Acoustic imprinting leads to differential 2-deoxy-D-glucose uptake in the chick forebrain.
Maier, V; Scheich, H
1983-01-01
This report describes experiments in which successful acoustic imprinting correlates with differential uptake of D-2-deoxy[14C]glucose in particular forebrain areas that are not considered primarily auditory. Newly hatched guinea chicks (Numida meleagris meleagris) were imprinted by playing 1.8-kHz or 2.5-kHz tone bursts for prolonged periods. Those chicks were considered to be imprinted who approached the imprinting stimulus (emitted from a loudspeaker) and preferred it over a new stimulus in a simultaneous discrimination test. In the 2-deoxy-D-glucose experiment all chicks, imprinted and naive, were exposed to 1.8-kHz tone bursts for 1 hr. As shown by the autoradiographic analysis of the brains, neurons in the 1.8-kHz isofrequency plane of the auditory "cortex" (field L) were activated in all chicks, whether imprinted or not. However, in the most rostral forebrain striking differences were found. Imprinted chicks showed an increased 2-deoxy-D-glucose uptake in three areas, as compared to naive chicks: (i) the lateral neostriatum and hyperstriatum ventrale, (ii) a medial magnocellular field (medial neostriatum/hyperstriatum ventrale), and (iii) the most dorsal layers of the hyperstriatum. Based on these findings we conclude that these areas are involved in the processing of auditory stimuli once they have become meaningful by experience. Images PMID:6574519
Learning-related changes in Fos-like immunoreactivity in the chick forebrain after imprinting.
McCabe, B J; Horn, G
1994-01-01
The intermediate and medial part of the hyperstriatum ventrale (IMHV) is a part of the chick forebrain that is critical for the learning process of imprinting and may be a site of information storage. Chicks were either trained on an imprinting stimulus or dark-reared. Trained chicks were classified as good or poor learners by their preference score (a measure of the strength of imprinting). A monoclonal antibody against the immediate early gene product Fos was applied to sections through IMHV and other forebrain regions. In the IMHV, significantly more immunopositive nuclei were counted in good learners than in poor learners or dark-reared chicks. There was a positive correlation between counts of labeled nuclei and preference score that was not attributable to sensory activity per se, locomotor activity during training, or a predisposition to learn well; rather, the results indicated that the change in Fos immunoreactivity in the IMHV was related to learning. In the hyperstriatum accessorium, significantly fewer immunopositive nuclei were counted in good learners than in poor learners or in dark-reared chicks. In the dorsolateral hippocampal region, more immunopositive nuclei were counted in trained than in dark-reared chicks. No significant effects of training were found in the anterior hyperstriatum ventrale, lobus parolfactorius, neostriatum, medial hippocampal region, or ventrolateral hippocampal region, but counts in this last region were positively correlated with training approach. The results for IMHV implicate Fos or Fos-related proteins in memory processes and pave the way for the identification of the cell types that show the learning-related increase in gene expression. Images PMID:7972076
Cid, Mariana Paula; Toledo, Carolina Maribel; Salvatierra, Nancy Alicia
2013-02-01
One-day-old chicks were individually assessed on their latency to peck pebbles, and categorized as low latency (LL) or high latency (HL) according to fear. Interactions between acute stress and systemic insulin and epinephrine on GABA(A) receptor density in the forebrain were studied. At 10 days of life, LL and HL chicks were intraperitoneally injected with insulin, epinephrine or saline, and immediately after stressed by partial water immersion for 15 min and killed by decapitation. Forebrains were dissected and the GABA(A) receptor density was measured ex vivo by the (3)[H]-flunitrazepam binding assay in synaptosomes. In non-stressed chicks, insulin (non-hypoglycemic dose) at 2.50 IU/kg of body weight incremented the Bmax by 40.53% in the HL chicks compared to saline group whereas no significant differences were observed between individuals in the LL subpopulation. Additionally, insulin increased the Bmax (23.48%) in the HL group with respect to the LL ones, indicating that the insulin responses were different according to the anxiety of each category. Epinephrine administration (0.25 and 0.50mg/kg) incremented the Bmax in non-stressed chicks, in the LL group by about 37% and 33%, respectively, compared to ones injected with saline. In the stressed chicks, 0.25mg/kg bw epinephrine increased the Bmax significantly in the HL group by about 24% compared to saline, suggesting that the effect of epinephrine was only observed in the HL group under acute stress conditions. Similarly, the same epinephrine doses co-administered with insulin increased the receptor density in both subpopulations and also showed that the highest dose of epinephrine did not further increase the maximum density of GABA(A)R in HL chicks. These results suggest that systemic epinephrine, perhaps by evoking central norepinephrine release, modulated the increase in the forebrain GABA(A) receptor recruitment induced by both insulin and stress in different ways depending on the subpopulation fearfulness. Copyright © 2013 Elsevier Inc. All rights reserved.
Neuro-economics in chicks: foraging choices based on amount, delay and cost.
Matsushima, Toshiya; Kawamori, Ai; Bem-Sojka, Tiaza
2008-06-15
Studies on the foraging choices are reviewed, with an emphasis on the neural representations of elementary factors of food (i.e., amount, delay and consumption time) in the avian brain. Domestic chicks serve as an ideal animal model in this respect, as they quickly associate cue colors with subsequently supplied food rewards, and their choices are quantitatively linked with the rewards. When a pair of such color cues was simultaneously presented, the trained chicks reliably made choices according to the profitability of food associated with each color. Two forebrain regions are involved in distinct aspects of choices; i.e., nucleus accumbens-medial striatum (Ac-MSt) and arcopallium intermedium (AI), an association area in the lateral forebrain. Localized lesions of Ac-MSt enhanced delay aversion, and the ablated chicks made impulsive choices of immediate reward more frequently than sham controls. On the other hand, lesions of AI enhanced consumption-time aversion, and the ablated chicks shifted their choices toward easily consumable reward with their impulsiveness unchanged; delay and consumption time are thus doubly dissociated. Furthermore, chicks showed distinct patterns of risk-sensitive choices depending on the factor that varied at trials. Risk aversion occurred when food amount varied, whereas consistent risk sensitivity was not found when the delay varied; amount and delay were not interchangeable. Choices are thus deviated from those predicted as optima. Instead, factors such as amount, delay and consumption time could be separately represented and processed to yield economically sub-optimal choices.
Solomonia, Revaz O; Apkhazava, David; Nozadze, Maia; Jackson, Antony P; McCabe, Brian J; Horn, Gabriel
2008-06-01
There is strong evidence that a restricted part of the chick forebrain, the IMM (formerly IMHV), stores information acquired through the learning process of visual imprinting. Twenty-four hours after imprinting training, a learning-specific increase in amount of myristoylated, alanine-rich C-kinase substrate (MARCKS) protein is known to occur in the homogenate fraction of IMM. We investigated the two components of this fraction, membrane-bound and cytoplasmic-phosphorylated MARCKS. In IMM, amount of membrane-bound MARCKS, but not of cytoplasmic-phosphorylated MARCKS, increased as chicks learned. No changes were observed for either form of MARCKS in PPN, a control forebrain region. The results indicate that there is a learning-specific increase in membrane-bound, non-phosphorylated MARCKS 24 h after training. This increase might contribute to stabilization of synaptic morphology.
Mechanical Effects of the Surface Ectoderm on Optic Vesicle Morphogenesis in the Chick Embryo
Hosseini, Hadi S.; Beebe, David C.; Taber, Larry A.
2014-01-01
Precise shaping of the eye is crucial for proper vision. Here, we use experiments on chick embryos along with computational models to examine the mechanical factors involved in the formation of the optic vesicles (OVs), which grow outward from the forebrain of the early embryo. First, mechanical dissections were used to remove the surface ectoderm (SE), a membrane that contacts the outer surfaces of the OVs. Principal components analysis of OV shapes suggests that the SE exerts asymmetric loads that cause the OVs to flatten and shear caudally during the earliest stages of eye development and later to bend in the caudal and dorsal directions. These deformations cause the initially spherical OVs to become pear-shaped. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that cytoskeletal contraction controls OV shape by regulating tension in the SE. To test the physical plausibility of these interpretations, we developed 2-D finite-element models for frontal and transverse cross-sections of the forebrain, including frictionless contact between the SE and OVs. With geometric data used to specify differential growth in the OVs, these models were used to simulate each experiment (control, SE removed, no contraction). For each case, the predicted shape of the OV agrees reasonably well with experiments. The results of this study indicate that differential growth in the OV and external pressure exerted by the SE are suffcient to cause the global changes in OV shape observed during the earliest stages of eye development. PMID:25458577
Town, Stephen Michael
2011-08-01
Filial imprinting was originally proposed to be an irreversible process by which a young animal forms a preference for an object experienced early in life. The present study examined the effects of experience after imprinting on the stability of preferences of domestic chicks (Gallus gallus domesticus) for an imprinting stimulus by rearing imprinted chicks socially or in isolation. Chicks reared socially or in isolation retained preferences for the imprinting stimulus; however, social rearing weakened the strength of preferences. The responses of neurons within the intermediate and medial mesopallium--a forebrain region necessary for imprinting were also recorded in socially reared and isolated chicks when presented with the visual component of the imprinting stimulus and novel object. Consistent with existing findings, neurons recorded from isolated chicks responded more strongly to the imprinting stimulus than novel object. However, social rearing diminished the disparity between responses to stimuli such that neurons recorded from socially reared chicks responded similarly to the imprinting stimulus and novel object. These findings suggest that social rearing may impair the retention of preferences formed during imprinting through mechanisms involving the IMM.
MULTIPLE POWER DENSITY WINDOWS AND THEIR POSSIBLE ORIGIN
We have previously reported that in vitro exposure of chick forebrain tissue to 50-Mz radiofrequency (RF) radiation, amplitude modulated (AM) at 16 Hz, would enhance the efflux of calcium ions only within two power density ranges: one spanning from 1.44 to 1.67 mW/cm2, and the ot...
Hofmann, H; Braun, K
1995-05-26
The persistence of morphological features of neurons in slice cultures of the imprinting-relevant forebrain area MNH (mediorostral neostriatum and hyperstriatum ventrale) of the domestic chick was analysed at 7, 14, 21 and 28 days in vitro. After having been explanted and kept in culture the neurons in vitro have larger soma areas, longer and more extensively branched dendritic trees and lower spine frequencies compared to the neurons in vivo. During the analyzed culturing period, the parameters soma area, total and mean dendritic length, number of dendrites, number of dendritic nodes per dendrite and per neuron as well as the spine densities in different dendritic segments showed no significant differences between early and late periods. Highly correlated in every age group were the total dendritic length and the number of dendritic nodes per neuron, indicating regular ramification during dendritic growth. Since these morphological parameters remain stable during the first 4 weeks in vitro, this culture system may provide a suitable model to investigate experimentally induced morphological changes.
Contraction and stress-dependent growth shape the forebrain of the early chicken embryo.
Garcia, Kara E; Okamoto, Ruth J; Bayly, Philip V; Taber, Larry A
2017-01-01
During early vertebrate development, local constrictions, or sulci, form to divide the forebrain into the diencephalon, telencephalon, and optic vesicles. These partitions are maintained and exaggerated as the brain tube inflates, grows, and bends. Combining quantitative experiments on chick embryos with computational modeling, we investigated the biophysical mechanisms that drive these changes in brain shape. Chemical perturbations of contractility indicated that actomyosin contraction plays a major role in the creation of initial constrictions (Hamburger-Hamilton stages HH11-12), and fluorescent staining revealed that F-actin is circumferentially aligned at all constrictions. A finite element model based on these findings shows that the observed shape changes are consistent with circumferential contraction in these regions. To explain why sulci continue to deepen as the forebrain expands (HH12-20), we speculate that growth depends on wall stress. This idea was examined by including stress-dependent growth in a model with cerebrospinal fluid pressure and bending (cephalic flexure). The results given by the model agree with observed morphological changes that occur in the brain tube under normal and reduced eCSF pressure, quantitative measurements of relative sulcal depth versus time, and previously published patterns of cell proliferation. Taken together, our results support a biphasic mechanism for forebrain morphogenesis consisting of differential contractility (early) and stress-dependent growth (late). Copyright © 2016 Elsevier Ltd. All rights reserved.
Suge, R; McCabe, B J
2004-01-01
Early stages of memory formation in filial imprinting were studied in domestic chicks. Chicks trained for 15 min showed strong imprinting, demonstrated by a strong preference for their training stimulus, and the time course of this preference over 2 days after training was similar to that of chicks trained for 60 min. The chicks therefore learned characteristics of the training stimulus very early during training. The intermediate and medial hyperstriatum ventrale (IMHV) is a part of the chick forebrain that is crucial for imprinting. Previous experiments have shown a learning-specific increase in Fos-like immunoreactivity, used as a marker of neuronal activity, in the IMHV after training for 60 min. The time course of Fos expression in the IMHV was measured after training for 15 min and 60 min. The same pattern of expression was found for both training times, showing a peak 120 min after the start of training. The time course of expression was stimulus-dependent. Fos expression in the IMHV, but not the hippocampus, was significantly correlated with strength of imprinting. It is concluded that the learning-specific change in Fos expression in the IMHV is associated with very early components of memory formation.
Establishment of a Long-Term Chick Forebrain Neuronal Culture on a Microelectrode Array Platform
Kuang, Serena Y.; Huang, Ting; Wang, Zhonghai; Lin, Yongliang; Kindy, Mark; Xi, Tingfei; Gao, Bruce Z.
2016-01-01
The biosensor system formed by culturing primary animal neurons on a microelectrode array (MEA) platform is drawing an increasing research interest for its power as a rapid, sensitive, functional neurotoxicity assessment, as well as for many other electrophysiological related research purposes. In this paper, we established a long-term chick forebrain neuron culture (C-FBN-C) on MEAs with a more than 5 month long lifespan and up to 5 month long stability in morphology and physiological function; characterized the C-FBN-C morphologically, functionally, and developmentally; partially compared its functional features with rodent counterpart; and discussed its pros and cons as a novel biosensor system in comparison to rodent counterpart and human induced pluripotent stem cells (hiPSCs). Our results show that C-FBN-C on MEA platform 1) can be used as a biosensor of its own type in a wide spectrum of basic biomedical research; 2) is of value in comparative physiology in cross-species studies; and 3) may have potential to be used as an alternative, cost-effective approach to rodent counterpart within shared common functional domains (such as specific types of ligand-gated ion channel receptors and subtypes expressed in the cortical tissues of both species) in large-scale environmental neurotoxicant screening that would otherwise require millions of animals. PMID:26989485
Opiate modulation of monoamines in the chick forebrain: possible role in emotional regulation?
Baldauf, K; Braun, K; Gruss, M
2005-02-05
Numerous studies have shown that the opiate system is crucially involved in emotionally guided behavior. In the present study, we focussed on the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of the chick forebrain. This avian prefrontal cortex analogue is critically involved in auditory filial imprinting, a well-characterized juvenile emotional learning event. The high density of mu-opiate receptors expressed in the MNH led to the hypothesis that mu-opiate receptor-mediated processes may modulate the glutamatergic, dopaminergic, and/or serotonergic neurotransmission within the MNH and thereby have a critical impact on filial imprinting. Using microdialysis and pharmaco-behavioral approaches in young chicks, we demonstrated that: the systemic application of the mu-opiate receptor antagonist naloxone (5, 50 mg/kg) significantly increased extracellular levels of 5-HIAA and HVA; the systemic application of the specific mu-opiate receptor agonist DAGO (5 mg/kg) increased the levels of HVA and taurine, an effect that was antagonized by simultaneously applied naloxone (5 mg/kg); the local application of DAGO (1 mM) had no effects on 5-HIAA, HVA, glutamate, and taurine, however, the effects of systemically injected naloxone (5 mg/kg) were abolished by simultaneously applied DAGO (1 mM); the systemic application of naloxone (5 mg/kg) increased distress behavior (measured as the duration of distress vocalization during separation from the peer group). These results are in line with our hypothesis that the mu-opiate receptor-mediated modulation of serotonergic and dopaminergic neurotransmission alters the emotional and motivational status of the animal and thereby may play a modulatory role during filial imprinting in the newborn animal. 2004 Wiley Periodicals, Inc
Gruss, M; Bock, J; Braun, K
2003-11-01
In vivo microdialysis and behavioural studies in the domestic chick have shown that glutamatergic as well as monoaminergic neurotransmission in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) is altered after auditory filial imprinting. In the present study, using pharmaco-behavioural and in vivo microdialysis approaches, the role of dopaminergic neurotransmission in this juvenile learning event was further evaluated. The results revealed that: (i) the systemic application of the potent dopamine receptor antagonist haloperidol (7.5 mg/kg) strongly impairs auditory filial imprinting; (ii) systemic haloperidol induces a tetrodotoxin-sensitive increase of extracellular levels of the dopamine metabolite, homovanillic acid, in the MNH, whereas the levels of glutamate, taurine and the serotonin metabolite, 5-hydroxyindole-3-acetic acid, remain unchanged; (iii) haloperidol (0.01, 0.1, 1 mm) infused locally into the MNH increases glutamate, taurine and 5- hydroxyindole-3-acetic acid levels in a dose-dependent manner, whereas homovanillic acid levels remain unchanged; (iv) systemic haloperidol infusion reinforces the N-methyl-d-aspartate receptor-mediated inhibitory modulation of the dopaminergic neurotransmission within the MNH. These results indicate that the modulation of dopaminergic function and its interaction with other neurotransmitter systems in a higher associative forebrain region of the juvenile avian brain displays similar neurochemical characteristics as the adult mammalian prefrontal cortex. Furthermore, we were able to show that the pharmacological manipulation of monoaminergic regulatory mechanisms interferes with learning and memory formation, events which in a similar fashion might occur in young or adult mammals.
Hamasu, Kousuke; Shigemi, Kazutaka; Kabuki, Yusuke; Tomonaga, Shozo; Denbow, D Michael; Furuse, Mitsuhiro
2009-08-21
Using microdialysis, we investigated the effect of l-proline on monoamine release in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of freely moving and restricted chicks. A 30 min handling-stress resulted in a significant increase in extracellular homovallinic acid (HVA), a dopamine metabolite, and 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, in the MNH. l-Proline, perfused through the microdialysis probe into the MNH during the stressed condition, significantly attenuated the average dialysate concentration of HVA produced by handling-stress. Handling-stress resulted in a significant increase in 5-HIAA levels in the control group, which were attenuated by profusion with l-proline. l-Proline did not significantly modify basal concentrations of HVA or 5-HIAA in the MNH during control conditions. These results show that perfusion of l-proline modified the turnover/metabolism of dopamine and serotonin in the MNH caused by handling-stress.
Thode, C; Bock, J; Braun, K; Darlison, M G
2005-01-01
The immediate-early gene zenk (an acronym for the avian orthologue of the mammalian genes zif-268, egr-1, ngfi-a and krox-24) has been extensively employed, in studies on oscine birds, as a marker of neuronal activity to reveal forebrain structures that are involved in the memory processes associated with the acquisition, perception and production of song. Audition-induced expression of this gene, in brain, has also recently been reported for the domestic chicken (Gallus gallus domesticus) and the Japanese quail (Coturnix coturnix japonica). Whilst the anatomical distribution of zenk expression was described for the quail, corresponding data for the chicken were not reported. We have, therefore, used in situ hybridisation to localise the mRNA that encodes the product of the zenk gene (which we call ZENK) within the brain of the 1-day-old chick. We demonstrate that this transcript is present in a number of forebrain structures including the medio-rostral neostriatum/hyperstriatum ventrale (MNH), a region that has been strongly implicated in auditory imprinting (which is a form of recognition memory), and Field L, the avian analog of the mammalian auditory cortex. Because of this pattern of gene expression, we have compared the level of the ZENK mRNA in chicks that have been subjected to a 30-min acoustic imprinting paradigm and in untrained controls. Our results reveal a significant increase (P< or =0.05) in the level of the ZENK mRNA in MNH and Field L, and in the two forebrain hemispheres; no increase was seen in the ectostriatum, which is a visual projection area. The data obtained implicate the immediate-early gene, zenk, in auditory imprinting, which is an established model of juvenile learning. In addition, our results indicate that the ZENK mRNA may be used as a molecular marker for MNH, a region that is difficult to anatomically and histochemically delineate.
Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.
Gibbs, M E; Johnston, G A R
2005-01-01
The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.
Wilson, D J; Kim, D S; Clarke, G A; Marshall-Clarke, S; Moss, D J
1996-12-01
We have previously identified a glycosylphosphatidylinositol-linked glycoprotein of 55 kDa (GP55) which inhibits neurite outgrowth. We now provide evidence that GP55, isolated from adult chick brain, consists of at least two bands, both of which are active, i.e., block outgrowth of neurites from chick dorsal root ganglion neurons. An antiserum raised against the adult proteins reverses the inhibition and preliminary experiments suggest that GP55 is restricted to the nervous system, increases during development from very low levels at embryonic day 10 and is most abundant after hatching. Immunofluorescence reveals that GP55 is expressed on neurons cultured from an embryonic day 14 chick brain but is barely detectable on embryonic day 10 dorsal root ganglion neurons or embryonic day 8 forebrain neurons; the neurons which respond to substrate-bound GP55. Peptide sequencing revealed considerable homology with OBCAM, a protein previously identified on the basis of binding opiates. Nested polymerase chain reaction using primers to the OBCAM sequence and internal primers to GP55 peptides produced two different polymerase chain reaction fragments with homology to OBCAM. A full length clone (E19S) corresponding to one polymerase chain reaction product and a partial length clone (E14S) corresponding to the second have been isolated from an embryonic chick brain library. Both are members of the immunoglobulin superfamily and have (or are expected to have) three C2 domains. E19S has 90% homology with LAMP at the amino acid level. This sequence only partially matches the peptides from the adult protein and hence is probably not a major component of the adult proteins. E14S (GP55-A) has 83% homology to OBCAM at the amino acid level over the region sequenced. The sequence matches several of the peptides from the adult protein and is hence likely to correspond to a major component of the adult proteins. Thus members of the GP55 family are related to OBCAM, neurotrimin, LAMP and a recently discovered chick protein CEPU-1. Our results suggest molecules within this family are capable of acting as cell adhesion molecules and inhibitors of neurite outgrowth.
Solomonia, Revaz O; Meparishvili, Maia; Mikautadze, Ekaterine; Kunelauri, Nana; Apkhazava, David; McCabe, Brian J
2013-04-01
There is strong evidence that a restricted part of the chick forebrain, the intermediate medial mesopallium (IMM), stores information acquired through the learning process of visual imprinting. We have previously demonstrated that at 1 h but not 24 h after imprinting training, a learning-specific increase in the amount of membrane Thr286-autophosphorylated α-calcium/calmodulin-dependent protein kinase II (αCaMKII), and in the proportion of total αCaMKII that is phosphorylated, occurs in the IMM but not in a control brain region, the posterior pole of the nidopallium (PPN). αCaMKII directly phosphorylates Ser831 in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. In the present study we have inquired whether the learning-related increase in αCaMKII autophosphorylation is followed by changes in the Ser831 phosphorylation of GluA1 (P-GluA1) and in the total amount of this subunit (T-GluA1). Trained chicks together with untrained control chicks were killed either 1 or 24 h after training. Tissue was removed from the IMM together with tissue from the PPN as a control. Amounts of P-GluA1 and T-GluA1 were measured. In the left IMM of the 1 h group the P-GluA1/T-GluA1 ratio increased in a learning-specific way. No learning-related changes were observed in other brain regions at 1 h or in any region 24 h after training. The results indicate that a time- and regionally-dependent, learning-specific increase in GluA1 phosphorylation occurs early in recognition memory formation.
Endepols, H; Jungnickel, J; Braun, K
2001-01-01
Cocultures of the learning-relevant forebrain region mediorostral neostriatum and hyperstriatum ventrale (MNH) and its main glutamatergic input area nucleus dorsomedialis anterior thalami/posterior thalami were morphologically and physiologically characterized. Synaptic contacts of thalamic fibers were light- and electron-microscopically detected on MNH neurons by applying the fluorescence tracer DiI-C18(3) into the thalamus part of the coculture. Most thalamic synapses on MNH neurons were symmetric and located on dendritic shafts, but no correlation between Gray-type ultrastructure and dendritic localization was found. Using intracellular current clamp recordings, we found that the electrophysiological properties, such as input resistance, time constant, action potential threshold, amplitude, and duration of MNH neurons, remain stable for over 30 days in vitro. Pharmacological blockade experiments revealed glutamate as the main neurotransmitter of thalamic synapses on MNH neurons, which were also found on inhibitory neurons. High frequency stimulation of thalamic inputs evoked synaptic potentiation in 22% of MNH neurons. The results indicate that DMA/DMP-MNH cocultures, which can be maintained under stable conditions for at least 4 weeks, provide an attractive in vitro model for investigating synaptic plasticity in the avian brain.
Endepols, Heike; Jungnickel, Julia; Braun, Katharina
2001-01-01
Cocultures of the learning-relevant forebrain region mediorostrai neostriatum and hyperstriatum ventrale (MNH) and its main glutamatergic input area nucleus dorsomedialis anterior thalami/posterior thalami were morphologically and physiologically characterized. Synaptic contacts of thalamic fibers were lightand electron-microscopically detected on MNH neurons by applying the fluorescence tracer DiI-C18(3) into the thalamus part of the coculture. Most thalamic synapses on MNH neurons were symmetric and located on dendritic shafts, but no correlation between Gray-type ultrastructure and dendritic localization was found. Using intraceilular current clamp recordings, we found that the electrophysiological properties, such as input resistance, time constant, action potential threshold, amplitude, and duration of MNH neurons, remain stable for over 30 days in vitro. Pharmacological blockade experiments revealed glutamate as the main neurotransmitter of thalamic synapses on MNH neurons, which were also found on inhibitory neurons. High frequency stimulation of thalamic inputs evoked synaptic potentiation in 22% of MNH neurons. The results indicate that DMA/DMP-MNH cocultures, which can be maintained under stable conditions for at least 4 weeks, provide an attractive in vitro model for investigating synaptic plasticity in the avian brain. PMID:12018771
Homozygous STIL Mutation Causes Holoprosencephaly and Microcephaly in Two Siblings
Mouden, Charlotte; de Tayrac, Marie; Dubourg, Christèle; Rose, Sophie; Carré, Wilfrid; Hamdi-Rozé, Houda; Babron, Marie-Claude; Akloul, Linda; Héron-Longe, Bénédicte; Odent, Sylvie; Dupé, Valérie; Giet, Régis; David, Véronique
2015-01-01
Holoprosencephaly (HPE) is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.2150G>A; p.Gly717Glu) in STIL, common to the two affected children. STIL has a role in centriole formation and has previously been described in rare cases of microcephaly. Rescue experiments in U2OS cells showed that the STIL p.Gly717Glu mutation was not able to fully restore the centriole duplication failure following depletion of endogenous STIL protein indicating the deleterious role of the mutation. In situ hybridization experiments using chick embryos demonstrated that expression of Stil was in accordance with a function during early patterning of the forebrain. It is only the second time that a STIL homozygous mutation causing a recessive form of HPE was reported. This result also supports the genetic heterogeneity of HPE and increases the panel of genes to be tested for HPE diagnosis. PMID:25658757
Apoptosis generates mechanical forces that close the lens vesicle in the chick embryo
NASA Astrophysics Data System (ADS)
Oltean, Alina; Taber, Larry A.
2018-03-01
During the initial stages of eye development, optic vesicles grow laterally outward from both sides of the forebrain and come into contact with the surrounding surface ectoderm (SE). Within the region of contact, these layers then thicken locally to create placodes and invaginate to form the optic cup (primitive retina) and lens vesicle (LV), respectively. This paper examines the biophysical mechanisms involved in LV formation, which consists of three phases: (1) lens placode formation; (2) invagination to create the lens pit (LP); and (3) closure to form a complete ellipsoidally shaped LV. Previous studies have suggested that extracellular matrix deposited between the SE and optic vesicle causes the lens placode to form by locally constraining expansion of the SE as it grows, while actomyosin contraction causes this structure to invaginate. Here, using computational modeling and experiments on chick embryos, we confirm that these mechanisms for Phases 1 and 2 are physically plausible. Our results also suggest, however, that they are not sufficient to close the LP during Phase 3. We postulate that apoptosis provides an additional mechanism by removing cells near the LP opening, thereby decreasing its circumference and generating tension that closes the LP. This hypothesis is supported by staining that shows a ring of cell death located around the LP opening during closure. Inhibiting apoptosis in cultured embryos using caspase inhibitors significantly reduced LP closure, and results from a finite-element model indicate that closure driven by cell death is plausible. Taken together, our results suggest an important mechanical role for apoptosis in lens development.
McCabe, B J; Horn, G
1988-01-01
An extensive series of experiments has implicated a restricted region of the chick forebrain in the learning process of imprinting. The region is the intermediate and medial part of the hyperstriatum ventrale (IMHV). Previous studies have shown that training is associated with an increase in the area of the postsynaptic density of axospinous synapses in the left but not the right IMHV. The postsynaptic density is a site of high receptor density, and at least some axospinous synapses are excitatory. We found that imprinting is associated with a 59% increase in N-methyl-D-aspartate-sensitive binding of the excitatory amino acid L-[3H]glutamic acid in the left IMHV. The increase is probably due to an increased number of binding sites. The profile of sensitivity of the sites to a series of amino-, phosphono-substituted carboxylic acids (2-amino-3-phosphonopropionate to 2-amino-8-phosphonooctanoate) is characteristic of N-methyl-D-aspartate-type receptors. There were no significant effects of training on binding in the right IMHV. The effect of training on left IMHV binding could not be attributed to light exposure, arousal, or motor activity per se but was a function of how much the chicks learned. The changes in the left IMHV could increase the effectiveness of synaptic transmission in a region crucial for information storage and so form a neural basis for recognition memory. PMID:2833757
A novel and sensitive radioreceptor assay for serum melatonin levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenn, C.; Niles, L.
A simple and sensitive radioreceptor assay (RRA) has been developed to measure melatonin levels in serum. The assay is based on competition between 2-({sup 125}I)iodomelatonin (({sup 125}I)MEL) and melatonin for binding to high-affinity binding sites in chick forebrain. To measure the amount of melatonin present in a serum sample, it was extracted with dichloromethane and added to the assay medium. The percentage inhibition of radioligand binding in the presence of the extracted serum was determined and compared to the percent displacement by known amounts of melatonin in a standard curve. There was little or no cross-reactivity with other structurally relatedmore » compounds. The sensitivity of the assay is {approximately}1.5pg/0.15 mL and the intra- and inter-assay variations are approximately 8%. Since the RRA results are comparable to that of an established radioimmunoassay (RIA), it provides a sensitive and rapid alternative to the more time consuming RIA.« less
Amino acid neurotransmitter release and learning: a study of visual imprinting.
Meredith, R M; McCabe, B J; Kendrick, K M; Horn, G
2004-01-01
The intermediate and medial part of the hyperstriatum ventrale (IMHV) is an area of the domestic chick forebrain that stores information acquired through the learning process of imprinting. The effects of visual imprinting on the release of the amino acids aspartate, arginine, citrulline, gamma-aminobutyric acid (GABA), glutamate, glycine and taurine from the left and right IMHVs in vitro were measured at 3.5, 10 and 24 h after training. Chicks were exposed to an imprinting stimulus for 1 h, their preferences measured 10 min afterward and a preference score calculated as a measure of the strength of learning. Potassium stimulation was used to evoke amino acid release from the IMHVs of trained and untrained chicks in the presence and absence of extracellular Ca2+. Ca2+-dependent, K+-evoked release of glutamate was significantly (34.4%) higher in trained than in untrained chicks. This effect was not influenced by time after training or by side (left or right IMHV). Training influenced the evoked release of GABA and taurine from the left IMHV at both 3.5 and 10 h. The training effects at the two times were statistically homogeneous so data (< or = 10 h group) were combined for each amino acid respectively. For this < or = 10 h group, evoked release increased significantly with preference score. In contrast, for the 24 h group, evoked release of GABA and taurine was not significantly correlated with preference score. There were no significant correlations between preference score and GABA or taurine release in the right IMHV at any time, nor in the absence of extracellular calcium. No significant effects of training condition, time or side were observed for any other amino acid in the study. The present findings suggest that soon after chicks have been exposed to an imprinting stimulus glutamatergic excitatory transmission in IMHV is enhanced, and remains enhanced for at least 24 h. In contrast, the learning-related elevations in taurine and GABA release are not sustained over this period. The change in GABA release may reflect a transient increase in inhibitory transmission in the left IMHV. Copyright 2004 IBRO
Gastón, M S; Cid, M P; Salvatierra, N A
2017-03-01
Ghrelin is a peptide of 28 amino acids with a homology between species, which acts on the central nervous system to regulate different actions, including the control of growth hormone secretion and metabolic regulation. It has been suggested that central ghrelin is a mediator of behavior linked to stress responses and induces anxiety in rodents and birds. Previously, we observed that the anxiogenic-like behavior induced by ghrelin injected into the intermediate medial mesopallium (IMM) of the forebrain was blocked by bicuculline (a GABA A receptor competitive antagonist) but not by diazepam (a GABA A receptor allosteric agonist) in neonatal meat-type chicks (Cobb). Numerous studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activation mediates the response to stress in mammals and birds. However, it is still unclear whether this effect of ghrelin is associated with HPA activation. Therefore, we investigated whether anxiety behavior induced by intra-IMM ghrelin and mediated through GABA A receptors could be associated with HPA axis activation in the neonatal chick. In the present study, in an Open Field test, intraperitoneal bicuculline methiodide blocked anxiogenic-like behavior as well as the increase in plasma ACTH and corticosterone levels induced by ghrelin (30pmol) in neonatal chicks. Moreover, we showed for the first time that a competitive antagonist of GABA A receptor suppressed the HPA axis activation induced by an anxiogenic dose of ghrelin. These results show that the anxiogenic ghrelin action involves the activation of the HPA axis, with a complex functional interaction with the GABA A receptor. Copyright © 2016 Elsevier B.V. All rights reserved.
Volume of the human septal forebrain region is a predictor of source memory accuracy.
Butler, Tracy; Blackmon, Karen; Zaborszky, Laszlo; Wang, Xiuyuan; DuBois, Jonathan; Carlson, Chad; Barr, William B; French, Jacqueline; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric; Thesen, Thomas
2012-01-01
Septal nuclei, components of basal forebrain, are strongly and reciprocally connected with hippocampus, and have been shown in animals to play a critical role in memory. In humans, the septal forebrain has received little attention. To examine the role of human septal forebrain in memory, we acquired high-resolution magnetic resonance imaging scans from 25 healthy subjects and calculated septal forebrain volume using recently developed probabilistic cytoarchitectonic maps. We indexed memory with the California Verbal Learning Test-II. Linear regression showed that bilateral septal forebrain volume was a significant positive predictor of recognition memory accuracy. More specifically, larger septal forebrain volume was associated with the ability to recall item source/context accuracy. Results indicate specific involvement of septal forebrain in human source memory, and recall the need for additional research into the role of septal nuclei in memory and other impairments associated with human diseases.
Keeping it regular: Development of thermoregulation in four tropical seabird species.
Hart, Lorinda A; Downs, Colleen T; Brown, Mark
2017-02-01
The thermoregulatory capacity of a species can determine which climatic niche it occupies. Its development in avian chicks is influenced by numerous factors. Furthermore, it is suggested that altricial chicks develop their thermoregulatory capacity post-hatching, while precocial chicks develop aspects of this in the egg. We investigated the development of thermoregulation of four co-occurring seabird species in the Seychelles; namely white, ground-nesting white-tailed tropicbirds (Phaethon lepturus) and tree-nesting fairy terns (Gygis alba); and dark plumaged, tree-nesting lesser noddies (Anous tenuirostris) and ground- and tree-nesting brown noddies (A. stolidus). White-tailed tropicbirds have semi-altricial chicks, while the remaining species have semi-precocial chicks. Cloacal temperatures (T b ) were measured at five day intervals from newly hatched chicks and compared over time, and with adult T b s. Initial T b s of all chicks, except fairy terns, were lower than those taken when chicks were older. Brooding cessation generally coincided with feather development, as did an increase in T b. Mean chick T b was significantly lower than mean adult T b for all species, but only white-tailed tropicbird and brown noddy chicks in tree nests differed significantly from mean adult T b when chick T b at five day intervals were considered. There was a significant interactive effect of nest site and age on brown noddy chick T b, but chick colour did not have a significant effect on T b . However, brown noddy chicks on dune crests maintained a constant T b sooner than chicks in tree nests. Our results demonstrate that tropical seabird species have a more delayed onset of thermoregulatory capabilities when compared with those in temperate environments, perhaps as nest sites are less thermally challenging. Nest microhabitats and behavioural thermoregulation, are likely more important during early chick development for these species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brood size can influence maternal behaviour and chick's development in precocial birds.
Aigueperse, Nadège; Pittet, Florent; de Margerie, Emmanuel; Nicolle, Céline; Houdelier, Cécilia; Lumineau, Sophie
2017-05-01
Mothers have a crucial influence on offspring development. Variations of maternal behaviour can be due to numerous parameters, for instance costs are related to the size of a brood/litter, which in turn can influence the level of mothers' investment in each offspring. Here we investigated the influence of brood size on the behaviour of Japanese quail mothers and chicks during the mothering period and on offspring development. We compared two types of broods: small broods of three chicks (N=9) and large broods of six chicks (N=9). Behavioural tests assessed chicks' social and emotional traits. Mothers of large broods emitted more maternal vocalisations at the beginning of the mothering period, but at the end they assumed more non-covering postures and trampled chicks more than mothers of small broods. Chicks in large broods huddled up more whereas chicks in small broods rested alone more frequently. Moreover, the social motivation of chicks in large broods was higher than that of chicks in small broods, although their emotional reactivity levels were similar. Our results evidence the importance of brood size for maintaining family cohesion and the influence of brood size on chicks' interactions with their siblings. We evaluated the influence of mothers and siblings on chicks' behavioural development. Copyright © 2017 Elsevier B.V. All rights reserved.
Genomic Perspectives of Transcriptional Regulation in Forebrain Development
Nord, Alex S.; Pattabiraman, Kartik; Visel, Axel; ...
2015-01-07
The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. We report that recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Here, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution ofmore » the human brain.« less
Placenta-derived hypo-serotonin situations in the developing forebrain cause autism.
Sato, Kohji
2013-04-01
Autism is a pervasive developmental disorder that is characterized by the behavioral traits of impaired social cognition and communication, and repetitive and/or obsessive behavior and interests. Although there are many theories and speculations about the pathogenetic causes of autism, the disruption of the serotonergic system is one of the most consistent and well-replicated findings. Recently, it has been reported that placenta-derived serotonin is the main source in embryonic day (E) 10-15 mouse forebrain, after that period, the serotonergic fibers start to supply serotonin into the forebrain. E 10-15 is the very important developing period, when cortical neurogenesis, migration and initial axon targeting are processed. Since all these events have been considered to be involved in the pathogenesis of autism and they are highly controlled by serotonin signals, the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. I, thus, postulate a hypothesis that placenta-derived hypo-serotonin situations in the developing forebrain cause autism. The hypothesis is as follows. Various factors, such as inflammation, dysfunction of the placenta, together with genetic predispositions cause a decrease of placenta-derived serotonin levels. The decrease of placenta-derived serotonin levels leads to hypo-serotonergic situations in the forebrain of the fetus. The paucity of serotonin in the forebrain leads to mis-wiring in important regions which are responsible for the theory of mind. The paucity of serotonin in the forebrain also causes over-growth of serotonergic fibers. These disturbances result in network deficiency and aberration of the serotonergic system, leading to the autistic phenotypes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yalcin, S; Gursel, I; Bilgen, G; Izzetoglu, G T; Horuluoglu, B H; Gucluer, G
2016-05-01
In recent years, researchers have given emphasis on the differences in physiological parameters between early and late hatched chicks within a hatch window. Considering the importance of intestine development in newly hatched chicks, however, changes in gene expression of nutrient transporters in the jejunum of early hatched chicks within a hatch window have not been studied yet. This study was conducted to determine the effects of egg storage duration before incubation and hatch window on intestinal development and expression of PepT1 (H+-dependent peptide transporter) and SGLT1 (sodium-glucose co-transporter) genes in the jejunum of early hatched broiler chicks within a 30 h of hatch window. A total of 1218 eggs obtained from 38-week-old Ross 308 broiler breeder flocks were stored for 3 (ES3) or 14 days (ES14) and incubated at the same conditions. Eggs were checked between 475 and 480 h of incubation and 40 chicks from each egg storage duration were weighed; chick length and rectal temperature were measured. The chicks were sampled to evaluate morphological parameters and PepT1 and SGLT1 expression. The remaining chicks that hatched between 475 and 480 h were placed back in the incubator and the same measurements were conducted with those chicks at the end of hatch window at 510 h of incubation. Chick length, chick dry matter content, rectal temperature and weight of small intestine segments increased, whereas chick weight decreased during the hatch window. The increase in the jejunum length and villus width and area during the hatch window were higher for ES3 than ES14 chicks. PepT1 expression was higher for ES3 chicks compared with ES14. There was a 10.2 and 17.6-fold increase in PepT1 and SGLT1 expression of ES3 chicks at the end of hatch window, whereas it was only 2.3 and 3.3-fold, respectively, for ES14 chicks. These results suggested that egg storage duration affected development of early hatched chicks during 30 h of hatch window. It can be concluded that the ES14 chicks would be less efficiently adapted to absorption process for carbohydrates and protein than those from ES3 at the end of the hatch window.
Yalçin, S; Izzetoğlu, G T; Aktaş, A
2013-01-01
1. The objective of the study was to investigate the effects of breeder age and egg weight on hatching performance and morphological changes in segments of the small intestine of broiler chicks during a 21 h hatch window. 2. Eggs from Ross broiler breeder flocks aged 29 (young) and 48 weeks (old) were classified as light (LE) or heavy (HE) and incubated at the same conditions. At 475 h of incubation, eggs were checked every 3 h to determine time of external pipping and hatching. The first 42 chicks to emerge from each group were weighed and chick length was measured and 14 chicks from each group were sampled to collect residual yolk and intestine segments. The rest of chicks were placed back in the incubator and chick weight and length were measured individually at 9, 15 and 21 h after chicks hatched. At the end of 21 h, 14 chicks from each group were sampled again and the same procedure was followed. 3. The HE chicks pipped and hatched later than LE, regardless of breeder age. From hatch to the end of the hatch window, chick weight, but not yolk-free chick weight, gradually reduced. Relative residual yolk weight of chicks from both egg weights was similar at hatch, however, yolk sac utilisation was higher for LE chicks during the 21 h post-hatch period. At hatch, jejunum and ileum villus development was very similar for HE and LE chicks but greater development was observed for villus area with an increase in the jejunum villus length, width and goblet cell numbers in HE chicks. 4. The longest jejunum villus and the widest duodenum and jejunum villus were obtained for HE chicks from old breeders indicating that HE chicks from old breeders would have a greater surface area for nutrient absorption.
Suda, Yoko; Kokura, Kenji; Kimura, Jun; Kajikawa, Eriko; Inoue, Fumitaka; Aizawa, Shinichi
2010-09-01
We have analyzed Emx2 enhancers to determine how Emx2 functions during forebrain development are regulated. The FB (forebrain) enhancer we identified immediately 3' downstream of the last coding exon is well conserved among tetrapods and unexpectedly directed all the Emx2 expression in forebrain: caudal forebrain primordium at E8.5, dorsal telencephalon at E9.5-E10.5 and the cortical ventricular zone after E12.5. Otx, Tcf, Smad and two unknown transcription factor binding sites were essential to all these activities. The mutant that lacked this enhancer demonstrated that Emx2 expression under the enhancer is solely responsible for diencephalon development. However, in telencephalon, the FB enhancer did not have activities in cortical hem or Cajal-Retzius cells, nor was its activity in the cortex graded. Emx2 expression was greatly reduced, but persisted in the telencephalon of the enhancer mutant, indicating that there exists another enhancer for Emx2 expression unique to mammalian telencephalon.
Boorgu, Devi Sai Sri Kavya; Levin, Michael; Kaplan, David L.
2018-01-01
ABSTRACT Zika virus (ZIKV) is a mosquito-transmitted flavivirus with a causative link to microcephaly, a condition resulting in reduced cranial size and brain abnormalities. Despite recent progress, there is a current lack of in vivo models that permit the study of systemic virus on human neurons in a developing organism that replicates the pathophysiology of human disease. Furthermore, no treatment to date has been reported to reduce ZIKV-induced microcephaly. We tested the effects of ZIKV on human induced neural stem cells (hiNSCs) in vitro and found that infected hiNSCs secrete inflammatory cytokines, display altered differentiation, and become apoptotic. We also utilized this in vitro system to assess the therapeutic effects of niclosamide, an FDA-approved anthelminthic, and found that it decreases ZIKV production, partially restores differentiation, and prevents apoptosis in hiNSCs. We intracranially injected hiNSCs into developing chicks, subjected them to systemic ZIKV infection via the chorioallantoic membrane (CAM), a tissue similar in structure and function to the mammalian placenta, and found that humanized ZIKV-infected embryos developed severe microcephaly including smaller crania, decreased forebrain volume and enlarged ventricles. Lastly, we utilized this humanized model to show that CAM-delivery of niclosamide can partially rescue ZIKV-induced microcephaly and attenuate infection of hiNSCs in vivo. This article has an associated First Person interview with the first author of the paper. PMID:29378701
Barber, Melissa; Andrews, William D; Memi, Fani; Gardener, Phillip; Ciantar, Daniel; Tata, Mathew; Ruhrberg, Christiana; Parnavelas, John G
2018-01-01
Abstract Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process. PMID:29901792
Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoi...
Lyons, Donald E.; Roby, Daniel D.
2011-01-01
For seabirds raising young under conditions of limited food availability, reducing chick provisioning and chick growth rates are the primary means available to avoid abandonment of a breeding effort. For most seabirds, however, baseline data characterizing chick growth and development under known feeding conditions are unavailable, so it is difficult to evaluate chick nutritional status as it relates to foraging conditions near breeding colonies. To address this need, we examined the growth and development of young Caspian Terns (Hydroprogne caspia), a cosmopolitan, generalist piscivore, reared in captivity and fed ad libitum and restricted (ca. one-third lower caloric intake) diets. Ad libitum-fed chicks grew at similar rates and achieved a similar size at fledging as previously documented for chicks in the wild and had energetic demands that closely matched allometric predictions. We identified three general characteristics of food-restricted Caspian Tern chicks compared to ad libitum chicks: (1) lower age-specific body mass, (2) lower age-specific skeletal and feather size, such as wing chord length, and (3) heightened levels of corticosterone in blood, both for baseline levels and in response to acute stress. Effects of diet restriction on feather growth (10-11% slower growth in diet-restricted chicks) were less pronounced than effects on structural growth (37-52% slower growth) and body mass (24% lower at fledging age), apparently due to preferential allocation of food resources to maintain plumage growth. Our results suggest that measurements of chick body mass and feather development (e.g., wing chord or primary length) or measurement of corticosterone levels in the blood would allow useful evaluation of the nutritional status of chicks reared in the wild and of food availability in the foraging range of adults. Such evaluations could also inform demography studies (e.g., predict future recruitment) and assist in evaluating designated piscivorous waterbird conservation (colony) sites. ?? 2011 The Authors. Journal of Field Ornithology ?? 2011 Association of Field Ornithologists.
Downregulation of ribosome biogenesis during early forebrain development
Chau, Kevin F; Shannon, Morgan L; Fame, Ryann M; Fonseca, Erin; Mullan, Hillary; Johnson, Matthew B; Sendamarai, Anoop K; Springel, Mark W; Laurent, Benoit
2018-01-01
Forebrain precursor cells are dynamic during early brain development, yet the underlying molecular changes remain elusive. We observed major differences in transcriptional signatures of precursor cells from mouse forebrain at embryonic days E8.5 vs. E10.5 (before vs. after neural tube closure). Genes encoding protein biosynthetic machinery were strongly downregulated at E10.5. This was matched by decreases in ribosome biogenesis and protein synthesis, together with age-related changes in proteomic content of the adjacent fluids. Notably, c-MYC expression and mTOR pathway signaling were also decreased at E10.5, providing potential drivers for the effects on ribosome biogenesis and protein synthesis. Interference with c-MYC at E8.5 prematurely decreased ribosome biogenesis, while persistent c-MYC expression in cortical progenitors increased transcription of protein biosynthetic machinery and enhanced ribosome biogenesis, as well as enhanced progenitor proliferation leading to subsequent macrocephaly. These findings indicate large, coordinated changes in molecular machinery of forebrain precursors during early brain development. PMID:29745900
Pawlak, K; Nieckarz, Z; Sechman, A; Wojtysiak, D; Bojarski, B; Tombarkiewicz, B
2018-06-01
The level of artificial electromagnetic field (EMF) has steadily increased with the development of human civilization. The developing chicken embryo has been considered a good model to study the effects of EMF on living organisms. The aim of the study was to determine the effect of a 1800 MHz electromagnetic field during embryogenesis on the frequency of chick embryo malformations, morphometric parameters of the heart and liver and concentration of corticosterone in blood plasma, lipid and glycogen content in the liver of newly hatched chicks. A 1800 MHz EMF was found to shorten the duration of embryogenesis (earlier pipping and hatching of chicks) while having no effect on the quantity and quality of chicks and on increasing the incidence of embryo malformations. Exposure of chick embryos to EMF caused decreases in relative heart weight and right ventricle wall thickness. The pipping and hatching of chicks can be accelerated by stressful impact of EMF, which is confirmed by a significant increase in plasma corticosterone concentrations and decrease in fat and glycogen in the liver of chicks exposed during embryogenesis on the electromagnetic field with a frequency of 1800 MHz. © 2018 Blackwell Verlag GmbH.
Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing
2018-03-01
Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.
Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B; Schnell, Robert; Mulder, Jan; Luiten, Paul G M; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor
2014-12-01
The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model.
Bobek, Vladimir; Plachy, Jiri; Pinterova, Daniela; Kolostova, Katarina; Boubelik, Michael; Jiang, Ping; Yang, Meng; Hoffman, Robert M
2004-01-01
The chick-embryo model has been an important tool to study tumor growth, metastasis, and angiogenesis. However, an imageable model with a genetic fluorescent tag in the growing and spreading cancer cells that is stable over time has not been developed. We report here the development of such an imageable fluorescent chick-embryo metastatic cancer model with the use of green fluorescent protein (GFP). Lewis lung carcinoma cells, stably expressing GFP, were injected on the 12th day of incubation in the chick embryo. GFP-Lewis lung carcinoma metastases were visualized by fluorescence, after seven days additional incubation, in the brain, heart, and sternum of the developing chick embryo, with the most frequent site being the brain. The combination of streptokinase and gemcitabine was evaluated in this GFP metastatic model. Twelve-day-old chick embryos were injected intravenously with GFP-Lewis lung cancer cells, along with these two agents either alone or in combination. The streptokinase-gemcitabine combination inhibited metastases at all sites. The effective dose of gemcitabine was found to be 10 mg/kg and streptokinase 2000 IU per embryo. The data in this report suggest that this new stably fluorescent imageable metastatic-cancer chick-embryo model will enable rapid screening of new antimetastatic agents.
Chick Development and Asynchroneous Hatching in the Zebra Finch (Taeniopygia guttata castanotis).
Ikebuchi, Maki; Okanoya, Kazuo; Hasegawa, Toshikazu; Bischof, Hans-Joachim
2017-10-01
The mode of hatching in birds has important impacts on both parents and chicks, including the costs and risks of breeding for parents, and sibling competition in a clutch. Birds with multiple eggs in a single clutch often begin incubating when most eggs are laid, thereby reducing time of incubation, nursing burden, and sibling competition. In some songbirds and some other species, however, incubation starts immediately after the first egg is laid, and the chicks thus hatch asynchronously. This may result in differences in parental care and in sibling competition based on body size differences among older and younger chicks, which in turn might produce asynchronous development among siblings favoring the first hatchling, and further affect the development and fitness of the chicks after fledging. To determine whether such processes in fact occur in the zebra finch, we observed chick development in 18 clutches of zebra finches. We found that there were effects of asynchronous hatching, but these were smaller than expected and mostly not significant. Our observations suggest that the amount of care given to each chick may be equated with such factors as a camouflage effect of the down feathers, and that the low illumination within the nest also complicates the determination of the hatching order by the parents.
Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression
Sanek, Nicholas A.; Taylor, Aaron A.; Nyholm, Molly K.; Grinblat, Yevgenya
2009-01-01
Summary Holoprosencephaly (HPE) is the most common congenital malformation of the forebrain in human. Several genes with essential roles during forebrain development have been identified because they cause HPE when mutated. Among these are genes that encode the secreted growth factor Sonic hedgehog (Shh) and the transcription factors Six3 and Zic2. In the mouse, Six3 and Shh activate each other's transcription, but a role for Zic2 in this interaction has not been tested. We demonstrate that in zebrafish, as in mouse, Hh signaling activates transcription of six3b in the developing forebrain. zic2a is also activated by Hh signaling, and represses six3b non-cell-autonomously, i.e. outside of its own expression domain, probably through limiting Hh signaling. Zic2a repression of six3b is essential for the correct formation of the prethalamus. The diencephalon-derived optic stalk (OS) and neural retina are also patterned in response to Hh signaling. We show that zebrafish Zic2a limits transcription of the Hh targets pax2a and fgf8a in the OS and retina. The effects of Zic2a depletion in the forebrain and in the OS and retina are rescued by blocking Hh signaling or by increasing levels of the Hh antagonist Hhip, suggesting that in both tissues Zic2a acts to attenuate the effects of Hh signaling. These data uncover a novel, essential role for Zic2a as a modulator of Hh-activated gene expression in the developing forebrain and advance our understanding of a key gene regulatory network that, when disrupted, causes HPE. PMID:19855021
Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression.
Sanek, Nicholas A; Taylor, Aaron A; Nyholm, Molly K; Grinblat, Yevgenya
2009-11-01
Holoprosencephaly (HPE) is the most common congenital malformation of the forebrain in human. Several genes with essential roles during forebrain development have been identified because they cause HPE when mutated. Among these are genes that encode the secreted growth factor Sonic hedgehog (Shh) and the transcription factors Six3 and Zic2. In the mouse, Six3 and Shh activate each other's transcription, but a role for Zic2 in this interaction has not been tested. We demonstrate that in zebrafish, as in mouse, Hh signaling activates transcription of six3b in the developing forebrain. zic2a is also activated by Hh signaling, and represses six3b non-cell-autonomously, i.e. outside of its own expression domain, probably through limiting Hh signaling. Zic2a repression of six3b is essential for the correct formation of the prethalamus. The diencephalon-derived optic stalk (OS) and neural retina are also patterned in response to Hh signaling. We show that zebrafish Zic2a limits transcription of the Hh targets pax2a and fgf8a in the OS and retina. The effects of Zic2a depletion in the forebrain and in the OS and retina are rescued by blocking Hh signaling or by increasing levels of the Hh antagonist Hhip, suggesting that in both tissues Zic2a acts to attenuate the effects of Hh signaling. These data uncover a novel, essential role for Zic2a as a modulator of Hh-activated gene expression in the developing forebrain and advance our understanding of a key gene regulatory network that, when disrupted, causes HPE.
Augustine, P C; McNaughton, J L; Virtanen, E; Rosi, L
1997-06-01
At 7 d postinoculation (DPI) with a mixed culture of avian Eimeria species, 21-d-old chicks maintained in batteries and floor pens on a diet containing 0.15% (3 lb/ton) betaine plus 66 ppm (60 g/ton) salinomycin were significantly heavier and had significantly lower feed conversion ratios and mortality than chicks fed diets containing 0.15% betaine or 66 ppm salinomycin alone, or the control diet. At 31 DPI, when the chicks were 45 d old, the differences between the diet groups were not as great as at 7 DPI. In vitro, except at high concentrations, betaine was nontoxic to sporozoites of Eimeria tenella or Eimeria acervulina and had little effect on their invasion and development in cultured cells. In vivo, invasion by E. tenella and E. acervulina sporozoites was significantly reduced in all chicks fed diets containing betaine or salinomycin compared with that in control chicks. There was a significant interaction between betaine and salinomycin that impacted on invasion by both species. Overall development of E. tenella did not appear to be adversely affected by addition of betaine to diets containing salinomycin. Conversely, development of E. acervulina was reduced in chicks fed diets containing 0.075% (1.5 lb/ton) betaine plus 66 ppm salinomycin as compared with that in chicks fed salinomycin alone.
Burdo, Joseph R
2013-01-01
Since 2009 at Boston College, we have been offering a Research in Neuroscience course using cultured neurons in an in vitro model of stroke. The students work in groups to learn how to perform sterile animal cell culture and run several basic bioassays to assess cell viability. They are then tasked with analyzing the scientific literature in an attempt to identify and predict the intracellular pathways involved in neuronal death, and identify dietary antioxidant compounds that may provide protection based on their known effects in other cells. After each group constructs a hypothesis pertaining to the potential neuroprotection, we purchase one compound per group and the students test their hypotheses using a commonly performed viability assay. The groups generate quantitative data and perform basic statistics on that data to analyze it for statistical significance. Finally, the groups compile their data and other elements of their research experience into a poster for our departmental research celebration at the end of the spring semester.
Burdo, Joseph R.
2013-01-01
Since 2009 at Boston College, we have been offering a Research in Neuroscience course using cultured neurons in an in vitro model of stroke. The students work in groups to learn how to perform sterile animal cell culture and run several basic bioassays to assess cell viability. They are then tasked with analyzing the scientific literature in an attempt to identify and predict the intracellular pathways involved in neuronal death, and identify dietary antioxidant compounds that may provide protection based on their known effects in other cells. After each group constructs a hypothesis pertaining to the potential neuroprotection, we purchase one compound per group and the students test their hypotheses using a commonly performed viability assay. The groups generate quantitative data and perform basic statistics on that data to analyze it for statistical significance. Finally, the groups compile their data and other elements of their research experience into a poster for our departmental research celebration at the end of the spring semester. PMID:23805059
Growth and energy requirements of captive-reared Common Loon (Gavia immer) chicks
Fournier, F.; Karasov, W.H.; Kenow, K.P.; Meyer, M.W.
2007-01-01
We measured the energy requirements during postnatal development of six hand-reared Common Loon (Gavia immer) chicks using continuous feeding trials and doubly labeled water. At fledging, the mean (± SE) body mass of chicks was 3,246 ± 51 g. They reached asymptotic body mass in ≈66 days and had a mean growth rate constant of 0.089 ± 0.002 day−1, which was greater than growth rate constants of other, similar-sized precocial birds. Between hatch and day 66, chicks allocated 16.5% of their metabolizable energy to new tissue, lower than the average for other bird species (20%), which might be expected considering their precocial mode of development. There was a developmental change in the assimilation efficiency of food (metabolizable energy coefficient), with a mean of 0.64 ± 0.03 in chicks aged 21 days, rising to 0.83 ± 0.07 in chicks aged 35 days.
Animal-to-robot social attachment: initial requisites in a gallinaceous bird.
Jolly, L; Pittet, F; Caudal, J-P; Mouret, J-B; Houdelier, C; Lumineau, S; de Margerie, E
2016-02-04
Animal-Robot Interaction experiments have demonstrated their usefulness to understand the social behaviour of a growing number of animal species. In order to study the mechanisms of social influences (from parents and peers) on behavioural development, we design an experimental setup where young quail chicks, after hatching, continuously live with autonomous mobile robots in mixed triadic groups of two chicks and one robot. As precocial birds are subject to imprinting, we compare groups where chicks meet the robot as their very first social partner, on their first day after hatching (R chicks), with groups where chicks meet a real conspecific first (C chicks), and the robot later (on the second day after hatching). We measured the behavioural synchronization between chicks and robot over three days. Afterwards, we directly tested the existence of a possible social bond between animal and robot, by performing separation-reunion behavioural tests. R chicks were more synchronized with the robot in their daily feeding-resting activities than C chicks. Moreover, R chicks emitted numerous distress calls when separated from the robot, even in the presence of another chick, whereas C chicks emitted calls only when separated from the other chick. Whether the observed chick-robot attachment bond reflects filial, or sibling-imprinting of chicks towards the robot remains unclear, as the latter process is not fully understood in natural familial groups. Still, these results reveal the necessary initial conditions for stable, cohesive mixed groups of chicks and robots, a promising tool to experiment on the long-term dynamics of social behaviour.
[Studies of the eating behavior of Japanese quail chicks in the early postnatal period].
Khekhneva, A V; Gur'eva, T S; Dadasheva, O A; Sychev, V N
2006-01-01
Time of the eating reaction (response to video signals) and eating behavior shortly after hatching were studied in Japanese quail chicks whose embryonic development took place under normal or changed gravity. Chicks partially incubated in a changed gravity showed a much slower eating reaction when compared with the chicks the prenatal development of which occurred under the normal gravity. In the chicks incubated at 1 g and placed in individual cages immediately after dominating afferentation for the eating behavior was visual Observations in the study will be used as a basis for designing a technology for handling and maintenance of hatchlings of the Japanese quail as a potential heterotrophic component of space life support systems.
Angelier, Frédéric; Meillère, Alizée; Grace, Jacquelyn K; Trouvé, Colette; Brischoux, François
2016-06-01
Anthropogenic noise can have important physiological and behavioral effects on wild animals. For example, urban noise could lead to a state of chronic stress and could alter the development of the hypothalamus-pituitary-adrenal (HPA) axis. Supporting this hypothesis, several studies have found that human disturbance is associated with increased circulating corticosterone (CORT) levels. However, it remains unclear whether increased CORT levels are the result of anthropogenic noise or other anthropogenic factors. Here, we experimentally tested the impact of urban noise on the CORT stress response in an urban exploiter (the house sparrow, Passer domesticus) by exposing chicks to a traffic noise ('disturbed chicks') or not ('control chicks'). If noise exposure has a negative impact on developing chicks, we predicted that (1) disturbed chicks will grow slower, will be in poorer condition, and will have a lower fledging probability than controls; (2) disturbed chicks will have higher baseline CORT levels than control; (3) the CORT stress response will be affected by this noise exposure. Contrary to these predictions, we found no effect of our experiment on growth, body condition, and fledging success, suggesting that house sparrow chicks were not negatively affected by this noise exposure. Moreover, we did not find any effect of noise exposure on either baseline CORT levels or the CORT stress response of chicks. This suggests not only that house sparrow chicks did not perceive this noise as stressful, but also that the development of the HPA axis was not affected by such noise exposure. Our study suggests that, contrary to urban avoiders, urban exploiters might be relatively insensitive to urban noise during their development. Further comparative studies are now needed to understand whether such insensitivity to anthropogenic noise is a consistent phenomenon in urban exploiters and whether this is a major requirement of an urban way of life. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of mothering on the spatial exploratory behavior of quail chicks.
de Margerie, E; Peris, A; Pittet, F; Houdelier, C; Lumineau, S; Richard-Yris, M-A
2013-04-01
Previous maternal deprivation experiments demonstrated that absence of maternal care impacts the behavioral development of young animals. Here we assessed the influence of the presence of a mothering hen on the spatial exploration of Japanese quail chicks, after the mothering period. Brooded and nonbrooded chicks were placed in a novel environment containing feeding troughs. The distribution of chicks and their inter-individual distances were measured during repeated tests. Brooded chicks exhibited a higher ability to disperse, thereby progressively exploiting larger surfaces and gaining access to food more easily. The fact that exploration by nonbrooded chicks was delayed suggests a deficit in their exploratory motivation and/or spatial skills. We hypothesize that brooded chicks experienced the constraint to follow the mothering hen, and to adapt to frequent reconfigurations of their environment. The lack of this variability in the environment of nonbrooded chicks could have reduced adaptability of their spatial behavior. Copyright © 2012 Wiley Periodicals, Inc.
Toth, Mate; Gresack, Jodi E; Bangasser, Debra A; Plona, Zach; Valentino, Rita J; Flandreau, Elizabeth I; Mansuy, Isabelle M; Merlo-Pich, Emilio; Geyer, Mark A; Risbrough, Victoria B
2014-05-01
Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure.
Michaille, J J; Blanchet, S; Kanzler, B; Garnier, J M; Dhouailly, D
1994-12-01
Retinoic acid receptors alpha, beta and gamma (RAR alpha, beta and gamma) are ligand-inductible transcriptional activators which belong to the steroid/thyroid hormone receptor superfamily. At least two major isoforms (1 and 2) of each RAR arise by differential use of two promoters and alternative splicing. In mouse, the three RAR genes are expressed in stage- and tissue-specific patterns during embryonic development. In order to understand the role of the different RARs in chick, RAR gamma 2 cDNAs were isolated from an 8.5-day (stage 35 of Hamburger and Hamilton) chick embryo skin library. The deduced chick RAR gamma 2 amino acid sequence displays uncommon features such as 21 specific amino acid replacements, 12 of them being clustered in the amino-terminal region (domains A2 and B), and a truncated acidic carboxy-terminal region (F domain). However, the pattern of RAR gamma expression in chick embryo resembles that reported in mouse, particularly in skin where RAR gamma expression occurs in both the dermal and epidermal layers at the beginning of feather formation, and is subsequently restricted to the differentiating epidermal cells. Northern blot analysis suggests that different RAR gamma isoforms could be successively required during chick development.
Rymer, Jodi; Choh, Vivian; Bharadwaj, Shrikant; Padmanabhan, Varuna; Modilevsky, Laura; Jovanovich, Elizabeth; Yeh, Brenda; Zhang, Zhan; Guan, Huanxian; Payne, W; Wildsoet, Christine F
2007-10-01
Albinism is associated with a variety of ocular anomalies including refractive errors. The purpose of this study was to investigate the ocular development of an albino chick line. The ocular development of both albino and normally pigmented chicks was monitored using retinoscopy to measure refractive errors and high frequency A-scan ultrasonography to measure axial ocular dimensions. Functional tests included an optokinetic nystagmus paradigm to assess visual acuity, and flash ERGs to assess retinal function. The underlying genetic abnormality was characterized using a gene microarray, PCR and a tyrosinase assay. The ultrastructure of the retinal pigment epithelium (RPE) was examined using transmission electron microscopy. PCR confirmed that the genetic abnormality in this line is a deletion in exon 1 of the tyrosinase gene. Tyrosinase gene expression in isolated RPE cells was minimally detectable, and there was minimal enzyme activity in albino feather bulbs. The albino chicks had pink eyes and their eyes transilluminated, reflecting the lack of melanin in all ocular tissues. All three main components, anterior chamber, crystalline lens and vitreous chamber, showed axial expansion over time in both normal and albino animals, but the anterior chambers of albino chicks were consistently shallower than those of normal chicks, while in contrast, their vitreous chambers were longer. Albino chicks remained relatively myopic, with higher astigmatism than the normally pigmented chicks, even though both groups underwent developmental emmetropization. Albino chicks had reduced visual acuity yet the ERG a- and b-wave components had larger amplitudes and shorter than normal implicit times. Developmental emmetropization occurs in the albino chick but is impaired, likely because of functional abnormalities in the RPE and/or retina as well as optical factors. In very young chicks the underlying genetic mutation may also contribute to refractive error and eye shape abnormalities.
Plasticity of Noddy Parents and Offspring to Sea-Surface Temperature Anomalies
Devney, Carol A.; Caley, M. Julian; Congdon, Bradley C.
2010-01-01
Behavioral and/or developmental plasticity is crucial for resisting the impacts of environmental stressors. We investigated the plasticity of adult foraging behavior and chick development in an offshore foraging seabird, the black noddy (Anous minutus), during two breeding seasons. The first season had anomalously high sea-surface temperatures and ‘low’ prey availability, while the second was a season of below average sea-surface temperatures and ‘normal’ food availability. During the second season, supplementary feeding of chicks was used to manipulate offspring nutritional status in order to mimic conditions of high prey availability. When sea-surface temperatures were hotter than average, provisioning rates were significantly and negatively impacted at the day-to-day scale. Adults fed chicks during this low-food season smaller meals but at the same rate as chicks in the unfed treatment the following season. Supplementary feeding of chicks during the second season also resulted in delivery of smaller meals by adults, but did not influence feeding rate. Chick begging and parental responses to cessation of food supplementation suggested smaller meals fed to artificially supplemented chicks resulted from a decrease in chick demands associated with satiation, rather than adult behavioral responses to chick condition. During periods of low prey abundance, chicks maintained structural growth while sacrificing body condition and were unable to take advantage of periods of high prey abundance by increasing growth rates. These results suggest that this species expresses limited plasticity in provisioning behavior and offspring development. Consequently, responses to future changes in sea-surface temperature and other environmental variation may be limited. PMID:20686693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nord, Alex S.; Pattabiraman, Kartik; Visel, Axel
The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. We report that recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Here, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution ofmore » the human brain.« less
Kazdoba, Tatiana M; Sunnen, C Nicole; Crowell, Beth; Lee, Gum Hwa; Anderson, Anne E; D'Arcangelo, Gabriella
2012-01-01
The phosphatase and tensin homolog located on chromosome 10 (PTEN) suppresses the activity of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, a signaling cascade critically involved in the regulation of cell proliferation and growth. Human patients carrying germ line PTEN mutations have an increased predisposition to tumors, and also display a variety of neurological symptoms and increased risk of epilepsy and autism, implicating PTEN in neuronal development and function. Consistently, loss of Pten in mouse neural cells results in ataxia, seizures, cognitive abnormalities, increased soma size and synaptic abnormalities. To better understand how Pten regulates the excitability of principal forebrain neurons, a factor that is likely to be altered in cognitive disorders, epilepsy and autism, we generated a novel conditional knockout mouse line (NEX-Pten) in which Cre, under the control of the NEX promoter, drives the deletion of Pten specifically in early postmitotic, excitatory neurons of the developing forebrain. Homozygous mutant mice exhibited a massive enlargement of the forebrain, and died shortly after birth due to excessive mTOR activation. Analysis of the neonatal cerebral cortex further identified molecular defects resulting from Pten deletion that likely affect several aspects of neuronal development and excitability. Copyright © 2012 S. Karger AG, Basel.
The adrenocortical response of tufted puffin chicks to nutritional deficits
Kitaysky, A.S.; Romano, Marc D.; Piatt, John F.; Wingfield, J.C.; Kikuchi, M.
2005-01-01
In several seabirds, nutritional state of a nest-bound chick is negatively correlated with the activity of its hypothalamus-pituitary-adrenal (HPA) axis. Increased corticosterone (cort) secretion has been shown to facilitate changes in behavior that allow hungry chicks to obtain more food from parents. However, if parents are not willing/able to buffer their young from temporary food shortages, increased cort secretion could be detrimental to undernourished chicks. In a system where parents are insensitive to chick demands, low benefits and high costs of activation of the HPA-axis in hungry chicks should lead to a disassociation of the nutritional state of the young and the activity of its HPA-axis. We tested this novel hypothesis for the tufted puffin (Fratercula cirrhata), a seabird with intermittent provisioning of a nest-bound semi-precocial chick. We examined the HPA-axis activity of captive chicks exposed to the following: (1) a short-term (24 h) food deprivation; and (2) an array of prolonged (3 weeks) restrictions in feeding regimens. We found that in response to a short-term food deprivation chicks decreased baseline levels of cort and thyroid hormones. In response to prolonged restrictions, food-limited chicks exhibited signs of nutritional deficit: they had lower body mass, endogenous lipid reserves, and thyroid hormone titers compared to chicks fed ad libitum. However, baseline and maximum acute stress-induced levels of cort were also lower in food-restricted chicks compared to those of chicks fed ad libitum. These results support a major prediction of the study hypothesis that puffin chicks suppress HPA-axis activity in response to short- and long-term nutritional deficits. This physiological adaptation may allow a chick to extend its development in the nest, while eluding detrimental effects of chronic cort elevation.
