated immune suppression.
Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.
Czaja, Albert J
2016-11-14
The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.
Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis
Czaja, Albert J
2016-01-01
The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies. PMID:27895415
Motor activity as an unbiased variable to assess anaphylaxis in allergic rats
Abril-Gil, Mar; Garcia-Just, Alba; Cambras, Trinitat; Pérez-Cano, Francisco J; Castellote, Cristina; Franch, Àngels
2015-01-01
The release of mediators by mast cells triggers allergic symptoms involving various physiological systems and, in the most severe cases, the development of anaphylactic shock compromising mainly the nervous and cardiovascular systems. We aimed to establish variables to objectively study the anaphylactic response (AR) after an oral challenge in an allergy model. Brown Norway rats were immunized by intraperitoneal injection of ovalbumin with alum and toxin from Bordetella pertussis. Specific immunoglobulin (Ig) E antibodies were developed in immunized animals. Forty days after immunization, the rats were orally challenged with the allergen, and motor activity, body temperature and serum mast cell protease concentration were determined. The anaphylaxis induced a reduction in body temperature and a decrease in the number of animal movements, which was inversely correlated with serum mast cell protease release. In summary, motor activity is a reliable tool for assessing AR and also an unbiased method for screening new anti-allergic drugs. PMID:25716015
Complications and adverse reactions in the use of newer biologic agents.
Callen, Jeffrey P
2007-03-01
New developments in genetic engineering and biotechnology have allowed the creation of bioengineered molecules that target specific steps in the pathogenesis of several immune-mediated disorders, including Crohn's disease, rheumatoid arthritis, psoriasis and psoriatic arthritis, ankylosing spondylitis, pemphigus, and B-cell lymphoma. These drugs work by eliminating pathogenic T cells (alefacept), blocking T-cell activation and/or inhibiting the trafficking of T cells (efalizumab), changing the immune profile from Th1 to Th2, blocking cytokines (eg, tumor necrosis factor alpha antagonists including etanercept, infliximab and adalimumab, or interleukin-1-receptor antagonists [anakinra]), or eliminating pathogenic B cells (rituximab). This article reviews the complications and adverse reactions associated with these medications.
Altered Immune Regulation in Type 1 Diabetes
Zóka, András; Műzes, Györgyi; Somogyi, Anikó; Varga, Tímea; Szémán, Barbara; Al-Aissa, Zahra; Hadarits, Orsolya; Firneisz, Gábor
2013-01-01
Research in genetics and immunology was going on separate strands for a long time. Type 1 diabetes mellitus might not be characterized with a single pathogenetic factor. It develops when a susceptible individual is exposed to potential triggers in a given sequence and timeframe that eventually disarranges the fine-tuned immune mechanisms that keep autoimmunity under control in health. Genomewide association studies have helped to understand the congenital susceptibility, and hand-in-hand with the immunological research novel paths of immune dysregulation were described in central tolerance, apoptotic pathways, or peripheral tolerance mediated by regulatory T-cells. Epigenetic factors are contributing to the immune dysregulation. The interplay between genetic susceptibility and potential triggers is likely to play a role at a very early age and gradually results in the loss of balanced autotolerance and subsequently in the development of the clinical disease. Genetic susceptibility, the impaired elimination of apoptotic β-cell remnants, altered immune regulatory functions, and environmental factors such as viral infections determine the outcome. Autoreactivity might exist under physiologic conditions and when the integrity of the complex regulatory process is damaged the disease might develop. We summarized the immune regulatory mechanisms that might have a crucial role in disease pathology and development. PMID:24285974
The complex pathophysiology of acquired aplastic anaemia.
Zeng, Y; Katsanis, E
2015-06-01
Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8(+) cytotoxic T cells, CD4(+) T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-β, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure. © 2015 British Society for Immunology.
Towards understanding the pathology of erythema nodosum leprosum.
Kahawita, I P; Lockwood, D N J
2008-04-01
Erythema nodosum leprosum (ENL) is an immune-mediated complication of leprosy presenting with inflammatory skin nodules and involvement of multiple organ systems, often running a protracted course. Immune complex production and deposition as well as complement activation have long been regarded as the principal aetiology of ENL. However, new data show that cell-mediated immunity is also important. We have performed a critical analysis of studies on the pathology of ENL. Our main findings are as follows. ENL is characterised by an inflammatory infiltrate of neutrophils with vasculitis and/or panniculitis. There is deposition of immune complexes and complement together with Mycobacterium leprae antigens in the skin. Changes in serum levels of Igs indicate a transient, localised immune response. The major T-cell subtype in ENL is the CD4 cell, in contrast to lepromatous leprosy where CD8 cells predominate. The cytokines TNFalpha and IL-6 are consistently found whilst IL-4 is low or absent in ENL lesions, indicating a T(H)1 type response. Keratinocyte 1a and intercellular adhesion molecule-1 (ICAM-1) have been shown to be present in the epidermis in ENL, which is evidence of a cell-mediated immune response. Co-stimulatory molecules such as B7-1 have also been studied but further work is needed to draw strong conclusions. We also highlight potential areas for future research.
Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies
2015-10-01
1, 2014. 2. Chair, Block Symposia of Innate Immune Responses in Monocytes/Macrophages, Dendritic Cells , and Myeloid Cells , the Annual Meeting of...Xie P. TRAF3-mediated regulation of innate immunity and inflammation. Research Forum, Department of Cell Biology and Neuroscience, Rutgers...TRAF3: a regulator of innate immunity and inflammation. Department of Cell & Molecular Physiology, University of Loyola, Chicago, IL. Aug. 27, 2014 9
Jafri, Salema; Ormiston, Mark L
2017-12-01
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.
Jain, Sanyog; Harde, Harshad; Indulkar, Anura; Agrawal, Ashish Kumar
2014-02-01
The present study was designed with the objective to investigate the stability and potential of glucomannan-modified bilosomes (GM-bilosomes) in eliciting immune response following oral administration. GM-bilosomes exhibited desired quality attributes simultaneously maintaining the chemical and conformation stability of the tetanus toxoid (TT) entrapped in to freeze dried formulations. The GM-bilosomes exhibited excellent stability in different simulated biological fluids and sustained release profile up to 24 h. GM-bilosomes elicited significantly higher (P<0.05) systemic immune response (serum IgG level) as compared to bilosomes, niosomes and alum adsorbed TT administered through oral route. More importantly, GM-bilosomes were found capable of inducing mucosal immune response, i.e. sIgA titre in salivary and intestinal secretions as well as cell mediated immune response (IL-2 and IFN-γ levels in spleen homogenate) which was not induced by i.m. TT, the conventional route of immunization. Conclusively, GM-bilosomes could be considered as a promising carrier and adjuvant system for oral mucosal immunization. This team reports on the development and effects of a glucomannan-modified bilosome as an oral vaccine vector, using tetanus toxoid in the experiments. These GM-bilosomes not only elicited significantly higher systemic immune response as compared to bilosomes, niosomes and alum adsorbed orally administered TT, but also demonstrated mucosal immune response induction as well as cell mediated immune responses, which were not induced by the conventional route of immunization. © 2014.
Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells
Lee, Wen Shi; Richard, Jonathan; Lichtfuss, Marit; Smith, Amos B.; Park, Jongwoo; Courter, Joel R.; Melillo, Bruno N.; Sodroski, Joseph G.; Kaufmann, Daniel E.; Parsons, Matthew S.
2015-01-01
ABSTRACT Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4+ T cells from HIV-1+ subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1+ serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed “shock and kill,” aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune responses within HIV-1+ individuals can efficiently eliminate the reactivated cells. HIV-1-specific antibodies can potentially eliminate cells reactivated from latency via Fc effector functions by recruiting innate immune cells. Our study highlights the potential role that antibody-dependent cellular cytotoxicity might play in antilatency cure approaches. PMID:26656700
Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus).
Xu, De-Li; Wang, De-Hua
2010-01-01
Immune defense is important for organisms' survival and fitness. Small mammals in temperate zone often face seasonal food shortages. Generally fasting can suppress immune function in laboratory rodents and little information is available for wild rodents. The present study tested the hypothesis that Mongolian gerbils (Meriones unguiculatus) could inhibit T cell-mediated immunity to adapt to acute fasting. Forty-two females were divided into the fed and fasted groups, in which the latter was deprived of food for 3days. After 66h fasting, half of the gerbils in each group were injected with phosphate buffered saline or phytohaemagglutinin (PHA) solution. T cell-mediated immunity assessed by PHA response was suppressed in the fasted gerbils compared with the fed gerbils. The fasted gerbils had lower body fat mass, wet and dry thymus mass, dry spleen mass, white blood cells, serum leptin and blood glucose concentrations, but higher corticosterone concentrations than those of the controls. Moreover, PHA response was positively correlated with body fat mass and serum leptin levels in the immunochallenged groups. Taken together, acute fasting leads to immunosuppression, which might be caused by low body fat mass and low serum leptin concentrations in female Mongolian gerbils.
Patterson, Kelcey G.; Dixon Pittaro, Jennifer L.; Bastedo, Peter S.; Hess, David A.; Haeryfar, S. M. Mansour; McCormick, John K.
2014-01-01
Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as ‘next-generation’ TTSs for cancer immunotherapy. PMID:24736661
Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity.
Murphy, J E; Robert, C; Kupper, T S
2000-03-01
As our primary interface with the environment, the skin is constantly subjected to injury and invasion by pathogens. The fundamental force driving the evolution of the immune system has been the need to protect the host against overwhelming infection. The ability of T and B cells to recombine antigen receptor genes during development provides an efficient, flexible, and powerful immune system with nearly unlimited specificity for antigen. The capacity to expand subsets of antigen-specific lymphocytes that become activated by environmental antigens (memory response) is termed "acquired" immunity. Immunologic memory, although a fundamental aspect of mammalian biology, is a relatively recent evolutionary event that permits organisms to live for years to decades. "Innate" immunity, mediated by genes that remain in germ line conformation and encode for proteins that recognize conserved structural patterns on microorganisms, is a much more ancient system of host defense. Defensins and other antimicrobial peptides, complement and opsonins, and endocytic receptors are all considered components of the innate immune system. None of these, however, are signal-transducing receptors. Most recently, a large family of cell surface receptors that mediate signaling through the NF-kappaB transcription factor has been identified. This family of proteins shares striking homology with plant and Drosophila genes that mediate innate immunity. In mammals, this family includes the type I interleukin-1 receptor, the interleukin-18 receptor, and a growing family of Toll-like receptors, two of which were recently identified as signal-transducing receptors for bacterial endotoxin. In this review, we discuss how interleukin-1 links the innate and acquired immune systems to provide synergistic host defense activities in skin.
