Application and Development of Microstructured Solid-State Neutron Detectors
NASA Astrophysics Data System (ADS)
Weltz, Adam D.
Neutron detectors are useful for a number of applications, including the identification of nuclear weapons, radiation dosimetry, and nuclear reactor monitoring, among others. Microstructured solid-state neutron detectors (SSNDs) developed at RPI have the potential to reinvent a variety of neutron detection systems due to their compact size, zero bias requirement, competitive thermal neutron detection efficiency (up to 29%), low gamma sensitivity (below the PNNL recommendation of 10-6 corresponding to a 10 mR/hr gamma exposure), and scalability to large surface areas with a single preamplifier (<20% loss in relative efficiency from 1 to 16 cm2). These microstructured SSNDs have semiconducting substrate etched with a repeated, three-dimensional microstructure of high aspect ratio holes filled with 10B. MCNP simulations optimized the dimensions of each microstructure geometry for each detector application, improving the overall performance. This thesis outlines the development of multiple, novel neutron detection applications using microstructured SSNDs developed at RPI. The Directional and Spectral Neutron Detection System (DSNDS) is a modular and portable system that uses rings of microstructured SSNDs embedded in polyethylene in order to gather real-time information about the directionality and spectrum of an unidentified neutron source. This system can be used to identify the presence of diverted special nuclear material (SNM), determine its position, and gather spectral information in real-time. The compact and scalable zero-bias SSNDs allow for customization and modularity of the detector array, which provides design flexibility and enhanced portability. Additionally, a real-time personal neutron dosimeter is a wearable device that uses a combination of fast and thermal microstructured SSNDs in order to determine an individual's neutron dose rate. This system demonstrates that neutron detection systems utilizing microstructured SSNDs are applicable for personal neutron dosimetry. The development of these systems using the compact, zero-bias microstructured SSNDs lays the groundwork for a new generation of neutron detection tools, outlines the challenges and design considerations associated with the implementation of these devices, and demonstrates the value that these detectors bring to the future of neutron detection systems.
NASA Astrophysics Data System (ADS)
Acharya, Ranadip; Das, Suman
2015-09-01
This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.
Computational discovery of extremal microstructure families
Chen, Desai; Skouras, Mélina; Zhu, Bo; Matusik, Wojciech
2018-01-01
Modern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them is very difficult and is generally done by hand. We propose a computational approach to discover families of microstructures with extremal macroscale properties automatically. Using efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically realizable microstructures. Our system then clusters microstructures with common topologies into families. Parameterized templates are eventually extracted from families to generate new microstructure designs. We demonstrate these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure families with extremal elastic material properties. Our study opens the way for the completely automated discovery of extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and magnetic properties. PMID:29376124
Feehan, Lynne; Buie, Helen; Li, Linda; McKay, Heather
2013-12-24
High Resolution-Peripheral Quantitative Computed Tomography (HR-pQCT) is an emerging technology for evaluation of bone quality in Rheumatoid Arthritis (RA). However, there are limitations with standard HR-pQCT imaging protocols for examination of regions of bone commonly affected in RA. We developed a customized protocol for evaluation of volumetric bone mineral density (vBMD) and microstructure at the metacarpal head (MH), metacarpal shaft (MS) and ultra-ultra-distal (UUD) radius; three sites commonly affected in RA. The purpose was to evaluate short-term measurement precision for bone density and microstructure at these sites. 12 non-RA participants, individuals likely to have no pre-existing bone damage, consented to participate [8 females, aged 23 to 71 y [median (IQR): 44 (28) y]. The custom protocol includes more comfortable/stable positioning and adapted cortical segmentation and direct transformation analysis methods. Dominant arm MH, MS and UUD radius scans were completed on day one; repeated twice (with repositioning) three to seven days later. Short-term precision for repeated measures was explored using intraclass correlational coefficient (ICC), mean coefficient of variation (CV%), root mean square coefficient of variation (RMSCV%) and least significant change (LSC%95). Bone density and microstructure precision was excellent: ICCs varied from 0.88 (MH2 trabecular number) to .99 (MS3 polar moment of inertia); CV% varied from < 1 (MS2 vBMD) to 6 (MS3 marrow space diameter); RMSCV% varied from < 1 (MH2 full bone vBMD) to 7 (MS3 marrow space diameter); and LSC%95 varied from 2 (MS2 full bone vBMD to 21 (MS3 marrow space diameter). Cortical porosity measures were the exception; RMSCV% varying from 19 (MS3) to 42 (UUD). No scans were stopped for discomfort. 5% (5/104) were repeated due to motion during imaging. 8% (8/104) of final images had motion artifact graded > 3 on 5 point scale. In our facility, this custom protocol extends the potential for in vivo HR-pQCT imaging to assess, with high precision, regional differences in bone quality at three sites commonly affected in RA. Our methods are easy to adopt and we recommend other users of HR-pQCT consider this protocol for further evaluations of its precision and feasibility in their imaging facilities.
Connectivity Measures in EEG Microstructural Sleep Elements.
Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K
2016-01-01
During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease.
Connectivity Measures in EEG Microstructural Sleep Elements
Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.
2016-01-01
During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease. PMID:26924980
Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John
2013-07-21
Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.
Ramakrishnaiah, Ravikumar; Al Kheraif, Abdulaziz Abdullah; Mohammad, Ashfaq; Divakar, Darshan Devang; Kotha, Sunil Babu; Celur, Sree Lalita; Hashem, Mohamed I; Vallittu, Pekka K; Rehman, Ihtesham Ur
2017-05-01
The current study was aimed to fabricate customized root form dental implant using additive manufacturing technique for the replacement of missing teeth. The root form dental implant was designed using Geomagic™ and Magics™, the designed implant was directly manufactured by layering technique using ARCAM A2™ electron beam melting system by employing medical grade Ti-6Al-4V alloy powder. Furthermore, the fabricated implant was characterized in terms of certain clinically important parameters such as surface microstructure, surface topography, chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce extremely pure form of customized titanium dental implants, the rough and porous surface texture obtained is expected to provide better initial implant stabilization and superior osseointegration.
The optics inside an automated single molecule array analyzer
NASA Astrophysics Data System (ADS)
McGuigan, William; Fournier, David R.; Watson, Gary W.; Walling, Les; Gigante, Bill; Duffy, David C.; Rissin, David M.; Kan, Cheuk W.; Meyer, Raymond E.; Piech, Tomasz; Fishburn, Matthew W.
2014-02-01
Quanterix and Stratec Biomedical have developed an instrument that enables the automated measurement of multiple proteins at concentration ~1000 times lower than existing immunoassays. The instrument is based on Quanterix's proprietary Single Molecule Array technology (Simoa™ ) that facilitates the detection and quantification of biomarkers previously difficult to measure, thus opening up new applications in life science research and in-vitro diagnostics. Simoa is based on trapping individual beads in arrays of femtoliter-sized wells that, when imaged with sufficient resolution, allows for counting of single molecules associated with each bead. When used to capture and detect proteins, this approach is known as digital ELISA (Enzyme-linked immunosorbent assay). The platform developed is a merger of many science and engineering disciplines. This paper concentrates on the optical technologies that have enabled the development of a fully-automated single molecule analyzer. At the core of the system is a custom, wide field-of-view, fluorescence microscope that images arrays of microwells containing single molecules bound to magnetic beads. A consumable disc containing 24 microstructure arrays was developed previously in collaboration with Sony DADC. The system cadence requirements, array dimensions, and requirement to detect single molecules presented significant optical challenges. Specifically, the wide field-of-view needed to image the entire array resulted in the need for a custom objective lens. Additionally, cost considerations for the system required a custom solution that leveraged the image processing capabilities. This paper will discuss the design considerations and resultant optical architecture that has enabled the development of an automated digital ELISA platform.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.
Liu, Fang; Velikina, Julia V; Block, Walter F; Kijowski, Richard; Samsonov, Alexey A
2017-02-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model
Velikina, Julia V.; Block, Walter F.; Kijowski, Richard; Samsonov, Alexey A.
2017-01-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexibl representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplifie treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure. PMID:28113746
Towards a metadata scheme for the description of materials - the description of microstructures
NASA Astrophysics Data System (ADS)
Schmitz, Georg J.; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
Towards a metadata scheme for the description of materials - the description of microstructures.
Schmitz, Georg J; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
Reading from Scratch - A Vision-System for Reading Data on Micro-structured Surfaces
NASA Astrophysics Data System (ADS)
Dragon, Ralf; Becker, Christian; Rosenhahn, Bodo; Ostermann, Jörn
Labeling and marking industrial manufactured objects gets increasingly important nowadays because of novel material properties and plagiarism. As part of the Collaborative Research Center 653 which investigates micro-structured metallic surfaces for inherent mechanical data storage, we research into a stable and reliable optical readout of the written data. Since this comprises a qualitative surface reconstruction, we use directed illumination to make the micro structures visible. Then we apply a spectral analysis to obtain image partitioning and perform signal tracking enhanced by a customized Hidden Markov Model. In this paper, we derive the algorithms used and demonstrate reading data from a surface with 1.6kbit/cm2 from a micro-structured groove which varies by only 3μ m in depth (thus a “scratch”). We demonstrate the system’s robustness with experiments with real and artificially-rendered surfaces.
Advances in Integrated Computational Materials Engineering "ICME"
NASA Astrophysics Data System (ADS)
Hirsch, Jürgen
The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crăciunescu, Corneliu M., E-mail: corneliu.craciunescu@upt.ro; Mitelea, Ion, E-mail: corneliu.craciunescu@upt.ro; Budău, Victor, E-mail: corneliu.craciunescu@upt.ro
Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related tomore » the interfacial stress developed on cooling from deposition temperature.« less
[Application and outlook of three-dimensional printing in prosthetic dentistry].
Sun, Y C; Li, R; Zhou, Y S; Wang, Y
2017-06-09
At present, three-dimensional (3D) printing has been applied in many aspects in the field of prosthodontics, such as dental models, wax patterns, guide plates, dental restoration and customized implants. The common forming principles include light curing, sintering and melting-condensation, the materials include pure wax, resin, metal and ceramics. However, the printing precision and the strength of multi-material integrated forming, remains to be improved. In addition, as a technology by which the internal structure of a material can be customized manufacturing, further advantage of 3D printing used in the manufacture of dental restoration lies in the customization functional bionic micro-structures, but the related research is still in its infancy. The review briefly summarizes the commonly used 3D printing crafts in prosthetic dentistry, and details clinical applications and evaluations, provides references for clinical decision and further research.
Custom-made, root-analogue direct laser metal forming implant: a case report.
Mangano, Francesco Guido; Cirotti, Bruno; Sammons, Rachel Lilian; Mangano, Carlo
2012-11-01
In the last few years, the application of digital technology in dentistry has become widespread with the introduction of cone beam computed tomography (CBCT) scan technology, and considerable progress has been made in the development of computer-aided design/ computer-aided manufacturing (CAD/CAM) techniques, including direct laser metal forming (DLMF). DLMF is a technology which allows solids with complex geometry to be produced by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model. For dental implants, the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer by layer, the desired object. At present, the combined use of CBCT 3D data and CAD/CAM technology makes it possible to manufacture custom-made, root-analogue implants (RAI) with sufficient precision. This report demonstrates the successful clinical use of a custom-made, root-analogue DLMF implant. CBCT images of a non-restorable right maxillary first premolar were acquired and transformed into a 3D model. From this model, a custom-made, root-analogue DLMF implant was fabricated. Immediately after tooth extraction, the RAI with a pre-operatively designed abutment was placed in the extraction socket and restored with a single crown. At the 1-year follow-up examination, the RAI showed a good functional and aesthetic integration. The introduction of DLMF technology signals the start of a new revolutionary era for implant dentistry as its immense potential for producing highly complex macro- and microstructures is receiving vast interest in different medical fields.
NASA Astrophysics Data System (ADS)
Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu
2017-11-01
Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.
Zhang, Peng; Maeda, Yota; Lv, Fengyong; Takata, Yasuyuki; Orejon, Daniel
2017-10-11
Superhydrophobic surfaces are receiving increasing attention due to the enhanced condensation heat transfer, self-cleaning, and anti-icing properties by easing droplet self-removal. Despite the extensive research carried out on this topic, the presence or absence of microstructures on droplet adhesion during condensation has not been fully addressed yet. In this work we, therefore, study the condensation behavior on engineered superhydrophobic copper oxide surfaces with different structural finishes. More specifically, we investigate the coalescence-induced droplet-jumping performance on superhydrophobic surfaces with structures varying from the micro- to the nanoscale. The different structural roughness is possible due to the specific etching parameters adopted during the facile low-cost dual-scale fabrication process. A custom-built optical microscopy setup inside a temperature and relative humidity controlled environmental chamber was used for the experimental observations. By varying the structural roughness, from the micro- to the nanoscale, important differences on the number of droplets involved in the jumps, on the frequency of the jumps, and on the size distribution of the jumping droplets were found. In the absence of microstructures, we report an enhancement of the droplet-jumping performance of small droplets with sizes in the same order of magnitude as the microstructures. Microstructures induce further droplet adhesion, act as a structural barrier for the coalescence between droplets growing on the same microstructure, and cause the droplet angular deviation from the main surface normal. As a consequence, upon coalescence, there is a decrease in the net momentum in the out-of-plane direction, and the jump does not ensue. We demonstrate that the absence of microstructures has therefore a positive impact on the coalescence-induced droplet-jumping of micrometer droplets for antifogging, anti-icing, and condensation heat transfer applications.
NASA Technical Reports Server (NTRS)
Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)
2002-01-01
Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.
Responsive 3D microstructures from virus building blocks.
Oh, Seungwhan; Kwak, Eun-A; Jeon, Seongho; Ahn, Suji; Kim, Jong-Man; Jaworski, Justyn
2014-08-13
Fabrication of 3D biological structures reveals dynamic response to external stimuli. A liquid-crystalline bridge extrusion technique is used to generate 3D structures allowing the capture of Rayleigh-like instabilities, facilitating customization of smooth, helical, or undulating periodic surface textures. By integrating intrinsic biochemical functionality and synthetic components into controlled structures, this strategy offers a new form of adaptable materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shock-loading response of advanced materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, G.T. III
1993-08-01
Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevantmore » to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.« less
Self-organization of maze-like structures via guided wrinkling.
Bae, Hyung Jong; Bae, Sangwook; Yoon, Jinsik; Park, Cheolheon; Kim, Kibeom; Kwon, Sunghoon; Park, Wook
2017-06-01
Sophisticated three-dimensional (3D) structures found in nature are self-organized by bottom-up natural processes. To artificially construct these complex systems, various bottom-up fabrication methods, designed to transform 2D structures into 3D structures, have been developed as alternatives to conventional top-down lithography processes. We present a different self-organization approach, where we construct microstructures with periodic and ordered, but with random architecture, like mazes. For this purpose, we transformed planar surfaces using wrinkling to directly use randomly generated ridges as maze walls. Highly regular maze structures, consisting of several tessellations with customized designs, were fabricated by precisely controlling wrinkling with the ridge-guiding structure, analogous to the creases in origami. The method presented here could have widespread applications in various material systems with multiple length scales.
NASA Astrophysics Data System (ADS)
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy
2017-03-01
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.
Nondestructive ultrasonic characterization of armor grade silicon carbide
NASA Astrophysics Data System (ADS)
Portune, Andrew Richard
Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy exhibited favorable agreement between predicted and observed distributions. Developed techniques were applied to large sample areas using scanning acoustic spectroscopy to map variations in the size distribution and concentration of grains and solid inclusions within the bulk microstructure. The experiments performed in this thesis form the foundation of a novel characterization technique capable of mapping variations in sample composition which could be extended to a wide range of dense polycrystalline heterogeneous materials.
Templated electrochemical deposition of zirconia thin films on "recordable CDs.".
Yu, Hua-Zhong; Rowe, Aaron W; Waugh, Damien M
2002-11-15
In this paper, we describe a practical method of using gold films constructed from recordable compact disks (CD-Rs) as simple, inexpensive, and micropatterned conductive substrates for the fabrication of inorganic material microstructures. Extending from their application for the fabrication of self-assembled monolayers (SAMs) reported recently, bare and SAM-modified CD-R gold substrates have been used for template-directed electrodeposition of zirconia (ZrO2) thin films (i.e., the controlled formation of zirconia thin films on the different areas of the prefabricated, micrometer mountain-valley CD-R gold substrate surfaces). The present results demonstrate that the variation of the functional groups of the selected SAMs combined with electrodynamic control can be very successful to "customize" the formation and microstructure of functional inorganic thin films, which hold promise for modern technological applications.
Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong
2017-01-01
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343
Laparoscopic optical coherence tomography imaging of human ovarian cancer
Hariri, Lida P.; Bonnema, Garret T.; Schmidt, Kathy; Winkler, Amy M.; Korde, Vrushali; Hatch, Kenneth D.; Davis, John R.; Brewer, Molly A.; Barton, Jennifer K.
2011-01-01
Objectives Ovarian cancer is the fourth leading cause of cancer-related death among women in the US largely due to late detection secondary to unreliable symptomology and screening tools without adequate resolution. Optical coherence tomography (OCT) is a recently emerging imaging modality with promise in ovarian cancer diagnostics, providing non-destructive subsurface imaging at imaging depths up to 2 mm with near-histological grade resolution (10–20 μm). In this study, we developed the first ever laparoscopic OCT (LOCT) device, evaluated the safety and feasibility of LOCT, and characterized the microstructural features of human ovaries in vivo. Methods A custom LOCT device was fabricated specifically for laparoscopic imaging of the ovaries in patients undergoing oophorectomy. OCT images were compared with histopathology to identify preliminary architectural imaging features of normal and pathologic ovarian tissue. Results Thirty ovaries in 17 primarily peri or post-menopausal women were successfully imaged with LOCT: 16 normal, 5 endometriosis, 3 serous cystadenoma, and 4 adenocarcinoma. Preliminary imaging features developed for each category reveal qualitative differences in the homogeneous character of normal post-menopausal ovary, the ability to image small subsurface inclusion cysts, and distinguishable features for endometriosis, cystadenoma, and adenocarcinoma. Conclusions We present the development and successful implementation of the first laparoscopic OCT probe. Comparison of OCT images and corresponding histopathology allowed for the description of preliminary microstructural features for normal ovary, endometriosis, and benign and malignant surface epithelial neoplasms. These results support the potential of OCT both as a diagnostic tool and imaging modality for further evaluation of ovarian cancer pathogenesis. PMID:19481241
Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack
2017-12-01
To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Mohanty, Debapriya P.; Tomar, Vikas
2016-11-01
Inconel 617 (IN-617) is a solid solution alloy, which is widely used in applications that require high-temperature component operation due to its high-temperature stability and strength as well as strong resistance to oxidation and carburization. The current work focuses on in situ measurements of stress distribution under 3-point bending at elevated temperature in IN-617. A nanomechanical Raman spectroscopy measurement platform was designed and built based on a combination of a customized open Raman spectroscopy (NMRS) system incorporating a motorized scanning and imaging system with a nanomechanical loading platform. Based on the scanning of the crack tip notch area using the NMRS notch tip, stress distribution under applied load with micron-scale resolution for analyzed microstructures is predicted. A finite element method-based formulation to predict crack tip stresses is presented and validated using the presented experimental data.
Influence of thermally activated processes on the deformation behavior during low temperature ECAP
NASA Astrophysics Data System (ADS)
Fritsch, S.; Scholze, M.; F-X Wagner, M.
2016-03-01
High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; ...
2016-12-02
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricatedmore » Ti-6Al-4V + B indicate that the addition of 0.25–1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Furthermore, despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricatedmore » Ti-6Al-4V + B indicate that the addition of 0.25–1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Furthermore, despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.« less
NASA Astrophysics Data System (ADS)
Scheid, James Eric
Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a custom explosive experiment that delivered meaningful, full-scale shock deformed samples for analysis. The experiment arrested the collapse of actual, as-fabricated liners in the first microseconds of development. This experiment, performed with only 2% of the explosive mass of the full charge, revealed new insights into material-dependent variations in liner collapse including a striking image of the formation of a shaped charge jet axial hole. The highly strain-hardened and elongated forged liner was the best performer of the three. Less energy from the explosive was dissipated by dislocation generation. This translated to more efficient flow whereas the softer materials behaved as shock absorbers delaying flow. A set of hypotheses was formulated and critiqued based on these observations. The key findings were the effects of grain size, and shear bands induced in the microstructure through cold work enabled efficient liner flow. These bands provide highly localized dislocation highways enabling the matrix adjacent to the bands to deform plastically at higher velocity. Where such bands are unavailable, the pressure must first develop bands of smaller grains, thus decreasing energy available for flow. Collapse velocities were then associated with the number of shear bands, the organization of mobile dislocations, material strain, and liner geometry. Microstructures with the ability to deform with the direction of liner collapse at lower stresses will form jets with a higher velocity and elongate earlier. The effect is higher performance at shorter standoffs. This relationship can be used to predict material behavior under explosive load, guiding engineering choices while designing with respect to anticipated shock loading. The explosive experiment designed here has obvious application in refining the performance of other warheads, and in the hydrodynamic modeling of material properties.