Baxter, Mark G; Bucci, David J
2013-10-01
The advent of the selective cholinergic toxin, 192 IgG-saporin, dramatically shaped subsequent research on the role of the basal forebrain in learning and memory. In particular, several articles (including the authors' 1995 Behavioral Neuroscience paper; M. G. Baxter, D. J. Bucci, L. K., Gorman, R. G. Wiley, & M. Gallagher, 1995) revealed that selective removal of basal forebrain cholinergic neurons had surprisingly little effect on spatial learning and memory. Here, as part of the series commemorating the 30th anniversary of Behavioral Neuroscience, we describe how our earlier findings prompted a reconsideration of the cholinergic contribution to cognitive function and also led to several new research directions, including renewed interest in basal forebrain GABA-ergic neurons and cholinergic contributions to neurocognitive development. The authors also describe how the successful use of 192 IgG-saporin led to the development and popularity of a wide range of selective new neurotoxic agents. Finally, they consider the utility of the permanent lesion approach in the wake of new transgenic and optogenetic methods. 2013 APA, all rights reserved
The development of newborn object recognition in fast and slow visual worlds
Wood, Justin N.; Wood, Samantha M. W.
2016-01-01
Object recognition is central to perception and cognition. Yet relatively little is known about the environmental factors that cause invariant object recognition to emerge in the newborn brain. Is this ability a hardwired property of vision? Or does the development of invariant object recognition require experience with a particular kind of visual environment? Here, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) require visual experience with slowly changing objects to develop invariant object recognition abilities. When newborn chicks were raised with a slowly rotating virtual object, the chicks built invariant object representations that generalized across novel viewpoints and rotation speeds. In contrast, when newborn chicks were raised with a virtual object that rotated more quickly, the chicks built viewpoint-specific object representations that failed to generalize to novel viewpoints and rotation speeds. Moreover, there was a direct relationship between the speed of the object and the amount of invariance in the chick's object representation. Thus, visual experience with slowly changing objects plays a critical role in the development of invariant object recognition. These results indicate that invariant object recognition is not a hardwired property of vision, but is learned rapidly when newborns encounter a slowly changing visual world. PMID:27097925
Pedroso, Adriana A; Batal, Amy B; Lee, Margie D
2016-05-01
OBJECTIVE To determine effects of in ovo administration of a probiotic on development of the intestinal microbiota of 2 genetic lineages (modern and heritage) of chickens. SAMPLE 10 newly hatched chicks and 40 fertile eggs to determine intestinal microbiota at hatch, 900 fertile eggs to determine effects of probiotic on hatchability, and 1,560 chicks from treated or control eggs. PROCEDURES A probiotic competitive-exclusion product derived from adult microbiota was administered in ovo to fertile eggs of both genetic lineages. Cecal contents and tissues were collected from embryos, newly hatched chicks, and chicks. A PCR assay was used to detect bacteria present within the cecum of newly hatched chicks. Fluorescence in situ hybridization and vitality staining were used to detect viable bacteria within intestines of embryos. The intestinal microbiota was assessed by use of 16S pyrosequencing. RESULTS Microscopic evaluation of embryonic cecal contents and tissues subjected to differential staining techniques revealed viable bacteria in low numbers. Development of the intestinal microbiota of broiler chicks of both genetic lineages was enhanced by in ovo administration of adult microbiota. Although the treatment increased diversity and affected composition of the microbiota of chicks, most bacterial species present in the probiotic were transient colonizers. However, the treatment decreased the abundance of undesirable bacterial species within heritage lineage chicks. CONCLUSIONS AND CLINICAL RELEVANCE In ovo inoculation of a probiotic competitive-exclusion product derived from adult microbiota may be a viable method of managing development of the microbiota and reducing the prevalence of pathogenic bacteria in chickens.
Effects of prenatal exposure to antithyroid drugs on imprinting behavior in chicks.
Kagami, Keisuke; Nishigori, Hidekazu; Nishigori, Hideo
2010-09-01
Thyroid hormones play important roles in vertebrate brain development. However, there is little understanding of the direct effects of fetal thyroid dysfunction, i.e., not acquired through the mother, on learning ability. In the present study, we use a chick embryo as a fetal model to investigate the effects of prenatal exposure to antithyroid drugs on imprinting behavior in hatched chicks. Methimazole (MMI) at 20micromol/egg or 5micromol/egg of propylthiouracil (PTU) was administered to eggs on day 14 while the control was given only a vehicle. An imprinting test was conducted after the chicks hatched. Day-old chicks were exposed to a rotating training object for 150min. The next day, the trained chicks were exposed to the training object and a novel object. The imprinting preference was represented as a preference score (PS) calculated as the rate of following the training object to following the training and novel objects. In the MMI-treated chicks, the PS was 0.68+/-0.06 (range, 0.38-0.88), which was significantly lower than that in the control chicks (0.86+/-0.04, p<0.01). In the PTU-treated chicks, the PS was 0.69+/-0.04 (range, 0.52-0.89), which was also significantly lower than that in the control (0.88+/-0.02, p<0.001). The present findings suggested that fetal thyroid dysfunction inhibited brain development, leading to impaired learning and memory. Our chick model can be considered useful for investigating the direct effects of prenatal exposure to antithyroid drugs or substances in the environment on learning ability after birth. Copyright 2010 Elsevier Inc. All rights reserved.
Judson, Matthew C; Bergman, Mica Y; Campbell, Daniel B; Eagleson, Kathie L; Levitt, Pat
2009-04-10
The establishment of appropriate neural circuitry depends on the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival-all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization, and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus, and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits, with particular relevance to the social and emotional dimensions of behavior. (c) 2009 Wiley-Liss, Inc.
Ackerman, Joshua T; Eagles-Smith, Collin A
2009-03-15
The concentration of mercury (Hg) in eggs that causes reduced hatching success is regarded as a critical end point for Hg toxicity in birds. However, incorporating effects of in ovo mercury exposure on chick health and survival could improve risk assessment. We developed equations to predict Hg in eggs using Hg in chick down feathers, and vice versa, by assessing the relationship between Hg in feathers (0.5-32.4 microg g(-1) fw) and eggs (0.04-2.79 microg g(-1) fww) for three waterbird species in San Francisco Bay, CA. Feather Hg sampled from embryos of pipping eggs was highly correlated with fresh whole-egg Hg (n=94, r2 = 0.96). Additionally, using an egg microsampling technique, albumen Hg was correlated with feather Hg sampled from chicks in the same nest (n=28, r2 = 0.79). Down feather Hg in recaptured chicks (< or =10 days old) was correlated with down feather Hg at hatching (< or =3 days old; n=88, r2 = 0.74). Our results demonstrate the utility of using down feathers of chicks < or =10 days of age to nonlethally predict Hg in eggs and thus provide the ability to develop exposure thresholds for eggs that incorporate in ovo Hg's effects on both egg hatchability and subsequent chick mortality.
Ackerman, Joshua T.; Eagles-Smith, Collin A.
2009-01-01
The concentration of mercury (Hg) in eggs that causes reduced hatching success is regarded as a critical end point for Hg toxicity in birds. However, incorporating effects of in ovo mercury exposure on chick health and survival could improve risk assessment. We developed equations to predict Hg in eggs using Hg in chick down feathers, and vice versa, by assessing the relationship between Hg in feathers (0.5−32.4 μg g−1 fw) and eggs (0.04−2.79 μg g−1 fww) for three waterbird species in San Francisco Bay, CA. Feather Hg sampled from embryos of pipping eggs was highly correlated with fresh whole-egg Hg (n = 94, r2 = 0.96). Additionally, using an egg microsampling technique, albumen Hg was correlated with feather Hg sampled from chicks in the same nest (n = 28, r2 = 0.79). Down feather Hg in recaptured chicks (≤10 days old) was correlated with down feather Hg at hatching (≤3 days old; n = 88, r2 = 0.74). Our results demonstrate the utility of using down feathers of chicks ≤10 days of age to nonlethally predict Hg in eggs and thus provide the ability to develop exposure thresholds for eggs that incorporate in ovo Hg’s effects on both egg hatchability and subsequent chick mortality.
Lee, Sang In; Jeon, Mi-Hyang; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June
2015-12-01
Early chick embryogenesis is governed by a complex mechanism involving transcriptional and post-transcriptional regulation, although how post-transcriptional processes influence the balance between pluripotency and differentiation during early chick development have not been previously investigated. Here, we characterized the microRNA (miRNA) signature associated with differentiation in the chick embryo, and found that as expression of the gga-let-7 family increases through early development, expression of their direct targets, TGFBR1 and LIN28B, decreases; indeed, gga-let-7a-5p and gga-let-7b miRNAs directly bind to TGFBR1 and LIN28B transcripts. Our data further indicate that TGFBR1 and LIN28B maintain pluripotency by regulating POUV, NANOG, and CRIPTO. Therefore, gga-let-7 miRNAs act as post-transcriptional regulators of differentiation in blastodermal cells by repressing the expression of the TGFBR1 and LIN28B, which intrinsically controls blastodermal cell differentiation in early chick development. © 2015 Wiley Periodicals, Inc.
Atrial and ventricular septal changes in ethanol vapour exposed chick embryos.
Kamran, Kiran; Khan, Muhammad Yunus; Minhas, Liaqat Ali
2015-03-01
To study the effects of ethanol vapour exposure on development of atrial and ventricular septa of chick embryo. The experimental study was conducted at the College of Physicians and Surgeons, Islamabad, from 2006 to 2007. The experimental and control groups were further divided into three subgroups based on the day of sacrifice. The experimental group was exposed to ethanol vapours produced in a specially-designed vapour chamber and then compared with age-matched controls. There were 90 eggs in each of the two groups. The development of inter-ventricular septum completed at day 7 of development in chick embryo. Ethanol vapour exposure produced a small discontinuity at day 10 of development in a chick embryo which may be labelled as ventricular septal defect since ventricular development is completed by day 7. Interatrial septum formed till day 7 with small perforations which persisted till hatching. Ethanol vapour exposure may lead to ventricular septal defect.
1975-01-01
Membrane properties of rat and chick myotubes in various stages of development were studied. Resting membrane potentials (Em) increased from -8 to -55 mV in both rat and chick as the myotubes developed from myoblasts to large multinucleated fibers. In the rat myotubes, this increase was not accompanied by significant changes in specific membrane resistivity or changes in Na+ and K+ ion distribution. Nor have we observed a significant electrogenic component to the resting Em of mature rat myotubes under normal circumstances. A progressive increase in the passive permeability of the membrane to K+ relative to Na+ ions has been observed which can account for the changes in Em with development. In contrast to the changes in the ionic selectivity of the membrane, we have found that the ionic selectivity of the ACh receptor of rat and chick myotubes remains constant during the same period of myotube development. PMID:1176950
Ferreira, G; Meurisse, M; Tillet, Y; Lévy, F
2001-01-01
The basal forebrain cholinergic system is involved in different forms of memory. To study its role in social memory in sheep, an immunotoxin, ME20.4 immunoglobulin G (IgG)-saporin, was developed that is specific to basal forebrain cholinergic neurons bearing the p75 neurotrophin receptor. The distribution of sheep cholinergic neurons was mapped with an antibody against choline acetyltransferase. To assess the localization of the p75 receptor on basal forebrain cholinergic neurons, the distribution of p75 receptor-immunoreactive neurons with ME20.4 IgG was examined, and a double-labeling study with antibodies against choline acetyltransferase and p75 receptor was undertaken. The loss of basal forebrain cholinergic neurons and acetylcholinesterase fibers in basal forebrain projection areas was assessed in ewes that had received intracerebroventricular injections of the immunotoxin (50, 100 or 150 microg) alone, as well as, in some of the ewes treated with the highest dose, with bilateral immunotoxin injections in the nucleus basalis (11 microg/side). Results indicated that choline acetyltransferase- and p75 receptor-immunoreactive cells had similar distributions in the medial septum, the vertical and horizontal limbs of the band of Broca, and the nucleus basalis. The double-labeling procedure revealed that 100% of the cholinergic neurons are also p75 receptor positive in the medial septum and in the vertical and horizontal limbs of the band of Broca, and 82% in the nucleus basalis. Moreover, 100% of the p75 receptor-immunoreactive cells of these four nuclei were cholinergic. Combined immunotoxin injections into ventricles and the nucleus basalis produced a near complete loss (80-95%) of basal forebrain cholinergic neurons and acetylcholinesterase-positive fibers in the hippocampus, olfactory bulb and entorhinal cortex. This study provides the first anatomical data concerning the basal forebrain cholinergic system in ungulates. The availability of a selective cholinergic immunotoxin effective in sheep provides a new tool to probe the involvement of basal forebrain cholinergic neurons in cognitive processes in this species.
The effect of ambient illuminance on the development of deprivation myopia in chicks.
Ashby, Regan; Ohlendorf, Arne; Schaeffel, Frank
2009-11-01
Recent epidemiologic studies have shown that children who spend a higher proportion of time outdoors are less likely to develop myopia. This study was undertaken to investigate whether light levels may be a relevant factor in the development of myopia. METHODS; Paradigm 1: Chicks were fitted with translucent diffusers for 5 days, with the diffusers removed daily for 15 minutes under one of three lighting conditions: (1) normal laboratory lighting (500 lux), (2) intense laboratory lighting (15,000 lux), or (3) daylight (30,000 lux). A control group, which continuously wore diffusers, was also kept under an illumination of 500 lux. Paradigm 2: Chicks fitted with translucent diffusers were raised for 4 days under one of three lighting conditions: (1) low laboratory lighting (50 lux, n = 9), (2) normal laboratory lighting (500 lux, n = 18), or (3) intense laboratory lights (15,000 lux, n = 9). In groups 1 and 3, the chicks were exposed to either low or high ambient illuminances for a period of 6 hours per day (10 AM-4 PM), but were kept under 500 lux for the remaining time of the light phase. Axial length and refraction were measured at the commencement and cessation of all treatments, with corneal curvature measured additionally in paradigm 2. Paradigm 1: The chicks exposed daily to sunlight for 15 minutes had significantly shorter eyes (8.81 +/- 0.05 mm; P < 0.01) and less myopic refractions (-1.1 +/- 0.45 D; P < 0.01) than did the chicks that had their diffusers removed under normal laboratory light levels (8.98 +/- 0.03 mm, -5.3 +/- 0.5 D). If the diffusers were removed under intense laboratory lights, the chicks also developed shorter eyes (8.88 +/- 0.04 mm; P < 0.01) and less myopic refractions (-3.4 +/- 0.6D; P < 0.01). Paradigm 2: The chicks that wore diffusers continuously under high illuminance had shorter eyes (8.54 +/- 0.02 mm; P < 0.01) and less myopic refractions (+0.04 +/- 0.7D; P < 0.001) compared with those chicks reared under normal light levels (8.64 +/- 0.06 mm, -5.3 +/- 0.9 D). Low illuminance (50 lux) did not further increase deprivation myopia. Exposing chicks to high illuminances, either sunlight or intense laboratory lights, retards the development of experimental myopia. These results, in conjunction with recent epidemiologic findings, suggest that daily exposure to high light levels may have a protective effect against the development of school-age myopia in children.
Effect of coniine on the developing chick embryo.
Forsyth, C S; Frank, A A; Watrous, B J; Bohn, A A
1994-04-01
Coniine, an alkaloid from Conium maculatum (poison hemlock), has been shown to be teratogenic in livestock. The major teratogenic outcome is arthrogryposis, presumably due to nicotinic receptor blockade. However, coniine has failed to produce arthrogryposis in rats or mice and is only weakly teratogenic in rabbits. The purpose of this study was to evaluate and compare the effects of coniine and nicotine in the developing chick. Concentrations of coniine and nicotine sulfate were 0.015%, 0.03%, 0.075%, 0.15%, 0.75%, 1.5%, 3%, and 6% and 1%, 5%, and 10%, respectively. Both compounds caused deformations and lethality in a dose-dependent manner. All concentrations of nicotine sulfate caused some lethality but a no effect level for coniine lethality was 0.75%. The deformations caused by both coniine and nicotine sulfate were excessive flexion or extension of one or more toes. No histopathological alterations or differences in bone formation were seen in the limbs or toes of any chicks from any group; however, extensive cranial hemorrhage occurred in all nicotine sulfate-treated chicks. There was a statistically significant (P < or = 0.01) decrease in movement in coniine and nicotine sulfate treated chicks as determined by ultrasound. Control chicks were in motion an average of 33.67% of the time, while coniine-treated chicks were only moving 8.95% of a 5-min interval, and no movement was observed for nicotine sulfate treated chicks. In summary, the chick embryo provides a reliable and simple experimental animal model of coniine-induced arthrogryposis. Data from this model support a mechanism involving nicotinic receptor blockade with subsequent decreased fetal movement.
Zhong, Zhentao; Yu, Yue; Jin, Shufang; Pan, Jinming
2018-01-01
The hatch window that varies from 24 to 48 h is known to influence post-hatch performance of chicks. A narrow hatch window is needed for commercial poultry industry to acquire a high level of uniformity of chick quality. Hatching synchronization observed in avian species presents possibilities in altering hatch window in artificial incubation. Layer eggs which were laid on the same day by a single breeder flock and stored for no more than two days started incubation 12 h apart to obtain developmental distinction. The eggs of different initial incubation time were mixed as rows adjacent to rows on day 12 of incubation. During the hatching period (since day 18), hatching time of individual eggs and hatch window were obtained by video recordings. Embryonic development (day 18 and 20) and post-hatch performance up to day 7 were measured. The manipulation of mixing eggs of different initial incubation time shortened the hatch window of late incubated eggs in the manipulated group by delaying the onset of hatching process, and improved the hatchability. Compared to the control groups, chick embryos or chicks in the egg redistribution group showed no significant difference in embryonic development and post-hatch performance up to day 7. We have demonstrated that eggs that were incubated with advanced eggs performed a narrow spread of hatch with higher hatchability, normal embryonic development as well as unaffected chick quality. This specific manipulation is applicable in industrial poultry production to shorten hatch window and improve the uniformity of chick quality.
Bilateral neuro-retinitis following chick embryo cell anti-rabies vaccination – a case report
Saxena, Rohit; Sethi, Harinder Singh; Rai, Harminder Kumar; Menon, Vimla
2005-01-01
Background The Optic nerve is rarely involved after sheep brain anti-rabies vaccination in the form of retrobulbar neuritis or papillitis. Bilateral neuroretinitis after chick embryo cell antirabies vaccination has not been reported. Case presentation We report the case of a 56 year old male who developed bilateral neuro-retinitis following three injections of antirabies vaccine prepared from the chick embryo. Conclusion The chick embryo cell antirabies vaccine can cause bilateral neuroretinits which has not been reported previously. PMID:16105182
ChickScope: An Interactive MRI Classroom Curriculum Innovation for K-12.
ERIC Educational Resources Information Center
Bruce, B. C.; Carragher, B. O.; Damon, B. M.; Dawson, M. J.; Eurell, J. A.; Gregory, C. D.; Lauterbur, P. C.; Marjanovic, M. M.; Mason-Fossum, B.; Morris, H. D.; Potter, C. S.; Thakkar, U.
1997-01-01
Describes ChickScope, a 21-day chick embryonic development project, to demonstrate the remote control of a magnetic resonance imaging (MRI) instrument through the World Wide Web. Topics include remote instrumentation and the Web, teacher-based implementation, impact in elementary and secondary school classrooms, and future directions. (Author/LRW)
Hand-rearing, growth, and development of common loon (Gavia immer) chicks
Kenow, Kevin P.; Meier, Melissa S.; McColl, Laurie E.; Hines, Randy K.; Pichner, Jimmy; Johnson, Laura; Lyon, James E.; Scharold, Kellie Kroc; Meyer, Michael
2014-01-01
Common loon chicks were reared in captivity in association with studies to evaluate the effects of radiotransmitter implants and to assess the ecological risk of dietary methylmercury. Here we report on hatching and rearing methods used to successfully raise chicks to 105 days of age. We experienced a 91.5% hatch rate, and 89.6% of loon chicks survived to the end of the study at 105 days. Baseline information on observed rates of fish consumption, behavioral development, and growth patterns are provided. Husbandry techniques are provided that should prove valuable to wildlife rehabilitators caring for abandoned or injured loons, and biologists contemplating methods for restoring loons to areas within their former breeding range.
Muller, Christopher L; Anacker, Allison MJ; Rogers, Tiffany D; Goeden, Nick; Keller, Elizabeth H; Forsberg, C Gunnar; Kerr, Travis M; Wender, Carly LA; Anderson, George M; Stanwood, Gregg D; Blakely, Randy D; Bonnin, Alexandre; Veenstra-VanderWeele, Jeremy
2017-01-01
Biomarker, neuroimaging, and genetic findings implicate the serotonin transporter (SERT) in autism spectrum disorder (ASD). Previously, we found that adult male mice expressing the autism-associated SERT Ala56 variant have altered central serotonin (5-HT) system function, as well as elevated peripheral blood 5-HT levels. Early in gestation, before midbrain 5-HT projections have reached the cortex, peripheral sources supply 5-HT to the forebrain, suggesting that altered maternal or placenta 5-HT system function could impact the developing embryo. We therefore used different combinations of maternal and embryo SERT Ala56 genotypes to examine effects on blood, placenta and embryo serotonin levels and neurodevelopment at embryonic day E14.5, when peripheral sources of 5-HT predominate, and E18.5, when midbrain 5-HT projections have reached the forebrain. Maternal SERT Ala56 genotype was associated with decreased placenta and embryonic forebrain 5-HT levels at E14.5. Low 5-HT in the placenta persisted, but forebrain levels normalized by E18.5. Maternal SERT Ala56 genotype effects on forebrain 5-HT levels were accompanied by a broadening of 5-HT-sensitive thalamocortical axon projections. In contrast, no effect of embryo genotype was seen in concepti from heterozygous dams. Blood 5-HT levels were dynamic across pregnancy and were increased in SERT Ala56 dams at E14.5. Placenta RNA sequencing data at E14.5 indicated substantial impact of maternal SERT Ala56 genotype, with alterations in immune and metabolic-related pathways. Collectively, these findings indicate that maternal SERT function impacts offspring placental 5-HT levels, forebrain 5-HT levels, and neurodevelopment. PMID:27550733
Adult forebrain NMDA receptors gate social motivation and social memory.
Jacobs, Stephanie; Tsien, Joe Z
2017-02-01
Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development. Copyright © 2016 Elsevier Inc. All rights reserved.
The ontogenesis of the forebrain commissures and the determination of brain asymmetries.
Lent, R; Schmidt, S L
1993-02-01
We have reviewed the organization and development of the interhemispheric projections through the forebrain commissures, especially those of the CC, in connection with the development of brain asymmetries. Analyzing the available data, we conclude that the developing CC plays an important role in the ontogenesis of brain asymmetries. We have extended a previous hypothesis that the rodent CC may exert a stabilizing effect over the unstable populational asymmetries of cortical size and shape, and that it participates in the developmental stabilization of lateralized motor behaviors.
Forebrain neurogenesis: From embryo to adult.
Dennis, Daniel; Picketts, David; Slack, Ruth S; Schuurmans, Carol
2016-01-01
A satellite symposium to the Canadian Developmental Biology Conference 2016 was held on March 16-17, 2016 in Banff, Alberta, Canada, entitled Forebrain Neurogenesis : From embryo to adult . The Forebrain Neurogenesis symposium was a focused, high-intensity meeting, bringing together the top Canadian and international researchers in the field. This symposium reported the latest breaking news, along with 'state of the art' techniques to answer fundamental questions in developmental neurobiology. Topics covered ranged from stem cell regulation to neurocircuitry development, culminating with a session focused on neuropsychiatric disorders. Understanding the underlying causes of neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) is of great interest as diagnoses of these conditions are climbing at alarming rates. For instance, in 2012, the Centers for Disease Control reported that the prevalence rate of ASD in the U.S. was 1 in 88; while more recent data indicate that the number is as high as 1 in 68 (Centers for Disease Control and Prevention MMWR Surveillance Summaries. Vol. 63. No. 2). Similarly, the incidence of ASD is on the rise in Canada, increasing from 1 in 150 in 2000 to 1 in 63 in 2012 in southeastern Ontario (Centers for Disease Control and Prevention). Currently very little is known regarding the deficits underlying these neurodevelopmental conditions. Moreover, the development of effective therapies is further limited by major gaps in our understanding of the fundamental processes that regulate forebrain development and adult neurogenesis. The Forebrain Neurogenesis satellite symposium was thus timely, and it played a key role in advancing research in this important field, while also fostering collaborations between international leaders, and inspiring young researchers.
Molecular mechanisms of memory in imprinting.
Solomonia, Revaz O; McCabe, Brian J
2015-03-01
Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Molecular mechanisms of memory in imprinting
Solomonia, Revaz O.; McCabe, Brian J.
2015-01-01
Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-d-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. PMID:25280906
Ontogeny of thermoregulation and energy metabolism in pygoscelid penguin chicks.
Taylor, J R
1985-01-01
The ontogeny of thermoregulation and energy metabolism of chinstrap (Pygoscelis antarctica) and gentoo (P. papua) penguins was studied on King George Island, South Shetland Island, Antarctica. The major findings of this study are: Chinstrap and gentoo penguin chicks hatched completely poikilothermic, due to their poor heat-production ability at low ambient temperatures. They were able to maintain high body temperatures and metabolic rates only by being brooded by adults. Newly hatched chinstrap penguin chicks had, at a specified ambient temperature, significantly higher metabolic rates than newly hatched gentoos. Moreover, chinstrap chicks maintained a significantly higher body temperature. It is suggested that this is a non-acclimatory metabolic adaptation of chinstrap penguin chicks to the lower mean temperatures of their breeding areas. On the 15th day after hatching, chinstrap chicks were completely, and gentoo chicks almost completely, homeothermic. In spite of their high thermogenic capacity from about day 10, chicks were not at that time capable of controlling heat dissipation, and were still dependent on their parents. In older downy chicks and fledglings, heat loss at low temperatures, expressed as heat conductance (CA), was similar to that found for the adults of other penguin species. Just before moulting the CA of chicks was lower than after moulting. Moulting alone did not cause a clear increase in CA. Towards the end of their stay on land the CA of pre-fledged gentoos decreased by 31%. This decrease was not connected with the development of feathers or growth in the chicks' weight. The combination of the low CA and high SMR of chicks gave very low lower critical temperatures, near -15 degrees C. The wide thermoneutral zones of the chicks covered the whole range of air temperature variations in the breeding colonies of both species studied on King George Island. The CA values of homeothermic chinstrap chicks were not lower than those of gentoos, despite the more southern breeding range of the former species. The older chicks of both species are well protected against cold. Any further increase in insulation in chinstrap chicks would be of no adaptative importance.
Sujatha, Tamilvanan; Abhinaya, Sivasankar; Sunder, Jai; Thangapandian, Marudhai; Kundu, Anandamoy
2017-01-01
Aim: This study was conducted with an aim of studying the efficacy of water supplements of Aloe vera and Azadirachta indica (neem) during pre-starter age (0-2 weeks) on gut health and histomorphometry in Vanaraja chicks. Materials and Methods: A total of 192 day old Vanaraja chicks were randomly assigned to one of four herbal water treatments throughout the experimental pre-starter stage (0-2 weeks) in a completely randomized design. Each treatment was given four replicates consisting of 12 chicks per replicate. Water treatments comprised T1: Control with regular antibiotic supplement, T2: 3 ml Aloe juice per chick per day, T3: 3 ml neem extract per chick per day, T4: 1.5 ml Aloe and 1.5 ml neem per chick per day. Gut culture was done for Escherichia coli and Lactobacillus sps. and gut histomorphometry in 24 gut samples at 14 days of age. Results: This study revealed that supplementation of A. vera and neem in water significantly (p<0.05) reduced and increased the number of gut E. coli and Lactobacillus sps. Colonies, respectively, as compared to that of control groups; Villi was significantly (p<0.05) taller and broader on 14 days of age across the jejunum of chicks fed with neem supplementation as compared to that of control chicks. Significantly lower crypt depth (p<0.05) was observed in the duodenum of Aloe supplementation. Villus height: Crypt depth ratio of duodenum and jejunum was significantly (p<0.05) increased neem and Aloe supplementation in chicks as compared to their combination and control. Conclusion: Immediate post hatch supplementation of Aloe juice and neem extract in chicks improved the development and health of their gut. PMID:28717305
Sujatha, Tamilvanan; Abhinaya, Sivasankar; Sunder, Jai; Thangapandian, Marudhai; Kundu, Anandamoy
2017-06-01
This study was conducted with an aim of studying the efficacy of water supplements of Aloe vera and Azadirachta indica (neem) during pre-starter age (0-2 weeks) on gut health and histomorphometry in Vanaraja chicks. A total of 192 day old Vanaraja chicks were randomly assigned to one of four herbal water treatments throughout the experimental pre-starter stage (0-2 weeks) in a completely randomized design. Each treatment was given four replicates consisting of 12 chicks per replicate. Water treatments comprised T1: Control with regular antibiotic supplement, T2: 3 ml Aloe juice per chick per day, T3: 3 ml neem extract per chick per day, T4: 1.5 ml Aloe and 1.5 ml neem per chick per day. Gut culture was done for Escherichia coli and Lactobacillus sps. and gut histomorphometry in 24 gut samples at 14 days of age. This study revealed that supplementation of A. vera and neem in water significantly (p<0.05) reduced and increased the number of gut E. coli and Lactobacillus sps. Colonies, respectively, as compared to that of control groups; Villi was significantly (p<0.05) taller and broader on 14 days of age across the jejunum of chicks fed with neem supplementation as compared to that of control chicks. Significantly lower crypt depth (p<0.05) was observed in the duodenum of Aloe supplementation. Villus height: Crypt depth ratio of duodenum and jejunum was significantly (p<0.05) increased neem and Aloe supplementation in chicks as compared to their combination and control. Immediate post hatch supplementation of Aloe juice and neem extract in chicks improved the development and health of their gut.
γ-BUTYROBETAINE AS A SPECIFIC ANTAGONIST FOR CARNITINE IN THE DEVELOPMENT OF THE EARLY CHICK EMBRYO
Ito, Toshio; Fraenkel, G.
1957-01-01
The effect of γ-butyrobetaine alone and with the addition of carnitine on the development of the early excised chick embryo has been studied. γ-Butyrobetaine in appropriate amounts exerts an inhibitory effect which can be relieved or annulled by the inclusion of appropriate amounts of carnitine. This has been interpreted as a metabolite-antimetabolite relationship, in which the normal metabolite, carnitine, is antagonized by the structurally closely related γ-butyrobetaine, and is regarded as evidence of an important role of carnitine in the metabolism of the developing chick embryo. PMID:13475691
Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana
2018-03-23
Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.
Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J
2015-05-28
All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chick(GFP) embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. Chick(GFP)-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system.
Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J.
2015-01-01
All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chickGFP embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. ChickGFP-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system. PMID:26065540
Use of chick embryo in screening for teratogenicity.
Kotwani, A
1998-04-01
A teratology screening system would detect agents hazardous to the conceptus before they can perturb embryonic development in humans. The back log of untested chemicals and the rate at which new substances enter the market exceed the developmental effects testing by standard in vivo method. Thus, cheaper, quicker in vitro systems afford a unique opportunity for investigating the direct interaction of substances with developing morphogenetic system (MGSs), since maternal influences are excluded. As a carrier of a complete set of MGSs, the chick embryo in ovo manifests an advantage over those in vitro systems that employ isolated embryos or embryonic tissues that have only limited survival. Under controlled experimental conditions including standardization of subjects, administration technique and mode of evaluation, according to the basic principles of teratology, the chick embryo test is demonstrated to be reliable and to afford quantifiable end points for evaluation. Individual compounds, mixtures of compounds and against and antagonist can easily be administered and tested. The chick embryo possesses its own basic enzyme-catalyzed drug-transformation capacity and moreover, it can be used for screening specific human metabolites. Different newer techniques e.g. chick embryotoxicity screening test (CHEST), Chick embryo blastoderm model etc are described in detail. Chick embryo fulfills all the criteria which a test should have at a lower level of tier system in teratological studies i.e. modest laboratory equipment, moderate skill, minimal expenditure of time and money, ease of accessibility of embryo, known embryological development, possibility of experimenting on a large scale for statistically valid results and whole animals are also not required.
Transcriptional regulation of intermediate progenitor cell generation during hippocampal development
Harris, Lachlan; Zalucki, Oressia; Gobius, Ilan; McDonald, Hannah; Osinki, Jason; Harvey, Tracey J.; Essebier, Alexandra; Vidovic, Diana; Gladwyn-Ng, Ivan; Burne, Thomas H.; Heng, Julian I.; Richards, Linda J.; Gronostajski, Richard M.
2016-01-01
During forebrain development, radial glia generate neurons through the production of intermediate progenitor cells (IPCs). The production of IPCs is a central tenet underlying the generation of the appropriate number of cortical neurons, but the transcriptional logic underpinning this process remains poorly defined. Here, we examined IPC production using mice lacking the transcription factor nuclear factor I/X (Nfix). We show that Nfix deficiency delays IPC production and prolongs the neurogenic window, resulting in an increased number of neurons in the postnatal forebrain. Loss of additional Nfi alleles (Nfib) resulted in a severe delay in IPC generation while, conversely, overexpression of NFIX led to precocious IPC generation. Mechanistically, analyses of microarray and ChIP-seq datasets, coupled with the investigation of spindle orientation during radial glial cell division, revealed that NFIX promotes the generation of IPCs via the transcriptional upregulation of inscuteable (Insc). These data thereby provide novel insights into the mechanisms controlling the timely transition of radial glia into IPCs during forebrain development. PMID:27965439
Effects of methyl mercury exposure on the growth of juvenile common loons
Kenow, K.P.; Gutreuter, S.; Hines, R.K.; Meyer, M.W.; Fournier, F.; Karasov, W.H.
2003-01-01
We conducted a dose-response laboratory study to quantify the level of mercury exposure associated with negative effects on the development of common loon chicks reared in captivity from hatch to 105 days. A dose regimen was implemented that provided exposure levels that bracketed relevant exposure levels of methyl mercury found in loon chicks across North America. We observed no overt signs of mercury toxicosis and detected no significant effect of dietary mercury exposure on growth or food consumption. However, asymptotic mass was lower in chicks that hatched from eggs collected from nests on low pH lakes relative to eggs from neutral pH lakes. Rapid excretion of methyl mercury during feather growth likely provides loon chicks protection from methyl mercury toxicity and may explain the lack of convincing toxicological findings in this study. Lake-source effects suggest that in ovo exposure to methyl mercury or other factors related to lake pH have consequences on chick development.
Clonal and molecular analysis of the prospective anterior neural boundary in the mouse embryo
Cajal, Marieke; Lawson, Kirstie A.; Hill, Bill; Moreau, Anne; Rao, Jianguo; Ross, Allyson; Collignon, Jérôme; Camus, Anne
2012-01-01
In the mouse embryo the anterior ectoderm undergoes extensive growth and morphogenesis to form the forebrain and cephalic non-neural ectoderm. We traced descendants of single ectoderm cells to study cell fate choice and cell behaviour at late gastrulation. In addition, we provide a comprehensive spatiotemporal atlas of anterior gene expression at stages crucial for anterior ectoderm regionalisation and neural plate formation. Our results show that, at late gastrulation stage, expression patterns of anterior ectoderm genes overlap significantly and correlate with areas of distinct prospective fates but do not define lineages. The fate map delineates a rostral limit to forebrain contribution. However, no early subdivision of the presumptive forebrain territory can be detected. Lineage analysis at single-cell resolution revealed that precursors of the anterior neural ridge (ANR), a signalling centre involved in forebrain development and patterning, are clonally related to neural ectoderm. The prospective ANR and the forebrain neuroectoderm arise from cells scattered within the same broad area of anterior ectoderm. This study establishes that although the segregation between non-neural and neural precursors in the anterior midline ectoderm is not complete at late gastrulation stage, this tissue already harbours elements of regionalisation that prefigure the later organisation of the head. PMID:22186731
Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging
NASA Astrophysics Data System (ADS)
Casey, Kenneth L.
1999-07-01
Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.
Seleem, Amin A
2015-08-01
Synucleins are small proteins associated with neurodegenerative diseases, alpha-synuclein is a Parkinson's disease-linked protein of ubiquitous expression in the central nervous system. This study aimed at the localization of alpha-synuclein during eye development of mice (Mus musculus), chick (Gallus gallus domisticus) and fish (Ctenopharyngodon idella) by immunohistochemical staining in a comparison study. The results showed that alpha-synuclein expression increased gradually with the development of ciliary body, iris, retina and cornea of mice at E17, P1, P3, P7 and chick at E5, E10, E15 with unequal appearance of alpha-synuclein expression. Also, it was not detected in iridocorneal angle during eye development of mice and chick. Alpha-synuclein expression during fish eye development at P10, P15, P20 was not detected either in the ciliray body or Iris regions and it was pronounced with sharp signals in the highly specialized tissue of the iridocorneal angle at P20. Also, the expression was gradually increased from P15 to P20 in fish retina and cornea. The pattern of expression and distribution of alpha-synuclein during the development of ciliary body and iris of mice, chick and fish has not been previously characterized, The data concluded that alpha-synuclein has important cellular function during eye development of studied animals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Geltsch, Nikoletta; Hauber, Márk E; Anderson, Michael G; Bán, Miklós; Moskát, Csaba
2012-07-01
Chicks of the brood parasitic common cuckoo (Cuculus canorus) typically monopolize host parental care by evicting all eggs and nestmates from the nest. To assess the benefits of parasitic eviction behaviour throughout the full nestling period, we generated mixed broods of one cuckoo and one great reed warbler (Acrocephalus arundinaceus) to study how hosts divide care between own and parasitic young. We also recorded parental provisioning behaviour at nests of singleton host nestlings or singleton cuckoo chicks. Host parents fed the three types of broods with similar-sized food items. The mass of the cuckoo chicks was significantly reduced in mixed broods relative to singleton cuckoos. Yet, after the host chick fledged from mixed broods, at about 10-12 days, cuckoo chicks in mixed broods grew faster and appeared to have compensated for the growth costs of prior cohabitation by fledging at similar weights and ages compared to singleton cuckoo chicks. These results are contrary to suggestions that chick competition in mixed broods of cuckoos and hosts causes an irrecoverable cost for the developing brood parasite. Flexibility in cuckoos' growth dynamics may provide a general benefit to ecological uncertainty regarding the realized successes, failures, and costs of nestmate eviction strategies of brood parasites. Copyright © 2012 Elsevier B.V. All rights reserved.
Correlation between light levels and the development of deprivation myopia.
Karouta, Cindy; Ashby, Regan Scott
2014-12-09
In chicks, daily exposure to bright light (15,000 lux) retards the development of form-deprivation myopia (FDM) by roughly 60%. This study investigated whether higher light intensities increase the amount of protection against FDM, and whether protection and light intensity are correlated. Furthermore, we examined if exposure to bright light can prevent the progression of FDM or whether it affects only the onset of experimental myopia. Experiment 1: Chicks wore translucent diffusers monocularly for a period of 7 days, with exposure to one of five light intensities (500, 10,000, 20,000, 30,000, and 40,000 lux, n = 12 per group). Experiment 2: Chickens wore translucent diffusers monocularly for 11 days and were split into three groups: (1) chicks reared under 500 lux, (2) chicks reared under 40,000 lux, and (3) chicks reared under 500 lux for the first 4 days and 40,000 lux for the remaining 7 days. A significant correlation was observed between log light intensity and the development of FDM, with a lesser myopic refraction (F (28, 330) = 60.86, P < 0.0001) and shorter axial length (F (4, 20) = 8.87, P < 0.0001) seen with increasing light intensities. The progression of FDM was halted in chicks that were switched from 500 to 40,000 lux. The level of protection from the development of FDM increases with increasing light intensity. Daily exposure to 40,000 lux almost completely prevents the onset of FDM and, once myopia is established, halts further progression. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Ao, Z.; Kocher, A.; Choct, M.
2012-01-01
The effects of dietary additives and holding time on resistance and resilience of broiler chickens to Clostridium perfringens challenge were investigated by offering four dietary treatments. These were a negative control (basal), a positive control (Zn-bacitracin) and two dietary additives, mannanoligosaccharides (MOS), and acidifier. Two holding times included (a) immediate access to feed and water post hatch (FED) and (b) access to both feed and water 48 h post hatch (HELD). Chicks fed Zn-bacitracin had no intestinal lesions attributed to necrotic enteritis (NE), whereas chicks fed both MOS or acidifier showed signs of NE related lesions. All dietary treatments were effective in reducing the numbers of C. perfringens in the ileum post challenge. The FED chicks had heavier body weight and numerically lower mortality. The FED chicks also showed stronger immune responses to NE challenge, showing enhanced (p<0.05) proliferation of T-cells. Early feeding of the MOS supplemented diet increased (p<0.05) IL-6 production. The relative bursa weight of the FED chicks was heavier at d 21 (p<0.05). All the additives increased the relative spleen weight of the HELD chicks at d 14 (p<0.05). The FED chicks had increased villus height and reduced crypt depth, and hence an increased villus/crypt ratio, especially in the jejunum at d 14 (p<0.05). The same was true for the HELD chicks given dietary additives (p<0.05). It may be concluded that the chicks with early access to dietary additives showed enhanced immune response and gut development, under C. perfringens challenge. The findings of this study shed light on managerial and nutritional strategies that could be used to prevent NE in the broiler industry without the use of in-feed antibiotics. PMID:25049595
Zhang, Chengjin; Ojiaku, Princess; Cole, Gregory J.
2014-01-01
BACKGROUND Ethanol is a teratogen that affects numerous developmental processes in the nervous system, which includes development and survival of GABAergic and glutamatergic neurons. Possible molecular mechanisms accounting for ethanol’s effects on nervous system development include perturbed fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) signaling. In zebrafish, forebrain GABAergic neuron development is dependent on Fgf19 and Shh signaling. The present study was conducted to test the hypothesis that ethanol affects GABAergic and glutamatergic neuron development by disrupting Fgf, Shh, and agrin function. METHODS Zebrafish embryos were exposed to varying concentrations of ethanol during a range of developmental stages, in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin or Shh function. In situ hybridization was employed to analyze glutamic acid decarboxylase (GAD1) gene expression, as well as markers of glutamatergic neurons. RESULTS Acute ethanol exposure results in marked reduction in GAD1 gene expression in forebrain and hindbrain, and reduction of glutamatergic neuronal markers in hindbrain. Subthreshold ethanol exposure, combined with agrin or Shh MO treatment, produces a similar diminution in expression of markers for GABAergic and glutamatergic neurons. Consistent with the ethanol effects on Fgf and Shh pathways, Fgf19, Fgf8 or Shh mRNA overexpression rescues ethanol-induced decreases in GAD1 and atonal1a gene expression. CONCLUSIONS These studies demonstrate that GABAergic and glutamatergic neuron development in zebrafish forebrain or cerebellum is sensitive to ethanol exposure, and provides additional evidence that a signaling pathway involving agrin, Fgfs and Shh may be a critical target of ethanol exposure during zebrafish embryogenesis. PMID:23184466
Kerbler, Georg M.; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S.; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J.
2015-01-01
The basal forebrain degenerates in Alzheimer’s disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants’ ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy. PMID:26441643
Han, E T; Kim, J L; Chai, J Y
2003-02-01
Chicks were experimentally infected with Acanthoparyphium tyosenense (Digenea: Echinostomatidae) metacercariae per os, and the growth and development of worms in this host were observed from days I to 38 postinfection (PI). The worms grew rapidly and matured sexually in the small intestine (chiefly in the jejunum) of chicks by day 5 PI. and survived at least up to day 38 Pi, although worm recovery decreased after day 5 PI. Both parenchymal and reproductive organs increased greatly in size from day 2 to day 10 PI and then continued to increase gradually in size up to day 38 PI. The number of uterine eggs reached a peak on days 10 and 15 PI and then decreased gradually. The results suggest that chicks are a fairly suitable definitive host for experimental infection with A. tyosenense.
Development of the endolymphatic sac in chick embryos, with reference to the degradation of otoconia
NASA Technical Reports Server (NTRS)
Yoshihara, T.; Kaname, H.; Narita, N.; Ishii, T.; Igarashi, M.; Fermin, C. D.
1992-01-01
The endolymphatic sac of chick embryos (from embryonic day 7 to 1-day-old chicks) was studied light- and electron-microscopically. At stage 30-31 (embryonic day 7-7.5), the epithelial cells of the endolymphatic sac were cuboidal to columnar in shape. Microvilli were relatively well developed. The intercellular space was wide. In the endolymphatic space of the endolymphatic sac, varying shapes and sizes of otoconia-like bodies were often observed. Intracytoplasmic phagosomes containing these bodies were rarely found. After stage 37 (embryonic day 11), otoconia-like bodies in the endolymphatic sac decreased in number and size. They were almost the same as the otoconia in the macular organs, ultrastructurally. These findings indicate that the endolymphatic sac of the chick embryos may possess the function of otoconial degradation and removal of calcium from otoconia.
Nonshivering thermogenesis and adaptation to fasting in king penguin chicks.
Duchamp, C; Barre, H; Delage, D; Rouanet, J L; Cohen-Adad, F; Minaire, Y
1989-10-01
The ability to develop nonshivering thermogenesis (NST) and the effect of fasting on thermogenic response to cold were studied in winter-acclimatized king penguin chicks. Metabolic rate (MR) and integrated electrical muscle activity were measured at different ambient temperatures. In cold-acclimatized (5 degrees C) fed chicks, shivering threshold temperature (STT) was 9.4 degrees C lower than lower critical temperature (LCT), indicating that NST (0.7 W/kg) occurs at moderate cold, whereas in control chicks fed and reared at 25 degrees C for 3 wk, LCT and STT were similar. Chicks reared in the cold and fasting for 3 wk or 4-5 mo (natural winter fast) developed an NST of 0.8 and 2.4 W/kg, respectively, despite the fast. In fasting chicks, the intercept of the metabolic curve with the abscissa at zero MR was far below body temperature, contrasting with the classic model for heat loss. Their low LCT indicates the capacity of a large reduction in convective conductance characteristic of diving animals and allows energy sparing in moderate cold. Below LCT, conductance reincreases progressively, leading to a steeper than expected slope of the metabolic curve and allowing preservation of a threshold temperature in the shell. These results show for the first time in a wild young bird the development of NST after cold acclimatization. Further, at the temperature of cold acclimatization, an energy-sparing mechanism is shown in response to long-term fast adaptation.
Light intensity modulates corneal power and refraction in the chick eye exposed to continuous light.
Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Avni, Isaac; Polat, Uri
2008-09-01
Continuous exposure of chicks to light was shown to result in severe hyperopia, accompanied by anterior segment changes, such as severe corneal flattening. Since rearing chicks in complete darkness results only in mild hyperopia and minor changes in corneal curvature, we hypothesized that light intensity may play a role in the development of refractive changes under continuous light illumination. To test this hypothesis, we examined the effects of rearing chicks under various continuous light intensities. More specifically, we investigated the refractive parameters of the chicks' eyes, and avoided light cycling effects on ocular development. To this end, thirty-eight chicks were reared under 24-h incandescent illumination, at three different light intensities: 10,000 lux (n=13), 500 lux (n=12), and 50 lux (n=13). Their eyes underwent repeated retinoscopy, keratometry, and ultrasound biometry, as well as caliper measurements of enucleated eyes. Both refraction and corneal refractive power were found to be correlated with light intensity. On day 90 after hatching, exposure to light intensities of 10,000, 500, and 50 lux resulted in hyperopia of +11.97+/-3.7 (mean+/-SD) +7.9+/-4.08 and +0.63+/-3.61 diopters (D), respectively. Under those intensities, corneal refractive power was 46.10+/-3.62, 49.72+/-4.16, and 56.88+/-4.92D, respectively. Axial length did not differ significantly among the groups. The vitreous chamber was significantly deeper in the high than in the low-intensity groups. Thus, during the early life of chicks exposed to continuous lighting, light intensity affects the vitreous chamber depth as well as the anterior segment parameters, most notably the cornea. The higher the intensity, the more severe was the corneal flattening observed and the hyperopia that developed, whereas continuous illumination at low intensities resulted in emmetropia. Thus, light intensity is an important factor that should be taken into account when studying refractive development.
Wang, Zhe; Nakayama, Yukiko; Tsuda, Sachiko; Yamasu, Kyo
During vertebrate brain development, the gastrulation brain homeobox 2 gene (gbx2) is expressed in the forebrain, but its precise roles are still unknown. In this study, we addressed this issue in zebrafish (Danio rerio) first by carefully examining gbx2 expression in the developing forebrain. We showed that gbx2 was expressed in the telencephalon during late somitogenesis, from 18h post-fertilization (hpf) to 24 hpf, and in the thalamic primordium after 26 hpf. In contrast, another gbx gene, gbx1, was expressed in the anterior-most ventral telencephalon after 36 hpf. Thus, the expression patterns of these two gbx genes did not overlap, arguing against their redundant function in the forebrain. Two-color fluorescence in situ hybridization (FISH) showed close relationships between the telencephalic expression of gbx2 and other forebrain-forming genes, suggesting that their interactions contribute to the regionalization of the telencephalon. FISH further revealed that gbx2 is expressed in the ventricular region of the telencephalon. By using transgenic fish in which gbx2 can be induced by heat shock, we found that gbx2 induction at 16 hpf repressed the expression of emx3, dlx2a, and six3b in the ventral telencephalon. Among secreted factor genes, bmp2b and wnt1 were repressed in the vicinity of the gbx2 domain in the telencephalon. The expression of forebrain-forming genes was examined in mutant embryos lacking gbx2, showing emx3 and dlx2a to be upregulated in the subpallium at 24 hpf. Taken together, these findings indicate that gbx2 contributes to the development of the subpallium through its repressive activities against other telencephalon-forming genes. We further showed that inhibiting FGF signaling and activating Wnt signaling repressed gbx2 and affected the regionalization of the telencephalon, supporting a functional link between gbx2, intracellular signaling, and telencephalon development. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Morphogenetic interaction of presumptive neural and mesodermal cells mixed in different ratios.
Toivonen, S; Saxen, L
1968-02-02
Cells of the presumptive forebrain region and axial mesoderm of Triturus neurulae were disaggregated and combined in different ratios. The differentiation of the central nervous systen in these explants was dependent on the relative amount of mesodermal cells present: an increase of mesodermal cells resulted in a corresponding increase in the frequency with which caudal structures of the central nervous system developed and a gradual loss of the forebrain formations.
Basaure, Pia; Guardia-Escote, Laia; Cabré, Maria; Peris-Sampedro, Fiona; Sánchez-Santed, Fernando; Domingo, José L; Colomina, Maria Teresa
2018-05-03
Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides in the world. Our previous results described that apolipoprotein E (APOE) polymorphisms are a source of individual differences in susceptibility to CPF. The aim of this study was to assess the physical and biochemical effects of postnatal exposure to CPF in the apoE targeted replacement mouse model. Mice were exposed to CPF at 0 or 1 mg/kg/day from postnatal day 10-15. Physical development, plasma and forebrain cholinesterase (ChE) activity and gene expression in liver and forebrain were evaluated. CPF exposure delays physical maturation and decreases the expression of choline acetyltransferase, α4-subunit and the α7 receptor. CPF decreases the expression of vesicular acetylcholine transporter (VAChT) mRNA in the forebrain only in apoE3 mice. The expression of paraoxonase-2 in the forebrain was also influenced by APOE genotype and CPF. Differences between genotypes were observed in litter size, ChE activity, expression of butyrylcholinesterase and paraoxonase-1 in liver and variants of acetylcholinesterase, VAChT and the α7 receptor in the forebrain. These results support that there are different vulnerabilities to postnatal CPF exposure according to the APOE polymorphism, which in turn affects the cholinergic system and defenses to oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genestine, Matthieu; Lin, Lulu; Durens, Madel; Yan, Yan; Jiang, Yiqin; Prem, Smrithi; Bailoor, Kunal; Kelly, Brian; Sonsalla, Patricia K.; Matteson, Paul G.; Silverman, Jill; Crawley, Jacqueline N.; Millonig, James H.; DiCicco-Bloom, Emanuel
2015-01-01
Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40–75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5–15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders. PMID:26220976
Development of teeth in chick embryos after mouse neural crest transplantations.
Mitsiadis, Thimios A; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane
2003-05-27
Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick chimeras obtained show evidence of tooth formation showing that avian oral epithelium is able to induce a nonavian developmental program in mouse neural crest-derived mesenchymal cells.
Temporal variations in early developmental decisions: an engine of forebrain evolution.
Bielen, H; Pal, S; Tole, S; Houart, C
2017-02-01
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heisenberg, C P; Brennan, C; Wilson, S W
1999-05-01
During the development of the zebrafish nervous system both noi, a zebrafish pax2 homolog, and ace, a zebrafish fgf8 homolog, are required for development of the midbrain and cerebellum. Here we describe a dominant mutation, aussicht (aus), in which the expression of noi and ace is upregulated. In aus mutant embryos, ace is upregulated at many sites in the embryo, while noi expression is only upregulated in regions of the forebrain and midbrain which also express ace. Subsequent to the alterations in noi and ace expression, aus mutants exhibit defects in the differentiation of the forebrain, midbrain and eyes. Within the forebrain, the formation of the anterior and postoptic commissures is delayed and the expression of markers within the pretectal area is reduced. Within the midbrain, En and wnt1 expression is expanded. In heterozygous aus embryos, there is ectopic outgrowth of neural retina in the temporal half of the eyes, whereas in putative homozygous aus embryos, the ventral retina is reduced and the pigmented retinal epithelium is expanded towards the midline. The observation that aus mutant embryos exhibit widespread upregulation of ace raised the possibility that aus might represent an allele of the ace gene itself. However, by crossing carriers for both aus and ace, we were able to generate homozygous ace mutant embryos that also exhibited the aus phenotype. This indicated that aus is not tightly linked to ace and is unlikely to be a mutation directly affecting the ace locus. However, increased Ace activity may underly many aspects of the aus phenotype and we show that the upregulation of noi in the forebrain of aus mutants is partially dependent upon functional Ace activity. Conversely, increased ace expression in the forebrain of aus mutants is not dependent upon functional Noi activity. We conclude that aus represents a mutation involving a locus normally required for the regulation of ace expression during embryogenesis.
Choe, Youngshik; Zarbalis, Konstantinos S.; Pleasure, Samuel J.
2014-01-01
Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis. PMID:24516524
Method for Dissecting the Auditory Epithelium (Basilar Papilla) in Developing Chick Embryos.
Levic, Snezana; Yamoah, Ebenezer N
2016-01-01
Chickens are an invaluable model for exploring auditory physiology. Similar to humans, the chicken inner ear is morphologically and functionally close to maturity at the time of hatching. In contrast, chicks can regenerate hearing, an ability lost in all mammals, including humans. The extensive morphological, physiological, behavioral, and pharmacological data available, regarding normal development in the chicken auditory system, has driven the progress of the field. The basilar papilla is an attractive model system to study the developmental mechanisms of hearing. Here, we describe the dissection technique for isolating the basilar papilla in developing chick inner ear. We also provide detailed examples of physiological (patch clamping) experiments using this preparation.
Benito, María M; González-Solís, Jacob; Becker, Peter H
2011-05-01
Carotenoids, as pigments with antioxidant and immunoregulatory properties, play a crucial role in developing chicks. Carotenoids must be acquired through diet and are relatively scarce, suggesting that their availability is a limiting factor leading to a trade-off between colour displays and physiological functions. However, potential differences in this trade-off between male and female chicks have been little studied. We manipulated carotenoid availability in 9 days old common tern Sterna hirundo chicks by supplementing their fish diet with four carotenoids during 9 days. Our aim was to examine sex-specific responses to the experimental increase of dietary carotenoids on plasma circulation, physiological and condition variables and successful fledging. Furthermore, to explore the functional and evolutionary basis of the trade-off, we studied the relationships among carotenoid concentration, mediated immune response and foot colouration. After treatment, control chicks showed decreasing plasma levels for most carotenoid types, whereas supplemented chicks had strong increases. Colour luminosity and saturation increased in both treatment groups, while hue only changed significantly towards redder feet in supplemented females. Supplemented chicks presented neither different T-cell-mediated immunity nor other differences compared to control chicks. Nevertheless, supplemented females showed tendencies towards decreased immune responses and increased δ(15)N signatures, and supplemented males towards greater body mass. Our results indicate colouration may have, in females, a signalling function as to compensate for immunological costs. In males, additional availability of carotenoids may contribute to improve the body condition. This study suggests that trade-off responses to carotenoid availability are sex-specific in tern chicks. Thus, parental carotenoid supply to chicks may be an unrecognised component in sex allocation.
Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja
2017-09-18
The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.
In kittiwakes food availability partially explains the seasonal decline in humoral immunocompetence
Gasparini, J.; Roulin, A.; Gill, V.A.; Hatch, Shyla A.; Boulinier, T.
2006-01-01
1. The immune system plays an important role in fitness, and interindividual variation in immunocompetence is due to several factors including food supply. 2. Seasonal variation in food resources may therefore explain why immunocompetence in bird nestlings usually declines throughout the breeding season, with chicks born early in the season receiving more food than chicks born later, and thereby possibly developing a more potent immune system. Although there are studies supporting this hypothesis, none has been experimental. 3. We performed an experiment in the kittiwake Rissa tridactyla by manipulating the food supply of pairs that were left to produce a first brood, and of pairs that were induced to produce a late replacement brood. 4. If food supply mediates, at least partially, seasonal variations in chick immunocompetence, non-food-supplemented chicks would show a stronger seasonal decline in immunocompetence than food-supplemented chicks. 5. Food supplementation improved humoral immunocompetence (the production of immunoglobulins Y), but not T-cell immunocompetence (phytohaemagglutinin, PHA response). T-cell immunocompetence of food-supplemented and non-food- supplemented chicks decreased through the season but to a similar extent, whereas the humoral immunocompetence of non-food-supplemented chicks decreased more strongly than that of food-supplemented chicks. 6. Our results suggest that the seasonal decline in humoral immunocompetence can be explained, at least partly, by variations in food supply throughout the breeding season. ?? 2006 British Ecological Society.
Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain
Fasano, Christopher A.; Phoenix, Timothy N.; Kokovay, Erzsebet; Lowry, Natalia; Elkabetz, Yechiel; Dimos, John T.; Lemischka, Ihor R.; Studer, Lorenz; Temple, Sally
2009-01-01
Neural stem cells (NSCs) persist throughout life in two forebrain areas: the subventricular zone (SVZ) and the hippocampus. Why forebrain NSCs self-renew more extensively than those from other regions remains unclear. Prior studies have shown that the polycomb factor Bmi-1 is necessary for NSC self-renewal and that it represses the cell cycle inhibitors p16, p19, and p21. Here we show that overexpression of Bmi-1 enhances self-renewal of forebrain NSCs significantly more than those derived from spinal cord, demonstrating a regional difference in responsiveness. We show that forebrain NSCs require the forebrain-specific transcription factor Foxg1 for Bmi-1-dependent self-renewal, and that repression of p21 is a focus of this interaction. Bmi-1 enhancement of NSC self-renewal is significantly greater with increasing age and passage. Importantly, when Bmi-1 is overexpressed in cultured adult forebrain NSCs, they expand dramatically and continue to make neurons even after multiple passages, when control NSCs have become restricted to glial differentiation. Together these findings demonstrate the importance of Bmi-1 and Foxg1 cooperation to maintenance of NSC multipotency and self-renewal, and establish a useful method for generating abundant forebrain neurons ex vivo, outside the neurogenic niche. PMID:19270157
Oh, J D; Butcher, L L; Woolf, N J
1991-04-24
Hyperthyroidism, induced in rat pups by the daily intraperitoneal administration of 1 microgram/g body weight triiodothyronine, facilitated the development of ChAT fiber plexuses in brain regions innervated by basal forebrain cholinergic neurons, leading to an earlier and increased expression of cholinergic markers in those fibers in the cortex, hippocampus and amygdala. A similar enhancement was seen in the caudate-putamen complex. This histochemical profile was correlated with an accelerated appearance of ChAT-positive telencephalic puncta, as well as with a larger total number of cholinergic terminals expressed, which persisted throughout the eight postnatal week, the longest time examined in the present study. Hypothyroidism was produced in rat pups by adding 0.5% propylthiouracil to the dams' diet beginning the day after birth. This dietary manipulation resulted in the diminished expression of ChAT in forebrain fibers and terminals. Hypothyroid treatment also reduced the quantity of ChAT puncta present during postnatal weeks 2 and 3, and, from week 4 and continuing through week 6, the number of ChAT-positive terminals in the telencephalic regions examined was actually less than the amount extant during the former developmental epoch. Immunostaining for nerve growth factor receptor (NGF-R), which is associated almost exclusively with ChAT-positive somata and fibers in the basal forebrain, demonstrated a different time course of postnatal development. Forebrain fibers and terminals demonstrating NGF-R were maximally visualized 1 week postnatally, a time at which these same neuronal elements evinced minimal ChAT-like immunopositivity. Thereafter and correlated with increased immunoreactivity for ChAT, fine details of NGF-R stained fibers were observed less frequently. Although propylthiouracil administration decreased NGF-R immunodensity, no alteration in the development of that receptor was observed as a function of triiodothyronine treatment. Cholinergic terminals in the ventrobasal thalamus, which derive from ChAT-positive neurons in the pedunculopontine and laterodorsal tegmental nucleus, were unaffected by either hyperthyroid or hypothyroid conditions. These cells also do not demonstrate NGF-R. We conclude from these experiments (1) that cholinergic fiber plexuses eventually exhibiting ChAT positivity in the telencephalon demonstrate NGF-R prior to the cholinergic synthetic enzyme, (2) that susceptibility to thyroid hormone manipulations may involve sensitivity to NGF, at least in some forebrain cholinergic systems and (3) that the effects of thyroid hormone imbalances on brain cholinergic neurons are regionally selective.
Parental development of eimerian coccidia in sandhill and whooping cranes
Novilla, M.N.; Carpenter, J.W.; Spraker, T.R.; Jeffers, T.K.
1981-01-01
In contrast with isosporoid species of coccidia that have established extraintestinal phases of development, the eimeriids, except for a few species, generally have been considered inhabitants of the intestinal tract. Eimeria infection in sandhill cranes (Grus canadensis) and whooping cranes (G. americana) may result in disseminated visceral coccidiosis. Nodules were observed in the oral cavity of 33% (n = 95) of the G. canadensis at the Patuxent Wildlife Research Center (PWRC) in Laurel, MD. Necropsy of six of the afflicted cranes revealed granulomatous nodules in many tissues and organs. Histologic studies disclosed protozoan organisms morphologically resembling schizonts in the granulomas, and endogenous stages of coccidia were present in the intestines of four birds. Fecalysis of three of four sandhill cranes yielded oocysts of E. reichenowi and E. gruis. Only E. reichenowi-type oocysts were recovered from a dead whooping crane sample. Domestic broiler chicks each intubated with about 1 times 106 pooled sporulated oocysts of E. reichenowi and E. gruis were not infected. Exposure of six incubator-hatched and hand-reared sandhill crane chicks to oocysts artificially (two chicks) and naturally (four chicks) resulted in typical infection of intestinal epithelium with invasion of subepithelial tissues extending to the muscular layer and widespread extraintestinal development. Asexual and sexual stages occurred primarily in macrophages in the liver, spleen, heart, and lung. In the lung, oocysts were found in bronchial exudate and epithelial lining cells. Six of ten G. canadensis chicks, one adult G. americana, and three of five G. americana chicks that died naturally at PWRC had disseminated visceral coccidiosis.
Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong
2016-06-15
Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.
Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome
Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.
2016-01-01
Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral deficits after the first 2 postnatal weeks. These results uncover important differences in prenatal phenotype between Dp16 animals and humans with DS and other DS mouse models. PMID:26961948
Enhanced learning of natural visual sequences in newborn chicks.
Wood, Justin N; Prasad, Aditya; Goldman, Jason G; Wood, Samantha M W
2016-07-01
To what extent are newborn brains designed to operate over natural visual input? To address this question, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) show enhanced learning of natural visual sequences at the onset of vision. We took the same set of images and grouped them into either natural sequences (i.e., sequences showing different viewpoints of the same real-world object) or unnatural sequences (i.e., sequences showing different images of different real-world objects). When raised in virtual worlds containing natural sequences, newborn chicks developed the ability to recognize familiar images of objects. Conversely, when raised in virtual worlds containing unnatural sequences, newborn chicks' object recognition abilities were severely impaired. In fact, the majority of the chicks raised with the unnatural sequences failed to recognize familiar images of objects despite acquiring over 100 h of visual experience with those images. Thus, newborn chicks show enhanced learning of natural visual sequences at the onset of vision. These results indicate that newborn brains are designed to operate over natural visual input.
Single cell transcriptome profiling of developing chick retinal cells.
Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M
2017-08-15
The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kundrát, Martin
2008-11-01
The present study examines HNK-1 immunoidentification of a population of the neural crest (NC) during early head morphogenesis in the nonmodel vertebrate, the crocodile ( Crocodylus niloticus) embryos. Although HNK-1 is not an exclusive NC marker among vertebrates, temporospatial immunoreactive patterns found in the crocodile are almost consistent with NC patterns derived from gene expression studies known in birds (the closest living relatives of crocodiles) and mammals. In contrast to birds, the HNK-1 epitope is immunoreactive in NC cells at the neural fold level in crocodile embryos and therefore provides sufficient base to assess early migratory events of the cephalic NC. I found that crocodile NC forms three classic migratory pathways in the head: mandibular, hyoid, and branchial. Further, I demonstrate that, besides this classic phenotype, there is also a forebrain-derived migratory population, which consolidates into a premandibular stream in the crocodile. In contrast to the closely related chick model, crocodilian premandibular and mandibular NC cells arise from the open neural tube suggesting that species-specific heterochronic behavior of NC may be involved in the formation of different vertebrate facial phenotypes.
Captive-rearing piping plovers: Developing techniques to augment wild populations
Powell, A.N.; Cuthbert, F.J.; Wemmer, L.C.; Doolittle, A.W.; Feirer, S.T.
1997-01-01
Techniques for captive-rearing and releasing piping plovers (Charadrius melodus) were developed using a surrogate species, killdeer (Charadrius vociferus). We compared captive-and parent-reared killdeer, and parent-reared piping plovers and determined that growth and behavior were similar. After surrogate trials determined that captive-rearing was feasible, we used the same methods to raise piping plover chicks from salvaged eggs. For captive-reared chick of both species, survival to fledging was higher than and behaviors similar to parent-reared chicks in the wild. Rearing techniques were fine-tuned, and ten piping plover fledglings were released to the wild. Based on our results, we developed recommendations for captive-rearing piping plovers using salvaged eggs to enhance productivity of small populations. ?? 1997 Wiley-Liss, Inc.
Captive-rearing piping plovers: developing techniques to augment wild populations
Powell, A.N.; Cuthbert, F.J.; Wemmer, L.C.; Doolittle, A.
1997-01-01
Techniques for captive-rearing and releasing piping plovers (Charadrius melodus) were developed using a surrogate species, killdeer (Charadrius vociferus). We compared captive- and parent-reared killdeer, and parent-reared piping plovers and determined that growth and behavior were similar. After surrogate trials determined that captive-rearing was feasible, we used the same methods to raise piping plover chicks from salvaged eggs. For captive-reared chick of both species, survival to fledging was higher than and behaviors similar to parent-reared chicks in the wild. Rearing techniques were fine-tuned, and ten piping plover fledglings were released to the wild. Based on our results, we developed recommendations for captive-rearing piping plovers using salvaged eggs to enhance productivity of small populations.
Bertin, Aline; Meurisse, Maryse; Arnould, Cécile; Leterrier, Christine; Constantin, Paul; Cornilleau, Fabien; Vaudin, Pascal; Burlot, Thierry; Delaveau, Joel; Rat, Christophe; Calandreau, Ludovic
2016-03-01
In this study, we assessed whether prenatal exposure to elevated yolk steroid hormones can influence in ovo chemosensory learning and the behavior of domestic chicks. We simulated a maternal environmental challenge by experimentally enhancing yolk progesterone, testosterone, and estradiol concentrations in hen eggs prior to incubation. The embryos from these hormones-treated eggs (HO) as well as sham embryos (O) that had received the vehicle-only were exposed to the odor of fish oil (menhaden) between embryonic Days 11 and 20. An additional group of control embryos (C) was not exposed to the odor. All chicks were tested following hatching for their feeding preferences between foods that were or were not odorized with the menhaden odor. In the 3-min choice tests, the behavior of O chicks differed significantly according to the type of food whereas C and HO chicks showed no preference between odorized and non-odorized food. Our result suggests weaker response in HO chicks. In addition, HO chicks showed impaired growth and reduced intake of an unfamiliar food on the 24-h time scale compared to controls. Our data suggest that embryonic exposure to increased yolk hormone levels can alter growth, chemosensory learning, and the development of feeding behaviors. © 2015 Wiley Periodicals, Inc.