Ahlstedt, S; Björkstén, B; Nygren, H; Smedegård, G
1983-01-01
Rats (BN X Wistar) and mice (CBA/Ca) were immunized by exposure in 10-day periods to an aerosol of ovalbumin (OA). In rats this immunization resulted in IgE antibodies detectable at very low levels in bronchial washings, whereas IgG, IgA and IgM antibodies were recorded both in serum and in bronchial washings. In mice, exposure to aerosolized antigen resulted in specific IgE and IgG antibodies in serum. The levels of IgM antibodies were low and no IgA antibodies could be recorded with the enzyme-linked immunosorbent assay (ELISA). Histological examination of lung tissue from immunized rats and mice revealed increased numbers of cells with characteristics of both immature and mature mast cells. In addition, in the rats these cells were more closely located to the bronchi in immunized than in control animals. In the latter animals the mast cells were located around the blood vessels. Immature mast cells were located in the bronchiole-associated lymphatic tissue (BALT) which showed a marked proliferation in immunized animals. The findings indicate that sensitization via the airways provides possibilities to develop a model in rodents for studies of IgE-mediated allergy in the lung. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:6822403
Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.
Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian
2017-02-28
Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.
Sleep and immune function: glial contributions and consequences of aging
Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.
2013-01-01
The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941
Sleep and immune function: glial contributions and consequences of aging.
Ingiosi, Ashley M; Opp, Mark R; Krueger, James M
2013-10-01
The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.
Immune-mediated neuropathy with Epstein-Barr virus-positive T-cell lymphoproliferative disease.
Hattori, Takaaki; Arai, Ayako; Yokota, Takanori; Imadome, Ken-Ichi; Tomimitsu, Hiroyuki; Miura, Osamu; Mizusawa, Hidehiro
2015-01-01
A 47-year-old man with Epstein-Barr virus (EBV)-positive T/NK- cell lymphoproliferative disease (EBV-T/NK-LPD) developed acute-onset weakness. A nerve conduction study showed a conduction block in both the proximal and most distal segments. Although the patient's neuropathy transiently responded to intravenous immunoglobulin, it was progressive for at least 25 days until the start of prednisolone (PSL) administration, after which it remarkably improved. The neuropathy further improved after allogeneic bone marrow transplantation (BMT). The present patient's clinical course is not consistent with that of typical Guillain-Barré syndrome. This case suggests that EBV-T/NK-LPD can cause progressive immune-mediated neuropathy as a result of chronic EBV antigen presentation and can be treated with PSL and BMT.
IgG4 subclass antibodies impair antitumor immunity in melanoma
Karagiannis, Panagiotis; Gilbert, Amy E.; Josephs, Debra H.; Ali, Niwa; Dodev, Tihomir; Saul, Louise; Correa, Isabel; Roberts, Luke; Beddowes, Emma; Koers, Alexander; Hobbs, Carl; Ferreira, Silvia; Geh, Jenny L.C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Blower, Philip J.; Mitchell, Tracey; Fear, David J.; Spicer, James F.; Lacy, Katie E.; Nestle, Frank O.; Karagiannis, Sophia N.
2013-01-01
Host-induced antibodies and their contributions to cancer inflammation are largely unexplored. IgG4 subclass antibodies are present in IL-10–driven Th2 immune responses in some inflammatory conditions. Since Th2-biased inflammation is a hallmark of tumor microenvironments, we investigated the presence and functional implications of IgG4 in malignant melanoma. Consistent with Th2 inflammation, CD22+ B cells and IgG4+-infiltrating cells accumulated in tumors, and IL-10, IL-4, and tumor-reactive IgG4 were expressed in situ. When compared with B cells from patient lymph nodes and blood, tumor-associated B cells were polarized to produce IgG4. Secreted B cells increased VEGF and IgG4, and tumor cells enhanced IL-10 secretion in cocultures. Unlike IgG1, an engineered tumor antigen-specific IgG4 was ineffective in triggering effector cell–mediated tumor killing in vitro. Antigen-specific and nonspecific IgG4 inhibited IgG1-mediated tumoricidal functions. IgG4 blockade was mediated through reduction of FcγRI activation. Additionally, IgG4 significantly impaired the potency of tumoricidal IgG1 in a human melanoma xenograft mouse model. Furthermore, serum IgG4 was inversely correlated with patient survival. These findings suggest that IgG4 promoted by tumor-induced Th2-biased inflammation may restrict effector cell functions against tumors, providing a previously unexplored aspect of tumor-induced immune escape and a basis for biomarker development and patient-specific therapeutic approaches. PMID:23454746
The Role of Histone Demethylase Jmjd3 in Immune-Mediated Aplastic Anemia
2017-03-01
anemia (AA) is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated...is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated disorder...GVHD) 2.11. Bone marrow transplantation 2.12. NSG mice 2.13. xGVHD 2.14. Hematopoietic stem cells (HSCs) 3. ACCOMPLISHMENTS: The PI is
Cellular immune responses to HIV
NASA Astrophysics Data System (ADS)
McMichael, Andrew J.; Rowland-Jones, Sarah L.
2001-04-01
The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.
Wang, Huizhi; Brown, Jonathan; Gao, Shegan; Liang, Shuang; Jotwani, Ravi; Zhou, Huaxin; Suttles, Jill; Scott, David A; Lamont, Richard J
2013-08-01
The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.
Cao, Dianjun; Cao, Qian M.; Subramaniam, Sakthivel; Yugo, Danielle M.; Heffron, C. Lynn; Rogers, Adam J.; Kenney, Scott P.; Tian, Debin; Matzinger, Shannon R.; Overend, Christopher; Catanzaro, Nicholas; LeRoith, Tanya; Wang, Heng; Piñeyro, Pablo; Lindstrom, Nicole; Clark-Deener, Sherrie; Yuan, Lijuan; Meng, Xiang-Jin
2017-01-01
Chronic hepatitis E virus (HEV) infection is a significant clinical problem in immunocompromised individuals such as organ transplant recipients, although the mechanism remains unknown because of the lack of an animal model. We successfully developed a pig model of chronic HEV infection and examined immune correlates leading to chronicity. The conditions of immunocompromised patients were mimicked by treating pigs with an immunosuppressive regimen including cyclosporine, azathioprine, and prednisolone. Immunocompromised pigs infected with HEV progressed to chronicity, because 8/10 drug-treated HEV-infected pigs continued fecal virus shedding beyond the acute phase of infection, whereas the majority (7/10) of mock-treated HEV-infected pigs cleared fecal viral shedding at 8 wk postinfection. During chronic infection, serum levels of the liver enzyme γ-glutamyl transferase and fecal virus shedding were significantly higher in immunocompromised HEV-infected pigs. To identify potential immune correlates of chronic infection, we determined serum levels of cytokines and cell-mediated immune responses in pigs. Results showed that HEV infection of immunocompromised pigs reduced the serum levels of Th1 cytokines IL-2 and IL-12, and Th2 cytokines IL-4 and IL-10, particularly during the acute phase of infection. Furthermore IFN-γ–specific CD4+ T-cell responses were reduced in immunocompromised pigs during the acute phase of infection, but TNF-α–specific CD8+ T-cell responses increased during the chronic phase of infection. Thus, active suppression of cell-mediated immune responses under immunocompromised conditions may facilitate the establishment of chronic HEV infection. This pig model will aid in delineating the mechanisms of chronic HEV infection and in developing effective therapeutics against chronic hepatitis E. PMID:28630341
Cao, Dianjun; Cao, Qian M; Subramaniam, Sakthivel; Yugo, Danielle M; Heffron, C Lynn; Rogers, Adam J; Kenney, Scott P; Tian, Debin; Matzinger, Shannon R; Overend, Christopher; Catanzaro, Nicholas; LeRoith, Tanya; Wang, Heng; Piñeyro, Pablo; Lindstrom, Nicole; Clark-Deener, Sherrie; Yuan, Lijuan; Meng, Xiang-Jin
2017-07-03
Chronic hepatitis E virus (HEV) infection is a significant clinical problem in immunocompromised individuals such as organ transplant recipients, although the mechanism remains unknown because of the lack of an animal model. We successfully developed a pig model of chronic HEV infection and examined immune correlates leading to chronicity. The conditions of immunocompromised patients were mimicked by treating pigs with an immunosuppressive regimen including cyclosporine, azathioprine, and prednisolone. Immunocompromised pigs infected with HEV progressed to chronicity, because 8/10 drug-treated HEV-infected pigs continued fecal virus shedding beyond the acute phase of infection, whereas the majority (7/10) of mock-treated HEV-infected pigs cleared fecal viral shedding at 8 wk postinfection. During chronic infection, serum levels of the liver enzyme γ-glutamyl transferase and fecal virus shedding were significantly higher in immunocompromised HEV-infected pigs. To identify potential immune correlates of chronic infection, we determined serum levels of cytokines and cell-mediated immune responses in pigs. Results showed that HEV infection of immunocompromised pigs reduced the serum levels of Th1 cytokines IL-2 and IL-12, and Th2 cytokines IL-4 and IL-10, particularly during the acute phase of infection. Furthermore IFN-γ-specific CD4 + T-cell responses were reduced in immunocompromised pigs during the acute phase of infection, but TNF-α-specific CD8 + T-cell responses increased during the chronic phase of infection. Thus, active suppression of cell-mediated immune responses under immunocompromised conditions may facilitate the establishment of chronic HEV infection. This pig model will aid in delineating the mechanisms of chronic HEV infection and in developing effective therapeutics against chronic hepatitis E.
HIV neuropathogenesis: a tight rope walk of innate immunity.