Stochastic Analysis and Design of Heterogeneous Microstructural Materials System
NASA Astrophysics Data System (ADS)
Xu, Hongyi
Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.
Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing.
Puppi, Dario; Piras, Anna Maria; Pirosa, Alessandro; Sandreschi, Stefania; Chiellini, Federica
2016-03-01
The employment of a tissue engineering scaffold able to release an antimicrobial agent with a controlled kinetics represents an effective tool for the treatment of infected tissue defects as well as for the prevention of scaffolds implantation-related infectious complications. This research activity was aimed at the development of additively manufactured star poly(ε-caprolactone) (*PCL) scaffolds loaded with levofloxacin, investigated as antimicrobial fluoroquinolone model. For this purpose a computer-aided wet-spinning technique allowing functionalizing the scaffold during the fabrication process was explored. Scaffolds with customized composition, microstructure and anatomical external shape were developed by optimizing the processing parameters. Morphological, thermal and mechanical characterization showed that drug loading did not compromise the fabrication process and the final performance of the scaffolds. The developed *PCL scaffolds showed a sustained in vitro release of the loaded antibiotic for 5 weeks. The proposed computer-aided wet-spinning technique appears well suited for the fabrication of anatomical scaffolds endowed with levofloxacin-releasing properties to be tested in vivo for the regeneration of long bone critical size defects in a rabbit model.
Cantilevered multilevel LIGA devices and methods
Morales, Alfredo Martin; Domeier, Linda A.
2002-01-01
In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.
NASA Astrophysics Data System (ADS)
Basak, Amrita; Acharya, Ranadip; Das, Suman
2016-08-01
This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.
Residual Ductility and Microstructural Evolution in Continuous-Bending-under-Tension of AA-6022-T4
Zecevic, Milovan; Roemer, Timothy J.; Knezevic, Marko; Korkolis, Yannis P.; Kinsey, Brad L.
2016-01-01
A ubiquitous experiment to characterize the formability of sheet metal is the simple tension test. Past research has shown that if the material is repeatedly bent and unbent during this test (i.e., Continuous-Bending-under-Tension, CBT), the percent elongation at failure can significantly increase. In this paper, this phenomenon is evaluated in detail for AA-6022-T4 sheets using a custom-built CBT device. In particular, the residual ductility of specimens that are subjected to CBT processing is investigated. This is achieved by subjecting a specimen to CBT processing and then creating subsize tensile test and microstructural samples from the specimens after varying numbers of CBT cycles. Interestingly, the engineering stress initially increases after CBT processing to a certain number of cycles, but then decreases with less elongation achieved for increasing numbers of CBT cycles. Additionally, a detailed microstructure and texture characterization are performed using standard scanning electron microscopy and electron backscattered diffraction imaging. The results show that the material under CBT preserves high integrity to large plastic strains due to a uniform distribution of damage formation and evolution in the material. The ability to delay ductile fracture during the CBT process to large plastic strains, results in formation of a strong <111> fiber texture throughout the material. PMID:28773257
Microstructure-based approach for predicting crack initiation and early growth in metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, James V.; Emery, John M.; Brewer, Luke N.
2009-09-01
Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models formore » deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.« less
Mapping White Matter Microstructure in the One Month Human Brain.
Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L
2017-08-29
White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.
NASA Astrophysics Data System (ADS)
Li, Cuidi; Jiang, Chuan; Deng, Yuan; Li, Tao; Li, Ning; Peng, Mingzheng; Wang, Jinwu
2017-01-01
A major limitation in the development of effective scaffolds for bone regeneration has been the limited vascularization of the regenerating tissue. Here, we propose the development of a novel calcium phosphate cement (CPC)-based scaffold combining the properties of mesoporous silica (MS) with recombinant human bone morphogenic protein-2 (rhBMP-2) to facilitate vascularization and osteogenesis. Specifically, the development of a custom MS/CPC paste allowed the three-dimensional (3D) printing of scaffolds with a defined macroporous structure and optimized silicon (Si) ions release profile to promote the ingrowth of vascular tissue at an early stage after implantation in support of tissue viability and osteogenesis. In addition, the scaffold microstructure allowed the prolonged release of rhBMP-2, which in turn significantly stimulated the osteogenesis of human bone marrow stromal cells in vitro and of bone regeneration in vivo as shown in a rabbit femur defect repair model. Thus, the combination MS/CPC/rhBMP-2 scaffolds might provide a solution to issues of tissue necrosis during the regeneration process and therefore might be able to be readily developed into a useful tool for bone repair in the clinic.
Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis.
Duncombe, Todd A; Herr, Amy E
2013-06-07
Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. For the protein electrophoresis study described here, fsPAGE lanes are comprised of a sample reservoir and contiguous separation gel. No enclosed microfluidic channels are employed. The fsPAG devices (120 μm tall) are directly photopatterned atop of and covalently attached to planar polymer or glass surfaces. Leveraging the fast <1 h design-prototype-test cycle - significantly faster than mold based fabrication techniques - we optimize the fsPAG architecture to minimize injection dispersion for rapid (<1 min) and short (1 mm) protein separations. The facile fabrication and prototyping of the fsPAGE provides researchers a powerful tool for developing custom analytical assays. We highlight the utility of assay customization by fabricating a polyacrylamide gel with a spatial pore-size distribution and demonstrate the resulting enhancement in separation performance over a uniform gel. Further, we up-scale from a unit separation to an array of 96 concurrent fsPAGE assays in 10 min run time driven by one electrode pair. The fsPAG array layout matches that of a 96-well plate to facilitate integration of the planar free standing gel array with multi-channel pipettes while remaining compatible with conventional slab-gel PAGE reagents, such as staining for label-free protein detection. Notably, the entire fsPAGE workflow from fabrication, to operation, and readout uses readily available materials and instruments - making this technique highly accessible.
Design of Capillary Flows with Spatially Graded Porous Films
NASA Astrophysics Data System (ADS)
Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen
2013-11-01
We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.
Endomicroscopy imaging of epithelial structures using tissue autofluorescence
NASA Astrophysics Data System (ADS)
Lin, Bevin; Urayama, Shiro; Saroufeem, Ramez M. G.; Matthews, Dennis L.; Demos, Stavros G.
2011-04-01
We explore autofluorescence endomicroscopy as a potential tool for real-time visualization of epithelial tissue microstructure and organization in a clinical setting. The design parameters are explored using two experimental systems--an Olympus Medical Systems Corp. stand-alone clinical prototype probe, and a custom built bench-top rigid fiber conduit prototype. Both systems entail ultraviolet excitation at 266 nm and/or 325 nm using compact laser sources. Preliminary results using ex vivo animal and human tissue specimens suggest that this technology can be translated toward in vivo application to address the need for real-time histology.
Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.
1986-01-01
The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).
ERIC Educational Resources Information Center
Fryer, Susanna L.; Frank, Lawrence R.; Spadoni, Andrea D.; Theilmann, Rebecca J.; Nagel, Bonnie J.; Schweinsburg, Alecia D.; Tapert, Susan F.
2008-01-01
Background: Diffusion tensor imaging (DTI) has revealed microstructural aspects of adolescent brain development, the cognitive correlates of which remain relatively uncharacterized. Methods: DTI was used to assess white matter microstructure in 18 typically developing adolescents (ages 16-18). Fractional anisotropy (FA) and mean diffusion (MD)…
Nanotechnology in the Chemical Industry - Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Qiu Zhao, Qian; Boxman, Arthur; Chowdhry, Uma
2003-12-01
The traditional chemical industry has become a largely mature industry with many commodity products based on established technologies. Therefore, new product and market opportunities will more likely come from speciality chemicals, and from new functionalities obtained from new processing technologies as well as new microstructure control methodologies. It is a well-known fact that in addition to its molecular structure, the microstructure of a material is key to determining its properties. Controlling structures at the micro- and nano-levels is therefore essential to new discoveries. For this article, we define nanotechnology as the controlled manipulation of nanomaterials with at least one dimension less than 100nm. Nanotechnology is emerging as one of the principal areas of investigation that is integrating chemistry and materials science, and in some cases integrating these with biology to create new and yet undiscovered properties that can be exploited to gain new market opportunities. In this article market opportunities for nanotechnology will be presented from an industrial perspective covering electronic, biomedical, performance materials, and consumer products. Manufacturing technology challenges will be identified, including operations ranging from particle formation, coating, dispersion, to characterization, modeling, and simulation. Finally, a nanotechnology innovation roadmap is proposed wherein the interplay between the development of nanoscale building blocks, product design, process design, and value chain integration is identified. A suggestion is made for an R&D model combining market pull and technology push as a way to quickly exploit the advantages in nanotechnology and translate these into customer benefits.
NASA Astrophysics Data System (ADS)
Belgasam, Tarek M.; Zbib, Hussein M.
2017-12-01
Dual-phase (DP) steels have received widespread attention for their low density and high strength. This low density is of value to the automotive industry for the weight reduction it offers and the attendant fuel savings and emission reductions. Recent studies on developing DP steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties and in optimizing microstructure design. In this work, a microstructure-based approach using representative volume elements (RVEs) was developed. The approach examined the flow behavior of DP steels using virtual tension tests with an RVE to identify specific mechanical properties. Microstructures with varied martensite and ferrite grain sizes, martensite volume fractions, carbon content, and morphologies were studied in 3D RVE approaches. The effect of these microstructure parameters on a combination of strength/ductility of DP steels was examined numerically using the finite element method by implementing a dislocation density-based elastic-plastic constitutive model, and a Response surface methodology to determine the optimum conditions for a required combination of strength/ductility. The results from the numerical simulations are compared with experimental results found in the literature. The developed methodology proves to be a powerful tool for studying the effect and interaction of key microstructural parameters on strength and ductility and thus can be used to identify optimum microstructural conditions.
Development of Matrix Microstructures in UHTC Composites
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael
2012-01-01
One of the major issues hindering the use of ultra high temperature ceramics for aerospace applications is low fracture toughness. There is considerable interest in developing fiber-reinforced composites to improve fracture toughness. Considerable knowledge has been gained in controlling and improving the microstructure of monolithic UHTCs, and this paper addresses the question of transferring that knowledge to composites. Some model composites have been made and the microstructures of the matrix developed has been explored and compared to the microstructure of monolithic materials in the hafnium diboride/silicon carbide family. Both 2D and 3D weaves have been impregnated and processed.
Customer complaints: a managed care firm's best weapon in CQI.
Polonski, G J
1995-01-01
Encouraging customer feedback and developing an automated customer complaint system are two essential steps a health plan must take if it wishes to develop a balanced relationship with the customer. The author explores how the right attitude and appropriate action can ensure that both customers and the company reap the benefits of a comprehensive customer complaint system.
Modelling of deformation and recrystallisation microstructures in rocks and ice
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.
2015-04-01
Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation technique but also increased significantly the ability to predict and/or interpret natural microstructures. This contribution will present the most recent developments in in-situ and numerical modelling of deformation and recrystallisation microstructures in rocks and in ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi
A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures thatmore » can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.« less
Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi; ...
2017-03-13
A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures thatmore » can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Balasubramaniam; Fattebert, Jean-Luc; Gorti, Sarma B.
Additive Manufacturing (AM) refers to a process by which digital three-dimensional (3-D) design data is converted to build up a component by depositing material layer-by-layer. United Technologies Corporation (UTC) is currently involved in fabrication and certification of several AM aerospace structural components made from aerospace materials. This is accomplished by using optimized process parameters determined through numerous design-of-experiments (DOE)-based studies. Certification of these components is broadly recognized as a significant challenge, with long lead times, very expensive new product development cycles and very high energy consumption. Because of these challenges, United Technologies Research Center (UTRC), together with UTC business unitsmore » have been developing and validating an advanced physics-based process model. The specific goal is to develop a physics-based framework of an AM process and reliably predict fatigue properties of built-up structures as based on detailed solidification microstructures. Microstructures are predicted using process control parameters including energy source power, scan velocity, deposition pattern, and powder properties. The multi-scale multi-physics model requires solution and coupling of governing physics that will allow prediction of the thermal field and enable solution at the microstructural scale. The state-of-the-art approach to solve these problems requires a huge computational framework and this kind of resource is only available within academia and national laboratories. The project utilized the parallel phase-fields codes at Oak Ridge National Laboratory (ORNL) and Lawrence Livermore National Laboratory (LLNL), along with the high-performance computing (HPC) capabilities existing at the two labs to demonstrate the simulation of multiple dendrite growth in threedimensions (3-D). The LLNL code AMPE was used to implement the UTRC phase field model that was previously developed for a model binary alloy, and the simulation results were compared against the UTRC simulation results, followed by extension of the UTRC model to simulate multiple dendrite growth in 3-D. The ORNL MEUMAPPS code was used to simulate dendritic growth in a model ternary alloy with the same equilibrium solidification range as the Ni-base alloy 718 using realistic model parameters, including thermodynamic integration with a Calphad based model for the ternary alloy. Implementation of the UTRC model in AMPE met with several numerical and parametric issues that were resolved and good comparison between the simulation results obtained by the two codes was demonstrated for two dimensional (2-D) dendrites. 3-D dendrite growth was then demonstrated with the AMPE code using nondimensional parameters obtained in 2-D simulations. Multiple dendrite growth in 2-D and 3-D were demonstrated using ORNL’s MEUMAPPS code using simple thermal boundary conditions. MEUMAPPS was then modified to incorporate the complex, time-dependent thermal boundary conditions obtained by UTRC’s thermal modeling of single track AM experiments to drive the phase field simulations. The results were in good agreement with UTRC’s experimental measurements.« less
Using of material-technological modelling for designing production of closed die forgings
NASA Astrophysics Data System (ADS)
Ibrahim, K.; Vorel, I.; Jeníček, Š.; Káňa, J.; Aišman, D.; Kotěšovec, V.
2017-02-01
Production of forgings is a complex and demanding process which consists of a number of forging operations and, in many cases, includes post-forge heat treatment. An optimized manufacturing line is a prerequisite for obtaining prime-quality products which in turn are essential to profitable operation of a forging company. Problems may, however, arise from modifications to the manufacturing route due to changing customer needs. As a result, the production may have to be suspended temporarily to enable changeover and optimization. Using material-technological modelling, the required modifications can be tested and optimized under laboratory conditions outside the plant without disrupting the production. Thanks to material-technological modelling, the process parameters can be varied rapidly in response to changes in market requirements. Outcomes of the modelling runs include optimum parameters for the forging part’s manufacturing route, values of mechanical properties, and results of microstructure analysis. This article describes the use of material-technological modelling for exploring the impact of the amount of deformation and the rate of cooling of a particular forged part from the finish-forging temperature on its microstructure and related mechanical properties.
NASA Astrophysics Data System (ADS)
Chatterjee, Tirtha; van Dyk, Antony; Ginzburg, Valeriy; Nakatani, Alan
Since their invention in the 1970s, hydrophobically ethoxylated urethane (HEUR) associative thickeners are widely used to modify the rheology of waterborne paints. While their flow curves (viscosity vs. shear rate) and microstructure have been studied extensively in recent years, there is surprisingly little information on the paint normal stress under application conditions. However, understanding of normal stress behavior is critical for many applications such as brush drag and spatter. In this work we will demonstrate that in HEUR-based paints the first normal stress difference (N1) is controlled by two factors: (a) adsorption of HEUR molecules on latex particles and (b) ability of non-adsorbed HEUR to form transient bridges between particles with HEUR shells. By controlling these two effects, one can design a paint formulation with targeted N1 behavior (positive or negative N1 under high shear). Finally, a simplified phase diagram will be presented connecting formulation composition-microstructure- and N1 behavior. The results would serve as guidelines to formulate paints to meet the specific customer needs.
Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; ...
2015-03-18
Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm 2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. Themore » effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.
2008-09-01
The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into amore » structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.« less
Microstructural Development in a Laser-Remelted Al-Zn-Si-Mg Coating.
Godec, M; Podgornik, B; Nolan, D
2017-11-23
In the last five decades, there has been intense development in the field of Zn-Al galvanic coating modification. Recently, Mg was added to improve corrosion properties. Further improvements to the coating are possible with additional laser surface treatment. In this article, we focus on remelting the Al-Zn-Mg-Si layer, using a diode laser with a wide-beam format, concentrating on the microstructure development during extreme cooling rates. Laser remelting of the Al-Zn-Mg-Si coating and rapid self-quenching produces a finer grain size, and a microstructure that is substantially refined and homogenized with respect to the phase distribution. Using EBSD results, we are able to understand microstructure modification. The laser modified coating has some porosity and intergranular cracking which are difficult to avoid, however this does not seem to be detrimental to mechanical properties, such as ductility on bending. The newly developed technology has a high potential for improved corrosion performance due to highly refined microstructure.
FIB–SEM tomography of 4th generation PWA 1497 superalloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziętara, Maciej, E-mail: zietara@agh.edu.pl; Kruk, Adam, E-mail: kruczek@agh.edu.pl; Gruszczyński, Adam, E-mail: gruszcz@agh.edu.pl
2014-01-15
The effect of creep deformation on the microstructure of the PWA 1497 single crystal Ni-base superalloy developed for turbine blade applications was investigated. The aim of the present study was to characterize quantitatively a superalloy microstructure and subsequent development of rafted γ′ precipitates in the PWA 1497 during creep deformation at 982 °C and 248 MPa up to rupture. The PWA1497 microstructure was characterized by scanning electron microscopy and FIB–SEM electron tomography. The 3D reconstruction of the PWA1497 microstructure is presented and discussed. - Highlights: • The microstructure of PWA1497 superalloy was examined using FIB–SEM tomography. • In case ofmore » modern single crystal superalloys, measurements of A{sub A} are adequate for V{sub V}. • During creep the γ channel width increases from 65 to 193 nm for ruptured specimen. • Tomography is a useful technique for quantitative studies of material microstructure.« less
Microstructure of Tablet-Pharmaceutical Significance, Assessment, and Engineering.
Sun, Changquan Calvin
2017-05-01
To summarize the microstructure - property relationship of pharmaceutical tablets and approaches to improve tablet properties through tablet microstructure engineering. The main topics reviewed here include: 1) influence of material properties and manufacturing process parameters on the evolution of tablet microstructure; 2) impact of tablet structure on tablet properties; 3) assessment of tablet microstructure; 4) development and engineering of tablet microstructure. Microstructure plays a decisive role on important pharmaceutical properties of a tablet, such as disintegration, drug release, and mechanical strength. Useful information on mechanical properties of a powder can be obtained from analyzing tablet porosity-pressure data. When helium pycnometry fails to accurately measure true density of a water-containing powder, non-linear regression of tablet density-pressure data is a useful alternative method. A component that is more uniformly distributed in a tablet generally exerts more influence on the overall tablet properties. During formulation development, it is highly recommended to examine the relationship between any property of interest and tablet porosity when possible. Tablet microstructure can be engineered by judicious selection of formulation composition, including the use of the optimum solid form of the drug and appropriate type and amount of excipients, and controlling manufacturing process.
Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon
2017-01-01
Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563
NASA Astrophysics Data System (ADS)
Shukla, Rahul; Abhinandan, Lala; Sharma, Shivdutt
2017-07-01
Poly(methyl methacrylate) (PMMA) is an extensively used positive photoresist for deep x-ray lithography. The post-development release of the microstructures of PMMA becomes very critical for high aspect ratio fragile and freestanding microstructures. Release of high aspect ratio comb-drive microstructure of PMMA made by one-step x-ray lithography (OXL) is studied. The effect of low-surface tension Isopropyl alcohol (IPA) over water is investigated for release of the high aspect ratio microstructures using conventional and supercritical (SC) CO2 drying. The results of conventional drying are also compared for the samples released or dried in both in-house developed and commercial SC CO2 dryer. It is found that in all cases the microstructures of PMMA are permanently deformed and damaged while using SC CO2 for drying. For free-standing high aspect ratio microstructures of PMMA made by OXL, it is advised to use low-surface tension IPA over DI water. However, this brings a limitation on the design of the microstructure.
Microstructure Modeling of Third Generation Disk Alloys
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2010-01-01
The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.
NASA Astrophysics Data System (ADS)
Perez, E.; Keiser, D. D.; Sohn, Y. H.
2016-08-01
The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usbnd Mo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, Usbnd 7 wt%Mo, Usbnd 10 wt%Mo, and Usbnd 12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanning electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples Usbnd Mo vs. high purity Al and binary Alsbnd Si alloys. The diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.