Intuitive physical reasoning about occluded objects by inexperienced chicks
Chiandetti, Cinzia; Vallortigara, Giorgio
2011-01-01
Questions concerning the role of nature and nurture in higher cognition appear to be intractable if one restricts one's attention to development in humans. However, in other domains, such as sensory development, much information has been gained from controlled rearing studies with animals. Here, we used a similar experimental strategy to investigate intuitive reasoning about occluded objects. Newborn domestic chicks (Gallus gallus) were reared singly with a small object that became their social partner. They were then accustomed to rejoin such an imprinting object when it was made to move and disappear behind either one of two identical opaque screens. After disappearance of the imprinting object, chicks were faced with two screens of different slants, or of different height or different width, which may or may not have been compatible with the presence of the imprinting object hidden beneath/behind them. Chicks consistently chose the screen of slant/height/width compatible with the presence of the object beneath/behind it. Preventing chicks from touching and pecking at the imprinting object before testing did not affect the results, suggesting that intuitive reasoning about physical objects is largely independent of specific experience of interaction with objects and of objects' occluding events. PMID:21270036
Pittet, Florent; Coignard, Maud; Houdelier, Cécilia; Richard-Yris, Marie-Annick; Lumineau, Sophie
2012-01-01
Variations of breeding success with age have been studied largely in iteroparous species and particularly in birds: survival of offspring increases with parental age until senescence. Nevertheless, these results are from observations of free-living individuals and therefore, it remains impossible to determine whether these variations result from parental investment or efficiency or both, and whether these variations occur during the prenatal or the postnatal stage or during both. Our study aimed first, to determine whether age had an impact on the expression of maternal breeding care by comparing inexperienced female birds of two different ages, and second, to define how these potential differences impact chicks’ growth and behavioural development. We made 22 2-month-old and 22 8-month-old female Japanese quail foster 1-day-old chicks. We observed their maternal behaviour until the chicks were 11 days old and then tested these chicks after separation from their mothers. Several behavioural tests estimated their fearfulness and their sociality. We observed first that a longer induction was required for young females to express maternal behaviour. Subsequently as many young females as elder females expressed maternal behaviour, but young females warmed chicks less, expressed less covering postures and rejected their chicks more. Chicks brooded by elder females presented higher growth rates and more fearfulness and sociality. Our results reveal that maternal investment increased with age independently of maternal experience, suggesting modification of hormone levels implied in maternal behaviour. Isolated effects of maternal experience should now be assessed in females of the same age. In addition, our results show, for first time in birds, that variations in maternal care directly induce important differences in the behavioural development of chicks. Finally, our results confirm that Japanese quail remains a great laboratory model of avian maternal behaviour and that the way we sample maternal behaviour is highly productive. PMID:22701515
Scholpp, Steffen; Brand, Michael
2003-11-01
Initial anterior-posterior patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs already during gastrulation, in response to signals patterning the gastrula embryo. After the initial establishment, further development within each brain part is thought to proceed largely independently of the others. However, mechanisms should exist that ensure proper delineation of brain subdivisions also at later stages; such mechanisms are, however, poorly understood. In zebrafish no isthmus mutant embryos, inactivation of the pax2.1 gene leads to a failure of the midbrain and isthmus primordium to develop normally from the gastrula stage onward (Lun and Brand [1998] Development 125:3049-3062). Here, we report that, after the initially correct establishment during gastrulation stages, the neighbouring forebrain primordium and, partially, the hindbrain primordium expand into the misspecified midbrain territory in no isthmus mutant embryos. The expansion is particularly evident for the posterior part of the diencephalon and less so for the first rhombomeric segment, the territories immediately abutting the midbrain/isthmus primordium. The nucleus of the posterior commissure is expanded in size, and marker genes of the forebrain and rhombomere 1 expand progressively into the misspecified midbrain primordium, eventually resulting in respecification of the midbrain primordium. We therefore suggest that the genetic program controlled by Pax2.1 is not only involved in initiating but also in maintaining the identity of midbrain and isthmus cells to prevent them from assuming a forebrain or hindbrain fate. Copyright 2003 Wiley-Liss, Inc.
Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis.
Sedykh, Irina; Yoon, Baul; Roberson, Laura; Moskvin, Oleg; Dewey, Colin N; Grinblat, Yevgenya
2017-09-01
The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development. Copyright © 2017 Elsevier Inc. All rights reserved.
NCAM deficiency in the mouse forebrain impairs innate and learned avoidance behaviours.
Brandewiede, J; Stork, O; Schachner, M
2014-06-01
The neural cell adhesion molecule (NCAM) has been implicated in the development and plasticity of neural circuits and the control of hippocampus- and amygdala-dependent learning and behaviour. Previous studies in constitutive NCAM null mutants identified emotional behaviour deficits related to disturbances of hippocampal and amygdala functions. Here, we studied these behaviours in mice conditionally deficient in NCAM in the postmigratory forebrain neurons. We report deficits in both innate and learned avoidance behaviours, as observed in elevated plus maze and passive avoidance tasks. In contrast, general locomotor activity, trait anxiety or neophobia were unaffected by the mutation. Altered avoidance behaviour of the conditional NCAM mutants was associated with a deficit in serotonergic signalling, as indicated by their reduced responsiveness to (±)-8-hydroxy-2-(dipropylamino)-tetralin-induced hypothermia. Another serotonin-dependent behaviour, namely intermale aggression that is massively increased in constitutively NCAM-deficient mice, was not affected in the forebrain-specific mutants. Our data suggest that genetically or environmentally induced changes of NCAM expression in the late postnatal and mature forebrain determine avoidance behaviour and serotonin (5-HT)1A receptor signalling. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba)
Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca
2015-01-01
Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior–posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155
West nile virus in American white pelican chicks: transmission, immunity, and survival
Sovada, Marsha A.; Pietz, Pamela J.; Hofmeister, Erik K.; Bartos, Alisa J.
2013-01-01
West Nile virus (WNV) causes significant mortality of American White Pelican chicks at northern plains colonies. We tested oropharyngeal/cloacal swabs from moribund chicks for shed WNV. Such shedding could enable chick-to-chick transmission and help explain why WNV spreads rapidly in colonies. WNV was detected on swabs from 11% of chicks in 2006 and 52% of chicks in 2007; however, viral titers were low. Before onset of WNV mortality, we tested blood from < 3-week-old chicks for antibodies to WNV; 5% of chicks were seropositive, suggesting passive transfer of maternal antibodies. Among near-fledged chicks, 41% tested positive for anti-WNV antibodies, indicating that they survived infection. Among years and colonies, cumulative incidence of WNV in chicks varied from 28% to 81%, whereas the proportion of chicks surviving WNV (i.e., seropositive) was 64–75%. Our data revealed that WNV kills chicks that likely would fledge in the absence of WNV, that infection of chicks is pervasive, and that significant numbers of chicks survive infection.
Excess caffeine exposure impairs eye development during chick embryogenesis
Ma, Zheng-lai; Wang, Guang; Cheng, Xin; Chuai, Manli; Kurihara, Hiroshi; Lee, Kenneth Ka Ho; Yang, Xuesong
2014-01-01
Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over-exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK-1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti-oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression. PMID:24636305
Eye field requires the function of Sfrp1 as a Wnt antagonist.
Kim, Hyung-Seok; Shin, Jimann; Kim, Seok-Hyung; Chun, Hang-Suk; Kim, Jun-Dae; Kim, Young-Seop; Kim, Myoung-Jin; Rhee, Myungchull; Yeo, Sang-Yeob; Huh, Tae-Lin
2007-02-27
Wnts have been shown to provide a posteriorizing signal that has to be repressed in the specification of vertebrate forebrain region. Previous studies have shown that Wnt activation by LiCl treatment causes an expansion of optic stalk and mid-hindbrain boundary, whereas eye and ventral diencephalon in the forebrain region were reduced. However, the molecular mechanism, by which inhibits Wnt activity in the forebrain remains poorly defined. To investigate relationship between forebrain specification and Wnt signaling, the zebrafish homologue of secreted frizzled related protein1 (sfrp1) has been characterized. The transcripts of sfrp1 are detected in the presumptive forebrain at gastrula and in the ventral telencephalon, ventral diencephalon, midbrain and optic vesicles at 24h after postfertilization (hpf). Overexpression of sfrp1 causes an anteriorization of embryo, with enlarged head and reduced posterior structure as in the embryo overexpressing dominant-negative form of Frizzled8a or Dkk1. Its overexpression restored the eye defects in the Wnt8b-overexpressing embryos, but not in the LiCl-treated embryos. These results suggest that Sfrp1 expressed in the forebrain and eye field plays a critical role in the extracellular events of antagonizing Wnt activity for the forebrain specification.
Yalcin, S; Gursel, I; Bilgen, G; Horuluoglu, B H; Gucluer, G; Izzetoglu, G T
2017-10-01
The effects of egg storage duration (ESD) and brooding temperature (BT) on BW, intestine development and nutrient transporters of broiler chicks were investigated. A total of 396 chicks obtained from eggs stored at 18°C for 3 days (ESD3-18°C) or at 14°C for 14 days (ESD14-14°C) before incubation were exposed to three BTs. Temperatures were initially set at 32°C, 34°C and 30°C for control (BT-Cont), high (BT-High) and low (BT-Low) BTs, respectively. Brooding temperatures were decreased by 2°C each at days 2, 7, 14 and 21. Body weight was measured at the day of hatch, 2, 7, 14, 21, 28 and 42. Cloacal temperatures of broilers were recorded from 1 to 14 days. Intestinal morphology and gene expression levels of H+-dependent peptide transporter (PepT1) and Na-dependent glucose (SGLT1) were evaluated on the day of hatch and 14. Cloacal temperatures of chicks were affected by BTs from days 1 to 8, being the lowest for BT-Low chicks. BT-High resulted in the heaviest BWs at 7 days, especially for ESD14-14°C chicks. This result was consistent with longer villus and larger villus area of ESD14-14°C chicks at BT-High conditions. From 14 days to slaughter age, BT had no effect on broiler weight. ESD3-18°C chicks were heavier than ESD14-14°C chicks up to 28 days. The PepT1 and SGLT1 expression levels were significantly higher in ESD3-18°C chicks than ESD14-14°C on the day of hatch. There was significant egg storage by BT interaction for PepT1 and SGLT1 transporters at day 14. ESD14-14°C chicks had significantly higher expression of PepT1 and SGLT1 at BT-Low than those at BT-Cont. ESD14-14°C chicks upregulated PepT1 gene expression 1.15 and 1.57-fold at BT-High and BT-Low, respectively, compared with BT-Cont, whereas PepT1 expression was downregulated 0.67 and 0.62-fold in ESD3-18°C chicks at BT-High and BT-Low. These results indicated that pre-incubation egg storage conditions and BTs affected intestine morphology and PepT1 and SGLT1 nutrient transporters expression in broiler chicks.
Culturing Chick Embryos--A Simplification of New's Method.
ERIC Educational Resources Information Center
Downie, J. R.
1979-01-01
Describes a simplified version of New's method for culturing early chick embryos. The technique allows continuous observation of the critical first three days of development and the conditions for setting up successful cultures are also presented to help both teachers and students. (HM)
Zhai, Qian; Lai, Dengming; Cui, Ping; Zhou, Rui; Chen, Qixing; Hou, Jinchao; Su, Yunting; Pan, Libiao; Ye, Hui; Zhao, Jing-Wei; Fang, Xiangming
2017-10-01
Basal forebrain cholinergic neurons are proposed as a major neuromodulatory system in inflammatory modulation. However, the function of basal forebrain cholinergic neurons in sepsis is unknown, and the neural pathways underlying cholinergic anti-inflammation remain unexplored. Animal research. University research laboratory. Male wild-type C57BL/6 mice and ChAT-ChR2-EYFP (ChAT) transgenic mice. The cholinergic neuronal activity of the basal forebrain was manipulated optogenetically. Cecal ligation and puncture was produced to induce sepsis. Left cervical vagotomy and 6-hydroxydopamine injection to the spleen were used. Photostimulation of basal forebrain cholinergic neurons induced a significant decrease in the levels of tumor necrosis factor-α and interleukin-6 in the serum and spleen. When cecal ligation and puncture was combined with left cervical vagotomy in photostimulated ChAT mice, these reductions in tumor necrosis factor-α and interleukin-6 were partly reversed. Furthermore, photostimulating basal forebrain cholinergic neurons induced a large increase in c-Fos expression in the basal forebrain, the dorsal motor nucleus of the vagus, and the ventral part of the solitary nucleus. Among them, 35.2% were tyrosine hydroxylase positive neurons. Furthermore, chemical denervation showed that dopaminergic neurotransmission to the spleen is indispensable for the anti-inflammation. These results are the first to demonstrate that selectively activating basal forebrain cholinergic neurons is sufficient to attenuate systemic inflammation in sepsis. Specifically, photostimulation of basal forebrain cholinergic neurons activated dopaminergic neurons in dorsal motor nucleus of the vagus/ventral part of the solitary nucleus, and this dopaminergic efferent signal was further transmitted by the vagus nerve to the spleen. This cholinergic-to-dopaminergic neural circuitry, connecting central cholinergic neurons to the peripheral organ, might have mediated the anti-inflammatory effect in sepsis.
ERIC Educational Resources Information Center
Webb, Rebecca L.; Bilitski, James; Zerbee, Alyssa; Symans, Alexandra; Chop, Alexandra; Seitz, Brianne; Tran, Cindy
2015-01-01
The study of embryonic development of multiple organisms, including model organisms such as frogs and chicks, is included in many undergraduate biology programs, as well as in a variety of graduate programs. As our knowledge of biological systems increases and the amount of material to be taught expands, the time spent instructing students about…
Selective breeding for susceptibility to myopia reveals a gene-environment interaction.
Chen, Yen-Po; Hocking, Paul M; Wang, Ling; Povazay, Boris; Prashar, Ankush; To, Chi-Ho; Erichsen, Jonathan T; Feldkaemper, Marita; Hofer, Bernd; Drexler, Wolfgang; Schaeffel, Frank; Guggenheim, Jeremy A
2011-06-08
Purpose. To test whether the interanimal variability in susceptibility to visually induced myopia is genetically determined. Methods. Monocular deprivation of sharp vision (DSV) was induced in outbred White Leghorn chicks aged 4 days. After 4 days' DSV, myopia susceptibility was quantified by the relative changes in axial length and refraction. Chicks in the extreme tails of the distribution of susceptibility to DSV were kept and paired for breeding (high- and low-susceptibility lines). A second round of selection was then performed. The third generation of chicks, derived from the selected parents, was assessed after either monocular DSV (4 or 10 days) or lens wear. Results. After two rounds of selective breeding, the chicks from the high-susceptibility line developed approximately twice as much myopia in response to 4 days' DSV as did those from the low-susceptibility line (P < 0.001). All ocular component dimensions differed significantly (P < 0.001) between the two selected lines, both before treatment and in the responses of the treated eye. When DSV was conducted for 10 days, the relative changes in axial length and refractive error were still significantly different between the high and low lines (P < 0.001). The chicks bred for high or low susceptibility to DSV also showed significantly different responses to minus lens wear, but not to plus lens wear. Additive genetic effects explained ∼50% of the interanimal variability in response to DSV. Conclusions. Genes and environment interact to shape refractive development in chicks.
Food availability affects onset of reproduction in a long-lived seabird.
Vincenzi, Simone; Hatch, Scott; Mangel, Marc; Kitaysky, Alexander
2013-06-07
Life-history theory predicts that suboptimal developmental conditions may lead to faster life histories (younger age at recruitment and higher reproductive investment), but experimental testing of this prediction is still scarce in long-lived species. We report the effects of an experimental manipulation of food availability during early development and at recruitment on the onset of reproduction and reproductive performance (productivity at first breeding) in a long-lived seabird, the black-legged kittiwake Rissa tridactyla, breeding on Middleton Island, Alaska. Birds were born and raised in nests with supplemented food ('fed') or unsupplemented control nests ('unfed'), and later recruited into either fed or unfed nests. Fed chicks grew faster than unfed chicks, and males grew faster than females. Birds were more likely to reproduce at younger ages when recruiting into fed nests. Faster growth during development tended to increase age at recruitment in all individuals. Social rank of individuals also affected age at recruitment: B-chicks recruited earlier than A-chicks and singletons recruited later than A- and B-chicks. Productivity increased with the age at recruitment and growth rate as chick, but much of the variability remained unexplained. We conclude that results of this study at least partially support predictions of life-history theory: younger age at first breeding for kittiwakes that experienced suboptimal natal conditions, as well as greater productivity of early recruiting kittiwakes that grew in control nests compared with those that grew in food-supplemented nests.
Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos.
Gao, Lin-Rui; Li, Shuai; Zhang, Jing; Liang, Chang; Chen, En-Ni; Zhang, Shi-Yao; Chuai, Manli; Bao, Yong-Ping; Wang, Guang; Yang, Xuesong
2016-11-30
As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study, to address whether imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of its accessibility at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore, the data reveal that down-regulation of GATA4, NKX2.5, and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane breakdown, E-cadherin/laminin expression, and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration, and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development.
Haba, Gen; Nishigori, Hidekazu; Tezuka, Yu; Kagami, Keisuke; Sugiyama, Toru; Nishigori, Hideo
2011-11-01
Hypothyroid state during embryogenesis disturbs normal growth and brain development, influencing later life. To evaluate the harmful consequences of the state during embryogenesis using an animal model, we inhibited thyroid hormone biosynthesis in chick embryos by using methimazole (MMI). Typically, embryos were treated with MMI (20 µmol/egg) on day 14, and examined on specific days. Of the control embryos, 94% hatched on day 21, whereas 0% and 60% of MMI-treated embryos hatched on days 21 and 24, respectively. MMI retarded the rates of bodyweight gain as well as liver and heart development, and delayed hatching. However, the external differences in appearance and differences in the weights of the newly hatched control chicks on day 21 and the MMI-treated chicks on day 24 were less obvious. Embryos treated with MMI exhibited increased mass in their brain parts on day 24. Most notably, the treatment resulted in a 1.35-fold increase in cerebellum weight compared to that of the untreated animals. Acetylcholinesterase activity in the cerebellum on the day of hatching decreased significantly to 0.85-fold that of the untreated controls. Thyroid hormone receptor β mRNA was detected from day 12 and dramatically expressed from day 19 to the day of hatching. The 'fertilized hen's egg-chick embryo-chick system' is an appropriate animal model for investigating the hypothyroid state during embryogenesis. Decreased cerebellar acetylcholinesterase activity after MMI treatment was assumed to relate to a mechanism of motor and cognitive deficits in congenital hypothyroidism. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.
Benefits and costs of increased levels of corticosterone in seabird chicks
Kitaysky, A.S.; Kitaiskaia, E.V.; Piatt, John F.; Wingfield, J.C.
2003-01-01
Seabird chicks respond to food shortages by increasing corticosterone (cort) secretion, which is probably associated with fitness benefits and costs. To examine this, we experimentally increased levels of circulating cort in captive black-legged kittiwake chicks fed ad libitum. We found that cort-implanted chicks begged more frequently and were more aggressive compared to controls. These behavioral modifications must be beneficial to chicks as they facilitate acquisition of food from the parents and might trigger brood reduction and reduced competition for food. Cort-implanted chicks also increased food intake; however, their growth rates were similar to controls. To examine the costs of chronically increased circulating levels of cort, we removed cort implants and, after a 10-day recovery period, tested cognitive abilities of young kittiwakes. We found that the ability of kittiwakes to associate a visual cue with the presence of food in a choice situation was compromised by the experimental elevation of cort during development. To examine the long-term costs of increased levels of cort, 8 months later we tested the performance of the same individuals in a spatial task requiring them to make a detour around a barrier in order to escape from an enclosure. Individuals treated with cort during development took significantly more time to solve this task compared to controls. The results of this study suggest that the adrenocortical response of a developing bird to environmental stressors is associated with both benefits (increased food intake, foraging behavior, and aggression) and costs (low growth efficiency and compromised cognitive abilities later in life). This provides an evolutionary framework for relating juvenile physiological traits to fitness of birds in subsequent life-history stages. ?? 2003 Elsevier Science (USA). All rights reserved.
An essential role for LPA signalling in telencephalon development.
Geach, Timothy J; Faas, Laura; Devader, Christelle; Gonzalez-Cordero, Anai; Tabler, Jacqueline M; Brunsdon, Hannah; Isaacs, Harry V; Dale, Leslie
2014-02-01
Lysophosphatidic acid (LPA) has wide-ranging effects on many different cell types, acting through G-protein-coupled receptors such as LPAR6. We show that Xenopus lpar6 is expressed from late blastulae and is enriched in the mesoderm and dorsal ectoderm of early gastrulae. Expression in gastrulae is an early response to FGF signalling. Transcripts for lpar6 are enriched in the neural plate of Xenopus neurulae and loss of function caused forebrain defects, with reduced expression of telencephalic markers (foxg1, emx1 and nkx2-1). Midbrain (en2) and hindbrain (egr2) markers were unaffected. Foxg1 expression requires LPAR6 within ectoderm and not mesoderm. Head defects caused by LPAR6 loss of function were enhanced by co-inhibiting FGF signalling, with defects extending into the hindbrain (en2 and egr2 expression reduced). This is more severe than expected from simple summation of individual defects, suggesting that LPAR6 and FGF have overlapping or partially redundant functions in the anterior neural plate. We observed similar defects in forebrain development in loss-of-function experiments for ENPP2, an enzyme involved in the synthesis of extracellular LPA. Our study demonstrates a role for LPA in early forebrain development.
Carravieri, Alice; Cherel, Yves; Brault-Favrou, Maud; Churlaud, Carine; Peluhet, Laurent; Labadie, Pierre; Budzinski, Hélène; Chastel, Olivier; Bustamante, Paco
2017-09-01
Seabirds integrate bioaccumulative contaminants via food intake and have revealed geographical trends of contamination in a variety of ecosystems. Pre-fledging seabird chicks are particularly interesting as bioindicators of chemical contamination, because concentrations in their tissues reflect primarily dietary sources from the local environment. Here we measured 14 trace elements and 18 persistent organic pollutants (POPs) in blood of chicks of skuas that breed in four sites encompassing a large latitudinal range within the southern Indian Ocean, from Antarctica (Adélie Land, south polar skua Catharacta maccormicki), through subantarctic areas (Crozet and Kerguelen Islands, brown skua C. lonnbergi), to the subtropics (Amsterdam Island, C. lonnbergi). Stables isotopes of carbon (δ 13 C, feeding habitat) and nitrogen (δ 15 N, trophic position) were also measured to control for the influence of feeding habits on contaminant burdens. Concentrations of mercury (Hg) and selenium (Se) were very high at all the four sites, with Amsterdam birds having the highest concentrations ever reported in chicks worldwide (4.0 ± 0.8 and 646 ± 123 μg g -1 dry weight, respectively). Blood Hg concentrations showed a clear latitudinal pattern, increasing from chicks in Antarctica to chicks in the subantarctic and subtropical islands. Interestingly, blood Se concentrations showed similar between-population differences to Hg, suggesting its involvement in protective mechanisms against Hg toxicity. Chicks' POPs pattern was largely dominated by organochlorine pesticides, in particular DDT metabolites and hexachlorobenzene (HCB). Skua chicks from subantarctic islands presented high concentrations and diversity of POPs. By contrast, chicks from the Antarctic site overall had the lowest concentrations and diversity of both metallic and organic contaminants, with the exception of HCB and arsenic. Skua populations from these sites, being naturally exposed to different quantities of contaminants, are potentially good models for testing toxic effects in developing chicks in the wild. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chakravarty, A
2001-09-01
Clinical details of a neurologic illness simultating Guillain Barre syndrome developing in a patient after post-exposure prophylaxis with purified chick embryo cell (PCEC) anti-rabies vaccine is reported. Neurologic complication following PCEC vaccination has not been reported earlier.
Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks.
Sgadò, Paola; Rosa-Salva, Orsola; Versace, Elisabetta; Vallortigara, Giorgio
2018-04-12
Biological predispositions to attend to visual cues, such as those associated with face-like stimuli or with biological motion, guide social behavior from the first moments of life and have been documented in human neonates, infant monkeys and domestic chicks. Impairments of social predispositions have been recently reported in neonates at high familial risk of Autism Spectrum Disorder (ASD). Using embryonic exposure to valproic acid (VPA), an anticonvulsant associated to increased risk of developing ASD, we modeled ASD behavioral deficits in domestic chicks. We then assessed their spontaneous social predispositions by comparing approach responses to a stimulus containing a face configuration, a stuffed hen, vs. a scrambled version of it. We found that this social predisposition was abolished in VPA-treated chicks, whereas experience-dependent mechanisms associated with filial imprinting were not affected. Our results suggest a specific effect of VPA on the development of biologically-predisposed social orienting mechanisms, opening new perspectives to investigate the neurobiological mechanisms involved in early ASD symptoms.
The effect of ethanol vapour exposure on atrial and ventricular walls of chick embryos.
Kamran, Kiran; Khan, Muhammad Yunus; Minhas, Liaqat Ali
2016-10-01
To study the effects of ethanol vapour exposure on atrial and ventricular walls of heart in chick embryo. The study design was experimental, conducted at Islamabad Centre of College of Physicians and Surgeons, Pakistan. One hundred and eighty chicken eggs were divided into two groups, experimental and control, of 90 eggs each. Each group was subdivided into three subgroups of 30 eggs each based on the day of sacrifice. Experimental group was exposed to ethanol vapours and then compared with age matched controls. The thickness of atrial and ventricular walls along with lengths of valvular cusps increased in hearts of day 7 and day 10 chick embryos in experimental group. There was thinning of walls and decreased length of valvular cusps in hearts of experimental chicks on hatching as compared to age matched controls. Ethanol vapour exposure during development causes cardiac and septal wall thickening during initial days of development followed by cardiac and septal wall thinning which is a classical picture of alcohol induced cardiomyopathies.
Hao, Hailing; Li, Ying; Tzatzalos, Evangeline; Gilbert, Jordana; Zala, Dhara; Bhaumik, Mantu; Cai, Li
2014-01-01
Precise control of lineage-specific gene expression in the neural stem/progenitor cells is crucial for generation of the diversity of neuronal and glial cell types in the central nervous system (CNS). The mechanism underlying such gene regulation, however, is not fully elucidated. Here, we report that a 377 bp evolutionarily conserved DNA fragment (CR5), located approximately 32 kbp upstream of Olig2 transcription start site, acts as a cis-regulator for gene expression in the development of the neonatal forebrain. CR5 is active in a time-specific and brain region-restricted manner. CR5 activity is not detected in the embryonic stage, but it is exclusively in a subset of Sox5+ cells in the neonatal ventral forebrain. Furthermore, we show that Sox5 binding motif in CR5 is important for this cell-specific gene regulatory activity; mutation of Sox5 binding motif in CR5 alters reporter gene expression with different cellular composition. Together, our study provides new insights into the regulation of cell-specific gene expression during CNS development. PMID:24954155
The Structural Connectome of the Human Central Homeostatic Network.
Edlow, Brian L; McNab, Jennifer A; Witzel, Thomas; Kinney, Hannah C
2016-04-01
Homeostatic adaptations to stress are regulated by interactions between the brainstem and regions of the forebrain, including limbic sites related to respiratory, autonomic, affective, and cognitive processing. Neuroanatomic connections between these homeostatic regions, however, have not been thoroughly identified in the human brain. In this study, we perform diffusion spectrum imaging tractography using the MGH-USC Connectome MRI scanner to visualize structural connections in the human brain linking autonomic and cardiorespiratory nuclei in the midbrain, pons, and medulla oblongata with forebrain sites critical to homeostatic control. Probabilistic tractography analyses in six healthy adults revealed connections between six brainstem nuclei and seven forebrain regions, several over long distances between the caudal medulla and cerebral cortex. The strongest evidence for brainstem-homeostatic forebrain connectivity in this study was between the brainstem midline raphe and the medial temporal lobe. The subiculum and amygdala were the sampled forebrain nodes with the most extensive brainstem connections. Within the human brainstem-homeostatic forebrain connectome, we observed that a lateral forebrain bundle, whose connectivity is distinct from that of rodents and nonhuman primates, is the primary conduit for connections between the brainstem and medial temporal lobe. This study supports the concept that interconnected brainstem and forebrain nodes form an integrated central homeostatic network (CHN) in the human brain. Our findings provide an initial foundation for elucidating the neuroanatomic basis of homeostasis in the normal human brain, as well as for mapping CHN disconnections in patients with disorders of homeostasis, including sudden and unexpected death, and epilepsy.
Cykowski, Matthew D; Takei, Hidehiro; Van Eldik, Linda J; Schmitt, Frederick A; Jicha, Gregory A; Powell, Suzanne Z; Nelson, Peter T
2016-05-01
Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). © 2016 American Association of Neuropathologists, Inc. All rights reserved.
Takei, Hidehiro; Van Eldik, Linda J.; Schmitt, Frederick A.; Jicha, Gregory A.; Powell, Suzanne Z.; Nelson, Peter T.
2016-01-01
Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). PMID:26971127
Ethical euthanasia and short-term anesthesia of the chick embryo.
Aleksandrowicz, Ewa; Herr, Ingrid
2015-01-01
Fertilized chicken eggs are suggested as an alternative to mammalian models. The chorioallantoic membrane (CAM) of the chick embryo is widely used for examination of angiogenesis, xenotransplants and for virus production. Unfortunately, it is mostly not taken into account, that the chick embryo's ability to experience pain starts to develop at day 7 of breeding. In our view, this model is only in accordance with the 3 R principles, if an appropriate anesthesia of the chick embryo in potentially painful procedures is provided. Although many experimental approaches are performed on the none-innervated CAM, the euthanasia of the embryo strongly requires a more human technique than the usually used freezing at -20°C, decapitation or in ovo fixation with paraformaldehyde without prior anesthesia. However, protocols regarding feasible and ethical methods for anesthesia and euthanasia of avian embryos are currently not available. Therefore, we established an easy and reliable method for the euthanasia and short-term anesthesia of the chick embryo.
Evans, Andrew K.; Strassmann, Patrick S.; Lee, I-Ping; Sapolsky, Robert M.
2014-01-01
Toxoplasma gondii (T. gondii) is one of the world’s most successful brain parasites. T. gondii engages in parasite manipulation of host behavior and infection has been epidemiologically linked to numerous psychiatric disorders. Mechanisms by which T. gondii alters host behavior are not well understood, but neuroanatomical cyst presence and the localized host immune response to cysts are potential candidates. The aim of these studies was to test the hypothesis that T. gondii manipulation of specific host behaviors is dependent on neuroanatomical location of cysts in a time-dependent function post-infection. We examined neuroanatomical cyst distribution (53 forebrain regions) in infected rats after predator odor aversion behavior and anxiety-related behavior in the elevated plus maze and open field arena, across a 6-week time course. In addition, we examined evidence for microglial response to the parasite across the time course. Our findings demonstrate that while cysts are randomly distributed throughout the forebrain, individual variation in cyst localization, beginning 3 weeks post-infection, can explain individual variation in the effects of T. gondii on behavior. Additionally, not all infected rats develop cysts in the forebrain, and attenuation of predator odor aversion and changes in anxiety-related behavior are linked with cyst presence in specific forebrain areas. Finally, the immune response to cysts is striking. These data provide the foundation for testing hypotheses about proximate mechanisms by which T. gondii alters behavior in specific brain regions, including consequences of establishment of a homeostasis between T. gondii and the host immune response. PMID:24269877
An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...
Vallortigara, G; Andrew, R J
1994-12-01
Right hemisphere advantage in individual recognition (as shown by differences between response to strangers and companions) is clear in the domestic chick. Chicks using the left eye (and so, thanks to the complete optic decussation, predominantly the right hemisphere) discriminate between stranger and companion. Chicks using the right eye discriminate less clearly or not at all. The ability of left eyed chicks to respond to differences between strangers and companions stimuli is associated with a more general ability to detect and respond to novelty: this difference between left and right eyed chicks also holds for stimuli which are not social partners. The right hemisphere also shows advantage in tasks with a spatial component (topographical learning; response to change in the spatial context of a stimulus) in the chick, as in humans. Similar specialisations of the two hemispheres are also revealed in tests which involve olfactory cues presented by social partners. The special properties of the left hemisphere are less well established in the chick. Evidence reviewed here suggests that it tends to respond to selected properties of a stimulus and to use them to assign it to a category; such assignment then allows an appropriate response. When exposed to an imprinting stimulus (visual or auditory) a chick begins by using right eye or ear (suggesting left hemisphere control), and then shifts to the left eye or ear (suggesting right hemisphere control), as exposure continues. The left hemisphere here is thus involved whilst behaviour is dominated by vigorous response to releasing stimuli presented by an object. Subsequent learning about the full detailed properties of the stimulus, which is crucial for individual recognition, may explain the shift to right hemisphere control after prolonged exposure to the social stimulus. There is a marked sex difference in choice tests: females tend to choose companions in tests where males choose strangers. It is possible that this difference is specifically caused by stronger motivation to sustain social contact in female chicks, for which there is extensive evidence. However, sex differences in response to change in familiar stimuli are also marked in tests which do not involve social partners. Finally, in both sexes there are two periods during development in which there age-dependent shifts in bias to use one or other hemisphere. These periods (days 3-5 and 8-11) coincide with two major changes in the social behaviour of chicks reared by a hen in a normal brood. It is argued that one function of these periods is to bring fully into play the hemisphere most appropriate to the type of response to, and learning about, social partners which is needed at particular points in development. Parallels are discussed between the involvement of lateralised processes in the recognition of social partners in chicks and humans. Copyright © 1994. Published by Elsevier B.V.
Balish, Edward; Phillips, A. W.
1966-01-01
Balish, Edward (Syracuse University, Syracuse, N.Y.), and A. W. Phillips. Growth, morphogenesis, and virulence of Candida albicans after oral inoculation in the germ-free and conventional chick. J. Bacteriol. 91:1736–1743. 1966.—The effects of intestinal bacteria on the multiplication, morphogenesis, and infectivity of Candida albicans in the alimentary tract were investigated by comparing results obtained in germ-free and conventional chicks after oral inoculation. This challenge resulted in the establishment of large numbers of the pathogen in the alimentary tract of each group of chicks; these numbers were increased in crop contents from challenged bacteria-free chicks wherein hyphae predominated over the yeast form. These animals also had lesions of the crop epithelium containing numerous hyphae and few yeast-like forms. In contrast, challenged conventional chicks receiving an adequate diet displayed no evidence of infection. Their alimentary tract contained the yeast form of C. albicans; no hyphae were seen. Although we found bacterial inhibition of C. albicans multiplication in the alimentary tract, this in itself did not seem to explain the resistance to intestinal candidiasis in our conventional chicks. We argued that this resistance to infection was due chiefly to the prevention of hyphal development in C. albicans by intestinal bacteria. C. albicans in the gut of our conventional chicks resulted in some increase in numbers of enterococci in contents from the crop. Increased pH values in contents from the gut of germ-free chicks were not clearly related to infection after challenge. The Eh of the above crop contents were only slightly decreased in the germ-free crop. Thus the Eh did not appear to be involved in susceptibility to infection. Invasion of the blood stream and kidneys of conventional chicks by the yeast form of C. albicans occurred in challenged animals receiving a purified diet which had been radiation-sterilized and stored for 6 months at room temperature (25 C). Their growth rate decreased and they became moribund; no hyphae were observed in tissues or intestine of these animals. Challenged bacteria-free chicks receiving the same diet were resistant to the above invasion, although they had crop lesions containing hyphae as described. The resistance of these chicks to systemic invasion was attributed to absence of intestinal bacteria competing for low levels of vitamins in the stored diet. Germ-free chicks had decreased levels of serum γ-globulin which increased after challenge, whereas this value was unchanged in conventional birds after challenge. Images PMID:4160824
Significance of chick quality score in broiler production.
van de Ven, L J F; van Wagenberg, A V; Uitdehaag, K A; Groot Koerkamp, P W G; Kemp, B; van den Brand, H
2012-10-01
The quality of day old chicks is crucial for profitable broiler production, but a difficult trait to define. In research, both qualitative and quantitative measures are used with variable predictive value for subsequent performance. In hatchery practice, chick quality is judged on a binomial scale, as chicks are divided into first grade (Q1-saleable) and second grade (Q2) chicks right after hatch. Incidences and reasons for classifying chicks as Q2, and potential of these chicks for survival and post-hatch performance have hardly been investigated, but may provide information for flock performance. We conducted an experiment to investigate (1) the quality of a broiler flock and the relation with post-hatch flock performance based on a qualitative score (Pasgar©score) of Q1 chicks and based on the incidence of Q2 chicks and (2) the reasons for classifying chicks as Q2, and the potential of these chicks for survival and post-hatch growth. The performance was followed of Q1 and Q2 chicks obtained from two breeder flocks that hatched in two different hatching systems (a traditional hatcher or a combined hatching and brooding system, named Patio). Eggs were incubated until embryo day 18, when they were transferred to one of the two hatching systems. At embryo day 21/post-hatch day 0, all chicks from the hatcher (including Q2 chicks) were brought to Patio, where the hatchery manager marked the Q2 chicks from both flocks and hatching systems and registered apparent reasons for classifying these chicks as Q2. Chick quality was assessed of 100 Q1 chicks from each flock and hatching system. Weights of all chicks were determined at days 0, 7, 21 and 42. There were no correlations between mean Pasgar©score and post-hatch growth or mortality, and suboptimal navel quality was the only quality trait associated with lower post-hatch growth. Growth was clearly affected by breeder flock and hatching system, which could not be linked to mean Pasgar©score or incidence of Q2 chicks. Q2 chicks showed lower post-hatch growth compared to Q1 chicks but effects on flock performance at slaughter weight were limited because early mortality in Q2 chicks was high (62.50% at 7 days). We concluded that chick qualitative scores and the incidence of Q2 chicks may be informative for the quality of incubation, but are not predictive for post-hatch flock performance. Culling Q2 chicks after hatch is well-founded in terms of both animal welfare and profitability.
Microbiota of little penguins and short-tailed shearwaters during development
Arnould, John P. Y.; Allnutt, Theo R.; Crowley, Tamsyn; Krause, Lutz; Reynolds, John; Dann, Peter; Smith, Stuart C.
2017-01-01
The establishment and early colonisation of the gastrointestinal (GI) tract has been recognised as a crucial stage in chick development, with pioneering microbial species responsible for influencing the development of the GI tract and influencing host health, fitness and disease status throughout life. Development of the microbiota in long lived seabirds is poorly understood. This study characterised the microbial composition of little penguin and short-tailed shearwater chicks throughout development, using Quantitative Real Time PCR (qPCR) and 16S rRNA sequencing. The results indicated that microbial development differed between the two seabird species with the short-tailed shearwater microbiota being relatively stable throughout development whilst significant fluctuations in the microbial composition and an upward trend in the abundance of Firmicutes and Bacteroidetes were observed in the little penguin. When the microbial composition of adults and chicks was compared, both species showed low similarity in microbial composition, indicating that the adult microbiota may have a negligible influence over the chick’s microbiota. PMID:28806408
Light Levels, Refractive Development, and Myopia – a Speculative Review
Norton, Thomas T.; Siegwart, John T.
2013-01-01
Recent epidemiological evidence in children indicates that time spent outdoors is protective against myopia. Studies in animal models (chick, macaque, tree shrew) have found that light levels (similar to being in the shade outdoors) that are mildly elevated compared to indoor levels, slow form-deprivation myopia and (in chick and tree shrew) lens-induced myopia. Normal chicks raised in low light levels (50 lux) with a circadian light on/off cycle often develop spontaneous myopia. We propose a model in which the ambient illuminance levels produce a continuum of effects on normal refractive development and the response to myopiagenic stimuli such that low light levels favor myopia development and elevated levels are protective. Among possible mechanisms, elevation of retinal dopamine activity seems the most likely. Inputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs) at elevated light levels may be involved, providing additional activation of retinal dopaminergic pathways. PMID:23680160
Parent-offspring communication in the western sandpiper
Johnson, M.; Aref, S.; Walters, J.R.
2008-01-01
Western sandpiper (Calidris mauri) chicks are precocial and leave the nest shortly after hatch to forage independently. Chicks require thermoregulatory assistance from parents (brooding) for 5-7 days posthatch, and parents facilitate chick survival for 2-3 weeks posthatch by leading and defending chicks. Parental vocal signals are likely involved in protecting chicks from predators, preventing them from wandering away and becoming lost and leading them to good foraging locations. Using observational and experimental methods in the field, we describe and demonstrate the form and function of parent-chick communication in the western sandpiper. We document 4 distinct calls produced by parents that are apparently directed toward their chicks (brood, gather, alarm, and freeze calls). Through experimental playback of parental and non-parental vocalizations to chicks in a small arena, we demonstrated the following: 1) chicks respond to the alarm call by vocalizing relatively less often and moving away from the signal source, 2) chicks respond to the gather call by vocalizing relatively more often and moving toward the signal source, and 3) chicks respond to the freeze call by vocalizing relatively less often and crouching motionless on the substrate for extended periods of time. Chicks exhibited consistent directional movement and space use to parental and non-parental signals. Although fewer vocalizations were given in response to non-parental signals, which may indicate a weaker response to unfamiliar individuals, the relative number of chick calls given to each type of call signal was consistent between parental and non-parental signals. We also discovered 2 distinct chick vocalizations (chick-contact and chick-alarm calls) during arena playback experiments. Results indicate that sandpiper parents are able to elicit antipredatory chick behaviors and direct chick movement and vocalizations through vocal signals. Future study of parent-offspring communication should determine whether shorebird chicks exhibit parental recognition though vocalizations and the role of chick vocalizations in parental behavior. ?? The Author 2008. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved.
Chapter 5: Nesting Biology and Behavior of the Marbled Murrelet
S. Kim Nelson; Thomas E. Hamer
1995-01-01
We summarize courtship, incubation, feeding, fledging, and flight behavior of Marbled Murrelets (Brachyramphus marmoratus) using information collected at 24 nest sites in North America. Chick development, vocalizations given by adults and chicks at the nest, and predator avoidance behaviors are also described. Marbled Murrelets initiate nesting as...
Snider, Kaitlin H.; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E.; Hoyt, Kari; Obrietan, Karl
2017-01-01
A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299
Walcher, Tessa; Xie, Qing; Sun, Jian; Irmler, Martin; Beckers, Johannes; Öztürk, Timucin; Niessing, Dierk; Stoykova, Anastassia; Cvekl, Ales; Ninkovic, Jovica; Götz, Magdalena
2013-01-01
To achieve adequate organ development and size, cell proliferation and differentiation have to be tightly regulated and coordinated. The transcription factor Pax6 regulates patterning, neurogenesis and proliferation in forebrain development. The molecular basis of this regulation is not well understood. As the bipartite DNA-binding paired domain of Pax6 regulates forebrain development, we examined mice with point mutations in its individual DNA-binding subdomains PAI (Pax6Leca4, N50K) and RED (Pax6Leca2, R128C). This revealed distinct roles in regulating proliferation in the developing cerebral cortex, with the PAI and RED subdomain mutations reducing and increasing, respectively, the number of mitoses. Conversely, neurogenesis was affected only by the PAI subdomain mutation, phenocopying the neurogenic defects observed in full Pax6 mutants. Genome-wide expression profiling identified molecularly discrete signatures of Pax6Leca4 and Pax6Leca2 mutations. Comparison to Pax6 targets identified by chromatin immunoprecipitation led to the identification and functional characterization of distinct DNA motifs in the promoters of target genes dysregulated in the Pax6Leca2 or Pax6Leca4 mutants, further supporting the distinct regulatory functions of the DNA-binding subdomains. Thus, Pax6 achieves its key roles in the developing forebrain by utilizing particular subdomains to coordinate patterning, neurogenesis and proliferation simultaneously. PMID:23404109
Development of Experimental Myopia in Chicks in a Natural Environment
Stone, Richard A.; Cohen, Yuval; McGlinn, Alice M.; Davison, Sherrill; Casavant, Susan; Shaffer, James; Khurana, Tejvir S.; Pardue, Machelle T.; Iuvone, P. Michael
2016-01-01
Purpose The hypothesis that outdoor exposure might protect against myopia has generated much interest, although available data find only modest clinical efficacy. We tested the effect of outdoor rearing on form-deprivation myopia in chicks, a myopia model markedly inhibited by high-intensity indoor laboratory lighting. Methods Unilaterally goggled cohorts of White Leghorn chicks were maintained in a species-appropriate, outdoor rural setting during daylight hours to the extent permitted by weather. Control chicks were reared indoors with incandescent lighting. Besides ocular refraction and ultrasound, we determined dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) content in retina and vitreous and measured mRNA expression levels of selected clock and circadian rhythm-related genes in the retina/RPE. Results Myopia developed in the goggled eyes of all cohorts. Whereas outdoor rearing lessened myopia by 44% at 4 days, a protective effect was no longer evident at 11 days. Outdoor rearing had no consistent effect on retinal or vitreous content of dopamine or DOPAC. Conforming to prior data on form-deprivation myopia, retina and vitreous levels of DOPAC were reduced in goggled eyes. Compared with contralateral eyes, the retinal expression of clock and circadian rhythm-related genes was modestly altered in myopic eyes of chicks reared indoors or outdoors. Conclusions Outdoor rearing of chicks induces only a partial decrease of goggle-induced myopia that is not maintained, without evidence that retinal dopamine metabolism accounts for the partial myopia inhibition under these outdoor conditions. Although modest, alterations in retinal gene expression suggest that studying circadian signals might be informative for understanding refractive mechanisms. PMID:27618415
Releasing captive-reared masked bobwhite for population recovery: A review
Gall, S.A.; Kuvlesky, W.P.; Gee, G.; Brennan, L.A.; Palmer, W.E.; Burger, L.W.; Pruden, T.L.
2000-01-01
Efforts to re-establish the endangered masked bobwhite (Colinus virginianus ridgwayi) to it's former southern Arizona range have been ongoing since establishment of the Buenos Aires National Wildlife Refuge in 1986. Pre-release conditioning techniques developed prior to Refuge establishment continued to be utilized in an effort to improve post-release survival of captive-reared masked bobwhite chicks. Foremost among these techniques was the use of wild Texas bobwhite (C. v. texanus) males as foster parents which were paired with all broods released on the Refuge. The efficacy of this technique was evaluated using radio telemetry in 1994, and the results indicated that the use of foster Texas males was not as effective as had been presumed because post-release chick survival was poor. Therefore, in 1995 pre-release conditioning protocol were modified in an effort to improve post-release survival. The primary intent of these modifications was to emphasize wild behavior among chicks prior to release. Modifications to established protocol included imprinting chicks to adult bobwhites immediately after eggs hatched and exposing 1-to-2 day old chicks to natural foods (insects and seeds) while they were in brooder units. Foster parents and their respective broods were then placed in flight pens that mimicked the natural conditions that would confront broods upon release. Family groups were held in flight pens for several weeks for acclimatization purposes and then transported to temporary enclosures erected at release sites where they were held for a week and then released. Finally all releases were conducted during fall after covey formation was apparent to ensure that foster parents and released chicks remained with a group of birds. Preliminary results indicated that post-release chick survival was higher than what was observed in 1994. Pre-conditioning research will continue in an effort to further quantify post-release survival of masked bobwhite chicks. Although the results of this research project are preliminary, it is possible that pre-release conditioning techniques developed for masked bobwhites will prove useful to quail reestablishment efforts throughout North America.
Zhang, L; Zhu, X D; Wang, X F; Li, J L; Gao, F; Zhou, G H
2016-11-01
Monochromatic green light-emitting diodes (LED) light stimuli influences the posthatch growth performance of chicks. This study was undertaken with the following objectives: i) to examine whether the green LED light stimuli induces an overheating effect by determining weight loss rate of fertile eggs during incubation period; ii) to look for the development of eyes and other primary organs at different ages of embryos and newly hatched chicks. Arbor Acres fertile broiler eggs (n = 480) were randomly assigned to 3 incubation groups and exposed to continuous white light, green light, or a dark environment (control) from the first day to 19 d of incubation. The light sourced from LED lamps with the intensity of 30 lx at eggshell level. The results showed that either green or white light stimuli during incubation did not significantly affect the weight loss rate of fertile eggs, hatching time, hatchability, chick embryo, or body weight (BW), the weight percentage of heart, liver, and eyes, as well as obvious systematic abnormalities in eye weight, side-to-side, back-to-front, or corneal diameter from 15 d of embryogenesis to 6 d of posthatch (p>0.05). Compared with the dark condition, green light stimuli during incubation tended to increase feed intake (p = 0.080), improved the BW gain of chicks during 0 to 6 day posthatch (p<0.05), and increased the percentage of pectoral muscle to the BW on 3- and 6-day-old chicks. In addition, embryos or chicks in green light had lower weight percentage of yolk retention on 19 d of embryogenesis and 1 d of posthatch in comparison to those in dark or white group (p<0.05). These results suggest that providing 30 lx green LED light stimuli during incubation has no detrimental effect on the development of eyes, heart and liver of embryos and hatchlings, but does have potential benefits in terms of enhancement of the chick growth during the early posthatch stages. In addition, the fertile broiler eggs stimulated with 30 lx green LED light during incubation does not cause an overheating effect.
Han, Eun-Taek; Whang, Jong-Dae; Chai, Jong-Yil
2009-12-01
Metacercariae of Himasthla alincia (Echinostomatidae) were discovered in brackish water bivalves in the Republic of Korea; their growth and development were observed in experimental animals. Five species of clams (Mactra veneriformis, Solen grandis, Meretrix petechialis, Cyclina sinensis, and Tapes philippinarum) were found to harbor the metacercariae of H. alincia. Chicks, rats, and mice were orally fed the metacercariae, and worms were recovered from their intestines from day 1 to day 20 postinfection (PI). Only chicks appeared to be a fairly suitable host, although the worm recovery was low, i.e., 1.5% from 17 chicks, and the number decreased from 2.6% on day 1 PI to 1.3% on day 20 PI. Worm development in chicks was quick and remarkable during days 10–20 PI. Adult flukes were morphologically characterized by the presence of a head collar with 31 dorsally uninterrupted collar spines, including 4 end-group spines, and distribution of vitellaria only up to the most posterior margin of the cirrus sac. We verified that several species of brackish water clams are second intermediate hosts for H. alincia, and that its life cycle occurs in the Republic of Korea.
Survival of Western Sandpiper broods on the Yukon-Kuskokwim Delta, Alaska
Ruthrauff, D.R.; McCaffery, B.J.
2005-01-01
The rate of chick growth in high-latitude breeding shorebirds is rapid, but little is known about the effect of chick mass, growth, and brood movements on subsequent brood survival. To address these topics, we monitored chick growth patterns, daily brood movements, and survival of Western Sandpipers (Calidris mauri) on the Yukon-Kuskokwim Delta, Alaska. We assessed the effect of chick age, mass, and hatch date on brood survival using Program MARK. We mapped brood locations daily, and compared brood movement patterns between successful and unsuccessful broods. Younger chicks survived at lower rates and moved shorter distances than older chicks. The overall probability of one or more chicks from a brood surviving to 15 days of age was 0.73 ± 0.05 SE. Brood survival declined seasonally, and broods with heavier chicks survived at higher rates than those with lighter chicks. On average, successful broods fledged 1.7 ± 0.1 SE chicks. Rate of chick growth was intermediate between those of high arctic and temperate-breeding shorebirds, and chick mass at hatching declined seasonally. Western Sandpiper brood survival was lowest when chicks were young, spatially clumped, and unable to maintain homeothermy, probably because young chicks were more vulnerable to both complete depredation events and extreme weather. Our data suggest that larger, older chicks are able to avoid predators by being spatially dispersed and highly mobile; thermal independence, achieved after approximately day five, enables chicks to better endure prolonged periods of cold and low food availability.
Monternier, Pierre-Axel; Marmillot, Vincent; Rouanet, Jean-Louis; Roussel, Damien
2014-08-01
Energy conservation is a key priority for organisms that live in environments with seasonal shortages in resource supplies or that spontaneously fast during their annual cycle. The aim of this study was to determine whether the high fasting endurance of winter-acclimatized king penguin chicks (Aptenodytes patagonicus) is associated with an adjustment of mitochondrial bioenergetics in pectoralis muscle, the largest skeletal muscle in penguins. The rates of mitochondrial oxygen consumption, and ATP synthesis and mitochondrial efficiency (ATP/O ratio) were measured in winter-acclimatized chicks. We used pyruvate/malate and palmitoyl-l-carnitine/malate as respiratory substrates and results from naturally fasted chicks were compared to experimentally re-fed chicks. Bioenergetics analysis of pectoralis muscle revealed that mitochondria are on average 15% more energy efficient in naturally fasted than in experimentally fed chicks, indicating that fasted birds consume less nutrients to sustain their energy-demanding processes. We also found that moderate reductions in temperature from 38°C to 30°C further increase by 23% the energy coupling efficiency at the level of mitochondria, suggesting that king penguin chicks realize additional energy savings while becoming hypothermic during winter. It has been calculated that this adjustment of mitochondrial efficiency in skeletal muscle may contribute to nearly 25% of fasting-induced reduction in mass-specific metabolic rate measured in vivo. The present study shows that the regulation of mitochondrial efficiency triggers the development of an economical management of resources, which would maximize the conservation of endogenous fuel stores by decreasing the cost of living in fasted winter-acclimatized king penguin chicks. © 2014. Published by The Company of Biologists Ltd.
Consuming fire ants reduces northern bobwhite survival and weight gain
Myers, P.E.; Allen, Craig R.; Birge, Hannah E.
2014-01-01
Northern bobwhite quail, Colinus virginianus (L.) (Galliformes: Odontophoridae), population declines are well documented, but pinpointing the reasons for these decreases has proven elusive. Bobwhite population declines are attributed primarily to loss of habitat and land use changes. This, however, does not entirely explain population declines in areas intensively managed for bobwhites. Although previous research demonstrates the negative impact of red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae) on northern bobwhites, the mechanisms underlying this effect are largely unknown. To meet the protein demands of early growth and development, bobwhite chicks predominantly consume small insects, of which ants are a substantial proportion. Fire ants alter ant community dynamics by often reducing native ant diversity and abundance while concurrently increasing the abundance of individuals. Fire ants have negative effects on chicks, but they are also a large potential protein source, making it difficult to disentangle their net effect on bobwhite chicks. To help investigate these effects, we conducted a laboratory experiment to understand (1) whether or not bobwhites consume fire ants, and (2) how the benefits of this consumption compare to the deleterious impacts of bobwhite chick exposure to fire ants. Sixty bobwhite chicks were separated into two groups of 30; one group was provided with starter feed only and the second group was provided with feed and fire ants. Bobwhite chicks were observed feeding on fire ants. Chicks that fed on fire ants had reduced survival and weight gain. Our results show that, while fire ants increase potential food sources for northern bobwhite, their net effect on bobwhite chicks is deleterious. This information will help inform land managers and commercial bobwhite rearing operations.
NMDA receptor antagonists extend the sensitive period for imprinting.
Parsons, C H; Rogers, L J
2000-03-01
Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.
Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.
Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo
2017-11-17
The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Nonshivering thermogenesis in king penguin chicks. I. Role of skeletal muscle.
Duchamp, C; Barré, H; Rouanet, J L; Lanni, A; Cohen-Adad, F; Berne, G; Brebion, P
1991-12-01
In cold-acclimatized (CA) king penguin chicks exhibiting nonshivering thermogenesis (NST), protein content and cytochrome oxidase (CO) activity of tissue homogenates were measured together with protein content, CO, and respiration rates of isolated mitochondria from skeletal muscle (gastrocnemius and pectoralis) and liver. The comparison was made with chicks reared at thermoneutrality (TN) for at least 3 wk. In CA chicks showing a NST despite the lack of brown adipose tissue, an increase in thermogenic capacity was observed in skeletal muscle in which the oxidative capacity rose (+28% and +50% in gastrocnemius and pectoralis muscles, respectively), whereas no change occurred in the liver. Oxidative capacity of skeletal muscle increased together with the development of mitochondrial inner membrane plus cristae in muscles of CA chicks contrary to their TN littermates (+30 to +50%). Subsarcolemmal mitochondria of CA chicks had a higher protein content (+65% in gastrocnemius muscle) and higher oxidative capacities than in controls. The lower respiratory control ratio of these mitochondria might result from a low ADP phosphorylation rate. No change occurred in the intermyofibrillar fraction nor in liver mitochondria. These findings together with earlier results obtained in cold-acclimated ducklings indicate the marked and suited adaptation of skeletal muscle and in particular of subsarcolemmal mitochondria allowing them to play a role in NST.
A mechanistic understanding of ageing revealed by studying the young.
Crespi, Erica J
2012-03-01
A main focus within biomedical research is to understand how adverse environmental conditions experienced during early development affects lifelong health (Barker 1992). Within this context, extensive research in rodent models and humans has shown that intrauterine growth retardation (IUGR) caused by nutrient restriction during early development is often followed by post-natal 'catch-up' growth when access to food resources improves. However, this accelerated growth rate seems to come at a cost, as metabolic and endocrine processes that are programmed during this time cause later-life onset of diseases such as obesity, insulin resistance and cardiovascular disease (reviewed in Crespi & Denver 2005). In this issue Molecular Ecology, Geiger et al. (2012) asked what are the costs of catch-up growth in nutrient-restricted king penguin chicks (Fig. 1) by measuring lengths of telomeres, the protective DNA sequences at the end of chromosomes, before and after catch-up growth, as the amount and rate of telomere sequence loss over time has been associated with reduced lifespan in both model and nonmodel organisms (see reviews of Costantini et al. 2010; Haussmann & Marchetto 2010). Geiger et al. (2011) found that chicks entering the post-winter growth season at a smaller size exhibited increased growth rates (i.e. catch-up growth) at the cost of increased oxidative stress and reduced telomere lengths compared with the chicks entering the growth period at a larger size. Furthermore, chicks that did not survive had drastically shorter telomere lengths and reduced antioxidant capacities at the beginning of the growth period than all other chicks, thereby directly associating telomere length to mortality. These results suggest that while catch-up growth allows smaller chicks to head off into the world on equal footing with chicks that hatched at a larger size, it likely comes at the cost of a shortened lifespan. Thus, this study provides a mechanism that supports the antagonistic pleiotropy theory of senescence (Promislow 2004). © 2012 Blackwell Publishing Ltd.
Sawada, Kazuhiko; Sun, Xue-Zhi; Fukunishi, Katsuhiro; Kashima, Masatoshi; Sakata-Haga, Hiromi; Tokado, Hiroshi; Aoki, Ichio; Fukui, Yoshihiro
2009-09-01
The aim of this study was to spatio-temporally clarify gross structural changes in the forebrain of cynomolgus monkey fetuses using 7-tesla magnetic resonance imaging (MRI). T(1)-weighted coronal, horizontal, and sagittal MR slices of fixed left cerebral hemispheres were obtained from one male fetus at embryonic days (EDs) 70-150. The timetable for fetal sulcation by MRI was in good agreement with that by gross observations, with a lag time of 10-30 days. A difference in detectability of some sulci seemed to be associated with the length, depth, width, and location of the sulci. Furthermore, MRI clarified the embryonic days of the emergence of the callosal (ED 70) and circular (ED 90) sulci, which remained unpredictable under gross observations. Also made visible by the present MRI were subcortical structures of the forebrain such as the caudate nucleus, globus pallidus, putamen, major subdivisions of the thalamus, and hippocampal formation. Their adult-like features were formed by ED 100, corresponding to the onset of a signal enhancement in the gray matter, which reflects neuronal maturation. The results reveal a highly reproducible level of gross structural changes in the forebrain using a high spatial 7-tesla MRI. The present MRI study clarified some changes that are difficult to demonstrate nondestructively using only gross observations, for example, the development of cerebral sulci located on the deep portions of the cortex, as well as cortical and subcortical neuronal maturation.
From soil mechanics to chick development.
Wolpert, Lewis
2018-01-01
Here, I provide some recollections of my life, starting as a civil engineer in South Africa and how I gradually became interested in biology, particularly pattern formation. In retrospect, I think that my decision to work on chick embryos to study limb development back in 1966 turned out to be the right one. The principles discovered in these 50 years, both by my collaborators and by other colleagues, have established the principles of how the limb develops in higher vertebrates, including humans.
Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl
2016-07-15
A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.
Mishra, Nibha; Milikovsky, Dan Z.; Hanin, Geula; Zelig, Daniel; Sheintuch, Liron; Berson, Amit; Greenberg, David S.; Friedman, Alon
2017-01-01
Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy. PMID:28584127
Parreira, Gabriela Machado; Resende, Maria Daniela Aparecida; Garcia, Israel José Pereira; Sartori, Daniela Bueno; Umeoka, Eduardo Henrique de Lima; Godoy, Lívea Dornela; Garcia-Cairasco, Norberto; Barbosa, Leandro Augusto; Santos, Hérica de Lima; Tilelli, Cristiane Queixa
2018-01-15
The Wistar Audiogenic Rat (WAR) is a well-characterized seizure-prone, inbred rodent strain that, when acutely stimulated with high-intensity sounds, develops brainstem-dependent tonic-clonic seizures that can evolve to limbic-like, myoclonic (forebrain) seizures when the acoustic stimuli are presented chronically (audiogenic kindling). In order to investigate possible mechanisms underlying WAR susceptibility to seizures, we evaluated Na,K-ATPase activity, Ca-ATPase activity, Mg-ATPase activity, lipid membrane composition and oxidative stress markers in whole forebrain and whole brainstem samples of naïve WAR, as compared to samples from control Wistar rats. We also evaluated the expression levels of α1 and α3 isoforms of Na,K-ATPase in forebrain samples. We observed increased Na,K-ATPase activity in forebrain samples and increased oxidative stress markers (lipid peroxidation, glutathione peroxidase and superoxide dismutase) in brainstem samples of WAR. The Ca-ATPase activity, Mg-ATPase activity, lipid membrane composition and expression levels of α1 and α3 isoforms of Na,K-ATPase were unaltered. In view of previous data showing that the membrane potentials from naïve WAR's neurons are less negative than that from neurons from Wistar rats, we suggest that Na,K-ATPase increased activity might be involved in a compensatory mechanism necessary to maintain WAR's brains normal activity. Additionally, ongoing oxidative stress in the brainstem could bring Na,K-ATPase activity back to normal levels, which may explain why WAR's present increased susceptibility to seizures triggered by high-intensity sound stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.
Bekenstein, Uriya; Mishra, Nibha; Milikovsky, Dan Z; Hanin, Geula; Zelig, Daniel; Sheintuch, Liron; Berson, Amit; Greenberg, David S; Friedman, Alon; Soreq, Hermona
2017-06-20
Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca 2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy.
Fee, Michale S.
2011-01-01
Learned motor behaviors require descending forebrain control to be coordinated with midbrain and brainstem motor systems. In songbirds, such as the zebra finch, regular breathing is controlled by brainstem centers, but when the adult songbird begins to sing, its breathing becomes tightly coordinated with forebrain-controlled vocalizations. The periods of silence (gaps) between song syllables are typically filled with brief breaths, allowing the bird to sing uninterrupted for many seconds. While substantial progress has been made in identifying the brain areas and pathways involved in vocal and respiratory control, it is not understood how respiratory and vocal control is coordinated by forebrain motor circuits. Here we combine a recently developed technique for localized brain cooling, together with recordings of thoracic air sac pressure, to examine the role of cortical premotor nucleus HVC (proper name) in respiratory-vocal coordination. We found that HVC cooling, in addition to slowing all song timescales as previously reported, also increased the duration of expiratory pulses (EPs) and inspiratory pulses (IPs). Expiratory pulses, like song syllables, were stretched uniformly by HVC cooling, but most inspiratory pulses exhibited non-uniform stretch of pressure waveform such that the majority of stretch occurred late in the IP. Indeed, some IPs appeared to change duration by the earlier or later truncation of an underlying inspiratory event. These findings are consistent with the idea that during singing the temporal structure of EPs is under the direct control of forebrain circuits, whereas that of IPs can be strongly influenced by circuits downstream of HVC, likely in the brainstem. An analysis of the temporal jitter of respiratory and vocal structure suggests that IPs may be initiated by HVC at the end of each syllable and terminated by HVC immediately before the onset of the next syllable. PMID:21980466
Fetterer, Raymond H; Barfield, Ruth C; Jenkins, Mark C
2015-03-01
The use of live oocyst vaccines is becoming increasingly important in the control of avian coccidiosis in broilers. Knowledge of the mechanisms employed when chicks uptake oocysts and become immune is important for optimizing delivery of live vaccines. The current study tests the hypothesis that chicks not initially immunized may ingest oocysts by contact with litter containing oocysts shed by immunized cohorts. In Experiment 1, day-old broiler chicks were housed in pens containing clean litter. In Trial 1, 100% of chicks in some pens were immunized with 2.5 X 10(3) Eimeria acervulina oocysts while in other pens only 75% of chicks were immunized and remaining cohorts within the pens were not immunized. Other pens contained chicks that served as nonimmunized nonchallenged controls or nonimmunized challenged controls (NIC). On day 21, birds were given a homologous challenge of 6 X 10(5) oocysts. A second identical trial was conducted, except birds were immunized with 500 Eimeria maxima oocysts and were challenged with 3 X 10(3) E. maxima oocysts. In Experiment 2, 100% of chicks in some pens were immunized with 500 E. acervulina oocysts while in other pens either 75% or 50% of the birds were immunized. On day 14, birds were challenged with 1 X 10(6) oocysts. Trial 2 was identical to Trial 1 except that birds were immunized with 100 E. maxima oocysts and challenged with 1 X 10(6) oocysts. For all experiments weight gain, feed conversion ratio (FCR), plasma carotenoids, and litter oocyst counts were measured. In Experiment 1, the level of protection in groups containing 25% nonimmunized cohorts, as measured by weight gain, carotenoid level, FCR, and oocyst litter counts, was identical to groups containing 100% immunized chicks. In Experiment 2, pens where 50% or 75% of birds were immunized with either E. maxima or E. acervulina were not well protected from decreases in weight gain and plasma carotenoids nor from increases in litter oocyst counts following a challenge infection administered on day 14 relative to NIC. In addition, pens of birds where 100% of chicks were immunized were not well protected compared to NIC, and resistance to coccidiosis infection in immunized chicks was less than resistance in chicks challenged at 21 days. These results in total suggest that, when birds are challenged after 21 days, cohorts are protected from detrimental effects of challenge infection. However, when challenge infection is given at 14 days, cohorts are not well protected. The results support a conclusion that protection to coccidiosis is conveyed to cohorts by contact with oocysts shed into the litter by immunized chicks, but this resistance may take 14 days to develop.
Cell viability test after laser guidance
NASA Astrophysics Data System (ADS)
Rosenbalm, Tabitha N.; Owens, Sarah; Bakken, Daniel; Gao, Bruce Z.
2006-02-01
To precisely control the position of multiple types of cells in a coculture for the study of cell-cell interactions, we have developed a laser micropatterning technique. The technique employs the optical forces generated by a weakly focused laser beam. In the beam's focal region, the optical force draws microparticles, such as cells, into the center of the beam, propels them along the beam axis, and guides them onto a target surface. Specific patterns are created through computercontrolled micromanipulation of the substrate relative to the laser beam. Preliminary data have demonstrated cell viability after laser guidance. This project was designed to systematically vary the controllable laser parameters, namely, intensity and exposure time of the laser on single cells, and thus determine the laser parameters that allow negligible cell damage with functional cellular position control. To accomplish this goal, embryonic day 7 (E7) chick forebrain neurons were cultured in 35 mm petri dishes. Control and test cells were selected one hour after cell placement to allow cell attachment. Test cells were subjected to the laser at the focal region. The experimental parameters were chosen as: wavelength - 800 nm, intensities - 100 mW, 200 mW, and 300 mW, and exposure times - 10 s and 60 s. Results were analyzed based on neurite outgrowth and the Live/Dead assay (Viability/Cytoxicity kit from Molecular Probes). No statistical difference (p >> 0.1, student t-test) in viability or function was found between the control neurons and those exposed to the laser. This confirms that laser guidance seems to be a promising method for cellular manipulation.
Ontogenetic development of magnetic compass orientation in domestic chickens (Gallus gallus).
Denzau, Susanne; Nießner, Christine; Rogers, Lesley J; Wiltschko, Wolfgang
2013-08-15
Domestic chickens (Gallus gallus) can be trained to search for a social stimulus in a specific magnetic direction, and cryptochrome 1a, found in the retina, has been proposed as a receptor molecule mediating magnetic directions. The present study combines immuno-histochemical and behavioural data to analyse the ontogenetic development of this ability. Newly hatched chicks already have a small amount of cryptochrome 1a in their violet cones; on day 5, the amount of cryptochrome 1a reached the same level as in adult chickens, suggesting that the physical basis for magnetoreception is present. In behavioural tests, however, young chicks 5 to 7 days old failed to show a preference of the training direction; on days 8, 9 and 12, they could be successfully trained to search along a specific magnetic axis. Trained and tested again 1 week later, the chicks that had not shown a directional preference on days 5 to 7 continued to search randomly, while the chicks tested from day 8 onward preferred the correct magnetic axis when tested 1 week later. The observation that the magnetic compass is not functional before day 8 suggests that certain maturation processes in the magnetosensitive system in the brain are not yet complete before that day. The reasons why chicks that have been trained before that day fail to learn the task later remain unclear.
Efficacy of using radio transmitters to monitor least tern chicks
Whittier, Joanna B.; Leslie, David M.
2005-01-01
Little is known about Least Tern (Sterna antillarum) chicks from the time they leave the nest until fledging because they are highly mobile and cryptically colored. We evaluated the efficacy of using radiotelemetry to monitor Interior Least Tern (S. a. athalassos) chicks at Salt Plains National Wildlife Refuge, Oklahoma. In 1999, we attached radio transmitters to 26 Least Tern chicks and tracked them for 2-17 days. No adults abandoned their chicks after transmitters were attached. Transmitters did not appear to alter growth rates of transmittered chicks (P = 0.36) or prevent feather growth, although dermal irritation was observed on one chick. However, without frequent reattachment, transmitters generally did not remain on chicks <1 week old for more than 2 days because of feather growth and transmitter removal, presumably by adult terns. Although the presence of transmitters did not adversely affect Least Tern chicks, future assessments should investigate nonintrusive methods to improve retention of transmitters on young chicks and reduce the number of times that chicks need to be handled.
Chick ex ovo culture and ex ovo CAM assay: how it really works.
Dohle, Daniel S; Pasa, Susanne D; Gustmann, Sebastian; Laub, Markus; Wissler, Josef H; Jennissen, Herbert P; Dünker, Nicole
2009-11-30
Chicken eggs in the early phase of breeding are between in vitro and in vivo systems and provide a vascular test environment not only to study angiogenesis but also to study tumorigenesis. After the chick chorioallantoic membrane (CAM) has developed, its blood vessel network can be easily accessed, manipulated and observed and therefore provides an optimal setting for angiogenesis assays. Since the lymphoid system is not fully developed until late stages of incubation, the chick embryo serves as a naturally immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions. In addition to nurturing developing allo- and xenografts, the CAM blood vessel network provides a uniquely supportive environment for tumor cell intravasation, dissemination, and vascular arrest and a repository where arrested cells extravasate to form micro metastatic foci. For experimental purposes, in most of the recent studies the CAM was exposed by cutting a window through the egg shell and experiments were carried out in ovo, resulting in significant limitations in the accessibility of the CAM and possibilities for observation and photo documentation of effects. When shell-less cultures of the chick embryo were used(1-4), no experimental details were provided and, if published at all, the survival rates of these cultures were low. We refined the method of ex ovo culture of chick embryos significantly by introducing a rationally controlled extrusion of the egg content. These ex ovo cultures enhance the accessibility of the CAM and chick embryo, enabling easy in vivo documentation of effects and facilitating experimental manipulation of the embryo. This allows the successful application to a large number of scientific questions: (1) As an improved angiogenesis assay(5,6), (2) an experimental set up for facilitated injections in the vitreous of the chick embryo eye(7-9), (3) as a test environment for dissemination and intravasation of dispersed tumor cells from established cell lines inoculated on the CAM(10-12), (4) as an improved sustaining system for successful transplantation and culture of limb buds of chicken and mice(13) as well as (5) for grafting, propagation, and re-grafting of solid primary tumor tissue obtained from biopsies on the surface of the CAM(14). In this video article we describe the establishment of a refined chick ex ovo culture and CAM assay with survival rates over 50%. Besides we provide a step by step demonstration of the successful application of the ex ovo culture for a large number of scientific applications.