Yao, Honghong; Bethel-Brown, Crystal; Li, Cicy Zidong; Buch, Shilpa J
2010-12-01
During the course of HIV-1 disease, virus neuroinvasion occurs as an early event, within weeks following infection. Intriguingly, subsequent central nervous system (CNS) complications manifest only decades after the initial virus exposure. Although CNS is commonly regarded as an immune-privileged site, emerging evidence indicates that innate immunity elicited by the CNS glial cells is a critical determinant for the establishment of protective immunity. Sustained expression of these protective immune responses, however, can be a double-edged sword. As protective immune mediators, cytokines have the ability to function in networks and co-operate with other host/viral mediators to tip the balance from a protective to toxic state in the CNS. Herein, we present an overview of some of the essential elements of the cerebral innate immunity in HIV neuropathogenesis including the key immune cell types of the CNS with their respective soluble immune mediators: (1) cooperative interaction of IFN-γ with the host/virus factor (platelet-derived host factor (PDGF)/viral Tat) in the induction of neurotoxic chemokine CXCL10 by macrophages, (2) response of astrocytes to viral infection, and (3) protective role of PDGF and MCP-1 in neuronal survival against HIV Tat toxicity. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. The ultimate outcome of HIV infection in the CNS will thus be dependent on the regulation of the net balance of cell-specific protective versus detrimental responses.
The innate immune response in fetal lung mesenchymal cells targets VEGFR2 expression and activity.
Medal, Rachel M; Im, Amanda M; Yamamoto, Yasutoshi; Lakhdari, Omar; Blackwell, Timothy S; Hoffman, Hal M; Sahoo, Debashis; Prince, Lawrence S
2017-06-01
In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2 Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme. Copyright © 2017 the American Physiological Society.
Tuli, Amit; Thiery, Jerome; James, Ashley M; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B; Orange, Jordan S; Lieberman, Judy; Brenner, Michael B
2013-12-01
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.
Hickey, DK; Patel, MV; Fahey, JV; Wira, CR
2011-01-01
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708
Su, Shu; Zou, Zhengyun; Chen, Fangjun; Ding, Naiqing; Du, Juan; Shao, Jie; Li, Lin; Fu, Yao; Hu, Bian; Yang, Yang; Sha, Huizi; Meng, Fanyan; Wei, Jia; Huang, Xingxu; Liu, Baorui
2017-01-01
The successful use of immune cell checkpoint inhibitors PD-1 and PD-L1, over the past 5 y has raised the concern of using immunotherapy to treat various cancers. Epstein-Barr virus-associated gastric cancer (EBVaGC) exhibits high infiltration of lymphocytes and high amplification of immune-related genes including PD-L1 as distinguished from Epstein-Barr virus-non-associated gastric cancer (EBVnGC). Here, we presume that this PD-1/PD-L1 pathway may hinder the efficacy of adoptive T cell therapy toward EBVaGC. These studies reveal possibility of generating PD-1-disrupted CTL by CRISPR-Cas9 system and demonstrate enhanced immune response of these PD-1-disrupted CTLs to the EBV-LMP2A antigen and superior cytotoxicity to the EBV-positive gastric cancer cell. In addition, when combined with low-dose radiotherapy, these PD-1-disrupted CTLs mediated an impressive antitumor effect in a xenograft mouse model of EBVaGC. Taken together, these studies illustrate PD-1/PD-L1-mediated immune tolerance of EBVaGC and provide a new strategy for targeting immune checkpoints to break the tolerance for the T cell-based adoptive therapy.
SIRT1 and HIF1α signaling in metabolism and immune responses.
Yu, Qing; Dong, Lin; Li, Yan; Liu, Gaungwei
2018-04-01
SIRT1 and HIF1α are regarded as two key metabolic sensors in cellular metabolism pathways and play vital roles in influencing immune responses. SIRT1 and HIF1α regulate immune responses in metabolism-dependent and -independent ways. Here, we summarized the recent knowledge of SIRT1 and HIF1α signaling in metabolism and immune responses. HIF1α is a direct target of SIRT1. Sometimes, SIRT1 and HIF1α cooperate or act separately to mediate immune responses. In innate immune responses, SIRT1 can regulate the glycolytic activity of myeloid-derived suppressor cells (MDSCs) and influence MDSC functional differentiation. SIRT1 can regulate monocyte function through NF-κB and PGC-1, accompanying an increased NAD + level. The SIRT1-HIF1α axis bridges the innate immune signal to an adaptive immune response by directing cytokine production of dendritic cells in a metabolism-independent manner, promoting the differentiation of CD4 + T cells. For adaptive immune cells, SIRT1 can mediate the differentiation of inflammatory T cell subsets in a NAD + -dependent manner. HIF1α can stimulate some glycolysis-associated genes and regulate the ATP and ROS generations. In addition, SIRT1-and HIF1α-associated metabolism inhibits the activity of mTOR, thus negatively regulating the differentiation and function of Th9 cells. As immune cells are crucial in controlling immune-associated diseases, SIRT1-and HIF1α associated-metabolism is closely linked to immune-associated diseases, including infection, tumors, allergic airway inflammation, and autoimmune diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H
2010-12-01
Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.
Immune Memory to Sudan Virus: Comparison between Two Separate Disease Outbreaks
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S.; Kuehne, Ana I.; Stonier, Spencer W.; Ochayon, David E.; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C.; Lutwama, Julius Julian; Dye, John M.; Yavelsky, Victoria; Lobel, Leslie
2015-01-01
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda—Gulu 2000–2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1–649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1–649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses. PMID:25569078
Immune memory to Sudan virus: comparison between two separate disease outbreaks.
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S; Kuehne, Ana I; Stonier, Spencer W; Ochayon, David E; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C; Lutwama, Julius Julian; Dye, John M; Yavelsky, Victoria; Lobel, Leslie
2015-01-06
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda-Gulu 2000-2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1-649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1-649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses.
Influence of tumors on protective anti-tumor immunity and the effects of irradiation
Foulds, Gemma A.; Radons, Jürgen; Kreuzer, Mira; Multhoff, Gabriele; Pockley, Alan G.
2012-01-01
Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer. PMID:23378947
Breast-feeding regulates immune system development via transforming growth factor-β in mice pups.
Sakaguchi, Keita; Koyanagi, Akemi; Kamachi, Fumitaka; Harauma, Akiko; Chiba, Asako; Hisata, Ken; Moriguchi, Toru; Shimizu, Toshiaki; Miyake, Sachiko
2018-03-01
Breast milk contains important nutrients and immunoregulatory factors that are essential for newborn infants. Recently, epidemiological studies suggested that breast-feeding prevents a wide range of infectious diseases and lowers the incidence of infant allergic diseases. To examine the effects of breast milk on immunological development in infancy, we established an artificial rearing system for hand-feeding mice and compared mouse pups fed with either breast milk or milk substitute. All mice were killed at 14 days of age and immune cells in the thymus, spleen, and small intestine were examined on flow cytometry. The number of thymocytes was higher whereas that of total immune cells of peripheral lymphoid tissues was lower in mice fed breast milk compared with milk substitute-fed mice. In peripheral lymphoid tissues, the proportion of B cells was higher and that of CD8 + T cells, macrophages, dendritic cells, and granulocytes was significantly lower in breast milk-fed mice. The same alteration in immune cells of the thymus and peripheral lymphoid tissues in milk substitute-fed mice was also observed in pups reared by mother mice treated with anti-transforming growth factor-β (anti-TGF-β) monoclonal antibody. Breast milk regulates the differentiation and expansion of innate and adaptive immune cells partly due to TGF-β. Hence, TGF-β in breast milk may be a new therapeutic target for innate immune system-mediated diseases of infancy. © 2017 Japan Pediatric Society.
Murphy, Alison G.; O’Keeffe, Kate M.; Lalor, Stephen J.; Maher, Belinda M.; Mills, Kingston H. G.; McLoughlin, Rachel M.
2014-01-01
The development of vaccines against S. aureus has consistently failed in clinical trials, likely due to inefficient induction of cellular immunity. T cell-derived IL-17 is one of the few known correlates of anti-staphyloccoal immunity, conferring protection against S. aureus infections through its ability to promote phagocytic cell effector functions. A comprehensive understanding of the discrete T cell subsets critical for site-specific IL-17-mediated bacterial clearance will therefore be necessary to inform the development of vaccines that efficiently target cellular immunity. In this study, we have identified a population of CD44+CD27− memory γδ T cells, expanded upon infection of C57BL/6 mice with S. aureus, which produce high levels of IL-17 and mediate enhanced bacterial clearance upon re-infection with the bacterium. These cells are comprised largely of the Vγ4+ subset and accumulate at the site of infection subsequent to an initial Vγ1.1+ and Vγ2+ T cell response. Moreover, these Vγ4+ T cells are retained in the peritoneum and draining mediastinal lymph nodes for a prolonged period following bacterial clearance. In contrast to its critical requirement for γδ T cell activation during the primary infection, IL-1 signalling was dispensable for activation and expansion of memory γδ T cells upon re-exposure to S. aureus. Our findings demonstrate that a γδ T cell memory response can be induced upon exposure to S. aureus, in a fashion analogous to that associated with classical αβ T cells, and suggest that induction of IL-17-expressing γδ T cells may be an important property of a protective vaccine against S. aureus. PMID:24623128
Deng, Liufu; Liang, Hua; Xu, Meng; Yang, Xuanming; Burnette, Byron; Arina, Ainhoa; Li, Xiao-Dong; Mauceri, Helena; Beckett, Michael; Darga, Thomas; Huang, Xiaona; Gajewski, Thomas F; Chen, Zhijian J; Fu, Yang-Xin; Weichselbaum, Ralph R
2014-11-20
Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Helminth–host immunological interactions: prevention and control of immune-mediated diseases
Elliott, David E.; Weinstock, Joel V.