The development of a qualitative dynamic attribute value model for healthcare institutes.
Lee, Wan-I
2010-01-01
Understanding customers has become an urgent topic for increasing competitiveness. The purpopse of the study was to develop a qualitative dynamic attribute value model which provides insight into the customers' value for healthcare institute managers by conducting the initial open-ended questionnaire survey to select participants purposefully. A total number of 427 questionnaires was conducted in two hospitals in Taiwan (one district hospital with 635 beds and one academic hospital with 2495 beds) and 419 questionnaires were received in nine weeks. Then, apply qualitative in-depth interviews to explore customers' perspective of values for building a model of partial differential equations. This study concludes nine categories of value, including cost, equipment, physician background, physicain care, environment, timing arrangement, relationship, brand image and additional value, to construct objective network for customer value and qualitative dynamic attribute value model where the network shows the value process of loyalty development via its effect on customer satisfaction, customer relationship, customer loyalty and healthcare service. One set predicts the customer relationship based on comminent, including service quality, communication and empahty. As the same time, customer loyalty based on trust, involves buzz marketing, brand and image. Customer value of the current instance is useful for traversing original customer attributes and identifing customers on different service share.
McLaughlin, Kristine; Travers, Brittany G; Dadalko, Olga I; Dean, Douglas C; Tromp, Do; Adluru, Nagesh; Destiche, Daniel; Freeman, Abigail; Prigge, Molly D; Froehlich, Alyson; Duffield, Tyler C; Zielinski, Brandon A; Bigler, Erin D; Lange, Nicholas; Anderson, Jeff S; Alexander, Andrew L; Lainhart, Janet E
2018-03-01
The thalamus is a key sensorimotor relay area that is implicated in autism spectrum disorder (ASD). However, it is unknown how the thalamus and white-matter structures that contain thalamo-cortical fiber connections (e.g., the internal capsule) develop from childhood into adulthood and whether this microstructure relates to basic motor challenges in ASD. We used diffusion weighted imaging in a cohort-sequential design to assess longitudinal development of the thalamus, and posterior- and anterior-limbs of the internal capsule (PLIC and ALIC, respectively) in 89 males with ASD and 56 males with typical development (3-41 years; all verbal). Our results showed that the group with ASD exhibited different developmental trajectories of microstructure in all regions, demonstrating childhood group differences that appeared to approach and, in some cases, surpass the typically developing group in adolescence and adulthood. The PLIC (but not ALIC nor thalamus) mediated the relation between age and finger-tapping speed in both groups. Yet, the gap in finger-tapping speed appeared to widen at the same time that the between-group gap in the PLIC appeared to narrow. Overall, these results suggest that childhood group differences in microstructure of the thalamus and PLIC become less robust in adolescence and adulthood. Further, finger-tapping speed appears to be mediated by the PLIC in both groups, but group differences in motor speed that widen during adolescence and adulthood suggest that factors beyond the microstructure of the thalamus and internal capsule may contribute to atypical motor profiles in ASD. Autism Res 2018, 11: 450-462. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Microstructure of the thalamus, a key sensory and motor brain area, appears to develop differently in individuals with autism spectrum disorder (ASD). Microstructure is important because it informs us of the density and organization of different brain tissues. During childhood, thalamic microstructure was distinct in the ASD group compared to the typically developing group. However, these group differences appeared to narrow with age, suggesting that the thalamus continues to dynamically change in ASD into adulthood. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
3D Microstructures for Materials and Damage Models
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2017-02-01
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Deformation-resembling microstructure created by fluid-mediated dissolution-precipitation reactions.
Spruzeniece, Liene; Piazolo, Sandra; Maynard-Casely, Helen E
2017-01-27
Deformation microstructures are widely used for reconstructing tectono-metamorphic events recorded in rocks. In crustal settings deformation is often accompanied and/or succeeded by fluid infiltration and dissolution-precipitation reactions. However, the microstructural consequences of dissolution-precipitation in minerals have not been investigated experimentally. Here we conducted experiments where KBr crystals were reacted with a saturated KCl-H 2 O fluid. The results show that reaction products, formed in the absence of deformation, inherit the general crystallographic orientation from their parents, but also display a development of new microstructures that are typical in deformed minerals, such as apparent bending of crystal lattices and new subgrain domains, separated by low-angle and, in some cases, high-angle boundaries. Our work suggests that fluid-mediated dissolution-precipitation reactions can lead to a development of potentially misleading microstructures. We propose a set of criteria that may help in distinguishing such microstructures from the ones that are created by crystal-plastic deformation.
Customer-experienced rapid prototyping
NASA Astrophysics Data System (ADS)
Zhang, Lijuan; Zhang, Fu; Li, Anbo
2008-12-01
In order to describe accurately and comprehend quickly the perfect GIS requirements, this article will integrate the ideas of QFD (Quality Function Deployment) and UML (Unified Modeling Language), and analyze the deficiency of prototype development model, and will propose the idea of the Customer-Experienced Rapid Prototyping (CE-RP) and describe in detail the process and framework of the CE-RP, from the angle of the characteristics of Modern-GIS. The CE-RP is mainly composed of Customer Tool-Sets (CTS), Developer Tool-Sets (DTS) and Barrier-Free Semantic Interpreter (BF-SI) and performed by two roles of customer and developer. The main purpose of the CE-RP is to produce the unified and authorized requirements data models between customer and software developer.
Meng, Jianxin; Mei, Deqing; Jia, Kun; Fan, Zongwei; Yang, Keji
2014-07-01
In the existing acoustic micro-particle delivery methods, the micro-particles always lie and slide on the surface of platform in the whole delivery process. To avoid the damage and contamination of micro-particles caused by the sliding motion, this paper deals with a novel approach to trap micro-particles from non-customized rigid surfaces and freely manipulate them. The delivery process contains three procedures: detaching, transporting, and landing. Hence, the micro-particles no longer lie on the surface, but are levitated in the fluid, during the long range transporting procedure. It is very meaningful especially for the fragile and easily contaminated targets. To quantitatively analyze the delivery process, a theoretical model to calculate the acoustic radiation force exerting upon a micro-particle near the boundary in half space is built. An experimental device is also developed to validate the delivery method. A 100 μm diameter micro-silica bead adopted as the delivery target is detached from the upper surface of an aluminum platform and levitated in the fluid. Then, it is transported along the designated path with high precision in horizontal plane. The maximum deviation is only about 3.3 μm. During the horizontal transportation, the levitation of the micro-silica bead is stable, the maximum fluctuation is less than 1 μm. The proposed method may extend the application of acoustic radiation force and provide a promising tool for microstructure or cell manipulation. Copyright © 2014 Elsevier B.V. All rights reserved.
Perez, E.; Keiser, D. D.; Sohn, Y. H.
2016-05-10
The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usingle bondMo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, U–7 wt%Mo, U–10 wt%Mo, and U–12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanningmore » electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples U–Mo vs. high purity Al and binary Al–Si alloys. As a result, the diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.« less
Classification of customer lifetime value models using Markov chain
NASA Astrophysics Data System (ADS)
Permana, Dony; Pasaribu, Udjianna S.; Indratno, Sapto W.; Suprayogi
2017-10-01
A firm’s potential reward in future time from a customer can be determined by customer lifetime value (CLV). There are some mathematic methods to calculate it. One method is using Markov chain stochastic model. Here, a customer is assumed through some states. Transition inter the states follow Markovian properties. If we are given some states for a customer and the relationships inter states, then we can make some Markov models to describe the properties of the customer. As Markov models, CLV is defined as a vector contains CLV for a customer in the first state. In this paper we make a classification of Markov Models to calculate CLV. Start from two states of customer model, we make develop in many states models. The development a model is based on weaknesses in previous model. Some last models can be expected to describe how real characters of customers in a firm.
Microstructural evolution of neutron irradiated 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
Microstructural evolution of neutron irradiated 3C-SiC
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...
2017-03-18
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.
Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functionalmore » applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.« less
Fabrication of nano-structured super-hydrophobic film on aluminum by controllable immersing method
NASA Astrophysics Data System (ADS)
Wu, Ruomei; Liang, Shuquan; Pan, Anqiang; Yuan, Zhiqing; Tang, Yan; Tan, Xiaoping; Guan, Dikai; Yu, Ya
2012-06-01
Aluminum alloy surface can be etched easily in acid environment, but the microstructure of alloy surface hardly meets the customers' demand. In this work, a facile acidic-assistant surface oxidation technique has been employed to form reproducible super-hydrophobic surfaces on aluminum alloy plates. The samples immersed in three different acid solutions at ambient temperatures are studied and the results demonstrated that the aqueous mixture solution of oxalic acid and hydrochloric is easier to produce better faces and better stability. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectrometer, X-ray photoelectron spectroscopy (XPS) and water contact angle measurement are used to investigate the morphologies, microstructures, chemical compositions and hydrophobicity of the produced films on aluminum substrates. The surfaces, configured of a labyrinth structure with convexity and concavity, are in different roughness and gloss because of the different recipe acid solutions used. Better roughness of the surface can be obtained by adjusting the concentration of Clˉ and oxalate ions in acid solutions. The present research work provides a new strategy for the controllable preparation super-hydrophobic films of general materials on aluminum alloy for practical industrial applications.
NASA Astrophysics Data System (ADS)
Ostasevicius, Vytautas; Malinauskas, Karolis; Janusas, Giedrius; Palevicius, Arvydas; Cekas, Elingas
2016-04-01
The aim of this paper is to develop and investigate MOEMS displacement-pressure sensor for biological information monitoring. Developing computational periodical microstructure models using COMSOL Multiphysics modeling software for modal and shape analysis and implementation of these results for design MOEMS displacement-pressure sensor for biological information monitoring was performed. The micro manufacturing technology of periodical microstructure having good diffraction efficiency was proposed. Experimental setup for characterisation of optical properties of periodical microstructure used for design of displacement-pressure sensor was created. Pulsating human artery dynamic characteristics in this paper were analysed.
Biomimetic microstructures for photonic and fluidic synergies
NASA Astrophysics Data System (ADS)
Vasileiou, Maria; Mpatzaka, Theodora; Alexandropoulos, Dimitris; Vainos, Nikolaos A.
2017-08-01
Nature-inspired micro- and nano-structures offer a unique platform for the development of novel synergetic systems combining photonic and microfluidic functionalities. In this context, we examine the paradigm of butterfly Vanessa cardui and develop artificial diffractive microstructures inspired by its natural designs. Softlithographic and nanoimprint protocols are developed to replicate surfaces of natural specimens. Further to their optical behavior, interphases tailored by such microstructures exhibit enhanced hydrophobic properties, as compared to their planar counterparts made of the same materials. Such synergies exploited by new design approaches pave the way to prospective optofluidic, lab-on-chip and sensing applications.
NASA Astrophysics Data System (ADS)
Kobayashi, M.; Miura, H.; Toda, H.
2015-08-01
Anisotropy of mechanical responses depending on crystallographic orientation causes inhomogeneous deformation on the mesoscopic scale (grain size scale). Investigation of the local plastic strain development is important for discussing recrystallization mechanisms, because the sites with higher local plastic strain may act as potential nucleation sites for recrystallization. Recently, high-resolution X-ray tomography, which is non-destructive inspection method, has been utilized for observation of the materials structure. In synchrotron radiation X-ray tomography, more than 10,000 microstructural features, like precipitates, dispersions, compounds and hydrogen pores, can be observed in aluminium alloys. We have proposed employing these microstructural features as marker gauges to measure local strains, and then have developed a method to calculate the three-dimensional strain distribution by tracking the microstructural features. In this study, we report the development of local plastic strain as a function of the grain microstructure in an aluminium alloy by means of this three-dimensional strain measurement technique. Strongly heterogeneous strain development was observed during tensile loading to 30%. In other words, some parts of the sample deform little whereas another deforms a lot. However, strain in the whole specimen was keeping harmony. Comparing the microstructure with the strain concentration that is obtained by this method has a potential to reveal potential nucleation sites of recrystallization.
Ortega, José Marcos; Sánchez, Isidro; Climent, Miguel Ángel
2017-09-25
Today, the characterisation of the microstructure of cement-based materials using non-destructive techniques has become an important topic of study, and among them, the impedance spectroscopy has recently experienced great progress. In this research, mortars with two different contents of fly ash were exposed to four different constant temperature and relative humidity environments during a 180-day period. The evolution of their microstructure was studied using impedance spectroscopy, whose results were contrasted with mercury intrusion porosimetry. The hardening environment has an influence on the microstructure of fly ash cement mortars. On one hand, the impedance resistances R₁ and R₂ are more influenced by the drying of the materials than by microstructure development, so they are not suitable for following the evolution of the porous network under non-optimum conditions. On the other hand, the impedance spectroscopy capacitances C₁ and C₂ allow studying the microstructure development of fly ash cement mortars exposed to those conditions, and their results are in accordance with mercury intrusion porosimetry ones. Finally, it has been observed that the combined analysis of the abovementioned capacitances could be very useful for studying shrinkage processes in cement-based materials kept in low relative humidity environments.
Teli, Radhika; Hay, Margaret; Hershey, Alexa; Kumar, Manoj; Yin, Han; Parikh, Nehal A
2018-05-15
Our objectives were to define the microstructural developmental trajectory of six corpus callosum subregions and identify perinatal clinical factors that influence early development of these subregions in very preterm infants. We performed a longitudinal cohort study of very preterm infants (32 weeks gestational age or younger) (N = 36) who underwent structural MRI and diffusion tensor imaging serially at four time points - before 32, 32, 38, and 52 weeks postmenstrual age. We divided the corpus callosum into six subregions, performed probabilistic tractography, and used linear mixed effects models to evaluate the influence of antecedent clinical factors on its microstructural growth trajectory. The genu and splenium demonstrated the most rapid developmental maturation, exhibited by a steep increase in fractional anisotropy. We identified several factors that favored greater corpus callosum microstructural development, including advancing postmenstrual age, higher birth weight, and college level or higher maternal education. Bronchopulmonary dysplasia, low 5-minute Apgar scores, caffeine therapy/apnea of prematurity and male sex were associated with reduced corpus callosum microstructural integrity/development over the first six months after very preterm birth. We identified a unique postnatal microstructural growth trajectory and associated clinical factor profile for each of the six corpus callosum subregions that is consistent with the heterogeneous functional role of these white matter subregions.
A customer's definition of quality.
Miller, T O
1992-01-01
What's the best way to get "close to the customer"? One company has developed a customer feedback system to drive product design, sales, service, and support functions in order to ensure better customer responsiveness.
Fabrication of large area flexible nanoplasmonic templates with flow coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qian; Devetter, Brent M.; Roosendaal, Timothy
Here, we describe the development of a custom-built two-axis flow coater for the deposition of polymeric nanosphere monolayers used in the fabrication of large area nanoplasmonic films. The technique described here has the capability of depositing large areas (up to 7” x 10”) of self-assembled monolayers of polymeric nanospheres onto polyethylene terephthalate (PET) films. Here, three sets of film consisting of different diameter (ranging from 100 to 300 nm) polymeric nanospheres were used to demonstrate the capabilities of this instrument. To improve the surface wettability of the PET substrates during wet-deposition we enhanced the wettability by using a forced airmore » blown-arc plasma treatment system. Both the local microstructure, as confirmed by scanning electron microscopy, describing monolayer and multilayer coverage, and the overall macroscopic uniformity of the resultant nanostructured film were optimized by controlling the relative stage to blade speed and nanosphere concentration. As this is a scalable technique, large area films such as the ones described here, have a variety of crucial emerging applications in areas such as energy, catalysis, and chemical sensing.« less
Park, So-Hyun; Ham, Sunny; Lee, Min-A
2012-10-01
Quality function deployment (QFD) is a product development technique that translates customer requirements into activities for the development of products and services. This study utilizes QFD to identify American customer's requirements for bulgogi, a popular Korean dish among international customers, and how to fulfill those requirements. A customer survey and an expert opinion survey were conducted for US customers. The top five customer requirements for bulgogi were identified as taste, freshness, flavor, tenderness, and juiciness; ease of purchase was included in the place of tenderness after calculating the weight requirements. Eighteen engineering characteristics were developed, and a 'localization of bulgogi menu' is strongly related to the other characteristics as well. The results from the calculation of relative importance of engineering characteristics identified that the 'control of marinating time', 'localization of bulgogi menu', 'improvement of cooking and serving process', 'development of recipe by parts of beef', and 'use of various seasonings' were the highest contributors to the overall improvement of bulgogi. The relative importance of engineering characteristics, correlation, and technical difficulties are ranked and integrated to develop the most effective strategy. The findings are discussed relative to industry implications. Copyright © 2012 Elsevier Ltd. All rights reserved.
2016-01-01
The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308
The Development of a Qualitative Dynamic Attribute Value Model for Healthcare Institutes
Lee, Wan-I
2010-01-01
Background: Understanding customers has become an urgent topic for increasing competitiveness. The purpopse of the study was to develop a qualitative dynamic attribute value model which provides insight into the customers’ value for healthcare institute managers by conducting the initial open-ended questionnaire survey to select participants purposefully. Methods: A total number of 427 questionnaires was conducted in two hospitals in Taiwan (one district hospital with 635 beds and one academic hospital with 2495 beds) and 419 questionnaires were received in nine weeks. Then, apply qualitative in-depth interviews to explore customers’ perspective of values for building a model of partial differential equations. Results: This study concludes nine categories of value, including cost, equipment, physician background, physicain care, environment, timing arrangement, relationship, brand image and additional value, to construct objective network for customer value and qualitative dynamic attribute value model where the network shows the value process of loyalty development via its effect on customer satisfaction, customer relationship, customer loyalty and healthcare service. Conclusion: One set predicts the customer relationship based on comminent, including service quality, communication and empahty. As the same time, customer loyalty based on trust, involves buzz marketing, brand and image. Customer value of the current instance is useful for traversing original customer attributes and identifing customers on different service share. PMID:23113034
Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques
NASA Astrophysics Data System (ADS)
Rekha, Suganthini; Bupesh Raja, V. K.
2017-05-01
The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.
Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan
2006-06-01
In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.
ERIC Educational Resources Information Center
Burlington County Coll., Pemberton, NJ.
Prepared for use by staff in development workshops at Burlington County College (BCC), in New Jersey, this handbook offers college-wide guidelines for improving the quality of service provided to internal and external customers, and reviews key elements of BCC's Customer Service System (CSS), a computerized method of recording and following-up on…
A semi-empirical model relating micro structure to acoustic properties of bimodal porous material
NASA Astrophysics Data System (ADS)
Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine
2015-01-01
Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.
NASA Astrophysics Data System (ADS)
Paul, S. K.; Ahmed, U.; Megahed, G. M.
2011-10-01
Low-carbon Al-killed hot rolled strips for direct forming, cold rolling, and galvanizing applications are produced from the similar chemistry at Ezz Flat Steel (EFS) through thin slab casting and rolling (TSCR) technology. The desired mechanical and microstructural properties in hot bands for different applications are achieved through control of hot rolling parameters, which in turn control the precipitation and growth of AlN. Nitrogen in solid solution strongly influences the yield strength (YS), ductility, strain aging index (SAI), and other formability properties of steel. The equilibrium solubility of AlN in austenite at different temperatures and its isothermal precipitation have been studied. To achieve the formability properties for direct forming, soluble nitrogen is fixed as AlN by coiling the strip at higher temperatures. For stringent cold forming, boron was added below the stoichiometric ratio with nitrogen, which improved the formability properties dramatically. The requirements of hot band for processing into cold rolled and annealed deep drawing sheets are high SAI and fine-grain microstructure. Higher finish rolling and low coiling temperatures are used to achieve these. Fully processed cold rolled sheets from these hot strips at customer's end have shown good formability properties. Coil break marks observed in some coils during uncoiling were found to be associated with yielding phenomenon. The spike height (difference between upper and lower yield stresses) and yield point elongation (YPE) were found to be the key material parameters for the break marks. Factors affecting these parameters have been studied and the coiling temperature optimized to overcome the problem.
Wu, Qiaofeng; Yeh, Alvin T
2008-02-01
To characterize the microstructural response of the rabbit cornea to changes in intraocular pressure (IOP) by using nonlinear optical microscopy (NLOM). Isolated rabbit corneas were mounted on an artificial anterior chamber in series with a manometer and were hydrostatically pressurized by a reservoir. The chamber was mounted on an upright microscope stage of a custom-built NLOM system for corneal imaging without using exogenous stains or dyes. Second harmonic generation in collagen was used to image through the full thickness of the central corneal stroma at IOPs between 5 and 20 mm Hg. Microstructural morphology changes as a function of IOP were used to characterize the depth-dependent response of the central cornea. Regional collagen lamellae architecture through the full thickness of the stroma was specifically imaged as a function of IOP. Hypotensive corneas showed gaps between lamellar structures that decreased in size with increasing IOP. These morphologic features appear to result from interwoven lamellae oriented along the anterior-posterior axis and parallel to the cornea surface. They appear throughout the full thickness and disappear with tension in the anterior but persist in the posterior central cornea, even at hypertensive IOP. NLOM reveals interwoven collagen lamellae sheets through the full thickness of the rabbit central cornea oriented along the anterior-posterior axis and parallel to the surface. The nondestructive nature of NLOM allows 3-dimensional imaging of stromal architecture as a function of IOP in situ. Collagen morphologic features were used as an indirect measure of depth-dependent mechanical response to changes in IOP.