Barratt, Kristen S; Arkell, Ruth M
2018-01-01
The ZIC2 transcription factor is one of the most commonly mutated genes in Holoprosencephaly (HPE) probands. HPE is a severe congenital defect of forebrain development which occurs when the cerebral hemispheres fail to separate during the early stages of organogenesis and is typically associated with mispatterning of the embryonic midline. Recent study of genotype-phenotype correlations in HPE cases has defined distinctive features of ZIC2-associated HPE presentation and genetics, revealing that ZIC2 mutation does not produce the craniofacial abnormalities generally thought to characterise HPE but leads to a range of non-forebrain phenotypes. Furthermore, the studies confirm the extent of ZIC2 allelic heterogeneity and that pathogenic variants of ZIC2 are associated with both classic and middle interhemispheric variant (MIHV) HPE which arise from defective ventral and dorsal forebrain patterning, respectively. An allelic series of mouse mutants has helped to delineate the cellular and molecular mechanisms by which one gene leads to defects in these related but distinct embryological processes.
Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yan-qing; Li, Yan; Wang, Xiao-yu
1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis ofmore » DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.« less
Carr, Russell L.; Graves, Casey A.; Mangum, Lee C.; Nail, Carole A.; Ross, Matthew K.
2014-01-01
The prevailing dogma is that chlorpyrifos (CPF) mediates its toxicity through inhibition of cholinesterase (ChE). However, in recent years, the toxicological effects of developmental CPF exposure have been attributed to an unknown non-cholinergic mechanism of action. We hypothesize that the endocannabinoid system may be an important target because of its vital role in nervous system development. We have previously reported that repeated exposure to CPF results in greater inhibition of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide (AEA), than inhibition of either forebrain ChE or monoacylglycerol lipase (MAGL), the enzyme that metabolizes the endocannabinoid 2-arachidonylglycerol (2-AG). This exposure resulted in the accumulation of 2-AG and AEA in the forebrain of juvenile rats; however, even at the lowest dosage level used (1.0 mg/kg), forebrain ChE inhibition was still present. Thus, it is not clear if FAAH activity would be inhibited at dosage levels that do not inhibit ChE. To determine this, 10 day old rat pups were exposed daily for 7 days to either corn oil or 0.5 mg/kg CPF by oral gavage. At 4 and 12 h post-exposure on the last day of administration, the activities of serum ChE and carboxylesterase (CES) and forebrain ChE, MAGL, and FAAH were determined as well as the forebrain AEA and 2-AG levels. Significant inhibition of serum ChE and CES was present at both 4 and 12 h. There was no significant inhibition of the activities of forebrain ChE or MAGL and no significant change in the amount of 2-AG at either time point. On the other hand, while no statistically significant effects were observed at 4 h, FAAH activity was significantly inhibited at 12 h resulting in a significant accumulation of AEA. Although it is not clear if this level of accumulation impacts brain maturation, this study demonstrates that developmental CPF exposure at a level that does not inhibit brain ChE can alter components of endocannabinoid signaling. PMID:24373905
Ex Ovo Model for Directly Visualizing Chick Embryo Development
ERIC Educational Resources Information Center
Dorrell, Michael I.; Marcacci, Michael; Bravo, Stephen; Kurz, Troy; Tremblay, Jacob; Rusing, Jack C.
2012-01-01
We describe a technique for removing and growing chick embryos in culture that utilizes relatively inexpensive materials and requires little space. It can be readily performed in class by university, high school, or junior high students, and teachers of any grade level should be able to set it up for their students. Students will be able to…
Jacobs, Leonie; Delezie, Evelyne; Duchateau, Luc; Goethals, Klara; Ampe, Bart; Lambrecht, Evelien; Gellynck, Xavier; Tuyttens, Frank A. M.
2016-01-01
Broiler chicks are transported to production sites within one to 2 d post-hatch. Possible effects of this transportation are poorly understood and could vary among chicks from breeder flocks of different ages. The aim of the present study was to investigate the effects of transportation duration and parental flock age on chick welfare, productivity, and quality. After hatch in a commercial hatchery, 1,620 mixed-sex chicks from 29-wk old (young) and 1,620 chicks from 60-wk old (old) breeders were subjected to transportation of 1.5 h or 11 h duration. After transportation, 2,800 chicks were divided among 100 pens, with each pen containing 28 chicks from one transportation crate (2 or 3 pens per crate). From the remaining chicks, on average 6 chicks (min 4, max 8) per crate (n = 228) were randomly selected and assessed for chick quality, weighed, and culled for yolk sac weighing (one d). Chicks that had not been assigned to pens or were not used for post-transportation measurements, were removed from the experiment (n = 212). Mortality, ADG, BW, and feed conversion (FC) of the experimental chicks were recorded until 41 d. Meat quality was measured for breast fillets (n = 47). No interaction effect of parental age and transportation duration was found for any variables. BW and yolk sac weight at one d were lower for chicks transported 11 h than 1.5 h and for chicks from young versus old breeders. The effect of parental flock age on BW persisted until slaughter. Additionally, parental age positively affected ADG until slaughter. Chick quality was lower in chicks from old versus young breeders. Chick quality and productivity were not affected by transportation duration. Mortality and meat quality were not affected by either parental age or transportation duration. To conclude, no long-term detrimental effects were found from long post-hatch transportation in chicks from young or old parent flocks. Based on these results, we suggest that 11 h post-hatch transportations under similar conditions do not impose long-term welfare or productivity risks. PMID:27143763
Giardino, L; Giuliani, A; Battaglia, A; Carfagna, N; Aloe, L; Calza', L
2002-01-01
The aging brain is characterized by selective neurochemical changes involving several neural populations. A deficit in the cholinergic system of the basal forebrain is thought to contribute to the development of cognitive symptoms of dementia. Attempts to prevent age-associated cholinergic vulnerability and deterioration therefore represent a crucial point for pharmacotherapy in the elderly. In this paper we provide evidence for the protective effect of nicergoline (Sermion) on the degeneration of cholinergic neurons induced by nerve growth factor deprivation. Nerve growth factor deprivation was induced by colchicine administration in rats 13 and 18 months old. Colchicine induces a rapid and substantial down-regulation of choline acetyltransferase messenger RNA level in the basal forebrain in untreated adult, middle-aged and old rats. Colchicine failed to cause these effects in old rats treated for 120 days with nicergoline 10 mg/kg/day, orally. Moreover, a concomitant increase of both nerve growth factor and brain-derived neurotrophic factor content was measured in the basal forebrain of old, nicergoline-treated rats. Additionally, the level of messenger RNA for the brain isoform of nitric oxide synthase in neurons of the basal forebrain was also increased in these animals. Based on the present findings, nicergoline proved to be an effective drug for preventing neuronal vulnerability due to experimentally induced nerve growth factor deprivation.
Rajendran, Saranya; Sundaresan, Lakshmikirupa; Rajendran, Krithika; Selvaraj, Monica; Gupta, Ravi; Chatterjee, Suvro
2016-02-11
Fluid flow plays an important role in vascular development. However, the detailed mechanisms, particularly the link between flow and modulation of gene expression during vascular development, remain unexplored. In chick embryo, the key events of vascular development from initiation of heart beat to establishment of effective blood flow occur between the stages HH10 and HH13. Therefore, we propose a novel in vivo model to study the flow experienced by developing endothelium. Using this model, we aimed to capture the transcriptome dynamics of the pre- and post-flow conditions. RNA was isolated from extra embryonic area vasculosa (EE-AV) pooled from three chick embryos between HH10-HH13 and RNA sequencing was performed. The whole transcriptome sequencing of chick identified up-regulation of some of the previously well-known mechanosensitive genes including NFR2, HAND1, CTGF and KDR. GO analyses of the up-regulated genes revealed enrichment of several biological processes including heart development, extracellular matrix organization, cell-matrix adhesion, cell migration, blood vessel development, patterning of blood vessels, collagen fibril organization. Genes encoding for gap junctions proteins which are involved in vascular remodeling and arterial-venous differentiation, and genes involved in cell-cell adhesion, and ECM interactions were significantly up-regulated. Validation of selected genes through semi quantitative PCR was performed. The study indicates that shear stress plays a major role in development. Through appropriate validation, this platform can serve as an in vivo model to study conditions of disturbed flow in pathology as well as normal flow during development.
Overexpression of Forebrain CRH During Early Life Increases Trauma Susceptibility in Adulthood
Toth, Mate; Flandreau, Elizabeth I; Deslauriers, Jessica; Geyer, Mark A; Mansuy, Isabelle M; Merlo Pich, Emilio; Risbrough, Victoria B
2016-01-01
Although early-life stress is a significant risk factor for developing anxiety disorders, including posttraumatic stress disorder (PTSD), the underlying mechanisms are unclear. Corticotropin releasing hormone (CRH) is disrupted in individuals with PTSD and early-life stress and hence may mediate the effects of early-life stress on PTSD risk. We hypothesized that CRH hyper-signaling in the forebrain during early development is sufficient to increase response to trauma in adulthood. To test this hypothesis, we induced transient, forebrain-specific, CRH overexpression during early-life (pre-puberty, CRHOEdev) in double-mutant mice (Camk2a-rtta2 × tetO-Crh) and tested their behavioral and gene expression responses to the predator stress model of PTSD in adulthood. In one cohort of CRHOEdev exposed and unexposed mice, avoidance and arousal behaviors were examined 7–15 days after exposure to predator stress. In another cohort, gene expression changes in Crhr1, Crhr2, and Fkbp51 in forebrain of CRHOEdev exposed and unexposed mice were examined 7 days after predator stress. CRHOEdev induced robust increases in startle reactivity and reductions in startle inhibition independently of predator stress in both male and female mice. Avoidance behaviors after predator stress were highly dependent on sex and CRHOEdev exposure. Whereas stressed females exhibited robust avoidance responses that were not altered by CRHOEdev, males developed significant avoidance only when exposed to both CRHOEdev and stress. Quantitative real-time-PCR analysis indicated that CRHOEdev unexposed males exhibit significant changes in Crhr2 expression in the amygdala and bed nucleus stria terminalis in response to stress, whereas males exposed to CRHOEdev did not. Similar to CRHOEdev males, females exhibited no significant Crhr2 gene expression changes in response to stress. Cortical Fkbp51 expression was also significantly reduced by stress and CRHOEdev exposure in males, but not in females. These findings indicate that forebrain CRH hyper-signaling in early-life is sufficient to increase enduring effects of adult trauma and attenuate Crhr2 expression changes in response to stress in males. These data support growing evidence for significant sex differences in response to trauma, and support further study of CRHR2 as a candidate mechanism for PTSD risk. PMID:26538448
Mattingly, B A; Zolman, J F
1980-08-01
The effect of the number of prepunishment acquisition trials on the age dependency of passive avoidance (PA) learning of the Vantress X Arbor Acre chick was determined in both key-peck and runway tests. In nine experiments, 1- and 4-day-old chicks were first trained to respond for heat reward, and then, following a variable number of reinforced acquisition trials, the chicks' responses were punished with aversive wing shocks. The major finding of these experiments was that the age dependency of PA learning of the young chick is related specifically to the number of reinforced training trials given prior to PA testing. When a large number of prepunishment acquisition trials were given, 1-day-old chicks learned as quickly as 4-day-old chicks to withhold responding when punished. However, when only a few acquisition trials preceded PA testing, 1-day-old chicks showed significantly less response suppression than 4-day-old chicks. These acquisition effects indicate that the age-dependent changes in PA learning of the chick are not solely due to developmental changes in general inhibitory ability. Rather, these PA results suggest that the 1-day-old chick, compared with the 4-day-old chick, is deficient in learning, or detecting changes in, stimulus- and/or response-reinforcement contingencies.
NASA Technical Reports Server (NTRS)
Fermin, C. D.; Igarashi, M.
1985-01-01
The morphogenesis of the statoconia in the chick, Gallus domesticus, injected with a carbon anhydrase inhibitor is studied. The preparation of the embryo specimens for analysis is described. The early, middle, and late stages of embryonic development are examined. The data reveal that acetozolamide inhibits statoconia formation in the middle stage of development and the calcification process follows statoconia formation. The spatial relationship between the development of type 1 and type 2 hair cells and the appearance and maturation of the statoconia is investigated.
A High-Resolution Enhancer Atlas of the Developing Telencephalon
Visel, Axel; Taher, Leila; Girgis, Hani; May, Dalit; Golonzhka, Olga; Hoch, Renee; McKinsey, Gabriel L.; Pattabiraman, Kartik; Silberberg, Shanni N.; Blow, Matthew J.; Hansen, David V.; Nord, Alex S.; Akiyama, Jennifer A.; Holt, Amy; Hosseini, Roya; Phouanenavong, Sengthavy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Kaplan, Tommy; Kriegstein, Arnold R.; Rubin, Edward M.; Ovcharenko, Ivan; Pennacchio, Len A.; Rubenstein, John L. R.
2013-01-01
Summary The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. While many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified over 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising over 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders. PMID:23375746
Damaziak, K; Paweska, M; Gozdowski, D; Niemiec, J
2018-05-14
An effect of modification of storage conditions of the eggs of broiler breeder flocks at the age of 49-, 52- and 70-, 73-wks of life on an early embryonic development, hatching time and synchronization, hatchability rates, chicks quality and broiler growth was investigated. The eggs were divided into 4 experimental groups: COI = eggs storage 5 d, at turning every 12 h; NSP = eggs storage 12 d, at turning every 12 h; SPIDES = were treated with 4 h pre-incubation at 30°C and 50-55% air humidity, delivered at 5 and 10 d over of 12 d of storage, and turning every 12 h; NCOI = eggs storage 12 d, no turning and no pre-incubation. Eggs from older hens were characterized by poorer hatchability and poorer chicks quality. The use of 2 × 4 h pre-incubation in 12 d of eggs storage could have an effect on the initial acceleration of embryonic development in eggs of young hens, contributing to the alignment of embryos development in eggs from young and older hens to 72 h of incubation. Pre-incubation had no effect on the length of incubation period, hatching window, but it increased the hatchability of the set and apparently fertilized eggs and decreased the number of eggs not hatched, and also improved chicks quality. Eggs turning by 90° every 12 h during the storage positively affected the embryonic development, shortening the incubation time and the quality of chicks, but had no effect on hatchability rates and body weight in 42 d of life. Based on the obtained results, it can be concluded that the applied modifications can be effective in counteracting the negative effects of storage of hatching eggs from both young and older birds.
Zareen, Nusrat; Khan, Muhammad Yunus; Minhas, Liaqat Ali
2009-01-01
The possible adverse effects of Electromagnetic Fields (EMFs) emitted from mobile phones present a major public concern today. Some studies indicate EMFs effects on genes, free radical production, immunological and carcinogenic effects. On the other hand there are studies which do not support the hypothesis of any biological impacts of EMFs. This study was designed to observe the effects of mobile phone induced EMFs on survival and general growth and development of chick embryo, investigating dose-response relationship if any. This was an experimental study in which developing chick embryos were exposed to different doses of mobile phone induced EMFs. For this purpose a mobile phone was placed in the incubator in the centre of fertilised eggs in silent ringing mode and was 'rung' upon from any other line or cell phone. After incubation for 10 or 15 days the eggs were opened and the developmental mile-stones of the surviving embryos were compared with the non exposed subgroup. EMFs exposure significantly decreased the survivability of the chick embryos. The lower doses of EMFs caused growth retardation. However, this effect of growth retardation reallocated to partial growth enhancement on increasing the dose of EMFs and shifted over to definite growth enhancement on further raising the dose. There is an adverse effect of EMFs exposure on embryo survivability. Chick embryos developmental process is influenced by EMFs. However, these effects are variable depending upon the dose of EMFs exposure.
2017-01-01
Abstract While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl’s auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (RNCs), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low RNC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space. PMID:28674698
Chen, Kevin; Cases, Olivier; Rebrin, Igor; Wu, Weihua; Gallaher, Timothy K; Seif, Isabelle; Shih, Jean Chen
2007-01-05
Previous studies have established that abrogation of monoamine oxidase (MAO) A expression leads to a neurochemical, morphological, and behavioral specific phenotype with increased levels of serotonin (5-HT), norepinephrine, and dopamine, loss of barrel field structure in mouse somatosensory cortex, and an association with increased aggression in adults. Forebrain-specific MAO A transgenic mice were generated from MAO A knock-out (KO) mice by using the promoter of calcium-dependent kinase IIalpha (CaMKIIalpha). The presence of human MAO A transgene and its expression were verified by PCR of genomic DNA and reverse transcription-PCR of mRNA and Western blot, respectively. Significant MAO A catalytic activity, autoradiographic labeling of 5-HT, and immunocytochemistry of MAO A were found in the frontal cortex, striatum, and hippocampus but not in the cerebellum of the forebrain transgenic mice. Also, compared with MAO A KO mice, lower levels of 5-HT, norepinephrine, and DA and higher levels of MAO A metabolite 5-hydroxyindoleacetic acid were found in the forebrain regions but not in the cerebellum of the transgenic mice. These results suggest that MAO A is specifically expressed in the forebrain regions of transgenic mice. This forebrain-specific differential expression resulted in abrogation of the aggressive phenotype. Furthermore, the disorganization of the somatosensory cortex barrel field structure associated with MAO A KO mice was restored and became morphologically similar to wild type. Thus, the lack of MAO A in the forebrain of MAO A KO mice may underlie their phenotypes.
USDA-ARS?s Scientific Manuscript database
Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cellfree CD8aa+, CD3_ cells with natural killing activity. Cell-mediated cytotoxicity assay...
Jacobs, Leonie; Delezie, Evelyne; Duchateau, Luc; Goethals, Klara; Ampe, Bart; Lambrecht, Evelien; Gellynck, Xavier; Tuyttens, Frank A M
2016-09-01
Broiler chicks are transported to production sites within one to 2 d post-hatch. Possible effects of this transportation are poorly understood and could vary among chicks from breeder flocks of different ages. The aim of the present study was to investigate the effects of transportation duration and parental flock age on chick welfare, productivity, and quality. After hatch in a commercial hatchery, 1,620 mixed-sex chicks from 29-wk old (young) and 1,620 chicks from 60-wk old (old) breeders were subjected to transportation of 1.5 h or 11 h duration. After transportation, 2,800 chicks were divided among 100 pens, with each pen containing 28 chicks from one transportation crate (2 or 3 pens per crate). From the remaining chicks, on average 6 chicks (min 4, max 8) per crate (n = 228) were randomly selected and assessed for chick quality, weighed, and culled for yolk sac weighing (one d). Chicks that had not been assigned to pens or were not used for post-transportation measurements, were removed from the experiment (n = 212). Mortality, ADG, BW, and feed conversion ( FC: ) of the experimental chicks were recorded until 41 d. Meat quality was measured for breast fillets (n = 47). No interaction effect of parental age and transportation duration was found for any variables. BW and yolk sac weight at one d were lower for chicks transported 11 h than 1.5 h and for chicks from young versus old breeders. The effect of parental flock age on BW persisted until slaughter. Additionally, parental age positively affected ADG until slaughter. Chick quality was lower in chicks from old versus young breeders. Chick quality and productivity were not affected by transportation duration. Mortality and meat quality were not affected by either parental age or transportation duration. To conclude, no long-term detrimental effects were found from long post-hatch transportation in chicks from young or old parent flocks. Based on these results, we suggest that 11 h post-hatch transportations under similar conditions do not impose long-term welfare or productivity risks. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.
Cyclin A2 promotes DNA repair in the brain during both development and aging.
Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J
2016-07-01
Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.
Takemura, Yuri; Yamaguchi, Shinji; Aoki, Naoya; Miura, Momoko; Homma, Koichi J; Matsushima, Toshiya
2018-04-25
Filial imprinting leads to the formation of social attachment if training is performed during a brief sensitive period after hatching. We found that thyroid hormone (3,5,3'-triiodothyronine, T3) acts as a critical determining factor of the sensitive period in domestic chicks. Imprinting upregulates gene expression of the converting enzyme (Dio2, type 2 iodothyronine deiodinase) in the telencephalon, leading to increased brain T3 content. If systemically applied, T3 facilitates imprinting in aged chicks even after the sensitive period is over. Imprinting is also associated with the rapid development of visual perception. Exposure to motion pictures induces a predisposed preference to Johansson's biological motion (BM), and those individuals with higher BM preference are more easily imprinted. Here, we examined whether Dio2 expression is also linked with BM predisposition. Chicks were trained by a rotating red block, and tested for imprinting (experiment 1) and BM preference (experiment 2). To examine the time courses of behavioural and physiological processes, Dio2 expression in telencephalon was compared among three groups: naïve control chicks, and chicks trained for a short (0.5 h) or long period (2 h). In experiment 1, higher Dio2 expression appeared in the 2-h group than in the 0.5-h/control groups, but it was not correlated with the individual imprinting score. In experiment 2, a significant positive correlation appeared between Dio2 expression and BM preference in 2-h-trained chicks. Memory priming by T3 is therefore functionally linked to BM preference induction, leading to successful imprinting to natural objects even when they are initially exposed to artificial objects. Copyright © 2018 Elsevier B.V. All rights reserved.
Mizutani, Yuichi; Niizuma, Yasuaki; Yoda, Ken
2016-01-01
Telomeres are nucleotide sequences located at the ends of chromosomes that promote genome stability. Changes in telomere length (dynamics) are related to fitness or life expectancy, and telomere dynamics during the development phase are likely to be affected by growth and stress factors. Here, we examined telomere dynamics of black-tailed gull chicks (Larus crassirostris) in nests with and without siblings. We found that the initial telomere lengths of singletons at hatching were longer than those of siblings, indicating that singletons are higher-quality chicks than siblings in terms of telomere length. Other factors likely affecting individual quality (i.e., sex, laying date, laying order of eggs, and clutch size) were not related to telomere lengths. Within broods, initial telomere lengths were longer in older chicks than in younger chicks, suggesting that maternal effects, which vary with laying sequence, influence the initial lengths. Additionally, telomeres of chicks with a sibling showed more attrition between hatching and fledging than those of singleton chicks, suggesting that being raised with siblings can cause a sustained competitive environment that leads to telomere loss. High growth rates were associated with a low degree of telomere shortening observed in older siblings, perhaps because slower growth reflects higher food stress and/or higher aerobic metabolism from increased begging effort. Our results show that developmental telomere attrition was an inevitable consequence in two-chick nests in the pre- and post-hatching microenvironments due to the combination of social stress within the nest and maternal effects. The results of our study shed light on telomere dynamics in early life, which may represent an important physiological undercurrent of life-history traits. PMID:27902754
Jung, Bock-Gie; Lee, Jin-A; Nam, Kyoung-Woo; Lee, Bong-Joo
2012-03-01
It has been suggested that drinking oxygenated water may improve oxygen availability, which may increase vitality and improving immune activity. The present study evaluated the immune enhancing effects of oxygenated drinking water in broiler chicks and demonstrated the protective efficacy of oxygenated drinking water against Salmonella Gallinarum in experimentally infected broiler chicks. Continuous drinking of oxygenated water markedly increased serum lysozyme activity, peripheral blood mononuclear cell proliferation and the CD4(+)/CD8(+) splenocyte ratio in broiler chicks. In the chicks experimentally infected with S. Gallinarum, oxygenated drinking water alleviated symptoms and increased survival. These findings suggest that oxygenated drinking water enhances immune activity in broiler chicks, and increases survivability against S. Gallinarum in experimentally infected broiler chicks.
Climate Change Increases Reproductive Failure in Magellanic Penguins
Boersma, P. Dee; Rebstock, Ginger A.
2014-01-01
Climate change is causing more frequent and intense storms, and climate models predict this trend will continue, potentially affecting wildlife populations. Since 1960 the number of days with >20 mm of rain increased near Punta Tombo, Argentina. Between 1983 and 2010 we followed 3496 known-age Magellanic penguin (Spheniscus magellanicus) chicks at Punta Tombo to determine how weather impacted their survival. In two years, rain was the most common cause of death killing 50% and 43% of chicks. In 26 years starvation killed the most chicks. Starvation and predation were present in all years. Chicks died in storms in 13 of 28 years and in 16 of 233 storms. Storm mortality was additive; there was no relationship between the number of chicks killed in storms and the numbers that starved (P = 0.75) or that were eaten (P = 0.39). However, when more chicks died in storms, fewer chicks fledged (P = 0.05, R 2 = 0.14). More chicks died when rainfall was higher and air temperature lower. Most chicks died from storms when they were 9–23 days old; the oldest chick killed in a storm was 41 days old. Storms with heavier rainfall killed older chicks as well as more chicks. Chicks up to 70 days old were killed by heat. Burrow nests mitigated storm mortality (N = 1063). The age span of chicks in the colony at any given time increased because the synchrony of egg laying decreased since 1983, lengthening the time when chicks are vulnerable to storms. Climate change that increases the frequency and intensity of storms results in more reproductive failure of Magellanic penguins, a pattern likely to apply to many species breeding in the region. Climate variability has already lowered reproductive success of Magellanic penguins and is likely undermining the resilience of many other species. PMID:24489663
Larsen, Karen B
2017-01-01
Human fetal brain development is a complex process which is vulnerable to disruption at many stages. Although histogenesis is well-documented, only a few studies have quantified cell numbers across normal human fetal brain growth. Due to the present lack of normative data it is difficult to gauge abnormal development. Furthermore, many studies of brain cell numbers have employed biased counting methods, whereas innovations in stereology during the past 20-30 years enable reliable and efficient estimates of cell numbers. However, estimates of cell volumes and densities in fetal brain samples are unreliable due to unpredictable shrinking artifacts, and the fragility of the fetal brain requires particular care in handling and processing. The optical fractionator design offers a direct and robust estimate of total cell numbers in the fetal brain with a minimum of handling of the tissue. Bearing this in mind, we have used the optical fractionator to quantify the growth of total cell numbers as a function of fetal age. We discovered a two-phased development in total cell numbers in the human fetal forebrain consisting of an initial steep rise in total cell numbers between 13 and 20 weeks of gestation, followed by a slower linear phase extending from mid-gestation to 40 weeks of gestation. Furthermore, we have demonstrated a reduced total cell number in the forebrain in fetuses with Down syndome at midgestation and in intrauterine growth-restricted fetuses during the third trimester.
Mufson, Elliott J.; Perez, Sylvia E.; Nadeem, Muhammad; Mahady, Laura; Kanaan, Nicholas M.; Abrahamson, Eric E.; Ikonomovic, Milos D.; Crawford, Fiona; Alvarez, Victor; Stein, Thor; McKee, Ann C.
2017-01-01
Objective To test the hypothesis that the nucleus basalis of Meynert (nbM), a cholinergic basal forebrain (CBF) cortical projection system, develops neurofibrillary tangles (NFTs) during the progressive pathological stages of chronic traumatic encephalopathy (CTE) in the brain of athletes. Method To characterize NFT pathology we used tau- antibodies marking early, intermediate, and late stages of NFT development in cholinergic basal forebrain tissue obtained at autopsy from eighteen former athletes and veterans with a history of repetitive mild traumatic brain injury (TBI). Results We found evidence that cholinergic nbM neurons develop intracellular tau-immunoreactive changes progressively across the pathological stages of CTE. In particular, there was an increase in pretangle (phosphorylated pS422) and oligomeric (TOC1 and TNT1) forms of tau in stage IV compared to stage II CTE cases. The nbM neurons also displayed pathologic TDP-43 inclusions and diffuse extracellular and vascular amyloid-β (Aβ) deposits in CTE. A higher percent of pS422/p75NTR, pS422 and TNT1 labeled neurons were significantly correlated with age at symptom onset, interval between symptom onset and death and age at death. Conclusion The development of NFTs within the nbM neurons could contribute to the basal forebrain cortical cholinergic disconnection in CTE. Further studies are needed to determine the mechanism driving NFT formation in the nbM neurons and its relation to chronic cognitive dysfunction in CTE. PMID:27834536
Ao, T; Pierce, J L; Pescatore, A J; Cantor, A H; Dawson, K A; Ford, M J; Paul, M
2011-08-01
1. Two studies were conducted to investigate the effect of feeding different concentration and forms of zinc (Zn) on the performance and tibia Zn status of broiler chicks. 2. In Experiment 1, chicks fed on the control or the diet supplemented with 12?mg of Zn as sulphate had lower feed intake, weight gain and tibia Zn content than other treatment groups. Chicks given 12 and 24 mg of organic Zn in starter and grower phases, respectively, had the same performance and tibia Zn content as those fed 40 mg of Zn as sulphate and the same performance but higher tibia Zn content than those given 12 mg of Zn as organic over the 42 d. 3. In Experiment 2, chicks given 24 mg organic Zn had greater weight gain than chicks fed on the other treatment diets in the starter period. Chicks fed on the control diet had lower tibia Zn content than chicks fed other treatment diets. Chicks given 80 mg Zn as sulphate had higher tibia Zn content than chicks fed the other treatment diets except those given 40 mg of Zn as sulphate. 4. The results from these trials indicate that feeding lower concentration of Zn as organic form may better promote the growth performance of broiler chicks.
Kim, W K; Bloomfield, S A; Ricke, S C
2011-11-01
A study was conducted to evaluate the effects of age, vitamin D(3), and fructooligosaccharides (FOS) on bone mineral density (BMD), bone mineral content (BMC), cortical thickness, cortical and trabecular area, and mechanical properties in broiler chicks using peripheral quantitative computed tomography and mechanical testing. A total of 54 male broiler chicks (1 d old) were placed in battery brooders and fed a corn-soybean starter diet for 7 d. After 7 d, the chicks were randomly assigned to pens of 3 birds each. Each treatment was replicated 3 times. There were 6 treatments: 1) early age control (control 1); 2) control 2; 3) 125 µg/kg of vitamin D(3); 4) 250 µg/kg of vitamin D(3); 5) 2% FOS); and 6) 4% FOS. The control 1 chicks were fed a control broiler diet and killed on d 14 to collect femurs for bone analyses. The remaining groups were killed on d 21. Femurs from 3-wk-old chicks showed greater midshaft cortical BMD, BMC, bone area, thickness, and marrow area than those from 2-wk-old chicks (P = 0.016, 0.0003, 0.0002, 0.01, and 0.0001, respectively). Total, cortical, and trabecular BMD of chick proximal femurs were not influenced by age. However, BMC and bone area were significantly affected by age. The femurs of 2-wk-old chicks exhibited significantly lower stiffness and ultimate load than those of 3-wk-old chicks (P = 0.0001), whereas ultimate stress and elastic modulus of the femurs of 2-wk-old chicks were significantly higher than that of femurs of 3-wk-old chicks (P = 0.0001). Chicks fed 250 µg/kg of vitamin D(3) exhibited significantly greater midshaft cortical BMC (P = 0.04), bone area (P = 0.04), and thickness (P = 0.03) than control 2, 2% FOS, or 4% FOS chicks. In summary, our study suggests that high levels of vitamin D(3) can increase bone growth and mineral deposition in broiler chicks. However, FOS did not have any beneficial effects on bone growth and skeletal integrity. Age is an important factor influencing skeletal integrity and mechanical properties in broiler chicks.
Sohrabji, F; Nordeen, E J; Nordeen, K W
1990-01-01
Area X, a large sexually dimorphic nucleus in the avian ventral forebrain, is part of a highly discrete system of interconnected nuclei that have been implicated in either song learning or adult song production. Previously, this nucleus has been included in the song system because of its substantial connections with other vocal control nuclei, and because its volume is positively correlated with the capacity for song. In order to directly assess the role of Area X in song behavior, this nucleus was bilaterally lesioned in both juvenile and adult zebra finches, using ibotenic acid. We report here that lesioning Area X disrupts normal song development in juvenile birds, but does not affect the production of stereotyped song by adult birds. Although juvenile-lesioned birds were consistently judged as being in earlier stages of vocal development than age-matched controls, they continued to produce normal song-like vocalizations. Thus, unlike the lateral magnocellular nucleus of the anterior neostriatum, another avian forebrain nucleus implicated in song learning, Area X does not seem to be necessary for sustaining production of juvenile song. Rather, the behavioral results suggest Area X is important for either the acquisition of a song model or the improvement of song through vocal practice.
The effects of incubation temperature on the development of the cortical forebrain in a lizard.
Amiel, Joshua J; Bao, Shisan; Shine, Richard
2017-01-01
The embryos of egg-laying species are exposed to variable thermal regimes, which can influence not only the resultant hatchling's morphology (e.g., size, sex) and performance (e.g., locomotor speed), but also its cognitive performance (learning ability). To clarify the proximate basis for this latter effect, we incubated eggs of the scincid lizard Bassiana duperreyi under simulated 'hot' and 'cold' natural nest temperatures to examine the effect of incubation temperature on the structure of the telencephalon region of the forebrain. Hatchlings from low-temperature incubation had larger telencephalons (both in absolute terms and relative to body size) and larger neurons in their medial cortices, whereas the medial cortices of hatchlings from high-temperature incubation had fewer neurons overall, but greater neuronal density, and more neurons in certain areas. These temperature-induced differences in B. duperreyi forebrain development are consistent with (and may explain) the disparities in learning ability between hatchlings from our two incubation treatments. The phenotypic plasticity of lizard telencephalon anatomy in response to incubation temperature presents exciting opportunities for studies on the evolutionary and developmental determinants of intelligence in vertebrates, but also offers a cautionary tale. Global climate changes, wrought by anthropogenic activities, may directly modify brain structure in reptiles.
Simon, K; de Vries Reilingh, G; Bolhuis, J E; Kemp, B; Lammers, A
2015-09-01
Early life conditions such as feed and water availability immediately post hatch (PH) and housing conditions may influence immune development and therefore immune reactivity later in life. The current study addressed the consequences of a combination of these 2 early life conditions for immune reactivity, i.e., the specific antibody response towards a non-infectious lung challenge. Broiler chicks received feed and water either immediately p.h. or with a 72 h delay and were either reared in a floor or a cage system. At 4 weeks of age, chicks received either an intra-tracheally administered Escherichia coli lipopolysaccharide (LPS)/Human Serum Albumin (HUSA) challenge or a placebo, and antibody titers were measured up to day 14 after administration of the challenge. Chicks housed on the floor and which had a delayed access to feed p.h. showed the highest antibody titers against HuSA. These chicks also showed the strongest sickness response and poorest performance in response to the challenge, indicating that chicks with delayed access to feed might be more sensitive to an environment with higher antigenic pressure. In conclusion, results from the present study show that early life feeding strategy and housing conditions influence a chick's response to an immune challenge later in life. These 2 early life factors should therefore be taken into account when striving for a balance between disease resistance and performance in poultry. © 2015 Poultry Science Association Inc.
9 CFR 113.31 - Detection of avian lymphoid leukosis.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., shall be done in chick embryo cell cultures. (1) Each vaccine virus, cytopathic to chick embryo...) Uninoculated chick embryo fibroblast cell cultures shall act as negative controls. One set of chick fibroblast...
9 CFR 113.31 - Detection of avian lymphoid leukosis.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., shall be done in chick embryo cell cultures. (1) Each vaccine virus, cytopathic to chick embryo...) Uninoculated chick embryo fibroblast cell cultures shall act as negative controls. One set of chick fibroblast...
9 CFR 113.31 - Detection of avian lymphoid leukosis.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., shall be done in chick embryo cell cultures. (1) Each vaccine virus, cytopathic to chick embryo...) Uninoculated chick embryo fibroblast cell cultures shall act as negative controls. One set of chick fibroblast...
9 CFR 113.31 - Detection of avian lymphoid leukosis.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., shall be done in chick embryo cell cultures. (1) Each vaccine virus, cytopathic to chick embryo...) Uninoculated chick embryo fibroblast cell cultures shall act as negative controls. One set of chick fibroblast...
Aspects of hatching success and chick survival in Gull-billed Terns in coastal Virginia
Eyler, T.B.; Erwin, R.M.; Stotts, D.B.; Hatfield, J.S.
1999-01-01
Because of a long-term population decline in Gull-billed Terns (Sterna nilotica) nesting along the coast of Virginia, we began a three year study in 1994 to monitor hatching success and survival of Gull-billed Tern chicks at several Virginia colony sites. Colonies were located on either small, storm-deposited shellpiles along marsh fringes or large, sandshell overwash fans of barrier islands. Nests were monitored one to three times a week for hatching success, and enclosures were installed around selected nests to monitor chick survival from hatching to about two weeks of age. Hatching success was lower in marsh colonies than island colonies, and was lower in 1995 than in 1994 and 1996, primarily because of flooding. The average brood size of nests where at least one chick hatched was 1.99 chicks. Survival rates of chicks to 14 days depended on hatch order and year but not brood size (one vs. two or more) or time of season. A-chicks had higher survival rates than B-chicks and third-hatched C-chicks (0.661 compared to 0.442 and 0.357, respectively). The year effect was significant only for A-chicks, with lower survival in 1994 (0.50) than in 1995 (0.765) or 1996 (0.758). Overall, productivity was low (0.53 chick per nest) compared to estimates for colonies in Denmark, and was attributable to nest flooding by spring and storm-driven high tides and chick predation, presumably mostly by Great Horned Owls (Bubo virginianus).
Incubation and hatch management: consequences for bone mineralization in Cobb 500 meat chickens.
Muir, W I; Groves, P J
2018-04-01
From ~35 days of age fast growing meat chickens spend extended periods sitting or lying and less time standing. In a fast-feathering parent line lower early incubation temperatures which delayed chick hatch time, improved bone ash and extended their standing time. This incubation study assessed the consequences of incubation temperatures, hatch time and chick management at hatch/take off on femoral bone ash (BA) in Cobb 500 meat chickens. Embryos were incubated under either Control (between 37.8°C and 38.2°C egg shell temperature (EST)) or a Slow start (from 37.2°C at sett (the start of incubation), reaching 37.8°C EST at day 13 incubation), temperatures. Hatched chicks were identified at 492 h (20.5 days of incubation - classified as early (E)) or, between >492 and ⩽516 h (>20.5 and ⩽21.5 days of incubation - classified as late (L)), from setting. The E hatch chicks were allocated across three post-hatch treatments; treatment 1: E hatch chicks that were sampled E at 492 h from setting; treatment 2: E hatch chicks that were fed for a further 24 h in a floorpen before being sampled L at 516 h from setting; treatment 3: E hatch chicks that spent a further 24 h in the incubator before being sampled L at 516 h from setting. All L hatch chicks formed one treatment group which was sampled L at 516 h (i.e. L hatch chicks sampled L). It is not possible to sample L hatching chicks E hence this treatment is absent from the experimental design. Slow start incubation resulted in a higher total hatch percentage with a greater proportion of chicks hatching L, compared with the Control incubation. The L hatching chicks had significantly higher BA than the E hatching chicks. Of the E hatching chicks, those sampled both E and L had significantly lower BA than E hatching chicks fed for 24 h before L sampling. The E hatch, fed and sampled L chicks had the numerically highest BA, which was not significantly different from the BA of the L hatching chicks sampled L These results demonstrate that BA at hatch can be improved, either by extending the incubation period through a Slow start incubation profile, inducing L hatch, or alternatively, via the prompt provision of feed to E hatching chicks.
Zhang, Chi; Kang, Yi; Lundy, Robert F.
2010-01-01
The pontine parabrachial nucleus (PBN) and medullary reticular formation (RF) are hindbrain regions that, respectively, process sensory input and coordinate motor output related to ingestive behavior. Neural processing in each hindbrain site is subject to modulation originating from several forebrain structures including the insular gustatory cortex (IC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH). The present study combined electrophysiology and retrograde tracing techniques to determine the extent of overlap between neurons within the IC, BNST, CeA and LH that target both the PBN and RF. One fluorescent retrograde tracer, red (RFB) or green (GFB) latex microbeads, was injected into the gustatory PBN under electrophysiological guidance and a different retrograde tracer, GFB or fluorogold (FG), into the ipsilateral RF using the location of gustatory NST as a point of reference. Brain tissue containing each forebrain region was sectioned, scanned using a confocal microscope, and scored for the number of single and double labeled neurons. Neurons innervating the RF only, the PBN only, or both the medullary RF and PBN were observed, largely intermingled, in each forebrain region. The CeA contained the largest number of cells retrogradely labeled after tracer injection into either hindbrain region. For each forebrain area except the IC, the origin of descending input to the RF and PBN was almost entirely ipsilateral. Axons from a small percentage of hindbrain projecting forebrain neurons targeted both the PBN and RF. Target specific and non specific inputs from a variety of forebrain nuclei to the hindbrain likely reflect functional specialization in the control of ingestive behaviors. PMID:21040715
Right hemisphere advantage for social recognition in the chick.
Vallortigara, G
1992-09-01
Recognition of familiar and unfamiliar conspecifics was studied in pair-reared chicks tested binocularly or with only one eye in use. Chicks were tested on day 3 in pairs composed of either cagemates or strangers. Social discrimination, as measured by the ratio "number of pecks at the strangers/total number of pecks" was impaired in right-eyed chicks with respect to left-eyed and binocular chicks. Male chicks showed higher levels of social pecking than females, and chicks that used both eyes showed higher pecking than monocular chicks. There were no significant differences in the total number of pecks (i.e. pecks at companions plus pecks at strangers) between right- and left-eyed chicks: the impairment in social discrimination of right-eyed chicks seemed to be due partly to a reduction in pecking at strangers and partly to an increase in pecking at companions. It is suggested that neural structures fed by the left eye (mainly located at the right hemisphere) are better at processing and/or storing of visual information which allows recognition of individual conspecifics. This may be part of a wider tendency to respond to small changes in any of a variety of intrinsic stimulus properties.
Sensory regulation of spontaneous limb movements in the midstage embryonic chick.
Sharp, Andrew A
2015-05-01
It is becoming increasingly apparent that somatosensation plays an important role in regulating prenatal movement and developmental plasticity. Numerous studies performed on embryonic chicks and perinatal rats are beginning to implicate proprioception to be particularly important in modulating motility very soon after afferent connections are made in the spinal cord. In this report, we demonstrate new approaches in the chick embryo to explore the role of sensation in modulating embryonic movement. Force recordings from the legs of chick embryos on E9 and E11, during spontaneous motility, demonstrate changes in sensory regulation consistent with the concept that sensory regulation is functioning one day after sensory synapse formation and that the complexity of this regulation increases by E11. Additionally, we present new video data showing activation of embryonic motility on E5 and E9 in embryos expressing channelrhodopsin in the spinal cord as a novel way to approach the issues of sensorimotor development. © 2015 Wiley Periodicals, Inc.
Dos Anjos, F R; Ledoux, D R; Rottinghaus, G E; Chimonyo, M
2015-01-01
A study was conducted to determine the efficacy of bentonite clay (BC), diatomaceous earth (DE) and turmeric powder (TUM) in alleviating the toxic effects of aflatoxin B1 (AFB1). A total of 250 Ross-308 d-old male broiler chicks were assigned to 10 dietary treatments (5 replicates of 5 chicks) from hatch to d 21. Dietary treatments were: basal diet; basal diet plus AFB1 (2 mg) or BC (0.75%), or DE (0.75%), or TUM (200 mg/kg curcuminoids) and different combinations of AFB1, BC, DE and TUM. Feed intake (FI), body weight gain (BWG) and feed gain (FG) of the birds fed on BC or DE separately were not different from control birds. Birds fed on TUM only had similar FI and FG but lower BWG than control chicks. Aflatoxin B1 reduced FI, BWG and serum concentrations of glucose, albumin, total protein calcium, but increased FG and relative liver and kidney weights. Chicks fed on the combination of AFB1 and BC had similar FI and FG to control chicks. Chicks fed on the combination of DE and AFB1 had lower FI (23.1%) and BWG (28.6%) compared with control chicks. Chicks fed on the combination of TUM and AFB1 also had decreased FI (26.2 %) and BWG (31%) compared with control chicks. Chicks fed on the combination of AFB1, BC and TUM consumed significantly higher amounts of feed compared with chicks fed on only AF, but gained less when compared with control diet chicks. Chicks fed on the combination of AFB1, DE and TUM diet had poorer growth performance than those fed on AFB1 alone. None of the combination diets reduced the severity of liver lesions.
Corticosterone facilitates begging and affects resource allocation in the black-legged kittiwake
Kitaysky, A.S.; Wingfield, J.C.; Piatt, John F.
2001-01-01
Parent black-legged kittiwakes (Rissa tridactyla) and their dependent chicks respond to food shortages by increasing circulating levels of corticosterone. To examine the behavioral significance of corticosterone release, we experimentally increased levels of circulating corticosterone in parents and chicks up to the levels observed during food shortages. We found that corticosterone-implanted chicks begged more frequently than sham-implanted controls. Corticosterone-implanted chicks in broods of two begged more frequently than singletons. Parent kittiwakes then responded to the increase in corticosterone levels in their chicks by increasing chick-feeding rates. However, feeding rates were not different among corticosterone-implanted chicks in broods of two and singletons. We also found that corticosterone-implanted parents spent more time away from the nest - perhaps foraging - and less time brooding/guarding chicks than sham-implanted controls. Untreated mates of the corticosterone-implanted bird did not compensate for the change in their partner's behavior; consequently, chicks were left unattended about 20% of the time compared to 1% at the control nests. However, corticosterone-implanted parents did not decrease their chick-feeding rates. Our findings suggest two functional implications of the increased corticosterone secretion during food shortages in the black-legged kittiwake: it facilitates begging in chicks, and it affects time allocated by parents to guarding young at the nest. Thus, release of corticosterone might provide a mechanistic link between physiological condition and behavioral interactions among adults and their young.
Maternal Diet Influences Offspring Feeding Behavior and Fearfulness in the Precocial Chicken
Aigueperse, Nadège; Calandreau, Ludovic; Bertin, Aline
2013-01-01
Background In chicken, oils in the maternal diet confer a specific scent to the yolk. Embryos are known to perceive and memorize chemosensory signals of the surrounding environment; however, the potential impact of the maternal diet has not previously been investigated. In the present study, we hypothesized that chicken embryos memorize the chemical signals of the maternal diet and that this perceptual learning may orient subsequent feeding behavior of the hatchlings. Methodology/Principal Findings Laying hens were fed standard food enriched with 2% menhaden oil (MH group) or 2% soybean oil (controls). The scent of menhaden was significantly more detected in MH egg yolks than in control yolks by a human panel. We analyzed the development and behavior of offspring towards different types of food, bearing or not bearing the menhaden scent. When chicks were exposed to a 3-min choice test between the familiar food bearing the menhaden scent and the familiar food without menhaden, no effect of treatment was observed. In a 3-min choice test with unfamiliar food (mashed cereals) MH chicks showed a clear positive orientation toward the unfamiliar food bearing the menhaden scent. By contrast, control chicks showed a preference for the non-odorized unfamiliar food. MH chicks expressed higher emotional reactivity level than control chicks as expressed by food neophobia and longer immobility in a restraint test. Conclusion/Significance Chicks exposed in ovo to menhaden oil via the maternal diet preferentially oriented their feeding behavior towards food containing menhaden oil, but only when the food was unfamiliar. We propose that oil in the maternal diet engenders maternal effects and contributes to the development of behavioral phenotype in the offspring. In ovo chemosensory learning may have evolved to prepare precocial offspring for their environment. This suggests a common principle of embryonic chemosensory learning across vertebrate taxa. PMID:24204881
California gull chicks raised near colony edges have elevated stress levels
Herring, Garth; Ackerman, Joshua T.
2011-01-01
Coloniality in nesting birds represents an important life history strategy for maximizing reproductive success. Birds nesting near the edge of colonies tend to have lower reproductive success than individuals nesting near colony centers, and offspring of edge-nesting parents may be impaired relative to those of central-nesting parents. We used fecal corticosterone metabolites in California gull chicks (Larus californicus) to examine whether colony size or location within the colony influenced a chick's physiological condition. We found that chicks being raised near colony edges had higher fecal corticosterone metabolite concentrations than chicks raised near colony centers, but that colony size (ranging from 150 to 11,554 nests) had no influence on fecal corticosterone levels. Fecal corticosterone metabolite concentrations also increased with chick age. Our results suggest that similarly aged California gull chicks raised near colony edges may be more physiologically stressed, as indicated by corticosterone metabolites, than chicks raised near colony centers.
Differential parental care by adult Mountain Plovers, Charadrius montanus
Dinsmore, S.J.; Knopf, F.L.
2005-01-01
We studied chick survival of the Mountain Plover (Charadrius montanus) in Montana and found that chicks tended by females had higher survival rates than chicks tended by males, and that chick survival generally increased during the nesting season. Differences in chick survival were most pronounced early in the nesting season, and may be related to a larger sample of nests during this period. When compared to information about the nest survival of male- and female-tended plover nests, our chick data suggest a trade-off for adult plovers between the egg and chick phases of reproduction. Because Mountain Plover pairs have clutches at two nests at two different locations and show differential success between the sexes during the egg and chick phases, we offer that the Mountain Plover breeding system favours optimizing annual recruitment in a dynamic ecologic setting driven by annually unpredictable drought, grazing, and predation pressures.
Yolk testosterone reduces oxidative damages during postnatal development
Noguera, José Carlos; Alonso-Alvarez, Carlos; Kim, Sin-Yeon; Morales, Judith; Velando, Alberto
2011-01-01
Conditions experienced during early life can influence the development of an organism and several physiological traits, even in adulthood. An important factor is the level of oxidative stress experienced during early life. In birds, extra-genomic egg substances, such as the testosterone hormone, may exert a widespread influence over the offspring phenotype. Interestingly, testosterone can also upregulate the bioavailability of certain antioxidants but simultaneously increases the susceptibility to oxidative stress in adulthood. However, little is known about the effects of maternally derived yolk testosterone on oxidative stress in developing birds. Here, we investigated the role of yolk testosterone on oxidative stress of yellow-legged gull chicks during their early development by experimentally increasing yolk testosterone levels. Levels of antioxidants, reactive oxygen species and lipid oxidative damage were determined in plasma during nestlings' growth. Our results revealed that, contrary to control chicks, birds hatched from testosterone-treated eggs did not show an increase in the levels of oxidative damage during postnatal development. Moreover, the same birds showed a transient increase in plasma antioxidant levels. Our results suggest that yolk testosterone may shape the oxidative stress-resistance phenotype of the chicks during early development owing to an increase in antioxidant defences and repair processes. PMID:20659922
Cramer, Tomer; Kisliouk, Tatiana; Yeshurun, Shlomo; Meiri, Noam
2015-08-01
Determining whether a stressful event will lead to stress-resilience or vulnerability depends probably on an adjustable stress response set point, which is most likely effective during postnatal sensory development and involves the regulation of corticotrophin-releasing hormone (CRH) expression. During the critical period of thermal-control establishment in 3-day-old chicks, heat stress was found to render resilient or sensitized response, depending on the ambient temperature. These two different responses were correlated with the amount of activation of the hypothalamic-pituitary-adrenal (HPA) axis. The expression of CRH mRNA in the hypothalamic paraventricular nucleus was augmented during heat challenge a week after heat conditioning in chicks which were trained to be vulnerable to heat, while it declined in chicks that were trained to be resilient. To study the role of CRH in HPA-axis plasticity, CRH or Crh-antisense were intracranially injected into the third ventricle. CRH caused an elevation of both body temperature and plasma corticosterone level, while Crh-antisense caused an opposite response. Moreover, these effects had long term implications by reversing a week later, heat resilience into vulnerability and vice versa. Chicks that had been injected with CRH followed by exposure to mild heat stress, normally inducing resilience, demonstrated, a week later, an elevation in body temperature, and Crh mRNA level similar to heat vulnerability, while Crh-antisense injected chicks, which were exposed to harsh temperature, responded in heat resilience. These results demonstrate a potential role for CRH in determining the stress resilience/vulnerability balance. © 2014 Wiley Periodicals, Inc.
Cherel, Yves; Durant, Joël M; Lacroix, André
2004-05-01
Plasma concentrations of thyroid hormones (TH) were investigated during the extended posthatching developmental period (approximately 11 months) of a semi-altricial bird species, the king penguin (Aptenodytes patagonicus). The first period of growth in summer was marked by a progressive rise in plasma T4 concentration that paralleled rapid increases in body mass and in structural and down growth. By contrast, plasma T3 concentration had already reached adult levels in newly hatched chicks and did not change thereafter. Circulating TH of king penguin chicks thus follow an original pattern when comparing to altricial and precocial species. During the austral winter, the long period of undernutrition of king penguin chicks was characterized by a decrease in circulating TH that can be related to a seasonal stop in growth and energy saving mechanisms. Plasma TH concentrations increased again during the second growth phase in spring, and they reached their highest levels at the end of the fledging period, slightly before juveniles initiated their first foraging trip at sea. As expected, plasma T4 levels were elevated when chicks moulted, developing a true-adult type waterproof plumage. The data also suggest that T4 plays a major role in skeletal development and pectoral muscle maturation in anticipation of marine life. Plasma T3 was at its highest during the period when juveniles improved resistance to cold waters by going back and forth to the sea, suggesting a role for circulating T3 in cold acclimatization occurring at that time.
A homeobox gene involved in node, notochord and neural plate formation of chick embryos.
Stein, S; Kessel, M
1995-01-01
We have isolated a chicken cDNA clone, Cnot, resembling in sequence and expression pattern the Xenopus homeobox gene Xnot. The major, early transcription domains of Cnot are the node, the notochord and prenodal and postnodal neural plate caudal from the prospective hindbrain level. All these cell populations appear to be descendants of the Cnot-expressing cells of the node, suggesting a cell lineage relationship. After the onset of somitogenesis, a second, independent expression domain appears in the neural folds at the prospective mid- and forebrain levels, and further transcripts are found in the epiphysis, the ventral diencephalon, the preoral gut and the limb buds. Transplantation of nodes from extended streak embryos leads to the formation of ectopic notochords, which express Cnot in the typical, cranially decreasing gradient. Transplantation of young nodes to young hosts has previously been described to induce secondary embryos. We observed that secondary chick embryos express Cnot in node derived, notochord-like structures and in the anterior neural plate, similar to the domains seen in primary embryos. However, expression was absent from the posterior neural plate, which in the induction experiments is excluded from the node lineage. This finding corroborates our initial conclusion about a cell lineage relationship between node, notochord, and neural plate defined by Cnot expression. The midline mesoderm of vertebrate embryos consists of two tissues, the prechordal mesoderm and the notochord. The anterior notochord, the head process, may represent an intermediate form. The transition from prechordal to chordal mesoderm can be followed by the expression of the two marker homeobox genes goosecoid and Cnot, first in the primitive streak, and then in the head process. We suggest that expression of goosecoid or Cnot is involved in the specification of a prechordal or notochordal identity, respectively. A transition from goosecoid to Cnot expression may proceed, while cells are still in the epiblast, but not after becoming mesodermal. A molecular coding of axial positions in the midline mesoderm may occur by specific homeobox genes, similar to the situation in the neural tube and the somitic mesoderm.
Augustine, P C; Danforth, H D
1999-01-01
The effect of betaine and salinomycin on absorption of methionine and glucose in tissue from the duodenal loops of Eimeria acervulina-infected chicks was determined. Differences in the ultrastructure of the intestinal cells and parasite developmental stages were also examined. With a drug-resistant isolate of E. acervulina, methionine absorption was significantly higher in chicks fed a basal diet supplemented with 0.15% betaine as compared with absorption in chicks fed the unsupplemented basal diet. Addition of 66 ppm salinomycin to the diet containing betaine did not further enhance absorption. Conversely, with a drug-sensitive isolate, methionine absorption was significantly higher in chicks fed a diet supplemented with both betaine and salinomycin than in chicks fed the unsupplemented basal diet. Tissue from chicks fed any of the supplemented diets was usually significantly heavier than that from chicks fed the unsupplemented diet, even when weight gains of the birds were similar. Glucose absorption was similar in all diet groups. Epithelial cells in coccidia-infected and uninfected chicks fed diets supplemented with betaine or betaine plus salinomycin were less electron dense than cells from chicks fed diets that were not supplemented with betaine. Merozoites of E. acervulina in chicks fed diets supplemented with salinomycin had extensive membrane disruption and vacuolization, but the damage was prevented when betaine was added to the diet. Numerous merozoites and intact schizonts were seen in the intestinal lumen of chicks fed the diet containing betaine plus salinomycin.
Scheel, Amy; Deal, Nick; St John, Natalie; Wells, Amy; Caruso, Maggie; Gilbert, Elizabeth R; Cline, Mark
2017-05-15
LPLRFamide is a member of the RFamide peptide family that elicits an anorexigenic effect when centrally injected in chicks although the mechanism mediating this response is poorly understood. Therefore, the purpose of this experiment was to elucidate the hypothalamic mechanism of short-term anorexia after central administration of LPLRFamide in chicks. In Experiment 1 chicks centrally injected with LPLRFamide decreased food intake at 15min but not 30min following administration compared to vehicle-injected chicks. For Experiment 2, c-Fos immunoreactivity was quantified in several appetite-associated hypothalamic nuclei and in LPLRF-injected chicks, compared to vehicle-injected chicks, there was an increase in the number of reactive cells in the magnocellular division of the paraventricular nucleus. Lastly in Experiment 3, real time-PCR was performed and hypothalamic proopiomelanocortin (POMC) mRNA abundance was increased in LPRLFamide-injected chicks compared to vehicle-injected chicks. Thus, following central injection of LPLRFamide there is activation of the paraventricular nucleus of the hypothalamus and increased expression of hypothalamic POMC mRNA in chicks. Copyright © 2016 Elsevier Inc. All rights reserved.
Fetterer, R H; Augustine, P C; Allen, P C; Barfield, R C
2003-07-01
Chicks fed betaine supplemented diets and infected with Eimeria acervulina and Eimeria maxima had markedly higher levels of betaine in the duodenum and mid-gut than unsupplemented, infected chicks. Uninfected chicks fed betaine exhibited almost twice the levels of betaine in the gut as infected chicks. Plasma betaine levels were lower in E. maxima-infected chicks than in E. acervulina-or Eimeria tenella-infected chicks. Betaine supplementation reversed the decrease in weight gain in E. maxima- infected chicks but had no effect on the decrease in weight gains in E acervulina- and E. tenella-infected chicks. Coccidia-infected birds on normal diets regularly exhibit increases in plasma NO(2)(+)NO(3). This increase was abolished in E.tenella-infected birds on betaine supplement. Betaine feeding did not alter this effect in E. acervulina- and E. maxima-infected birds. Results indicate that betaine supplementation has a positive effect on gut betaine levels in birds infected with E. acervulina and E. maxima. In all treatment groups, infection lowered the levels of betaine.
The effect of para-chlorophenylalanine and scopolamine on passive avoidance in chicks.
Mattingly, B A; Zolman, J F
1981-05-01
Four-day-old Vantress x Arbor Acre chicks were treated for key-peck passive avoidance (PA) learning following intraperitoneal injections of parachlorophenylalanine (PCPA) and/or scopolamine. In Experiment 1, chicks were pre-treated with either three or five injections of PCPA (150 mg/kg) or saline across th first three posthatch days and then tested for PA learning on the fourth posthatch day. In Experiment 2, chicks were first pre-treated with three injections of PCPA (150 mg/kg) or saline, and then injected with either scopolamine (0.5 mg/kg) or saline 20 min prior to PA testing on the fourth posthatch day. Major findings were: (a) Chicks pre-treated with PCPA did not significantly differ from saline control chicks in either the acquisition or maintenance of response suppression during PA testing; (b) chicks injected with scopolamine were significantly disrupted in PA learning as compared to saline control chicks; and (c) PCPA pre-treatment did not significantly affect the scopolamine-induced disruption of PA learning. These findings, therefore, suggest that cholinergic, but not serotonergic, mechanisms are involved in PA learning of the young chick.
Vitamin C deficiency in growing willow ptarmigan (Lagopus lagopus lagopus).
Hanssen, I; Grav, H J; Steen, J B; Lysnes, H
1979-12-01
Willow ptarmigan chicks raised on a diet containing 265 mg ascorbic acid/kg develop scury-like symptoms and die by 4 weeks of age. If blueberry plants are given as an ad libitum supplement to this diet, the malady is prevented. We have described the clinical, pathological and histological changes which accompany this malnutrition and conclude that they are in accord with the description of scurvy in guinea pig and man. Biochemical determination of ascorbic acid synthesis in the kidney of ptarmigan chicks indicated a rate of synthesis five times that found in livers of growing white rats. Blueberry plants and many other plants found in the natural diet of ptarmigan chicks contain 2,000 to 5,000 mg ascorbic acid/kg dry weight. Feeding experiments showed that the pathological signs were avoided and that already afflicted chicks recovered if the vitamin C content of the diet was raised to 750 mg/kg dry weight of food. Since the food intake of the chicks was 5 to 8 g/day the daily requirement of external vitamin C is about 150 mg/kg body weight. To our knowledge this is the first example of an animal which, while producing vitamin C itself, requires substantial amounts of external vitamin C to survive.
1993-05-28
1993 Dissertation and Abstract Approved: Commit tee Chairperson . ,a..w ember ~tee Member tli:u., ;2 9" PQ3 bate Date bate The author...1982; Mesulam et al., 1983; Rye et al., 1984; Saper, 1984). I will refer to the region of the basal forebrain that supplies cholinergic innervation to...topographical organization has been observed for cholinergic projection patterns, with more rostral and medial basal forebrain cell groups supplying
Ackerman, Joshua T; Takekawa, John Y; Eagles-Smith, Collin A; Iverson, Samuel A
2008-02-01
We evaluated whether mercury influenced survival of free-ranging American avocet (Recurvirostra americana) and black-necked stilt (Himantopus mexicanus) chicks in San Francisco Bay, California. Using radio telemetry, we radio-marked 158 avocet and 79 stilt chicks at hatching and tracked them daily until their fate was determined. We did not find strong support for an influence of in ovo mercury exposure on chick survival, despite observing a wide range of mercury concentrations in chick down feathers at hatching (0.40-44.31 microg g(-1) fw). We estimated that chick survival rates were reduced by < or =3% over the range of observed mercury concentrations during the 28-day period from hatching to fledging. We also salvaged newly-hatched chicks that were found dead during routine nest monitoring. In contrast to the telemetry results, we found that mercury concentrations in down feathers of dead chicks were higher than those in randomly-sampled live chicks of similar age. However, capture site was the most important variable influencing mercury concentrations, followed by year, species, and hatching date. Although laboratory studies have demonstrated negative effects of environmentally relevant mercury concentrations on chick survival, our results concur with the small number of previous field studies that have not been able to detect reduced survival in the wild.
Taurine flux in chicken erythrocytes.
Porter, D W; Martin, W G
1992-05-01
1. The intracellular taurine concentration in chick erythrocytes increased with age. 2. Erythrocyte taurine influx and efflux rates increased with age. 3. Erythrocyte taurine influx decreased when the extracellular sodium concentration was below normal physiological concentrations. 4. Under hypo-osmotic conditions, taurine efflux from erythrocytes increased. 5. The data suggest that chick erythrocyte taurine metabolism changes during early post-hatch development and that one taurine function may be as an osmoregulator.
NASA Technical Reports Server (NTRS)
Sajdel-Sulkowska, E. M.; Li, G. H.; Ronca, A. E.; Baer, L. A.; Sulkowski, G. M.; Koibuchi, N.; Wade, C. E.
2001-01-01
The present study examined the effects of hypergravity exposure on the developing brain and specifically explored the possibility that these effects are mediated by altered thyroid status. Thirty-four timed-pregnant Sprague-Dawley rats were exposed to continuous centrifugation at 1.5 G (HG) from gestational Day 11 until one of three key developmental points: postnatal Day (P) 6, P15, or P21 (10 pups/dam: 5 males/5 females). During the 32-day centrifugation, stationary controls (SC, n = 25 dams) were housed in the same room as HG animals. Neonatal body, forebrain, and cerebellum mass and neonatal and maternal thyroid status were assessed at each time point. The body mass of centrifuged neonates was comparatively lower at each time point. The mass of the forebrain and the mass of the cerebellum were maximally reduced in hypergravity-exposed neonates at P6 by 15.9% and 25.6%, respectively. Analysis of neonatal plasma suggested a transient hypothyroid status, as indicated by increased thyroid stimulating hormone (TSH) level (38.6%) at P6, while maternal plasma TSH levels were maximally elevated at P15 (38.9%). Neither neonatal nor maternal plasma TH levels were altered, suggesting a moderate hypothyroid condition. Thus, continuous exposure of the developing rats to hypergravity during the embryonic and neonatal periods has a highly significant effect on the developing forebrain and cerebellum and neonatal thyroid status (P < 0.05, Bonferroni corrected). These data are consistent with the hypothesized role of the thyroid hormone in mediating the effect of hypergravity in the developing central nervous system and begin to define the role of TH in the overall response of the developing organism to altered gravity.
Greater sage-grouse apparent nest productivity and chick survival in Carbon County, Wyoming
Schreiber, Leslie A.; Hansen, Christopher P.; Rumble, Mark A.; ...
2016-03-01
Greater sage-grouse Centrocercus urophasianus populations across North America have been declining due to degradation and fragmentation of sagebrush habitat. As part of a study quantifying greater sage-grouse demographics prior to construction of a wind energy facility, we estimated apparent net nest productivity and survival rate of chicks associated with radio-equipped female sage-grouse in Carbon County, Wyoming, USA. We estimated apparent net nest productivity using a weighted mean of the average brood size and used a modified logistic-exposure method to estimate daily chick survival over a 70-day time period. Apparent nest productivity was 2.79 chicks per female (95% CI: 1.46–4.12) inmore » 2011, 2.00 chicks per female (95% CI: 1.00–3.00) in 2012, and 1.54 chick per female (95% CI: 0.62–2.46) in 2013. Chick survival to 70 days post-hatch was 19.10% (95% CI: 6.22–37.42%) in 2011, 4.20% (95% CI: 0.84–12.31%) in 2012, and 16.05% (95% CI: 7.67–27.22%) in 2013. These estimates were low, yet within the range of other published survival rates. Chick survival was primarily associated with year and chick age, with minor effects of average temperature between surveys and hatch date. The variability in chick survival rates across years of our study suggests annual weather patterns may have large impacts on chick survival. Thus, management actions that increase the availability of food and cover for chicks may be necessary, especially during years with drought and above-average spring temperatures.« less
Heavier chicks at hatch improves marketing body weight by enhancing skeletal muscle growth.
Sklan, D; Heifetz, S; Halevy, O
2003-11-01
This study examined some of the factors connected with the greater marketing weight observed in chicks hatching with higher BW. Examination of chicks hatching from maternal flocks of different ages indicated that BW at hatch increased quadratically and yolk sac weight linearly with age, whereas components of the gastrointestinal tract showed no significant trend. Growth of pectoralis muscles and gastrointestinal tract were compared in chicks hatching at the same weight from maternal flocks of 28 and 64 wk of age and in chicks from the same maternal flock (44 wk old) hatching at different weights. The results indicated that no differences were found among chicks hatching with the same weight from maternal flocks of different ages. In contrast, in chicks from the same maternal flock hatching at different weights the gastrointestinal tract tended to compose a smaller proportion of BW in large chicks, and its growth was not correlated with performance. Liver proportions were greater in heavier chicks. Pectoralis growth and satellite cell numbers and activity were greater in heavier chicks through 5 d posthatch, and pectoralis muscles were heavier at marketing. Examination of some of the growth factors involved suggested that in heavier chicks satellite cells underwent higher proliferation and earlier differentiation during their critical period of activity in the immediate posthatch days. To determine when these differences in activity were established, examination of 15-d embryonic myoblast activity indicated that at this stage activity was already greater in the heavier eggs. This finding suggests that programming of muscle growth may be completed in late embryonic stages. This study suggests that enhanced satellite cell activity is involved in increased growth of chicks hatching with higher BW.
Kenow, Kevin P.; Meyer, Michael W.; Rossmann, Ronald; Gray, Brian R.; Arts, Michael T.
2015-01-01
A field study was conducted in Wisconsin (USA) to characterize in ovo mercury (Hg) exposure in common loons (Gavia immer). Total Hg mass fractions ranged from 0.17 mg/g to 1.23mg/g wet weight in eggs collected from nests on lakes representing a wide range of pH (5.0–8.1) and were modeled as a function of maternal loon Hg exposure and egg laying order. Blood total Hg mass fractions in a sample of loon chicks ranged from 0.84ug/g to 3.86 ug/g wet weight at hatch. Factors other than mercury exposure that may have persistent consequences on development of chicks from eggs collected on low-pH lakes (i.e., egg selenium, calcium, and fatty acid mass fractions) do not seem to be contributing to reported differences in loon chick quality as a function of lake pH. However, it was observed that adult male loons holding territories on neutral-pH lakes were larger on average than those occupying territories on low-pH lakes. Differences in adult body size of common loons holding territories on neutral-versus low-pH lakes may have genetic implications for differences in lake-source-related quality (i.e., size) in chicks. The tendency for high in ovo Hg exposure and smaller adult male size to co-occur in low-pH lakes complicates the interpretation of the relative contributions of each to resulting chick quality.
Erbrech, Aude; Robin, Jean-Patrice; Guérin, Nathalie; Groscolas, René; Gilbert, Caroline; Martrette, Jean-Marc
2011-06-01
Continuous growth, associated with a steady parental food supply, is a general pattern in offspring development. So that young chicks can acquire their locomotor independence, this period is usually marked by a fast maturation of muscles, during which different myosin heavy chain (MyHC) isoforms are expressed. However, parental food provisioning may fluctuate seasonally, and offspring therefore face a challenge to ensure the necessary maturation of their tissues when energy is limited. To address this trade-off we investigated muscle maturation in both the pectoral and pelvic girdles of king penguin chicks. This species has an exceptionally long rearing period (1 year), which is prolonged when parental food provisioning is drastically reduced during the sub-Antarctic winter. Approximately 1 month post hatching, chicks acquire a functional pedestrian locomotion, which uses pelvic muscles, whereas swimming, which uses the pectoral muscles, only occurs 1 year later. We therefore tested the hypothesis that the MyHC content of the leg muscles reaches a mature state before those of the pectoral muscles. We found that leg muscle MyHC composition changed with the progressive acquisition of pedestrian locomotion, whereas pectoral muscle fibres reached their mature MyHC profile as early as hatching. Contrary to our predictions, the acquisition of the adult profile in pectoral muscles could be related to an early maturation of the contractile muscular proteins, presumably associated with early thermoregulatory capacities of chicks, necessary for survival in their cold environment. This differential maturation appears to reconcile both the locomotor and environmental constraints of king penguin chicks during growth.
Forebrain pathway for auditory space processing in the barn owl.
Cohen, Y E; Miller, G L; Knudsen, E I
1998-02-01
The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway.
Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.
Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji
2013-05-01
d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A
2002-01-01
In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.