2013-01-01
Exposure to commensal and pathogenic organisms strongly influences our immune system. Exposure to helminths was frequent before humans constructed their current highly hygienic environment. Today, in highly industrialized countries, contact between humans and helminths is rare. Congruent with the decline in helminth infections is an increase in the prevalence of autoimmune and inflammatory disease. It is possible that exclusion of helminths from the environment has permitted the emergence of immune-mediated disease. We review the protective effects of helminths on expression of inflammatory bowel disease, multiple sclerosis, and animal models of these and other inflammatory diseases. We also review the immune pathways altered by helminths that may afford protection from these illnesses. Helminth exposure tends to inhibit IFN-γ and IL-17 production, promote IL-4, IL-10, and TGF-β release, induce CD4+ T cell Foxp3 expression, and generate regulatory macrophages, dendritic cells, and B cells. Helminths enable protective pathways that may vary by specific species and disease model. Helminths or their products likely have therapeutic potential to control or prevent immune-mediated illness. PMID:22239614
Ruiz-Riol, Marta; Llano, Anuska; Ibarrondo, Javier; Zamarreño, Jennifer; Yusim, Karina; Bach, Vanessa; Mothe, Beatriz; Perez-Alvarez, Susana; Fernandez, Marco A.; Requena, Gerard; Meulbroek, Michael; Pujol, Ferran; Leon, Agathe; Cobarsi, Patricia; Korber, Bette T.; Clotet, Bonaventura; Ganoza, Carmela; Sanchez, Jorge; Coll, Josep; Brander, Christian
2015-01-01
The characterization of host immune responses to human immunodeficiency virus (HIV) in HIV controllers and individuals with high exposure but seronegativity to HIV (HESN) is needed to guide the development of effective preventive and therapeutic vaccine candidates. However, several technical hurdles severely limit the definition of an effective virus-specific T-cell response. By using a toggle-peptide approach, which takes HIV sequence diversity into account, and a novel, boosted cytokine staining/flow cytometry strategy, we here describe new patterns of T-cell responses to HIV that would be missed by standard assays. Importantly, this approach also allows detection of broad and strong virus-specific T-cell responses in HESN individuals that are characterized by a T-helper type 1 cytokine–like effector profile and produce cytokines that have been associated with potential control of HIV infection, including interleukin 10, interleukin 13, and interleukin 22. These results establish a novel approach to improve the current understanding of HIV-specific T-cell immunity and identify cellular immune responses and individual cytokines as potential markers of relative HIV resistance. As such, the findings also help develop similar strategies for more-comprehensive assessments of host immune responses to other human infections and immune-mediated disorders. PMID:25249264
Jaiswal, Ritu; Johnson, Michael S; Pokharel, Deep; Krishnan, S Rajeev; Bebawy, Mary
2017-02-06
Breast cancer is the most frequently diagnosed cancer in women. Resident macrophages at distant sites provide a highly responsive and immunologically dynamic innate immune response against foreign infiltrates. Despite extensive characterization of the role of macrophages and other immune cells in malignant tissues, there is very little known about the mechanisms which facilitate metastatic breast cancer spread to distant sites of immunological integrity. The mechanisms by which a key healthy defense mechanism fails to protect distant sites from infiltration by metastatic cells in cancer patients remain undefined. Breast tumors, typical of many tumor types, shed membrane vesicles called microparticles (MPs), ranging in size from 0.1-1 μm in diameter. MPs serve as vectors in the intercellular transfer of functional proteins and nucleic acids and in drug sequestration. In addition, MPs are also emerging to be important players in the evasion of cancer cell immune surveillance. A comparative analysis of effects of MPs isolated from human breast cancer cells and non-malignant human brain endothelial cells were examined on THP-1 derived macrophages in vitro. MP-mediated effects on cell phenotype and functionality was assessed by cytokine analysis, cell chemotaxis and phagocytosis, immunolabelling, flow cytometry and confocal imaging. Student's t-test or a one-way analysis of variance (ANOVA) was used for comparison and statistical analysis. In this paper we report on the discovery of a new cellular basis for immune evasion, which is mediated by breast cancer derived MPs. MPs shed from multidrug resistant (MDR) cells were shown to selectively polarize macrophage cells to a functionally incapacitated state and facilitate their engulfment by foreign cells. We propose this mechanism may serve to physically disrupt the inherent immune response prior to cancer cell colonization whilst releasing mediators required for the recruitment of distant immune cells. These findings introduce a new paradigm in cancer cell biology with significant implications in understanding breast cancer colonization at distant sites. Most importantly, this is also the first demonstration that MPs serve as conduits in a parallel pathway supporting the cellular survival of MDR cancer cells through immune evasion.
Tayebati, Seyed Khosrow; Amenta, Francesco
2008-01-01
Increasing evidence indicates the existence of an association between nervous and immune systems. The two systems communicate with each-other to maintain immune homeostasis. Activated immune cells secrete cytokines that influence central nervous system activity. Nervous system, through its peripheral and/or autonomic divisions activates output regulating levels of immune cell activity and the subsequent magnitude of an immune response. On the other hand, neurotransmitters, which represent the main substances involved in nerve cell communications, can influence immune function. Immune organs and circulating immune cells express several (neuro)transmitter systems that can be involved in regulating their activity. The expression of neurotransmitter systems by different subsets of circulating immune cells was reviewed. The regulatory role of different families of (neuro)transmitters (catecholamines, 5-hydroxytryptamine, acetylcholine, histamine and neuropeptides) in modulating levels of immune mediators or specific immune responses is discussed.
Cutting Edge: 2B4-Mediated Coinhibition of CD4+ T Cells Underlies Mortality in Experimental Sepsis.
Chen, Ching-Wen; Mittal, Rohit; Klingensmith, Nathan J; Burd, Eileen M; Terhorst, Cox; Martin, Greg S; Coopersmith, Craig M; Ford, Mandy L
2017-09-15
Sepsis is a leading cause of death in the United States, but the mechanisms underlying sepsis-induced immune dysregulation remain poorly understood. 2B4 (CD244, SLAM4) is a cosignaling molecule expressed predominantly on NK cells and memory CD8 + T cells that has been shown to regulate T cell function in models of viral infection and autoimmunity. In this article, we show that 2B4 signaling mediates sepsis lymphocyte dysfunction and mortality. 2B4 expression is increased on CD4 + T cells in septic animals and human patients at early time points. Importantly, genetic loss or pharmacologic inhibition of 2B4 significantly increased survival in a murine cecal ligation and puncture model. Further, CD4-specific conditional knockouts showed that 2B4 functions on CD4 + T cell populations in a cell-intrinsic manner and modulates adaptive and innate immune responses during sepsis. Our results illuminate a novel role for 2B4 coinhibitory signaling on CD4 + T cells in mediating immune dysregulation. Copyright © 2017 by The American Association of Immunologists, Inc.
Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts.
Bhattacharyya, Sankar; Md Sakib Hossain, Dewan; Mohanty, Suchismita; Sankar Sen, Gouri; Chattopadhyay, Sreya; Banerjee, Shuvomoy; Chakraborty, Juni; Das, Kaushik; Sarkar, Diptendra; Das, Tanya; Sa, Gaurisankar
2010-07-01
Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8(+) cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4(+) T cells are essential for helping this CD8(+) T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (T(CM))/effector memory T cell (T(EM)) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-beta and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-beta and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.
Anatomy of the immune system: facts and problems.
Grossi, C E; Ciccone, E; Tacchetti, C; Santoro, G; Anastasi, G
2000-01-01
In the introductory section of this report, the anatomy of the immune system, from organs and tissues to molecules, will be reviewed briefly. Cell proliferation and differentiation in the central lymphoid organs (thymus and bone marrow) yield a repertoire of T- and B-cell clones that seed into peripheral lymphoid organs (spleen, lymph nodes and Mucosa-Associated Lymphoid Tissue, MALT), where humoral and cell-mediated antigen-specific immune responses occur. The stringent process of clonal selection in the central lymphoid organs implies deletion of inappropriate cells via apoptosis. In the peripheral lymphoid organs, the potential of unlimited activation and expansion of lymphocytes in response to antigens is primarily regulated by apoptosis and anergy. These events, on the one hand, are relevant to prevent autoimmunity and lymphoproliferative disorders; on the other hand, clonal deletion and anergy provide a detrimental escape to immune recognition of malignant cells. Two major inhibitory mechanisms of the immune response have emerged recently. One is linked to the existence of bona fide suppressor cells and cytokines; the other relies on the existence of inhibitory molecules expressed by T, B and NK cells, as well as by other leukocytes. In the studies herein reported, emphasis will be given to surface membrane molecules that down-regulate T-cell-mediated immune responses. These molecules control interactions between T cells and antigen presenting cells (APC's) or target (virus-infected or mutated) cells that have to be killed. Two sets of molecules exist that either upregulate (coactivation molecules) or down-regulate (inhibitory molecules) T-cell mediated responses. The latter aspect of the immune regulation, i.e. molecules that limit the expansion of T-cell clones following specific recognition of antigens will be considered in depth. Two inhibitory molecules, CD152 (CTLA-4) and CD85/LIR-1/ILT2 are expressed in all T cells, being largely confined within intracellular compartments of these lymphocytes when they are in a resting state, but ready to be shuttled to and from the plasma membrane when cells are activated following encounter with antigen. Membrane expression of the two inhibitory molecules is transient and is regulated by an internalization process directed to endosomal compartments and to receptor degradation and/or recycling. CTLA-4 and CD85/LIR-1/ILT2 play a pivotal role in T-cell homeostasis that follows any cell-mediated immune response; their localization and functional role will be thoroughly analyzed. In the last part of this study a major question will be faced, i.e. is the containment of the possibly unlimited expansion of the immune system due to a blockade of the cell cycle? Or, else, could be apoptosis the sole mechanism responsible? Experimental data in support of the latter contention will be provided.
Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis
Palmer, Clovis S.; Cherry, Catherine L.; Sada-Ovalle, Isabel; Singh, Amit; Crowe, Suzanne M.
2016-01-01
Activation of the immune system occurs in response to the recognition of foreign antigens and receipt of optimal stimulatory signals by immune cells, a process that requires energy. Energy is also needed to support cellular growth, differentiation, proliferation, and effector functions of immune cells. In HIV-infected individuals, persistent viral replication, together with inflammatory stimuli contributes to chronic immune activation and oxidative stress. These conditions remain even in subjects with sustained virologic suppression on antiretroviral therapy. Here we highlight recent studies demonstrating the importance of metabolic pathways, particularly those involving glucose metabolism, in differentiation and maintenance of the activation states of T cells and monocytes. We also discuss how changes in the metabolic status of these cells may contribute to ongoing immune activation and inflammation in HIV- infected persons and how this may contribute to disease progression, establishment and persistence of the HIV reservoir, and the development of co-morbidities. We provide evidence that other viruses such as Epstein–Barr and Flu virus also disrupt the metabolic machinery of their host cells. Finally, we discuss how redox signaling mediated by oxidative stress may regulate metabolic responses in T cells and monocytes during HIV infection. PMID:27211546
Majorov, Konstantin B.; Logunova, Nadezhda N.; Apt, Alexander S.