Microstructural consequences of blast lung injury characterised with digital volume correlation
NASA Astrophysics Data System (ADS)
Arora, Hari; Nila, Alex; Vitharana, Kalpani; Sherwood, Joseph M.; Nguyen, Thuy-Tien N.; Karunaratne, Angelo; Mohammed, Idris K.; Bodey, Andrew J.; Hellyer, Peter J.; Overby, Darryl R.; Schroter, Robert C.; Hollis, Dave
2017-12-01
This study focuses on microstructural changes that occur within the mammalian lung when subject to blast and how these changes influence strain distributions within the tissue. Shock tube experiments were performed to generate the blast injured specimens (cadaveric Sprague-Dawley rats). Blast overpressures of 100 kPa and 180 kPa were studied. Synchrotron tomography imaging was used to capture volumetric image data of lungs. Specimens were ventilated using a custom-built system to study multiple inflation pressures during each tomography scan. This data enabled the first digital volume correlation (DVC) measurements in lung tissue to be performed. Quantitative analysis was performed to describe the damaged architecture of the lung. No clear changes in the microstructure of the tissue morphology were observed due to controlled low to moderate level blast exposure. However, significant focal sites of injury were observed using DVC, which allowed detection of bias and concentration in the patterns of strain level. Morphological analysis corroborated the findings, illustrating that the focal damage caused by a blast can give rise to diffuse influence across the tissue. It is important to characterise the non-instantly fatal doses of blast, given the transient nature of blast lung in the clinical setting. This research has highlighted the need for better understanding of focal injury and its zone of influence (alveolar inter-dependency and neighbouring tissue burden as a result of focal injury). Digital volume correlation techniques show great promise as a tool to advance this endeavour, providing a new perspective on lung mechanics post-blast.
Empirical research on Kano’s model and customer satisfaction
Lin, Feng-Han; Tsai, Sang-Bing; Lee, Yu-Cheng; Hsiao, Cheng-Fu; Zhou, Jie; Wang, Jiangtao; Shang, Zhiwen
2017-01-01
Products are now developed based on what customers desire, and thus attractive quality creation has become crucial. In studies on customer satisfaction, methods for analyzing quality attributes and enhancing customer satisfaction have been proposed to facilitate product development. Although substantial studies have performed to assess the impact of the attributes on customer satisfaction, little research has been conducted that quantitatively calculate the odds of customer satisfaction for the Kano classification, fitting a nonlinear relationship between attribute-level performance and customer satisfaction. In the present study, the odds of customer satisfaction were determined to identify the classification of quality attributes, and took customer psychology into account to suggest how decision-makers should prioritize the allocation of resources. A novel method for quantitatively assessing quality attributes was proposed to determine classification criteria and fit the nonlinear relationship between quality attributes and customer satisfaction. Subsequently, a case study was conducted on bicycle user satisfaction to verify the novel method. The concept of customer satisfaction odds was integrated with the value function from prospect theory to understand quality attributes. The results of this study can serve as a reference for product designers to create attractive quality attributes in their products and thus enhance customer satisfaction. PMID:28873418
Empirical research on Kano's model and customer satisfaction.
Lin, Feng-Han; Tsai, Sang-Bing; Lee, Yu-Cheng; Hsiao, Cheng-Fu; Zhou, Jie; Wang, Jiangtao; Shang, Zhiwen
2017-01-01
Products are now developed based on what customers desire, and thus attractive quality creation has become crucial. In studies on customer satisfaction, methods for analyzing quality attributes and enhancing customer satisfaction have been proposed to facilitate product development. Although substantial studies have performed to assess the impact of the attributes on customer satisfaction, little research has been conducted that quantitatively calculate the odds of customer satisfaction for the Kano classification, fitting a nonlinear relationship between attribute-level performance and customer satisfaction. In the present study, the odds of customer satisfaction were determined to identify the classification of quality attributes, and took customer psychology into account to suggest how decision-makers should prioritize the allocation of resources. A novel method for quantitatively assessing quality attributes was proposed to determine classification criteria and fit the nonlinear relationship between quality attributes and customer satisfaction. Subsequently, a case study was conducted on bicycle user satisfaction to verify the novel method. The concept of customer satisfaction odds was integrated with the value function from prospect theory to understand quality attributes. The results of this study can serve as a reference for product designers to create attractive quality attributes in their products and thus enhance customer satisfaction.
Solidification microstructures in single-crystal stainless steel melt pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sipf, J.B.; Boatner, L.A.; David, S.A.
1994-03-01
Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. Thesemore » results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.« less
PuMA: the Porous Microstructure Analysis software
NASA Astrophysics Data System (ADS)
Ferguson, Joseph C.; Panerai, Francesco; Borner, Arnaud; Mansour, Nagi N.
2018-01-01
The Porous Microstructure Analysis (PuMA) software has been developed in order to compute effective material properties and perform material response simulations on digitized microstructures of porous media. PuMA is able to import digital three-dimensional images obtained from X-ray microtomography or to generate artificial microstructures. PuMA also provides a module for interactive 3D visualizations. Version 2.1 includes modules to compute porosity, volume fractions, and surface area. Two finite difference Laplace solvers have been implemented to compute the continuum tortuosity factor, effective thermal conductivity, and effective electrical conductivity. A random method has been developed to compute tortuosity factors from the continuum to rarefied regimes. Representative elementary volume analysis can be performed on each property. The software also includes a time-dependent, particle-based model for the oxidation of fibrous materials. PuMA was developed for Linux operating systems and is available as a NASA software under a US & Foreign release.
Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization
NASA Astrophysics Data System (ADS)
Behúlová, M.; Grgač, P.; Čička, R.
2017-11-01
Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.
Damage Precursor Identification via Microstructure-Sensitive Nondestructive Evaluation
NASA Astrophysics Data System (ADS)
Wisner, Brian John
Damage in materials is a complex and stochastic process bridging several time and length scales. This dissertation focuses on investigating the damage process in a particular class of precipitate-hardened aluminum alloys which is widely used in automotive and aerospace applications. Most emphasis in the literature has been given either on their ductility for manufacturing purposes or fracture for performance considerations. In this dissertation, emphasis is placed on using nondestructive evaluation (NDE) combined with mechanical testing and characterization methods applied at a scale where damage incubation and initiation is occurring. Specifically, a novel setup built inside a Scanning Electron Microscope (SEM) and retrofitted to be combined with characterization and NDE capabilities was developed with the goal to track the early stages of the damage process in this type of material. The characterization capabilities include Electron Backscatter Diffraction (EBSD) and Energy Dispersive Spectroscopy (EDS) in addition to X-ray micro-computed tomography (μ-CT) and nanoindentation, in addition to microscopy achieved by the Secondary Electron (SE) and Back Scatter Electron (BSE) detectors. The mechanical testing inside the SEM was achieved with the use of an appropriate stage that fitted within its chamber and is capable of applying both axial and bending monotonic and cyclic loads. The NDE capabilities, beyond the microscopy and μ-CT, include the methods of Acoustic Emission and Digital Image Correlation (DIC). This setup was used to identify damage precursors in this material system and their evolution over time and space. The experimental results were analyzed by a custom signal processing scheme that involves both feature-based analyses as well as a machine learning method to relate recorded microstructural data to damage in this material. Extensions of the presented approach to include information from computational methods as well as its applicability to other material systems are discussed.
ERIC Educational Resources Information Center
Justice, Laura M.; Bowles, Ryan P.; Kaderavek, Joan N.; Ukrainetz, Teresa A.; Eisenberg, Sarita L.; Gillam, Ronald B.
2006-01-01
Purpose: This research was conducted to develop a clinical tool--the Index of Narrative Microstructure (INMIS)--that would parsimoniously account for important microstructural aspects of narrative production for school-age children. The study provides field test age- and grade-based INMIS values to aid clinicians in making normative judgments…
Ontology for customer centric digital services and analytics
NASA Astrophysics Data System (ADS)
Keat, Ng Wai; Shahrir, Mohammad Shazri
2017-11-01
In computer science research, ontologies are commonly utilised to create a unified abstract across many rich and different fields. In this paper, we apply the concept to the customer centric domain of digital services analytics and present an analytics solution ontology. The essence is based from traditional Entity Relationship Diagram (ERD), which then was abstracted out to cover wider areas on customer centric digital services. The ontology we developed covers both static aspects (customer identifiers) and dynamic aspects (customer's temporal interactions). The structure of the customer scape is modeled with classes that represent different types of customer touch points, ranging from digital and digital-stamps which represent physical analogies. The dynamic aspects of customer centric digital service are modeled with a set of classes, with the importance is represented in different associations involving establishment and termination of the target interaction. The realized ontology can be used in development of frameworks for customer centric applications, and for specification of common data format used by cooperating digital service applications.
Build loyalty in business markets.
Narayandas, Das
2005-09-01
Companies often apply consumer marketing solutions in business markets without realizing that such strategies only hamper the acquisition and retention of profitable customers. Unlike consumers, business customers inevitably need customized products, quantities, or prices. A company in a business market must therefore manage customers individually, showing how its products or services can help solve each buyer's problems. And it must learn to reap the enormous benefits of loyalty by developing individual relationships with customers. To achieve these ends, the firm's marketers must become aware of the different types of benefits the company offers and convey their value to the appropriate executives in the customer company. It's especially important to inform customers about what the author calls nontangible nonfinancial benefits-above-and-beyond efforts, such as delivering supplies on holidays to keep customers' production lines going. The author has developed a simple set of devices-the benefit stack and the decision-maker stack-to help marketers communicate their firm's myriad benefits. The vendor lists the benefits it offers, then lists the customer's decision makers, specifying their concerns, motivations, and power bases. By linking the two stacks, the vendor can systematically communicate how it will meet each decision-maker's needs. The author has also developed a tool called a loyalty ladder, which helps a company determine how much time and money to spend on relationships with various customers. As customers become increasingly loyal, they display behaviors in a predictable sequence, from growing the relationship and providing word-of-mouth endorsements to investing in the vendor company. The author has found that customers follow the same sequence of loyalty behaviors in all business markets.
Advanced composite applications for sub-micron biologically derived microstructures
NASA Technical Reports Server (NTRS)
Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas
1991-01-01
A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.
Realistic micromechanical modeling and simulation of two-phase heterogeneous materials
NASA Astrophysics Data System (ADS)
Sreeranganathan, Arun
This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry on the mechanical behavior of materials.
Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing
NASA Astrophysics Data System (ADS)
Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.
2018-03-01
Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.
Sato, Kuniya; Ooba, Masahiro; Takagi, Tomohiko; Furukawa, Zengo; Komiya, Seiichi; Yaegashi, Rihito
2013-12-01
Agile software development gains requirements from the direct discussion with customers and the development staff each time, and the customers evaluate the appropriateness of the requirement. If the customers divide the complicated requirement into individual requirements, the engineer who is in charge of software development can understand it easily. This is called division of requirement. However, the customers do not understand how much and how to divide the requirements. This paper proposes the method to divide a complicated requirement into individual requirements. Also, it shows the development of requirement specification editor which can describe individual requirements. The engineer who is in charge of software development can understand requirements easily.
Microstructural effects on constitutive and fatigue fracture behavior of TinSilverCopper solder
NASA Astrophysics Data System (ADS)
Tucker, Jonathon P.
As microelectronic package construction becomes more diverse and complex, the need for accurate, geometry-independent material constitutive and failure models increases. Evaluations of packages based on accelerated environmental tests (such as accelerated thermal cycling or power cycling) only provide package-dependent reliability information. In addition, extrapolations of such test data to life predictions under field conditions are often empirical. Besides geometry, accelerated environmental test data must account for microstructural factors such as alloy composition or isothermal aging condition, resulting in expensive experimental variation. In this work, displacement-controlled, creep, and fatigue lap shear tests are conducted on specially designed SnAgCu test specimens with microstructures representative to those found in commercial microelectronic packages. The data are used to develop constitutive and fatigue fracture material models capable of describing deformation and fracture behavior for the relevant temperature and strain rate ranges. Furthermore, insight is provided into the microstructural variation of solder joints and the subsequent effect on material behavior. These models are appropriate for application to packages of any geometrical construction. The first focus of the thesis is on Pb-mixed SnAgCu solder alloys. During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of SnPb and SnAgCu often result from either mixed assemblies or rework. Three alloys of 1, 5 and 20 weight percent Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn37Pb components mixed with Sn3.0Ag0.5Cu. Displacement-controlled (constant strain rate) and creep tests were performed at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. Rate-dependent constitutive models for Pb-contaminated SnAgCu solder alloys ranging from the traditional time-hardening creep model to the viscoplastic Anand model are described. The second focus of the thesis is on fatigue damage accumulation in SnAgCu solder alloys. While, typical fatigue fracture models are empirical, recently a non-empirical model termed Maximum Entropy Fracture Model (MEFM) was proposed. MEFM is a thermodynamically consistent and information theory inspired damage accumulation theory for ductile solids. This model has been validated recently for Sn3.8Ag0.7Cu solder alloy, and uses a single damage accumulation parameter to relate the probability of fracture to accumulated entropic dissipation. Isothermal cycling fatigue tests on Sn3.0Ag0.5Cu and mixed SnPb/Sn3.0Ag0.5Cu solder alloys at varying strain rates and temperatures are conducted using a custom-built microscale mechanical tester capable of submicron displacement resolution. MEFM is applied here in conjunction with the Anand viscoplasticity model to predict the softening occurring over successive cycles as a result of damage accumulation. The damage accumulation parameters for Sn3.0Ag0.5Cu in different aged states are related to a microstructural parameter which quantitatively describes the state of coarsening. In addition, damage accumulation parameters for the three mixed solder alloys are reported. This approach allows for a non-empirical prediction of both constitutive and fracture behavior of packages of different geometries and different microstructural states under thermo-mechanical fatigue. Approaches to solder joint reliability predictions from materials science and mechanics perspectives differ dramatically. Materials science methods identify key failure mechanisms, but most models cannot predict failure. In contrast, mechanics approaches often provide estimates of joint lifetime, but fail to provide insight into microstructural influences. This work attempts to connect the two fields by relating constitutive behavior and fatigue fracture models for different alloys and aging conditions to one or more microstructural parameters.
Impact of the Internet on Customer Service and Product Development Among the CENDI Agencies
1997-08-01
CENDI / 97-2 IMPACT OF THE INTERNET ON CUSTOMER SERVICE AND PRODUCT DEVELOPMENT AMONG THE CENDI AGENCIES Workshops Held February 4, 1997 and...Public Release Distribution Unlimited 20000411 146 CENDI / 97-2 CENDI WORKSHOP ~ FEBRUARY 4,1997 AT DOE THE IMPACT OF THE INTERNET ON CUSTOMER ...priorities. TABLE OF CONTENTS EXECUTIVE SUMMARY 1 Introduction 1 CENDI / 97-2 Background 2 1.0 THE IMPACT OF THE INTERNET ON CUSTOMER
The utility and its customer: A complex relationship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covelli, L.; Williams, M.V.
Developing methods of tracking customer satisfaction for utilities presents major problems since the customer reacts to the utility on many different levels. The more obvious are in relation to the product (energy) and the services the company provides. More recently there has been talk of the {open_quotes}brand{close_quotes} elements of the company-customer relationship. Ontario Hydro (OH) has developed a method utilizing four separate domains for measuring and tracking customer satisfaction: product, service, competitiveness, and institutional relationships. Ontario Hydro conducted a survey of over 1200 residential customers. The respondents received a detailed in-person survey of their estimation of the importance of specificmore » aspects of customer service and their view of Ontario Hydro`s performance on those same issues. The data yielded 28 factors covered a large variety of separate concerns: customer service, and treatment of customers to export policy. OH concluded that the utility`s relationship with its customer is more complex than the susual customer-vendor interaction. A utility not only provides a product and a service, it has a institutional personality and provides an absolutely necessary product under an exclusive franchise and executes government policy as a regulated monopoly. It was found that customers are sensitive to all of these attributes.« less
NASA Astrophysics Data System (ADS)
Foltz, John W., IV
beta-titanium alloys are being increasingly used in airframes as a way to decrease the weight of the aircraft. As a result of this movement, Ti-5Al-5V-5Mo-3Cr-0.4Fe (Timetal 555), a high-strength beta titanium alloy, is being used on the current generation of landing gear. This alloy features good combinations of strength, ductility, toughness and fatigue life in alpha+beta processed conditions, but little is known about beta-processed conditions. Recent work by the Center for the Accelerated Maturation of Materials (CAMM) research group at The Ohio State University has improved the tensile property knowledge base for beta-processed conditions in this alloy, and this thesis augments the aforementioned development with description of how microstructure affects fatigue life. In this work, beta-processed microstructures have been produced in a Gleeble(TM) thermomechanical simulator and subsequently characterized with a combination of electron and optical microscopy techniques. Four-point bending fatigue tests have been carried out on the material to characterize fatigue life. All the microstructural conditions have been fatigue tested with the maximum test stress equal to 90% of the measured yield strength. The subsequent results from tensile tests, fatigue tests, and microstructural quantification have been analyzed using Bayesian neural networks in an attempt to predict fatigue life using microstructural and tensile inputs. Good correlation has been developed between lifetime predictions and experimental results using microstructure and tensile inputs. Trained Bayesian neural networks have also been used in a predictive fashion to explore functional dependencies between these inputs and fatigue life. In this work, one section discusses the thermal treatments that led to the observed microstructures, and the possible sequence of precipitation that led to these microstructures. The thesis then describes the implications of microstructure on fatigue life and implications of tensile properties on fatigue life. Several additional experiments are then described that highlight possible causes for the observed dependence of microstructure on fatigue life, including fractographic evidence to provide support of microstructural dependencies.
Shin, Dong Won; Guiver, Michael D; Lee, Young Moo
2017-03-22
A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.
Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels
NASA Astrophysics Data System (ADS)
Sohn, S. S.; Lee, S.; Lee, B.-J.; Kwak, J.-H.
2014-09-01
Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.
Ruddick, Fred
2015-01-20
Viewing individuals in need of NHS care as customers has the potential to refocus the way their care is delivered. This article highlights some of the benefits of reframing the nurse-patient relationship in terms of customer care, and draws parallels between good customer care and the provision of high quality patient care in the NHS. It explores lessons to be learned from those who have studied the customer experience, which can be adapted to enhance the customer care experience within the health service. Developing professional expertise in the knowledge and skills that underpin good-quality interpersonal encounters is essential to improve the customer experience in health care and should be prioritised alongside the development of more technical skills. Creating a culture where emotional intelligence, caring and compassion are essential requirements for all nursing staff will improve patient satisfaction.
Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures
Ge, Zhiwei; Ye, Feng; Ding, Yulong
2014-01-01
Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286
The growth of metastable peritectic compounds
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.; Pirich, R. G.
1981-01-01
The influence of gravitationally driven thermosolutal convection on the directional solidification of peritectic alloys is considered as well as the relationships between the solidification processing conditions, and the microstructure, chemistry, and magnetic properties of such alloys. Analysis of directionally solidified Pb-Bi peritectic samples indicates that appreciable macrosegregation occurs due to thermosolutal convection and/or Soret diffusion. A peritectic solidification model which accounts for partial mixing in the liquid ahead of the planar solidification interface and describes macrosegregation has been developed. Two-phase dendritic and banded microstructures were grown in the Pb-Bi peritectic system, refined two-phase microstructures have were observed, and candidate formation mechanisms proposed. Material handling, containment, casting, microstructural and magnetic characterization techniques were developed for the Sm-Co system. Alloys produced with these procedures are homogeneous.
The CONNECT project: Combining macro- and micro-structure.
Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K; Bizzi, Albero; Behrens, Tim E J; Clark, Chris A; Cohen, Yoram; Dyrby, Tim B; Huppi, Petra S; Knoesche, Thomas R; Lebihan, Denis; Parker, Geoff J M; Poupon, Cyril; Anaby, Debbie; Anwander, Alfred; Bar, Leah; Barazany, Daniel; Blumenfeld-Katzir, Tamar; De-Santis, Silvia; Duclap, Delphine; Figini, Matteo; Fischi, Elda; Guevara, Pamela; Hubbard, Penny; Hofstetter, Shir; Jbabdi, Saad; Kunz, Nicolas; Lazeyras, Francois; Lebois, Alice; Liptrot, Matthew G; Lundell, Henrik; Mangin, Jean-François; Dominguez, David Moreno; Morozov, Darya; Schreiber, Jan; Seunarine, Kiran; Nava, Simone; Poupon, Cyril; Riffert, Till; Sasson, Efrat; Schmitt, Benoit; Shemesh, Noam; Sotiropoulos, Stam N; Tavor, Ido; Zhang, Hui Gary; Zhou, Feng-Lei
2013-10-15
In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome. Copyright © 2013 Elsevier Inc. All rights reserved.
Nonlinear optical microscopy and ultrasound imaging of human cervical structure
NASA Astrophysics Data System (ADS)
Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.; Hall, Timothy J.
2013-03-01
The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth.
Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cady, C.M.; Chen, K.C.; Kotula, P.G.
A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based uponmore » temperature and microstructure.« less
High-Performance Scanning Acousto-Ultrasonic System
NASA Technical Reports Server (NTRS)
Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew
2006-01-01
A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total (multimode) acousto-ultrasonic response of the specimen is utilized. The analysis is performed by custom software that extracts parameters of signals in the time and frequency domains. The computer hardware and software provide both real-time and postscan processing and display options. For example, oscilloscope displays of waveforms and power spectral densities are available in real time. Images can be computed while scanning continues. Signals can be digitally preprocessed and/or post-processed by filtering, windowing, time-segmenting, and running-waveform-averaging algorithms. In addition, the software affords options for off-line simulation of the waveform-data-acquisition and scanning processes. In tests, the system has been shown to be capable of characterizing microstructural changes and defects in SiC/SiC and C/SiC ceramic-matrix composites. Delaminations, variations in density, microstructural changes attributable to infiltration by silicon, and crack-space indications (defined in the next sentence) have been revealed in images formed from several time- and frequency-domain parameters of scanning acousto-ultrasonic signals. The crack-space indications were image features that were not revealed by other nondestructive testing methods and are so named because they turned out to mark locations where cracking eventually occurred.
16 CFR 314.3 - Standards for safeguarding customer information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Standards for safeguarding customer... OF CONGRESS STANDARDS FOR SAFEGUARDING CUSTOMER INFORMATION § 314.3 Standards for safeguarding customer information. (a) Information security program. You shall develop, implement, and maintain a...
Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.
2018-05-01
Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.
Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.
2017-12-01
Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.
Quality evaluation in health care services based on customer-provider relationships.
Eiriz, Vasco; Figueiredo, José António
2005-01-01
To develop a framework for evaluating the quality of Portuguese health care organisations based on the relationship between customers and providers, to define key variables related to the quality of health care services based on a review of the available literature, and to establish a conceptual framework in order to test the framework and variables empirically. Systematic review of the literature. Health care services quality should not be evaluated exclusively by customers. Given the complexity, ambiguity and heterogeneity of health care services, the authors develop a framework for health care evaluation based on the relationship between customers (patients, their relatives and citizens) and providers (managers, doctors, other technical staff and non-technical staff), and considering four quality items (customer service orientation, financial performance, logistical functionality and level of staff competence). This article identifies important changes in the Portuguese health care industry, such as the ownership of health care providers. At the same time, customers are changing their attitudes towards health care, becoming much more concerned and demanding of health services. These changes are forcing Portuguese private and public health care organisations to develop more marketing-oriented services. This article recognises the importance of quality evaluation of health care services as a means of increasing customer satisfaction and organisational efficiency, and develops a framework for health care evaluation based on the relationship between customers and providers.
Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...
2016-11-15
The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less
Pidenko, Sergey A; Burmistrova, Natalia A; Shuvalov, Andrey A; Chibrova, Anastasiya A; Skibina, Yulia S; Goryacheva, Irina Y
2018-08-17
This review covers the current state of the art of luminescent biosensors based on various types of microstructured optical fiber. The unique optical and structural properties of this type of optical fiber make them one of the most promising integrated platforms for bioassays. The individual sections of this review are devoted to a) classification of microstructured optical fibers, b) microstructured optical fiber materials, c) aspects of biosensing based on the biomolecules incorporated into the microstructured optical fibers, and d) development of models for prediction of the efficiency of luminescent signal processing. The authors' views on current trends and limitations of microstructured optical fibers for biosensing as well as the most promising areas and technologies for application in analytical practice are presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Trabecular Bone Mechanical Properties and Fractal Dimension
NASA Technical Reports Server (NTRS)
Hogan, Harry A.
1996-01-01
Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again and also scanned using dual-energy X-ray absorptiometry (DEXA). Cube specimens are then cut from the slabs and tested mechanically in compression. Correlations between mechanical properties and fractal dimension will then be examined to assess and quantify the predictive capability of the fractal calculations.
Mueller, Inga; Rementeria, Rosalia; Caballero, Francisca G.; Kuntz, Matthias; Sourmail, Thomas; Kerscher, Eberhard
2016-01-01
The recently developed nanobainitic steels show high strength as well as high ductility. Although this combination seems to be promising for fatigue design, fatigue properties of nanostructured bainitic steels are often surprisingly low. To improve the fatigue behavior, an understanding of the correlation between the nanobainitic microstructure and the fatigue limit is fundamental. Therefore, our hypothesis to predict the fatigue limit was that the main function of the microstructure is not necessarily totally avoiding the initiation of a fatigue crack, but the microstructure has to increase the ability to decelerate or to stop a growing fatigue crack. Thus, the key to understanding the fatigue behavior of nanostructured bainite is to understand the role of the microstructural features that could act as barriers for growing fatigue cracks. To prove this hypothesis, we carried out fatigue tests, crack growth experiments, and correlated these results to the size of microstructural features gained from microstructural analysis by light optical microscope and EBSD-measurements. Finally, we were able to identify microstructural features that influence the fatigue crack growth and the fatigue limit of nanostructured bainitic steels. PMID:28773953
Gao, X-L; Zhang, G Y
2016-07-01
A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.
Zhang, G. Y.
2016-01-01
A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler–Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived. PMID:27493578
Challenges to counseling customers at the pharmacy counter--why do they exist?
Kaae, Susanne; Traulsen, Janine Morgall; Nørgaard, Lotte Stig
2012-01-01
Challenges to engage pharmacy customers in medicine dialogues at the counter have been identified comprising a new and extended clinical role for pharmacists in the health care system. This article seeks to expand understanding of factors involved in successful interaction at the pharmacy counter between customers and pharmacy staff to develop their relationship further. Practical challenges to customer encounters experienced by community pharmacists are discussed using theory from the field of mainly inter-relational communication and particular studies on pharmacy communication. Preconceived expectation of customers, the type of question asked by pharmacy staff, and differences in perception of illness and medicines between staff and customers are discussed. Both staff and customer influence the outcome of attempts by pharmacy staff to engage customers in dialogue about their medicine use through a complex mechanism of interaction. It is recommended that practitioners and researchers begin to distinguish, both theoretically and practically, between the content of a conversation and the underlying relationship when exploring and further developing the therapeutic relationship between pharmacy personnel and customers. Copyright © 2012 Elsevier Inc. All rights reserved.
Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon
2016-01-01
Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both), an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM) and rearrangement of the cortical gray matter microstructure (P < 0.001, for both), while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both). During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001), while a decrease in space was observed for the ventral internal capsule (P < 0.001). For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001). To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions studied, the changes in mechanical properties were modest. Moreover, the effect of ventricular enlargement is not limited to the CC+PVWM and ventral internal capsule, the extent of microstructural changes vary between brain regions, and there is regional and temporal variation in brain tissue stiffness during hydrocephalus development. PMID:26848844
Extreme Programming in a Research Environment
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
2002-01-01
This article explores the applicability of Extreme Programming in a scientific research context. The cultural environment at a government research center differs from the customer-centric business view. The chief theoretical difficulty lies in defining the customer to developer relationship. Specifically, can Extreme Programming be utilized when the developer and customer are the same person? Eight of Extreme Programming's 12 practices are perceived to be incompatible with the existing research culture. Further, six of the nine 'environments that I know don't do well with XP' apply. A pilot project explores the use of Extreme Programming in scientific research. The applicability issues are addressed and it is concluded that Extreme Programming can function successfully in situations for which it appears to be ill-suited. A strong discipline for mentally separating the customer and developer roles is found to be key for applying Extreme Programming in a field that lacks a clear distinction between the customer and the developer.
OpinionSeer: interactive visualization of hotel customer feedback.
Wu, Yingcai; Wei, Furu; Liu, Shixia; Au, Norman; Cui, Weiwei; Zhou, Hong; Qu, Huamin
2010-01-01
The rapid development of Web technology has resulted in an increasing number of hotel customers sharing their opinions on the hotel services. Effective visual analysis of online customer opinions is needed, as it has a significant impact on building a successful business. In this paper, we present OpinionSeer, an interactive visualization system that could visually analyze a large collection of online hotel customer reviews. The system is built on a new visualization-centric opinion mining technique that considers uncertainty for faithfully modeling and analyzing customer opinions. A new visual representation is developed to convey customer opinions by augmenting well-established scatterplots and radial visualization. To provide multiple-level exploration, we introduce subjective logic to handle and organize subjective opinions with degrees of uncertainty. Several case studies illustrate the effectiveness and usefulness of OpinionSeer on analyzing relationships among multiple data dimensions and comparing opinions of different groups. Aside from data on hotel customer feedback, OpinionSeer could also be applied to visually analyze customer opinions on other products or services.
ICP Corporate Customer Assessment - Sampling Plan
1995-07-01
CORPORATE CUSTOMER ASSESSMENT - SAMPLING PLAN JULY 1995 Lead Analyst: Lieutenant Commander William J. Wilkinson, USN Associate Analyst: Mr. Henry J...project developed a plan for conducting recurring surveys of Defense Logistics Agency customers , in support of the DLA Corporate Customer Assessment...Team. The primary product was a sampling plan, including stratification of customers by Military Service or Federal Agency and by commodity purchased
Tarafder, Solaiman; Koch, Alia; Jun, Yena; Chou, Conrad; Awadallah, Mary R; Lee, Chang H
2016-04-25
Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF's bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing cartridges during a single printing process. Spatially controlled delivery of GFs, with a prolonged release, guided formation of multi-tissue interfaces from bone marrow derived mesenchymal stem/progenitor cells (MSCs). To investigate efficacy of the micro-precise delivery system embedded in 3D printed scaffold, temporomandibular joint (TMJ) disc scaffolds were fabricated with micro-precise spatiotemporal delivery of CTGF and TGFβ3, mimicking native-like multiphase fibrocartilage. In vitro, TMJ disc scaffolds spatially embedded with CTGF/TGFβ3-μS resulted in formation of multiphase fibrocartilaginous tissues from MSCs. In vivo, TMJ disc perforation was performed in rabbits, followed by implantation of CTGF/TGFβ3-μS-embedded scaffolds. After 4 wks, CTGF/TGFβ3-μS embedded scaffolds significantly improved healing of the perforated TMJ disc as compared to the degenerated TMJ disc in the control group with scaffold embedded with empty μS. In addition, CTGF/TGFβ3-μS embedded scaffolds significantly prevented arthritic changes on TMJ condyles. In conclusion, our micro-precise spatiotemporal delivery system embedded in 3D printing may serve as an efficient tool to regenerate complex and inhomogeneous tissues.
NASA Astrophysics Data System (ADS)
Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.
2016-10-01
It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.
Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys
NASA Astrophysics Data System (ADS)
Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.
2016-09-01
Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.
Understanding the Implications of a LINAC’s Microstructure on Devices and Photocurrent Models
McLain, Michael Lee; McDonald, Joseph Kyle; Hembree, Charles E.; ...
2017-10-20
Here, the effect of a linear accelerator’s (LINAC’s) microstructure (i.e., train of narrow pulses) on devices and the associated transient photocurrent models are investigated. The data indicate that the photocurrent response of Si-based RF bipolar junction transistors and RF p-i-n diodes is considerably higher when taking into account the microstructure effects. Similarly, the response of diamond, SiO 2, and GaAs photoconductive detectors (standard radiation diagnostics) is higher when taking into account the microstructure. This has obvious hardness assurance implications when assessing the transient response of devices because the measured photocurrent and dose rate levels could be underestimated if microstructure effectsmore » are not captured. Indeed, the rate the energy is deposited in a material during the microstructure peaks is much higher than the filtered rate which is traditionally measured. In addition, photocurrent models developed with filtered LINAC data may be inherently inaccurate if a device is able to respond to the microstructure.« less
Understanding the Implications of a LINAC’s Microstructure on Devices and Photocurrent Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLain, Michael Lee; McDonald, Joseph Kyle; Hembree, Charles E.
Here, the effect of a linear accelerator’s (LINAC’s) microstructure (i.e., train of narrow pulses) on devices and the associated transient photocurrent models are investigated. The data indicate that the photocurrent response of Si-based RF bipolar junction transistors and RF p-i-n diodes is considerably higher when taking into account the microstructure effects. Similarly, the response of diamond, SiO 2, and GaAs photoconductive detectors (standard radiation diagnostics) is higher when taking into account the microstructure. This has obvious hardness assurance implications when assessing the transient response of devices because the measured photocurrent and dose rate levels could be underestimated if microstructure effectsmore » are not captured. Indeed, the rate the energy is deposited in a material during the microstructure peaks is much higher than the filtered rate which is traditionally measured. In addition, photocurrent models developed with filtered LINAC data may be inherently inaccurate if a device is able to respond to the microstructure.« less
Creating a successful relationship with customers.
Cotton, L; Sparrow, E
1998-01-01
In 1997, several employers commissioned an inpatient survey for a group of businesses that included hospitals in southeast Michigan. Its results indicated that the University of Michigan Health System (UMHS) needed to become more customer-focused. To meet this challenge, UMHS mandated that customer service to its patients and their families should be its first priority. A pilot project in the radiology department's pediatric division was established to recognize and reward employees for outstanding service to customers. The program is now used to reward employees throughout the radiology department, on the assumption that when employees feel special, so will their customers. Management's focus is on employees--they are the health system. The department also invested in employee development, a continuous training program that centers on customer service and teaches tools and skills for better communication. The goal of the development program at UMHS is to exceed the needs of its customers.
NASA Astrophysics Data System (ADS)
Belgasam, Tarek M.; Zbib, Hussein M.
2018-06-01
The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.
NASA Astrophysics Data System (ADS)
Belgasam, Tarek M.; Zbib, Hussein M.
2018-03-01
The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.
Advances in the Development of Processing - Microstructure Relations for Titanium Alloys (Postprint)
2016-05-06
10.1002/9781119296126.ch29 14. ABSTRACT (Maximum 200 words) Advances in the fundamental understanding of microstructure evolution and plastic flow during...Abstract Advances in the fundamental understanding of microstructure evolution and plastic flow during primary and secondary processing of titanium...generation of rolling-direction secondary tension stresses. Important factors in such failures have been deduced to include the plastic properties and the
Fabrication of micro-lens array on convex surface by meaning of micro-milling
NASA Astrophysics Data System (ADS)
Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin
2014-08-01
In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.
Microstructure and texture evolution in cold-rolled and annealed alloy MA-956
NASA Astrophysics Data System (ADS)
Hosoda, Takashi
The microstructural and texture development with thermomechanical processing, performed through a combination of cold-rolling and annealing, in MA-956 plate consisting of a layered and inhomogeneous microstructure was systematically assessed. The alloy contained in mass percent, 20 Cr, 4.8 Al, 0.4 Ti, 0.4 Y2O3, and the balance iron. The starting material was as-hot-rolled plate, 9.7 mm thick. The as-hot-rolled plate was subjected to 40%, 60%, and 80% cold-rolling reduction and subsequently annealed at 1000, 1200, or 1380. Assessment of microstructural and texture developments before and after cold-rolling and annealing was performed using light optical microscopy (LOM), Vickers hardness testing, and electron backscatter diffraction (EBSD). Locally introduced misorientations by cold-rolling in each region were evaluated by Kernel Average Misorientation (KAM) maps. The as-hot-rolled condition contained a layered and inhomogeneous microstructure consisting of thin and coarse elongated grains, and aggregated regions which consisted of fine grains and sub-grains with {100} texture parallel to the longitudinal direction. The microstructure of the 40% cold-rolled condition contained deformation bands, and the 60% and 80% cold-rolled conditions also contained highly deformed regions where the deformation bands were intricately tangled. A predominant orientation of (001) parallel to the rolling direction was developed during cold-rolling, becoming more prominent with increasing reduction. The magnitudes of KAM angles varied through the thickness depending on the initial microstructures. Recrystallization occurred in regions where high KAM angles were dense after annealing and nucleation sites were the aggregation regions, deformation bands, and highly deformed regions. The shape and size of the recrystallized grains varied depending on the nucleation sites.
NASA Astrophysics Data System (ADS)
Deng, Shuang; Xiang, Wenting; Tian, Yangge
2009-10-01
Map coloring is a hard task even to the experienced map experts. In the GIS project, usually need to color map according to the customer, which make the work more complex. With the development of GIS, more and more programmers join the project team, which lack the training of cartology, their coloring map are harder to meet the requirements of customer. From the experience, customers with similar background usually have similar tastes for coloring map. So, we developed a GIS color scheme decision-making system which can select color schemes of similar customers from case base for customers to select and adjust. The system is a BS/CS mixed system, the client side use JSP and make it possible for the system developers to go on remote calling of the colors scheme cases in the database server and communicate with customers. Different with general case-based reasoning, even the customers are very similar, their selection may have difference, it is hard to provide a "best" option. So, we select the Simulated Annealing Algorithm (SAA) to arrange the emergence order of different color schemes. Customers can also dynamically adjust certain features colors based on existing case. The result shows that the system can facilitate the communication between the designers and the customers and improve the quality and efficiency of coloring map.
Analysis of New Composite Architectures
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1996-01-01
Efficient and accurate specialty finite elements methods to analyze textile composites were developed and are described. Textile composites present unique challenges to the analyst because of the large, complex 'microstructure'. The geometry of the microstructure is difficult to model and it introduces unusual free surface effects. The size of the microstructure complicates the use of traditional homogenization methods. The methods developed constitute considerable progress in addressing the modeling difficulties. The details of the methods and attended results obtained therefrom, are described in the various chapters included in Part 1 of the report. Specific conclusions and computer codes generated are included in Part 2 of the report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
NASA Astrophysics Data System (ADS)
Young, John Paul
The low density and high strength to weight ratio of magnesium alloys makes them ideal candidates to replace many of the heavier steel and aluminum alloys currently used in the automotive and other industries. Although cast magnesium alloys components have a long history of use in the automotive industry, the integration of wrought magnesium alloys components has been hindered by a number of factors. Grain refinement through thermomechanical processing offers a possible solution to many of the inherent problems associated with magnesium alloys. This work explores the development of several thermomechanical processing techniques and investigates their impact on the microstructural and mechanical properties of magnesium alloys. In addition to traditional thermomechanical processing, this work includes the development of new severe plastic deformation techniques for the production of fine grain magnesium plate and pipe and develops a procedure by which the thermal microstructural stability of severely plastically deformed microstructures can be assessed.
2017-05-25
operate independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...interventions both successful and unsuccessful, that an external country must craft a custom approach to develop local security forces based on the
Composite materials for thermal energy storage: enhancing performance through microstructures.
Ge, Zhiwei; Ye, Feng; Ding, Yulong
2014-05-01
Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry
NASA Astrophysics Data System (ADS)
Pederson, Erik Norman
Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.
Hagihara, Koji; Ikenishi, Takaaki; Araki, Haruka; Nakano, Takayoshi
2017-06-21
A (Mo 0.85 Nb 0.15 )Si 2 crystal with an oriented, lamellar, C40/C11 b two-phase microstructure is a promising ultrahigh-temperature (UHT) structural material, but its low room-temperature fracture toughness and low high-temperature strength prevent its practical application. As a possibility to overcome these problems, we first found a development of unique "cross-lamellar microstructure", by the cooping of Cr and Ir. The cross-lamellar microstructure consists of a rod-like C11 b -phase grains that extend along a direction perpendicular to the lamellar interface in addition to the C40/C11 b fine lamellae. In this study, the effectiveness of the cross-lamellar microstructure for improving the high-temperature creep deformation property, being the most essential for UHT materials, was examined by using the oriented crystals. The creep rate significantly reduced along a loading orientation parallel to the lamellar interface. Furthermore, the degradation in creep strength for other loading orientation that is not parallel to the lamellar interface, which has been a serious problem up to now, was also suppressed. The results demonstrated that the simultaneous improvement of high-temperature creep strength and room temperature fracture toughness can be first accomplished by the development of unique cross-lamellar microstructure, which opens a potential avenue for the development of novel UHT materials as alternatives to existing Ni-based superalloys.