Pombal, M A; Puelles, L
1999-11-22
The structural organization of the lamprey extratelencephalic forebrain is re-examined from the perspective of the prosomeric segmental paradigm. The question asked was whether the prosomeric forebrain model used for gnathostomes is of material advantage for interpreting subdivisions in the lamprey forebrain. To this aim, the main longitudinal and transverse landmarks recognized by the prosomeric model in other vertebrates were identified in Nissl-stained lamprey material. Lines of cytoarchitectural discontinuity and contours of migrated neuronal groups were mapped in a two-dimensional sagittal representation and were also classified according to their radial position. Immunocytochemical mapping of calretinin expression in adjacent sections served to define particular structural units better, in particular, the dorsal thalamus. These data were complemented by numerous other chemoarchitectonic observations obtained with ancillary markers, which identified additional specific formations, subdivisions, or boundaries. Emphasis was placed on studying whether such chemically defined neuronal groups showed boundaries aligned with the postulated inter- or intraprosomeric boundaries. The course of diverse axonal tracts was studied also with regard to their prosomeric topography. This analysis showed that the full prosomeric model applies straightforwardly to the lamprey forebrain. This finding implies that a common segmental and longitudinal organization of the neural tube may be primitive for all vertebrates. Interesting novel aspects appear in the interpretation of the lamprey pretectum, the dorsal and ventral thalami, and the hypothalamus. The topologic continuity of the prosomeric forebrain regions with evaginated or non-evaginated portions of the telencephalon was also examined. Copyright 1999 Wiley-Liss, Inc.
Mass stranding of wedge-tailed shearwater chicks in Hawaii
Work, Thierry M.; Rameyer, Robert
1999-01-01
Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.
Saunders-Blades, J L; Korver, D R
2015-06-01
The metabolite 25-hydroxy vitamin D3 (25-OHD) can complement or replace vitamin D3 in poultry rations, and may influence broiler production and immune function traits. The effect of broiler breeder dietary 25-OHD on egg production, hatchability, and chick early innate immune function was studied. We hypothesized that maternal dietary 25-OHD would support normal broiler breeder production and a more mature innate immune system of young chicks. Twenty-three-week-old Ross 308 hens (n=98) were placed in 4 floor pens and fed either 2,760 IU vitamin D3 (D) or 69 μg 25-OHD/kg feed. Hen weights were managed according to the primary breeder management guide. At 29 to 31 wk (Early), 46 to 48 wk (Mid), and 61 to 63 wk (Late), hens were artificially inseminated and fertile eggs incubated and hatched. Chicks were placed in cages based on maternal treatment and grown to 7 d age. Innate immune function and plasma 25-OHD were assessed at 1 and 4 d post-hatch on 15 chicks/treatment. Egg production, hen BW, and chick hatch weight were not affected by diet (P>0.05). Total in vitro Escherichia coli (E. coli) killing by 25-OHD chicks was greater than the D chicks at 4 d for the Early and Mid hatches, and 1 and 4 d for the Late hatch. This can be partly explained by the 25-OHD chicks from the Late hatch also having a greater E. coli phagocytic capability. No consistent pattern of oxidative burst response was observed. Chicks from the Mid hatch had greater percent phagocytosis, phagocytic capability, and E. coli killing than chicks from Early and Late hatches. Overall, maternal 25-OHD increased hatchability and in vitro chick innate immunity towards E. coli. Regardless of treatment, chicks from Late and Early hens had weaker early innate immune responses than chicks from Mid hens. The hen age effect tended to be the greatest factor influencing early chick innate immunity, but maternal 25-OHD also increased several measures relative to D. © 2015 Poultry Science Association Inc.
Swer, Rijied Thompson; Anbalagan, J.; Rajesh, Bhargavan
2017-01-01
Introduction The increasing scientific evidence of various health hazards on exposure of Radiofrequency Radiation (RFR) emitted from both the cell phones and base stations have caused significant media attention and public discussion in recent years. The mechanism of interaction of RF fields with developing tissues of children and fetuses may be different from that of adults due to their smaller physical size and variation in tissue electromagnetic properties. The present study may provide an insight into the basic mechanisms by which RF fields interact with developing tissues in an embryo. Aim To evaluate the possible tissue and DNA damage in developing liver of chick embryo following chronic exposure to Ultra-High Frequency/Radiofrequency Radiation (UHF/RFR) emitted from 2G and 3G cell phone. Materials and Methods Fertilized chick embryos were incubated in four groups. Group A-experimental group exposed to 2G radiation (60 eggs), Group B- experimental group exposed to 3G radiation (60 eggs), Group C- sham exposed control group (60 eggs) and Group D– control group (48 eggs). On completion of scheduled duration, the embryos were collected and processed for routine histological studies to check structural changes in liver. The nuclear diameter and karyorrhexis changes of hepatocytes were analysed using oculometer and square reticule respectively. The liver procured from one batch of eggs from all the four groups was subjected to alkaline comet assay technique to assess DNA damage. The results were compared using one-way ANOVA test. Results In our study, the exposure of developing chick embryos to 2G and 3G cell phone radiations caused structural changes in liver in the form of dilated sinusoidal spaces with haemorrhage, increased vacuolations in cytoplasm, increased nuclear diameter and karyorrhexis and significantly increased DNA damage. Conclusion The chronic exposure of chick embryo liver to RFR emitted from 2G and 3G cell phone resulted in various structural changes and DNA damage. The changes were more pronounced in 3G experimental group. Based on these findings it is necessary to create awareness among public about the possible ill effects of RFR exposure from cell phone. PMID:28892876
D'Silva, Mary Hydrina; Swer, Rijied Thompson; Anbalagan, J; Rajesh, Bhargavan
2017-07-01
The increasing scientific evidence of various health hazards on exposure of Radiofrequency Radiation (RFR) emitted from both the cell phones and base stations have caused significant media attention and public discussion in recent years. The mechanism of interaction of RF fields with developing tissues of children and fetuses may be different from that of adults due to their smaller physical size and variation in tissue electromagnetic properties. The present study may provide an insight into the basic mechanisms by which RF fields interact with developing tissues in an embryo. To evaluate the possible tissue and DNA damage in developing liver of chick embryo following chronic exposure to Ultra-High Frequency/Radiofrequency Radiation (UHF/RFR) emitted from 2G and 3G cell phone. Fertilized chick embryos were incubated in four groups. Group A-experimental group exposed to 2G radiation (60 eggs), Group B- experimental group exposed to 3G radiation (60 eggs), Group C- sham exposed control group (60 eggs) and Group D- control group (48 eggs). On completion of scheduled duration, the embryos were collected and processed for routine histological studies to check structural changes in liver. The nuclear diameter and karyorrhexis changes of hepatocytes were analysed using oculometer and square reticule respectively. The liver procured from one batch of eggs from all the four groups was subjected to alkaline comet assay technique to assess DNA damage. The results were compared using one-way ANOVA test. In our study, the exposure of developing chick embryos to 2G and 3G cell phone radiations caused structural changes in liver in the form of dilated sinusoidal spaces with haemorrhage, increased vacuolations in cytoplasm, increased nuclear diameter and karyorrhexis and significantly increased DNA damage. The chronic exposure of chick embryo liver to RFR emitted from 2G and 3G cell phone resulted in various structural changes and DNA damage. The changes were more pronounced in 3G experimental group. Based on these findings it is necessary to create awareness among public about the possible ill effects of RFR exposure from cell phone.
A high-resolution enhancer atlas of the developing telencephalon.
Visel, Axel; Taher, Leila; Girgis, Hani; May, Dalit; Golonzhka, Olga; Hoch, Renee V; McKinsey, Gabriel L; Pattabiraman, Kartik; Silberberg, Shanni N; Blow, Matthew J; Hansen, David V; Nord, Alex S; Akiyama, Jennifer A; Holt, Amy; Hosseini, Roya; Phouanenavong, Sengthavy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Kaplan, Tommy; Kriegstein, Arnold R; Rubin, Edward M; Ovcharenko, Ivan; Pennacchio, Len A; Rubenstein, John L R
2013-02-14
The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. Though many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here, we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified more than 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising more than 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
Abousaad, S; Lassiter, K; Piekarski, A; Chary, P; Striplin, K; Christensen, K; Bielke, L R; Hargis, B M; Dridi, S; Bottje, W G
2017-05-01
Studies were conducted using a commercial InovojectTM system to determine effects of in ovo feeding of dextrin and iodinated casein (IC) on hatch and posthatch growth in broilers. At ∼18.5 d embryonic development, eggs were treated with 0, 240, or 480 μg IC/mL in saline (Cont, IC240, and IC480) or dextrin (Dext, DextIC240 and DextIC480). The Dext solution consisted of 18% maltodextrin and 10% potato starch dextrin; saline was the vehicle used by the company for in ovo vaccination. The volume for all in ovo treatments was 50 μL/injection. Eggs in Experiment 1 were transferred to a commercial hatcher unit whereas eggs in Experiments 2 and 3 were transferred to a research hatcher unit to assess effects of treatments on timing of hatch. At hatch, chicks were randomly selected and placed in floor pens and grown to 6 wk. In Experiment 1, there were no differences in hatch weights, but broilers provided Dext IC240 in ovo were heavier (P < 0.05) at 6 wk compared to other treatments with the exception of the Dext IC240 group. In Experiment 2, hatch weights were heavier (P < 0.05) in chicks receiving IC240 and DexIC480 treatments compared to Controls. At 6 wk, broilers in all treatments were heavier (P < 0.05) than Cont with the exception of IC480. In Experiment 3, hatch was stimulated by IC240 (in saline), but was delayed by Dext IC240. Serum analysis of β-hydroxybutyrate (μM/mL), as an indicator of ketone accumulation from fat metabolism of chicks held in chick boxes for 24 h posthatch (to simulate delay in placement after hatch), indicated that chicks in the IC240 group (that hatched earlier) had higher blood ketones compared to chicks that received Dext or DextIC240 in ovo (that hatched later). We conclude dextrin and iodinated casein (240 μg/mL) provided in ovo (∼18.5 d of embryonic development) has the potential to improve chick quality and posthatch body weight by delaying or narrowing hatch window. © 2016 Poultry Science Association Inc.
Effects of Optically Imposed Astigmatism on Early Eye Growth in Chicks
Chu, Chin Hung Geoffrey; Kee, Chea Su
2015-01-01
Purpose To determine the effects of optically imposed astigmatism on early eye growth in chicks. Methods 5-day-old (P5) White Leghorn chicks were randomly assigned to either wear, monocularly, a “high magnitude” (H: +4.00DS/-8.00DC) crossed-cylindrical lens oriented at one of four axes (45, 90, 135, and 180; n = 20 in each group), or were left untreated (controls; n = 8). Two additional groups wore a “low magnitude” (L: +2.00DS/−4.00DC) cylindrical lens orientated at either axis 90 or 180 (n = 20 and n = 18, respectively). Refractions were measured at P5 and after 7 days of treatment for all chicks (P12), whereas videokeratography and ex-vivo eyeshape analysis were performed at P12 for a subset of chicks in each group (n = 8). Results Compared to controls, chicks in the treatment groups developed significant amounts of refractive astigmatism (controls: 0.03±0.22DC; treatment groups: 1.34±0.22DC to 5.51±0.26DC, one-way ANOVAs, p≤0.05) with axes compensatory to those imposed by the cylindrical lenses. H cylindrical lenses induced more refractive astigmatism than L lenses (H90 vs. L90: 5.51±0.26D vs. 4.10±0.16D; H180 vs. L180: 2.84±0.44D vs. 1.34±0.22D, unpaired two-sample t-tests, both p≤0.01); and imposing with-the-rule (H90 and L90) and against-the-rule astigmatisms (H180 and L180) resulted in, respectively, steeper and flatter corneal shape. Both corneal and internal astigmatisms were moderately to strongly correlated with refractive astigmatisms (Pearson’s r: +0.61 to +0.94, all p≤0.001). In addition, the characteristics of astigmatism were significantly correlated with multiple eyeshape parameters at the posterior segments (Pearson’s r: -0.27 to +0.45, all p≤0.05). Conclusions Chicks showed compensatory ocular changes in response to the astigmatic magnitudes imposed in this study. The correlations of changes in refractive, corneal, and posterior eyeshape indicate the involvement of anterior and posterior ocular segments during the development of astigmatism. PMID:25675443
Interactive effects of betaine and monensin in uninfected and Eimeria acervulina-infected chicks.
Matthews, J O; Ward, T L; Southern, L L
1997-07-01
Three experiments (Exp.) were conducted to evaluate the interactive effects of dietary betaine (BET) and monensin (MON) in uninfected or Eimeria acervulina-infected chicks. The treatments were replicated with six (Exp. 1) or five (Exp. 2 and 3) pens of five chicks each. The experimental periods lasted 9 (Exp. 1 and 2) or 10 (Exp. 3) d each and the coccidiosis infections were established on Day 2 (Exp. 1 and 2) or Day 3 (Exp. 3) of the experiment. Average initial weight of the chicks was 101, 73, and 68 g in Exp. 1 to 3, respectively, and the initial age of the chicks was 5 (Exp. 1) or 4 (Exp. 2 and 3) d. A corn-soybean meal basal diet was used in each experiment. In Exp. 1, the effect of dietary BET (0, 0.1, or 0.5%) in uninfected or coccidiosis-infected (COC; 5 x 10(5) sporulated E. acervulina oocysts) chicks was investigated. In Exp. 2, the interactive effects of BET (0 or 0.1%) and MON (0 or 55 ppm) in uninfected or COC chicks were investigated in a 2 x 2 x 2 factorial arrangement of treatments. Experiment 3 was identical to Exp. 2, except the level of MON was 110 rather than 55 ppm. In Exp. 1, 2, and 3, COC reduced (P < 0.01) gain, feed intake (FI), feed efficiency (GF), and plasma carotenoid concentration (CAR) and increased (P < 0.01) lesion score (LS). In Exp. 1, gain and FI were decreased in uninfected chicks fed 0.1% BET but gain and FI were increased in COC chicks fed 0.1% BET (COC x BET quadratic, P < 0.01). Dietary BET linearly increased (P < 0.05) GF. In Exp. 2 and 3, MON increased (P < 0.01) gain, FI, GF, and CAR and decreased (P < 0.01) LS of COC chicks, but MON had no effect in uninfected chicks (COC x MON, P < 0.01). In Exp. 2, GF was increased more in chicks fed both MON and BET than in chicks fed MON (BET x MON, P < 0.06). In Exp. 3, BET increased GF of uninfected chicks fed MON and of COC chicks not fed MON (COC x BET x MON, P < 0.02). Betaine may have an effect on E. acervulina-infected chicks, but there is no conclusive evidence to indicate that the efficacy of MON is improved when fed in combination with BET.
Gleiberman, A S; Fedtsova, N G; Rosenfeld, M G
1999-09-15
Rathke's pouch, the epithelial primordium of the anterior pituitary, differentiates in close topographical and functional association with the ventral diencephalon. It is still not known whether the ventral diencephalon acts as the initial inducer of pituitary development. The roles of the adjacent mesenchyme and notochord, two other tissues located in close proximity to Rathke's pouch, in this process are even less clear. In this report we describe an in vitro experimental system that reproduces the earliest steps of anterior pituitary development. We provide evidence that the ventral diencephalon from 2- to 4-day-old chick embryos is able to function as an inducer of pituitary development and can convert early chick embryonic head ectoderm, which is not involved normally in pituitary development, into typical anterior pituitary tissue. This induction is contact-dependent. In our experimental system, there is a requirement for the supporting action of mesenchyme, which is independent of the mesenchyme source. Transplantation of the notochord into the lateral head region of a six-somite chick embryo induces an epithelial invagination, suggesting that the notochord induces the outpouching of the roof of the stomodeal ectoderm that results in formation of Rathke's pouch and causes the close contact between this ectoderm and the ventral diencephalon. Finally, we demonstrate that the ventral diencephalon from e9.5-e11.5 mouse embryos is also an efficient inducer of anterior pituitary differentiation in chick embryonic lateral head ectoderm, suggesting that the mechanism of anterior pituitary induction is conserved between mammals and birds, using the same, or similar, signaling pathways. Copyright 1999 Academic Press.
The effects of ingested plastic on growth and survival of albatross chicks
Sievert, Paul R.; Sileo, Louis
1993-01-01
We studied the effects of ingested plastic on the growth and survival of chicks of Laysan Albatrosses Diomedea immutabilis and Black-footed albatrosses D. nigripes on Midway Atoll during the nesting seasons of 1986 and 1987. Weights and proventricular contents of the chicks were determined periodically through the nesting cycle. Large (>22 cm1)volumes of plastic were present in the proventriculi of 27% of the Laysan and 16% of the Black-footed albatross chicks examined by endoscopy. Prior to fledging, albatross chicks regurgitated pellets composed of plastic and other indigestible material from their proventriculi. Laysan Albatross chicks with large volumes of proventricular plastic had asymptotic fledging weights significantly lower (122 g) than did chicks with low amounts of plastic. The effect of depresses fledging weights on postfledging survival was not determined. Plastic had no detectable effect on the growth of Black-footed Albatross chicks. All chicks that died were examined by necropsy. Mechanical lesions from ingested plastic were the cause of death of one of 45 Laysan Albatross chicks examined in 1986, but were not the cause of death of 93 individuals examined in 1987. Dehydration was the most common cause of death. In general, ingested plastic was not a significant direct cause of death in nestlings, but there was some evidence that it may have affected survival in 1986, when the volume of plastic ingested was highest.
Kitaysky, A.S.; Piatt, John F.; Wingfield, J.C.; Romano, M.
1999-01-01
In this study we examined hormonal responses of Black-legged Kittiwake (Rissa tridactyla) chicks to experimental variations in energy content and nutritional quality (low or high lipid to protein ratio, LPR) of their food. Starting at the age of 10 days, chicks were fed either high or low LPR fish at 30, 50, 70 and 100% of ad libitum energy intake. After 20 days of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where a baseline sample was taken immediately after taking a chick from the nest, and three additional blood samples were taken at intervals up to 50 min. Testosterone and corticosterone titres in plasma were measured via radioimmunoassay. We found that baseline testosterone levels were not significantly affected by the experimental treatments. Food-restricted chicks had elevated baseline and acute stress-induced levels of corticosterone compared to chicks fed ad libitum. An elevation of circulating levels of corticosterone in energetically stressed individuals was further magnified by low nutritional quality of food. Baseline and acute stress-induced corticosterone levels of chicks were negatively correlated with their fat reserves. We conclude that the physiological condition of Black-legged Kittiwake chicks can be assessed reliably by measuring circulating levels of corticosterone. We discuss short-and long-term effects of elevated corticosterone secretion in food-stressed nest-bound chicks.
Xin, Qiuhong; Ogura, Yukiko; Matsushima, Toshiya
2017-07-01
To examine how resource competition contributes to patch-use behaviour, we examined domestic chicks foraging in an I-shaped maze equipped with two terminal feeders. In a variable interval schedule, one feeder supplied grains three times more frequently than the other, and the sides were reversed midway through the experiment. The maze was partitioned into two lanes by a transparent wall, so that chicks fictitiously competed without actual interference. Stay time at feeders was compared among three groups. The "single" group contained control chicks; the "pair" group comprised the pairs of chicks tested in the fictitious competition; "mirror" included single chicks accompanied by their respective mirror images. Both "pair" and "mirror" chicks showed facilitated running. In terms of the patch-use ratio, "pair" chicks showed precise matching at approximately 3:1 with significant mutual dependence, whereas "single" and "mirror" chicks showed a comparable under-matching. The facilitated running increased visits to feeders, but failed to predict the patch-use ratio of the subject. At the reversal, quick switching occurred similarly in all groups, but the "pair" chicks revealed a stronger memory-based matching. Perceived competition therefore contributes to precise matching and lasting memory of the better feeder, in a manner dissociated from socially facilitated food search. Copyright © 2017 Elsevier B.V. All rights reserved.
Kitaysky, A.S.; Piatt, John F.; Wingfield, J.C.; Romano, M.
1999-01-01
In this study we examined hormonal responses of Black-legged Kittiwake (Rissa tridactyla) chicks to experimental variations in energy content and nutritional quality (low or high lipid to protein ratio, LPR) of their food. Starting at the age of 10 days, chicks were fed either high or low LPR fish at 30, 50, 70 and 100% of ad libitum energy intake. After 20 days of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where a baseline sample was taken immediately after taking a chick from the nest, and three additional blood samples were taken at intervals up to 50 min. Testosterone and corticosterone titres in plasma were measured via radioimmunoassay. We found that baseline testosterone levels were not significantly affected by the experimental treatments. Food-restricted chicks had elevated baseline and acute stress-induced levels of corticosterone compared to chicks fed ad libitum. An elevation of circulating levels of corticosterone in energetically stressed individuals was further magnified by low nutritional quality of food. Baseline and acute stress-induced corticosterone levels of chicks were negatively correlated with their fat reserves. We conclude that the physiological condition of Black-legged Kittiwake chicks can be assessed reliably by measuring circulating levels of corticosterone. We discuss short- and long-term effects of elevated corticosterone secretion in food-stressed nest-bound chicks.
Ackerman, Joshua T.; Takekawa, John Y.; Eagles-Smith, Collin A.; Iverson, S.A.
2008-01-01
We evaluated whether mercury influenced survival of free-ranging American avocet (Recurvirostra americana) and black-necked stilt (Himantopus mexicanus) chicks in San Francisco Bay, California. Using radio telemetry, we radio-marked 158 avocet and 79 stilt chicks at hatching and tracked them daily until their fate was determined. We did not find strong support for an influence of in ovo mercury exposure on chick survival, despite observing a wide range of mercury concentrations in chick down feathers at hatching (0.40-44.31 ??g g -1 fw). We estimated that chick survival rates were reduced by ???3% over the range of observed mercury concentrations during the 28-day period from hatching to fledging. We also salvaged newly-hatched chicks that were found dead during routine nest monitoring. In contrast to the telemetry results, we found that mercury concentrations in down feathers of dead chicks were higher than those in randomly-sampled live chicks of similar age. However, capture site was the most important variable influencing mercury concentrations, followed by year, species, and hatching date. Although laboratory studies have demonstrated negative effects of environmentally relevant mercury concentrations on chick survival, our results concur with the small number of previous field studies that have not been able to detect reduced survival in the wild. ?? 2007 Springer Science+Business Media, LLC.
Differential functions of NR2A and NR2B in short-term and long-term memory in rats.
Jung, Ye-Ha; Suh, Yoo-Hun
2010-08-23
N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors implicated in synaptic plasticity and memory function. The specific functions of NMDA receptor subunits NR2A and NR2B have not yet been fully determined in the different types of memory. Nine Wistar rats (8-weeks-old) were subjected to the Morris water maze task to evaluate the memory behaviorally. Quantitative analysis of NR1, NR2A, and NR2B levels in the right and left forebrain of rats was performed and subunit associations with different types of memory were investigated using the Morris water maze task. Right forebrain NR2A expression was significantly increased and correlated with faster escape time onto a hidden platform, indicating involvement of short-term memory, because of the training time interval. Right forebrain NR2B expression was positively associated with long-term memory lasting 24-h (h). In the left forebrain, NR2B expression was positively related to 72-h long-term memory. In conclusion, the functions of NR2A and NR2B receptors were differentially specialized in short-term and long-term memory, depending on the right or left forebrain.
Task-phase-specific dynamics of basal forebrain neuronal ensembles
Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.
2014-01-01
Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352
Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok
2016-01-01
Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.
Cavodeassi, Florencia; Ivanovitch, Kenzo; Wilson, Stephen W.
2013-01-01
During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis. PMID:24026122
Distinct spatiotemporal expression of ISM1 during mouse and chick development.
Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun
2014-01-01
Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain-hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, Leslie A.; Hansen, Christopher P.; Rumble, Mark A.
Greater sage-grouse Centrocercus urophasianus populations across North America have been declining due to degradation and fragmentation of sagebrush habitat. As part of a study quantifying greater sage-grouse demographics prior to construction of a wind energy facility, we estimated apparent net nest productivity and survival rate of chicks associated with radio-equipped female sage-grouse in Carbon County, Wyoming, USA. We estimated apparent net nest productivity using a weighted mean of the average brood size and used a modified logistic-exposure method to estimate daily chick survival over a 70-day time period. Apparent nest productivity was 2.79 chicks per female (95% CI: 1.46–4.12) inmore » 2011, 2.00 chicks per female (95% CI: 1.00–3.00) in 2012, and 1.54 chick per female (95% CI: 0.62–2.46) in 2013. Chick survival to 70 days post-hatch was 19.10% (95% CI: 6.22–37.42%) in 2011, 4.20% (95% CI: 0.84–12.31%) in 2012, and 16.05% (95% CI: 7.67–27.22%) in 2013. These estimates were low, yet within the range of other published survival rates. Chick survival was primarily associated with year and chick age, with minor effects of average temperature between surveys and hatch date. The variability in chick survival rates across years of our study suggests annual weather patterns may have large impacts on chick survival. Thus, management actions that increase the availability of food and cover for chicks may be necessary, especially during years with drought and above-average spring temperatures.« less
Egg-in-Cube: Design and Fabrication of a Novel Artificial Eggshell with Functionalized Surface
Huang, Wenjing; Arai, Fumihito; Kawahara, Tomohiro
2015-01-01
An eggshell is a porous microstructure that regulates the passage of gases to allow respiration. The chick embryo and its circulatory system enclosed by the eggshell has become an important model for biomedical research such as the control of angiogenesis, cancer therapy, and drug delivery test, because the use of embryo is ethically acceptable and it is inexpensive and small. However, chick embryo and extra-embryonic blood vessels cannot be accessed freely and has poor observability because the eggshell is tough and cannot be seen through, which limits its application. In this study, a novel artificial eggshell with functionalized surface is proposed, which allows the total amount of oxygen to pass into the egg for the chick embryo culturing and has high observability and accessibility for embryo manipulation. First, a 40-mm enclosed cubic-shaped eggshell consisting of a membrane structure and a rigid frame structure is designed, and then the threshold of the membrane thickness suitable for the embryo survival is figured out according to the oxygen-permeability of the membrane structure. The designed artificial eggshell was actually fabricated by using polydimethylsiloxane (PDMS) and polycarbonate (PC) in the current study. Using the fabricated eggshell, chick embryo and extra-embryonic blood vessels can be observed from multiple directions. To test the effectiveness of the design, the cubic eggshells were used to culture chick embryos and survivability was confirmed when PDMS membranes with adequate oxygen permeability were used. Since the surface of the eggshell is transparent, chick embryo tissue development could be observed during the culture period. Additionally, the chick embryo tissues could be accessed and manipulated from outside the cubic eggshell, by using mechanical tools without breakage of the eggshell. The proposed “Egg-in-Cube” with functionalized surface has great potential to serve as a promising platform for biomedical research. PMID:25768929
Frizzled-3a and slit2 genetically interact to modulate midline axon crossing in the telencephalon.
Hofmeister, Wolfgang; Devine, Christine A; Rothnagel, Joseph A; Key, Brian
2012-07-01
The anterior commissure forms the first axon connections between the two sides of the embryonic telencephalon. We investigated the role of the transmembrane receptor Frizzled-3a in the development of this commissure using zebrafish as an experimental model. Knock down of Frizzled-3a resulted in complete loss of the anterior commissure. This defect was accompanied by a loss of the glial bridge, expansion of the slit2 expression domain and perturbation of the midline telencephalic-diencephalic boundary. Blocking Slit2 activity following knock down of Frizzled-3a effectively rescued the anterior commissure defect which suggested that Frizzled-3a was indirectly controlling the growth of axons across the rostral midline. We have shown here that Frizzled-3a is essential for normal development of the commissural plate and that loss-of-function causes Slit2-dependent defects in axon midline crossing in the embryonic vertebrate forebrain. These data supports a model whereby Wnt signaling through Frizzled-3a attenuates expression of Slit2 in the rostral midline of the forebrain. The absence of Slit2 facilitates the formation of a midline bridge of glial cells which is used as a substrate for commissural axons. In the absence of this platform of glia, commissural axons fail to cross the rostral midline of the forebrain. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.
Sulphonated phthalocyanine induced caudal malformative syndrome in the chick embryo.
Sandor, S; Prelipceanu, O; Checiu, I
1985-01-01
Sulphonated phthalocyanine (Pht.) has been tested for its possible noxious effect on the developing chick embryo. When injected into the subembryonic cavity of 40-45 hours incubated chick embryos (mainly 10-20 somite pairs), Pht. induces a highly reproducible caudal malformative syndrome (trunk and taillessness, various anomalies of the limbs). The main effect is--in about 15% of the malformed specimens--associated with unilateral microphthalmy and, less frequently, with coelosomy. Microscopically developmental disturbances of the caudal axial organs, of the mesonephros and of the limbs are observed. The initial pathological changes, at microscopic level, are necrosis and hemorrhages in the caudal axial and paraxial area. The allantois is poorly developed or even absent. Skeletal changes involve anomalies of the ribs and of the vertebral column and total or partial absence of the pelvic girdle bones. The high mortality, mainly during the first week, is due--first of all--to the developmental disturbances including the poor development or absence of the allantois. Control experiments with CuCl2 suggest the ethiological role of Cu. Pathogenetic aspects are discussed.
Linares, A; Caamaño, G J; Diaz, R; Gonzalez, F J; Garcia-Peregrin, E
1993-10-01
Lipid synthesis from acetoacetate and 3-hydroxybutyrate was studied in chick embryo from 15 to 21 days and in chick neonate from 1 to 21 days. Embryonic spinal cord showed higher ability than brain to incorporate acetoacetate into total lipids, although a sharp decrease was found at hatching. 3-Hydroxybutyrate incorporation into total lipids was also higher in spinal cord than in brain, especially during the embryonic period. Phospholipids were the main lipids formed in both tissues from both precursors. An appreciable percentage of radioactivity was also recovered as free cholesterol, especially during the embryonic phase. The developmental patterns of amino acid synthesis from acetoacetate and 3-hydroxybutyrate were similar in both tissues: a clear increase after hatching was followed by a decrease at day 4 of neonatal life. Acetoacetate was a better substrate for amino acid synthesis than 3-hydroxybutyrate during the embryonic development in both tissues. Oxidation of both precursors to CO2 strongly decreased between 15 and 21 days of embryonic development both in brain and spinal cord.
Desouza, Lynette A; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E; Kottmann, Andreas H; Tole, Shubha; Vaidya, Vidita A
2011-05-01
Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T₃ administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T₃ treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T₃ administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.
An avian model for the reversal of neurobehavioral teratogenicity with neural stem cells
Dotan, Sharon; Pinkas, Adi; Slotkin, Theodore A.; Yanai, Joseph
2010-01-01
A fast and simple model which uses lower animals on the evolutionary scale is beneficial for developing procedures for the reversal of neurobehavioral teratogenicity with neural stem cells. Here, we established a procedure for the derivation of chick neural stem cells, establishing embryonic day (E) 10 as optimal for progression to neuronal phenotypes. Cells were obtained from the embryonic cerebral hemispheres and incubated for 5–7 days in enriched medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (FGF2) according to a procedure originally developed for mice. A small percentage of the cells survived, proliferated and formed nestin-positive neurospheres. After removal of the growth factors to allow differentiation (5 days), 74% of the cells differentiated into all major lineages of the nervous system, including neurons (Beta III tubulin-positive, 54% of the total number of differentiated cells), astrocytes (GFAP-positive, 26%), and oligodendrocytes (O4-positive, 20%). These findings demonstrate that the cells were indeed neural stem cells. Next, the cells were transplanted in two allograft chick models; (1) direct cerebral transplantation to 24-hours-old chicks, followed by post-transplantation cell tracking at 24 hours, 6 days and 14 days, and (2) intravenous transplantation to chick embryos on E13, followed by cell tracking on E19. With both methods, transplanted cells were found in the brain. The chick embryo provides a convenient, precisely-timed and unlimited supply of neural progenitors for therapy by transplantation, as well as constituting a fast and simple model in which to evaluate the ability of neural stem cell transplantation to repair neural damage, steps that are critical for progress toward therapeutic applications. PMID:20211723
Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos.
Nogueira, Renato C; Sampaio, Lucia de Fatima S
2017-10-15
Calmodulin is vital for chick embryos morphogenesis in the incubation time 48-66 h when the rudimentary C-shaped heart attains an S-shaped pattern and the optic vesicles develop into optic cups. Melatonin is in the extraembryonic yolk sac of the avian egg; melatonin binds calmodulin. The aim of this study was to investigate the function of melatonin in the formation of the chick embryo optic cups and S-shaped heart, by pharmacological methods and immunoassays. Mel1a melatonin receptor immunofluorescence was distributed in the optic cups and rudimentary hearts. We separated embryonated chicken eggs at 48 h of incubation into basal, control and drug-treated groups, with treatment applied in the egg air sac. At 66 h of incubation, embryos were excised from the eggs and analyzed. Embryos from the basal, control (distilled water), melatonin and 6-chloromelatonin (melatonin receptor agonist) groups had regular optic cups and an S-shaped heart, while those from the calmidazolium (calmodulin inhibitor) group did not. Embryos from the luzindole (melatonin receptor antagonist) and prazosin (Mel1c melatonin receptor antagonist) groups did not have regular optic cups. Embryos from the 4-P-PDOT (Mel1b melatonin receptor antagonist) group did not have an S-shaped heart. Previous application of the melatonin, 6-chloromelatonin or forskolin (adenylate cyclase enhancer) prevented the abnormal appearance of chick embryos from the calmidazolium, luzindole, prazosin and 4-P-PDOT groups. However, 6-chloromelatonin and forskolin only partially prevented the development of defective eye cups in embryos from the calmidazolium group. The results suggested that melatonin modulates chick embryo morphogenesis via calmodulin and membrane receptors. © 2017. Published by The Company of Biologists Ltd.
Simmons, J M; Ackermann, R F; Gallistel, C R
1998-10-15
Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.
Effect of Boric Acid Supplementation on the Expression of BDNF in African Ostrich Chick Brain.
Tang, Juan; Zheng, Xing-ting; Xiao, Ke; Wang, Kun-lun; Wang, Jing; Wang, Yun-xiao; Wang, Ke; Wang, Wei; Lu, Shun; Yang, Ke-li; Sun, Peng-Peng; Khaliq, Haseeb; Zhong, Juming; Peng, Ke-Mei
2016-03-01
The degree of brain development can be expressed by the levels of brain brain-derived neurotrophic factor (BDNF). BDNF plays an irreplaceable role in the process of neuronal development, protection, and restoration. The aim of the present study was to evaluate the effects of boric acid supplementation in water on the ostrich chick neuronal development. One-day-old healthy animals were supplemented with boron in drinking water at various concentrations, and the potential effects of boric acid on brain development were tested by a series of experiments. The histological changes in brain were observed by hematoxylin and eosin (HE) staining and Nissl staining. Expression of BDNF was analyzed by immunohistochemistry, quantitative real-time PCR (QRT-PCR), and enzyme linked immunosorbent assay (ELISA). Apoptosis was evaluated with Dutp-biotin nick end labeling (TUNEL) reaction, and caspase-3 was detected with QRT-PCR. The results were as follows: (1) under the light microscope, the neuron structure was well developed with abundance of neurites and intact cell morphology when animals were fed with less than 160 mg/L of boric acid (groups II, III, IV). Adversely, when boric acid doses were higher than 320 mg/L(groups V, VI), the high-dose boric acid neuron structure was damaged with less neurites, particularly at 640 mg/L; (2) the quantity of BDNF expression in groups II, III, and IV was increased while it was decreased in groups V and VI when compared with that in group I; (3) TUNEL reaction and the caspase-3 mRNA level showed that the amount of cell apoptosis in group II, group III, and group IV were decreased, but increased in group V and group VI significantly. These results indicated that appropriate supplementation of boric acid, especially at 160 mg/L, could promote ostrich chicks' brain development by promoting the BDNF expression and reducing cell apoptosis. Conversely, high dose of boric acid particularly in 640 mg/L would damage the neuron structure of ostrich chick brain by inhibiting the BDNF expression and increasing cell apoptosis. Taken together, the 160 mg/L boric acid supplementation may be the optimal dose for the brain development of ostrich chicks.
Sex differences in razorbill (Family: Alcidae) parent-offspring vocal recognition
NASA Astrophysics Data System (ADS)
Insley, Stephen J.; Paredes Vela, Rosana; Jones, Ian L.
2002-05-01
In this study we examines how a pattern of parental care may result in a sex bias in vocal recognition. In Razorbills (Alca torda), both sexes provide parental care to their chicks while at the nest, after which the male is the sole caregiver for an additional period at sea. Selection pressure acting on recognition behavior is expected to be strongest during the time when males and chicks are together at sea, and as a result, parent-offspring recognition was predicted to be better developed in the male parent, that is, show a paternal bias. In order to test this hypothesis, vocal playback experiments were conducted on breeding Razorbills at the Gannet Islands, Labrador, 2001. The data provide clear evidence of mutual vocal recognition between the male parent and chick but not between the female parent and chick, supporting the hypothesis that parent-offspring recognition is male biased in this species. In addition to acoustic recognition, such a bias could have important social implications for a variety of behavioral and basic life history traits such as cooperation and sex-biased dispersal.
NASA Astrophysics Data System (ADS)
Nadort, Annemarie; Liang, Liuen; Grebenik, Ekaterina; Guller, Anna; Lu, Yiqing; Qian, Yi; Goldys, Ewa; Zvyagin, Andrei
2015-12-01
Nanoparticle-based delivery of drugs and contrast agents holds great promise in cancer research, because of the increased delivery efficiency compared to `free' drugs and dyes. A versatile platform to investigate nanotechnology is the chick embryo chorioallantoic membrane tumour model, due to its availability (easy, cheap) and accessibility (interventions, imaging). In our group, we developed this model using several tumour cell lines (e.g. breast cancer, colon cancer). In addition, we have synthesized in-house silica coated photoluminescent upconversion nanoparticles with several functional groups (COOH, NH2, PEG). In this work we will present the systematic assessment of their in vivo blood circulation times. To this end, we injected chick embryos grown ex ovo with the functionalized UCNPs and obtained a small amount of blood at several time points after injection to create blood smears The UCNP signal from the blood smears was quantified using a modified inverted microscope imaging set-up. The results of this systematic study are valuable to optimize biochemistry protocols and guide nanomedicine advancement in the versatile chick embryo tumour model.
Hypergravity and estrogen effects on avian anterior pituitary growth hormone and prolactin levels
NASA Technical Reports Server (NTRS)
Fiorindo, R. P.; Negulesco, J. A.
1980-01-01
Developing female chicks with fractured right radii were maintained for 14 d at either earth gravity (1 g) or a hypergravity state (2 g). The birds at 1 g were divided into groups which received daily injections of (1) saline, (2) 200 micrograms estrone, and (3) 400 micrograms estrone for 14 d. The 2-g birds were divided into three similarly treated groups. All 2-g birds showed significantly lower body weights than did 1-g birds. Anterior pituitary (AP) glands were excised and analyzed for growth hormone and prolactin content by analytical electrophoresis. The 1-g chicks receiving either dose of daily estrogen showed increased AP growth hormone levels, whereas hypergravity alone did not affect growth hormone content. Chicks exposed to daily estrogen and hypergravity displayed reduced growth hormone levels. AP prolactin levels were slightly increased by the lower daily estrogen dose in 1-g birds, but markedly reduced in birds exposed only to hypergravity. Doubly-treated chicks displayed normal prolactin levels. Reduced growth in 2-g birds might be due, in part, to reduced AP levels of prolactin and/or growth hormone.
Suda, Natsuno; Itoh, Takehiko; Nakato, Ryuichiro; Shirakawa, Daisuke; Bando, Masashige; Katou, Yuki; Kataoka, Kohsuke; Shirahige, Katsuhiko; Tickle, Cheryll; Tanaka, Mikiko
2014-07-01
Apoptosis is an important mechanism for sculpting morphology. However, the molecular cascades that control apoptosis in developing limb buds remain largely unclear. Here, we show that MafB was specifically expressed in apoptotic regions of chick limb buds, and MafB/cFos heterodimers repressed apoptosis, whereas MafB/cJun heterodimers promoted apoptosis for sculpting the shape of the limbs. Chromatin immunoprecipitation sequencing in chick limb buds identified potential target genes and regulatory elements controlled by Maf and Jun. Functional analyses revealed that expression of p63 and p73, key components known to arrest the cell cycle, was directly activated by MafB and cJun. Our data suggest that dimeric combinations of MafB, cFos and cJun in developing chick limb buds control the number of apoptotic cells, and that MafB/cJun heterodimers lead to apoptosis via activation of p63 and p73. © 2014. Published by The Company of Biologists Ltd.
Tavakkoli, H; Rahmani, M; Ghanbarpoor, R; Kheirandish, R
2015-01-01
1. Systemic listeriosis was induced in 14-d-old Chukar partridge chicks, Alectoris chukar, by intravenous injection of a suspension containing 10(6) cfu/ml of viable Listeria monocytogenes organisms to study the course of infection. 2. Septicaemic and encephalitic forms of listeriosis were observed in all birds. Infection resulted in a fever response 8-h post-inoculation. Disease rapidly developed over a 24-h period with decreased activity, lethargy, ruffled feathers, huddling, listlessness, inability to stand, wing droop, decreased feed and water consumption, growth depression, neural disturbances and finally death. Gross and histopathological changes were observed in the myocardium, proventriculus, gizzard, intestine, pancreas, kidney, liver, spleen, lung, meninges and joints. 3. The diversity of these clinical signs and lesions suggests a high susceptibility of Chukar partridge chicks to systemic listeriosis.
Ribatti, Domenico
2018-06-07
Sir Mac Farlane Burnet was the most honored of all Australian scientists. In 1960, Burnet shared the Nobel Prize for Medicine with Peter Medawar of Britain for the discovery of acquired immunological tolerance. He developed techniques for growing influenza viruses in the chorioallantoic membrane of the chick embryo. This became a standard laboratory practice. He continued to work with chick embryos long after the use of cell cultures had become general. His virology research resulted in significant discoveries concerning the nature and replication of viruses and their interaction with the immune system. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Fournier, F.
2007-01-01
A bioenergetics model was used to predict food intake of common loon (Gavia immer) chicks as a function of body mass during development, and a pharmacokinetics model, based on first-order kinetics in a single compartment, was used to predict blood Hg level as a function of food intake rate, food Hg content, body mass, and Hg absorption and elimination. Predictions were tested in captive growing chicks fed trout (Salmo gairdneri) with average MeHg concentrations of 0.02 (control), 0.4, and 1.2 ??g/g wet mass (delivered as CH3HgCl). Predicted food intake matched observed intake through 50 d of age but then exceeded observed intake by an amount that grew progressively larger with age, reaching a significant overestimate of 28% by the end of the trial. Respiration in older, nongrowing birds probably was overestimated by using rates measured in younger, growing birds. Close agreement was found between simulations and measured blood Hg, which varied significantly with dietary Hg and age. Although chicks may hatch with different blood Hg levels, their blood level is determined mainly by dietary Hg level beyond approximately two weeks of age. The model also may be useful for predicting Hg levels in adults and in the eggs that they lay, but its accuracy in both chicks and adults needs to be tested in free-living birds. ?? 2007 SETAC.
Amat, Juan A; Hortas, Francisco; Arroyo, Gonzalo M; Rendón, Miguel A; Ramírez, José M; Rendón-Martos, Manuel; Pérez-Hurtado, Alejandro; Garrido, Araceli
2007-06-01
Greater flamingos in southern Spain foraged in areas distant from a breeding site, spending 4-6 days in foraging areas between successive visits to the colony to feed their chicks. During four years, we took blood samples from chicks to ascertain whether there were interannual variations in several blood parameters, indicative of food quality and feeding frequencies. When the chicks were captured, 20-31% of them had their crops empty, indicating that not all chicks were fed daily. Additional evidence of variations in feeding frequencies was obtained from a principal component analysis (PCA) on plasma chemistry values, which also indicated that there were annual variations in the quality of food received by chicks. The association of cholesterol and glucose with some PC axes indicated that some chicks were experiencing fasting periods. Of all plasma metabolites considered, cholesterol was the best one to predict body condition. Greater flamingo chicks experiencing longer fasting intervals, as suggested by higher plasma levels of cholesterol, were in lower body condition.
Face recognition in newly hatched chicks at the onset of vision.
Wood, Samantha M W; Wood, Justin N
2015-04-01
How does face recognition emerge in the newborn brain? To address this question, we used an automated controlled-rearing method with a newborn animal model: the domestic chick (Gallus gallus). This automated method allowed us to examine chicks' face recognition abilities at the onset of both face experience and object experience. In the first week of life, newly hatched chicks were raised in controlled-rearing chambers that contained no objects other than a single virtual human face. In the second week of life, we used an automated forced-choice testing procedure to examine whether chicks could distinguish that familiar face from a variety of unfamiliar faces. Chicks successfully distinguished the familiar face from most of the unfamiliar faces-for example, chicks were sensitive to changes in the face's age, gender, and orientation (upright vs. inverted). Thus, chicks can build an accurate representation of the first face they see in their life. These results show that the initial state of face recognition is surprisingly powerful: Newborn visual systems can begin encoding and recognizing faces at the onset of vision. (c) 2015 APA, all rights reserved).
Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis
Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong
2015-01-01
The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development. PMID:25568339
Single cell imaging of the chick retina with adaptive optics.
Headington, Kenneth; Choi, Stacey S; Nickla, Debora; Doble, Nathan
2011-10-01
The chick eye is extensively used as a model in the study of myopia and its progression; however, analysis of the photoreceptor mosaic has required the use of excised retina due to the uncorrected optical aberrations in the lens and cornea. This study implemented high resolution adaptive optics (AO) retinal imaging to visualize the chick cone mosaic in vivo. The New England College of Optometry (NECO) AO fundus camera was modified to allow high resolution in vivo imaging on two 6-week-old White Leghorn chicks (Gallus gallus domesticus)-labeled chick A and chick B. Multiple, adjacent images, each with a 2.5(o) field of view, were taken and subsequently montaged together. This process was repeated at varying retinal locations measured from the tip of the pecten. Automated software was used to determine the cone spacing and density at each location. Voronoi analysis was applied to determine the packing arrangement of the cones. In both chicks, cone photoreceptors were clearly visible at all retinal locations imaged. Cone densities measured at 36(o) nasal-12(o) superior retina from the pecten tip for chick A and 40(o) nasal-12(o) superior retina for chick B were 21,714 ± 543 and 26,105 ± 653 cones/mm(2) respectively. For chick B, a further 11 locations immediately surrounding the pecten were imaged, with cone densities ranging from 20,980 ± 524 to 25,148 ± 629 cones/mm(2). In vivo analysis of the cone density and its packing characteristics are now possible in the chick eye through AO imaging, which has important implications for future studies of myopia and ocular disease research.
Buckle, K N; Young, M J; Alley, M R
2014-09-01
To investigate an outbreak of severe craniofacial deformity in yellow-eyed penguin (Megadyptes antipodes, hōiho) chicks at a single breeding site on the Otago Peninsula in the South Island of New Zealand. Morbidity and mortality of yellow-eyed penguins breeding on the coastal regions of Otago was monitored from November 2008 to March 2009. Dead chicks and unhatched eggs were recovered and examined. Between October and December 2008 32 eggs were recorded at 17 nests in the Okia Reserve. Eleven chicks survived to about 90 days of age, of which eight were found to have moderate to severe craniofacial deformity. The six most severe chicks were subject to euthanasia and examined in detail at necropsy, and the remaining two affected chicks were released to the wild after a period of care in a rehabilitation centre. Post-mortem samples were analysed for inorganic and organic toxins. The six deformed chicks all had severe shortening of the mandible and maxilla by 20-50 mm. The rostral and caudal regions of the skull were approximately 40 and 80% of normal length, respectively. Other, more variable lesions included cross bill deformity, malformed bill keratin, microphthalmia with misshapen scleral ossicles and oral soft tissue excess thought to be secondary to bony malformations. During the same year, mild sporadic bill deformities were also reported in 10 unrelated chicks from >167 chicks at other breeding sites on the southern Otago coast. Concentrations of organic toxins and heavy metals in body tissues from affected chicks were apparently similar to those in unaffected chicks on other beaches. No cause of this outbreak of craniofacial deformity could be established although the high prevalence at a single site suggests that it was due to an unidentified local teratogen.
Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model
Lockrow, Jason; Prakasam, Annamalai; Huang, Peng; Bimonte-Nelson, Heather; Sambamurti, Kumar; Granholm, Ann-Charlotte
2009-01-01
Down syndrome (DS) individuals develop several neuropathological hallmarks seen in Alzheimer's disease, including cognitive decline and the early loss of cholinergic markers in the basal forebrain. These deficits are replicated in the Ts65Dn mouse, which contains a partial trisomy of murine chromosome 16, the orthologous genetic segment to human chromosome 21. Oxidative stress levels are elevated early in DS, and may contribute to the neurodegeneration seen in these individuals. We evaluated oxidative stress in Ts65Dn mice, and assessed the efficacy of long-term antioxidant supplementation on memory and basal forebrain pathology. We report that oxidative stress was elevated in the adult Ts65Dn brain, and that supplementation with the antioxidant vitamin E effectively reduced these markers. Also, Ts65Dn mice receiving vitamin E exhibited improved performance on a spatial working memory task and showed an attenuation of cholinergic neuron pathology in the basal forebrain. This study provides evidence that vitamin E delays onset of cognitive and morphological abnormalities in a mouse model of DS, and may represent a safe and effective treatment early in the progression of DS neuropathology. PMID:19135442
Birdsong and the neural production of steroids
Remage-Healey, Luke; London, Sarah E.; Schinger, Barney A.
2009-01-01
The forebrain circuits involved in singing and audition (the ‘song system’) in songbirds exhibit a remarkable capacity to synthesize and respond to steroid hormones. This review considers how local brain steroid production impacts the development, sexual differentiation, and activity of song system circuitry. The songbird forebrain contains all of the enzymes necessary for the de novo synthesis of steroids - including neuroestrogens - from cholesterol. Steroid production enzymes are found in neuronal cell bodies, but they are also expressed in pre-synaptic terminals in the song system, indicating a novel mode of brain steroid delivery to local circuits. The song system expresses nuclear hormone receptors, consistent with local action of brain-derived steroids. Local steroid production also occurs in brain regions that do not express nuclear hormone receptors, suggesting a non-classical mode-of-action. Recent evidence indicates that local steroid levels can change rapidly within the forebrain, in a manner similar to traditional neuromodulators. Lastly, we consider growing evidence for modulatory interactions between brain-derived steroids and neurotransmitter/neuropeptide networks within the song system. Songbirds have therefore emerged as a rich and powerful model system to explore the neural and neurochemical regulation of social behavior. PMID:19589382
Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J
2018-06-01
Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.
Gómez-Picos, Patsy; Sifuentes-Romero, Itzel; Merchant-Larios, Horacio; Hernández-Cornejo, Rubí; Díaz-Hernández, Verónica; García-Gasca, Alejandra
2014-01-01
Brain aromatase participates in several biological processes, such as regulation of the reproductive-endocrine axis, memory, stress, sexual differentiation of the nervous system, male sexual behavior, and brain repair. Here we report the isolation and expression of brain aromatase in olive ridley sea turtle (Lepidochelys olivacea) embryos incubated at male- and female-promoting temperatures (MPT and FPT, respectively), at the thermosensitive period (TSP) and the sex-differentiated period. Also, aromatase expression was assessed in differentiated embryos exposed to bisphenol-A (BPA) during the TSP. BPA is a monomer of polycarbonate plastics and is considered an endocrine-disrupting compound. Normal aromatase expression was measured in both forebrain and hindbrain, showing higher expression levels in the forebrain of differentiated embryos at both incubation temperatures. Although no significant differences were detected in the hindbrain, expression was slightly higher at MPT. BPA did not affect aromatase expression neither in forebrains or hindbrains from embryos incubated at MPT, whereas at FPT an inverted U-shape curve was observed in forebrains with significant differences at lower concentrations, whereas in hindbrains a non-significant increment was observed at higher concentrations. Our data indicate that both incubation temperature and developmental stage are critical factors affecting aromatase expression in the forebrain. Because of the timing and location of aromatase expression in the brain, we suggest that brain aromatase may participate in the imprinting of sexual trends related to reproduction and sexual behavior at the onset of sex differentiation, and BPA exposure may impair aromatase function in the female forebrain.
The effect of dietary betaine in Eimeria acervulina-infected chicks.
Matthews, J O; Southern, L L
2000-01-01
Two experiments were conducted to evaluate the effect of dietary betaine in broiler chicks with either chronic (CHR; 2.5 x 10(5) sporulated oocysts on Day 1, 4, 7, and 10) or acute (ACT; 1.0 x 10(6) sporulated oocysts on Day 1) Eimeria acervulina infections. Three hundred (Experiment 1) or 600 (Experiment 2), 4-d-old male chicks were used in the 14-d experiments. In both experiments, a 2 x 3 factorial arrangement of treatments was used: two levels of betaine (0 or 0.075%) and three levels of coccidiosis infection (uninfected, CHR, or ACT). Each treatment was replicated five (Experiment 1) or 10 (Experiment 2) times with 10 chicks per replicate. In Experiment 1, the ACT infection decreased (P < 0.01) average daily gain and gain:feed, and the CHR infection decreased (P < 0.02) average daily gain. The ACT and CHR infections decreased (P < 0.06) Day 7 plasma carotenoids and Day 14 plasma total protein, and the ACT infection also decreased (P < 0.06) Day 7 plasma total protein. Average daily gain and Day 7 plasma total protein were increased in CHR chicks fed betaine but were decreased in uninfected chicks fed betaine (CHR x betaine; P < 0.09). Chicks fed betaine had decreased (P < 0.06) Day 7 plasma carotenoids. In Experiment 2 the CHR and ACT infections decreased (P < 0.01) average daily gain, average daily feed intake, grain:feed ratio, Days 7 and 14 plasma carotenoids, and Day 7 plasma total protein. Chicks fed betaine had increased (P < 0.07) average daily gains, gain:feed ratios, and lesion scores. Day 14 plasma carotenoids and plasma total protein were decreased in uninfected chicks fed betaine but were increased in CHR chicks fed betaine (CHR x betaine; P < 0.04); plasma carotenoids also were increased in ACT chicks fed betaine (ACT x betaine; P < 0.05). Betaine did not consistently affect growth performance, plasma constituents, or lesion score in CHR or ACT coccidiosis-infected chicks.
Adams, J.; Scott, D.; McKechnie, S.; Blackwell, G.; Shaffer, S.A.; Moller, H.
2009-01-01
We attached 11 g (1.4% body-mass equivalent) global location sensing (GLS) archival tag packages to tarsi of 25 breeding sooty shearwaters (Puffinus griseus, titi) on Whenua Hou (Codfish Island), New Zealand during the chick-rearing period in 2005. Compared with chicks reared by non-handled adults that did not carry tags, deployment of tags on one or both adult parents ultimately resulted in 35% reduction in chick body mass and significantly reduced chick skeletal size preceding fledging (19 April). However, body mass between chick groups was not significantly different after controlling for skeletal size. Effects on chicks were more pronounced in six pairs where both parents carried tags. Chick mass was negatively related to the duration that adults carried tags. In this study, none of the chicks reared by pairs where both parents were tagged, 54% of chicks reared by pairs where one parent was tagged, and 83% of chicks reared by non-handled and non-tagged parents achieved a previously determined pre-fledging mass threshold (564 g; Sagar & Horning 1998). Body mass of adults carrying tags and returning from transequatorial migration the following year were 4% lighter on average than non-tagged birds, but this difference was not statistically significant. Reduced mass among chicks reared by adults carrying tags during the chick-provisioning period indicated that adults altered "normal" provisioning behaviours to maintain their own body condition at the expense of their chicks. Population-level information derived from telemetry studies can reveal important habitat-linked behaviours, unique aspects of seabird foraging behaviours, and migration ecology. Information for some species (e.g., overlap with fisheries) can aid conservation and marine ecosystem management. We advise caution, however, when interpreting certain data related to adult provisioning behaviours (e.g., time spent foraging, provisioning rates, etc.). If effects on individuals are of concern, we suggest shorter-term deployments, smaller and lighter tags, and alternative attachment techniques, especially when investigating threatened or endangered species. ?? The Royal Society of New Zealand 2009.
Kanczler, Janos M; Smith, Emma L; Roberts, Carol A; Oreffo, Richard O C
2012-10-01
Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases.
Transcriptional maturation of the mouse auditory forebrain.
Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly
2015-08-14
The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression patterns were tightly clustered by postnatal age and brain region; (2) comparing A1 and MG, the total numbers of differentially expressed genes were comparable from P7 to P21, then dropped to nearly half by adulthood; (3) comparing successive age groups, the greatest numbers of differentially expressed genes were found between P7 and P14 in both regions, followed by a steady decline in numbers with age; (4) maturational trajectories in expression levels varied at the single gene level (increasing, decreasing, static, other); (5) between regions, the profiles of single genes were often asymmetric; (6) GSEA revealed that genesets related to neural activity and plasticity were typically upregulated from P7 to adult, while those related to structure tended to be downregulated; (7) GSEA and pathways analysis of selected functional networks were not predictive of expression patterns in the auditory forebrain for all genes, reflecting regional specificity at the single gene level. Gene expression in the auditory forebrain during postnatal development is in constant flux and becomes increasingly stable with age. Maturational changes are evident at the global through single gene levels. Transcriptome profiles in A1 and MG are distinct at all ages, and differ from other brain regions. The database generated by this study provides a rich foundation for the identification of novel developmental biomarkers, functional gene pathways, and targeted studies of postnatal maturation in the auditory forebrain.
Collins, K E; McLendon, B L; Wilson, J L
2014-09-01
Athens Canadian Random Bred (ACRB) chickens, a 1955 meat-type control strain, were incubated with the 2013 Cobb 500 broiler to determine differences in egg composition, conductance values, incubation duration, hatch performance, and yolk utilization. Unincubated ACRB eggs had greater percentage solids than Cobb 500 eggs. The ACRB eggs had a greater solid portion as yolk, whereas the Cobb 500 devoted more solid percentage to albumen. Percentage shell was not different between the strains, but ACRB eggs had 2.7% greater percentage moisture loss after 18 d of incubation than Cobb 500 eggs. Conductance, conductance constant, and conductance standardized to a 100 g egg weight basis were all higher for ACRB eggs than Cobb 500 eggs at 12 and 18 d of incubation. The Cobb 500 chicks hatched 6 h earlier than ACRB chicks. The Cobb 500 incubation duration was 498 h, and the ACRB incubation duration was 504 h. There was no difference between the strains for percentage infertile eggs, embryonic mortality, hatchability, or salable chicks. The ACRB chicks hatched with a smaller dried residual yolk sac as a percentage of chick weight compared with the Cobb 500. Both strains had an average relative yolk-free chick weight of 61% of average initial egg weight. Thus the Cobb 500 eggs had decreased gas exchange across the eggshell, which may have contributed to the earlier hatch and decreased yolk utilization. Modern Cobb 500 broiler embryonic metabolism appears to have either become more dependent on albumen rather than yolk or has become more efficient with yolk reserves during development. Broiler hatch performance does not appear to have changed over the past 58 yr. © 2014 Poultry Science Association Inc.
Holoprosencephaly: from Homer to Hedgehog.
Ming, J E; Muenke, M
1998-03-01
Holoprosencephaly (HPE), a common developmental defect affecting the forebrain and face, is etiologically heterogeneous and exhibits wide phenotypic variation. Graded degrees of severity of the brain malformation are also reflected in the highly variable craniofacial malformations associated with HPE. In addition, individuals with microforms of HPE, who usually have normal cognition and normal brain imaging, are at risk for having children with HPE. Some obligate carriers for HPE may not have any phenotypic abnormalities. Recurrent chromosomal rearrangements in individuals with HPE suggest loci containing genes important for brain development, and abnormalities in these genes may result in HPE. Recently, Sonic Hedgehog (SHH) was the first gene identified as causing HPE in humans. Proper function of SHH depends on cholesterol modification. Other candidate genes that may be involved in HPE include components of the SHH pathway, elements involved in cholesterol metabolism, and genes expressed in the developing forebrain.
Movement maintains forebrain neurogenesis via peripheral neural feedback in larval zebrafish
Hall, Zachary Jonas
2018-01-01
The postembryonic brain exhibits experience-dependent development, in which sensory experience guides normal brain growth. This neuroplasticity is thought to occur primarily through structural and functional changes in pre-existing neurons. Whether neurogenesis also mediates the effects of experience on brain growth is unclear. Here, we characterized the importance of motor experience on postembryonic neurogenesis in larval zebrafish. We found that movement maintains an expanded pool of forebrain neural precursors by promoting progenitor self-renewal over the production of neurons. Physical cues associated with swimming (bodily movement) increase neurogenesis and these cues appear to be conveyed by dorsal root ganglia (DRG) in the zebrafish body: DRG-deficient larvae exhibit attenuated neurogenic responses to movement and targeted photoactivation of DRG in immobilized larvae expands the pallial pool of proliferative cells. Our results demonstrate the importance of movement in neurogenic brain growth and reveal a fundamental sensorimotor association that may couple early motor and brain development. PMID:29528285
Zhang, J; Talbot, W S; Schier, A F
1998-01-23
The zebrafish one-eyed pinhead (oep) mutation disrupts embryonic development, resulting in cyclopia and defects in endoderm, prechordal plate, and ventral neuroectoderm formation. We report the molecular isolation of oep using a positional cloning approach. The oep gene encodes a novel EGF-related protein with similarity to the EGF-CFC proteins cripto, cryptic, and FRL-1. Wild-type oep protein contains a functional signal sequence and is membrane-associated. Following ubiquitous maternal and zygotic expression, highest levels of oep mRNA are found in the gastrula margin and in axial structures and forebrain. Widespread misexpression of both membrane-attached and secreted forms of oep rescues prechordal plate and forebrain development in mutant embryos but does not lead to the ectopic induction of these cell types in wild-type fish. These results establish an essential but permissive role for an EGF-related ligand during vertebrate gastrulation.
Congenital disorder of true cyclopia with polydactylia: case report and review of the literature.
Deftereou, T E; Tsoulopoulos, V; Alexiadis, G; Papadopoulos, E; Chouridou, E; Katotomichelakis, M; Lambropoulou, M
2013-01-01
Cyclopia is a rare type of holoprosencephaly and a congenital disorder characterized by the failure of the embryonic forebrain to properly divide the orbits of the eye into two cavities (the embryonic forebrain is normally responsible for inducing the development of the orbits). As a result a birth defect in which there is only one eye is developed. This eye is centrally placed in the area normally occupied by the root of the nose. As a rule, there is a missing nose or a non-functioning nose in the form of a proboscis (a tubular appendage) located above the central eye. In this report the macroscopic, radiographic, and immunohistochemical findings of a case of true cyclopia in a female fetus are described. Cyclopia is a lethal condition that is associated with dramatic symmetric deformities of the nose, skull, orbits, and brain.
Enc1 expression in the chick telencephalon at intermediate and late stages of development.
García-Calero, Elena; Puelles, Luis
2009-12-10
In this work we studied the regional expression pattern of the Enc1 gene in the chick embryo telencephalon at intermediate and late stages of development, bearing on architectonic groupings and boundaries of current interest. In general, the Enc1 signal shows a markedly heterogeneous areal pattern of expression throughout the telencephalon; this corroborates data on new pallial and subpallial structures defined recently in the stereotaxic chick brain atlas of Puelles et al. (2007. The chick brain in stereotaxic coodinates. San Diego, CA: Academic Press). For example: a periventricular/central domain is Enc1-negative in the ventral pallium or nidopallium; core and shell nuclei appear in the mesopallium; the redefined caudodorsolateral area shows a characteristic pattern; the limits of the densocellular hyperpallium in the dorsal pallium are illuminated; and the postulated entorhinal cortex area is distinct at the posterior telencephalic pole. Interestingly, Enc1 transcripts are distinctly present in the piriform cortex at the surface of the ventral pallium throughout its longitudinal extent, as well as in the most rostral part of the lateral pallium, implying a layout of this cortex more similar to the situation in mammals than was assumed previously. Separate corticoid superficial strata are labeled by the Enc1 probe in the lateral and dorsal pallial regions. In the subpallium, the expression of Enc1 agrees with the new radial subdivisions defined by Puelles et al. (2007).
Inheritance and Establishment of Gut Microbiota in Chickens
Ding, Jinmei; Dai, Ronghua; Yang, Lingyu; He, Chuan; Xu, Ke; Liu, Shuyun; Zhao, Wenjing; Xiao, Lu; Luo, Lingxiao; Zhang, Yan; Meng, He
2017-01-01
In mammals, the microbiota can be transmitted from the placenta, uterus, and vagina of the mother to the infant. Unlike mammals, development of the avian embryo is a process isolated from the mother and thus in the avian embryo the gut microbial developmental process remains elusive. To explore the establishment and inheritance of the gut microbiome in the avian embryo, we used the chicken as the model organism to investigate the gut microbial composition in embryos, chicks, and maternal hens. We observed: (1) 28 phyla and 162 genera of microbes in embryos where the dominated genus was Halomonas (79%). (2) 65 genera were core microbiota in all stages with 42% and 62% gut microbial genera of embryo were found in maternal hen and chick, respectively. There was a moderate correlation (0.40) between the embryo and maternal, and 0.52 between the embryo and chick at the family level. (3) Gut microbes that are involved in substance metabolism, infectious disease, and environmental adaptation are enriched in embryos, chicks, and maternal hens, respectively. (4) 94% genera of gut microbial composition were similar among three different chicken breeds which were maintained under similar conditions. Our findings provide evidence to support the hypothesis that part of the microbial colonizers harbored in early embryos were inherited from maternal hens, and the gut microbial abundance and diversity were influenced by environmental factors and host genetic variation during development. PMID:29067020
Metals in albatross feathers from midway atoll: influence of species, age, and nest location.
Burger, J; Gochfeld, M
2000-03-01
Female birds sequester some heavy metals in their eggs, which are then transferred to the developing embryo. Semiprecocial birds such as albatrosses are fully covered with down at hatching, but are dependent on their parents for food for many weeks. At hatching, levels of metals in the chick's down represent exposure from the female via egg, while levels in fully formed feathers at fledgling, several months later, represent mainly exposure from food provided by their parents. In this paper we examine the concentrations of "metals" (heavy metals, mercury, lead, cadmium, chromium, manganese, tin; and metalloids, arsenic and selenium), in the down and contour (body) feathers of half-grown young albatrosses, and contour feathers of one of their parents. We collected feathers from Laysan Diomedea immutabilis and black-footed Diomedea nigripes albatrosses from Midway Atoll in the central Pacific Ocean. We test the null hypotheses that there is no difference in metal levels as a function of species, age, feather type, and location on the island. Using linear regression we found significant models accounting for the variation in the concentrations of mercury, lead, cadmium, selenium, chromium, and manganese (but not arsenic or tin) as a function of feather type (all metals), collection location (all metals but lead), species (selenium only), and interactions between these factors. Most metals (except mercury, arsenic, and tin) were significantly higher in down than in the contour feathers of either chicks or adults. Comparing the two species, black-footed albatross chicks had higher levels of most elements (except arsenic) in their feathers and/or down. Black-footed adults had significantly higher levels of mercury and selenium. We also collected down and feathers from Laysan albatross chicks whose nests were close to buildings, including buildings with flaking lead paint and those that had been lead-abated. Lead levels in the down and feathers of chicks close to nonabated buildings were 10 times higher than for chicks from other locations. Conversely, levels of cadmium and tin were lower near the buildings. Near lead-abated buildings, lead levels decreased as a function of distance, indicating residual contamination on the soil. Our results indicate that black-footed albatross adults and chicks generally have higher levels of heavy metals in their feathers than Laysans. Chicks of both species have higher levels in their down than in their contour feathers, indicating potentially higher exposure during the early chick phase. Copyright 2000 Academic Press.
USDA-ARS?s Scientific Manuscript database
The use of live oocyst vaccines is becoming increasingly important in the control of avian coccidosis in broiler chicks. Knowledge of the mechanisms of how chicks uptake oocysts and become immune is important for optimizing delivery of live vaccines. The current study tests the hypothesis that chick...
Gastrointestinal obstruction in penguin chicks.
Perpiñán, David; Curro, Thomas G
2009-12-01
A 7-day-old gentoo penguin (Pygoscelis papua) was found dead and postmortem examination revealed impaction of the ventriculus with feathers. A review of mortality in gentoo penguin chicks from 1997 to 2007 at that institution revealed another case of feather impaction of the ventriculus in a 4-week-old chick, a sibling of the previous chick. A third case of gastrointestinal impaction occurred in a 24-day-old king penguin (Aptenodytes patagonicus) with omphallitis and enteritis. In this chick, a fibrin mat produced a complete obstruction of the intestine at the level of Meckel's diverticulum.
Studies on carcinogenic and toxic effects of ochratoxin A in chicks.
Stoev, Stoycho D
2010-04-01
Carcinogenic/toxic effects of ochratoxin A (OTA) in various internal organs of Plymouth Rock chicks were determined. The number of OTA-induced neoplasms was similar in chicks given 25 ppm L-β-phenylalanine (PHE) in addition to 5 ppm OTA compared to chicks given only 5 ppm OTA, which showed that PHE cannot be used as a real protector against the carcinogenic or toxic effects of OTA in chicks. OTA was found to provoke strong degenerative changes in liver and kidneys, degenerative changes and depletion of cells in lymphoid organs, oedematous and degenerative changes in the brain, muscular haemorrhages and fatty changes in the bone marrow. The target organs for carcinogenic effect of OTA in chicks were found to be kidneys and liver.
Foxp2 regulates neuronal differentiation and neuronal subtype specification.
Chiu, Yi-Chi; Li, Ming-Yang; Liu, Yuan-Hsuan; Ding, Jing-Ya; Yu, Jenn-Yah; Wang, Tsu-Wei
2014-07-01
Mutations of the transcription factor FOXP2 in humans cause a severe speech and language disorder. Disruption of Foxp2 in songbirds or mice also leads to deficits in song learning or ultrasonic vocalization, respectively. These data suggest that Foxp2 plays important roles in the developing nervous system. However, the mechanism of Foxp2 in regulating neural development remains elusive. In the current study, we found that Foxp2 increased neuronal differentiation without affecting cell proliferation and cell survival in primary neural progenitors from embryonic forebrains. Foxp2 induced the expression of platelet-derived growth factor receptor α, which mediated the neurognic effect of Foxp2. In addition, Foxp2 positively regulated the differentiation of medium spiny neurons derived from the lateral ganglionic eminence and negatively regulated the formation of interneurons derived from dorsal medial ganglionic eminence by interacting with the Sonic hedgehog pathway. Taken together, our results suggest that Foxp2 regulates multiple aspects of neuronal development in the embryonic forebrain. © 2014 Wiley Periodicals, Inc.
Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons.
Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K
2007-10-01
Selective deletion of glycine transporter 1 (GlyT1) in forebrain neurons enhances N-methyl-D-aspartate receptor (NMDAR)-dependent neurotransmission and facilitates associative learning. These effects are attributable to increases in extracellular glycine availability in forebrain neurons due to reduced glycine re-uptake. Using a forebrain- and neuron-specific GlyT1-knockout mouse line (CamKIIalphaCre; GlyT1tm1.2fl/fI), the authors investigated whether this molecular intervention can affect recognition memory. In a spontaneous object recognition memory test, enhanced preference for a novel object was demonstrated in mutant mice relative to littermate control subjects at a retention interval of 2 hr, but not at 2 min. Furthermore, mutants were responsive to a switch in the relative spatial positions of objects, whereas control subjects were not. These potential procognitive effects were demonstrated against a lack of difference in contextual novelty detection: Mutant and control subjects showed equivalent preference for a novel over a familiar context. Results therefore extend the possible range of potential promnesic effects of specific forebrain neuronal GlyT1 deletion from associative learning to recognition memory and further support the possibility that mnemonic functions can be enhanced by reducing GlyT1 function. (PsycINFO Database Record (c) 2007 APA, all rights reserved).