2013-01-01
The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC) are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg), an essential element of a general immune regulatory network. However, direct experimental data demonstrating inhibition of immune responses by stroma-instructed immature DCreg in infectious models are scarce, and virtually nothing is known about functioning of this axis of immunity during tuberculosis (TB) infection. In this study, we demonstrate that lung stromal cells are capable of supporting the development in culture of immature CD11b+CD11clowCD103- DCreg from lineage-negative (lin-) bone marrow precursors. DCreg developed on lung stroma isolated from mice of genetically TB-hyper-susceptible I/St and relatively resistant B6 inbred strains inhibited proliferative response of mycobacteria-specific CD4+ T-cell lines a dose-dependent manner. Importantly, the inhibitory activity of B6 DCreg was substantially higher than that of I/St Dcreg. Moreover, when the donors of stromal cells were chronically infected with virulent mycobacteria, the capacity to instruct inhibitory DCreg was retained in B6, but further diminished in I/St stromal cells. DCreg-provided suppression was mediated by a few soluble mediators, including PGE2, NO and IL-10. The content of CD4+Foxp3+ Treg cells in the mediastinal, lung-draining lymph nodes at the advanced stages of chronic infection did not change in I/St, but increased 2-fold in B6 mice, and lung pathology was much more pronounced in the former mice. Taken together, these data provide genetic evidence that the capacity to maintain populations of regulatory cells during M. tuberculosis infection is a part of the host protective strategy. PMID:23977351
Kondo, Yuya; Yokosawa, Masahiro; Kaneko, Shunta; Furuyama, Kotona; Segawa, Seiji; Tsuboi, Hiroto; Matsumoto, Isao; Sumida, Takayuki
2018-05-01
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation of the joint synovium and infiltration by activated inflammatory cells. CD4+ T cells form a large proportion of the inflammatory cells invading the synovial tissue, and are involved in the RA pathologic process. In general, CD4+ T cells differentiate into various T helper cell subsets and acquire the functional properties to respond to specific pathogens, and also mediate some autoimmune disorders such as RA. Because the differentiation of T helper cell subsets is determined by the expression of specific transcription factors in response to the cytokine environment, these transcription factors are considered to have a role in the pathology of RA. Treg cells control an excess of T cell-mediated immune response, and the transcription factor FoxP3 is critical for the differentiation and function of Treg cells. Treg cell dysfunction can result in the development of systemic autoimmunity. In this review, we summarize how the expression of transcription factors modulates T helper cell immune responses and the development of autoimmune diseases, especially in RA. Understanding the role of transcription factors in the pathogenesis of autoimmunity may lead to novel therapeutic strategies to control the differentiation and function of both T helper cells and Treg cells. © 2017 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.
Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.
Wu, Chenxi; Chen, Yujun; Wang, Feng; Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei
2015-10-01
Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis.
The Immunologic Revolution: Photoimmunology
Ullrich, Stephen E.; Byrne, Scott N.
2011-01-01
UV radiation targets the skin and is a primary cause of skin cancer (both melanoma and non-melanoma skin cancer). Exposure to UV also suppresses the immune response, and UV-induced immune suppression is a major risk factor for skin cancer induction. The efforts of Dermatologists and Cancer Biologists to understand how UV exposure suppresses the immune response and contributes to skin cancer induction led to the development of the sub-discipline we call photoimmunology. Advances in photoimmunology have generally paralleled advances in immunology. However, there are a number of examples where investigations into the mechanisms underlying UV-induced immune suppression reshaped our understanding of basic immunological concepts. Unconventional immune regulatory roles for Langerhans cells, mast cells, and NKT cells as well as the immune suppressive function of lipid mediators of inflammation and alarmins, are just some examples of how advances in immunodermatology have altered our understanding of basic immunology. In this anniversary issue celebrating 75 years of Cutaneous Science, we will provide examples of how concepts that grew out of efforts by Immunologists and Dermatologists to understand immune regulation by UV radiation impacted on immunology in general. PMID:22170491
Kurtz, Sherry L.
2015-01-01
A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses. PMID:26269537
Chu, Van Trung; Graf, Robin; Wirtz, Tristan; Weber, Timm; Favret, Jeremy; Li, Xun; Petsch, Kerstin; Tran, Ngoc Tung; Sieweke, Michael H; Berek, Claudia; Kühn, Ralf; Rajewsky, Klaus
2016-11-01
Applying clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis to primary mouse immune cells, we used high-fidelity single guide RNAs (sgRNAs) designed with an sgRNA design tool (CrispRGold) to target genes in primary B cells, T cells, and macrophages isolated from a Cas9 transgenic mouse line. Using this system, we achieved an average knockout efficiency of 80% in B cells. On this basis, we established a robust small-scale CRISPR-mediated screen in these cells and identified genes essential for B-cell activation and plasma cell differentiation. This screening system does not require deep sequencing and may serve as a precedent for the application of CRISPR/Cas9 to primary mouse cells.
The split personality of NKT cells in malignancy, autoimmune and allergic disorders
Subleski, Jeff J; Jiang, Qun; Weiss, Jonathan M; Wiltrout, Robert H
2011-01-01
NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy. PMID:21995570
Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Yukiko K.; Metea, Christina; Karstens, Lisa
The bacteria that live normally in our intestinal tract, or the gut microbiota contribute to the pathogenesis of extra intestinal autoimmune disease via their ability to dynamically educate the immune system. For example, in a mouse model of relapsing, remitting multiple sclerosis (MS), experimental autoimmune encephalomyelitis or EAE, several studies demonstrated that commensal microorganisms are essential in causing clinical disease activity. Interestingly, MS patients have a distinct gut microbiota to healthy controls. Several studies have also illustrated the importance of the gut microbiome in the development of other diseases, including Type 1 diabetes, metabolic syndrome, rheumatoid arthritis, and ankylosing spondylitis.more » Furthermore, HLA=B27 transgenic rats, which develop spontaneous spondyloarthropathy analogous to patients who have ankylosing spondylitis, associated with uveitis in humans, do not develop intestinal or peripheral join inflammation when raised in a germ-free environment. Our group has shown that HLA-B27 transgenic rats have an altered intestinal microbiota compared to healthy control rats. Given the similarities between the central nervous system (CNS) and the retina, as well as co-expression of potentially immunogenic self-antigens from the CNS and joint in the eye, we hypothesized that modulating the gut microbiome can result in amelioration of autoimmune uveitis. Although uveitis is a heterogeneous collection of diseases, in general immune-mediated, non-infectious, uveitis is thought to be due to a combination of genetic and environmental factors. It arises from an imbalance between the regulatory and effector arms of the immune system, result in an inappropriate immune reaction at an otherwise immune-privileged tissue site, the eye. Th1 and Th17 T lymphocytes are examples of effector immune cell subsets that my contribute to inflammatory disease of the eye, whereas regulatory T cells (Tregs) are an example of a regulatory immune cell subset that is typically required to downregulate an immune response to prevent uncontrolled disease. Experimental autoimmune uveitis (EAU) is a very robust, widely use model of T lymphoocyte mediated uveitis that can be induced in a certain strains of mice (e.g. B10.RIII) by immunizing these animals with a specific retinal antigen, interphotoreceptor binding protein (IRBP), but requires co-administration of an adjuvant containing killed Mycobacterium antigen. Lastly, this model of inducible uveitis is analogous to the EAE model of demyelinating disease mentioned above. EAU is a thought to be predominantly Th1 and Th17 mediated.« less
Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis
Nakamura, Yukiko K.; Metea, Christina; Karstens, Lisa; ...
2016-07-01
The bacteria that live normally in our intestinal tract, or the gut microbiota contribute to the pathogenesis of extra intestinal autoimmune disease via their ability to dynamically educate the immune system. For example, in a mouse model of relapsing, remitting multiple sclerosis (MS), experimental autoimmune encephalomyelitis or EAE, several studies demonstrated that commensal microorganisms are essential in causing clinical disease activity. Interestingly, MS patients have a distinct gut microbiota to healthy controls. Several studies have also illustrated the importance of the gut microbiome in the development of other diseases, including Type 1 diabetes, metabolic syndrome, rheumatoid arthritis, and ankylosing spondylitis.more » Furthermore, HLA=B27 transgenic rats, which develop spontaneous spondyloarthropathy analogous to patients who have ankylosing spondylitis, associated with uveitis in humans, do not develop intestinal or peripheral join inflammation when raised in a germ-free environment. Our group has shown that HLA-B27 transgenic rats have an altered intestinal microbiota compared to healthy control rats. Given the similarities between the central nervous system (CNS) and the retina, as well as co-expression of potentially immunogenic self-antigens from the CNS and joint in the eye, we hypothesized that modulating the gut microbiome can result in amelioration of autoimmune uveitis. Although uveitis is a heterogeneous collection of diseases, in general immune-mediated, non-infectious, uveitis is thought to be due to a combination of genetic and environmental factors. It arises from an imbalance between the regulatory and effector arms of the immune system, result in an inappropriate immune reaction at an otherwise immune-privileged tissue site, the eye. Th1 and Th17 T lymphocytes are examples of effector immune cell subsets that my contribute to inflammatory disease of the eye, whereas regulatory T cells (Tregs) are an example of a regulatory immune cell subset that is typically required to downregulate an immune response to prevent uncontrolled disease. Experimental autoimmune uveitis (EAU) is a very robust, widely use model of T lymphoocyte mediated uveitis that can be induced in a certain strains of mice (e.g. B10.RIII) by immunizing these animals with a specific retinal antigen, interphotoreceptor binding protein (IRBP), but requires co-administration of an adjuvant containing killed Mycobacterium antigen. Lastly, this model of inducible uveitis is analogous to the EAE model of demyelinating disease mentioned above. EAU is a thought to be predominantly Th1 and Th17 mediated.« less
New insights of T cells in the pathogenesis of psoriasis
Cai, Yihua; Fleming, Chris; Yan, Jun
2012-01-01
Psoriasis is one of the most common immune-mediated chronic, inflammatory skin diseases characterized by hyperproliferative keratinocytes and infiltration of T cells, dendritic cells, macrophages and neutrophils. Although the pathogenesis of psoriasis is not fully understood, there is ample evidence suggesting that the dysregulation of immune cells in the skin, particularly T cells, plays a critical role in psoriasis development. In this review, we mainly focus on the pathogenic T cells and discuss how these T cells are activated and involved in the disease pathogenesis. Newly identified ‘professional' IL-17-producing dermal γδ T cells and their potential role in psoriasis will also be included. Finally, we will briefly summarize the recent progress on the T cell and its related cytokine-targeted therapy for psoriasis treatment. PMID:22705915
Identification and characterization of polyclonal αβ T cells with dendritic cell properties
Kuka, Mirela; Munitic, Ivana; Ashwell, Jonathan D.