Phase Transformations and Microstructural Evolution of Mo-Bearing Stainless Steels
NASA Astrophysics Data System (ADS)
Anderson, T. D.; Dupont, J. N.; Perricone, M. J.; Marder, A. R.
2007-01-01
The good corrosion resistance of superaustenitic stainless steel (SASS) alloys has been shown to be a direct consequence of high concentrations of Mo, which can have a significant effect on the microstructural development of welds in these alloys. In this research, the microstructural development of welds in the Fe-Ni-Cr-Mo system was analyzed over a wide variety of Cr/Ni ratios and Mo contents. The system was first simulated by construction of multicomponent phase diagrams using the CALPHAD technique. Data from vertical sections of these diagrams are presented over a wide compositional range to produce diagrams that can be used as a guide to understand the influence of composition on microstructural development. A large number of experimental alloys were then prepared via arc-button melting for comparison with the diagrams. Each alloy was characterized using various microscopy techniques. The expected δ-ferrite and γ-austenite phases were accompanied by martensite at low Cr/Ni ratios and by σ phase at high Mo contents. A total of 20 possible phase transformation sequences are proposed, resulting in various amounts and morphologies of the γ, δ, σ, and martensite phases. The results were used to construct a map of expected phase transformation sequence and resultant microstructure as a function of composition. The results of this work provide a working guideline for future base metal and filler metal development of this class of materials.
High-Resolution Characterization of UMo Alloy Microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.
2016-11-30
This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less
Discrete microstructural cues for the attenuation of fibrosis following myocardial infarction.
Pinney, James R; Du, Kim T; Ayala, Perla; Fang, Qizhi; Sievers, Richard E; Chew, Patrick; Delrosario, Lawrence; Lee, Randall J; Desai, Tejal A
2014-10-01
Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. We have developed a therapeutic materials strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructures to mechanically alter the microenvironment. Polymeric microstructures were fabricated using photolithographic techniques and studied in a three-dimensional culture model of the fibrotic environment and by direct injection into the infarct zone of adult rats. Here, we show dose-dependent down-regulation of expression of genes associated with the mechanical fibrotic response in the presence of microstructures. Injection of this microstructured material into the infarct zone decreased levels of collagen and TGF-β, increased elastin deposition and vascularization in the infarcted region, and improved functional outcomes after six weeks. Our results demonstrate the efficacy of these discrete anti-fibrotic microstructures and suggest a potential therapeutic materials approach for combatting pathologic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Managing customization in health care: a framework derived from the services sector literature.
Minvielle, Etienne; Waelli, Mathias; Sicotte, Claude; Kimberly, John R
2014-08-01
Organizations that provide health services are increasingly in need of systems and approaches that will enable them to be more responsive to the needs and wishes of their clients. Two recent trends, namely, patient-centered care (PCC) and personalized medicine, are first steps in the customization of care. PCC shifts the focus away from the disease to the patient. Personalized medicine, which relies heavily on genetics, promises significant improvements in the quality of healthcare through the development of tailored and targeted drugs. We need to understand how these two trends can be related to customization in healthcare delivery and, because customization often entails extra costs, to define new business models. This article analyze how customization of the care process can be developed and managed in healthcare. Drawing on relevant literature from various services sectors, we have developed a framework for the implementation of customization by the hospital managers and caregivers involved in care pathways. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Customer Choice Would Advance Renewable Energy
Customer Choice Would Advance Renewable Energy Golden, Colo., Oct. 31, 2001 Giving consumers a , but the recent suspension of customer choice in California represents a setback to the development of of market rules and public policies that support customer choice. The full report, "Forecasting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... Administrator for Commercial Space Transportation (AST) Customer Service Survey AGENCY: Federal Aviation... on customer service standards which have been developed and distributed to industry customers. DATES... determine the quality of services provided by AST to its industry and government customers, and to address...
Measuring and improving customer satisfaction with government services
Glen D. Alexander
1995-01-01
Two years ago, Ohio State Park developed a methodology of measuring customer satisfaction, to gauge the effectiveness of our customer service. What follows is a discussion of our installation of systems to measure and improve customer satisfaction, the interpretation of the data, and the positive results we have enjoyed.
The continuing battle against defects in nickel-base superalloys
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.
1986-01-01
In the six decades since the identification of age hardenable nickel-base superalloys their compositions and microstructures have changed markedly. Current alloys are tailored for specific applications. Thus their microstructures are defined for that application. This paper briefly reviews the evolution of superalloy microstructures and comments on the appearance and implications of microstructural defects in high performance superalloys. It is seen that new alloys and proceses have generated new types of defects. Thus as the industry continues to develop new alloys and processes it must remain vigilant toward the identification and control of new types of defects.
Undistorted 3D microstructures in SU8 formed through two-photon polymerization
NASA Astrophysics Data System (ADS)
Ohlinger, Kris; Lin, Yuankun; Poole, Zsolt; Chen, Kevin P.
2011-09-01
This paper presents the wavelength dependence of two-photon polymerization in SU-8 between 720-780 nm. The study is performed by microstructuring SU-8 through a single-shot exposure of SU-8 to 140 fs tunable laser pulses with 80 MHz repetition rate, or by laser direct writing. Two-photon absorption is closely related to one-photon absorption in pristine SU-8. By careful design of the neighboring micro-structures, or by varying wet-processing parameters during development, undistorted and unbended 3D micro-structures have been fabricated through direct laser writing.
ERIC Educational Resources Information Center
Dahiyat, Samer E.; Al-Zu'bi, Zu'bi M. F.
2012-01-01
Knowledge management has often been linked to product development, innovation, and customisation. In particular, effective exploitation of customer knowledge, through engaging customers in a process of co-creation of products, exemplifies such a link. Accordingly, this research aims to identify those dimensions of knowledge management activities…
Contracting Deployment Customer Guide.
1996-12-01
functional managers from the major commands expressed the need to develop a Customer Guide for contingency deployments which would standardize, simplify, and...streamline the support our Contingency Contracting Officers (CCOs) provide to our customers .
van Ewijk, Hanneke; Groenman, Annabeth P; Zwiers, Marcel P; Heslenfeld, Dirk J; Faraone, Stephen V; Hartman, Catharina A; Luman, Marjolein; Greven, Corina U; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan; Oosterlaan, Jaap
2015-03-01
Brain white matter (WM) tracts, playing a vital role in the communication between brain regions, undergo important maturational changes during adolescence and young adulthood, a critical period for the development of nicotine dependence. Attention-deficit/hyperactivity disorder (ADHD) is associated with increased smoking and widespread WM abnormalities, suggesting that the developing ADHD brain might be especially vulnerable to effects of smoking. This study aims to investigate the effect of smoking on (WM) microstructure in adolescents and young adults with and without ADHD. Diffusion tensor imaging was performed in an extensively phenotyped sample of nonsmokers (n = 95, 50.5% ADHD), irregular smokers (n = 41, 58.5% ADHD), and regular smokers (n = 50, 82.5% ADHD), aged 14-24 years. A whole-brain voxelwise approach investigated associations of smoking, ADHD and their interaction, with WM microstructure as measured by fractional anisotropy (FA) and mean diffusivity (MD). Widespread alterations in FA and MD were found for regular smokers compared to irregular and nonsmokers, mainly located in the corpus callosum and WM tracts surrounding the basal ganglia. Several regions overlapped with regions of altered FA for ADHD versus controls, albeit in different directions. Irregular and nonsmokers did not differ, and ADHD and smoking did not interact. Results implicate that smoking and ADHD have independent effects on WM microstructure, and possibly do not share underlying mechanisms. Two mechanisms may play a role in the current results. First, smoking may cause alterations in WM microstructure in the maturing brain. Second, pre-existing WM microstructure differences possibly reflect a risk factor for development of a smoking addiction. © 2014 Wiley Periodicals, Inc.
Comparison of custom versus COTS AMLCDs for military and avionic applications
NASA Astrophysics Data System (ADS)
Angelo, Van
1997-07-01
AMLCD's are currently the flat panel technology of choice for military systems and civil transport avionic applications, both new and retrofit. Historically, military and avionic displays have ben custom designed and have generally been specific to each application. Two recent developments have given display system designers a choice between a custom military/avionic solution or a ruggedized commercial off-the-shelf (COTS) implementation. The first development is the widespread availability of various consumer and automotive AMLCD panels at low prices. The second is the change in the policy of defense departments, notably the US Department of Defense, to procure COTS components instead of developing custom solutions. This paper assesses and analyzes the key differences in characteristics, performance and logistical supportability of military and avionic AMLCD's and presents the tradeoffs involved in making the optimum choice between custom and COTS.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2013-09-30
The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.
Modeling the Homogenization Kinetics of As-Cast U-10wt% Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Joshi, Vineet; Hu, Shenyang Y.
2016-01-15
Low-enriched U-22at% Mo (U-10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U-10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding ofmore » the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.« less
Nonlinear optical microscopy and ultrasound imaging of human cervical structure
Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.
2013-01-01
Abstract. The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth. PMID:23412434
Thermomechanical Testing and Microstructural Development of Class L Steel Wheel Alloy
DOT National Transportation Integrated Search
1994-03-01
Macrostructure, microstructure, and quantitative metallographic analysis is conducted on Association of American Railroads Class L wheel steel specimens tested in a Gleeble 1500 under combined mechanical compression and resistance heating to temperat...
Homentcovschi, Dorel; Murray, Bruce T.; Miles, Ronald N.
2013-01-01
There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data. PMID:24058267
Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel
NASA Astrophysics Data System (ADS)
Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy
2014-05-01
Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotkowski, A.; Rios, O.; Sridharan, N.
Our present research in metal additive manufacturing (AM) focuses on designing processing parameters around existing alloys designed for traditional manufacturing. However, to maximize the benefits of AM, alloys should be designed to specifically take advantage of the unique thermal conditions of these processes. Furthermore, our study focuses on the development of a design methodology for alloys in AM, using a newly developed Al-Ce alloy as an initial case study. To evaluate the candidacy of this system for fusion based additive manufacturing, single-line laser melts were made on cast Al-12Ce plates using three different beam velocities (100, 200, and 300 mm/min).more » The microstructure was evaluated in the as-melted and heat treated conditions (24 hrs at 300°C). An extremely fine microstructure was observed within the weld pools, evolving from eutectic at the outer solid-liquid boundaries to a primary Al FCC dendritic/cellular structure nearer the melt-pool centerline. We rationalized the observed microstructures through the construction of a microstructure selection map for the Al-Ce binary system, which will be used to enable future alloy design. Interestingly, the heat treated samples exhibited no microstructural coarsening.« less
Mathematical modeling of microstructural development in hypoeutectic cast iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maijer, D.; Cockcroft, S.L.; Patt, W.
A mathematical heat-transfer/microstructural model has been developed to predict the evolution of proeutectic austenite, white iron eutectic, and gray iron eutectic during solidification of hypoeutectic cast iron, based on the commercial finite-element code ABAQUS. Specialized routines which employ relationships describing nucleation and growth of equiaxed primary austenite, gray iron eutectic, and white iron eutectic have been formulated and incorporated into ABAQUS through user-specified subroutines. The relationships used in the model to describe microstructural evolution have been adapted from relationships describing equiaxed growth in the literature. The model has been validated/fine tuned against temperature data collected from a QuiK-Cup sample, whichmore » contained a thermocouple embedded approximately in the center of the casting. The phase distribution predicted with the model has been compared to the measured phase distribution inferred from the variation in hardness within the QuiK-Cup sample and from image analysis of photomicrographs of the polished and etched microstructure. Overall, the model results were found to agree well with the measured distribution of the microstructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas
2017-03-06
DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less
Homentcovschi, Dorel; Murray, Bruce T; Miles, Ronald N
2013-10-15
There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data.
Demand forecast model based on CRM
NASA Astrophysics Data System (ADS)
Cai, Yuancui; Chen, Lichao
2006-11-01
With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.
ERIC Educational Resources Information Center
Hasty, Douglas F.
2004-01-01
Are librarians doing all they can to ensure that customer services are delivered with the customer in mind? Librarians are great at helping, but we sometimes need help with identifying customers, defining their needs, developing services, and reviewing the processes behind the services. Fourth Generation Management provides new insight for…
14 CFR § 1260.63 - Customs clearance and visas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Customs clearance and visas. § 1260.63... COOPERATIVE AGREEMENTS General Special Conditions § 1260.63 Customs clearance and visas. Customs Clearance and Visas (For grants or cooperative agreements with foreign organizations, this clause will be developed on...
Becoming customer-driven: one health system's story.
Bagnell, A
1998-01-01
Market research was done by Crozer-Keystone Health System to better understand the new health care consumer. The information will assist in developing, promoting, and delivering products and services of maximum value to current and prospective consumers. The system is responding by bundling and delivering products and services around consumer-based dimensions, developing new and better ways to improve customer convenience, access, and service. Operationalizing these initiatives for change involves building an information infrastructure of extensive content and customer databases, using new technologies to customize communications and ultimately service components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, A., E-mail: a2lombar@ryerson.ca; D'Elia, F.; Ravindran, C.
2014-01-15
In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy castingmore » retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.« less
Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel
NASA Astrophysics Data System (ADS)
Pickering, E. J.; Bhadeshia, H. K. D. H.
2014-06-01
This work assesses the consequences of macrosegregation on microstructural evolution during solid-state transformations in a continuously cooled pressure-vessel steel (SA508 Grade 3). Stark spatial variations in microstructure are observed following a simulated quench from the austenitization temperature, which are found to deliver significant variations in hardness. Partial-transformation experiments are used to show the development of microstructure in segregated material. Evidence is presented which indicates the bulk microstructure is not one of upper bainite, as it has been described in the past, but one comprised of Widmanstätten ferrite and pockets of lower bainite. Segregation is observed on three different length scales, and the origins of each type are proposed. Suggestions are put forward for how the segregation might be minimized, and its detrimental effects suppressed by heat treatments.
Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata
NASA Astrophysics Data System (ADS)
Kuc, Dariusz; Gawąd, Jerzy
2011-01-01
The paper is focused on application of multi-scale 2D method. Model approach consists of Cellular Automata (CA) model of microstructure development and the finite element code to solve thermo-mechanical problem. Dynamic recrystallization phenomenon is taken into account in 2D CA model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries. Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation density obtained from CA model. The results attained from the model were validated with the experimental data. In the present study, austenitic steel X3CrNi18-10 was investigated. The examination of microstructure for the initial and final microstructures was carried out, using light microscopy and transmission electron microscopy.
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.
Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo
2015-04-20
A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis.
Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, S.; Tewari, A.; Gokhale, A.M.
In the unidirectional fiber reinforced composites, the spatial agreement of fibers is often non-uniform. These non-uniformities are linked to the processing conditions, and they affect the properties of the composite. In this contribution, a recently developed digital image analysis technique is used to quantify the non-uniform spatial arrangement of Nicalon fibers in a ceramic matrix composite (CMC). These quantitative data are utilized to develop a six parameter computer simulated microstructure model that is statistically equivalent to the non-uniform microstructure of the CMC. The simulated microstructure can be utilized as a RVE for the micro-mechanical modeling studies.
Extreme Programming: Maestro Style
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark
2009-01-01
"Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme-programming practices. The single most influential of these factors is that continuous interaction between customers and programmers is not feasible.
Food structure: Its formation and relationships with other properties.
Joardder, Mohammad U H; Kumar, Chandan; Karim, M A
2017-04-13
Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food.
The role of complaint management in the service recovery process.
Bendall-Lyon, D; Powers, T L
2001-05-01
Patient satisfaction and retention can be influenced by the development of an effective service recovery program that can identify complaints and remedy failure points in the service system. Patient complaints provide organizations with an opportunity to resolve unsatisfactory situations and to track complaint data for quality improvement purposes. Service recovery is an important and effective customer retention tool. One way an organization can ensure repeat business is by developing a strong customer service program that includes service recovery as an essential component. The concept of service recovery involves the service provider taking responsive action to "recover" lost or dissatisfied customers and convert them into satisfied customers. Service recovery has proven to be cost-effective in other service industries. The complaint management process involves six steps that organizations can use to influence effective service recovery: (1) encourage complaints as a quality improvement tool; (2) establish a team of representatives to handle complaints; (3) resolve customer problems quickly and effectively; (4) develop a complaint database; (5) commit to identifying failure points in the service system; and (6) track trends and use information to improve service processes. Customer retention is enhanced when an organization can reclaim disgruntled patients through the development of effective service recovery programs. Health care organizations can become more customer oriented by taking advantage of the information provided by patient complaints, increasing patient satisfaction and retention in the process.
Microstructured-core optical fibre for evanescent sensing applications
NASA Astrophysics Data System (ADS)
Cordeiro, Cristiano M. B.; Franco, Marcos A. R.; Chesini, Giancarlo; Barretto, Elaine C. S.; Lwin, Richard; Brito Cruz, C. H.; Large, Maryanne C. J.
2006-12-01
The development of microstructured fibres offers the prospect of improved fibre sensing for low refractive index materials such as liquids and gases. A number of approaches are possible. Here we present a new approach to evanescent field sensing, in which both core and cladding are microstructured. The fibre was fabricated and tested, and simulations and experimental results are shown in the visible region to demonstrate the utility of this approach for sensing.
ERIC Educational Resources Information Center
Brewer, Julie; And Others
1995-01-01
Presents three articles that discuss customer service in libraries, with a focus on planning for service management, a customer service program for library staff, and a quality improvement process. Highlights include developing and implementing service strategies, dealing with requests, redefining work relationships, coworkers as customers,…
Technology: Making the Connections. Innovations in the Apparel Industry. Resources in Technology.
ERIC Educational Resources Information Center
Threlfall, K. Denise
1996-01-01
Describes the partnership between Levi Strauss & Co., the largest brand-name apparel manufacturer in the world, and Custom Clothing Technology, the developer of software to customize jeans for female customers. (JOW)
A customer-friendly Space Station
NASA Technical Reports Server (NTRS)
Pivirotto, D. S.
1984-01-01
This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.
Development of Nanostructured Austempered Ductile Cast Iron
NASA Astrophysics Data System (ADS)
Panneerselvam, Saranya
Austempered Ductile Cast Iron is emerging as an important engineering materials in recent years because of its excellent combination of mechanical properties such as high strength with good ductility, good fatigue strength and fracture toughness together with excellent wear resistance. These combinations of properties are achieved by the microstructure consisting of acicular ferrite and high carbon austenite. Refining of the ausferritic microstructure will further enhance the mechanical properties of ADI and the presence of proeutectoid ferrite in the microstructure will considerably improve the ductility of the material. Thus, the focus of this investigation was to develop nanostructured austempered ductile cast iron (ADI) consisting of proeutectoid ferrite, bainitic ferrite and high carbon austenite and to determine its microstructure-property relationships. Compact tension and cylindrical tensile test samples were prepared as per ASTM standards, subjected to various heat treatments and the mechanical tests including the tensile tests, plane strain fracture toughness tests, hardness tests were performed as per ASTM standards. Microstructures were characterized by optical metallography, X-ray diffraction, SEM and TEM. Nanostructured ADI was achieved by a unique heat treatment consisting of austenitization at a high temperature and subsequent plastic deformation at the same austenitizing temperature followed by austempering. The investigation also examined the effect of cryogenic treatment, effect of intercritical austenitizing followed by single and two step austempering, effect of high temperature plastic deformation on the microstructure and mechanical properties of the low alloyed ductile cast iron. The mechanical and thermal stability of the austenite was also investigated. An analytical model has been developed to understand the crack growth process associated with the stress induced transformation of retained austenite to martensite.
NASA Astrophysics Data System (ADS)
Roshanghias, Ali; Bardong, Jochen; Pulko, Jozef; Binder, Alfred
2018-04-01
Advanced optical measurement techniques are always of interest for the characterization of engineered surfaces. When pressure or temperature modules are also incorporated, these techniques will turn into robust and versatile methodologies for various applications such as performance monitoring of devices in service conditions. However, some microelectromechanical systems (MEMS) and MOEMS devices require performance monitoring at their final stage, i.e. enclosed or packaged. That necessitates measurements through a protective liquid, plastic, or glass, whereas the conventional objective lenses are not designed for such media. Correspondingly, in the current study, the development and tailoring of a 3D interferometer as a means for measuring the topography of reflective surfaces under transmissive media is sought. For topography measurements through glass, water and oil, compensation glass plates were designed and incorporated into the Michelson type interferometer objectives. Moreover, a customized chamber set-up featuring an optical access for the observation of the topographical changes at increasing pressure and temperature conditions was constructed and integrated into the apparatus. Conclusively, the in situ monitoring of the elastic deformation of sensing microstructures inside MEMS packages was achieved. These measurements were performed at a defined pressure (0–100 bar) and temperature (25 °C–180 °C).
generation Focus on CSP, and projects in Wind, Geothermal and Hydropower Business Development e.g. customer interaction, solution of key Customer problems, scope development of projects and helping the
Challenges in New Service Development and Value Creation through Service
NASA Astrophysics Data System (ADS)
Edvardsson, Bo; Gustafsson, Anders; Enquist, Bo
Many companies are at a crossroad where they try to' stay competitive by creating customer value through service development. This combination produces the prerequisites that are necessary for favorable customer experiences. Our focus is not on issues directly related to the new service development process as such, which has often been the case in the service literature (Gupta and Wilemon 1990; Martin and Home 1993, Martin and Home 1995; Edvardsson et al., 1995, Edvardsson et al., 2000; John and Storey 1998; Scheuing and Johnson 1989; Kelly and Storey 2000). First we focus on challenges in the new business landscape where service competition, IT, and value creation through service, put pressure on companies and markets to develop service offerings preferredby demanding customers. Secondly, we focus on service value creation through favorable customer experiences.