An historical perspective on the pioneering experiments of John Saunders.
Tickle, Cheryll
2017-09-15
John Saunders was a highly skilled embryologist who pioneered the study of limb development. His studies on chick embryos provided the fundamental framework for understanding how vertebrate limbs develop. This framework inspired generations of scientists and formed the bridge from experimental embryology to molecular mechanisms. Saunders investigated how feathers become organized into tracts in the skin of the chick wing and also identified regions of programmed cell death. He discovered that a region of thickened ectoderm that rims the chick wing bud - the apical ectodermal ridge - is required for outgrowth and the laying down of structures along the proximo-distal axis (long axis) of the wing, identified the zone of polarizing activity (ZPA; polarizing region) that controls development across the anteroposterior axis ("thumb to little finger "axis) and contributed to uncovering the importance of the ectoderm in development of structures along the dorso-ventral axis ( "back of hand to palm" axis). This review looks in depth at some of his original papers and traces how he made the crucial findings about how limbs develop, considering these findings both in the context of contemporary knowledge at the time and also in terms of their immediate impact on the field. Copyright © 2017 Elsevier Inc. All rights reserved.
Sheeba, Caroline J; Andrade, Raquel P; Duprez, Delphine; Palmeirim, Isabel
2010-01-01
Specific interactions between fibroblast growth factors (Fgf1-22) and their tyrosine kinase receptors (FgfR1-4) activate different signalling pathways that are responsible for the biological processes in which Fgf signalling is implicated during embryonic development. In the chick, several Fgf ligands (Fgf2, 4, 8, 9, 10, 12, 13 and 18) and the four FgfRs (FgfR 1, 2, 3 and 4) have been reported to be expressed in the developing limb. The precise spatial and temporal expression of these transcripts is important to guide the limb bud to develop into a wing/leg. In this paper, we present a detailed and systematic analysis of the expression patterns of FgfR1, 2, 3 and 4 throughout chick wing development, by in situ hybridisation on whole mounts and sections. Moreover, we characterize for the first time the different isoforms of FGFR1-3 by analysing their differential expression in limb ectoderm and mesodermal tissues, using RT-PCR and in situ hybridisation on sections. Finally, isoform-specific sequences for FgfR1IIIb, FgfR1IIIc, FgfR3IIIb and FgfR3IIIc were determined and deposited in GenBank with the following accession numbers: GU053725, GU065444, GU053726, GU065445, respectively.
Nutritional stress affects corticosterone deposition in feathers of Caspian tern chicks
Patterson, Allison G. L.; Kitaysky, Alexander S.; Lyons, Donald E.; Roby, Daniel D.
2015-01-01
Stressful environmental conditions affect the adrenocortical function of developing animals, which can have consequences for their fitness. Discovery of the avian stress hormone corticosterone (CORT) in feathers has the potential to broaden the application of endocrine research in ecological and evolutionary studies of wild birds by providing a long-term measure of CORT secretion. Mechanisms of CORT deposition in feathers are not well known and few studies have related feather CORT to circulating plasma CORT during feather growth. Our objective was to experimentally test the validity of using feather CORT as a measure of CORT secretion in developing birds experiencing nutritional stress. Caspian tern Hydroprogne caspia chicks were fed ad libitum or restricted (35% less than ad libitum) diets for four weeks. We measured CORT in feathers from these chicks to examine the relationship between feather CORT concentrations and nutritional limitation, circulating plasma CORT, and feather development. We found that feather CORT was higher in controls fed ad libitum than in restricted individuals, despite higher levels of plasma CORT in restricted chicks compared to controls. Feather mass and growth rates were strongly and positively related to feather CORT concentrations in both treatments. This is the first experimental study to show that feather CORT concentrations can be lower in response to nutritional stress, even when plasma CORT concentrations are elevated. Our results indicate that CORT deposition in feathers may be confounded when feather mass and growth rates are compromised by nutritional stress. We conclude that feather CORT can be used for assessing nutritional stress in growing birds, but the direction of response depends on how strongly stress affects feather development.
Impacts of trapping and banding activities on productivity of Roseate Terns (Sterna Dougallii)
Zingo, James M.
1998-01-01
Although Roseate Terns (Sterna dougallii) habituate to many research activities, trapping and handling breeding adults, or repeatedly handling chicks, may affect reproductive success or chick growth. Protocols for trapping adult Roseate Terns that reduce the chances of nest desertion, neglect of chicks, and injury to adults were developed in the early 1980s, but neither short-term nor long-term effects of research activities on this endangered species have been fully investigated. Therefore, this study had the following main objectives: 1) examine long-term data (1978-1996) to determine if trapping activities have had a major effect on annual reproductive success of a Roseate Tern colony, 2) evaluate the effects of trapping adult terns on reproductive success and chick growth, and 3) evaluate the effects of handling chicks on their growth and survival. There were no significant correlations between measures of trapping disturbance and annual reproductive success in 1978-1996 for the Falkner Island (Stewart B. McKinney National Wildlife Refuge, Connecticut) colony, suggesting that trapping from late incubation through chick rearing using the field protocols described herein does not have a major effect on nesting success of Roseate Terns. In 1987-1996, adult trapping did not reduce prefledging survival of first-hatched chicks, and reduced survival of second-hatched chicks only in 1994 and 1995. Results of more detailed research in 1994-1996 suggest that Roseate Terns may be susceptible to trapping effects only when also faced with extreme conditions such as low food availability and/or high predation pressure. Trapping effects did not occur in most years under apparently average or typical conditions, and otherwise seem to be much less important than other factors affecting nesting success (e.g., predation and food availability). Analyses of chick growth data from 1987-1996 showed that while trapping significantly reduced early growth compared to untrapped controls, most of these effects disappeared after controlling for variation due to laying variables and other indices of parental age and quality. Trapping had little or no effect on later growth (indices of fledgling quality) and thus is unlikely to affect postfledging survival and fitness. For chicks whose parents were trapped, the sex of the adult(s), timing of trapping during the nesting stage, and interval between trapping events (if both parents were trapped) had little or no effect on growth. Daily or near-daily handling of chicks did not significantly affect their growth, prefledging survival, or postfledging survival. These results suggest that while trapping adult Roseate Terns can sometimes affect reproductive success and early chick growth and should be taken into account during research, trapping effects tend to be minor, short-lived, and unlikely to affect overall population health. While the full implications for population health and individual fitness are not entirely clear, there appears to be little cause for concern that trapping and banding activities are a significant problem for Roseate Terns. However, this qualitative assessment of the biological significance of trapping effects needs empirical testing. There remains a practical need to explore the ramifications of trapping effects and to consider local conditions when planning trapping activities. We also need to consider how investigator-induced effects might affect research results, and to balance potential effects of research activities against the value of the information gained.
Bobbo, Daniela; Vallortigara, Giorgio; Mascetti, Gian Gastone
2006-06-03
The pattern of monocular/unihemispheric sleep (Mo-Un sleep) was studied behaviourally in male and female chicks after early post-hatching changes of the imprinting object. Chicks were reared with an imprinting object on day 1 post-hatching which was removed or changed on day 2. On day 1, time spent in binocular sleep (both eyes closed) was similar in male and female chicks, though the number of episodes was lower in females than in males. There was no eye-closure bias in the pattern of Mo-Un sleep (one eye shut and the other open) in chicks of both sexes. On day 2, chicks subjected to the removal of imprinting object showed less time and number of episodes of binocular sleep than control chicks and chicks subjected to changes of imprinting object. There was no eye-closure bias in control chicks whilst a significant bias for more right Mo-Un sleep was recorded in chicks after removal and changes of imprinting object of both sexes. It is suggested that the removal or changes of imprinting object would cause a decrease of binocular sleep and trigger processes associated to secondary imprinting involving the left hemisphere. The bias for more right Mo-Un sleep (right eye-closure) could be the by-product of consolidation processes of secondary imprinting memories in the left hemisphere and/or of more left eye-opening as a result of periodical awakening of right hemisphere to control the environment after a stressful condition such as the removal or change of imprinting object.
Organochlorines accumulate in heron and egret chicks sampled in the Houston Ship Channel
Custer, T.W.; Shipley, Frank S.; Kiesling, Russell W.
1991-01-01
The National Contaminant Monitoring Program (NCBP) is an effort of the U.S. Fish and Wildlife Service to measure concentrations of DDT and other persistent chemicals in the environment and to quantify changes in these levels. The NCBP has established a network of sampling stations in segments of the environment for which Federal agencies have authority. The wildlife component of this program, administered by the Patuxent Wildlife Research Center, includes the periodic sampling of European starlings (Sturnus vulgaris), mallards (Anas platyrhynchos), and American black ducks (Anas rubripes). In order to include an estuarine component into the NCBP, herons and egrets are being evaluated. Eggs and chicks (five, ten, and 15 days of age) of snowy egrets (Egretta thula), and black-crowned night-herons (Nycticorax nycticorax) were collected in Naragansett Bay, RI; the Houston Ship Channel (HSC), TX; and San Francisco Bay, CA. Great egret (Casmerodius albus) eggs and chicks also were collected at the Texas colony. Eggs and chicks were analyzed for organochlorines; trace element and petroleum hydrocarbon analyses are pending. DDE and polychlorinated biphenyls (PCBs) were detected in all eggs and chicks, and they accumulated as the chicks grew. At each location, black-crowned nightheron chicks accumulated both DDE and PCBs more rapidly than snowy egrets or great egrets. PCBs accumulated more rapidly in night-heron chicks in Rhode Island than California; however, PCB accumulation for snowy egret chicks did not differ among locations. Contaminant accumulation rates in heron and egret chicks could be used as a new wetland component of the NCBP.
Insectivory versus piscivory in Black Terns: Implications for food provisioning and growth of chicks
Gilbert, A.T.; Servello, F.A.
2005-01-01
The Black Tern (Chlidonias niger) is known for insectivory in their breeding range, but they are piscivorous in winter and feed some fish to chicks. Fish have potentially high value for chick provisioning because of their larger mass, but the relative value of fish and insect diets for chick growth is unknown. In 1999-2000, we documented use of fish and insects for provisioning chicks at four Black Tern colonies in Maine and examined chick growth rates at two colonies (Douglas Pond and Carlton Pond) that differed in fish and insect use. Deliveries of fish and insects to broods were documented using video cameras and observations from blinds, while concurrently measuring chick growth in nest enclosures. Fish use was substantial (>25% of deliveries) at three of four colonies. Fish comprised 29% of items and 56% of metabolizable energy delivered to chicks at Douglas Pond compared to 13% of items and 22% of metabolizeable energy at Carlton Pond. Food delivery rate was inversely related to the proportion of large fish. In brood diets at Douglas and Carlton Ponds and increased with brood age at Carlton Pond only, apparently due to high insect use. Chick growth rate did not vary with respect to fish and insect composition of diets. It is concluded that adults were able to raise chicks through age 12 d at comparable growth rates with insect-or fish-dominated diets. Use of fish may be more energy efficient for adults, and the capability to use both fish and insects may reduce potential variability in food availability during the breeding season.
Nesterova, Anna P; Chiffard, Jules; Couchoux, Charline; Bonadonna, Francesco
2013-04-15
King penguins (Aptenodytes patagonicus) live in large and densely populated colonies, where navigation can be challenging because of the presence of many conspecifics that could obstruct locally available cues. Our previous experiments demonstrated that visual cues were important but not essential for king penguin chicks' homing. The main objective of this study was to investigate the importance of non-visual cues, such as magnetic and acoustic cues, for chicks' orientation and short-range navigation. In a series of experiments, the chicks were individually displaced from the colony to an experimental arena where they were released under different conditions. In the magnetic experiments, a strong magnet was attached to the chicks' heads. Trials were conducted in daylight and at night to test the relative importance of visual and magnetic cues. Our results showed that when the geomagnetic field around the chicks was modified, their orientation in the arena and the overall ability to home was not affected. In a low sound experiment we limited the acoustic cues available to the chicks by putting ear pads over their ears, and in a loud sound experiment we provided additional acoustic cues by broadcasting colony sounds on the opposite side of the arena to the real colony. In the low sound experiment, the behavior of the chicks was not affected by the limited sound input. In the loud sound experiment, the chicks reacted strongly to the colony sound. These results suggest that king penguin chicks may use the sound of the colony while orienting towards their home.
Nesterova, Anna P; Mardon, Jérôme; Bonadonna, Francesco
2009-01-01
For seabird species, the presence of conspecifics in a crowded breeding colony can obstruct locally available orientation cues. Thus, navigation to specific locations can present a challenging problem. We investigated short-range orientation in King Penguin (Aptenodytes patagonicus) chicks that live in a large and densely populated colony. The two main objectives were to determine whether chicks displaced to a novel location away from the colony (i) can orient towards the colony and return to their crèche and (ii) rely on visual or non-visual cues for orientation. To address these questions, a circular arena was constructed 100 m away from the colony. Chicks were released in the arena during the day and at night. After the orientation experiment in the arena, chicks were allowed to return to their home crèche, if they could. Our results showed that, during day trials, chicks preferred the half of the arena closer to the colony, but not at night. However, at night, birds spent more time on ;the colony half' of the arena if the wind blew from the colony direction. When animals were allowed to leave the arena, 98% of chicks homed during the day but only 62% of chicks homed at night. Chicks that homed at night also took longer to find their crèche. The experiments suggest that King Penguin chicks can find their crèche from a novel location. Visual cues are important for homing but, when visual cues are not present, animals are able to make use of other information carried by the wind.
Rohde, Kristian; Bering, Tenna; Furukawa, Takahisa; Rath, Martin Fredensborg
2017-10-01
The retinal and anterior neural fold homeobox gene (Rax) controls development of the eye and the forebrain. Postnatal expression of Rax in the brain is restricted to the pineal gland, a forebrain structure devoted to melatonin synthesis. The role of Rax in pineal function is unknown. In order to investigate the role of Rax in pineal function while circumventing forebrain abnormalities of the global Rax knockout, we generated an eye and pineal-specific Rax conditional knockout mouse. Deletion of Rax in the pineal gland did not affect morphology of the gland, suggesting that Rax is not essential for pineal gland development. In contrast, deletion of Rax in the eye generated an anophthalmic phenotype. In addition to the loss of central visual pathways, the suprachiasmatic nucleus of the hypothalamus housing the circadian clock was absent, indicating that the retinohypothalamic tract is required for the nucleus to develop. Telemetric analyses confirmed the lack of a functional circadian clock. Arylalkylamine N-acetyltransferase (Aanat) transcripts, encoding the melatonin rhythm-generating enzyme, were undetectable in the pineal gland of the Rax conditional knockout under normal conditions, whereas the paired box 6 homeobox gene, known to regulate pineal development, was up-regulated. By injecting isoproterenol, which mimics a nocturnal situation in the pineal gland, we were able to induce pineal expression of Aanat in the Rax conditional knockout mouse, but Aanat transcript levels were significantly lower than those of Rax-proficient mice. Our data suggest that Rax controls pineal gene expression and via Aanat may modulate melatonin synthesis. © 2017 International Society for Neurochemistry.
Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1
Chavez-Valdez, Raul; Martin, Lee J.; Razdan, Sheila; Gauda, Estelle B.; Northington, Frances J.
2014-01-01
Brain injury due to neonatal hypoxia-ischemia (HI) is more homogenously severe in male than in female mice. Because, necrostatin-1 (nec-1) prevents injury progression only in male mice, we hypothesized that changes in BDNF signaling after HI and nec-1 are also sex-specific providing differential conditions to promote recovery of those more severely injured. The increased aromatization of testosterone in male mice during early development and the link between 17-β-estradiol (E2) levels and BDNF transcription substantiate this hypothesis. Hence, we aimed to investigate if sexual differences in BDNF signaling existed in forebrain and diencephalon after HI and HI/ nec-1 and their correlation with estrogen receptors (ER). C57B6 mice (p7) received nec-1(0.1 μL[8μM]) or vehicle (veh) intracerebroventricularly after HI. At 24h after HI, BDNF levels increased in both sexes in forebrain without evidence of TrkB activation. At 96h after HI, BDNF levels in forebrain decreased below those seen in control mice of both sexes. Additionally, only in female mice, truncated TrkB (Tc.TrkB) and p75ntr levels increased in forebrain and diencephalon. In both, forebrain and diencephalon, nec-1 treatment increased BDNF levels and TrkB activation in male mice while, prevented Tc.TrkB and p75ntr increases in female mice. While E2 levels were unchanged by HI or HI/ nec-1 in either sex or treatment, ERα: ERβ ratios were increased in diencephalon of nec-1 treated male mice and directly correlated with BDNF levels. Neonatal HI produces sex-specific signaling changes in the BDNF system, that are differentially modulated by nec-1. The regional differences in BDNF levels may be a consequence of injury severity after HI, but sexual differences in response to nec-1 after HI may represent a differential thalamo-cortical preservation or alternatively off-target regional effect of nec-1. The biological significance of ERα predominance and its correlation with BDNF levels is still unclear. PMID:24361177
Pharmacological extension of the sensitive period for imprinting in Gallus domesticus.
Parsons, C H; Rogers, L J
1997-12-01
Precocial animals, such as the chick, exhibit a form of learning termed filial imprinting. The chick's sensitive period for filial imprinting is restricted to the first few days after hatching. The neural mechanism that terminates the sensitive period is not fully understood. It is thought to be an experience-dependent event because once a chick has imprinted, it will not readily imprint on another stimulus. However, even dark-reared chicks eventually lose the ability to imprint, which suggests that the ending of the sensitive period may not be entirely experience-dependent. The present study investigates factors that may contribute to the ending of the sensitive period. In our experiments, dark-reared chicks were unable to imprint after Day 2 posthatching, but chicks treated 10 h after hatching with an intramuscular injection of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine (55 mg/kg) and the alpha2-adrenoceptor agonist xylazine (6 mg/kg) (KX) imprinted on a stuffed hen 8 days after hatching. Similarly treated chicks did not imprint on a red and black box, although the box was an effective imprinting stimulus for Day 2 chicks. Chicks treated with KX at 20 or 40 h posthatching or on Day 4 or 7 as well as controls treated with pyrogen-free saline were unable to imprint on Day 8.
Sustained increase in food supplies reduces broodmate aggression in black-legged kittiwakes
White, J.; Leclaire, S.; Kriloff, M.; Mulard, Hervé; Hatch, Shyla A.; Danchin, E.
2010-01-01
The amount of food ingested by chicks has often been suggested as being the main proximate factor controlling broodmate aggression in facultatively siblicidal species. Although several experiments have demonstrated that short-term food deprivation causes a temporary increase in aggression, no study has, to our knowledge, experimentally manipulated overall food supplies and considered long-term effects on chick behaviour and life history traits. We provided supplemental food to breeding pairs of black-legged kittiwakes, Rissa tridactyla, over an entire breeding season and compared the aggressive behaviour of their chicks with that of chicks of control pairs. Control A-chicks (first to hatch) showed more frequent and intense aggression than their experimental counterparts. Furthermore, the more A-chicks begged and the lower their growth rate the more aggressive they were. The consequences of increased aggression for B-chicks (second to hatch) were lower begging rate, lower growth rate and lower survival. We thus provide evidence that a sustained increase in food availability affects broodmate aggression and chick survival at the nest and we discuss the various proximate and ultimate causes involved in the evolution of broodmate aggression. ?? 2010 The Association for the Study of Animal Behaviour.
Bond, Alexander L; Jones, Ian L; Williams, Jeffrey C; Byrd, G Vernon
2010-08-01
The ingestion of plastic marine debris is a chronic problem for some of the world's seabird species, contributing to reduced chick survival, population declines, and deposition of contaminants via absorption in birds' gastrointestinal tract. We analysed the frequency of ingested plastic in chick meals delivered by adults in four species of auklet - Crested (Aethia cristatella), Least (A. pusilla), Parakeet (A. psittacula), and Whiskered (A. pygmaea) - from three breeding colonies in the Aleutian Islands, Alaska, USA over a 14-year period from 1993 to 2006. Among 2541 chick meals, we found plastic in only one - from a Whiskered Auklet on Buldir Island in 1993. While adult Parakeet Auklets have a high frequency of plastic ingestion (over 90%), no chick meals contained plastic. Unlike other seabirds, the planktivorous auklets do not appear to offload plastic to their chicks, and we conclude that auklet chicks are probably at a low risk of contamination from plastic debris. Copyright 2010 Elsevier Ltd. All rights reserved.
Individual set-point and gain of emmetropization in chickens.
Tepelus, Tudor Cosmin; Schaeffel, Frank
2010-01-01
During the developmental process of emmetropization evidence shows that visual feedback guides the eye as it approaches a refractive state close to zero, or slightly hyperopic. How this "set-point" is internally defined, in the presence of continuous shifts of the focal plane with different viewing distances and accommodation, remains unclear. Minimizing defocus blur over time should produce similar end-point refractions in different individuals. However, we found that individual chickens display considerable variability in their set-point refractive states, despite that they all had the same visual experience. This variability is not random since the refractions in both eyes were highly correlated - even though it is known that they can emmetropize independently. Furthermore, if chicks underwent a period of experimentally induced ametropia, they returned to their individual set-point refractions during recovery (correlation of the refractions before treatment versus after recovery: n=19 chicks, 38 eyes, left eyes: slope 1.01, R=0.860; right eyes: slope 0.85, R=0.610, p<0.001, linear regression). Also, the induced deprivation myopia was correlated in both eyes (n=18 chicks, 36 eyes, p<0.01, orthogonal regression). If chicks were treated with spectacle lenses, the compensatory changes in refraction were, on average, appropriate but individual chicks displayed variable responses. Again, the refractions of both eyes remained correlated (negative lenses, n=18 chicks, 36 eyes, slope 0.89, R=0.504, p<0.01, positive lenses: n=21 chicks, 42 eyes, slope 1.14, R=0.791, p<0.001). The amount of deprivation myopia that developed in two successive treatment cycles, with an intermittent period of recovery, was not correlated; only vitreous chamber growth was almost significantly correlated in both cycles (n=7 chicks, 14 eyes; p<0.05). The amounts of ametropia and vitreous chamber changes induced in two successive cycles of treatment, first with lenses and then with diffusers, were also not correlated, suggesting that the "gains of lens compensation" are different from those in deprivation myopia. In summary, (1) there appears to be an endogenous, possibly genetic, definition of the set-point of emmetropization in each individual, which is similar in both eyes, (2) visual conditions that induce ametropia produce variable changes in refractions, with high correlations between both eyes, (3) overall, the "gain of emmetropization" appears only weakly controlled by endogenous factors.
Distinct spatiotemporal expression of ISM1 during mouse and chick development
Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun
2014-01-01
Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain–hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species. PMID:24675886
Liu, Meng; Wang, Guang; Zhang, Shi-Yao; Zhong, Shan; Qi, Guo-Long; Wang, Chao-Jie; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-Xiang; Yang, Xuesong
2016-09-01
As a neonicotinoid pesticide, imidacloprid is widely used to control insects in agriculture and fleas on domestic animals. However, it is not known whether imidacloprid exposure negatively affects neurogenesis during embryonic development. In this study, using a chick embryo model, we investigated the effects of imidacloprid exposure on neurogenesis at the earliest stage and during late-stage embryo development. Exposing HH0 chick embryos to imidacloprid in EC culture caused neural tube defects (NTDs) and neuronal differentiation dysplasia as determined by NF/Tuj1 labeling. Furthermore, we found that F-actin accumulation on the apical side of the neural tube was suppressed by exposure to imidacloprid, and the expression of BMP4 and Shh on the dorsal and ventral sides of the neural tubes, respectively, were also reduced, which in turn affects the dorsolateral hinge points during bending of the neural plate. In addition, exposure to imidacloprid reduced cell proliferation and increased cell apoptosis, as determined by pHIS3 labeling and TUNEL staining, respectively, also contributing to the malformation. We obtained similar results in late-stage embryos exposed to imidacloprid. Finally, a bioinformatics analysis was employed to determine which genes identified in this study were involved in NTDs. The experimental evidence and bioinformatics analysis suggested that imidacloprid exposure during chick embryo development could increase the risk of NTDs and neural dysplasia. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Harding, A.M.A.; van Pelt, Thomas I.; Piatt, John F.; Kitaysky, A.S.
2002-01-01
Using a supplemental feeding experiment, we investigated the ability of adult Horned Puffins to decrease provisioning effort in response to reduced nutritional requirements of chicks. We found no difference between experimental and control groups in parental provisioning before supplementary feeding was initiated. After receiving supplemental food for seven days, experimental chicks grew faster, gained more mass and received 87% less food from their parents than did control chicks. These results demonstrate that Horned Puffin parents can decrease food provisioning in response to a decrease in their chick nutritional requirements. ?? The Cooper Ornithological Society 2002.
Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Nesterova, Inna; Tatarnikova, Olga; Nekrasov, Pavel; Samokhin, Alexander; Deev, Alexander; Sengpiel, Frank; Koroev, Dmitry; Volpina, Olga
2016-01-01
Alzheimer’s disease (AD) is characterized by progressive cognitive impairment associated with marked cholinergic neuron loss and amyloid-β (Aβ) peptide accumulation in the brain. The cytotoxicity in AD is mediated, at least in part, by Aβ binding with the extracellular domain of the p75 neurotrophin receptor (p75NTR), localized predominantly in the membranes of acetylcholine-producing neurons in the basal forebrain. Hypothesizing that an open unstructured loop of p75NTR might be the effective site for Aβ binding, we have immunized both olfactory bulbectomized (OBX) and sham-operated (SO) mice (n = 82 and 49, respectively) with synthetic peptides, structurally similar to different parts of the loops, aiming to block them by specific antibodies. OBX-mice have been shown in previous studies, and confirmed in the present one, to be characterized by typical behavioral, morphological, and biochemical AD hallmarks, including cholinergic deficits in forebrain neurons. Immunization of OBX- or SO-mice with KLH conjugated fragments of p75NTR induced high titers of specific serum antibodies for each of nine chosen fragments. However, maximal protective effects on spatial memory, evaluated in a Morris water maze, and on activity of choline acetyltransferase in forebrain neurons, detected by immunoreactivity to specific antibodies, were revealed only for peptides with amino acid residue sequences of 155–164 and 167–176. We conclude that the approach based on immunological blockade of specific p75NTR sites, linked with the cytotoxicity, is a useful and effective tool for study of AD-associated mechanisms and for development of highly selective therapy of cholinergic malfunctioning in AD patients. PMID:27163825
Desouza, Lynette A.; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E.; Kottmann, Andreas H.; Tole, Shubha
2011-01-01
Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T3 administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh+/LacZ mice. Further, acute T3 treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T3 administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone. PMID:21363934
McNamara, Robert K; Schurdak, Jennifer D; Asch, Ruth H; Peters, Bart D; Lindquist, Diana M
2018-01-01
Neuropsychiatric disorders that frequently initially emerge during adolescence are associated with deficits in the omega-3 (n-3) fatty acid docosahexaenoic acid (DHA), elevated proinflammatory signaling, and regional reductions in white matter integrity (WMI). This study determined the effects of altering brain DHA accrual during adolescence on WMI in the rat brain by diffusion tensor imaging (DTI), and investigated the potential mediating role of proinflammatory signaling. During periadolescent development, male rats were fed a diet deficient in n-3 fatty acids (DEF, n = 20), a fish oil-fortified diet containing preformed DHA (FO, n = 20), or a control diet (CON, n = 20). In adulthood, DTI scans were performed and brain WMI was determined using voxelwise tract-based spatial statistics (TBSS). Postmortem fatty acid composition, peripheral (plasma IL-1β, IL-6, and C-reactive protein [CRP]) and central (IL-1β and CD11b mRNA) proinflammatory markers, and myelin basic protein (MBP) mRNA expression were determined. Compared with CON rats, forebrain DHA levels were lower in DEF rats and higher in FO rats. Compared with CON rats, DEF rats exhibited greater radial diffusivity (RD) and mean diffusivity in the right external capsule, and greater axial diffusivity in the corpus callosum genu and left external capsule. DEF rats also exhibited greater RD than FO rats in the right external capsule. Forebrain MBP expression did not differ between groups. Compared with CON rats, central (IL-1β and CD11b) and peripheral (IL-1β and IL-6) proinflammatory markers were not different in DEF rats, and DEF rats exhibited lower CRP levels. These findings demonstrate that deficits in adolescent DHA accrual negatively impact forebrain WMI, independently of elevated proinflammatory signaling. © 2017 S. Karger AG, Basel.
Moyano, Paula; Frejo, María Teresa; Anadon, María José; García, José Manuel; Díaz, María Jesús; Lobo, Margarita; Sola, Emma; García, Jimena; Del Pino, Javier
2018-06-01
Chlorpyrifos (CPF) is an organophosphate insecticide described to induce cognitive disorders, both after acute and repeated administration. However, the mechanisms through which it induces these effects are unknown. CPF has been reported to produce basal forebrain cholinergic neuronal cell death, involved on learning and memory regulation, which could be the cause of such cognitive disorders. Neuronal cell death was partially mediated by oxidative stress generation, P75 NTR and α 7 -nAChRs gene expression alteration triggered through acetylcholinesterase (AChE) variants disruption, suggesting other mechanisms are involved. In this regard, CPF induces Aβ and tau proteins production and activation of GSK3β enzyme and alters glutamatergic transmission, which have been related with basal forebrain cholinergic neuronal cell death and development of cognitive disorders. According to these data, we hypothesized that CPF induces basal forebrain cholinergic neuronal cell death through induction of Aβ and tau proteins production, activation of GSK-3β enzyme and disruption of glutamatergic transmission. We evaluated this hypothesis in septal SN56 basal forebrain cholinergic neurons, after 24 h and 14 days CPF exposure. This study shows that CPF increases glutamate levels, upregulates GSK-3β gene expression, and increases the production of Aβ and phosphorylated tau proteins and all these effects reduced cell viability. CPF increases glutaminase activity and upregulates the VGLUT1 gene expression, which could mediate the disruption of glutamatergic transmission. Our present results provide new understanding of the mechanisms contributing to the harmful effects of CPF, and its possible relevance in the pathogenesis of neurodegenerative diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
MacDonald, Ryan B; Debiais-Thibaud, Mélanie; Martin, Kyle; Poitras, Luc; Tay, Boon-Hui; Venkatesh, Byrappa; Ekker, Marc
2010-05-26
The phylogenetic position of the elephant shark (Callorhinchus milii ) is particularly relevant to study the evolution of genes and gene regulation in vertebrates. Here we examine the evolution of Dlx homeobox gene regulation during vertebrate embryonic development with a particular focus on the forebrain. We first identified the elephant shark sequence orthologous to the URE2 cis -regulatory element of the mouse Dlx1/Dlx2 locus (herein named CmURE2). We then conducted a comparative study of the sequence and enhancer activity of CmURE2 with that of orthologous regulatory sequences from zebrafish and mouse. The CmURE2 sequence shows a high percentage of identity with its mouse and zebrafish counterparts but is overall more similar to mouse URE2 (MmURE2) than to zebrafish URE2 (DrURE2). In transgenic zebrafish and mouse embryos, CmURE2 displayed enhancer activity in the forebrain that overlapped with that of DrURE2 and MmURE2. However, we detected notable differences in the activity of the three sequences in the diencephalon. Outside of the forebrain, CmURE2 shows enhancer activity in areas such as the pharyngeal arches and dorsal root ganglia where its' counterparts are also active. Our transgenic assays show that part of the URE2 enhancer activity is conserved throughout jawed vertebrates but also that new characteristics have evolved in the different groups. Our study demonstrates that the elephant shark is a useful outgroup to study the evolution of regulatory mechanisms in vertebrates and to address how changes in the sequence of cis -regulatory elements translate into changes in their regulatory activity.
Brown, Ritchie E.; Hussain Shuler, Marshall G.; Petersen, Carl C.H.; Kepecs, Adam
2015-01-01
The basal forebrain (BF) houses major ascending projections to the entire neocortex that have long been implicated in arousal, learning, and attention. The disruption of the BF has been linked with major neurological disorders, such as coma and Alzheimer's disease, as well as in normal cognitive aging. Although it is best known for its cholinergic neurons, the BF is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific BF cell types have led to a renaissance in the study of the BF and are beginning to yield new insights about cell-type-specific circuit mechanisms during behavior. These approaches enable us to determine the behavioral conditions under which cholinergic and noncholinergic BF neurons are activated and how they control cortical processing to influence behavior. Here we discuss recent advances that have expanded our knowledge about this poorly understood brain region and laid the foundation for future cell-type-specific manipulations to modulate arousal, attention, and cortical plasticity in neurological disorders. SIGNIFICANCE STATEMENT Although the basal forebrain is best known for, and often equated with, acetylcholine-containing neurons that provide most of the cholinergic innervation of the neocortex, it is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific cell types in the basal forebrain have led to a renaissance in this field and are beginning to dissect circuit mechanisms in the basal forebrain during behavior. This review discusses recent advances in the roles of basal forebrain cholinergic and noncholinergic neurons in cognition via their dynamic modulation of cortical activity. PMID:26468190
The effects of increasing PGE2 on translocation of labeled albumin into rat brain.
Messripour, M; Mesripour, A; Mashayekhie, F J
2015-01-01
Under pathophysiological conditions, infiltration of leukocyte plays a key role in the progression of the neuroinflammatory reaction in the CNS. Prostaglandin E2 (PGE2) is known to accumulate at lesion sites of the post-ischemic brain. Although post-ischemic treatments with cyclooxygenase-2 inhibitors reduce blood-brain barrier (BBB) leukocyte infiltration, the direct effect of PGE2 on BBB has not been fully implemented. Therefore, the direct effect of increasing PGE2 infusion on translocation of labeled albumin into the brain was assessed. Under anesthesia rats were drilled stereo-taxicaly a burr hole in the right forebrain and PGE2 was infused into the forebrain and the hole was occluded. The animals were then injected with fluorescent labeled albumin (FA), via internal right jugular vein and decapitated at different infusion time points. The forebrain was removed and each forebrain hemisphere was homogenized and fluorescence intensities were measured in the supernatant. The fluorescence intensities measured in the right and left forebrain hemispheres of the control group (0.0 μg PGE2) were almost identical. Four hours after infusion of PGE2 at doses higher than 250 μg, fluorescence intensity increased in the right forebrain supernatant, even if it was not statistically significant. The fluorescence intensity was detectable in the brain supernatant 4 h after infusion of PGE2 in doses higher than 250 μg PGE2. The highest fluorescence intensity was 16 h after infusion of 500 μg PGE2, which returned to near control values after 48 h. Increased fluorescence intensity in the brain following PGE2 infusion is concluded to be associated with disruption of the BBB.
Rizzolo, Daniel; Schmutz, Joel A.; Speakman, John R.
2015-01-01
Environmental conditions can exert a strong influence on the growth and energy demands of chicks. We hypothesized that postnatal growth in a cold, aquatic environment would require a high level of energy metabolism in semiprecocial Red-throated Loon (Gavia stellata) chicks. We measured body-mass growth and daily energy expenditure (DEE) of free-ranging chicks in the Arctic. We used daily gains in body mass and DEE to estimate daily metabolizable energy (DME, kJ day-1) and total metabolizable energy (TME, kJ chick-1). Chicks gained body mass quickly, with a logistic growth rate constant 57% greater than the allometric prediction, yet were at only 60% of adult body mass at fledging. Males grew at a rate similar to that of females but for a slightly longer duration and so reached an asymptotic body mass 23% greater, and tarsus length 8% longer, than that of females. Chick growth performance was similar between first- and second-hatched chicks within broods of 2, which suggests that food availability was not limited. DEE increased in proportion to body mass, and DME peaked at 1,214 kJ day-1 on day 25 posthatching. Over the average 49-day postnatal period, TME was 49.0 MJ, which is within the range of error of the allometric prediction. Parents provided 58.6 MJ as food to meet this energy requirement. Given this chick energy requirement and the range of energy content of prey observed in the chick diet, selecting prey with higher energy content would greatly reduce adult provisioning effort. Red-throated Loon chicks did not have a high postnatal energy requirement, but rather grew quickly and fledged at a small size-with the effect of reducing the length of the postnatal period and, consequently, parental energy investment in chicks.
Uchida, Sae; Kagitani, Fusako
2017-05-12
The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.
NASA Technical Reports Server (NTRS)
Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.
1994-01-01
Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.
Barradas, P C; Gomes, S S; Cavalcante, L A
1998-01-01
The differentiation of oligodendrocytes in the forebrain of the opossum (Didelphis marsupialis) has been studied by the immunohistochemical identification of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and by the autoradiographic detection of the uptake of 3H-thymidine. CNPase is expressed early in oligodendroglia somata and fibre sheaths (myelin) in the forebrain and its persistence in the cell bodies is regionally heterogeneous, being ephemeral in cells within the optic pathway, supraoptic decussation, and posterior commissure, of intermediate duration in the mamillo-thalamic fascicle, and stria medullaris, and long-lasting in other diencephalic and in telencephalic tracts. In the cerebral cortex, most CNPase+ cells have small somata and multiple processes (types I and II). CNPase-expressing oligodendrocytes are also regionally heterogeneous in terms of proliferative capability, which could not be detected in forebrain tracts or diencephalon, but has appeared in a small proportion of cells in the neocortical white matter and in the fimbria. Our findings provide additional evidence in favour of the heterogeneity of oligodendrocytes.
Dynamic variation in forebrain estradiol levels during song learning
Chao, Andrew; Paon, Ashley; Remage-Healey, Luke
2014-01-01
Estrogens shape brain circuits during development, and the capacity to synthesize estrogens locally has consequences for both sexual differentiation and the acute modulation of circuits during early learning. A recently-optimized method to detect and quantify fluctuations in brain estrogens in vivo provides a direct means to explore how brain estrogen production contributes to both differentiation and neuromodulation during development. Here, we use this method to test the hypothesis that neuroestrogens are sexually-differentiated as well as dynamically responsive to song tutoring (via passive video/audio playback) during the period of song learning in juvenile zebra finches. Our results show that baseline neuroestradiol levels in the caudal forebrain do not differ between males and females during an early critical masculinization window. Instead, we observe a prominent difference between males and females in baseline neuroestradiol that emerges during the subadult stage as animals approach sexual maturity. Second, we observe that fluctuating neuroestradiol levels during periods of passive song tutoring exhibit a markedly different profile in juveniles as compared to adults. Specifically, neuroestrogens in the caudal forebrain are elevated following (rather than during) tutor song exposure in both juvenile males and females, suggesting an important role for the early consolidation of tutor song memories. These results further reveal a circadian influence on the fluctuations in local neuroestrogens during sensory/cognitive tasks. Taken together, these findings uncover several unexpected features of brain estrogen synthesis in juvenile animals that may have implications for secondary masculinization as well as the consolidation of recent sensory experiences. PMID:25205304
Kitaysky, A.S.; Kitaiskaia, E.V.; Wingfield, J.C.; Piatt, John F.
2001-01-01
Release of corticosterone in hungry kittiwake chicks facilitates begging and allows them to restore depleted energy reserves by increasing parental food provisioning. However, in order to avoid detrimental effects of chronic elevation of corticosterone, chicks might suppress adrenocortical activity in response to prolonged food shortages. In this study we examined temporal dynamics of corticosterone release in red-legged kittiwake (Rissa brevirostris) chicks exposed to prolonged restrictions in energy content and/or nutritional quality (low versus high lipid content) of their food. Starting at the age of 15 days, chicks were fed either high- or low-lipid fish at 40%, 65%, and 100% of ad libitum energy intake. Body mass measurements and baseline plasma samples were taken on a weekly basis after beginning of the treatment. After 3 weeks of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where in addition to a baseline sample, three plasma samples were taken at intervals up to 50 min. We found that food-restricted chicks had lower body mass, chronically (during 2-3 weeks) elevated baseline and higher acute stress-induced levels of corticosterone compared to chicks fed ad libitum. Low lipid content of food further exacerbated these effects. An increase in baseline levels of corticosterone was observed within a week after energy requirements of food-restricted chicks exceeded their daily energy intake. A tendency for suppression of adrenocortical activity was observed in treatments fed low-lipid diets only at the end of the experiment. We suggest that nest-bound chicks, if food-stressed, might suffer deleterious effects of chronic elevation of corticosterone.
Chapman, Erik W.; Hofmann, Eileen E.; Patterson, Donna L.; Ribic, Christine A.; Fraser, William R.
2011-01-01
An individual-based bioenergetics model that simulates the growth of an Adélie penguin Pygoscelis adeliaechick from hatching to fledging was used to assess marine and terrestrial factors that affect chick growth and fledging mass off the western Antarctic Peninsula. Simulations considered the effects on Adélie penguin fledging mass of (1) modification of chick diet through the addition of Antarctic silverfish Pleuragramma antarcticum to an all-Antarctic krillEuphausia superba diet, (2) reduction of provisioning rate which may occur as a result of an environmental stress such as reduced prey availability, and (3) increased thermoregulatory costs due to wetting of chicks which may result from increased precipitation or snow-melt in colonies. Addition of 17% Antarctic silverfish of Age-Class 3 yr (AC3) to a penguin chick diet composed of Antarctic krill increased chick fledging mass by 5%. Environmental stress that results in >4% reduction in provisioning rate or wetting of just 10% of the chick’s surface area decreased fledging mass enough to reduce the chick’s probability of successful recruitment. The negative effects of reduced provisioning and wetting on chick growth can be compensated for by inclusion of Antarctic silverfish of AC3 and older in the chick diet. Results provide insight into climate-driven processes that influence chick growth and highlight a need for field research designed to investigate factors that determine the availability of AC3 and older Antarctic silverfish to foraging Adélie penguins and the influence of snowfall on chick wetting, thermoregulation and adult provisioning rate.
Modeling the marine resources consumed in raising a king penguin chick: an energetics approach.
Halsey, L G; Butler, P J; Fahlman, A; Bost, C-A; Woakes, A J; Handrich, Y
2008-01-01
Accurate estimates of penguin energetics would represent an important contribution to our understanding of the trophodynamics of the Southern Ocean ecosystem and our ability to predict effects of environmental change on these species. We used the heart rate-rate of oxygen consumption technique to estimate rate of energy expenditure in adult king penguins raising a chick, in combination with data from the literature on changes in adult mass, chick energy requirements, and prey energy density. Our model estimated a variety of energetic costs and quantities of prey consumption related to raising a king penguin chick during the austral summer. The total energy requirements of a king penguin chick at the Crozet Archipelago from hatching until reaching a mass of 8 kg 90 d later is 271 MJ, representing the consumption of 38.4 kg of myctophid fish. A successfully breeding male requires 0.78 kg d(-1) of fish during the entirety of the incubation period and 1.14 kg d(-1) during the subsequent 90 d of chick rearing. Assuming the same energy requirements for females, the estimated 580,000 pairs of king penguins that breed successfully at Crozet each year, together with their chicks, consume a total of around 190,000 tons of fish during the incubation and summer rearing periods combined. If, due to depletion of fish stocks, the diet of breeders and chicks during the summer becomes identical to the typical diet of adults during the austral winter, the mass of prey required by both adults and chicks combined (where the chick still reaches 8 kg after 90 d) would increase by more than 25%.
Effects of methylmercury exposure on the immune function of juvenile common loons (Gavia immer)
Kenow, K.P.; Grasman, K.A.; Hines, R.K.; Meyer, M.W.; Gendron-Fitzpatrick, A.; Spalding, M.G.; Gray, B.R.
2007-01-01
We conducted a dose-response laboratory study to quantify the level of exposure to dietary Hg, delivered as methylmercury chloride (CH3HgCl), that is associated with suppressed immune function in captive-reared common loon (Gavia immer) chicks. We used the phytohemagglutinin (PHA) skin test to assess T-lymphocyte function and the sheep red blood cell (SRBC) hemagglutination test to measure antibody-mediated immunity. The PHA stimulation index among chicks receiving dietary Hg treatment did not differ significantly from those of chicks on the control diet (p = 0.15). Total antibody (immunoglobulin [Ig] M [primary antibody] + IgG [secondary response]) production to the SRBC antigen in chicks treated with dietary methylmercury (MeHg), however, was suppressed (p = 0.04) relative to chicks on control diets. Analysis indicated suppression of total Ig production (p = 0.025 with comparisonwise ?? level = 0.017) between control and 0.4 ??g Hg/g wet food intake treatment groups. Furthermore, the control group exhibited a higher degree of variability in antibody response compared to the Hg groups, suggesting that in addition to reducing the mean response, Hg treatment reduced the normal variation attributable to other biological factors. We observed bursal lymphoid depletion in chicks receiving the 1.2 ??g Hg/g treatment (p = 0.017) and a marginally significant effect (p = 0.025) in chicks receiving the 0.4 ??g Hg/g diet. These findings suggest that common loon chick immune systems may be compromised at an ecologically relevant dietary exposure concentration (0.4 ??g Hg/g wet wt food intake). We also found that chicks hatched from eggs collected from low-pH lakes exhibited higher levels of lymphoid depletion in bursa tissue relative to chicks hatched from eggs collected from neutral-pH lakes. ?? 2007 SETAC.
Evidence for a potential role of glucagon during eye growth regulation in chicks.
Feldkaemper, Marita P; Schaeffel, Frank
2002-01-01
Eye growth and refraction are regulated by visual processing in the retina. Until now, the messengers released by the retina to induce these changes are largely unknown. Previously, it was found that glucagon amacrine cells respond to defocus in the retinal image and even to its sign. The expression of the immediate-early gene product ZENK increased in this cell population in eyes wearing plus lenses and decreased in minus lens-treated chicks. Moreover, it was shown that the amount of retinal glucagon mRNA increased during treatment with positive lenses. Therefore, it seems likely that these cells contribute to the visual regulation of ocular growth and that glucagon may act as a stop signal for eye growth. The purpose of the present study was to accumulate further evidence for a role of glucagon in the visual control of eye growth. Chicks were treated with plus and minus lenses after injection of different amounts of the glucagon antagonist des-His1-Glu1-glucagon-amide or the agonist Lys17,18,Glu21-glucagon, respectively. Refractive development and eye growth were recorded by automated infrared photorefraction and A-scan ultrasound, respectively. The glucagon antagonist inhibited hyperopia development, albeit only in a narrow concentration range, and at most by 50%, but not myopia development. In contrast, the agonist inhibited myopia development in a dose-dependent fashion. At high concentrations, it also prevented hyperopia development. The amount of glucagon peptide in the retinae and choroids of lens-treated chicks and its diurnal variation was measured by using a radio-immunoassay. Retinal glucagon content decreased after minus lens treatment and choroidal glucagon content increased after plus lens treatment. No diurnal variation in the retinal amount of glucagon was detected. In addition, using an optokinetic nystagmus paradigm, the effect of glucagon and the antagonist des-His1-Glu9-glucagon-amide on suprathreshold contrast sensitivity was studied. Glucagon reduced contrast sensitivity (which might be linked to a signal for growth inhibition) whereas the antagonist des-His1-Glu9-glucagon-amide increased contrast sensitivity. The results of the study are in line with the hypothesis that glucagon plays a role in the visual control of eye growth in the chick.
Krabbe, Christina; Bak, Sara Thornby; Jensen, Pia; von Linstow, Christian; Martínez Serrano, Alberto; Hansen, Claus; Meyer, Morten
2014-01-01
Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1±0.5 and 17.1±0.4 (P<0.001); forebrain: 1.9±0.4 and 3.9±0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in dopaminergic differentiation capacity and region-specific requirements of NSCs, with the dopamine-depleted striatum cultured at low oxygen offering an attractive micro-environment for midbrain NSCs. PMID:24788190
Use of Lactobacillus johnsonii in broilers challenged with Salmonella sofia.
Olnood, Chen G; Beski, Sleman S M; Choct, Mingan; Iji, Paul A
2015-09-01
The effects of Lactobacillus johnsonii (L. johnsonii) on gut microflora, bird performance and intestinal development were assessed using 288 one-day-old Cobb broilers challenged with Salmonella sofia ( S . sofia ). The experiment was a 3 × 2 factorial design which consisted of three treatments, a negative control (NC) with no additives, a positive control (PC) containing antimicrobials (zinc-bacitracin, 50 mg/kg) and a probiotic group (Pro), and with the two factors being unchallenged or challenged with S . sofia . A probiotic preparation of L . johnsonii (10 9 cfu/chick) was administered to chicks individually by oral gavage on days 1, 3, 7 and 12. Chicks were individually challenged with S. sofia (10 7 cfu/chick) by oral gavage on d 2, 8 and 13. Results showed that the challenge itself markedly reduced ( P < 0.05) bird performance and feed intake. And, transient clinical symptoms of the infection with S . sofia were observed from the second time they were challenged with S . sofia in the negative challenge groups. The novel probiotic candidate L . johnsonii reduced the number of S . sofia and Clostridium perfringens in the gut environment, and improved the birds' colonization resistance to S . sofia .
Lobar holoprosencephaly in a Miniature Schnauzer with hypodipsic hypernatremia.
Sullivan, Stacey A; Harmon, Barry G; Purinton, P Thomas; Greene, Craig E; Glerum, Leigh E
2003-12-15
A 9-month-old male Miniature Schnauzer was examined because of a lifelong history of behavioral abnormalities, including hypodipsia. Diagnostic evaluation revealed marked hypernatremia and a single forebrain ventricle. The behavioral abnormalities did not resolve with correction of the hypernatremia, and the dog was euthanatized. At necropsy, midline forebrain structures were absent or reduced in size, and normally paired forebrain structures were incompletely separated. Findings were diagnostic for holoprosencephaly, a potentially genetic disorder and the likely cause of the hypodipsia. Similar evaluation of affected Miniature Schnauzer dogs may reveal whether holoprosencephaly routinely underlies the thirst deficiency that may be seen in dogs of this breed.
ERIC Educational Resources Information Center
Rugani, Rosa; Regolin, Lucia; Vallortigara, Giorgio
2010-01-01
Newborn chicks were tested for their sensitivity to number vs. continuous physical extent of artificial objects they had been reared with soon after hatching. Because of the imprinting process, such objects were treated by chicks as social companions. We found that when the objects were similar, chicks faced with choices between 1 vs. 2 or 2 vs. 3…
Work, Thierry M.; Smith, M.R.
1996-01-01
Prevalence of lead exposure and elevated tissue lead was determined in Laysan albatross (Diomedea immutabilis) in Hawaii. The relationship between lead exposure and proximity to buildings, between elevated blood lead and droopwing status, and elevated liver lead and presence of lead-containing paint chips in the proventriculus in albatross chicks was also examined. Finally, the effects of lead on the enzyme δ-amino-levulinic acid dehydratase (ALAD) was determined. There was a significant association between lead exposure or elevated tissue lead and proximity to buildings in albatross chicks and presence of lead paint chips in the proventriculus and elevated liver lead in carcasses. Although there was a significant association between elevated blood lead and droopwing chicks, there were notable exceptions. Prevalence of elevated tissue lead in albatross chicks was highest on Sand Island Midway and much less so on Kauai and virtually nonexistent in other areas. Prevalence of lead exposure decreased as numbers of buildings to which chicks were exposed on a given island decreased. Laysan albatross adults had minimal to no lead exposure. There was a significant negative correlation between blood lead concentration and ALAD activity in chicks. Based on ALAD activity, 0.03-0.05 μg/ml was the no effect range for blood lead in albatross chicks.
Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.
2015-01-01
Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain cholinergic neurons are important modulators of cortical arousal and γ activity, and in this study we investigated the mechanism by which these neurons are activated by the wake-active neurotransmitter histamine. We found that histamine inhibited a class of K+ leak channels called TASK channels and that deletion of TASK channels selectively on cholinergic neurons modulated baseline EEG activity as well as histamine-induced changes in γ activity. By identifying a discrete brain circuit where TASK channels can influence γ activity, these results represent new knowledge that enhances our understanding of how subcortical arousal systems may contribute to the generation of attentive states. PMID:26446210
Impact of transportation duration on stress responses in day-old chicks from young and old breeders.
Jacobs, Leonie; Delezie, Evelyne; Duchateau, Luc; Goethals, Klara; Ampe, Bart; Buyse, Johan; Tuyttens, Frank Andre Maurice
2017-06-01
The aim of this study was to assess the interaction effect of transportation duration and parental age on physiological stress responses and quality in day-old chicks. After hatch, 3240 chicks from either 29-week old (young) or 60-week old (old) broiler breeders were transported for 1.5h (short) or 11h (long). Thereafter, 228 chicks were assessed for quality and blood plasma was assayed for corticosterone (CORT), lactate, glucose, and thiobarbituric acid-reactive substances (TBARS, increased concentrations can indicate oxidative stress). No interaction effects of parental age and transportation duration were found (all P>0.10). Chicks from young breeders showed higher CORT levels (P=0.007) and were of higher quality (Tona method, P<0.001) than those from old breeders. After long transportation, chicks showed increased CORT (P<0.001) and lower TBARS levels (P<0.001) compared to after short transportation. No evidence was provided that long transportation differently affected the quality or stress responses of chicks from breeder flocks of two ages. Copyright © 2017. Published by Elsevier Ltd.
Suzuki, E Y; Early, R J; Patterson, P H
1994-09-01
Muscle respiration experiments on inhibitor dosage (experiment 1), muscle preparation (tendons removed vs. unstretched vs. stretched muscles; chick muscle only; experiment 2) and media temperature (26.5, 32, 37, 42 degrees C; experiment 3) were conducted on chick (Gallus domesticus) gastrocnemius and tilapia (Tilapia mossambica) epaxial muscle in vitro. Experiment 1: The dosage of cycloheximide and ouabain required for maximum inhibition of protein synthesis and Na+,K+ ATPase, respectively, in chick and tilapia muscle was approximately 6 x 10(-5) M. Experiment 2: Removing the tendons of chick muscle decreased (% inhibition, P = 0.05) cycloheximide-sensitive respiration compared to stretched and unstretched muscles (tendons intact). However, muscle preparation had little influence on ouabain-sensitive respiration. Experiment 3: Cycloheximide-sensitive respiration tended to increase (microliter O2/mg DNA.hr, P = 0.054) with media temperature in tilapia muscle. Chick muscle was less responsive in this respect. Ouabain-sensitive respiration increased at lower temperature in chick muscle (% inhibition, cubic relationship, P = 0.001) and at higher temperature in tilapia muscle (% inhibition, quadratic relationship, P = 0.0002).
Ge, J; Li, H; Sun, F; Li, X-N; Lin, J; Xia, J; Zhang, C; Li, J-L
2017-07-01
Transportation of newly hatched chicks from the hatchery to the farm is inevitable, especially for parent stock and grandsire parent stock chicks. However, the possible effects of transport stress in the newly hatched chicks are poorly understood. The aim of this study was to determine the adaptive responses to transport stress by activing the nuclear factor-erythroid 2-related factor 2 (Nrf2)-induced antioxidant defense. One hundred twenty newly hatched chicks were divided into 3 groups (control group, transport group, and simulation transport group) for 2, 4, and 8 h of real or simulated transportation. Transport stress could cause oxidative stress in the cerebrum of newly hatched chicks by increasing lipid peroxidation and production of free radicals and decreasing the activities of antioxidant enzymes and the glutathione:oxidized glutathione ratio. Transport stress activated the Nrf2 signaling pathway and triggered the transcription of antioxidant parameters. However, transport stress-induced cerebrum oxidative stress was not mitigated by activating the Nrf2 antioxidant defense response in newly hatched chicks.
Response to deep hypoglycemia does not involve glucoreceptors in carotid perfused tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cane, P.; Haun, C.K.; Evered, J.
1988-11-01
In the present study the authors examined whether the magnified hormonal counter-regulatory response seen during deep hypoglycemia (40 mg/dl) could be attenuated by supplying the forebrain with glucose furnished through carotid infusion. Two protocols were performed in conscious dogs. In the first protocol they infused glucose bilaterally into the carotid circulation to produce a forebrain glycemia of 55 {plus minus} 1 mg/dl whereas systemic glycemia declined to 39 {plus minus} 2 mg/dl. In the second protocol as a control they infused glucose into the systemic circulation at a rate matched to protocol 1 so that both systemic and jugular plasmamore » glucose concentrations were equivalent to the systemic glucose concentrations in protocol 1. In spite of a substantial difference in forebrain glycemia there were no differences in the counter-regulatory responses of catecholamines or glucagon. In addition, through the use of radiolabeled microspheres, they defined the precise regions of the forebrain irrigated during bilateral intracarotid glucose infusions. The concentration of microspheres was high in the forebrain but very low in the hindbrain. The results indicate that glucoreceptor cells in tissues perfused by carotid arteries may play a tautological role in the sympathetic response to hypoglycemia and imply that glucose-sensitive receptors must also be located elsewhere in the central nervous system or in the periphery.« less
Bañuelos, C.; LaSarge, C. L.; McQuail, J. A.; Hartman, J. J.; Gilbert, R. J.; Ormerod, B. K.; Bizon, J. L.
2013-01-01
Both cholinergic and GABAergic projections from the rostral basal forebrain have been implicated in hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in co-distributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase (ChAT) immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 (GAD67) immunopositive) neurons, and total (NeuN immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline. PMID:22817834
Hand-rearing and sex determination tool for the Taveta golden weaver (Ploceus castaneiceps).
Breeding, Shawnlei; Ferrie, Gina M; Schutz, Paul; Leighty, Katherine A; Plassé, Chelle
2012-01-01
Improvements in the ability to hand-rear birds in captivity have aided zoological institutions in the sustainable management of these species, and have provided opportunities to examine their physical growth in varying conditions. Monitoring the weight gain and development of chicks is an important aspect of developing a hand-rearing protocol. In this paper we provide the institutional history for a colonial species of passerine, the Taveta golden weaver, at Disney's Animal Kingdom®, in order to demonstrate the methods of establishing a successful breeding program which largely incorporates hand-rearing in management of the population. We also tested if we could accurately predict sex of chicks using weights collected on Day 14 during the hand-rearing process. Using this tool, we were able to correctly determine sex before fledging in more than 83% of chicks. Early sex determination is important in captive species for genetic management and husbandry purposes. While genetic sexing can be expensive, we found that using growth curves to determine sex can be a reliable and cost-effective tool for population management of a colonial passerine. © 2012 Wiley Periodicals, Inc.
Porcine/Chicken or Human Nephropathy as the Result of Joint Mycotoxins Interaction
Stoev, Stoycho D.; Denev, Stefan A.
2013-01-01
A survey was made of the literature concerning the occurrence and incidence of mycotoxic nephropathy in pigs and chicks in different countries. Various etiological factors contributing to the development of the disease were considered. The main nephrotoxic fungi as well as the specific conditions for their growth and toxins production were briefly described. A survey was made about the most frequent nephrotoxic fungal contaminants in various feedstuffs from plant origin. In addition, their natural quantities and importance for development of mycotoxic porcine/chick nephropathy (MPN/MCN) are also explored. In addition, a survey was made of the feedstuffs representing the most favorable environment for nephrotoxic fungal growth as well as the most favorable storehouse conditions for this fungal growth were shortly described. The significance of some underestimated fungal species, which can provoke kidney damage, was studied. The importance of joint mycotoxin interaction and newly identified fungal metabolites in the complex etiology of mycotoxic nephropathy ranged in some countries is deeply investigated. The toxicity of the low contamination levels of some combinations of mycotoxins often administered by pigs and chicks in the practice was carefully studied. PMID:24008340
Feather corticosterone reveals developmental stress in seabirds.
Will, Alexis P; Suzuki, Yuya; Elliott, Kyle H; Hatch, Scott A; Watanuki, Yutaka; Kitaysky, Alexander S
2014-07-01
In nest-bound avian offspring, food shortages typically trigger a release of the stress hormone corticosterone (CORT). Recent studies indicate that CORT is passively deposited in the tissue of growing feathers and thus may provide an integrated measure of stress incurred during development in the nest. The current hypothesis predicts that, assuming a constant rate of feather growth, elevated CORT circulating in the blood corresponds to higher levels of CORT in feather tissue, but experimental evidence for nutritionally stressed chicks is lacking. Here, we examined how food limitation affects feather CORT content in the rhinoceros auklet (Cerorhinca moncerata). We (i) used captive chicks reared on control versus restricted diets, and (ii) applied this technique to free-living chicks with unknown nutritional histories that fledged at three separate colonies. We found that (i) feather growth was not affected by experimentally induced nutritional stress; (ii) captive chicks raised on a restricted diet had higher levels of CORT in their primary feathers; (iii) feather CORT deposition is a sensitive method of detecting nutritional stress; and (iv) free-living fledglings from the colony with poor reproductive performance had higher CORT in their primary feathers. We conclude that feather CORT is a sensitive integrated measure revealing the temporal dynamics of food limitations experienced by rhinoceros auklet nestlings. The use of feather CORT may be a powerful endocrine tool in ecological and evolutionary studies of bird species with similar preferential allocation of limited resources to feather development. © 2014. Published by The Company of Biologists Ltd.
First captive breeding of the imperial parrot (Amazona imperialis).
Reillo, Paul R; Durand, Stephen; Burton, Minchinton
2011-01-01
We describe the rearing and development of the first imperial parrot (Amazona imperialis) hatched and raised in captivity. A single egg was hen-incubated for 28 days, and the chick was parent-fed for ∼14 days, after which it was removed for hand-rearing. Similar to wild, parent-reared imperial nestlings, the chick developed fully within 12 weeks, weaning at 540 g body weight. Endangered and endemic to Dominica, the imperial is a vital flagship for oceanic rainforest conservation. Chronicling the neonatal development of A. imperialis helps illuminate the natural history of this enigmatic species, whose secretive nesting habits and low population density have frustrated a detailed understanding of its ecology and reproduction. © 2010 Wiley-Liss, Inc.
Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures
Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.
2014-01-01
Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563
Foraging ecology of Caspian Terns in the Columbia River Estuary, USA
Lyons, Donald E.; Roby, D.D.; Collis, K.
2005-01-01
Comparisons were made of the foraging ecology of Caspian Terns (Sterna caspia) nesting on two islands in the Columbia River estuary using radio telemetry and observations of prey fed to chicks and mates at each colony. Early in the chick-rearing period, radio-tagged terns nesting at Rice Island (river km 34) foraged mostly in the freshwater zone of the estuary close to the colony, while terns nesting on East Sand Island (river km 8) foraged in the marine or estuarine mixing zones close to that colony. Late in the chick-rearing period, Rice Island terns moved more of their foraging to the two zones lower in the estuary, while East Sand Island terns continued to forage in these areas. Tern diets at each colony corresponded to the primary foraging zone (freshwater vs. marine/ mixing) of radio-tagged individuals: Early in chick-rearing, Rice Island terns relied heavily on juvenile salmonids (Oncorhynchus spp., 71% of identified prey), but this declined late in chick-rearing (46%). East Sand Island terns relied less on salmonids (42% and 16%, early and late in chick-rearing), and instead utilized marine fishes such as Anchovy (Engraulis mordax) and Herring (Clupea pallasi). Throughout chick-rearing, Rice Island terns foraged farther from their colony (median distance: 12.3 km during early chick-rearing and 16.9 km during late chick-rearing) than did East Sand Island terns (9.6 and 7.7 km, respectively). The study leads to the conclusion that Caspian Terns are generalist foragers and make use of the most proximate available forage fish resources when raising young.
Hughes, K D; Ewins, P J; Clark, K E
1997-11-01
Osprey (Pandion haliaetus) eggs and chick feathers were collected for mercury analysis from nests at four Great Lakes study areas in Ontario (three "naturally formed" lakes in southern Ontario and one reservoir in northern Ontario) and two New Jersey study areas in 1991-1994. Adult osprey feathers were sampled from three Great Lakes study areas in 1991. Feathers sampled from chicks (approximately 28-35 days old) appear to be better indicators of local contaminant conditions since spatial patterns of mercury in known prey, yellow perch (Perca flavescens), also collected in these areas, were more similar to chick feathers than to eggs. Mercury levels were less variable in chick feathers than in eggs. Estimates of biomagnification factors using prey of known size at these areas were also less variable in feathers than in eggs. At naturally formed lakes, no significant correlation in mercury levels between eggs and chick feathers from the same nest was apparent, suggesting that the source of mercury contamination was not the same in these two tissues: mercury levels in eggs reflect mercury acquired on the breeding grounds, wintering grounds, and migratory route; mercury levels in chick feathers reflect local dietary conditions on the breeding grounds. Mercury levels in both osprey eggs and chick feathers were higher at the Ogoki Reservoir than at naturally formed lakes. Adult osprey feathers had higher mercury concentrations than chick feathers. Mercury levels in osprey eggs, chick feathers, and adult feathers did not approach levels associated with toxic reproductive effects.
Daisley, Jonathan N.; Gruss, Michael; Rose, Steven P. R.; Braun, Katharina
1998-01-01
In the young chick, the intermediate medial hyperstriatum ventrale is involved in learning paradigms, including imprinting and passive avoidance learning. Biochemical changes in the intermediate medial hyperstriatum ventrale following learning include an up-regulation of amino-acid transmitter levels and receptor activity. To follow the changes of extracellular amino acid levels during passive avoidance training, we used an in vivo microdialysis technique. Probes were implanted in chicks before training the animals, either on a methyl- anthranylate-or water-coated bead. One hour later, recall was tested in both groups by presenting a similar bead. An increase of extra-cellular glutamate levels accompanied training and testing in both groups; during training, glutamate release was higher in methylanthranylate- trained than in water-trained chicks. When compared with the methylanthranylate-trained chicks during testing, the water-trained chicks showed enhanced extra-cellular glutamate levels. No other amino acid examined showed significant changes. After testing, the chicks were anesthetized and release- stimulated with an infusion of 50 mM potassium. Extra-cellular glutamate and taurine levels were significantly increased in both methylanthranylate-and water-trained chicks. The presentation of methylanthranylate as an. olfactory stimulus significantly enhanced glutamate levels, especially in methylanthranylate-trained chicks. The results suggest that such changes in extra-cellular glutamate levels in the intermediate medial hyperstriatum ventrale accompany pecking at either the water- or the methylanthranylate-bead. The taste of the aversant may be responsible for the greater increases found in methylanthranylate-trained birds. PMID:9920682
Johnson, James H.; Ross, Robert M.; McCullough, Russ D.
2002-01-01
The diet of double-crested cormorants (Phalacrocorax auritus) on Little Galloo Island (LGI) in the eastern basin of Lake Ontario has been quantified since 1992. Over the past nine years considerable information has been generated on cormorant feeding ecology through the examination of approximately 12,000 pellets collected on LGI, where three distinct cormorant feeding periods, pre-chick, chick, and post-chick, are delineated by differences in diet composition and daily fish consumption. Yellow perch (Perca flavescens) were the major prey during pre-chick and post-chick feeding periods. Alewife (Alosa pseudoharengus), which move inshore to spawn in mid-June, dominated (>60%) cormorant diets during the chick feeding period. Mean daily fish consumption (14.6) during the pre-chick feeding period was significantly greater than during the chick feeding (9.3) or post-chick feeding (8.0) periods. The proportion of smallmouth bass (Micropterus dolomieu) in the diet increased over the season (0.8% to 7.2%), while the size of bass consumed declined (214 mm to 143 mm). Forage fish (mainly alewife, three-spine sticklebacks [Gasterosteus aculeatus] and minnows) comprised 58% of the diet of LGI cormorants, followed by panfish (37%) (yellow perch, pumpkinseed [Lepomis gibbosus], rock bass [Ambloplites rupestris]) and gamefish (5%) (mostly smallmouth bass). On the average LGI cormorants consumed about 32.8 million fish annually, weighing about 1.4 million kilograms. Cormorants from LGI consumed more biomass of smallmouth bass and yellow perch annually than is taken by sport (bass and yellow perch) and commercial (perch) fishermen.
Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness.
Williams, T D
1994-02-01
1. There is little unequivocal evidence to date in support of a positive relationship between egg size and offspring fitness in birds. Although 40 studies (of 34 species) have considered the effect of variation in egg size on chick growth and/or survival up to fledgling only 12 studies have controlled for other characters potentially correlated both with egg size and offspring fitness. Of these only two have reported a significant residual effect of egg size on chick growth (in the roseate tern and European blackbird) and three a residual effect on chick survival (all in seabirds: common tern, lesser black-backed gull and kittiwake). 2. More consistent evidence exists, though from fewer studies, for a positive relationship between egg size and offspring fitness early in the chick-rearing period; chick growth and chick survival being dependent on egg size in 8 of 10 studies and 4 of 5 studies respectively. It is suggested that the most important effect of variation in egg size might be in determining the probability of offspring survival in the first few days after hatching. 3. Egg size explains on average 66% of the variation in chick mass at hatching (n = 35 studies) but only 30% of the variation in chick body size (n = 18). When effects of hatching body size are controlled for chick mass remains significantly correlated with egg size, though the reverse is not true. This supports the hypothesis that large eggs give rise to heavier chicks at hatching, i.e., chicks with more nutrient (yolk) reserves, rather than structurally larger chicks. 4. Egg composition increased isometrically with increasing egg size in about half the studies so far reported (n equals approximately 20). However, in seabirds, and some passerines, larger eggs contain disproportionately more albumen, whilst in some waterfowl percentage yolk content increases with increasing egg size. Changes in albumen content largely reflect variation in the water content of eggs, but changes in yolk content involve variation in lipid content, and therefore in egg 'quality.' The adaptive significance of variation in egg composition is considered; females may adjust egg composition facultatively to maximise the benefits to their offspring of increased reproductive investment. 5. Considerations for future research are discussed with particular emphasis on experimental studies and the application of new techniques.
Dependency between light intensity and refractive development under light-dark cycles.
Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Solomon, Arieh S; Polat, Uri
2011-01-01
The emmetropization process involves fine-tuning the refractive state by altering the refractive components toward zero refraction. In this study, we provided light-dark cycle conditions at several intensities and examined the effect of light intensity on the progression of chicks' emmetropization. Chicks under high-, medium-, and low-light intensities (10,000, 500, and 50 lux, respectively) were followed for 90 days by retinoscopy, keratometry, as well as ultrasound measurements. Emmetropization was reached from days 30-50 and from days 50-60 for the low- and medium-intensity groups, respectively. On day 90, most chicks in the low-intensity group were myopic, with a mean refraction of -2.41D (95% confidence interval (CI) -2.9 to -1.8D), whereas no chicks in the high-intensity group developed myopia, but they exhibited a stable mean hyperopia of +1.1D. The medium-intensity group had a mean refraction of +0.03D. The low-intensity group had a deeper vitreous chamber depth and a longer axial length compared with the high-intensity group, and shifted refraction to the myopic side. The low-intensity group had a flatter corneal curvature, a deeper anterior chamber, and a thinner lens compared with the high-intensity group, and shifted refraction to the hyperopic side. In all groups the corneal power was correlated with the three examined levels of log light intensity for all examined times (e.g., day 20 r = 0.6 P < 0.0001, day 90 r = 0.56 P < 0.0001). Thus, under light-dark cycles, light intensity is an environmental factor that modulates the process of emmetropization, and the low intensity of ambient light is a risk factor for developing myopia. Copyright © 2010 Elsevier Ltd. All rights reserved.