2012-01-01
An efficient immune response requires coordination between innate and adaptive immunity, which act through cells different in origin and function. Here we report the identification of thymus-derived αβ TCR+ cells that express CD11c and MHC class II, and require FLT3L for development (TDC). TDC express genes heretofore found uniquely in T cells or DC, as well as a distinctive signature of cytotoxicity-related genes. Unlike other innate T cell subsets, TDC have a polyclonal TCR repertoire andrespond to cognate antigens. However, they differ from conventional T cells in that they do not require help from antigen-presenting cells, respond to TLR-mediated stimulation by producing IL-12 and process and present antigen. The physiologic relevance of TDC, found in mice and humans, is still under investigation, but the fact that they combine key features of T and DC cells suggests that they provide a bridge between the innate and adaptive immune systems. PMID:23187623
Identifying Regulators of the Immune Response to Dying Cells | Center for Cancer Research
Cytotoxic T cells are responsible for carrying out antigen-mediated immune responses against virally-infected and malignant cells. In both cases, cytotoxic T cells are stimulated by interacting with antigen presenting cells, such as dendritic cells (DCs). Infected cells produce virus-specific antigens and pathogen associated molecular patterns, which are recognized by DCs and
Kim, Choon Kwan; Choi, Youn Mi; Bae, Eunsin; Jue, Mihn Sook; So, Hyung Seok; Hwang, Eung-Soo
2018-01-01
The pathogenesis of herpes zoster is closely linked to reduced varicella-zoster virus-specific cell-mediated immunity. However, little is known about the interplay between natural killer cells and psychological stress in the pathogenesis of herpes zoster. This study aimed to investigate possible associations among natural killer cells, T cells and psychological stress in herpes zoster. Interferon-gamma secretion from natural killer cell, psychological stress events, stress cognition scale scores and cytomegalovirus-specific cell-mediated immunity were compared between 44 patients with herpes zoster and 44 age- and gender-matched control subjects. A significantly lower median level of interferon-gamma secreted by natural killer cells was observed in patients with a recent diagnosis of herpes zoster than in control subjects (582.7 pg/ml vs. 1783 pg/ml; P = 0.004), whereas cytomegalovirus-specific cell-mediated immunity was not associated with herpes zoster. Psychological stress events and high stress cognition scale scores were significantly associated in patients with herpes zoster (P<0.001 and P = 0.037, respectively). However, reduced interferon-gamma secretion from natural killer cell and psychological stress were not associated. In conclusion, patients with a recent diagnosis of herpes zoster display reduced interferon-gamma secretion from natural killer cells and frequent previous psychological stress events compared with controls. However, reduced natural killer cell activity is not an immunological mediator between psychological stress and herpes zoster.
Kim, Choon Kwan; Choi, Youn Mi; Bae, Eunsin; Jue, Mihn Sook; So, Hyung Seok
2018-01-01
The pathogenesis of herpes zoster is closely linked to reduced varicella-zoster virus-specific cell-mediated immunity. However, little is known about the interplay between natural killer cells and psychological stress in the pathogenesis of herpes zoster. This study aimed to investigate possible associations among natural killer cells, T cells and psychological stress in herpes zoster. Interferon-gamma secretion from natural killer cell, psychological stress events, stress cognition scale scores and cytomegalovirus-specific cell-mediated immunity were compared between 44 patients with herpes zoster and 44 age- and gender-matched control subjects. A significantly lower median level of interferon-gamma secreted by natural killer cells was observed in patients with a recent diagnosis of herpes zoster than in control subjects (582.7 pg/ml vs. 1783 pg/ml; P = 0.004), whereas cytomegalovirus-specific cell-mediated immunity was not associated with herpes zoster. Psychological stress events and high stress cognition scale scores were significantly associated in patients with herpes zoster (P<0.001 and P = 0.037, respectively). However, reduced interferon-gamma secretion from natural killer cell and psychological stress were not associated. In conclusion, patients with a recent diagnosis of herpes zoster display reduced interferon-gamma secretion from natural killer cells and frequent previous psychological stress events compared with controls. However, reduced natural killer cell activity is not an immunological mediator between psychological stress and herpes zoster. PMID:29466462
Allen, Judith E.; Sutherland, Tara E.
2014-01-01
Metazoan parasites typically induce a type 2 immune response, characterized by T helper 2 (Th2) cells that produce the cytokines IL-4, IL-5 and IL-13 among others. The type 2 response is host protective, reducing the number of parasites either through direct killing in the tissues, or expulsion from the intestine. Type 2 immunity also protects the host against damage mediated by these large extracellular parasites as they migrate through the body. At the center of both the innate and adaptive type 2 immune response, is the IL-4Rα that mediates many of the key effector functions. Here we highlight the striking overlap between the molecules, cells and pathways that mediate both parasite control and tissue repair. We have proposed that adaptive Th2 immunity evolved out of our innate repair pathways to mediate both accelerated repair and parasite control in the face of continual assault from multicellular pathogens. Type 2 cytokines are involved in many aspects of mammalian physiology independent of helminth infection. Therefore understanding the evolutionary relationship between helminth killing and tissue repair should provide new insight into immune mechanisms of tissue protection in the face of physical injury. PMID:25028340
MicroRNA-29b mediates altered innate immune development in acute leukemia
Mundy-Bosse, Bethany L.; Scoville, Steven D.; Chen, Li; McConnell, Kathleen; Mao, Hsiaoyin C.; Ahmed, Elshafa H.; Zorko, Nicholas; Harvey, Sophia; Cole, Jordan; Zhang, Xiaoli; Costinean, Stefan; Croce, Carlo M.; Larkin, Karilyn; Byrd, John C.; Vasu, Sumithira; Blum, William; Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A.
2016-01-01
Natural killer (NK) cells can have potent antileukemic activity following haplo-mismatched, T cell–depleted stem cell transplantations for the treatment of acute myeloid leukemia (AML), but they are not successful in eradicating de novo AML. Here, we have used a mouse model of de novo AML to elucidate the mechanisms by which AML evades NK cell surveillance. NK cells in leukemic mice displayed a marked reduction in the cytolytic granules perforin and granzyme B. Further, as AML progressed, we noted the selective loss of an immature subset of NK cells in leukemic mice and in AML patients. This absence was not due to elimination by cell death or selective reduction in proliferation, but rather to the result of a block in NK cell differentiation. Indeed, NK cells from leukemic mice and humans with AML showed lower levels of TBET and EOMES, transcription factors that are critical for terminal NK cell differentiation. Further, the microRNA miR-29b, a regulator of T-bet and EOMES, was elevated in leukemic NK cells. Finally, deletion of miR-29b in NK cells reversed the depletion of this NK cell subset in leukemic mice. These results indicate that leukemic evasion of NK cell surveillance occurs through miR-mediated dysregulation of lymphocyte development, representing an additional mechanism of immune escape in cancer. PMID:27775550
Zhang, Yi; Chen, Guo; Liu, Zuqiang; Tian, Shenghe; Zhang, Jiying; Carey, Cara D; Murphy, Kenneth M; Storkus, Walter J; Falo, Louis D; You, Zhaoyang
2015-06-15
The development of effective cancer vaccines remains an urgent, but as yet unmet, clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8(+) T cells capable of mediating durable protective immunity. In this regard, elevated expression of the transcription factor X box-binding protein 1 (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present Ags to CD8(+) T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-α production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes and the cross-priming of Ag-specific CD8(+) T cell responses associated with therapeutic benefit. Antitumor protection was dependent on cross-presenting Batf3(+) DC, pDC, and CD8(+) T cells. CD103(+) DC from the skin/tumor draining lymph nodes of the immunized mice appeared responsible for activation of Ag-specific naive CD8(+) T cells, but were dependent on pDC for optimal effectiveness. Similarly, human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3(+) DC-pDC interactions, thereby enabling effective vaccine induction of protective antitumor immunity. Copyright © 2015 by The American Association of Immunologists, Inc.
Karpov, V; Ilarraza, R; Catalli, A; Kulka, M
2018-01-01
Cysteinyl leukotrienes (CysLT) are potent inflammatory lipid molecules that mediate some of the pathophysiological responses associated with asthma such as bronchoconstriction, vasodilation and increased microvascular permeability. As a result, CysLT receptor antagonists (LRA), such as montelukast, have been used to effectively treat patients with asthma. We have recently shown that mast cells are necessary modulators of innate immune responses to bacterial infection and an important component of this innate immune response may involve the production of CysLT. However, the effect of LRA on innate immune receptors, particularly on allergic effector cells, is unknown. This study determined the effect of CysLT on toll-like receptor (TLR) expression by the human mast cell line LAD2. Real-time PCR analysis determined that LTC4, LTD4 and LTE4 downregulated mRNA expression of several TLR. Specifically in human CD34+-derived human mast cells (HuMC), LTC4 inhibited expression of TLR1, 2, 4, 5, 6 and 7 while LTD4 inhibited expression of TLR1-7. Montelukast blocked LTC4-mediated downregulation of all TLR, suggesting that these effects were mediated by activation of the CysLT1 receptor (CysLT1R). Flow cytometry analysis confirmed that LTC4 downregulated surface expression of TLR2 which was blocked by montelukast. These data show that CysLT can modulate human mast cell expression of TLR and that montelukast may be beneficial for innate immune responses mediated by mast cells.
Innate immunity and HIV-1 infection.
Lehner, T; Wang, Y; Whittall, T; Seidl, T
2011-04-01
HIV-1 is predominantly transmitted through mucosal tissues, targeting CD4(+)CCR5(+) T cells, 50% of which are destroyed within 2 weeks of infection. Conventional vaccination strategies have so far failed to prevent HIV-1 infection. Neither antibodies nor cytotoxic lymphocytes are capable of mounting a sufficiently rapid immune response to prevent early destruction of these cells. However, innate immunity is an early-response system, largely independent of prior encounter with a pathogen. Innate immunity can be classified into cellular, extracellular, and intracellular components, each of which is exemplified in this review by γδ T cells, CC chemokines, and APOBEC3G, respectively. First, γδ T cells are found predominantly in mucosal tissues and produce cytokines, CC chemokines, and antiviral factors. Second, the CC chemokines CCL-3, CCL-4, and CCL-5 can be upregulated by immunization of macaques with SIVgp120 and gag p27, and these can bind and downmodulate CCR5, thereby inhibiting HIV-1 entry into the host cells. Third, APOBEC3G is generated and maintained following rectal mucosal immunization in rhesus macaques for over 17 weeks, and the innate anti-SIV factor is generated by CD4(+)CD95(+)CCR7(-) effector memory T cells. Thus, innate anti-HIV-1 or SIV immunity can be linked with immune memory, mediated by CD4(+) T cells generating APOBEC3G. The multiple innate functions may mount an early anti-HIV-1 response and either prevent viral transmission or contain the virus until an effective adaptive immune response develops.