3D Printing of Living Responsive Materials and Devices.
Liu, Xinyue; Yuk, Hyunwoo; Lin, Shaoting; Parada, German Alberto; Tang, Tzu-Chieh; Tham, Eléonore; de la Fuente-Nunez, Cesar; Lu, Timothy K; Zhao, Xuanhe
2018-01-01
3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid-crystal elastomers, shape-memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D-printing hydrogel inks with programed bacterial cells as responsive components into large-scale (3 cm), high-resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D-printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
19 CFR 10.177 - Cost or value of materials produced in the beneficiary developing country.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Wholly the growth, product, or manufacture of the beneficiary developing country; or (2) Substantially... beneficiary developing country. 10.177 Section 10.177 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... produced in the beneficiary developing country. (a) “Produced in the beneficiary developing country...
19 CFR 10.177 - Cost or value of materials produced in the beneficiary developing country.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Wholly the growth, product, or manufacture of the beneficiary developing country; or (2) Substantially... beneficiary developing country. 10.177 Section 10.177 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... produced in the beneficiary developing country. (a) “Produced in the beneficiary developing country...
NASA Astrophysics Data System (ADS)
Ellerby, Donald Thomas
1999-12-01
Compared to monolithic ceramics, metal-reinforced ceramic composites offer the potential for improved toughness and reliability in ceramic materials. As such, there is significant scientific and commercial interest in the microstructure and properties of metal-ceramic composites. Considerable work has been conducted on modeling the toughening behavior of metal reinforcements in ceramics; however, there has been limited application and testing of these concepts on real systems. Composites formed by newly developed reactive processes now offer the flexibility to systematically control metal-ceramic composite microstructure, and to test some of the property models that have been proposed for these materials. In this work, the effects of metal-ceramic composite microstructure on resistance curve (R-curve) behavior, strength, and reliability were systematically investigated. Al/Al2O3 composites were formed by reactive metal penetration (RMP) of aluminum metal into aluminosilicate ceramic preforms. Processing techniques were developed to control the metal content, metal composition, and metal ligament size in the resultant composite microstructure. Quantitative stereology and microscopy were used to characterize the composite microstructures, and then the influence of microstructure on strength, toughness, R-curve behavior, and reliability, was investigated. To identify the strength limiting flaws in the composite microstructure, fractography was used to determine the failure origins. Additionally, the crack bridging tractions produced by the metal ligaments in metal-ceramic composites formed by the RMP process were modeled. Due to relatively large flaws and low bridging stresses in RMP composites, no dependence of reliability on R-curve behavior was observed. The inherent flaws formed during reactive processing appear to limit the strength and reliability of composites formed by the RMP process. This investigation has established a clear relationship between processing, microstructure, and properties in metal-ceramic composites formed by the RMP process. RMP composite properties are determined by the metal-ceramic composite microstructure (e.g., metal content and ligament size), which can be systematically varied by processing. Furthermore, relative to the ceramic preforms used to make the composites, metal-ceramic composites formed by RMP generally have improved properties and combinations of properties that make them more desirable for advanced engineering applications.
A CBR-Based and MAHP-Based Customer Value Prediction Model for New Product Development
Zhao, Yu-Jie; Luo, Xin-xing; Deng, Li
2014-01-01
In the fierce market environment, the enterprise which wants to meet customer needs and boost its market profit and share must focus on the new product development. To overcome the limitations of previous research, Chan et al. proposed a dynamic decision support system to predict the customer lifetime value (CLV) for new product development. However, to better meet the customer needs, there are still some deficiencies in their model, so this study proposes a CBR-based and MAHP-based customer value prediction model for a new product (C&M-CVPM). CBR (case based reasoning) can reduce experts' workload and evaluation time, while MAHP (multiplicative analytic hierarchy process) can use actual but average influencing factor's effectiveness in stimulation, and at same time C&M-CVPM uses dynamic customers' transition probability which is more close to reality. This study not only introduces the realization of CBR and MAHP, but also elaborates C&M-CVPM's three main modules. The application of the proposed model is illustrated and confirmed to be sensible and convincing through a stimulation experiment. PMID:25162050
The Effect of Non-technical Factors in B2C E-Commerce
NASA Astrophysics Data System (ADS)
Sanayei, Ali; Shafe'Ei, Reza
As e-commerce grows across industries worldwide , business are building web sites for presence as well as for online business. It is more than transferring current business operations to a new medium. This situation requires explaining main models, changing infrastructures, and notice to customer needs as their vital rights. Whilst increasing numbers of firms have launched themselves on the Internet, they are trying to consideration of the strategic implications of developing, implementing or running a Web site. Global competition, laws, and customer preferences are among the issues being affected by e-commerce. In this study many factors that effect on e-commerce are considered these factors have no technical issue in nature. Companies related factors, customers' knowledge, customers' trust and customers' behavior are the main effective factors in development of B2C e-commerce. In this research we surveyed the mentioned aspects by offering questionnaire to experts of e-commerce for companies. The results show there is a meaningful relationship between perception, knowledge, trust and attitude of customers and the company's capabilities in the other side with B2C e-commerce development.
A CBR-based and MAHP-based customer value prediction model for new product development.
Zhao, Yu-Jie; Luo, Xin-xing; Deng, Li
2014-01-01
In the fierce market environment, the enterprise which wants to meet customer needs and boost its market profit and share must focus on the new product development. To overcome the limitations of previous research, Chan et al. proposed a dynamic decision support system to predict the customer lifetime value (CLV) for new product development. However, to better meet the customer needs, there are still some deficiencies in their model, so this study proposes a CBR-based and MAHP-based customer value prediction model for a new product (C&M-CVPM). CBR (case based reasoning) can reduce experts' workload and evaluation time, while MAHP (multiplicative analytic hierarchy process) can use actual but average influencing factor's effectiveness in stimulation, and at same time C&M-CVPM uses dynamic customers' transition probability which is more close to reality. This study not only introduces the realization of CBR and MAHP, but also elaborates C&M-CVPM's three main modules. The application of the proposed model is illustrated and confirmed to be sensible and convincing through a stimulation experiment.
WisDOT statewide customer satisfaction survey.
DOT National Transportation Integrated Search
2013-02-01
The purpose of this study was to develop and initiate a new customer satisfaction tool that would establish a set of baseline : departmental performance measures and be sustainable for future use. ETC Institute completed a statewide customer : survey...
Paget, Zoe
2015-02-28
Zoe Paget is the customer services manager at YourVets. Her role includes managing the company's call centre, social media marketing, working with the marketing department to develop customer care initiatives and reporting service levels to the company's directors. British Veterinary Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struve, R.
The SIGNAL insurance companies have developed an expert system for the support of its customer sales service. It was introduced at the end of 1993 and is currently used by approximately 500 customer service representatives. It involves a counseling system, which enables customer sales personnel to produce high-quality benefit analyses at the point of sale. It is not only an information system for the agent but involves the customer in an active role (through the implementation of sales talks, the conscious visualization of facts, the generation of natural language explanations etc.). Thus, the customer is not faced with a faitmore » accompli but is actively involved in solving the problem. To meet these requirements, several Al techniques are used, as described further below. The application has increased sales efficiency, optimized customer contact time and decreased training requirements. The system is developed with KEE (and reimplemented in Allegro CL/PC) and runs on notebooks with 8 MB RAM.« less
Application of computer graphics in the design of custom orthopedic implants.
Bechtold, J E
1986-10-01
Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.
Microstructural development during solidification of stainless steel alloys
NASA Astrophysics Data System (ADS)
Elmer, J. W.; Allen, S. M.; Eagar, T. W.
1989-10-01
The microstructures that develop during the solidification of stainless steel alloys are related to the solidification conditions and the specific alloy composition. The solidification conditions are determined by the processing method, i.e., casting, welding, or rapid solidification, and by parametric variations within each of these techniques. One variable that has been used to characterize the effects of different processing conditions is the cooling rate. This factor and the chemical composition of the alloy both influence (1) the primary mode of solidification, (2) solute redistribution and second-phase formation during solidification, and (3) the nucleation and growth behavior of the ferrite-to-austenite phase transformation during cooling. Consequently, the residual ferrite content and the microstructural morphology depend on the cooling rate and are governed by the solidification process. This paper investigates the influence of cooling rate on the microstructure of stainless steel alloys and describes the conditions that lead to the many microstructural morphologies that develop during solidification. Experiments were performed on a series of seven high-purity Fe-Ni-Cr alloys that spanned the line of twofold saturation along the 59 wt pct Fe isopleth of the ternary alloy system. High-speed electron-beam surface-glazing was used to melt and resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were shown to vary from 7°C/s to 7.5×106°C/s, and the resolidified melts were analyzed by optical metallographic methods. Five primary modes of solidification and 12 microstructural morphologies were characterized in the resolidified alloys, and these features appear to be a complete “set” of the possible microstructures for 300-series stainless steel alloys. The results of this study were used to create electron-beam scan speed vs composition diagrams, which can be used to predict the primary mode of solidification and the microstructural morphology for different processing conditions. Furthermore, changes in the primary solidification mode were observed in alloys that lie on the chromium-rich side of the line of twofold saturation when they are cooled at high rates. These changes were explained by the presence of metastable austenite, which grows epitaxially and can dominate the solidification microstructure throughout the resolidified zone at high cooling rates.
Loger, K; Engel, A; Haupt, J; Lima de Miranda, R; Lutter, G; Quandt, E
2016-03-01
Heart valves are constantly exposed to high dynamic loading and are prone to degeneration. Therefore, it is a challenge to develop a durable heart valve substitute. A promising approach in heart valve engineering is the development of hybrid scaffolds which are composed of a mechanically strong inorganic mesh enclosed by valvular tissue. In order to engineer an efficient, durable and very thin heart valve for transcatheter implantations, we developed a fabrication process for microstructured heart valve leaflets made from a nickel-titanium (NiTi) thin film shape memory alloy. To examine the capability of microstructured NiTi thin film as a matrix scaffold for tissue engineered hybrid heart valves, leaflets were successfully seeded with smooth muscle cells (SMCs). In vitro pulsatile hydrodynamic testing of the NiTi thin film valve leaflets demonstrated that the SMC layer significantly improved the diastolic sufficiency of the microstructured leaflets, without affecting the systolic efficiency. Compared to an established porcine reference valve model, magnetron sputtered NiTi thin film material demonstrated its suitability for hybrid tissue engineered heart valves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chen; Gupta, Vipul; Huang, Shenyan
The goal of this project is to model long-term creep performance for nickel-base superalloy weldments in high temperature power generation systems. The project uses physics-based modeling methodologies and algorithms for predicting alloy properties in heterogeneous material structures. The modeling methodology will be demonstrated on a gas turbine combustor liner weldment of Haynes 282 precipitate-strengthened nickel-base superalloy. The major developments are: (1) microstructure-property relationships under creep conditions and microstructure characterization (2) modeling inhomogeneous microstructure in superalloy weld (3) modeling mesoscale plastic deformation in superalloy weld and (4) a constitutive creep model that accounts for weld and base metal microstructure and theirmore » long term evolution. The developed modeling technology is aimed to provide a more efficient and accurate assessment of a material’s long-term performance compared with current testing and extrapolation methods. This modeling technology will also accelerate development and qualification of new materials in advanced power generation systems. This document is a final technical report for the project, covering efforts conducted from October 2014 to December 2016.« less
Atomistic to continuum modeling of solidification microstructures
Karma, Alain; Tourret, Damien
2015-09-26
We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less
NASA Astrophysics Data System (ADS)
Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.
2003-08-01
Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.
Developing Customized Programs for Steel and Other Heavy Industries.
ERIC Educational Resources Information Center
Day, Philip R., Jr.
1984-01-01
Describes Dundalk Community College's (DCC's) customized training programs for local industries. Looks at employment problems and outlook in Baltimore County, the development of a training agreement with Bethlehem Steel, the use of the Developing a Curriculum (DACUM) process to develop skill profiles, and future directions. (DMM)
Structural development of human brain white matter from mid-fetal to perinatal stage
NASA Astrophysics Data System (ADS)
Ouyang, Austin; Yu, Qiaowen; Mishra, Virendra; Chalak, Lina; Jeon, Tina; Sivarajan, Muraleedharan; Jackson, Greg; Rollins, Nancy; Liu, Shuwei; Huang, Hao
2015-03-01
The structures of developing human brain white matter (WM) tracts can be effectively quantified by DTI-derived metrics, including fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD). However, dynamics of WM microstructure during very early developmental period from mid-fetal to perinatal stage is unknown. It is difficult to accurately measure microstructural properties of these WM tracts due to severe contamination from cerebrospinal fluid (CSF). In this study, high resolution DTI of fetal brains at mid-fetal stage (20 weeks of gestation or 20wg), 19 brains in the middle of 3rd trimester (35wg) and 17 brains around term (40wg) were acquired. We established first population-averaged DTI templates at these three time points and extracted WM skeleton. 16 major WM tracts in limbic, projection, commissural and association tract groups were traced with DTI tractography in native space. The WM skeleton in the template space was inversely transformed back to the native space for measuring core WM microstructures of each individual tract. Continuous microstructural enhancement and volumetric increase of WM tracts were found from 20wg to 40wg. The microstructural enhancement from FA measurement is decelerated in late 3rd trimester compared to mid-fetal to middle 3rd trimester, while volumetric increase of prefrontal WM tracts is accelerated. The microstructural enhancement from 35wg to 40wg is heterogeneous among different tract groups with microstructures of association tracts undergoing most dramatic change. Besides decreases of RD indicating active myelination, the decrease of AD for most WM tracts during late 3rd trimester suggests axonal packing process.
NASA Astrophysics Data System (ADS)
Bolmaro, Raúl E.; De Vincentis, Natalia S.; Benatti, Emanuel; Kliauga, Andrea M.; Avalos, Martina C.; Schell, Norbert; Brokmeier, Heinz-Günter
2014-08-01
The onset of Severe Plastic Deformation (SPD) regime is quite instructive on the possible origins of the nano-microstructures developed in metals and alloys. It is known that grain fragmentation and dislocation accumulation, among other defects, proceed at different paces depending fundamentally on grain orientations and active deformation mechanisms. There have been many attempts to characterize nano-microstructure anisotropy, leading all of them to sometimes contradictory conclusions. Moreover, the characterizations rely on different measurements techniques and pos-processing approaches, which can be observing different manifestations of the same phenomena. On the current presentation we show a few experimental and computer pos-processing and simulation approaches, applied to some SPD/alloy systems. Williamson-Hall and Convolutional Multiple Whole Profile (CMWP) techniques will be applied to peak broadening analysis on experimental results stemming from laboratory Cu Ka X-rays, and synchrotron radiation from LNLS (Laboratório Nacional de Luz Síncrotron, Campinas, Brazil) and Petra III line (HEMS station, at DESY, Hamburg, Germany). Taking advantage of the EBSD capability of giving information on orientational and topological characteristics of grain boundaries, microstructures, grain sizes, etc., we also performed investigations on dislocation density and Geometrically Necessary Dislocation Boundaries (GNDB) and their correlation with texture components. Orientation dependent nano-microstructures and domain sizes are shown on the scheme of generalized pole figures and discussions provide some hints on nano-microstructure anisotropy.
TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louthan, M
2007-07-17
Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the propertiesmore » of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.« less
NASA Astrophysics Data System (ADS)
Yunita; Galinium, M.; Lukas
2017-01-01
New product development in real estate industry is a challenging process since it is related to long term concept and high cost. A newly proposed product development should meet customer need and their preferences which appropriate with customer buying power and company value. This research use data mining for profiling customer transaction and Analytic Hierarchy Process (AHP) method for product selection in new product development. This research utilizes Weka as data mining open source software to profiling data customers. The analysis correlated product preferences and profiling demography such as city, age, gender and occupation. Demography profiles gives description buying power and product preferences. The products proposed are based on customer profiles and rank of the product by AHP method. The product with the highest score will be proposed as new product development. Case studies of this research are real estate projects in Serang, Makassar, and Balikpapan. Makassar and Balikpapan are the project that already gained success and Serang is new project which new products development will be proposed to launch. Based on profiling and product preference of customer in Balikpapan, Makassar, and prospectus of Serang markets, new products development that will be proposed are house type of 120/200 m2 with price around Rp1.300.000.000 and house type of 71/120 m2 with price around Rp800.000.000. The markets of Serang and Balikpapan have similarities in profiles as urban city so the new products development will adopt the succeed story of Balikpapan project.
Observation of asphalt binder microstructure with ESEM.
Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S
2017-09-01
The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Kuchler, Klaus; Westhoff, Daniel; Feinauer, Julian; Mitsch, Tim; Manke, Ingo; Schmidt, Volker
2018-04-01
It is well-known that the microstructure of electrodes in lithium-ion batteries strongly affects their performance. Vice versa, the microstructure can exhibit strong changes during the usage of the battery due to aging effects. For a better understanding of these effects, mathematical analysis and modeling has turned out to be of great help. In particular, stochastic 3D microstructure models have proven to be a powerful and very flexible tool to generate various kinds of particle-based structures. Recently, such models have been proposed for the microstructure of anodes in lithium-ion energy and power cells. In the present paper, we describe a stochastic modeling approach for the 3D microstructure of cathodes in a lithium-ion energy cell, which differs significantly from the one observed in anodes. The model for the cathode data enhances the ideas of the anode models, which have been developed so far. It is calibrated using 3D tomographic image data from pristine as well as two aged cathodes. A validation based on morphological image characteristics shows that the model is able to realistically describe both, the microstructure of pristine and aged cathodes. Thus, we conclude that the model is suitable to generate virtual, but realistic microstructures of lithium-ion cathodes.
NASA Astrophysics Data System (ADS)
Ocaña, Jose L.; Jagdheesh, R.; García-Ballesteros, J. J.
2016-02-01
The current availability of new advanced fiber and DPSS lasers with characteristic pulse lengths ranging from ns to fs has provided a unique frame in which the development of laser-generated microstructures has been made possible for very diverse kinds of materials and applications. At the same time, the development of the appropriate laser-processing workstations granting the appropriate precision and repeatability of the respective laser interaction processes in line with the characteristic dimension features required in the microstructured samples has definitively consolidated laser surface microstructuring as a reference domain, nowadays, unavoidable for the design and manufacturing of current use microsystem: MEMSs, fluidic devices, advanced sensors, biomedical devices and instruments, etc., are all among the most well-known developments of the micromanufacturing technology. Completing the broad spectrum of applications developed mostly involving the generation of geometrical features on a subtrate with specific functional purposes, a relatively new, emerging class of laser-microstructuring techniques is finding an important niche of application in the generation of physically structured surfaces (particularly of metallic materials) with specific contact, friction, and wear functionalities, for whose generation the concourse of different types of laser sources is being found as an appropriate tool. In this paper, the application of laser sources with emission in the UV and at ns time regime to the surface structuration of metal surfaces (specifically Al) for the modification of their wettability properties is described as an attractive application basis for the generation of self-cleaning properties of extended functional surfaces. Flat aluminum sheets of thickness 100 μm were laser machined with ultraviolet laser pulses of 30 ns with different laser parameters to optimize the process parameters. The samples produced at the optimum conditions with respect to contact angle measurement were subjected to microstructure and chemical analysis. The wetting properties were evaluated by static contact angle measurements on the laser-patterned surface. The laser-patterned microstructures exhibited superhydrophobicity with a maximum contact angle of 180° for the droplet volumes in the range of 8-12 μl.