The influence of diet composition upon growth and development of sandhill cranes
Serafin, J.A.
1982-01-01
Experiments were conducted to evaluate the effect of protein, metabolizable energy, and sulfur amino acid content of five diets upon growth and development of captive Florida Sandhill Crane (Grus canadensis pratensis) and Greater Sandhill Crane (G. c. tabida) chicks raised under controlled conditions. A high protein (32%) diet resulted in faster growth than that obtained when a lower protein (24%) ration was supplied. Florida Sandhill Crane chicks fed a diet containing 2,160 kcal/kg grew significantly slower than chicks fed a ration containing 2,830 kcal/kg. Reducing the sulfur amino acid content of a ration containing 24% protein from 0.88% to 0.73% significantly slowed the growth of young cranes. A 17% incidence of leg disorders and a 25% incidence of wing abnormalities occurred between 7 and 28 days of age among Greater Sandhill Cranes fed a high protein diet. Florida Sandhill Cranes grew slower than Greater Sandhill Cranes irrespective of the type of ration they were provided and did not develop leg or wing abnormalities. Abnormalities invariably developed only in the most rapidly growing Greater Sandhill Cranes. Diets that promoted slower growth reduced the incidence of abnormalities. A ration formulated to contain a low (0.73%) sulfur amino acid level appeared to be the most suitable for slowing growth rates of captive-reared Sandhill Cranes and reducing the risk of abnormaiwing or leg development.
Indirect cannibalism by crèche-aged American White Pelican (Pelecanus erythrorhynchos) chicks
Bartos, Alisa J.; Sovada, Marsha A.; Igl, Lawrence D.; Pietz, Pamela J.
2013-01-01
At nesting colonies of American White Pelicans (Pelecanus erythrorhynchos), many chicks die from siblicide, severe weather, and disease; this results in carcasses available for scavenging by conspecifics (i.e., indirect cannibalism). Indirect cannibalism has not been reported previously for this species. We describe five cases of crèche-aged American White Pelican chicks consuming or attempting to consume dead younger chicks at two nesting colonies in the northern plains of North America. Cannibalism in the American White Pelican appears to be rare and likely plays no role in the species’ population ecology or dynamics; however, it might be an important survival strategy of individual chicks when food resources are limited.
Guar meal ameliorates Eimeria tenella infection in broiler chicks.
Hassan, Sherif M; El-Gayar, Amal K; Cadwell, David J; Bailey, Christopher A; Cartwright, Aubrey L
2008-10-20
Guar meal contains relatively high levels of saponins, which are known to have antiprotozoal activity and may be effective against coccidiosis. A 2x2 factorial experiment investigated the impact of guar meal (0 or 5%) corn-soy-based starter broiler diets on chicks unchallenged or challenged with Eimeria tenella. At 1 day of age, 120 unsexed RossxRoss broiler chicks were randomly distributed among four treatment groups. Chicks were challenged with 5x10(3) sporulated oocysts of E. tenella in 0.5 ml at 10 days of age by oral gavage. Weekly body weight, body weight gains, feed conversion ratio and mortality rate were recorded for chicks fed from 0 to 21 days of age. Oocysts shed per gram feces were recorded from 6 to 10 days post-challenge. Results showed that challenged chicks fed 0% guar meal had significantly higher oocysts per gram shed in feces than the other groups. No significant differences among treatment groups in mortality rate were observed. Body weights of unchallenged and challenged chicks fed 0% guar meal were significantly higher than those fed 5% guar meal at 2 weeks of age. Results indicated that including 5% guar meal in the diet of chicks challenged with E. tenella decreased oocysts shed per gram feces and prevented bloody diarrhea, but without affects on body weight and feed conversion ratio at 11 days post-challenge.
Penguin chicks benefit from elevated yolk androgen levels under sibling competition.
Poisbleau, Maud; Müller, Wendt; Carslake, David; Demongin, Laurent; Groothuis, Ton G G; Van Camp, Jeff; Eens, Marcel
2012-01-01
Crested penguins (genus Eudyptes) have a peculiar hatching pattern, with the first-laid egg (A-egg) hatching after the second-laid egg (B-egg) and chicks from A-eggs typically having a much lower survival probability. Maternal yolk androgens have been suggested to contribute to the competitive superiority of the B-chick in southern rockhopper penguins Eudyptes chrysocome, given their important role in mediating sibling competition in other species. We therefore increased the yolk androgen levels in freshly-laid eggs and examined the consequences for sibling competition--via effects on embryonic developmental times, chick growth and early survival. We placed one androgen-treated egg and one control egg into each foster nest, matching them for mass, laying date and laying order. The androgen treatment did not significantly affect embryonic developmental times or chick measurements at hatching. However, elevated yolk androgen levels benefitted chick growth in interaction with the number of siblings in a brood. Chicks from androgen-treated eggs had faster growth in the presence of a sibling than chicks from control eggs. Under these circumstances they also had a higher survival probability. Thus maternal androgens appear to reinforce the observed hatching pattern, facilitating brood reduction. This contrasts to most previous studies in other species where yolk androgens have been shown to compensate for the negative consequences of delayed hatching within the brood hierarchy.
Mercury exposure in breeding common loons (Gavia immer) in central Ontario, Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheuhammer, A.M.; Evers, D.C.; Atchison, C.M.
1998-02-01
Total Hg concentrations were determined in blood and feather samples of breeding common loons (Gavia immer) and their chicks from 24 lakes in Ontario with a range of water chemistry and fish Hg concentrations. In paired comparisons, males had significantly higher blood and feather concentrations than their female mates. Sex differences in Hg concentrations were attributable to size differences between the two sexes and to the possible transfer of Hg to eggs by females during egg-laying. Significantly higher blood and feather Hg concentrations were found in adult loons compared to their chicks. Adult blood Hg concentrations were significantly correlated withmore » those of their chicks. Adult blood concentrations averaged about 13 times those of corresponding chicks. Both adult and chick blood Hg concentrations were positively correlated with fish Hg concentrations, indicating that adult loons in central Ontario, like their chicks, probably feed mainly on their breeding lakes and reflect the fish Hg concentrations of those lakes. Three of 24 lakes had 20- to 50-g fish with Hg concentrations at or exceeding the critical concentration reported to cause reproductive impairment in loons. Monitoring Hg in blood (adult and chick) and feathers (chicks only) is useful for assessing the local bioavailability of methylmercury and the degree of current dietary Hg exposure in loons and other piscivorous birds.« less
Picard, M L; Uzu, G; Dunnington, E A; Siegel, P B
1993-09-01
1. Two experiments were conducted to compare food intake responses of broiler chicks fed diets varying in lysine, methionine, and tryptophan. Diet D was formulated to create simultaneous deficiencies of lysine, methionine, and tryptophan. Diet A matched National Research Council (1984) recommendations for broilers, and diets B and C were, respectively, 2:1 and 1:2 mixes of diets A and D. 2. Short-term food intake can provide information on the sequences of adaptation of chicks to a diet deficient in essential amino acids. 3. Chicks consumed 26% less of diet D than A during the first 24 h posthatch. When chicks fed diet A or D to 7 d of age were then fed one of 4 diets singly, within 24 h intake was lowest for chicks fed diet D. Within 48 h, food intake of diet C was more than that of diet D and less than that of diet A, while for diet B intake was more than of diet D but not different from diet A. 4. In the second experiment, chicks were fed diet A to 8 d and then diets A or D alone or given a choice of diets A and D from 8 to 20 d of age. Within 4 to 8 h, food intake of chicks fed diet D alone decreased markedly followed by partial recovery within 24 h. In a choice setting, consistent preference of Diet A over Diet D was observed within 7 h followed by stabilisation at about 65% diet A to 35% diet D. 5. Chicks fed diet D alone from 8 to 20 d of age, then placed in the same choice situation preferred diet A to D with a delay of less than one h and stabilisation at about 85%. Chicks provided a choice of diets A and D from 8 to 20 d, and then diet D alone reduced their food intake more quickly than those not given a choice initially. 6. Broiler chicks appear to react to amino acid deficiencies within a short period (hours) by adjusting their feed intake and/or selection. The response is influenced by age and prior experience.
Nishigori, Hideo; Kagami, Keisuke; Nishigori, Hidekazu
2014-03-15
The effects of glucocorticoid receptor dysfunction during embryogenesis on the imprinting abilities and social behaviors of hatchlings were examined using "fertile hen's egg-embryo-chick" system. Of embryos treated with mifepristone (0.4μmol/egg) on day 14, over 75% hatched a day later than the controls (day 22) without external anomalies. The mifepristone-treated hatchlings were assayed for imprinting ability on post-hatching day 2 and for social behaviors on day 3. The findings were as follows: imprinting ability (expressed as preference score) was significantly lower in mifepristone-treated hatchlings than in controls (0.65±0.06 vs. 0.92±0.02, P<0.005). Aggregation tests to evaluate the speed (seconds) required for four chicks, individually isolated with cardboard dividers in a box, to form a group after removal of the barriers showed that aggregation was significantly slower in mifepristone-treated hatchlings than in controls (8.7±1.1 vs. 2.6±0.3, P<0.001). In belongingness tests to evaluate the speed (seconds) for a chick isolated at a corner to join a group of three chicks placed at the opposite corner, mifepristone-treated hatchlings took significantly longer than controls (4.5±0.4/40 cm vs. 2.4±0.08/40 cm, P<0.001). In vocalization tests, using a decibel meter to measure average decibel level/30s (chick vocalization), mifepristone-treated hatchlings had significantly weaker vocalizations than controls (14.2±1.9/30s vs. 26.4±1.3/30s P<0.001). In conclusion, glucocorticoid receptor dysfunction during the last week embryogenesis altered the programming of brain development, resulting in impaired behavioral activities in late life. Copyright © 2013 Elsevier B.V. All rights reserved.
Smith, Emma L.; Roberts, Carol A.
2012-01-01
Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases. PMID:22472170
Methionine toxicity in chicks and poults.
Hafez, Y S; Chavez, E; Vohra, P; Kratzer, F H
1978-05-01
In feeding experiments with poults, 2% DL-methionine caused a marked growth depression which could be alleviated by the addition of glycine. Homocystine at an equimolar level depressed growth to a lesser degree than methionine, and this growth depression could be alleviated by glycine. Betaine could alleviate the growth depression of homocystine but not that of methionine. Methionine-fed poults developed a cervical paralysis similar to that of a folic acid deficiency, but the addition of this vitamin at several times the requirement was ineffective in counteracting the toxicity of methionine in either chicks or poults.
Mehri, M
2012-12-01
An artificial neural network (ANN) approach was used to develop feed-forward multilayer perceptron models to estimate the nutritional requirements of digestible lysine (dLys), methionine (dMet), and threonine (dThr) in broiler chicks. Sixty data lines representing response of the broiler chicks during 3 to 16 d of age to dietary levels of dLys (0.88-1.32%), dMet (0.42-0.58%), and dThr (0.53-0.87%) were obtained from literature and used to train the networks. The prediction values of ANN were compared with those of response surface methodology to evaluate the fitness of these 2 methods. The models were tested using R(2), mean absolute deviation, mean absolute percentage error, and absolute average deviation. The random search algorithm was used to optimize the developed ANN models to estimate the optimal values of dietary dLys, dMet, and dThr. The ANN models were used to assess the relative importance of each dietary input on the bird performance using sensitivity analysis. The statistical evaluations revealed the higher accuracy of ANN to predict the bird performance compared with response surface methodology models. The optimization results showed that the maximum BW gain may be obtained with dietary levels of 1.11, 0.51, and 0.78% of dLys, dMet, and dThr, respectively. Minimum feed conversion ratio may be achieved with dietary levels of 1.13, 0.54, 0.78% of dLys, dMet, and dThr, respectively. The sensitivity analysis on the models indicated that dietary Lys is the most important variable in the growth performance of the broiler chicks, followed by dietary Thr and Met. The results of this research revealed that the experimental data of a response-surface-methodology design could be successfully used to develop the well-designed ANN for pattern recognition of bird growth and optimization of nutritional requirements. The comparison between the 2 methods also showed that the statistical methods may have little effect on the ideal ratios of dMet and dThr to dLys in broiler chicks using multivariate optimization.
Bock, Jörg; Braun, Katharina
1999-01-01
Auditory filial imprinting in the domestic chicken is accompanied by a dramatic loss of spine synapses in two higher associative forebrain areas, the mediorostral neostriatum/hyperstriatum ventrale (MNH) and the dorsocaudal neostriatum (Ndc). The cellular mechanisms that underlie this learning-induced synaptic reorganization are unclear. We found that local pharmacological blockade of N-methyl-d-aspartate (NMDA) receptors in the MNH, a manipulation that has been shown previously to impair auditory imprinting, suppresses the learning-induced spine reduction in this region. Chicks treated with the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) during the behavioral training for imprinting (postnatal day 0–2) displayed similar spine frequencies at postnatal day 7 as naive control animals, which, in both groups, were significantly higher than in imprinted animals. Because the average dendritic length did not differ between the experimental groups, the reduced spine frequency can be interpreted as a reduction of the total number of spine synapses per neuron. In the Ndc, which is reciprocally connected with the MNH and not directly influenced by the injected drug, learning-induced spine elimination was partly suppressed. Spine frequencies of the APV-treated, behaviorally trained but nonimprinted animals were higher than in the imprinted animals but lower than in the naive animals. These results provide evidence that NMDA receptor activation is required for the learning-induced selective reduction of spine synapses, which may serve as a mechanism of information storage specific for juvenile emotional learning events. PMID:10051669
Ray, Nicola J; Bradburn, Steven; Murgatroyd, Christopher; Toseeb, Umar; Mir, Pablo; Kountouriotis, George K; Teipel, Stefan J; Grothe, Michel J
2018-01-01
See Gratwicke and Foltynie (doi:10.1093/brain/awx333) for a scientific commentary on this article.Cognitive impairments are a prevalent and disabling non-motor complication of Parkinson's disease, but with variable expression and progression. The onset of serious cognitive decline occurs alongside substantial cholinergic denervation, but imprecision of previously available techniques for in vivo measurement of cholinergic degeneration limit their use as predictive cognitive biomarkers. However, recent developments in stereotactic mapping of the cholinergic basal forebrain have been found useful for predicting cognitive decline in prodromal stages of Alzheimer's disease. These methods have not yet been applied to longitudinal Parkinson's disease data. In a large sample of people with de novo Parkinson's disease (n = 168), retrieved from the Parkinson's Progressive Markers Initiative database, we measured cholinergic basal forebrain volumes, using morphometric analysis of T1-weighted images in combination with a detailed stereotactic atlas of the cholinergic basal forebrain nuclei. Using a binary classification procedure, we defined patients with reduced basal forebrain volumes (relative to age) at baseline, based on volumes measured in a normative sample (n = 76). Additionally, relationships between the basal forebrain volumes at baseline, risk of later cognitive decline, and scores on up to 5 years of annual cognitive assessments were assessed with regression, survival analysis and linear mixed modelling. In patients, smaller volumes in a region corresponding to the nucleus basalis of Meynert were associated with greater change in global cognitive, but not motor scores after 2 years. Using the binary classification procedure, patients classified as having smaller than expected volumes of the nucleus basalis of Meynert had ∼3.5-fold greater risk of being categorized as mildly cognitively impaired over a period of up to 5 years of follow-up (hazard ratio = 3.51). Finally, linear mixed modelling analysis of domain-specific cognitive scores revealed that patients classified as having smaller than expected nucleus basalis volumes showed more severe and rapid decline over up to 5 years on tests of memory and semantic fluency, but not on tests of executive function. Thus, we provide the first evidence that volumetric measurement of the nucleus basalis of Meynert can predict early cognitive decline. Our methods therefore provide the opportunity for multiple-modality biomarker models to include a cholinergic biomarker, which is currently lacking for the prediction of cognitive deterioration in Parkinson's disease. Additionally, finding dissociated relationships between nucleus basalis status and domain-specific cognitive decline has implications for understanding the neural basis of heterogeneity of Parkinson's disease-related cognitive decline. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Production of somatic chimera chicks by injection of bone marrow cells into recipient blastoderms.
Heo, Young Tae; Lee, Sung Ho; Kim, Teoan; Kim, Nam Hyung; Lee, Hoon Taek
2012-01-01
Several types of cells, including blastoderm cells, primordial germ cells, and embryonic germ cells were injected into early-stage recipient embryos to produce chimera avians and to gain insights into cell development. However, a limited number of studies of avian adult stem cells have also been conducted. This study is, to the best of our knowledge, the first to evaluate chicken bone marrow cells' (chBMC) ability to differentiate into multiple cell lineages and capability to generate chimera chicks. We induced random differentiation of chBMCs in vitro and injected immunologically selected pluripotent cells in chBMCs into the blastoderms of recipient eggs. The multipotency of BMCs from the barred Plymouth rock (BPR) was confirmed via AP staining, RT-PCR, immunocytochemistry, and FACS using specific markers, such as Oct-4 and SSEA-1, 3 and 4. Isolated chBMCs were found to be able to induce in vitro differentiation to multiple cell lineages. Approximately 5,000 chBMCs were injected into the blastoderms of white leghorn (WL) recipients and proved able to contribute to the generation of somatic chimera chicks with a frequency of 2.7% (2 of 73). Confirmation of chimerism in hatched chicks was achieved via PCR analysis using D-loop-specific primers of BPR and WL. Our study demonstrated the successful production of chimera chicks using chBMC. Therefore, we propose that the use of adult chBMCs may constitute a new possible approach to the production of chimera poultry, and may provide helpful studies in avian developmental biology.
Custer, T.W.; Custer, Christine M.; Eichhorst, B.A.; Warburton, D.
2007-01-01
Exceptionally high cadmium (Cd) and chromium (Cr) concentrations were reported in eggs, feathers, or livers of selected waterbird species nesting at Agassiz National Wildlife Refuge (Agassiz) in 1994. Ten- to 15-day-old Franklin's gull (Larus pipixcan), black-crowned night-heron (Nycticorax nycticorax), and eared grebe (Podiceps nigricollis) chicks were collected in 1998, 1999, and 2001 at Agassiz and analyzed for selenium (Se) and metals including Cd and Cr. Freshly laid eggs were collected in 2001 from Franklin's gull, black-crowned night-heron, eared grebe, and pied-billed grebe (Podilymbus podiceps) nests at Agassiz. Based on a multivariate analysis, the pattern of Se and metal concentrations differed among species for eggs, chick feathers, and chick livers. Low Cd and Cr concentrations were measured in eggs, chick livers, and chick feathers of all four species. Mercury concentrations in black-crowned night-heron and eared grebe eggs collected from Agassiz in 2001 were lower than concentrations reported in 1994. Se and metal concentrations, including Cd and Cr, in waterbird eggs and chicks collected at Agassiz in 1998, 1999, and 2001 were not at toxic levels. ?? 2007 Springer Science+Business Media, LLC.
Mercury exposure may suppress baseline corticosterone levels in juvenile birds.
Herring, Garth; Ackerman, Joshua T; Herzog, Mark P
2012-06-05
Mercury exposure has been associated with a wide variety of negative reproductive responses in birds, however few studies have examined the potential for chick impairment via the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis regulates corticosterone levels during periods of stress. We examined the relationship between baseline fecal corticosterone metabolite concentrations and mercury concentrations in down feathers of recently hatched (<3 days) and blood of older (15-37 days) Forster's tern (Sterna forsteri) chicks in San Francisco Bay, California. Baseline fecal corticosterone metabolite concentrations were negatively correlated with mercury concentrations in blood of older chicks (decreasing by 81% across the range of observed mercury concentrations) while accounting for positive correlations between corticosterone concentrations and number of fledgling chicks within the colony and chick age. In recently hatched chicks, baseline fecal corticosterone metabolite concentrations were weakly negatively correlated with mercury concentrations in down feathers (decreasing by 45% across the range of observed mercury concentrations) while accounting for stronger positive correlations between corticosterone concentrations and colony nest abundance and date. These results indicate that chronic mercury exposure may suppress baseline corticosterone concentrations in tern chicks and suggests that a juvenile bird's ability to respond to stress may be reduced via the downregulation of the HPA axis.
Mercury exposure may suppress baseline corticosterone levels in juvenile birds
Herring, Garth; Ackerman, Joshua T.; Herzog, Mark P.
2012-01-01
Mercury exposure has been associated with a wide variety of negative reproductive responses in birds, however few studies have examined the potential for chick impairment via the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis regulates corticosterone levels during periods of stress. We examined the relationship between baseline fecal corticosterone metabolite concentrations and mercury concentrations in down feathers of recently hatched (Sterna forsteri) chicks in San Francisco Bay, California. Baseline fecal corticosterone metabolite concentrations were negatively correlated with mercury concentrations in blood of older chicks (decreasing by 81% across the range of observed mercury concentrations) while accounting for positive correlations between corticosterone concentrations and number of fledgling chicks within the colony and chick age. In recently hatched chicks, baseline fecal corticosterone metabolite concentrations were weakly negatively correlated with mercury concentrations in down feathers (decreasing by 45% across the range of observed mercury concentrations) while accounting for stronger positive correlations between corticosterone concentrations and colony nest abundance and date. These results indicate that chronic mercury exposure may suppress baseline corticosterone concentrations in tern chicks and suggests that a juvenile bird's ability to respond to stress may be reduced via the downregulation of the HPA axis.
Effect of diet change on the behavior of chicks of an egg-laying strain.
Dixon, Greg; Green, Laura E; Nicol, Christine J
2006-01-01
Injurious pecking has serious welfare consequences in flocks of hens kept for egg laying, especially when loose-housed. Frequent diet change is a significant risk for injurious pecking; how the mechanics of diet change influence pecking behavior is unknown. This study investigated the effect of diet change on the behavior of chicks from a laying strain. The study included a 3-week familiarity phase: 18 chick pairs received unflavored feed (Experiment 1); 18 pairs received orange oil-flavored (Experiment 2). All chicks participated in a dietary preference test (P); a diet change (DC); or a control group (C), 6 scenarios. All P chicks preferred unflavored feed. In Experiment 1, DC involved change from unflavored to orange-flavored; Experiment 2, orange- flavored to unflavored. Compared with controls, Experiment 2 DC chicks exhibited few behavioral differences; Experiment 1 DC chicks exhibited increased behavioral event rates on Days 1 and 7. They pecked significantly longer at their environment; by Day 7, they showed significantly more beak activity. There was little evidence of dietary neophobia. Change from more preferred to less preferred feed led to increased activity and redirected pecking behavior.
Daily energy expenditures of free-ranging Common Loon (Gavia immer) chicks
Fournier, F.; Karasov, W.H.; Meyer, M.W.; Kenow, K.P.
2002-01-01
We measured the daily energy expenditure of free-living Common Loon (Gavia immer) chicks using doubly labeled water (DLW). Average body mass of chicks during the DLW measures were 425, 1,052, and 1,963 g for 10 day-old (n = 5), 21 day-old (n = 6), and 35 day-old (n = 6) chicks, respectively, and their mean daily energy expenditures (DEE) were 686 kJ day−1, 768 kJ day−1, and 1,935 kJ day−1, respectively. Variation in DEE was not due solely to variation in body mass, but age was also a significant factor independent of body mass. Energy deposited in new tissue was calculated from age-dependent tissue energy contents and measured gains in body mass, which were 51, 54, and 33 g day−1 from the youngest to oldest chicks. Metabolizable energy (the sum of DEE and tissue energy) was used to estimate feeding rates of loon chicks and their exposure to mercury in the fish they consume. We calculated that loon chicks in Wisconsin consumed between 162 and 383 g wet mass of fish per day (depending on age), corresponding to intakes of mercury of 16–192 μg day−1.
Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons
Sandberg, Magnus; Flandin, Pierre; Silberberg, Shanni; ...
2016-09-21
The embryonic basal ganglia generates multiple projection neurons and interneuron subtypes from distinct progenitor domains. Combinatorial interactions of transcription factors and chromatin are thought to regulate gene expression. In the medial ganglionic eminence, the NKX2-1 transcription factor controls regional identity and, with LHX6, is necessary to specify pallidal projection neurons and forebrain interneurons. Here, we dissected the molecular functions of NKX2-1 by defining its chromosomal binding, regulation of gene expression, and epigenetic state. NKX2-1 binding at distal regulatory elements led to a repressed epigenetic state and transcriptional repression in the ventricular zone. Conversely, NKX2-1 is required to establish a permissivemore » chromatin state and transcriptional activation in the sub-ventricular and mantle zones. Moreover, combinatorial binding of NKX2-1 and LHX6 promotes transcriptionally permissive chromatin and activates genes expressed in cortical migrating interneurons. Our integrated approach gives a foundation for elucidating transcriptional networks guiding the development of the MGE and its descendants.« less
Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.
2011-01-01
Toxicological risk of methylmercury exposure to juvenile birds is complex due to the highly transient nature of mercury concentrations as chicks age. We examined total mercury and methylmercury concentrations in blood, liver, kidney, muscle, and feathers of 111 Forster's tern (Sterna forsteri), 69 black-necked stilt (Himantopus mexicanus), and 43 American avocet (Recurvirostra americana) chicks as they aged from hatching through postfledging at wetlands that had either low or high mercury contamination in San Francisco Bay, California. For each waterbird species, internal tissue, and wetland, total mercury and methylmercury concentrations changed rapidly as chicks aged and exhibited a quadratic, U-shaped pattern from hatching through postfledging. Mercury concentrations were highest immediately after hatching, due to maternally deposited mercury in eggs, then rapidly declined as chicks aged and diluted their mercury body burden through growth in size and mercury depuration into growing feathers. Mercury concentrations then increased during fledging when mass gain and feather growth slowed, while chicks continued to acquire dietary mercury. In contrast to mercury in internal tissues, mercury concentrations in chick feathers were highly variable and declined linearly with age. For 58 recaptured Forster's tern chicks, the proportional change in blood mercury concentration was negatively related to the proportional change in body mass, but not to the amount of feathers or wing length. Thus, mercury concentrations declined more in chicks that gained more mass between sampling events. The U-shaped pattern of mercury concentrations from hatching to fledging indicates that juvenile birds may be at highest risk to methylmercury toxicity shortly after hatching when maternally deposited mercury concentrations are still high and again after fledging when opportunities for mass dilution and mercury excretion into feathers are limited.
Al-Badrany, Y M A; Mohammad, F K
2007-11-01
The effects of the organophosphate insecticide chlorpyrifos on 5min open-field activity were examined in a 7-15 days old chick model. Chlorpyrifos was acutely administered taking into account cholinesterase inhibition and determination of the acute (24h) median lethal dose (LD50). The oral LD50 value of chlorpyrifos in chicks was 18.14mg/kg, with cholinergic toxicosis observed on intoxicated chicks. Chlorpyrifos at the dose rates of 5,10 and 20mg/kg orally produced within 2h signs of cholinergic toxicosis in the chicks and significantly inhibited plasma (40-70%), whole brain (43-69%) and liver (31-46%) cholinesterase activities in a dose-dependent manner. Chlorpyrifos at 2 and 4mg/kg, orally did not produce overt signs of cholinergic toxicosis, but decreased (30, 60 and 90min after dosing) the general locomotor activity of the chicks as seen by a significant increase in the latency to move from the central square of the open-field arena, decreases in the numbers of lines crossed and vocalization score. Repeated daily chlorpyrifos treatments (2 and 4mg/kg, orally) for seven consecutive days also caused hypoactivity in chicks in the open-field behavioral paradigm. Only the high dose of chlorpyrifos (4mg/kg, orally) given repeatedly for 7 days caused significant cholinesterase inhibition in the whole brain (37%) and the liver (22%). In conclusion, chlorpyrifos at single or short-term repeated doses-induced behavioral changes in 7-15 days old chicks, in a model that could be used for further neurobehavioral studies involving subtle effects of organophosphates on chicks.
Responses to peripheral neuropeptide Y in avian adipose tissue are diet, depot, and time specific.
Wang, Guoqing; Cline, Mark A; Gilbert, Elizabeth R
2018-06-01
The goal of this research was to determine the effect of dietary macronutrient composition on peripheral neuropeptide Y (NPY)-induced changes in adipose tissue dynamics in chicks. Chicks were fed one of three isocaloric diets from the day of hatch: high carbohydrate (HC), high fat (HF), or high protein (HP). On day 4 post-hatch, 0 (vehicle), 60, or 120 µg/kg BW of NPY was injected intraperitoneally, and subcutaneous, clavicular and abdominal adipose tissue samples were collected at 1 and 3 h post-injection. The effect of NPY was most pronounced in chicks fed the HF or HP diet. In the subcutaneous fat at 1 h post-injection, 60 µg/kg BW of NPY was associated with an increase in NPY receptor 2 (NPYR2) mRNA in chicks fed the HP diet and a decrease in 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) mRNA in chicks fed the HC diet. In response to 120 µg/kg BW of NPY, there was greater AGPAT2 mRNA in the clavicular fat of chicks that consumed the HP diet and less CCAAT/enhancer-binding protein alpha in the abdominal fat of chicks that were provided the HF diet. There were no gene expression changes in the abdominal fat at 3 h post-injection, whereas there were decreases in AGPAT2, adipose triglyceride lipase, fatty acid binding protein 4 and NPY mRNA in the clavicular fat of chicks fed the HP diet. Results demonstrate that diet affects exogenous NPY-dependent physiological effects in a time- and depot-dependent manner in chick adipose tissue. Copyright © 2018 Elsevier Inc. All rights reserved.
Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire
2014-07-01
The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.
Kawano, Takayuki; Morioka, Motohiro; Yano, Shigetoshi; Hamada, Jun-Ichiro; Ushio, Yukitaka; Miyamoto, Eishichi; Fukunaga, Kohji
2002-08-01
The authors recently reported that sodium orthovanadate rescues cells from delayed neuronal death in gerbil hippocampus after transient forebrain ischemia through phosphatidylinositol 3-kinase-protein kinase B (Akt) pathway (Kawano et al., 2001). In the current study, they demonstrated that the activation of FKHR, a Forkhead transcription factor and a substrate for Akt, preceded delayed neuronal death in CA1 regions after transient forebrain ischemia. Adult Mongolian gerbils were subjected to 5-minute forebrain ischemia. Immunoblotting analysis with anti-phospho-FKHR antibody showed that phosphorylation of FKHR at serine-256 in the CA1 region decreased immediately after and 0.5 and 1 hour after reperfusion. The dephosphorylation of FKHR was correlated with the decreased Akt activity. Intracerebroventricular injection of orthovanadate 30 minutes before ischemia inhibited dephosphorylation of FKHR after reperfusion, and blocked delayed neuronal death in the CA1 region. Gel mobility shift analysis using nuclear extracts from the CA1 region prepared immediately after reperfusion revealed increases in DNA binding activity for the FKHR-responsive element on the Fas ligand promoter. The orthovanadate injection administered before ischemia inhibited its binding activity. Two days after reperfusion, expression of Fas ligand increased in the CA1 region and the orthovanadate injection inhibited this increased expression. These results suggest that the inactivation of Akt results in the activation of FKHR and, in turn, relates to the expression of Fas ligand in the CA1 region after transient forebrain ischemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp
2014-01-01
The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrainmore » cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.« less
do Carmo, J M; da Silva, A A; Sessums, P O; Ebaady, S H; Pace, B R; Rushing, J S; Davis, M T; Hall, J E
2014-06-01
We examined whether deficiency of Src homology 2 containing phosphatase (Shp2) signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Forebrain Shp2(-/-) mice were generated by crossing Shp2(flox/flox) mice with CamKIIα-cre mice. At 22-24 weeks of age, the mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic and hyperphagic compared to Shp2(flox/flox) control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15 and 30 °C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2(flox/flox) mice (112±2 vs 113±1 mm Hg and 595±34 vs 650±40 b.p.m.), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin.
Coleman, Leon G.; He, Jun; Lee, Joohwi; Styner, Martin; Crews, Fulton T.
2013-01-01
Background Binge-drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol use disorders. Methods In order to determine if adolescent ethanol binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5g/kg/day i.g., post-natal days P28-37) and assessed during adulthood (P60-P88). An array of neurotransmitter-specific genes, behavioral tests (i.e. reversal learning, prepulse inhibition, and open field), and post-mortem brain structure using MRI and immunohistochemistry, were employed to assess persistent alterations in adult brain. Results At P38, 24 hours after adolescent ethanol (AE) binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38-P88) resulted in decreased neurotransmitter mRNA, e.g. an average decrease of 56%. Following adolescent ethanol treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by adolescent ethanol treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following adolescent ethanol. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons. Conclusions Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal forebrain acetylcholine neurons. Loss of cholinergic neurons and forebrain structure could underlie adult reversal learning deficits following adolescent binge drinking. PMID:21223304
Thalamic reticular nucleus in Caiman crocodilus: Relationship with the dorsal thalamus.
Pritz, M B
2016-05-13
The thalamic reticular nucleus was investigated in one group of crocodilians, Caiman crocodilus. This neuronal aggregate is composed of two parts: a compact portion and a diffuse region made up of scattered cells within the forebrain bundles. In Caiman, both the lateral and medial forebrain bundles project to the telencephalon and the thalamic reticular nucleus is associated with each fiber tract. In the lateral forebrain bundle, the compact area is termed the nucleus of the dorsal peduncle (dorsal peduncular nucleus) while the diffuse part is called the perireticular area. In the medial forebrain bundle, the interstitial nucleus comprises one part of the compact area while another region without a specific neuronal label is also present. Similar to the perireticular cells of the lateral forebrain bundle, scattered cells are also present in the medial forebrain bundle. Morphological features of the thalamic reticular nucleus are revealed with stains for the following: fibers; cells; succinic acid dehydrogenase; and acetylcholinesterase. Regardless of which dorsal thalamic nucleus was injected, a localized region of the thalamic reticular nucleus contained retrogradely labeled cells and anterogradely labeled axons and terminals. This grouping was termed clusters and was felt to represent the densest interconnection between the dorsal thalamus and the reticular nucleus. Using clusters as an index of interconnections, the reticular nucleus was divided into sectors, each of which was associated with a specific dorsal thalamic nucleus. An organization similar to that found in Caiman is present in other sauropsids as well as in mammals. These data suggest that a thalamic reticular nucleus is present in all amniotes and has morphological properties similar to those described in this analysis. Lastly, a hypothesis is presented to explain how the external shape of the reticular nucleus in Caiman might be transformed into the homologous area in a representative bird and mammal. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Transfer and accumulation of organochlorines from black-crowned night-heron eggs to chicks
Custer, T.W.; Custer, Christine M.
1995-01-01
Eggs and sibling 1-, 3-, and 5-d-old chicks from seven black-crowned night-heron (Nycticorax nycticorax) broods were collected from Green Bay, Wisconsin, and analyzed for organochlorines. The concentration (A?g/g) of nine organochlo-rines either decreased (n = 7) or remained the same (n = 2) as the chicks grew older. In contrast, the total mass (A?g) of these nine organochlorines increased (n = 7) or remained the same (n = 2) as the chicks grew older. Accumulation rates of mass (A?g/d) between egg and 5-d-old chicks for each of the nine organochlorines were positive and varied from 0.2 A?g/d (p,pa??-DDT) to 42 A?g/d (PCBs). These results suggest that the loss of contaminant mass from eggs to chicks reported in some earlier studies was because the entire carcass was not analyzed (i.e., not including skin, gastrointestinal tract, etc.). These results also support the use of contaminant accumulation rates as an indicator of local contamination.
Transfer and accumulation of organochlorines from black-crowned night-heron eggs to chicks
Custer, T.W.; Custer, Christine M.
1995-01-01
Eggs and sibling 1-, 3-, and 5-d-old chicks from seven black-crowned night-heron (Nycticorax nycticorax) broods were collected from Green Bay, Wisconsin, and analyzed for organochlorines. The concentration (mu-g/g) of nine organochlorines either decreased (n = 7) or remained the same (n = 2) as the chicks grew older. In contrast, the total mass (mu-g) of these nine organochlorines increased (n = 7) or remained the same (n = 2) as the chicks grew older. Accumulation rates of mass (mu-g/d) between egg and 5-d-old chicks for each of the nine organochlorines were positive and varied from 0.2 mu-g/d (p,p'-DDT) to 42 mu-g/d (PCBs). These results suggest that the loss of contaminant mass from eggs to chicks reported in some earlier studies was because the entire carcass was not analyzed (i.e., not including skin, gastrointestinal tract, etc.). These results also support the use of contaminant accumulation rates as an indicator of local contamination.
BARE, L N; WISEMAN, R F; ABBOTT, O J
1964-02-01
Bare, L. N. (University of Kentucky, Lexington), R. F. Wiseman, and O. J. Abbott. Effect of dietary antibiotics upon coliform bacteria and lactobacilli in the intestinal tract of uric acid-fed chicks. J. Bacteriol. 87:329-331. 1964.-Male chicks (1-day-old; Vantress X Arbor Acre) were fed a basal glucose-soybean oil meal diet, a 2% uric acid-containing diet with and without 5 mg/lb of zinc bacitracin and 20 mg/lb of procaine penicillin G, and one supplemented with the antibiotics only. After 4 weeks, the chicks receiving the uric acid without antibiotics showed a weight depression. The presence of antibiotics in the ration with the uric acid reversed this growth depression. Bacteriological and chemical analyses of the contents of the small intestine revealed an increase in numbers of uricolytic Aerobacter spp. and an increased degradation of uric acid in the tract of the "uric-antibiotic"-fed chicks. The counts of lactobacilli were always lowest in this group of chicks
Mayer, Uwe; Pecchia, Tommaso; Bingman, Verner Peter; Flore, Michele; Vallortigara, Giorgio
2016-01-01
We employed a standard reference memory task to study the involvement of the hippocampal formation (HF) of domestic chicks that used the boundary geometry of a test environment to orient to and locate a reward. Using the immediate early gene product c-Fos as a neuronal activity marker, we found enhanced HF activation in chicks that learned to locate rewarded corners using the shape of a rectangular arena compared to chicks trained to solve the task by discriminating local features in a square-shaped arena. We also analyzed neuronal activity in the medial part of the medial striatum (mMSt). Surprisingly, in mMSt we observed a reverse pattern, with higher activity in the chicks that were trained to locate the goal by local features. Our results identify two seemingly parallel, memory systems in chicks, with HF central to the processing of spatial-geometrical information and mMSt important in supporting local feature discrimination. © 2015 Wiley Periodicals, Inc.
Annamneedi, Anil; Caliskan, Gürsel; Müller, Sabrina; Montag, Dirk; Budinger, Eike; Angenstein, Frank; Fejtova, Anna; Tischmeyer, Wolfgang; Gundelfinger, Eckart D; Stork, Oliver
2018-06-18
Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase. In these animals, we confirm selective loss of Bassoon from glutamatergic neurons of the forebrain. Behavioral assessment revealed that, in comparison to wild-type littermates, Bsn cKO mice display selectively enhanced contextual fear memory and increased novelty preference in a spatial discrimination/pattern separation task. These changes are accompanied by an augmentation of baseline synaptic transmission at medial perforant path to dentate gyrus (DG) synapses, as indicated by increased ratios of field excitatory postsynaptic potential slope to fiber volley amplitude. At the structural level, an increased complexity of apical dendrites of DG granule cells can be detected in Bsn cKO mice. In addition, alterations in the expression of cellular maturation markers and a lack of age-dependent decrease in excitability between juvenile and adult Bsn cKO mice are observed. Our data suggest that expression of Bassoon in excitatory forebrain neurons is required for the normal maturation of the DG and important for spatial and contextual memory.
Evolution of antero‐posterior patterning of the limb: Insights from the chick
2017-01-01
Summary The developing limbs of chicken embryos have served as pioneering models for understanding pattern formation for over a century. The ease with which chick wing and leg buds can be experimentally manipulated, while the embryo is still in the egg, has resulted in the discovery of important developmental organisers, and subsequently, the signals that they produce. Sonic hedgehog (Shh) is produced by mesenchyme cells of the polarizing region at the posterior margin of the limb bud and specifies positional values across the antero‐posterior axis (the axis running from the thumb to the little finger). Detailed experimental embryology has revealed the fundamental parameters required to specify antero‐posterior positional values in response to Shh signaling in chick wing and leg buds. In this review, the evolution of the avian wing and leg will be discussed in the broad context of tetrapod paleontology, and more specifically, ancestral theropod dinosaur paleontology. How the parameters that dictate antero‐posterior patterning could have been modulated to produce the avian wing and leg digit patterns will be considered. Finally, broader speculations will be made regarding what the antero‐posterior patterning of chick limbs can tell us about the evolution of other digit patterns, including those that were found in the limbs of the earliest tetrapods. PMID:28734068
Crisis water management and ibis breeding at Narran Lakes in arid Australia.
Brandis, K J; Kingsford, R T; Ren, S; Ramp, D
2011-09-01
Narran Lakes is a Ramsar site recognised for its importance for colonial waterbird breeding, which only occurs after large highly variable flooding events. In 2008, 74,095 pairs of ibis bred for the first time in seven years, establishing two contiguous colonies, a month apart. Most (97%) of the colony consisted of the straw-necked ibis (Threskiornis spinicollis) with the remainder consisting of glossy ibis (2%, Plegadis falcinellus) and Australian white ibis (1%, T. molucca). Following cessation of river flows, water levels fell rapidly in the colony site, resulting in a crisis management decision by governments to purchase and deliver water (10,423 Ml) to avert mass desertion of the colonies. There were significant differences in the reproductive success of each colony. In colony 1 60% of eggs hatched and 94% of chicks fledged, while in colony 2 40% of eggs hatched with only 17% of chicks fledging. Statistical analyses found that water depth was a significant variable in determining reproductive success. Rapid falls in water level during the chick stage in colony 2 resulted in decreased chick and overall offspring success. The results of this study identify the impact of upstream water resource development on colonial waterbird breeding and have implications for water management policies.
Quantitative Analysis of the Area of the Apical Ectodermal Ridge in Chick Appendages Using Image-J.
Syed, Hamd Binte Shahab; Khan, Muhammad Yunus
2018-06-01
To determine the effect of sodium phenytoin on the apical ectodermal ridges (AER) of chick wing buds by using the software program Image-J. An experimental study. Department of Anatomy, Regional Center, College of Physicians and Surgeons Pakistan (CPSP), Islamabad, from January 2014 to January 2015. Sixty fertilised chicken eggs of 'Egyptian fayoumi' breed were selected and separated into experimental (B) and control (A) groups, each having 30 eggs. A single dose of 3.5 mg sodium phenytoin was injected into each egg of the experimental group. The controls were injected with the same volume of normal saline. Developing embryos were extracted 96 hours (day 4) after incubation and histological sections were cut at 5 μm thickness. These sections were stained with Feulgen Nuclear and Light Green. The area of apical ectodermal ridges of chick wing buds was calculated by employing Image-J and subjected to statistical analysis. The difference between the mean values of the area of apical ectodermal ridges of experimental and control groups, as calculated by Image-J, was found to be statistically insignificant. Change in the area of the apical ectodermal ridges in experimental chicks, following phenytoin exposure, was insignificant as proven on the basis of quantification by Image-J.
[A new method for quantitative measurement of the cadmium absorbed by chick embryos].
Gottofrey, J
1984-01-01
We attempted to determine the quantity of cadmium incorporated in hens eggs after immersion in cadmium solutions, and the cadmium concentration measured in embryos. We discussed equipment allowing simultaneous treatment of up to 42 samples, and called it " digestor ". It consisted of two gas-heated sand baths, two stands for cooling down solutions and an evacuation system for toxic vapours. Our method was based on wet mineralisation. It consisted of desintegrating experimental chick embryos in a HNO3/H2O2 mixed solution. After heating and evaporating, the quantity of cadmium in the remnant was determined by atomic absorption spectrophotometry. The reliability of such a technique was tested by studying as controls controls 17 days-old chick embryos injected with a known quantity of Cd(NO3). It showed no loss of cadmium. We also compared our procedure with a dry ashing method. The latter showed unacceptable losses and insufficient precision for the problems we wanted to investigate. Our method gave us much more precise results. The equipment we developed has functioned wholly satisfactorily and allowed us to investigate for instance cadmium distribution and concentration in embryonic organs of 17 days-old chicks. It could also be useful for researches concerning other biological samples analyzed for different heavy metals.
Wang, Xiao-Yu; Li, Shuai; Wang, Guang; Ma, Zheng-Lai; Chuai, Manli; Cao, Liu; Yang, Xuesong
2015-01-01
High glucose levels induced by maternal diabetes could lead to defects in neural crest development during embryogenesis, but the cellular mechanism is still not understood. In this study, we observed a defect in chick cranial skeleton, especially parietal bone development in the presence of high glucose levels, which is derived from cranial neural crest cells (CNCC). In early chick embryo, we found that inducing high glucose levels could inhibit the development of CNCC, however, cell proliferation was not significantly involved. Nevertheless, apoptotic CNCC increased in the presence of high levels of glucose. In addition, the expression of apoptosis and autophagy relevant genes were elevated by high glucose treatment. Next, the application of beads soaked in either an autophagy stimulator (Tunicamycin) or inhibitor (Hydroxychloroquine) functionally proved that autophagy was involved in regulating the production of CNCC in the presence of high glucose levels. Our observations suggest that the ERK pathway, rather than the mTOR pathway, most likely participates in mediating the autophagy induced by high glucose. Taken together, our observations indicated that exposure to high levels of glucose could inhibit the survival of CNCC by affecting cell apoptosis, which might result from the dysregulation of the autophagic process. PMID:26671447
The Embryonic Septum and Ventral Pallium, New Sources of Olfactory Cortex Cells
de Carlos, Juan A.
2012-01-01
The mammalian olfactory cortex is a complex structure located along the rostro-caudal extension of the ventrolateral prosencephalon, which is divided into several anatomically and functionally distinct areas: the anterior olfactory nucleus, piriform cortex, olfactory tubercle, amygdaloid olfactory nuclei, and the more caudal entorhinal cortex. Multiple forebrain progenitor domains contribute to the cellular diversity of the olfactory cortex, which is invaded simultaneously by cells originating in distinct germinal areas in the dorsal and ventral forebrain. Using a combination of dye labeling techniques, we identified two novel areas that contribute cells to the developing olfactory cortices, the septum and the ventral pallium, from which cells migrate along a radial and then a tangential path. We characterized these cell populations by comparing their expression of calretinin, calbindin, reelin and Tbr1 with that of other olfactory cell populations. PMID:22984546
The molecular genetics of holoprosencephaly
Roessler, Erich; Muenke, Maximilian
2009-01-01
Holoprosencephaly (or HPE) has captivated the imagination of Man for millennia because its most extreme manifestation, the single-eyed cyclopic newborn infant, brings to mind the fantastical creature Cyclops from Greek mythology. Attempting to understand this common malformation of the forebrain in modern medical terms requires a systematic synthesis of genetic, cytogenetic and environmental information typical for studies of a complex disorder. However, even with the advances in our understanding of HPE in recent years, there are significant obstacles remaining to fully understand its heterogeneity and extensive variability in phenotype. General lessons learned from HPE will likely be applicable to other malformation syndromes. Here we outline the common, and rare, genetic and environmental influences on this conserved developmental program of forebrain development and illustrate the similarities and differences between these malformations in humans and those of animal models. PMID:20104595
The molecular genetics of holoprosencephaly.
Roessler, Erich; Muenke, Maximilian
2010-02-15
Holoprosencephaly (HPE) has captivated the imagination of Man for millennia because its most extreme manifestation, the single-eyed cyclopic newborn infant, brings to mind the fantastical creature Cyclops from Greek mythology. Attempting to understand this common malformation of the forebrain in modern medical terms requires a systematic synthesis of genetic, cytogenetic, and environmental information typical for studies of a complex disorder. However, even with the advances in our understanding of HPE in recent years, there are significant obstacles remaining to fully understand its heterogeneity and extensive variability in phenotype. General lessons learned from HPE will likely be applicable to other malformation syndromes. Here we outline the common, and rare, genetic and environmental influences on this conserved developmental program of forebrain development and illustrate the similarities and differences between these malformations in humans and those of animal models. 2010 Wiley-Liss, Inc.
Koshiba, Mamiko; Karino, Genta; Mimura, Koki; Nakamura, Shun; Yui, Kunio; Kunikata, Tetsuya; Yamanouchi, Hideo
2016-01-01
Educational treatment to support social development of children with autism spectrum disorder (ASD) is an important topic in developmental psychiatry. However, it remains difficult to objectively quantify the socio-emotional development of ASD children. To address this problem, we developed a novel analytical method that assesses subjects' complex behaviors using multivariate analysis, 'Behavior Output analysis for Quantitative Emotional State Translation' (BOUQUET). Here, we examine the potential for psycho-cognitive ASD therapy based on comparative evaluations of clinical (human) and experimental (animal) models. Our observations of ASD children (vs. their normally developing siblings) and the domestic chick in socio-sensory deprivation models show the importance of unimodal sensory stimulation, particularly important for tactile- and auditory-biased socialization. Identifying psycho-cognitive elements in early neural development, human newborn infants in neonatal intensive care unit as well as a New World monkey, the common marmoset, also prompted us to focus on the development of voluntary movement against gravity. In summary, striking behavioral similarities between children with ASD and domestic chicks' socio-sensory deprivation models support the role of multimodal sensory-motor integration as a prerequisite step for normal development of socio-emotional and psycho-cognitive functions. Data obtained in the common marmoset model also suggest that switching from primitive anti-gravity reflexes to complex voluntary movement may be a critical milestone for psycho-cognitive development. Combining clinical findings with these animal models, and using multivariate integrative analyses may facilitate the development of effective interventions to improve social functions in infants and in children with neurodevelopmental disorders.
Albano, Noelia; Santiago-Quesada, Francisco; Masero, José A; Sánchez-Guzmán, Juan M; Möstl, Erich
2015-03-01
Blood levels of corticosterone have been traditionally analyzed to assess stress levels in birds; however, measuring steroid hormone metabolites in feces and droppings has gained much interest as a noninvasive technique successfully used for such purposed in vertebrates. Diet may affect these fecal metabolite levels (e.g., due to nutritional stress), however, this variable has not been taken into account in studies with chicks despite the great dietary flexibility of many avian species. In this study, we addressed for the first time this key issue and validated the technique in wild gull-billed tern chicks (Gelochelidon nilotica). Several enzyme immunoassays were used to determine the most appropriate test to measure the stress response. Subsequently, we performed an experiment in captivity to assess adrenocortical activity in gull-billed tern chicks fed with two diets: piscivorous vs. insectivorous. Finally, the relation between the chicks' growth rate and excreted immunoreactive glucocorticoid metabolites (EGMs) was also evaluated. We found the immunoreactive cortisone metabolites to be a good index of stress (as being an index of adrenocortical reactivity) in chicks of this species. Fish-fed chicks had higher levels of cortisone metabolites when comparing both concentration and total daily excreted metabolites. Within each treatment diet, cortisone metabolite levels and growth rates were negatively correlated. These findings suggest that the diet should be considered when using this technique for comparative purposes and highlight the trade-off between stress levels and chicks growth rates. Copyright © 2015 Elsevier Inc. All rights reserved.
Sánchez-García, C; Alonso, M E; Tizado, E J; Pérez, J A; Armenteros, J A; Gaudioso, V R
2016-06-01
The aim of this work was to improve natural anti-predator behaviour of farm-reared gamebirds. We evaluated the anti-predator behaviour of reared red-legged partridge Alectoris rufa chicks kept in brooder houses in large groups (>350 chicks), trained and not trained by parent red-legged partridges acting as experienced tutors. The experiment consisted of two conditioned tests (a raptor model and a human) and two control tests, which were conducted during three consecutive phases of life (1-4, 15-17 and 30-32 d after hatching). The motor anti-predator behaviour, its duration, the intensity of response in chicks and alarm calls elicited by adults were recorded. Tutors elicited aerial alarm calls (76% of tests) and showed prolonged crouching (59% of tests) in response to the raptor model whereas uttering the ground alarm call (73% of tests) and showing vigilance behaviour (78% of tests) was the main pattern during the human test. Trained and not trained chicks showed similar motor behaviour in response to the raptor model (crouching) and the human test (escaping), but frequency of strong responses (all chicks responding) from chicks trained with tutors was double that of chicks trained without them, and chicks trained with tutors showed a higher frequency of long responses (41-60 s). This study indicates that anti-predator training programmes before release may improve behaviour of farm-reared partridges which may confer benefits to survival of birds.
Dietary energy source and density modulate the expression of immunologic stress in chicks.
Benson, B N; Calvert, C C; Roura, E; Klasing, K C
1993-10-01
To determine how dietary energy level and source influence feed intake, growth and energy partitioning drug immunologic stress, growing chicks were fed diets based on cornstarch and casein with varying energy densities and injected every other day for 6 d with either saline (control), Salmonella typhimurium lipopolysaccharide or heat-killed Staphylococcus aureus. Salmonella typhimurium lipopolysaccharide decreased growth and feed consumption at low energy densities. When the dietary energy density was increased above 13.4 kJ/g using cornstarch, but not corn oil, the growth depressing effect of immunogens was eliminated. Immunologically stressed chicks had a greater proportion of gain in visceral organs and less in the carcass, regardless of the nutrient density of the diet. Immunologic stress decreased intake of metabolizable energy of chicks fed a diet with low nutrient density and increased it for those fed a diet with high nutrient density. Chicks injected with S. typhimurium lipopolysaccharide lost more energy as heat than controls when differences in metabolizable energy intakes were accounted for and modified their preference between two diets differing in metabolizable energy density and fat content as a result of the challenge. Control chicks selected between the 11.7 and 14.2 kJ/g diets to obtain an energy density of 13.2 kJ/g compared with 12.5 kJ/g in the S. typhimurium lipopolysaccharide-challenged chicks. The S. typhimurium lipopolysaccharide-challenged chicks consumed similar amounts of the low energy diet but decreased intake of the high energy diet.
CHANGES IN NEUROTRANSMITTER GENE EXPRESSION IN THE AGING RETINA.
To understand mechanisms of neurotoxicity in susceptible populations, we examined age-related changes in constitutive gene expression in the retinas of young (4mos), middle-aged (11 mos) and aged (23 mos) male Long Evans rats. Derived from a pouch of the forebrain during develop...
Ishizawa, A; Hayashi, S; Nasu, H; Abe, H; Rodríguez-Vázquez, J F; Murakami, G
2013-02-01
Birds and reptiles always carry a long and thick artery accompanying the sciatic nerve (i.e., the sciatic artery), whereas mammals do not. We attempted to demonstrate a difference in courses of the nerve and artery in fetuses in relation with the hip joint posture. Eight mid-term human fetuses (15-18 weeks), five mouse fetuses (E18) and five chick embryos (11 days after incubation) were examined histologically. Thin feeding arteries in the sciatic nerve were consistently observed in human fetuses in spite of the long, inferiorly curved course of the nerve around the ischium. The tissue around the human sciatic nerve was not so tight because of the medial and inferior shift of the nerve away from the hip joint. The fetal hip joint position differed among the species, being highly flexed in humans and almost at right angle flexion in mice and chicks. Because of deep adduction of the hip joint in the mouse, the knee was located near the midline of the body. The mouse sciatic nerve ran through the tight tissue along the head of the femur, whereas the chick nerve ran through the loose space even in the gluteal region. In birds, evolution of the pelvis including the hip joint without adduction seemed to make the arterial development possible. In mammals, highly flexed or adducted hip joint seemed to be one of the disturbing factors against development of the long and thick artery. A slight change in posture may cause significant arterial variation.
Chorio-Allantoic Membrane Grafting of Chick Limb Buds as a Class Practical.
ERIC Educational Resources Information Center
McLachlan, John C.
1981-01-01
A new method of carrying out grafts of early embryonic chick limb buds to the chick chorio-allantoic membrane and a processing schedule which renders cartilage elements visible in whole mount are discussed, including implications for the procedures and their results. (Author/DC)
Development of respiratory rhythms in perinatal chick embryos.
Chiba, Y; Khandoker, A H; Nobuta, M; Moriya, K; Akiyama, R; Tazawa, H
2002-04-01
In chick embryos, gas exchange takes place via the chorioallantoic membrane (CAM) and the lungs at approximately 1 day prior to hatching. The present study was designed to elucidate the development of respiratory rhythms in the chick embryo during the whole pipping (perinatal) period with a condenser-microphone measuring system. The microphone was hermetically attached on the eggshell over the air cell on day 18 of incubation. It first detected a cardiogenic signal (i.e. acoustocardiogram), and then beak clapping and breathing signals (acoustorespirogram, ARG). The first signals of lung ventilation appeared intermittently and irregularly approximately once per 5 s among the clapping signals after the embryo penetrated its beak into the air cell (internal pipping, IP). The respiratory rhythm then developed irregularly, with a subsequent more regular rate. The envelope pattern of breathing from the onset of IP through external pipping (EP) to hatching was constructed by a specially devised procedure, which eliminated external and internal noises. The envelope patterns indicated that the IP, EP and whole perinatal periods of 10 embryos were 14.1+/-6.4 (S.D.), 13.6+/-4.0 and 27.6+/-5.4 h, respectively. In addition, they also indicated the period of embryonic hatching activity (i.e. climax) which was 48+/-19 min. The development of respiratory rhythm was also shown by the instantaneous respiratory rate (IRR) which was designated as an inverse value of two adjacent ARG waves.
The effects of levetiracetam on neural tube development in the early stage of chick embryos.
Guvenc, Yahya; Dalgic, Ali; Billur, Deniz; Karaoglu, Derya; Aydin, Sevim; Daglioglu, Ergun; Ozdol, Cagatay; Nacar, Osman Arikan; Yildirim, Ali Erdem; Belen, Deniz
2013-01-01
This study aimed to investigate the effects of a new generation antiepileptic agent, levetiracetam, on the neural tube development in a chick embryo model that corresponds to the first month of vertebral development in mammals. Forty-five Atabey® breed fertilized chicken eggs with no specific pathogens were randomly divided into 5 groups. All of the eggs were incubated at 37.8±2°C and 60±5 % relative humidity in an incubator. Group A was control group. The other eggs were applied physiological saline and drugs at a volume of 10 μL by the in ovo method at the 28th hour of the incubation period. Group B was given distilled water; Group C, physiological saline; Group D, Levetiracetam (L8668) at a dose equivalent to the treatment dose for humans (10 mg/ kg), and Group E, Levetiracetam (L8668) at a dose of 10 times the treatment dose. The embryos in all of the groups were removed from the shells at the 48th hour and morphologically and histologically evaluated. Of the 45 embryos incubated, neural tubes of 41 were closed and the embryos displayed normal development. Levetiracetam, at a dose equivalent to human treatment dose and 10 times the treatment dose, was shown not to cause neural tube defects in chick embryos.
Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory
ERIC Educational Resources Information Center
Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.
2004-01-01
A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…
Code of Federal Regulations, 2011 CFR
2011-04-01
.... (2) It is free of chick-edema factor: (i) As evidenced during the bioassay method for determining the chick-edema factor as prescribed in paragraph (c)(2) of this section; or (ii) As evidenced by the... the bioassay method prescribed in paragraph (c)(2) of this section for determining chick-edema factor...
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (2) It is free of chick-edema factor: (i) As evidenced during the bioassay method for determining the chick-edema factor as prescribed in paragraph (c)(2) of this section; or (ii) As evidenced by the... the bioassay method prescribed in paragraph (c)(2) of this section for determining chick-edema factor...
Woodcock brood ecology in Maine
Dwyer, T.J.; Derleth, E.L.; McAuley, D.G.
1982-01-01
Captures of 102 American woodcock (Philohela minor) broods, including 338 chicks, from 1977 to 1980 provided data on age-related production by breeding females and on growth and survival of chicks. Although broods of second-year females are smaller and hatch at slightly later dates and the growth of the chicks is slower than that of broods of after-second-year hens, we could detect no difference in survival of the chicks. Yearly variation in the sex ratio of fledged young was probably the result of selection for or against larger female chicks during different environmental conditions. Broodmates associate with each other throughout the summer, and there are differences in habitat preferences between young (1-5 days old) and older (> 5 days old) broods. Older broods prefer more open, mature forest stands with fewer trees per hectare.
Geiger, Sylvie; Le Vaillant, Maryline; Lebard, Thomas; Reichert, Sophie; Stier, Antoine; LE Maho, Yvon; Criscuolo, Francois
2012-03-01
One of the reasons for animals not to grow as fast as they potentially could is that fast growth has been shown to be associated with reduced lifespan. However, we are still lacking a clear description of the reality of growth-dependent modulation of ageing mechanisms in wild animals. Using the particular growth trajectory of small king penguin chicks naturally exhibiting higher-than-normal growth rate to compensate for the winter break, we tested whether oxidative stress and telomere shortening are related to growth trajectories. Plasma antioxidant defences, oxidative damage levels and telomere length were measured at the beginning and at the end of the post-winter growth period in three groups of chicks (small chicks, which either passed away or survived the growth period, and large chicks). Small chicks that died early during the growth period had the highest level of oxidative damage and the shortest telomere lengths prior to death. Here, we show that small chicks that grew faster did it at the detriment of body maintenance mechanisms as shown by (i) higher oxidative damage and (ii) accelerated telomere loss. Our study provides the first evidence for a mechanistic link between growth and ageing rates under natural conditions. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Carle, Ryan D.; Beck, Jessie N.; Calleri, David M.; Hester, Michelle M.
2015-06-01
We used stable isotopes (δ15N and δ13C) and compared prey provided to chicks by each sex to evaluate seasonal and sex-specific diets in Rhinoceros Auklets (Cerorhinca monocerata) in the central California Current system during 2012-2013. Mixing models indicated northern anchovy (Engraulis mordax) were important prey for adults during fall/winter and juvenile rockfishes (Sebastes spp.) were important prey during incubation both years. Adult trophic level increased between incubation and chick-rearing periods in both years. During 2012, δ15N and δ13C of chick-rearing males and females differed significantly; mixing models indicated that females ate more Pacific saury (Cololabis saira) and less market squid (Doryteuthis opalescens) than males. Likewise, females delivered significantly more Pacific saury and less market squid to chicks than males during 2012. Chick growth (g d- 1) and chick survival to fledging were significantly lower during 2012 than 2013, likely because chicks were fed lesser quality prey or fed less frequently in 2012. Lesser body mass of females during incubation in 2012 indicated sex-specific diet differences may have been related to female energetic constraints. The observed variability in Rhinoceros Auklet diet underscores the importance of managing multiple prey populations in this system so that generalist predators have sufficient resources through changing conditions.
Ren, Zhouzheng; Bütz, Daniel E; Sand, Jordan M; Cook, Mark E
2017-04-01
Novel means to reduce phosphate input into poultry feeds and increase its retention would preserve world phosphate reserves and reduce environmental impact of poultry production. Here we show that a maternally derived antibody to a fibroblast growth factor-23 (FGF-23) peptide (GMNPPPYS) alleviated phosphorus deficiency in chicks fed low non-phytate phosphorus (nPP) diets. White Leghorn laying hens were vaccinated with either an adjuvant control or the synthetic FGF-23 peptide, and chicks with control or anti-FGF-23 maternal antibodies were fed a diet containing either 0.13 or 0.45% nPP (experiment 1), and 0.20 or 0.45% nPP (experiment 2) for 14 d. In both experiments, decreasing nPP from 0.45 to 0.13 or 0.20% decreased BW gain, G:F, excreta phosphorus, plasma phosphate, and plasma FGF-23 at all time periods examined (nPP main effect, P < 0.05). In experiment 1, chicks with maternal anti-FGF-23 antibody had increased tibiotarsi ash (d 14), and decreased excreta phosphate (d 7, 14) and plasma intact parathyroid hormone (d 7) when compared to chicks with control antibody (antibody main effect, P < 0.05). Mortality (d 7 to 14, 1 to 14), posture scores (d 7, 14) and bone lesion scores (d 14) decreased and plasma phosphate (d 14) increased in anti-FGF-23 chicks fed 0.13% nPP, compared to those with control antibody on the same diet (P < 0.05). In experiment 2, chicks with maternal anti-FGF-23 antibody had increased tibiotarsi ash (d 14), and plasma phosphate (d 14) and 1,25(OH)2D3 (d 14) levels, compared to chicks with control antibody (antibody main effect, P < 0.05). BW gain and G:F were increased in chicks with anti-FGF-23 antibody fed 0.20% nPP, compared to control antibody chicks on the same diet, at all time periods examined (P < 0.05). In conclusion, maternally-derived anti-FGF-23 antibody increased phosphorus retention in chicks fed diets containing either 0.13 or 0.20% nPP and thereby, reduced signs of phosphorus deficiency. © 2016 Poultry Science Association Inc.
Brain segmentation and forebrain development in amniotes.
Puelles, L
2001-08-01
This essay contains a general introduction to the segmental paradigm postulated for interpreting morphologically cellular and molecular data on the developing forebrain of vertebrates. The introduction examines the nature of the problem, indicating the role of topological analysis in conjunction with analysis of various developmental cell processes in the developing brain. Another section explains how morphological analysis in essence depends on assumptions (paradigms), which should be reasonable and well founded in other research, but must remain tentative until time reveals their necessary status as facts for evolving theories (or leads to their substitution by alternative assumptions). The chosen paradigm affects many aspects of the analysis, including the sectioning planes one wants to use and the meaning of what one sees in brain sections. Dorsoventral patterning is presented as the fundament for defining what is longitudinal, whereas less well-understood anteroposterior patterning results from transversal regionalization. The concept of neural segmentation is covered, first historically, and then step by step, explaining the prosomeric model in basic detail, stopping at the diencephalon, the extratelencephalic secondary prosencephalon, and the telencephalon. A new pallial model for telencephalic development and evolution is presented as well, updating the proposed homologies between the sauropsidian and mammalian telencephalon.
Morgan, Jonathan J.; Kleven, Gale A.; Tulbert, Christina D.; Olson, John; Horita, David A.; Ronca, April E.
2013-01-01
The present study represents the first longitudinal, within-subject 1H MRS investigation of the developing rat brain spanning infancy, adolescence, and early adulthood. We obtained neurometabolite profiles from a voxel located in a central location of the forebrain, centered on the striatum, with smaller contributions for cortex, thalamus, and hypothalamus, on postnatal days 7, 35, and 60. Water-scaled metabolite signals were corrected for T1 effects and quantified using the automated processing software LCModel, yielding molal concentrations. Our findings indicate age-related concentration changes in N-acetylaspartate + N-acetylaspartylglutamate, myo-inositol, glutamate + glutamine, taurine, creatine + phosphocreatine, and glycerophosphocholine + phosphocholine. Using a repeated measures design and analysis, we identified significant neurodevelopment change across all three developmental ages and identified adolescence as a distinctive phase in normative neurometabolic brain development. Between postnatal days 35 and 60, changes were observed in concentrations of N-acetylaspartate + N-acetylaspartylglutamate, glutamate + glutamine, and glycerophosphocholine + phosphocholine observed between postnatal days 35 and 60. Our data replicate past studies of early neurometabolite development and, for the first time, link maturational profiles in the same subjects across infancy, adolescence, and adulthood. PMID:23322706
Siegel, Jessica A.; Park, Byung S.; Raber, Jacob
2013-01-01
Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143
Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing
2018-03-01
In the version of this article initially published online, the accession code was given as GSE1000333. The correct code is GSE100033. The error has been corrected in the print, HTML and PDF versions of the article.
Rediscovering the chick embryo as a model to study retinal development
2012-01-01
The embryonic chick occupies a privileged place among animal models used in developmental studies. Its rapid development and accessibility for visualization and experimental manipulation are just some of the characteristics that have made it a vertebrate model of choice for more than two millennia. Until a few years ago, the inability to perform genetic manipulations constituted a major drawback of this system. However, the completion of the chicken genome project and the development of techniques to manipulate gene expression have allowed this classic animal model to enter the molecular age. Such techniques, combined with the embryological manipulations that this system is well known for, provide a unique toolkit to study the genetic basis of neural development. A major advantage of these approaches is that they permit targeted gene misexpression with extremely high spatiotemporal resolution and over a large range of developmental stages, allowing functional analysis at a level, speed and ease that is difficult to achieve in other systems. This article provides a general overview of the chick as a developmental model focusing more specifically on its application to the study of eye development. Special emphasis is given to the state of the art of the techniques that have made gene gain- and loss-of-function studies in this model a reality. In addition, we discuss some methodological considerations derived from our own experience that we believe will be beneficial to researchers working with this system. PMID:22738172
Oberlander, Joseph G.; Porter, Donna M.; Penatti, Carlos A. A.; Henderson, Leslie P.
2011-01-01
Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone originally developed for clinical purposes, but now predominantly taken at suprapharmacological levels as drugs of abuse. To date, nearly 100 different AAS compounds that vary in metabolic fate and physiological effects have been designed and synthesised. While administered for their ability to enhance muscle mass and performance, untoward side effects of AAS use include changes in reproductive and sexual behaviours. Specifically, AAS, depending on the type of compound administered, can delay or advance pubertal onset, lead to irregular oestrous cyclicity, diminished male and female sexual behaviours, and accelerate reproductive senescence. Numerous brains regions and neurotransmitter signalling systems are involved in the generation of these behaviours, and are potential targets for both chronic and acute actions of the AAS. However critical to all of these behaviours is neurotransmission mediated by GABAA receptors within a nexus of interconnected forebrain regions that includes the medial preoptic area (mPOA), the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus of the hypothalamus. Here we review how exposure to AAS alters GABAergic transmission and neural activity within these forebrain regions, taking advantage of in vitro systems and both wild-type and genetically altered mouse strains, in order to better understand how these synthetic steroids affect the neural systems that underlie the regulation of reproduction and the expression of sexual behaviours. PMID:21554430
Carvalho, Luciani R.; Woods, Kathryn S.; Mendonca, Berenice B.; Marcal, Nathalie; Zamparini, Andrea L.; Stifani, Stefano; Brickman, Joshua M.; Arnhold, Ivo J.P.; Dattani, Mehul T.