Innate Immune Mechanisms in Transplant Allograft Vasculopathy
Jane-wit, D; Fang, C; Goldstein, DR
2016-01-01
Purpose of Review Allograft vasculopathy (AV) is the leading cause of late allograft loss following solid organ transplantation. Ischemia reperfusion injury (IRI) and donor specific antibody (DSA)-induced complement activation confer heightened risk for AV via numerous innate immune mechanisms including MyD88, HMGB1, and complement induced non-canonical NF-kB signaling. Recent Findings The role of MyD88, a signal adaptor downstream of the toll-like receptors (TLR), has been defined in an experimental heart transplant model, which demonstrated that recipient MyD88 enhanced AV. Importantly, triggering receptor on myeloid receptor 1(Trem1), a MyD88 amplifying signal, was present in rejecting human cardiac transplant biopsies and enhanced the development of AV in mice. HMGB1, a nuclear protein that activates TLRs, also enhanced the development of AV. Complement activation elicits assembly of membrane attack complexes (MAC) on endothelial cells which activate non-canonical NF-kB signaling, a novel complement effector pathway that induces pro-inflammatory genes and potentiates endothelial cell mediated alloimmune T cell activation, processes which enhance AV. Summary Innate immune mediators including HMGB1, MyD88, and non-canonical NFκB signaling via complement activation contribute to AV. These pathways represent potential therapeutic targets to reduce AV after solid organ transplantation. PMID:27077602
Taverniti, Valentina; Stuknyte, Milda; Minuzzo, Mario; Arioli, Stefania; De Noni, Ivano; Scabiosi, Christian; Cordova, Zuzet Martinez; Junttila, Ilkka; Hämäläinen, Sanna; Turpeinen, Hannu; Mora, Diego; Karp, Matti; Pesu, Marko
2013-01-01
The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention. PMID:23220964
Breser, Maria L; Motrich, Ruben D; Sanchez, Leonardo R; Rivero, Virginia E
2017-01-01
Experimental autoimmune prostatitis (EAP) is an autoimmune inflammatory disease of the prostate characterized by peripheral prostate-specific autoimmune responses associated with prostate inflammation. EAP is induced in rodents upon immunization with prostate antigens (PAg) plus adjuvants and shares important clinical and immunological features with the human disease chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). EAP was induced in young NOD, C57BL/6, and BALB/c male mice by immunization with PAg plus complete Freund́s adjuvant. Tactile allodynia was assessed using Von Frey fibers as a measure of pelvic pain at baseline and at different time points after immunization. Using conventional histology, immunohistochemistry, FACS analysis, and protein arrays, an interstrain comparative study of prostate cell infiltration and inflammation was performed. Chronic pelvic pain development was similar between immunized NOD and C57BL/6 mice, although the severity of leukocyte infiltration was greater in the first case. Coversely, minimal prostate cell infiltration was observed in immunized BALB/c mice, who showed no pelvic pain development. Increased numbers of mast cells, mostly degranulated, were detected in prostate samples from NOD and C57BL/6 mice, while lower total counts and resting were observed in BALB/c mice. Prostate tissue from NOD mice revealed markedly increased expression levels of inflammatory cytokines, chemokines, adhesion molecules, vascular endothelial growth factor, and metalloproteinases. Similar results, but to a lesser extent, were observed when analyzing prostate tissue from C57BL/6 mice. On the contrary, the expression of the above mediators was very low in prostate tissue from immunized BALB/c mice, showing significantly slight increments only for CXCL1 and IL4. Our results provide new evidence indicating that NOD, C57BL/6, and BALB/c mice develop different degrees of chronic pelvic pain, type, and amount of prostate cell infiltration and secretion of inflammatory mediators. Our results corroborate and support the notion that mice with different genetic background have different susceptibility to EAP induction. Prostate 77:94-104, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Code of Federal Regulations, 2011 CFR
2011-01-01
... vitro measure of the beryllium antigen-specific, cell-mediated immune response. Beryllium worker means a... particles. Immune response refers to the series of cellular events by which the immune system reacts to...
[Experimental study of glioma stem cell-mediated immune tolerance in tumor microenvironment].
Xie, T; Ma, J W; Liu, B; Dong, J; Huang, Q
2017-11-23
Objective: To investigate the tumor microenvironment of immune tolerance induced by glioma stem cells (GSC). Methods: Human GSC SU3 cells transfected with red fluorescent protein (SU3-RFP) gene were implanted into the brain, subcutis (armpit and foot), liver and abdominal cavity of transgenic green fluorescence protein (GFP) nude mice to establish RFP(+) /GFP(+) dual fluorescence solid tumor model. The re-cultured cells derived from implanted tumor tissues, SU3-RFP cells co-cultured with peritoneal fluid of transgenic GFP nude mice and malignant ascites of tumor-bearing mice were observed by fluorescence microscopy and real-time video image tracing to analyze the microenvironment of immune tolerance mediated by RFP(+) /GFP(+) implanted tumor. Results: Dual fluorescence labeled frozen section showed that all of cells in the tumor microenvironment were GFP(+) , while the pressed tissue-patch showed that the tumor blood vessels exhibited a RFP(+) /GFP(+) double-positioning yellow. In the GFP single fluorescence labeled tumor tissue, all of cells in the microenvironment were green, including tumor edge, necrotic foci and blood vessel. Among them, CD68(+) , F4/80(+) , CD11c(+) , CD11b(+) and CD80(+) cells were observed. In the dual fluorescence labeled co-cultured cells, the phagocytosis and fusion between green host cells and red tumor cells were also observed, and these fusion cells might transfer to the malignant dendritic cells and macrophages. Conclusions: The tumor microenvironment of immune tolerance induced by GSC is not affected by the tissue types of tumor-inoculated sites, and the immune tolerance mediated by inflammatory cells is associated with the inducible malignant transformation, which may be driven by cell fusion.
The Role of Mitophagy in Innate Immunity
Gkikas, Ilias; Palikaras, Konstantinos; Tavernarakis, Nektarios
2018-01-01
Mitochondria are cellular organelles essential for multiple biological processes, including energy production, metabolites biosynthesis, cell death, and immunological responses among others. Recent advances in the field of immunology research reveal the pivotal role of energy metabolism in innate immune cells fate and function. Therefore, the maintenance of mitochondrial network integrity and activity is a prerequisite for immune system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils mitochondrial population eliminating superfluous and/or impaired organelles and mediating cellular survival and viability in response to injury/trauma and infection. Defective removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and development of inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and highlight its critical role in the innate immune system homeostasis.
Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N
2013-02-21
Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung. Copyright © 2013 Elsevier Inc. All rights reserved.
Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance.
Acharya, Dhiraj; Wang, Penghua; Paul, Amber M; Dai, Jianfeng; Gate, David; Lowery, Jordan E; Stokic, Dobrivoje S; Leis, A Arturo; Flavell, Richard A; Town, Terrence; Fikrig, Erol; Bai, Fengwei
2017-01-01
CD8 + T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8 + T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a -/- ) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8 + T cells isolated from Il17a -/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8 + T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. Interleukin-17A (IL-17A) and CD8 + T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8 + T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8 + T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8 + T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8 + T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8 + T cell functions are crucial. Copyright © 2016 American Society for Microbiology.
Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.
Xiong, Tingting; Turner, Jan-Eric
2018-03-22
Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.
B cells as multi-functional players during Mycobacterium tuberculosis infection and disease.
du Plessis, Willem J; Walzl, Gerhard; Loxton, André G
2016-03-01
Immunity to tuberculosis is still understood to be driven and maintained by T-cell derived immune responses. With a steady influx of data, it is becoming clear that B cells, the mediators of humoral immunity, have the capacity to function in roles not previously appreciated within the traditional B cell dogma. In this review we aim to discuss B cells, from its generation through to its functioning as effectors in both the innate and adaptive immune response, within the tuberculosis domain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oliphant, Christopher J; Hwang, You Yi; Walker, Jennifer A; Salimi, Maryam; Wong, See Heng; Brewer, James M; Englezakis, Alexandros; Barlow, Jillian L; Hams, Emily; Scanlon, Seth T; Ogg, Graham S; Fallon, Padraic G; McKenzie, Andrew N J
2014-08-21
Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric
2012-12-01
Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.
Immunology in the liver--from homeostasis to disease.
Heymann, Felix; Tacke, Frank
2016-02-01
The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.
Activation of B Cells by a Dendritic Cell-Targeted Oral Vaccine
Sahay, Bikash; Owen, Jennifer L.; Yang, Tao; Zadeh, Mojgan; Lightfoot, Yaíma L.; Ge, Jun-Wei; Mohamadzadeh, Mansour
2015-01-01
Production of long-lived, high affinity humoral immunity is an essential characteristic of successful vaccination and requires cognate interactions between T and B cells in germinal centers. Within germinal centers, specialized T follicular helper cells assist B cells and regulate the antibody response by mediating the differentiation of B cells into memory or plasma cells after exposure to T cell-dependent antigens. It is now appreciated that local immune responses are also essential for protection against infectious diseases that gain entry to the host by the mucosal route; therefore, targeting the mucosal compartments is the optimum strategy to induce protective immunity. However, because the gastrointestinal mucosae are exposed to large amounts of environmental and dietary antigens on a daily basis, immune regulatory mechanisms exist to favor tolerance and discourage autoimmunity at these sites. Thus, mucosal vaccination strategies must ensure that the immunogen is efficiently taken up by the antigen presenting cells, and that the vaccine is capable of activating humoral and cellular immunity, while avoiding the induction of tolerance. Despite significant progress in mucosal vaccination, this potent platform for immunotherapy and disease prevention must be further explored and refined. Here we discuss recent progress in the understanding of the role of different phenotypes of B cells in the development of an efficacious mucosal vaccine against infectious disease. PMID:24372255
Presumed primary immune-mediated neutropenia in 35 dogs: a retrospective study.