2003-01-01
The paired-like homeobox gene expressed in embryonic stem cells Hesx1/HESX1 encodes a developmental repressor and is expressed in early development in a region fated to form the forebrain, with subsequent localization to Rathke’s pouch, the primordium of the anterior pituitary gland. Mutations within the gene have been associated with septo-optic dysplasia, a constellation of phenotypes including eye, forebrain, and pituitary abnormalities, or milder degrees of hypopituitarism. We identified a novel homozygous nonconservative missense mutation (I26T) in the critical Engrailed homology repressor domain (eh1) of HESX1, the first, to our knowledge, to be described in humans, in a girl with evolving combined pituitary hormone deficiency born to consanguineous parents. Neuroimaging revealed a thin pituitary stalk with anterior pituitary hypoplasia and an ectopic posterior pituitary, but no midline or optic nerve abnormalities. This I26T mutation did not affect the DNA-binding ability of HESX1 but led to an impaired ability to recruit the mammalian Groucho homolog/Transducin-like enhancer of split-1 (Gro/TLE1), a crucial corepressor for HESX1, thereby leading to partial loss of repression. Thus, the novel pituitary phenotype highlighted here appears to be a specific consequence of the inability of HESX1 to recruit Groucho-related corepressors, suggesting that other molecular mechanisms govern HESX1 function in the forebrain. PMID:14561704
Biggs, P; Parsons, C M
2009-09-01
Five experiments were conducted to evaluate the effects of whole wheat, whole sorghum, or whole barley on nutrient digestibility, growth performance, and cecal short-chain fatty acid concentrations when supplemented primarily at the expense of corn in ground corn-soybean meal control diets. The first 4 experiments utilized New Hampshire x Columbian male chicks. In the first 2 experiments, feeding 5, 10, 15, or 20% whole wheat had no effect on growth performance at 21 d when compared with chicks fed the control diet. The third experiment tested 20, 35, and 50% whole wheat fed from 0 to 21 d of age and showed that a 50% whole wheat diet decreased (P<0.05) 21-d growth and feed efficiency when compared with chicks fed the control diet. In experiment 4, 10 and 20% whole sorghum reduced (P<0.05) growth at 21 d, whereas chicks fed 10 and 20% whole barley had similar weight gains to chicks fed a ground corn-soybean meal diet. The fifth experiment with commercial Ross x Ross male broiler chicks evaluated 10 and 20% whole sorghum or whole barley and 20 and 35% whole wheat. Growth at 21 d was unaffected by any dietary treatment. Feed efficiency was decreased (P<0.05) at 21 d with 20% whole wheat and improved (P<0.05) with 10% whole barley. Feeding whole grains to chicks resulted in an increase in gizzard weight, even as early as 7 d, in all experiments. Chicks fed diets containing 10 to 20% whole wheat generally had increased MEn values at 3 to 4, 7, 14, and 21 d and also had increased amino acid digestibility at 21 d in one experiment. At 21 d, cecal pH and short-chain fatty acid concentrations in all experiments were unaffected by feeding whole grains to chicks. The results of this study indicated that feeding whole wheat, sorghum, or barley increased gizzard weight, and feeding 10 to 20% whole wheat may increase ME and amino acid digestibility.
Oso, A O; Erinle, O Y; William, G A; Ogunade, A C
2015-10-01
The interaction effect of whole wheat feeding and mannanoligosaccharides supplementation on growth performance, haematological indices and caecal microbiota of cockerel chicks were investigated using 250-day-old cockerel chicks previously reared for 7 days pre-experimental period. Birds were fed with commercial chick mash during the pre-experimental period. At the expiration of this period, 192 chicks were selected on weight equalization basis and assigned into 24 pens. Each treatment consisted of six pens, while each pen housed eight birds. Four wheat-soya bean-based experimental diets were formulated in a 2 × 2 factorial arrangement of diets having two wheat forms (ground and whole wheat grain) each supplemented or not with 1 g/kg MOS/kg feed. Whole wheat feeding (irrespective of MOS supplementation) showed reduced (p < 0.05) feed intake. Birds fed whole wheat diet supplemented with MOS recorded the highest (p < 0.01) final live weight, weight gain and the best (p < 0.05) feed conversion ratio. Haemoglobin concentration, packed cell volume and red blood cell count of the chicks were not affected (p > 0.05) by dietary treatment. However, dietary supplementation with MOS resulted in increased (p < 0.05) WBC counts. The caecum content of chicks fed with MOS-supplemented whole wheat diets recorded the least (p < 0.01) salmonella counts. In conclusion, combination of whole wheat feeding and MOS supplementation showed improved growth performance, gut microbiota and indications of improved health status of cockerel chicks. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Chicks incubated in hypomagnetic field need more exogenous noradrenaline for memory consolidation
NASA Astrophysics Data System (ADS)
Xiao, Ying; Wang, Qian; Xu, Mu-Ling; Jiang, Jin-Chang; Li, Bing
2009-07-01
The geomagnetic field (GMF) is one of the essential characteristics of the terrestrial environment but does not apply in outer space. The elimination of GMF may interfere with the normal activities of life in many aspects. Previous behavioral experiments have found that long-term memory is impaired in chicks incubated in a near-zero magnetic environment (i.e. hypomagnetic field or HMF). The present study was designed to evaluate the possible involvement of noradrenergic change in the functional abnormality observed before. A HMF space was produced by nullifying the natural GMF with three pairs of Helmholtz coils. The one-trial passive avoidance learning paradigm was performed on day-old chicks incubated in either the HMF space or the natural GMF. Exogenous noradrenaline was administered by intracerebral injections and the effect on memory consolidation was compared between the two categories of subjects. In the behavioral paradigm, the HMF chicks had a higher elimination rate than the GMF chicks and displayed a significant reduction in overall responsiveness. The administration of moderate doses (0.1-0.5 nmol/hemisphere) of noradrenaline led to fairly good memory retention in GMF chicks but had little effect on HMF chicks. However, long-term memory of HMF chicks could be elevated to the normal level by much higher doses (1.0-1.75 nmol/hem) of the drug. These results suggest that prolonged exposure to HMF may induce disorders in the noradrenergic system in the brain and indicate a potentiality of counteracting the ill-effect of GMF deprivation with appropriate pharmacological manipulation.
Bergoug, H; Guinebretière, M; Tong, Q; Roulston, N; Romanini, C E B; Exadaktylos, V; Berckmans, D; Garain, P; Demmers, T G M; McGonnell, I M; Bahr, C; Burel, C; Eterradossi, N; Michel, V
2013-12-01
This experiment studied the effect of transportation duration of 1-d-old chicks on dehydration, mortality, production performance, and pododermatitis during the growout period. Eggs from the same breeder flock (Ross PM3) were collected at 35, 45, and 56 wk of age, for 3 successive identical experiments. In each experiment, newly hatched chicks received 1 of 3 transportation duration treatments from the hatchery before placement in the on-site rearing facility: no transportation corresponding to direct placement in less than 5 min (T00), or 4 (T04) or 10 h (T10) of transportation. The chicks were housed in 35-m(2) pens (650 birds each) and reared until 35 d old. Hematocrit and chick BW were measured on sample chicks before and after transportation. During the growout period, bird weight, feed uptake, and feed conversion ratio were measured weekly until slaughter. Transportation duration affected BW; T00 groups had a significantly higher BW than T04 and T10 transported birds but this effect lasted only until d 21. No clear effect on hematocrit, feed uptake, feed conversion ratio, or mortality was observed for birds transported up to 10 h. The decrease in weight in T10 birds was associated with less severe pododermatitis. Increasing age of the breeder flock was correlated with reduced egg fertility and hatchability, and also with higher quality and BW of hatched chicks. Chicks from older breeders also exhibited reduced mortality during the growout period.
Forster's tern chick survival in response to a managed relocation of predatory California gulls
Ackerman, Joshua T.; Herzog, Mark P.; Hartman, C. Alex; Herring, Garth
2014-01-01
Gull populations can severely limit the productivity of waterbirds. Relocating gull colonies may reduce their effects on nearby breeding waterbirds, but there are few examples of this management strategy. We examined gull predation and survival of Forster's tern (Sterna forsteri) chicks before (2010) and after (2011) the managed relocation of the largest California gull (Larus californicus) colony (24,000 adults) in San Francisco Bay, California. Overall, survival of radio-marked Forster's tern chicks from hatching to fledging was 0.22 ± 0.03 (mean ± SE), and daily survival rates increased with age. Gulls were the predominant predator of tern chicks, potentially causing 54% of chick deaths. Prior to the gull colony relocation, 56% of radio-marked and 20% of banded tern chicks from the nearest tern colony were recovered dead in the gull colony, compared to only 15% of radio-marked and 4% of banded chicks recovered dead from all other tern colonies. The managed relocation of the gull colony substantially increased tern chick survival (by 900%) in the nearby (3.8 km) reference tern colony (0.29 ± 0.10 in 2010 and 0.25 ± 0.09 in 2011). Among 19 tern nesting islands, fledging success was higher when gull abundance was lower at nearby colonies and when gull colonies were farther from the tern colony. Our results indicate that the managed relocation of gull colonies away from preferred nesting areas of sensitive waterbirds can improve local reproductive success, but this conservation strategy may shift gull predation pressure to other areas or species.
Stanley, V G; Gray, C; Daley, M; Krueger, W F; Sefton, A E
2004-01-01
Three trials were conducted to evaluate the effects of lasalocid, an anticoccidial feed additive (90.7 kg/ton); bacitracin, a growth-promoter (50 g/ton); and yeast culture residue (YCR) (1 kg/ton) on the performance of broiler chicks reared to 42 d of age on recycled litter. Recycled litter consisted of pine wood shavings containing droppings from chicks infected with 3 select strains of coccidia (Eimeria tenella, Eimeria maxima, and Eimeria acervulina). Response variables (BW, intestinal tract and litter coliform counts, cecal and liver relative weights, and litter moisture content) were recorded biweekly. Mean BW of chicks fed the diet supplemented with YCR was higher than that of the controls (P < 0.05) and comparable to that of the lasalocid-treated birds in all 3 trials. Mean BW of chicks in all treatment groups decreased uniformly as the litter aged and moisture content increased. The mean intestinal coliform population from YCR-treated chicks was lower (P < 0.05) than those of the control and lasalocid populations. The coliform count was consistently lower than that in chicks on a bacitracin-supplemented diet. Coliform counts from the control and lasalocid-treated birds did not differ. The litter coliform counts increased with increased use of the litter. Cecal and liver relative weights calculated from the chicks in trial 3 showed that only the liver was significantly affected by treatments. YCR appeared to be a viable alternative to bacitracin and lasalocid medication in enhancing growth of broiler chicks reared on recycled litter.
Wang, Xiao-Dong; Chen, Yuncai; Wolf, Miriam; Wagner, Klaus V.; Liebl, Claudia; Scharf, Sebastian H.; Harbich, Daniela; Mayer, Bianca; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M.; Baram, Tallie Z.; Müller, Marianne B.; Schmidt, Mathias V.
2011-01-01
Chronic stress evokes profound structural and molecular changes in the hippocampus, which may underlie spatial memory deficits. Corticotropin-releasing hormone (CRH) and CRH receptor 1 (CRHR1) mediate some of the rapid effects of stress on dendritic spine morphology and modulate learning and memory, thus providing a potential molecular basis for impaired synaptic plasticity and spatial memory by repeated stress exposure. Using adult male mice with CRHR1 conditionally inactivated in the forebrain regions, we investigated the role of CRH-CRHR1 signaling in the effects of chronic social defeat stress on spatial memory, the dendritic morphology of hippocampal CA3 pyramidal neurons, and the hippocampal expression of nectin-3, a synaptic cell adhesion molecule important in synaptic remodeling. In chronically stressed wild-type mice, spatial memory was disrupted, and the complexity of apical dendrites of CA3 neurons reduced. In contrast, stressed mice with forebrain CRHR1 deficiency exhibited normal dendritic morphology of CA3 neurons and mild impairments in spatial memory. Additionally, we showed that the expression of nectin-3 in the CA3 area was regulated by chronic stress in a CRHR1-dependent fashion and associated with spatial memory and dendritic complexity. Moreover, forebrain CRHR1 deficiency prevented the down-regulation of hippocampal glucocorticoid receptor expression by chronic stress but induced increased body weight gain during persistent stress exposure. These findings underscore the important role of forebrain CRH-CRHR1 signaling in modulating chronic stress-induced cognitive, structural and molecular adaptations, with implications for stress-related psychiatric disorders. PMID:21296667
Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb
Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.
2014-01-01
Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011
Sakharkar, Amul J; Singru, Praful S; Sarkar, Koustav; Subhedar, Nishikant K
2005-08-22
We studied the organization of the neuropeptide Y (NPY)-immunoreactive system in the forebrain of adult male cichlid fish Oreochromis mossambicus and its response to castration and testosterone replacement by using morphometric methods. Immunoreactivity for NPY was widely distributed in the forebrain, and the pattern generally resembled that in other teleosts. Whereas immunoreactivity was conspicuous in the ganglia of nervus terminalis (NT; or nucleus olfactoretinalis), a weak reaction was detected in some granule cells in the olfactory bulb and in the cells of area ventralis telencephali pars lateralis (Vl). Moderately to intensely immunoreactive cells were distinctly seen in the nucleus entopeduncularis (NE), nucleus preopticus (NPO), nucleus lateralis tuberis (NLT), paraventricular organ (PVO), and midbrain tegmentum (MT). NPY fibers were widely distributed in the forebrain. Castration for 10/15 days resulted in a drastic loss of immunoreactivity in the cells of NE (P<0.001) and a significant decrease (P<0.01) in their cell nuclear size. However, cell nuclei of the NT neurons showed a significant increase in size. A highly significant reduction in the NPY-immunoreactive fiber density (P<0.001) was observed in several areas of the forebrain. Although testosterone replacement reversed these changes, fibers in some areas showed supranormal responses. Immunoreactive cells in Vl, NPO, NLT, PVO, and MT and fiber density in some other areas did not respond to castration. We suggest that the NPY-immunoreactive elements that respond to castration and testosterone replacement may serve as the substrate for processing the positive feedback action of the steroid hormone. (c) 2005 Wiley-Liss, Inc.
Reassessment of the structural basis of the ascending arousal system
Fuller, Patrick M.; Sherman, David; Pedersen, Nigel P.; Saper, Clifford B.; Lu, Jun
2011-01-01
The “ascending reticular activating system” theory proposed that neurons in the upper brainstem reticular formation projected to forebrain targets that promoted wakefulness. More recent formulations have emphasized that most neurons at the pontomesencepahlic junction that participate in these pathways are actually in monoaminergic and cholinergic cell groups. However, cell-specific lesions of these cell groups have never been able to reproduce the deep coma seen after acute paramedian midbrain lesions that transect ascending axons at the caudal midbrain level. To determine whether the cortical afferents from the thalamus or the basal forebrain were more important in maintaining arousal, we first place large cell-body specific lesions in these targets. Surprisingly, extensive thalamic lesions had little effect on EEG or behavioral measures of wakefulness or on c-Fos expression by cortical neurons during wakefulness. In contrast, animals with large basal forebrain lesions were behaviorally unresponsive, had a monotonous sub-1 Hz EEG, and little cortical c-Fos expression during continuous gentle handling. We then retrogradely labeled inputs to the basal forebrain from the upper brainstem, and found a substantial input from glutamatergic neurons in the parabrachial nucleus and adjacent pre-coeruleus area. Cell specific lesions of the parabrachial-precoeruleus complex produced behavioral unresponsiveness, a monotonous sub-1Hz cortical EEG, and loss of cortical c-Fos expression during gentle handling. These experiments indicate that in rats the reticulo-thalamo-cortical pathway may play a very limited role in behavioral or electrocortical arousal, while the projection from the parabrachial nucleus and precoeruleus region, relayed by the basal forebrain to the cerebral cortex, may be critical for this process. PMID:21280045
Depboylu, Candan; Weihe, Eberhard; Eiden, Lee E.
2011-01-01
The simian immunodeficiency virus (SIV) macaque model resembles human HIV-AIDS and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenases 1 and 2 (COX1 and 2) in brains of SIV-infected macaques with and without encephalitis and antiretroviral therapy, and uninfected controls. COX1 but not COX2 was co-expressed with markers of cholinergic phenotype, i.e. choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human samples. COX1 was decreased in basal forebrain neurons in macaques with AIDS vs. uninfected and asymptomatic SIV-infected macaques. VAChT-positive fiber density was reduced in frontal, parietal and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2′,3′-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent, irreversible brain damage. PMID:22157616
Code of Federal Regulations, 2013 CFR
2013-01-01
... the bacteriological examination of cull chicks and poults for salmonella. 147.17 Section 147.17... poults for salmonella. The laboratory procedure described in this section is recommended for the bacteriological examination of cull chicks from egg-type and meat-type chicken flocks and waterfowl, exhibition...
Code of Federal Regulations, 2011 CFR
2011-01-01
... the bacteriological examination of cull chicks and poults for salmonella. 147.17 Section 147.17... poults for salmonella. The laboratory procedure described in this section is recommended for the bacteriological examination of cull chicks from egg-type and meat-type chicken flocks and waterfowl, exhibition...
Code of Federal Regulations, 2012 CFR
2012-01-01
... the bacteriological examination of cull chicks and poults for salmonella. 147.17 Section 147.17... poults for salmonella. The laboratory procedure described in this section is recommended for the bacteriological examination of cull chicks from egg-type and meat-type chicken flocks and waterfowl, exhibition...
Code of Federal Regulations, 2010 CFR
2010-01-01
... the bacteriological examination of cull chicks and poults for salmonella. 147.17 Section 147.17... poults for salmonella. The laboratory procedure described in this section is recommended for the bacteriological examination of cull chicks from egg-type and meat-type chicken flocks and waterfowl, exhibition...
Code of Federal Regulations, 2014 CFR
2014-01-01
... the bacteriological examination of cull chicks and poults for salmonella. 147.17 Section 147.17... poults for salmonella. The laboratory procedure described in this section is recommended for the bacteriological examination of cull chicks from egg-type and meat-type chicken flocks and waterfowl, exhibition...
USDA-ARS?s Scientific Manuscript database
The current study investigates the use of irradiated oocysts to protect broiler chicks, raised on litter, from infection with multiple species of Eimeria. In order to determine the optimum radiation dose for each Eimeria species, day- old chicks were immunized with oocysts of E. maxima, E. acervulin...
Harding, A.M.A.; van Pelt, Thomas I.; Lifjeld, J.T.; Mehlum, F.
2004-01-01
Understanding differences in male and female care in biparental care systems can help interpret the selective pressures that shape parental strategies. We examined Little Auk Alle alle parental care at a breeding colony during the chick-rearing and fledging periods by conducting observations on marked, known-sex pairs, and by examining the sex ratio of birds carrying food to the colony. Little Auks transitioned from biparental to mostly paternal-only care during late chick-rearing. Males delivered more meals and spent more time at the colony than females during late chick-rearing. Very few females were present at the colony by the end of chick-rearing and through the fledging period, and all marked parents observed accompanying their chick to sea were male. Chick mass loss prior to fledging was associated with the lack of provisioning by the female parent, rather than a reduction in feeding frequency by both parents. The occurrence of paternal-only care during and after fledging is discussed in relation to physiological, ecological and phylogenetic constraints.
Influence of climate change on productivity of American White Pelicans, Pelecanus erythrorhynchos
Sovada, Marsha A.; Igl, Lawrence D.; Pietz, Pamela J.; Bartos, Alisa J.
2014-01-01
In the past decade, severe weather and West Nile virus were major causes of chick mortality at American white pelican (Pelecanus erythrorhynchos) colonies in the northern plains of North America. At one of these colonies, Chase Lake National Wildlife Refuge in North Dakota, spring arrival by pelicans has advanced approximately 16 days over a period of 44 years (1965–2008). We examined phenology patterns of pelicans and timing of inclement weather through the 44-year period, and evaluated the consequence of earlier breeding relative to weather-related chick mortality. We found severe weather patterns to be random through time, rather than concurrently shifting with the advanced arrival of pelicans. In recent years, if nest initiations had followed the phenology patterns of 1965 (i.e., nesting initiated 16 days later), fewer chicks likely would have died from weather-related causes. That is, there would be fewer chicks exposed to severe weather during a vulnerable transition period that occurs between the stage when chicks are being brooded by adults and the stage when chicks from multiple nests become part of a thermally protective crèche.
Bryk, S Gheri; Gheri, G
2002-01-01
The glycoconjugates sugar residues content, distribution and changes in the enterocytes of different tracts of the developing intestine of the chick embryo and of 1-day-old chick were investigated, using a battery of seven HRP-conjugated lectins (DBA, SBA, PNA, WGA, ConA, LTA and UEAI). The results of the present research have shown the presence of a large amount of glycoconjugates sugar residues in the enterocytes of duodenal, ileal and colonic anlage, starting from the beginning of the second week of incubation. Differences were detected among the three investigated intestinal segments, as to the time of appearance of the glycoconjugates sugar residues in the enterocytes. The duodenal enterocytes showed the most precocious appearance of lectin-reactive material, followed by the ileal enterocytes and afterwards by colonic enterocytes. The duodenal enterocytes were characterised by the presence of SBA binding sites, which were not detectable in the duodenal enterocytes of the adult animal.
In vivo marking of single cells in chick embryos using photoactivation of GFP.
Stark, D A; Kulesa, P M
2005-10-01
Selective marking of a single cell within a living embryo is often difficult due to the inaccuracy and invasiveness of standard techniques. This unit describes a minimally invasive optical protocol that uses 405-nm laser light to photoactivate a variant of green fluorescent protein (PAGFP). This method takes advantage of the accessibility of the chick embryo to inject PAGFP into a region of interest and uses electroporation to deliver the construct into cells. This unit describes in detail how single and small groups of cells (n<10) that express PAGFP can be made visually distinguishable from the host population using the photoactivation process. Included is a means to maximize the fluorescence increase due to photoactivated GFP signal and to reduce photobleaching. Briefly outlined are previously developed chick culture and time-lapse imaging techniques to allow for the subsequent monitoring of photoactivated cell migratory behaviors. The technique has the potential to be a less-invasive, accurate tool for in vivo studies that involve following cell lineage and cell migration.
Ouchi, Y; Kakiuchi, T; Okada, H; Nishiyama, S; Tsukada, H
1999-03-15
To evaluate the effect of aniracetam, a potent modulator of the glutamatergic and cholinergic systems, on the altered cerebral glucose metabolism after lesioning of the basal forebrain, we measured the cerebral metabolic rate of glucose (CMRGlc) with positron emission tomography and the choline acetyltransferase (ChAT) activity in the frontal cortex of the lesioned rats after treating them with aniracetam. Continuous administration of aniracetam for 7 days after the surgery prevented CMRGlc reduction in the frontal cortex ipsilateral to the lesion while the lesioned rats without aniracetam showed significant CMRGlc reduction in the frontal cortex. The level of CMRGlc in the lesion-side basal forebrain was lower in all rats regardless of the aniracetam treatment. Biochemical studies showed that aniracetam did not alter the reduction in the frontal ChAT activity. These results showed that aniracetam prevents glucose metabolic reduction in the cholinergically denervated frontal cortex with little effect on the cortical cholinergic system. The present study suggested that a neurotransmitter system other than the cholinergic system, e.g. the glutamatergic system, plays a central role in the cortical metabolic recovery after lesioning of the basal forebrain.
Espinosa-Raya, Judith; Plata-Cruz, Noemí; Neri-Gómez, Teresa; Camacho-Arroyo, Ignacio; Picazo, Ofir
2011-02-23
It has been proposed that sex steroid hormones improve performance in some cognitive tasks by regulating the basal forebrain cholinergic function. However, the molecular basis of such influence still remains unknown. Current study analyzed the performance of ovariectomized rats in an autoshaping learning task after a short-term treatment with 17β-estradiol (E2: 4 and 40μg/kg) and/or progesterone (P4: 4mg/kg). These results were correlated with basal forebrain choline acetyltransferase (ChAT) and TrkA protein content. The high dose of E2 enhanced both acquisition in the autoshaping task and the content of ChAT and TrkA. P4 treatment increased ChAT and TrkA content without affecting performance of rats in the autoshaping learning task. Interestingly, the continuous and simultaneous administration of E2 plus P4 did not significantly modify behavioral and biochemical evaluated parameters. These results address the influence of both E2 and P4 on cholinergic and TrkA activity and suggest that the effects of ovarian hormones on cognitive performance involve basal forebrain cholinergic neurons. Copyright © 2010 Elsevier B.V. All rights reserved.
Expression of cardiac neural crest and heart genes isolated by modified differential display.
Martinsen, Brad J; Groebner, Nathan J; Frasier, Allison J; Lohr, Jamie L
2003-08-01
The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent outflow tract septation are critical events during vertebrate heart development. We have performed four modified differential display screens in the chick embryo to identify genes that may be involved in CNC, OFT, secondary heart field, and heart development. The screens included differential display of RNA isolated from three different axial segments containing premigratory cranial neural crest cells; of RNA from distal outflow tract, proximal outflow tract, and atrioventricular tissue of embryonic chick hearts; and of RNA isolated from left and right cranial tissues, including the early heart fields. These screens have resulted in the identification of the five cDNA clones presented here, which are expressed in the cardiac neural crest, outflow tract and developing heart in patterns that are unique in heart development.
Dynamic gene expression of Lin-28 during embryonic development in mouse and chicken.
Yokoyama, Shigetoshi; Hashimoto, Megumi; Shimizu, Hirohito; Ueno-Kudoh, Hiroe; Uchibe, Kenta; Kimura, Ichiro; Asahara, Hiroshi
2008-02-01
The Caenorhabditis elegans heterochronic gene lin-28 regulates developmental timing in the nematode trunk. We report the dynamic expression patterns of Lin-28 homologues in mouse and chick embryos. Whole mount in situ hybridization revealed specific and intriguing expression patterns of Lin-28 in the developing mouse and chick limb bud. Mouse Lin-28 expression was detected in both the forelimb and hindlimb at E9.5, but disappeared from the forelimb at E10.5, and finally from the forelimb and hindlimb at E11.5. Chicken Lin-28, which was first detected in the limb primordium at stage 15/16, was also downregulated as the stage proceeded. The amino acid sequences of mouse and chicken Lin-28 genes are highly conserved and the similar expression patterns of Lin-28 during limb development in mouse and chicken suggest that this heterochronic gene is also conserved during vertebrate limb development.
Newberry, Gretchen N; Swanson, David L
2018-01-01
Grasslands and riparian forests in southeastern South Dakota have been greatly reduced since historical times, primarily due to conversion to row-crop agriculture. Common Nighthawk ( Chordeiles minor ) nesting habitat includes grasslands, open woodlands and urban rooftops, but nesting sites in southeastern South Dakota are confined to rooftops, as natural nesting habitat is limited. Nighthawks nesting on exposed rooftop habitats may encounter thermal conditions that increase operative temperatures relative to vegetated land cover types. Mean humidity has increased and mean wind speed and cloud cover have decreased during the nighthawk breeding season from 1948 to 2016 in southeastern South Dakota. These changes might contribute to increasing operative temperatures at exposed rooftop nest sites and this could influence chick condition. We studied nest micro-climate and the plasma stress response for 24 rooftop-nesting nighthawk chicks from 17 nests during 2015 and 2016. High humidity prior to blood collection reduced both baseline and stress-induced plasma corticosterone (CORT). In contrast, high maximum temperatures during the day before sampling increased stress-induced CORT. The magnitude of the chick stress response was significantly negatively related to maximum wind speed for the week prior to CORT measurement. Other weather and micro-climate variables were not significant effectors of CORT metrics. Most chicks had low baseline CORT and were able to mount a stress response, but a subset of chicks ( n = 4) showed elevated baseline CORT and a negative association between the magnitude of stress response and ambient temperature. For this subset, mean ambient temperature for the day before sampling was significantly higher (2.3°C) than for chicks with typical baseline CORT levels. These data suggest that regional climate change trends could affect the ability of nighthawk chicks to mount a stress response, which, in turn, might influence the susceptibility of nighthawk chicks to climate change in the Northern Prairie region.
Comparison of nicotinic receptor binding and biotransformation of coniine in the rat and chick.
Forsyth, C S; Speth, R C; Wecker, L; Galey, F D; Frank, A A
1996-12-31
Coniine, an alkaloid from Conium maculatum (poison hemlock), is a known teratogen in many domestic species with maternal ingestion resulting in arthrogryposis of the offspring. We have previously shown that rats are not susceptible and rabbits only weakly susceptible to coniine-induced arthrogryposis. However, the chick embryo does provide a reproducible laboratory animal model of coniine-induced teratogenesis. The reason for this cross-species variation is unknown. The purpose of this study was to evaluate coniine binding to nicotinic receptors and to measure coniine metabolism in vitro between susceptible and non-susceptible species. Using the chick model, neither the peripheral nicotinic receptor antagonist d-tubocurarine chloride nor the central nicotinic receptor antagonist trimethaphan camsylate blocked the teratogenesis or lethality of 1.5% coniine (50 microliters/egg). Trimethaphan camsylate enhanced coniine-induced lethality in a dose-dependent manner. Neither nicotinic receptor blocker prevented nicotine sulfate-induced malformations but d-tubocurarine chloride did block lethality in a dose-dependent manner. Competition by coniine for [125I]-alpha-bungarotoxin to nicotinic receptors isolated from adult rat diaphragm and chick thigh muscle and competition by coniine for [3H]-cytisine to receptors from rat and chick brain were used to assess coniine binding to nicotinic receptors. The IC50 for coniine in rat diaphragm was 314 microM while that for chick leg muscle was 70 microM. For neuronal nicotinic receptors, the IC50s of coniine for maternal rat brain, fetal rat brain, and chick brain were 1100 microM, 820 microM, and 270 microM, respectively. There were no differences in coniine biotransformation in vitro by microsomes from rat or chick livers. Differences in apparent affinity of coniine for nicotinic receptors or differences in the quantity of the nicotinic receptor between the rat and chick may explain, in part, the differences in susceptibility of coniine-induced teratogenesis between these two species.
Wang, X; Peebles, E D; Morgan, T W; Harkess, R L; Zhai, W
2015-01-01
In a companion study, high amino acid (AA) or apparent metabolizable energy (AME) densities in the diets of broilers from 8 to 21 d of age were found to improve feed conversion. A total of 1,120 male Ross×Ross 708 chicks were randomly allocated to 80 pens (8 treatments, 10 replications per treatment, 14 chicks per pen). A 2×2×2 factorial arrangement of treatments was used to investigate the interaction among the protein source (high distillers dried grains with solubles diet [hDDGS] or high meat and bone meal diet [hMBM]), AA density (moderate or high), and AME density (2,998 or 3,100 kcal/kg) of diets on small intestine morphology. Duodenum, jejunum, and ileum samples from 2 chicks per pen were collected and measured individually at 21 d. Jejunum sections were processed for histological analysis. Chicks fed hDDGS diets exhibited longer small intestines than did chicks fed hMBM diets. Particularly, when chicks were fed high AA density diets, jejuna were longer in groups fed hDDGS diets than groups fed hMBM diets. Dietary treatments did not affect jejunum villus height, width, area, crypt depth, villus to crypt ratio, goblet cell size, or cell density. In birds fed diets containing a moderate AA and a high AME density, jejunum muscle layers of chicks fed hDDGS diets were thicker than those fed hMBM diets. Chicks exhibited a lower feed conversion ratio (FCR) and a higher BW gain when their crypts were shorter. In conclusion, an hDDGS diet may facilitate small intestine longitudinal growth in broilers, which may subsequently improve dietary nutrient absorption. In addition, broiler chicks with shallow intestinal crypts exhibited better growth performance. © 2014 Poultry Science Association Inc.
Disentangling effects of growth and nutritional status on seabird stable isotope ratios
Sears, J.; Hatch, Shyla A.; O'Brien, D. M.
2009-01-01
A growing number of studies suggest that an individual's physiology affects its carbon and nitrogen stable isotope signatures, obscuring a signal often assumed to be only a reflection of diet and foraging location. We examined effects of growth and moderate food restriction on red blood cell (RBC) and feather ??15N and ??13C in rhinoceros auklet chicks (Cerorhinca monocerata), a piscivorous seabird. Chicks were reared in captivity and fed either control (75 g/day; n = 7) or ~40% restricted (40 g/day; n = 6) amounts of high quality forage fish. We quantified effects of growth on isotopic fractionation by comparing ??15N and ??13C in control chicks to those of captive, non-growing subadult auklets (n = 11) fed the same diet. To estimate natural levels of isotopic variation, we also collected blood from a random sample of free-living rhinoceros auklet adults and chicks in the Gulf of Alaska (n = 15 for each), as well as adult feather samples (n = 13). In the captive experiment, moderate food restriction caused significant depletion in ??15N of both RBCs and feathers in treatment chicks compared to control chicks. Growth also induced depletion in RBC ??15N, with chicks exhibiting lower ??15N when they were growing the fastest. As growth slowed, ??15N increased, resulting in an overall pattern of enrichment over the course of the nestling period. Combined effects of growth and restriction depleted ??15N in chick RBCs by 0.92???. We propose that increased nitrogen-use efficiency is responsible for 15N depletion in both growing and food-restricted chicks. ??15N values in RBCs of free-ranging auklets fell within a range of only 1.03???, while feather ??15N varied widely. Together, our captive and field results suggest that both growth and moderate food restriction can affect stable isotope ratios in an ecologically meaningful way in RBCs although not feathers due to greater natural variability in this tissue. ?? 2008 Springer-Verlag.
Zhou, Zien; Shan, Jiehui; Zu, Jinyan; Chen, Zengai; Ma, Weiwei; Li, Lei; Xu, Jianrong
2016-06-10
The potential adverse effect of mobile phone radiation is currently an area of great concern in the field of public health. In the present study, we aimed to investigate the effect of mobile phone radiation (900 MHz radiofrequency) during hatching on postnatal social behaviors in chicks, as well as the effect on brain size and structural maturity estimated using 3.0 T magnetic resonance imaging. At day 4 of incubation, 76 normally developing chick embryos were divided into the control group (n = 39) and the radiation group (n = 37). Eggs in the radiation group were exposed to mobile phone radiation for 10 h each day from day 4 to 19 of incubation. Behavioral tests were performed 4 days after hatching. T2-weighted MR imaging and diffusion tensor imaging (DTI) were subsequently performed. The size of different brain subdivisions (telencephalon, optic lobe, brain stem, and cerebellum) and corresponding DTI parameters were measured. The Chi-square test and the student's t test were used for statistical analysis. P < 0.05 was considered statistically significant. Compared with controls, chicks in the radiation group showed significantly slower aggregation responses (14.87 ± 10.06 vs. 7.48 ± 4.31 s, respectively; P < 0.05), lower belongingness (23.71 ± 8.72 vs. 11.45 ± 6.53 s, respectively; P < 0.05), and weaker vocalization (53.23 ± 8.60 vs. 60.01 ± 10.45 dB/30 s, respectively; P < 0.05). No significant differences were found between the radiation and control group for brain size and structural maturity, except for cerebellum size, which was significantly smaller in the radiation group (28.40 ± 1.95 vs. 29.95 ± 1.41 cm(2), P < 0.05). The hatching and heteroplasia rates were also calculated and no significant difference was found between the two groups. Mobile phone radiation exposure during chick embryogenesis impaired social behaviors after hatching and possibly induced cerebellar retardation. This indicates potential adverse effects of mobile phone radiation on brain development.
Olfactory lateralization in the chick.
Vallortigara, G; Andrew, R J
1994-04-01
Chicks using their right nostril (and so with direct olfactory input to the right hemisphere), and presented simultaneously with two objects identical in visual appearance with the rearing object, and differing only in odour, chose that which smelled like the rearing object. Chicks using the left nostril chose equally readily but at random. Earlier work, using similar tests, has shown special interest of the right hemisphere in change in visual properties of familiar stimuli, suggesting that analysis of a wide range of properties of a familiar stimulus may be an important function of the right hemisphere in the chick, with consequent detection of novelty.
Evaluation of Alternative Euthanasia Methods of Neonatal Chickens
Gurung, Shailesh; White, Dima; Archer, Gregory; Zhao, Dan; Farnell, Yuhua; Byrd, J. Allen; Peebles, E. David
2018-01-01
Simple Summary Male layer chicks do not have economic value and are humanely killed after hatching. The layer industry is seeking alternative methods to humanely kill recently hatched male chicks. This study evaluated the use of gases or negative air pressure as a means of humane and viable alternatives to maceration. The treatments included carbon dioxide, nitrogen, reduced air pressure, and a negative control. The study showed that chicks exposed to treatments, gases or negative air pressure, did not differ significantly in terms of the physiological stress response. The use of carbon dioxide resulted in a faster onset of unconsciousness and ultimately death as compared to nitrogen or negative air pressure treatments. Abstract Hatched male layer chicks are currently euthanized by maceration in the United States. Public concerns on the use of maceration have led to the search for alternative methods. We hypothesized that gas inhalation and low atmospheric pressure stunning (LAPS) are viable and humane alternatives to instantaneous mechanical destruction. The objective of this study was to evaluate the physiological and behavioral responses of recently hatched male layer chicks when subjected to carbon dioxide, nitrogen inhalation, or LAPS. The study consisted of seven treatments: breathing air (NEG), 25% carbon dioxide (CO2), 50% CO2, 75% CO2, 90% CO2, 100% nitrogen (N2), or LAPS. Ten day-of-hatch, male layer chicks were randomly assigned to each treatment, and each treatment was replicated on ten different days. A custom-made vacuum system was used to reduce air pressure inside the chamber from 100.12 kPa to 15.3 kPa for the LAPS treatment. Serum corticosterone and serotonin levels were measured using commercially available competitive enzyme linked immunosorbent assay (ELISA). Latencies to loss of posture and motionlessness were determined from video recordings. The 25% and 50% CO2 treatments were discontinued after the first replication, as the majority of the chicks recovered. The chicks in the negative (NEG) group had significantly higher levels of corticosterone than the other four euthanasia treatments. On the other hand, the serotonin levels of chicks in the NEG group was significantly lower when compared to the other four euthanasia treatments. The latencies to loss of posture and motionlessness of chicks exposed to 75% and 90% CO2 were significantly shorter than those in the LAPS and N2 inhalation treatments. These data suggest that the stress responses of chicks to the CO2, N2, and LAPS treatments do not differ among each other. However, the CO2 inhalation method was faster in inducing loss of posture and motionlessness in chicks than the LAPS and N2 inhalation treatments. PMID:29522442
Nishikawa, K; Nakanishi, T; Aoki, C; Hattori, T; Takahashi, K; Taniguchi, S
1994-03-01
The expression pattern of chick Msx-1 and Msx-2 homeobox genes in craniofacial primordia was examined by in situ hybridization using cRNA probes. Both genes were expressed in the distal region of the facial primordia, where the distribution of Msx-2 expression was restricted distally within the Msx-1 expression domain. On the contrary, Msx-2 expression in the lateral choroid plexus and cranial skull was broader and more intensive than Msx-1 expression. Our findings suggest that these two genes cooperate to play differential roles in craniofacial development. Msx-2 protein was detected immunohistochemically, and its localization essentially corresponded to the mRNA expression pattern, substantiating the involvement of Msx-2 protein as a transcriptional regulator in developing limb and face.
Distinct Neural Stem Cell Populations Give Rise to Disparate Brain Tumors in Response to N-MYC
Swartling, Fredrik J.; Savov, Vasil; Persson, Anders I.; Chen, Justin; Hackett, Christopher S.; Northcott, Paul A.; Grimmer, Matthew R.; Lau, Jasmine; Chesler, Louis; Perry, Arie; Phillips, Joanna J.; Taylor, Michael D.; Weiss, William A.
2012-01-01
SUMMARY The proto-oncogene MYCN is mis-expressed in various types of human brain tumors. To clarify how developmental and regional differences influence transformation, we transduced wild-type or mutationally-stabilized murine N-mycT58A into neural stem cells (NSCs) from perinatal murine cerebellum, brain stem and forebrain. Transplantation of N-mycWT NSCs was insufficient for tumor formation. N-mycT58A cerebellar and brain stem NSCs generated medulloblastoma/primitive neuroectodermal tumors, whereas forebrain NSCs developed diffuse glioma. Expression analyses distinguished tumors generated from these different regions, with tumors from embryonic versus postnatal cerebellar NSCs demonstrating SHH-dependence and SHH-independence, respectively. These differences were regulated in-part by the transcription factor SOX9, activated in the SHH subclass of human medulloblastoma. Our results demonstrate context-dependent transformation of NSCs in response to a common oncogenic signal. PMID:22624711
Fused cerebral organoids model interactions between brain regions.
Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A
2017-07-01
Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.
Retinoic acid from the meninges regulates cortical neuron generation.
Siegenthaler, Julie A; Ashique, Amir M; Zarbalis, Konstantinos; Patterson, Katelin P; Hecht, Jonathan H; Kane, Maureen A; Folias, Alexandra E; Choe, Youngshik; May, Scott R; Kume, Tsutomu; Napoli, Joseph L; Peterson, Andrew S; Pleasure, Samuel J
2009-10-30
Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.
Cao, Hong; Saraf, Amit; Zweifel, Larry S.
2015-01-01
The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126
Teulier, Loïc; Tornos, Jérémy; Rouanet, Jean-Louis; Rey, Benjamin; Roussel, Damien
2013-05-01
During the cold austral winter, king penguin chicks are infrequently fed by their parents and thus experience severe nutritional deprivation under harsh environmental conditions. These energetic constraints lead to a range of energy sparing mechanisms balanced by the maintenance of efficient thermogenic processes. The present work investigated whether the high thermogenic capacities exhibited by winter-acclimatized king penguin chicks could be related to an increase in lipid substrate supply and oxidation in skeletal muscle, the main site of thermogenesis in birds. To test this hypothesis, we examined i) the effect of an experimental rise in plasma triglyceride on the whole metabolic rate in winter-acclimatized (WA) and de-acclimatized king penguin chicks kept at thermoneutrality (TN), and ii) investigated the fuel preference of muscle mitochondria. In vivo, a perfusion of a lipid emulsion induced a small 10% increase of metabolic rate in WA chicks but not in TN group. In vitro, the oxidation rate of muscle mitochondria respiring on lipid-derived substrate was +40% higher in WA chicks than in TN, while no differences were found between groups when mitochondria oxidized carbohydrate-derived substrate or succinate. Despite an enhanced fuel selection towards lipid oxidation in skeletal muscle, a rise of circulating lipids per se was not sufficient to fully unravel the thermogenic capacity of winter-acclimatized king penguin chicks. Copyright © 2013 Elsevier Inc. All rights reserved.
Kumar, R.; Brar, R. S.; Banga, H. S.
2017-01-01
The present study was undertaken to investigate the toxic effects of higher doses (1,00,000 IU i.e. 2.5 mg/kg body weight (BW)) of vitamin D3, concomitantly with bacterial endotoxins (lipopolysaccharides: LPS) to study the immunomodulatory potential of vitamin D3 in IBL-80 broiler chicks. The chicks were divided into four groups [group I (NSS), group II (LPS), group III (Vit. D3 + NSS), and group IV (Vit. D3 + LPS)] containing eight chicks in each group, treated accordingly for 21 days. Birds were kept under close observation for apparent clinical signs and symptoms. Clinically, vitamin D3 treated chicks were dull, off feed, showed polydipsia, polyuria, watery faeces, rigidity of limbs, severe dehydration, weakness and significant progressive emaciation. Grossly, the bones were soft whereas most organs revealed congestion and hemorrhages in visceral organs. Histopathologically, renal tubular epithelium showed coagulative necrosis and metastatic calcification. The lung parenchyma and bronchi showed hemorrhages, congestion with diffuse heterophilic cell infiltration in inter-alveolar septa and infiltration of heterophils in alveoli along with proteinacious fluid in LPS treated chicks of treatment group, suggesting immunomodulatory action of vitamin D3. Vitamin D3 treated chicks showed strong expression of Calbindin D28k in intestine and kidney but weak expression in lung, which can be linked to nephrocalcinosis seen in kidney and from its prospective role in cellular calcium homeostasis. PMID:29163645
Kumar, R; Brar, R S; Banga, H S
2017-01-01
The present study was undertaken to investigate the toxic effects of higher doses (1,00,000 IU i.e. 2.5 mg/kg body weight (BW)) of vitamin D 3 , concomitantly with bacterial endotoxins (lipopolysaccharides: LPS) to study the immunomodulatory potential of vitamin D 3 in IBL-80 broiler chicks. The chicks were divided into four groups [group I (NSS), group II (LPS), group III (Vit. D 3 + NSS), and group IV (Vit. D 3 + LPS)] containing eight chicks in each group, treated accordingly for 21 days. Birds were kept under close observation for apparent clinical signs and symptoms. Clinically, vitamin D 3 treated chicks were dull, off feed, showed polydipsia, polyuria, watery faeces, rigidity of limbs, severe dehydration, weakness and significant progressive emaciation. Grossly, the bones were soft whereas most organs revealed congestion and hemorrhages in visceral organs. Histopathologically, renal tubular epithelium showed coagulative necrosis and metastatic calcification. The lung parenchyma and bronchi showed hemorrhages, congestion with diffuse heterophilic cell infiltration in inter-alveolar septa and infiltration of heterophils in alveoli along with proteinacious fluid in LPS treated chicks of treatment group, suggesting immunomodulatory action of vitamin D 3 . Vitamin D 3 treated chicks showed strong expression of Calbindin D28k in intestine and kidney but weak expression in lung, which can be linked to nephrocalcinosis seen in kidney and from its prospective role in cellular calcium homeostasis.
Conjugated linoleic acid enhanced the immune function in broiler chicks.
Zhang, Haijun; Guo, Yuming; Yuan, Jianmin
2005-11-01
This study was undertaken to investigate the growth performance and immune responses of broiler chicks fed diets supplemented with conjugated linoleic acid (CLA). Two hundred and forty day-old Arbor Acre male broiler chicks were randomly allotted into four dietary treatments with different inclusion levels of CLA (0, 2.5, 5.0 or 10.0 g pure CLA/kg) for 6 weeks. Growth performance, lysozyme activity, peripheral blood mononuclear cell (PBMC) proliferation, prostaglandin E2 (PGE2) synthesis and antibody production were investigated. There were no significant differences in growth performance among treatments (P>0.05). Chicks fed 10.0 g CLA/kg diet produced 40 % and 49 % more lysozyme activity in serum and spleen than the control group at 21 d of age (P<0.05). Dietary CLA enhanced the PBMC proliferation in response to concanavalin A at the age of 21 and 42 d (P<0.05). Systemic and peripheral blood lymphocytic synthesis of PGE2 in chicks fed 10.0 g CLA/kg diet was significantly decreased by 57 % and 42 % compared to chicks fed control diet (P<0.05). Antibody production to sheep red blood cell and bovine serum albumin were elevated in either 2.5 or 10.0 g CLA/kg dietary treatments (P<0.05). The results indicated dietary CLA could enhance the immune response in broiler chicks, but did not alter the growth performance.
Nonshivering thermogenesis in king penguin chicks. II. Effect of fasting.
Duchamp, C; Barré, H; Rouanet, J L; Lanni, A; Cohen-Adad, F; Berne, G; Brebion, P
1991-12-01
The effect of fasting on the energy metabolism of skeletal muscle and liver was investigated in cold-acclimatized short-term fasting (STF) (3 wk) and naturally long-term fasting (LTF) (4-5 mo) king penguin chicks, both groups exhibiting nonshivering thermogenesis (NST). A comparison was made with nourished cold-acclimatized controls. In these chicks, no brown adipose tissue deposits could be found on electron-microscopic observations of fat deposits. Protein content and cytochrome oxidase (CO) activity of tissue homogenates were measured in liver and pectoralis and gastrocnemius muscles, as were protein content, CO activity, and respiration rates of mitochondria isolated from these organs. Fasting-induced protein loss affected the pectoralis more than the gastrocnemius muscle, thus preserving locomotor function. In STF chicks, specific mitochondrial protein content and specific tissue CO activity were preserved but total organ CO capacity was reduced by half in pectoralis and liver following the fall in organ mass. In LTF chicks, both specific and total CO activity were drastically reduced in muscles, whereas specific CO activity was preserved in liver. In these LTF chicks, muscle mitochondria showed an energized configuration associated with an increased area of inner membrane in gastrocnemius. A reduction of respiratory control ratio (RCR) was observed in subsarcolemmal muscle mitochondria of STF chicks, whereas intermyofibrillar and liver mitochondria kept high RCR values.(ABSTRACT TRUNCATED AT 250 WORDS)
Efficiency of several cultural methods and a chick bioassay to recover dry stressed Campylobacter
USDA-ARS?s Scientific Manuscript database
The aims of the study were to evaluate the efficacy of 5 enrichment procedures for recovery of dry-atmospheric-temperature stressed C. jejuni and C. coli and determine the viable status of the non-culturable strains using a chick bioassay. Sterile chick paper pads (PP) and filter papers (FP) were i...
Growth Retardation Of Chick Embryo Exposed To A Low Dose Of Electromagnetic Waves.
Siddiqi, Najam; John C, Muthusami; Norrish, Mark; Heming, Thomas
2016-01-01
The objectives of this study were to explore the effects of low dose of the nonionizing (REW) emitted by a mobile phone on the development of chick embryo. one hundred and twenty chick fertilized eggs were equally divided into a control and an exposed group. Sixty fertilized eggs were placed in an egg incubator with a mobile phone (SAR US: 1.10W/kg (head) 0.47 W/kg body) in silent mode having vibration disable mode. Mobile was called for a total of 20 minutes in 24 hours. Twenty embryos each were sacrificed at day 5, 10 and 15, mortality, wet body weight, head to rump length, eye diameter and morphological changes were noted. The control group, 60 eggs were incubated in the same conditions, having removed the phone. No mortality was noted. The experimental group exposed to REW showed subcutaneous haemorrhagic areas and significant growth retardation at day 10 as evidence by smaller eye diameter, wet weight and CR length than the control group. There were no significant growth differences at either day 5 or at day 15. Electromagnetic waves emitted from mobile phones even though for a very short duration of 20 minutes per day have affected the growth of the chick embryo at day 10 of incubation, Hence exposure of these waves are not 100% safe.
Druyan, S; Ruzal, M; Shinder, D; Haron, A
2018-06-01
The prenatal circulatory system is adaptive and capable of plasticity designed for the needs of the growing tissue. When a broiler embryo is faced with hypoxic stress, the process of angiogenesis in tissues begins. Exposure to hypoxic conditions of 17% oxygen during the chorioallantoic membrane (CAM) development (E5 to E12) affected the circulatory system and contributed to an increase in the blood oxygen carrying capacity. The present study aimed to evaluate the effects of hypoxic exposure during CAM development on post-hatch performance of broilers and to examine whether hypoxic exposure improved sustainability of birds exposed to acute heat stress.Two consecutive trials, with male broilers from each of the incubation treatments-optimal conditions and exposure to hypoxia of 15 or 17% oxygen, for 12 h/day, during CAM development-were conducted. In experiment 1, 60 male chicks from each group were raised in individual cages. In experiment 2, 160 male chicks from each group were raised in 40-chick pens until marketing. On d 35, 20 birds from each group were transferred to individual cages kept at a temperature of 23°C for 72 h, and then birds were exposed to 35°C for 5 hours. Body temperatures were measured at 0, 2, and 5 h of the heat exposure. In both experiments BW, feed intake, and FCR were recorded. At marketing, chicks were slaughtered, and relative weights of breast muscle, abdominal fat pad, heart, and liver were calculated.Hypoxia treatment resulted in a FCR advantage. Food intake was similar in all treatments, but groups exposed to hypoxia grew better than controls until the age of 35 days. Hypoxia-treated groups had higher relative breast, heart, and liver weights than controls. Body temperatures of hypoxia-treated chickens remained lower during heat stress exposure, and their mortality rate was lower as well. Intermittent exposure to moderate hypoxia during CAM development confers advantages to broilers in feed utilization efficiency and in coping with heat stress. It may be considered as a mitigating step in incubation to facilitate broilers in achieving their full growth potential.
Bradley, Nina S; Solanki, Dhara; Zhao, Dawn
2005-12-01
New imaging technologies are revealing ever-greater details of motor behavior in fetuses for clinical diagnosis and treatment. Understanding the form, mechanisms, and significance of fetal behavior will maximize imaging applications. The chick is readily available for experimentation throughout embryogenesis, making it an excellent model for this purpose. Yet in 40 yr since Hamburger and colleagues described chick embryonic behavior, we have not determined if motility belongs to a developmental continuum fundamental to posthatching behavior. This study examined kinematics and synchronized electromyography (EMG) during spontaneous limb movements in chicks at four time points between embryonic days (E) 9-18. We report that coordinated kinematic and/or EMG patterns were expressed at each time point. Variability observed in knee and ankle excursions at E15-E18 sorted into distinct in-phase and out-of-phase patterns. EMG patterns did not directly account for out-of-phase patterns, indicating study of movement biomechanics will be critical to fully understand motor control in the embryo. We also provide the first descriptions of 2- to 10-Hz limb movements emerging E15-E18 and a shift from in-phase to out-of-phase interlimb coordination E9-E18. Our findings revealed that coordinated limb movements persist across development and suggest they belong to a developmental continuum for locomotion. Limb patterns were consistent with the half center model for a locomotor pattern generator. Achievement of these patterns by E9 may thus indicate the embryo has completed a critical phase beyond which developmental progression may be less vulnerable to experimental perturbations or prenatal events.
Benowitz-Fredericks, Z.M.; Kitaysky, Alexander S.; Welcker, Jorg; Hatch, Scott A.
2013-01-01
In birds with facultative brood reduction, survival of the junior chick is thought to be regulated primarily by food availability. In black-legged kittiwakes (Rissa tridactyla) where parents and chicks are provided with unlimited access to supplemental food during the breeding season, brood reduction still occurs and varies interannually. Survival of the junior chick is therefore affected by factors in addition to the amount of food directly available to them. Maternally deposited yolk androgens affect competitive dynamics within a brood, and may be one of the mechanisms by which mothers mediate brood reduction in response to a suite of environmental and physiological cues. The goal of this study was to determine whether food supplementation during the pre-lay period affected patterns of yolk androgen deposition in free-living kittiwakes in two years (2003 and 2004) that varied in natural food availability. Chick survival was measured concurrently in other nests where eggs were not collected. In both years, supplemental feeding increased female investment in eggs by increasing egg mass. First-laid (“A”) eggs were heavier but contained less testosterone and androstenedione than second-laid (“B”) eggs across years and treatments. Yolk testosterone was higher in 2003 (the year with higher B chick survival) across treatments. The difference in yolk testosterone levels between eggs within a clutch varied among years and treatments such that it was relatively small when B chick experienced the lowest and the highest survival probabilities, and increased with intermediate B chick survival probabilities. The magnitude of testosterone asymmetry in a clutch may allow females to optimize fitness by either predisposing a brood for reduction or facilitating survival of younger chicks.
Walugembe, M; Hsieh, J C F; Koszewski, N J; Lamont, S J; Persia, M E; Rothschild, M F
2015-10-01
This experiment was conducted to evaluate the effects of feeding dietary fiber on cecal short-chain fatty acid (SCFA) concentration and cecal microbiota of broiler and laying-hen chicks. The lower fiber diet was based on corn-soybean meal (SBM) and the higher fiber diet was formulated using corn-SBM-dried distillers grains with solubles (DDGS) and wheat bran to contain 60.0 g/kg of both DDGS and wheat bran from 1 to 12 d and 80.0 g/kg of both DDGS and wheat bran from 13 to 21 d. Diets were formulated to meet or exceed NRC nutrient requirements. Broiler and laying-hen chicks were randomly assigned to the high and low fiber diets with 11 replicates of 8 chicks for each of the 4 treatments. One cecum from 3 chicks was collected from each replicate: one cecum underwent SCFA concentration analysis, one underwent bacterial DNA isolation for terminal restriction fragment length polymorphism (TRFLP), and the third cecum was used for metagenomics analyses. There were interactions between bird line and dietary fiber for acetic acid (P = 0.04) and total SCFA (P = 0.04) concentration. There was higher concentration of acetic acid (P = 0.02) and propionic acid (P < 0.01) in broiler chicks compared to laying-hen chicks. TRFLP analysis showed that cecal microbiota varied due to diet (P = 0.02) and chicken line (P = 0.03). Metagenomics analyses identified differences in the relative abundance of Helicobacter pullorum and Megamonas hypermegale and the genera Enterobacteriaceae, Campylobacter, Faecalibacterium, and Bacteroides in different treatment groups. These results provide insights into the effect of dietary fiber on SCFA concentration and modulation of cecal microbiota in broiler and laying-hen chicks. © 2015 Poultry Science Association Inc.
Factors affecting chick provisioning by Caspian Terns nesting in the Columbia River estuary
Anderson, Scott K.; Roby, D.D.; Lyons, Donald E.; Collis, K.
2005-01-01
We investigated factors affecting chick provisioning by radio-tagged Caspian Terns (Sterna caspia) nesting in a large colony on East Sand Island in the Columbia River estuary during 2001. Caspian Tern predation on juvenile salmonids (Oncorhynchus spp.) in the estuary prompted resource managers to relocate ca. 9,000 pairs of terns nesting on Rice Island (river km 34) to East Sand Island (river km 8), where terns were expected to consume fewer salmonids in favor of marine forage fishes. This study investigated factors influencing foraging success, diet composition, and overall reproductive success at the managed Caspian Tern colony. Our results indicated that daytime colony attendance by nesting terns averaged 64% and decreased throughout the chick-rearing period, while duration of foraging trips averaged 47 min and increased during the same period; these seasonal changes were more strongly related to date than chick age. Average meal delivery rates to 2-chick broods (0.88 meals h-1) were 2.6 times greater than to 1-chick broods (0.33 meals h-1). Parents delivered more juvenile salmonids to chicks during ebb tides than flood tides, but meal delivery rates to the nest remained constant, suggesting diet composition tracks relative availability of prey species. Foraging trips resulting in delivery of juvenile salmonids averaged 68% longer than foraging trips for schooling marine forage fishes, indicating higher availability of marine prey near the colony. High availability of marine forage fish in the Columbia River estuary during 2001 was apparently responsible for high colony attendance, short foraging trips, high chick meal delivery rates, and high nesting success of Caspian Terns on East Sand Island.
NASA Astrophysics Data System (ADS)
Tavares, P. C.; Kelly, A.; Maia, R.; Lopes, R. J.; Serrão Santos, R.; Pereira, M. E.; Duarte, A. C.; Furness, R. W.
2008-03-01
Causes of variation in mobilization of mercury into Black-winged Stilt Himantopus himantopus chicks were studied through analysis of stable isotope ratios of carbon and nitrogen. Blood and breast feathers were collected from chicks in coastal saltpans during successive breeding seasons. Detritus samples and potential prey (macroinvertebrates) were also collected. Total mercury concentrations and stable isotope signatures were measured using atomic absorption spectroscopy and isotope ratio mass spectrometry respectively. Mercury levels in Chironomidae, Corixidae and Hydrophilidae correlated with mercury levels in chick feathers. Differences of δ 15N signatures between macroinvertebrate groups indicated that they belong to different trophic levels. δ 15N signatures of invertebrates correlated with mercury levels in invertebrates and chicks, but not with δ 15N signatures in chicks. Between-group and between-site differences of δ 15N signatures and mercury levels in invertebrates suggested that they contribute differently to mercury mobilization into chicks, and their relative contribution depends on prey availability in each site. Inter-site differences in the biomagnification factor reinforced that idea. δ 13C signatures in invertebrates marked a larger range of carbon sources than just detritus. Variation of water inflow regime and prey availability may cause between-group and between-site differences of δ 13C signatures in prey. Discrepancies between feather and blood for δ 13C signatures in Praias-Sado and Vaia suggested that temporal variation of prey availability may be the main factor affecting mercury mobilization into chicks in both those cases, since their water inflow regimes are the same. The lowest levels of δ 13C signatures in Vau suggested that water inflow regime may be the main factor in this case, since no discrepancy existed in δ 13C signatures between blood and feather.
Efficacy of pine leaves as an alternative bedding material for broiler chicks during summer season
Sharma, Gourav; Khan, Asma; Singh, Surender; Anand, Ashok Kumar
2015-01-01
Aim: The aim was to assess the efficacy of pine leaves as an alternative bedding material on the performance of broiler chicks. Materials and Methods: The present study was conducted in summer. Total 120, day old Vencobb straight run chicks were procured, and after 5 days of brooding, chicks were randomly distributed into four treatment groups viz. paddy husk (Group I), paddy straw (Group II), pine leaves (Group III), and combination of paddy straw and pine leaves (Group IV), each having 30 chicks with 3 replicates of 10 chicks each. Chicks were reared under intensive conditions in houses that have a semi-controlled environment, with optimum temperature and adequate ventilation. Food and water were provided as per NRC (1994) requirement. Results: The average body weight after 6 weeks of the experiment was 2018.83±31.11, 1983.80±33.27, 2007.36±35.73, and 1938.43±36.35 g. The bedding type had no significant effect on the carcass characteristics viz. evisceration rate and proportion of cut-up parts of the carcass except giblet yield. The experiment suggested that performance of broiler chicks reared on paddy straw and pine leaves as litter material, had improved body weight and feed conversion ratio as compared to rearing on paddy husk as bedding material. Bacterial count, parasitic load and the N, P, K value of manure of different bedding material shows no significant difference. Conclusion: Pine leaves have a potential to be used as an alternative source of litter material to economize poultry production in a sustainable way, so as to make poultry farming as a profitable entrepreneur. PMID:27047021
Dietary lead: effects on hepatic fatty acid composition in chicks.
Donaldson, W E; Leeming, T K
1984-03-30
Arbor Acre broiler chicks were fed diets containing 0, 500, 750, 1000, 2000, or 4000 ppm lead (as Pb acetate X 3 H2O) from day-old through 21 days of age. There were 8 groups of 10 male chicks per lead level. Eight chicks from each dietary lead level were killed at 21 days, and hepatic fatty acid composition was determined for each chick by gas-liquid chromatography. Increasing dietary lead levels decreased the concentrations of 16:1 and 18:1 fatty acids (first No. = No. carbons; second No. = No. double bonds) and increased the concentrations of 18:0 and 20:4. The concentration of 18:2 fatty acids did not differ significantly from control values for any level of lead. However, the ratio 18:2/20:4 declined from a control value of 3.3 to approximately 2 for all lead treatments. The ratio of saturated/monoenoic fatty acids increased with dietary lead levels above 1000 ppm. In a second experiment 10 male broiler chicks per treatment were fed either a control diet or the control diet plus 2000 ppm lead, 60 ppm cadmium, 500 ppm mercury, or 10 ppm selenium (as Pb acetate X 3 H2O, CdSO4, HgCl2, or Na2SeO3, respectively) for 21 days. Six chicks from each group were killed at 21 days, and hepatic fatty acid composition was determined for each chick. In comparison to control, the ratio 18:2/20:4 was lowered by lead but unaffected by cadmium, mercury, and selenium. The data suggest that lead may increase tissue peroxidation (as noted by other workers) via a relative increase of 20:4 fatty acid and that a decrease of hepatic ratio 18:2/20:4 may be a specific sign of lead toxicity.
Influence of medium-chain triglycerides on lipid metabolism in the chick.
Leveille, G A; Pardini, R S; Tillotson, J A
1967-11-01
The effect of corn oil, coconut oil, and medium-chain triglyceride (MCT, a glyceride mixture consisting almost exclusively of fatty acids of 8 and 10 carbons in length) ingestion on lipid metabolism was studied in chicks. In chicks fed cholesterol-free diets, MCT ingestion elevated plasma total lipids and cholesterol and depressed liver total lipids and cholesterol when compared to chicks receiving the corn oil diet. As a consequence of the opposite effects of MCT ingestion on plasma and liver cholesterol and total lipids, the plasma-liver cholesterol pool was not altered. When cholesterol was included in the diets, dietary MCT depressed liver and plasma total lipids and cholesterol as compared with corn oil, consequently also lowered the plasmaliver cholesterol pool.The in vitro cholesterol and fatty acid synthesis from acetate-1-(14)C was higher in liver slices from chicks fed MCT than in those from chicks fed corn oil. The percentage of radioactivity from acetate-1-(14)C incorporated into the carboxyl carbon of fatty acids by liver slices was not altered by MCT feeding, indicating that the increased acetate incorporation represented de novo fatty acid synthesis. The conversion of palmitate-1-(14)C to C(18) acids was increased in liver of chicks fed MCT, implying that fatty acid chain elongating activity was also increased. Studies on the conversion of stearate-2-(14)C to mono- and di-unsaturated C(18) acids showed that hepatic fatty acid desaturation activity was enhanced by MCT feeding. Data are presented on the plasma and liver fatty acid composition of chicks fed MCT-, corn oil-, or coconut oil-supplemented diets.
Marchetto, G S; Henry, H L
1997-02-01
The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.
Timmons, J.; Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Cantor, A.; Ford, M.; Dawson, K. A.
2017-01-01
Abstract The goal of this study was to determine the effects of feeding a zinc (Zn) deficient diet to broiler chicks for 96 h post-hatch followed by feeding diets with different Zn sources and supplemental levels (5 to 21 d) on the growth performance, tissue, and excreta Zn content. At the start of the study, four hundred 20-day-old male broiler chicks were divided into two groups. One group was fed a corn soybean meal based diet containing 25 mg of Zn/kg (imprinting diet, ID). The second group was fed the basal diet supplemented with 40 mg of Zn/kg from Zn oxide (ZnO) (non-imprinting diet, NID). Both groups were fed these diets for 96 h. At d 5, chicks from each group were randomly assigned to the dietary treatments consisting of the basal diet alone or the basal diet supplemented with 8 or 40 mg/kg Zn as ZnO or Zn proteinate. Main effects of post-hatch Zn ID were observed on feed intake and G:F. ID decreased (P < 0.05) feed intake and improved (P < 0.05) the gain to feed ratio (G:F) of 14 and 21 d old chicks compared to G:F of chicks fed NID. Additionally, G:F for 14 and 21 d was improved (P < 0.05) by interaction of Zn source × level. Furthermore, at d 21 chicks fed the ID had a lower (P < 0.05) Zn content in the tibia ash and excreta, and a higher (P < 0.05) Zn content in the pancreas tissue compared to chicks fed NID. These results suggest that Zn imprinting can affect body Zn stores and early performance. PMID:27664197
Axonal abnormalities in vanishing white matter.
Klok, Melanie D; Bugiani, Marianna; de Vries, Sharon I; Gerritsen, Wouter; Breur, Marjolein; van der Sluis, Sophie; Heine, Vivi M; Kole, Maarten H P; Baron, Wia; van der Knaap, Marjo S
2018-04-01
We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single- and double-mutant mice and patient brain tissue. In addition, astrocyte-forebrain co-culture studies were performed. In the corpus callosum of Eif2b5- mutant mice, myelin sheath thickness, axonal diameter, and G-ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G-ratio in Eif2b5- mutant mice. In more severely affected Eif2b4-Eif2b5 double-mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5 -mutant mice. Co-cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.
Early developmental gene enhancers affect subcortical volumes in the adult human brain.
Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E
2016-05-01
Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Embryonic ablation of neuronal VGF increases energy expenditure and reduces body weight
Jiang, Cheng; Lin, Wei-Jye; Sadahiro, Masato; Shin, Andrew C.; Buettner, Christoph; Salton, Stephen R.
2016-01-01
Germline ablation of VGF, a secreted neuronal, neuroendocrine, and endocrine peptide precursor, results in lean, hypermetabolic, and infertile adult mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes (Hahm et al., 1999, 2002). To assess whether this phenotype is predominantly driven by reduced VGF expression in developing and/or adult neurons, or in peripheral endocrine and neuroendocrine tissues, we generated and analyzed conditional VGF knockout mice, obtained by mating loxP-flanked (floxed) Vgf mice with either pan-neuronal Synapsin-Cre- or forebrain alpha-CaMKII-Cre-recombinase-expressing transgenic mice. Adult male and female mice, with conditional ablation of the Vgf gene in embryonic neurons had significantly reduced body weight, increased energy expenditure, and were resistant to diet-induced obesity. Conditional forebrain postnatal ablation of VGF in male mice, primarily in adult excitatory neurons, had no measurable effect on body weight nor on energy expenditure, but led to a modest increase in adiposity, partially overlapping the effect of AAV-Cre-mediated targeted ablation of VGF in the adult ventromedial hypothalamus and arcuate nucleus of floxed Vgf mice (Foglesong et al., 2016), and also consistent with results of icv delivery of the VGF-derived peptide TLQP-21 to adult mice, which resulted in increased energy expenditure and reduced adiposity (Bartolomucci et al., 2006). Because the lean, hypermetabolic phenotype of germline VGF knockout mice is to a great extent recapitulated in Syn-Cre+/−,Vgfflpflox/flpflox mice, we conclude that the metabolic profile of germline VGF knockout mice is largely the result of VGF ablation in embryonic CNS neurons, rather than peripheral endocrine and/or neuroendocrine cells, and that in forebrain structures such as hypothalamus, VGF and/or VGF-derived peptides play uniquely different roles in the developing and adult nervous system. PMID:28024880
Nakamura, Kouichi; Hioki, Hiroyuki; Fujiyama, Fumino; Kaneko, Takeshi
2005-11-21
Vesicular glutamate transporter 1 (VGluT1) and VGluT2 accumulate neurotransmitter glutamate into synaptic vesicles at presynaptic terminals, and their antibodies are thus considered to be a good marker for glutamatergic axon terminals. In the present study, we investigated the postnatal development and maturation of glutamatergic neuronal systems by single- and double-immunolabelings for VGluT1 and VGluT2 in mouse forebrain including the telencephalon and diencephalon. VGluT2 immunoreactivity was widely distributed in the forebrain, particularly in the diencephalon, from postnatal day 0 (P0) to adulthood, suggesting relatively early maturation of VGluT2-loaded glutamatergic axons. In contrast, VGluT1 immunoreactivity was intense only in the limbic regions at P0, and drastically increased in the other telencephalic and diencephalic regions during three postnatal weeks. Interestingly, VGluT1 immunoreactivity was frequently colocalized with VGluT2 immunoreactivity at single axon terminal-like profiles in layer IV of the primary somatosensory area from P5 to P10 and in the ventral posteromedial thalamic nucleus from P0 to P14. This was in sharp contrast to the finding that almost no colocalization was found in glomeruli of the olfactory bulb, patchy regions of the caudate-putamen, and the ventral posterolateral thalamic nucleus, where moderate to intense immunoreactivities for VGluT1 and VGluT2 were intermingled with each other in neuropil during postnatal development. The present results indicate that VGluT2-loaded glutamatergic axons maturate earlier than VGluT1-laden axons in the mouse telencephalic and diencephalic regions, and suggest that VGluT1 plays a transient developmental role in some glutamatergic systems that mainly use VGluT2 in the adulthood. (c) 2005 Wiley-Liss, Inc.
Form preferences in successive discrimination learning of young chicks.
Zolman, J F; Pursley, D G; Hall, J A; Sahley, C L
1975-12-01
In four experiments the effects of form and orientation pecking preferences of 1- and 3-day old Vantress X Arbor Acre chicks on successive discrimination learning were determined, using heat reinforcement. Major findings were as follows: (a) The young chick has both circle and verticle orientation pecking preferences that are present during at least the first 3 days after hatching; (b) when either of these preferred cues is the nonreinforced cue, the young chick has difficulty in learning not to respond to it but learns quickly not to respond to an unpreferred cue (e.g., triangle and horizontal oriented dots or bar); and (c) these pecking preferences can be modified by heat reinforcement, and the effects of this conditioning is evidenct in subsequent extinction and retention tests. The main conclusion from these experiments is that form and orientation preferences, like brightness and color preferences, are important developmental constraints on conditioning of the young chick.
Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.
Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen
2015-12-09
In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals. Copyright © 2015 the authors 0270-6474/15/3516259-13$15.00/0.