Devine, L; Armstrong, P J; Whittemore, J C; Sharkey, L; Bailiff, N; Huang, A; Rishniw, M
2017-06-01
To describe, in a cohort of dogs with presumed primary immune-mediated neutropenia, the presenting clinical characteristics, haematology results, bone marrow characteristics, therapies used (drugs and doses), clinical response to treatment, relapse and outcome at six months and one year. Multi-institutional recruited retrospective descriptive case series with voluntary submissions. Presumed immune-mediated neutropenia was diagnosed based on a neutrophil concentration <1·5×10 9 cells/L on a minimum of two complete blood counts, exclusion of other causes of neutropenia based on a diagnostic bone marrow aspirate or biopsy, and exclusion of secondary immune-mediated neutropenia. Dogs meeting these diagnostic criteria between 2006 and 2013, and that had a haematocrit of ≥29% and minimum of two complete blood clounts performed after initiation of therapy, were included. Information on 35 dogs was included. Neutropenia was less than 0·5×10 9 cells/L in most cases (21 dogs), 0·5 to ·99×10 9 cells/L in 11, and 1.0 to 1·49×10 9 cells/L in three. Eight dogs had thrombocytopenia, which was severe (<49·9×10 9 cells/L) in three. [Correction added on 23 May 2017, after first online publication: the cell numbers were incorrect due to errors in the conversion of cell measurements to international units. The numbers have been corrected throughout the article and Table 2.] Twenty-three dogs had myeloid hyperplasia, 10 dogs had myeloid hypoplasia and two dogs had normal myelopoiesis. Neutropenia resolved in 32 of 33 dogs within two weeks of starting corticosteroid therapy and in all dogs within one month. Relapse of neutropenia occurred in 12 cases within one year. Initial response of presumed primary immune-mediated neutropenia cases to corticosteroid therapy can be excellent. Long-term monitoring for relapse is warranted because 34% of cases relapsed during or after taper of immunosuppressive medications. © 2017 British Small Animal Veterinary Association.
Li, Sam X; Barrett, Bradley S; Heilman, Karl J; Messer, Ronald J; Liberatore, Rachel A; Bieniasz, Paul D; Kassiotis, George; Hasenkrug, Kim J; Santiago, Mario L
2014-07-01
Tetherin/BST-2 is a host restriction factor that could directly inhibit retroviral particle release by tethering nascent virions to the plasma membrane. However, the immunological impact of Tetherin during retrovirus infection remains unknown. We now show that Tetherin influences antiretroviral cell-mediated immune responses. In contrast to the direct antiviral effects of Tetherin, which are dependent on cell surface expression, the immunomodulatory effects are linked to the endocytosis of the molecule. Mice encoding endocytosis-competent C57BL/6 Tetherin exhibited lower viremia and pathology at 7 d postinfection with Friend retrovirus (FV) compared with mice encoding endocytosis-defective NZW/LacJ Tetherin. Notably, antiretroviral protection correlated with stronger NK cell responses. In addition, Friend retrovirus infection levels were significantly lower in wild-type C57BL/6 mice than in Tetherin knockout mice at 2 wk postinfection, and antiretroviral protection correlated with stronger NK cell and virus-specific CD8+ T cell responses. The results demonstrate that Tetherin acts as a modulator of the cell-mediated immune response against retrovirus infection in vivo.
Establishment of tumor-associated immunity requires interaction of Heat Shock Proteins with CD91
Zhou, Yu Jerry; Messmer, Michelle Nicole; Binder, Robert Julian
2014-01-01
Host antitumor adaptive immune responses are generated as a result of the body’s immunosurveillance mechanisms. How the antitumor immune response is initially primed remains unclear, given that soluble tumor antigens generally are quantitatively insufficient for cross-priming and tumors lack the classical pathogen-associated molecular patterns (PAMPs) to activate costimulation and initiate cross-priming. We explored the interaction of the tumor-derived heat-shock proteins (HSP) with their common receptor (CD91) on antigen presenting cells (APCs) as a mechanism for host-priming of T cell-mediated antitumor immunity. Using targeted genetic disruption of the interaction between HSPs and CD19, we demonstrated that specific ablation of CD91 in APCs prevented the establishment of antitumor immunity. The antitumor immunity was also inhibited when the transfer of tumor-derived HSPs to APCs was prevented using an endogenous inhibitor of CD91. Inhibition was manifested in a reduction of cross-presentation of tumor-derived antigenic peptides in the lymph nodes providing a molecular basis for the observed immunity associated with tumor development. Our findings demonstrate that early in tumor development, the HSP-CD91 pathway is critical for the establishment of antitumor immunity. PMID:24778318
Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph
2018-01-01
Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.
Cross-species malaria immunity induced by chemically attenuated parasites
Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia
2013-01-01
Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622
Role of the autonomic nervous system in rat liver regeneration.
Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing
2011-05-01
To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.
Wang, Wei; Wang, Wei-Hua; Azadzoi, Kazem M.; Su, Ning; Dai, Peng; Sun, Jianbin; Wang, Qin; Liang, Ping; Zhang, Wentao; Lei, Xiaoying; Yan, Zhen; Yang, Jing-Hua
2016-01-01
Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy. PMID:26935990
Kang, Joonsoo; Malhotra, Nidhi
2015-01-01
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177
Catano, Gabriel; Chykarenko, Zoya A; Mangano, Andrea; Anaya, J-M; He, Weijing; Smith, Alison; Bologna, Rosa; Sen, Luisa; Clark, Robert A; Lloyd, Andrew; Shostakovich-Koretskaya, Ludmila; Ahuja, Sunil K
2011-01-15
We used cutaneous delayed-type hypersensitivity responses, a powerful in vivo measure of cell-mediated immunity, to evaluate the relationships among cell-mediated immunity, AIDS, and polymorphisms in CCR5, the HIV-1 coreceptor. There was high concordance between CCR5 polymorphisms and haplotype pairs that influenced delayed-type hypersensitivity responses in healthy persons and HIV disease progression. In the cohorts examined, CCR5 genotypes containing -2459G/G (HHA/HHA, HHA/HHC, HHC/HHC) or -2459A/A (HHE/HHE) associated with salutary or detrimental delayed-type hypersensitivity and AIDS phenotypes, respectively. Accordingly, the CCR5-Δ32 allele, when paired with non-Δ32-bearing haplotypes that correlate with low (HHA, HHC) versus high (HHE) CCR5 transcriptional activity, associates with disease retardation or acceleration, respectively. Thus, the associations of CCR5-Δ32 heterozygosity partly reflect the effect of the non-▵32 haplotype in a background of CCR5 haploinsufficiency. The correlations of increased delayed-type hypersensitivity with -2459G/G-containing CCR5 genotypes, reduced CCR5 expression, decreased viral replication, and disease retardation suggest that CCR5 may influence HIV infection and AIDS, at least in part, through effects on cell-mediated immunity.
Singpiel, Alena; Kramer, Julia; Maus, Regina; Stolper, Jennifer; Bittersohl, Lara Friederike; Gauldie, Jack; Kolb, Martin; Welte, Tobias; Sparwasser, Tim; Maus, Ulrich A
2018-03-01
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in differentiation, survival and activation of myeloid and non-myeloid cells with important implications for lung antibacterial immunity. Here we examined the effect of pulmonary adenoviral vector-mediated delivery of GM-CSF (AdGM-CSF) on anti-mycobacterial immunity in M. bovis BCG infected mice. Exposure of M. bovis BCG infected mice to AdGM-CSF either applied on 6h, or 6h and 7days post-infection substantially increased alveolar recruitment of iNOS and IL-12 expressing macrophages, and significantly increased accumulation of IFNγ pos T cells and particularly regulatory T cells (Tregs). This was accompanied by significantly reduced mycobacterial loads in the lungs of mice. Importantly, diphtheria toxin-induced depletion of Tregs did not influence mycobacterial loads, but accentuated immunopathology in AdGM-CSF-exposed mice infected with M. bovis BCG. Together, the data demonstrate that AdGM-CSF therapy improves lung protective immunity against M. bovis BCG infection in mice independent of co-recruited Tregs, which however critically contribute to limit lung immunopathology in BCG-infected mice. These data may be relevant to the development of immunomodulatory strategies to limit immunopathology-based lung injury in tuberculosis in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.
Chen, Z; Lönnberg, T; Lahesmaa, R
2013-08-01
Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions. © 2013 John Wiley & Sons Ltd.
Immune changes during short-duration missions
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1993-01-01
Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.
Immune changes during short-duration missions.
Taylor, G R
1993-09-01
Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.
Webb, Tonya J.; Potter, James P.; Li, Zhiping
2011-01-01
Background/Aims Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells. Methods The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis. Results CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury. Conclusions NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity. PMID:22073248
Chemokine-mediated immune responses in the female genital tract mucosa.
Deruaz, Maud; Luster, Andrew D
2015-04-01
The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.
He, Weiqi; Kuang, Yongqin; Xing, Xuemin; Simpson, Richard J; Huang, Haidong; Yang, Tao; Chen, Jingmin; Yang, Libin; Liu, Enyu; He, Weifeng; Gu, Jianwen
2014-05-02
Three-dimensional cell culture techniques can better reflect the in vivo characteristics of tumor cells compared with traditional monolayer cultures. Compared with their 2D counterparts, 3D-cultured tumor cells showed enhanced resistance to the cytotoxic T cell-mediated immune response. However, it remains unclear whether 3D-cultured tumor cells have an enhanced resistance to NK cell cytotoxicity. In this study, a total of 363 differentially expressed proteins were identified between the 2D- and 3D-cultured U251 cells by comparative proteomics, and an immune-associated protein-protein interaction (PPI) network based on these differential proteins was constructed by bioinformatics. Within the network, HLA-E, as a molecule for inhibiting NK cell activation, was significantly up-regulated in the 3D-cultured tumor cells. Then, we found that the 3D-cultured U251 cells exhibited potent resistance to NK cell cytotoxicity in vitro and were prone to tumor formation in vivo. The resistance of the 3D-cultured tumor cells to NK cell lysis was mediated by the HLA-E/NKG2A interaction because the administration of antibodies that block either HLA-E or NKG2A completely eliminated this resistance and significantly decreased tumor formation. Taken together, our findings indicate that HLA-E up-regulation in 3D-cultured cells may result in enhanced tumor resistance to NK cell-mediated immune response.