ERIC Educational Resources Information Center
Bayer, Jerrie; Llewellyn, Steven
2011-01-01
Library customers have more remote information choices than ever before, so we must ensure that when they do come to the library, they experience a welcoming environment, a high standard of service, and receive equitable levels of service across campus. Developing a customer service program was a logical next step to reinforce the ongoing…
Loglines. September - October 2012
2012-10-01
Improve Customer Service u Decrease Material Costs u Reduce Inventory Decrease Operational Costs u Achieve Audit Readiness LOGLINES DEFENSE...they provide to our military customers . Acquisitions professionals are working hand in hand with our industry partners and customers to develop...our warfighting customers . Every day I read the comments on the “Direct Channel” blog and am constantly impressed with the volume and scope of
ERIC Educational Resources Information Center
Moerkerke, George
2015-01-01
Marketing specialists have recently redefined the roles customers and enterprises play in the economy. Modern customers are connected, informed, mobile, educated and internationally oriented. They seek enterprises that empower them to co-construct personalised experiences. This view of the customer-enterprise relationship has a great impact on the…
NASA Astrophysics Data System (ADS)
Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2015-01-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994
New-type steel plate with ultra high crack-arrestability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.
1995-12-31
A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less
Developing Tools and Techniques to Increase Communication Effectiveness
NASA Technical Reports Server (NTRS)
Hayes, Linda A.; Peterson, Doug
1997-01-01
The Public Affairs Office (PAO) of the Johnson Space Center (JSC) is responsible for communicating current JSC Space Program activities as well as goals and objectives to the American Public. As part of the 1996 Strategic Communications Plan, a review of PAO' s current communication procedures was conducted. The 1996 Summer Faculty Fellow performed research activities to support this effort by reviewing current research concerning NASA/JSC's customers' perceptions and interests, developing communications tools which enable PAO to more effectively inform JSC customers about the Space Program, and proposing a process for developing and using consistent messages throughout PAO. Note that this research does not attempt to change or influence customer perceptions or interests but, instead, incorporates current customer interests into PAO's communication process.
The effects of behavioral and structural assumptions in artificial stock market
NASA Astrophysics Data System (ADS)
Liu, Xinghua; Gregor, Shirley; Yang, Jianmei
2008-04-01
Recent literature has developed the conjecture that important statistical features of stock price series, such as the fat tails phenomenon, may depend mainly on the market microstructure. This conjecture motivated us to investigate the roles of both the market microstructure and agent behavior with respect to high-frequency returns and daily returns. We developed two simple models to investigate this issue. The first one is a stochastic model with a clearing house microstructure and a population of zero-intelligence agents. The second one has more behavioral assumptions based on Minority Game and also has a clearing house microstructure. With the first model we found that a characteristic of the clearing house microstructure, namely the clearing frequency, can explain fat tail, excess volatility and autocorrelation phenomena of high-frequency returns. However, this feature does not cause the same phenomena in daily returns. So the Stylized Facts of daily returns depend mainly on the agents’ behavior. With the second model we investigated the effects of behavioral assumptions on daily returns. Our study implicates that the aspects which are responsible for generating the stylized facts of high-frequency returns and daily returns are different.
Evaluation of an Al-Ce alloy for laser additive manufacturing
Plotkowski, A.; Rios, O.; Sridharan, N.; ...
2016-12-27
Our present research in metal additive manufacturing (AM) focuses on designing processing parameters around existing alloys designed for traditional manufacturing. However, to maximize the benefits of AM, alloys should be designed to specifically take advantage of the unique thermal conditions of these processes. Furthermore, our study focuses on the development of a design methodology for alloys in AM, using a newly developed Al-Ce alloy as an initial case study. To evaluate the candidacy of this system for fusion based additive manufacturing, single-line laser melts were made on cast Al-12Ce plates using three different beam velocities (100, 200, and 300 mm/min).more » The microstructure was evaluated in the as-melted and heat treated conditions (24 hrs at 300°C). An extremely fine microstructure was observed within the weld pools, evolving from eutectic at the outer solid-liquid boundaries to a primary Al FCC dendritic/cellular structure nearer the melt-pool centerline. We rationalized the observed microstructures through the construction of a microstructure selection map for the Al-Ce binary system, which will be used to enable future alloy design. Interestingly, the heat treated samples exhibited no microstructural coarsening.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.S.; Kim, S.I.; Choi, S.-H., E-mail: shihoon@sunchon.ac.kr
2014-06-01
The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on themore » Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.« less
Characterization and reconstruction of 3D stochastic microstructures via supervised learning.
Bostanabad, R; Chen, W; Apley, D W
2016-12-01
The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Engineering performance metrics
NASA Astrophysics Data System (ADS)
Delozier, R.; Snyder, N.
1993-03-01
Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.
Della Bona, Alvaro
2005-03-01
The appeal of ceramics as structural dental materials is based on their light weight, high hardness values, chemical inertness, and anticipated unique tribological characteristics. A major goal of current ceramic research and development is to produce tough, strong ceramics that can provide reliable performance in dental applications. Quantifying microstructural parameters is important to develop structure/property relationships. Quantitative microstructural analysis provides an association among the constitution, physical properties, and structural characteristics of materials. Structural reliability of dental ceramics is a major factor in the clinical success of ceramic restorations. Complex stress distributions are present in most practical conditions and strength data alone cannot be directly extrapolated to predict structural performance.
ERIC Educational Resources Information Center
Rose, Jessica; Mirmiran, Majid; Butler, Erin E.; Lin, Cindy Y.; Barnes, Patrick D.; Kermoian, Rosanne; Stevenson, David K.
2007-01-01
Neonatal microstructural development in the posterior limbs of the internal capsule (PLIC) was assessed using diffusion tensor imaging (DTI) fractional anisotropy (FA) in 24 very-low-birthweight preterm infants at 37 weeks' gestational age and compared with the children's gait and motor deficits at 4 years of age. There were 14 participants with…
Liao, Hui; Subramony, Mahesh
2008-03-01
Pursuing a customer-focused strategy in manufacturing organizations requires employees across functions to embrace the importance of understanding customer needs and to align their everyday efforts with the goal of satisfying and retaining customers. Little prior research has examined what factors influence employee customer orientation in manufacturing settings. Drawing on the attraction-selection-attrition model, upper-echelons theory, and contingency theories of leadership, this study investigated the joint influences of functional roles' proximity to external customers and the senior leadership team's customer orientation on employee customer orientation. Hierarchical linear modeling results based on data obtained from 4,299 employees and 403 senior leaders from 42 facilities of a global manufacturer operating in 16 countries revealed that employees occupying customer-contact roles had the highest level of customer orientation, followed by employees occupying production roles, and then by those in support roles. In addition, there was a positive relationship between the senior leadership team's customer orientation and employee customer orientation for all 3 functional roles. The positive relationship between the senior leadership team and employee customer orientation was the strongest for employees in support roles, suggesting that lower levels of proximity to external customers may create a greater need for leadership in developing employees' customer-oriented attitudes. Copyright 2008 APA
76 FR 3680 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... requirements to provide customers with account information (approximately 683,969 hours) and requirements to update customer account information (approximately 777,436 hours). In addition, Rule 17a-3 contains... customers with account information, and costs for equipment and systems development. The Commission...
Using online surveys and Facebook ads to solicit customer feedback : research summary.
DOT National Transportation Integrated Search
2017-03-01
The Missouri Department of Transportation : (MoDOT) developed the Tracker system to : assess agency performance in pursuit of its : mission to provide a world-class transportation : system that delights our customers. MoDOT : customers expect t...
Three Microstructural Exercises for Students.
ERIC Educational Resources Information Center
Means, Winthrop D.
1986-01-01
Describes laboratory exercises which demonstrate a new simplified technique for deforming thin samples of crystalline materials on the stage of a petrographic microscope. Discusses how this process allows students to see the development of microstructures resulting from cracking, slipping, thinning, and recrystallization. References and sources of…
Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
Jiang, Z; Chen, W; Burkhart, C
2013-11-01
Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay
2008-06-27
Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO₂ laser system which help exposing the optical fiber core to the measurand. The direct-write CO₂ laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO₂ laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures.
Rapid Constructions of Microstructures for Optical Fiber Sensors Using a Commercial CO2 Laser System
Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay
2008-01-01
Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO2 laser system which help exposing the optical fiber core to the measurand. The direct-write CO2 laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO2 laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures. PMID:19662114
A predictive machine learning approach for microstructure optimization and materials design
NASA Astrophysics Data System (ADS)
Liu, Ruoqian; Kumar, Abhishek; Chen, Zhengzhang; Agrawal, Ankit; Sundararaghavan, Veera; Choudhary, Alok
2015-06-01
This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involving design of magnetoelastic Fe-Ga alloy microstructure for enhanced elastic, plastic and magnetostrictive properties. While theoretical models for computing properties given the microstructure are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging, primarily due to the high dimensionality of microstructure space, multi-objective design requirement and non-uniqueness of solutions. These challenges render traditional search-based optimization methods incompetent in terms of both searching efficiency and result optimality. In this paper, a route to address these challenges using a machine learning methodology is proposed. A systematic framework consisting of random data generation, feature selection and classification algorithms is developed. Experiments with five design problems that involve identification of microstructures that satisfy both linear and nonlinear property constraints show that our framework outperforms traditional optimization methods with the average running time reduced by as much as 80% and with optimality that would not be achieved otherwise.
Inferring Spatial Variations of Microstructural Properties from Macroscopic Mechanical Response
Liu, Tengxiao; Hall, Timothy J.; Barbone, Paul E.; Oberai, Assad A.
2016-01-01
Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used these parameters cannot be linked to the microstructure. However, when the constitutive model is derived from a microstructural representation of the material, it allows for the possibility of inferring the local averages of the spatial distribution of the microstructural parameters. This idea forms the basis of this study. In particular, we first derive a constitutive model by homogenizing the mechanical response of a network of elastic, tortuous fibers. Thereafter, we use this model in an inverse problem to determine the spatial distribution of the microstructural parameters. We solve the inverse problem as a constrained minimization problem, and develop efficient methods for solving it. We apply these methods to displacement fields obtained by deforming gelatin-agar co-gels, and determine the spatial distribution of agar concentration and fiber tortuosity, thereby demonstrating that it is possible to image local averages of microstructural parameters from macroscopic measurements of deformation. PMID:27655420
NASA Astrophysics Data System (ADS)
Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.
2015-09-01
The first part of this two-part study reported the possibility of simultaneously generating a dense, self-healing α-alumina layer by thermal oxidation and a coarse-grained microstructure with a potential goodness for high-temperature creep resistance in a FeCrAl oxide dispersion-strengthened ferritic alloy that was cold deformed after hot rolling and extrusion. In this second part, the factors affecting the formation of the coarse-grained microstructure such as strain gradients induced during the rolling process are analyzed. It is concluded that larger strain gradients lead to more refined and more isotropic grain structures.
Three-dimensional microstructure simulation of Ni-based superalloy investment castings
NASA Astrophysics Data System (ADS)
Pan, Dong; Xu, Qingyan; Liu, Baicheng
2011-05-01
An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.
Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation
NASA Astrophysics Data System (ADS)
Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.
2016-04-01
This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.
Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels.
Soman, Pranav; Chung, Peter H; Zhang, A Ping; Chen, Shaochen
2013-11-01
Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. © 2013 Wiley Periodicals, Inc.
1981-10-01
microstructures which may be developed and finally to relate properties to structure and composition (28-31). Sialon materials are alloys of Si3N4 with oxides...techniques. The effects of specimen microstructure on indentation processes were determined by using materials formed by a wide range of fabrication...microhardness techniques. The effects of specimen microstructure on indentation processes were determined by using materials formed by a wide range of
Application of microstructural optical waveguides with hollow core for enzyme immunoassay
NASA Astrophysics Data System (ADS)
Pidenko, Pavel S.; Pidenko, Sergei A.; Burmistrova, Natalia A.; Shuvalov, Andrei A.; Chibrova, Anastasiya A.; Skibina, Yulia S.; Goryacheva, Irina Y.
2018-04-01
Microstructural optical waveguides with the hollow core are actively studied as a promising support for heterogeneous immunoassay in development of new optical biosensor elements for medicine and biology. Overcoming of the limitations associated with the low sorption capacity of glass used for the waveguides production is a crucial step for this assay format. In this work the possibility of silanization of microstructural optical waveguides with the hollow core using (3-glycidyloxypropyl) trimethoxysilane and their further application to enzymatic immunoassay was studied.
Step-by-step growth of complex oxide microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
Step-by-step growth of complex oxide microstructures
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
2015-06-10
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
The effect of microstructure on microbiologically influenced corrosion
NASA Technical Reports Server (NTRS)
Walsh, Dan; Pope, Dan; Danford, Merlin; Huff, Tim
1993-01-01
Results of several investigations involving stainless steels, aluminum alloys, and low-alloy steels are reviewed, and the effect of welding on microbiologically influenced corrosion (MIC) susceptibility in these materials is discussed. Emphasis is placed on research performed at California Polytechnic State University on the relationship between MIC and metallurgical microstructure. Topics addressed include initial stages of film development in materials with different microstructure and surface conditions, effects of inclusion on the MIC response of materials, aluminum 2219, effects of welding, and constitutional liquation.
Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel
Anton, Donald L.; Lemkey, Franklin D.
1988-01-01
A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.
Method of fabricating a high aspect ratio microstructure
Warren, John B.
2003-05-06
The present invention is for a method of fabricating a high aspect ratio, freestanding microstructure. The fabrication method modifies the exposure process for SU-8, an negative-acting, ultraviolet-sensitive photoresist used for microfabrication whereby a UV-absorbent glass substrate, chosen for complete absorption of UV radiation at 380 nanometers or less, is coated with a negative photoresist, exposed and developed according to standard practice. This UV absorbent glass enables the fabrication of cylindrical cavities in a negative photoresist microstructures that have aspect ratios of 8:1.
Investigation into some characteristics of the mass-customized production paradigm
NASA Astrophysics Data System (ADS)
Tapper, Jerome; Sundar, Pratap S.; Kamarthi, Sagar V.
2000-10-01
In recent times, while markets are reaching their saturation limits and customers are becoming more demanding, a paradigm shift has been taking place from mass production to mass- customized production (MCP). The concept of mass customization (MC) focuses on satisfying a customer's unique needs with the help of new technologies such as Internet, digital product realization, and re-configurable production facilities. In MC the needs of an individual customer are translated into design, accordingly produced, and delivered to the customer. In this research three hypothesis related to MCP are investigated by the data/information collected from ten companies, which are engaged in MCP. These three hypothesis are (1) mass-customized production systems can be classified into make-to-stock MCP, assemble-to-order MCP, make-to-order MCP, engineer-to-order MC, and develop-to-order MCP, (2) in mass-customized production systems the process of customization eliminates customer sacrifice, and (3) mass-customized production systems can deliver products at mass-production cost. The preliminary study indicates that while the first hypothesis is valid, MCP companies rarely fulfill what is stated in the other two hypotheses.
1996-01-01
This booklet is devoted to a consideration of how good customer service in family planning programs can generate demand for products and services, bring customers back, and reduce costs. Customer service is defined as increasing client satisfaction through continuous concern for client preferences, staff accountability to clients, and respect for the rights of clients. Issues discussed include the introduction of a customer service approach and gaining staff commitment. The experience of PROSALUD in Bolivia in recruiting appropriate staff, supervising staff, soliciting client feedback, and marketing services is offered as an example of a successful customer service approach. The key customer service functions are described as 1) establishing a welcoming atmosphere, 2) streamlining client flow, 3) personalizing client services, and 4) organizing and providing clear information to clients. The role of the manager in developing procedures is explored, and the COPE (Client-Oriented Provider-Efficient) process is presented as a good way to begin to make improvements. Techniques in staff training in customer service include brainstorming, role playing, using case studies (examples of which are provided), and engaging in practice sessions. Training also leads to the development of effective customer service attitudes, and the differences between these and organizational/staff-focused attitudes are illustrated in a chart. The use of communication skills (asking open-ended questions, helping clients express their concerns, engaging in active listening, and handling difficult situations) is considered. Good recovery skills are important when things go wrong. Gathering and using client feedback is the next topic considered. This involves identifying, recording, and discussing customer service issues as well as taking action on these issues and evaluating the results. The booklet ends by providing a sample of customer service indicators, considering the maintenance of a customer service focus, and reporting comments from the reviewers of the booklet.
The silent customers: measuring customer satisfaction in nursing homes.
Kleinsorge, I K; Koenig, H F
1991-12-01
Nursing home administrators concerned with customer satisfaction and quality of care need a tool to assess and monitor ongoing satisfaction of nursing home residents and family members. The authors report a preliminary effort to develop such a survey using focus groups.
NASA Astrophysics Data System (ADS)
Puebla, Karina
With the demand of devices to replace or improve areas, such as: electronic, biomedical and aerospace industries. Improvements in these areas of engineering have been in need due to the customer's needs for product properties requirements. The design of components must exhibit better material properties (mechanical or biocompatible) close to those of any given product. Rapid prototyping (RP) technologies that were originally designed to build prototypes may now be required to build functional end-use products. To carry out the transition, from RP to rapid manufacturing (RM), the available materials utilized in RP must provide the performance required for RM. The specific technology being used should be capable of producing reliable parts in regards to their mechanical properties. The research presented in this work investigated the effects of building parameters (build orientation and melt scan rate) on microstructure and the mechanical properties of test specimens fabricated via Electron Beam Melting (EBM) using Ti6Al4V. EBM, a rapid prototyping technology, has the potential to manufacture complex 3-dimensional end-use products layer-by-layer. In this work, a design of experiments approach was performed to determine the effects of build orientation and melt scan rate on both the microstructure and mechanical properties of test samples fabricated using EBM. Two randomized setups were designed to build two batches of 18 specimens. The experimental designs were carried out to determine the effect of different build parameters (build orientation and melt scan rate) in the mechanical properties of the fabricated specimens. The results demonstrated that EBM manufactured specimens built with different melt scan rates and build orientations have different microstructures and mechanical properties. Different melt scans produced variations in particle sintering resulting in dissimilar porosities and in mechanical properties (hardness and tensile testing). The mechanical properties decreased as the porosity increased for tensile testing and Rockwell C-scale (HR C), while Vickers hardness (HV) measurements increased and are related to the microstructure. The different build orientations of the specimens produced different mechanical properties since the orientation of the fabricated specimens impact the local heat transfer flow. This influenced the microstructure where the specimens oriented horizontally cooled more rapidly than those built vertically. Statistically significant differences in mechanical properties were found as an effect of melt scan rate. The statistical analyses that were done can help identify and classify fabrication parameters on mechanical properties for EBM-fabricated products. Optical images demonstrated the presence of alpha and beta phases, and alpha'-martensite with slight differences in microstructure. Dislocation substructures were observed in acicular alpha-plates from TEM images and alpha, beta, and alpha'-phase features. Mechanical and thermal treatment on Ti6Al4V can generate different microstructures promoting Ti6Al4V as an evolutionary alloy. Tailored mechanical properties of complex 3-dimensional end-use products can be achieved by modifying the building parameters of the EBM system. The EBM system can facilitate the process of manufacturing components by varying build parameters in order to obtain desirable physical and mechanical properties. Once the desired properties for Ti6Al4V are established, the fabrication process will lead to more successful end-use products.
Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Chakraborty, Pritam
2016-09-01
This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development ofmore » mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.« less
Combining Agile and Traditional: Customer Communication in Distributed Environment
NASA Astrophysics Data System (ADS)
Korkala, Mikko; Pikkarainen, Minna; Conboy, Kieran
Distributed development is a radically increasing phenomenon in modern software development environments. At the same time, traditional and agile methodologies and combinations of those are being used in the industry. Agile approaches place a large emphasis on customer communication. However, existing knowledge on customer communication in distributed agile development seems to be lacking. In order to shed light on this topic and provide practical guidelines for companies in distributed agile environments, a qualitative case study was conducted in a large globally distributed software company. The key finding was that it might be difficult for an agile organization to get relevant information from a traditional type of customer organization, even though the customer communication was indicated to be active and utilized via multiple different communication media. Several challenges discussed in this paper referred to "information blackout" indicating the importance of an environment fostering meaningful communication. In order to evaluate if this environment can be created a set of guidelines is proposed.
Integration of QFD, AHP, and LPP methods in supplier development problems under uncertainty
NASA Astrophysics Data System (ADS)
Shad, Zahra; Roghanian, Emad; Mojibian, Fatemeh
2014-04-01
Quality function deployment (QFD) is a customer-driven approach, widely used to develop or process new product to maximize customer satisfaction. Last researches used linear physical programming (LPP) procedure to optimize QFD; however, QFD issue involved uncertainties, or fuzziness, which requires taking them into account for more realistic study. In this paper, a set of fuzzy data is used to address linguistic values parameterized by triangular fuzzy numbers. Proposed integrated approach including analytic hierarchy process (AHP), QFD, and LPP to maximize overall customer satisfaction under uncertain conditions and apply them in the supplier development problem. The fuzzy AHP approach is adopted as a powerful method to obtain the relationship between the customer requirements and engineering characteristics (ECs) to construct house of quality in QFD method. LPP is used to obtain the optimal achievement level of the ECs and subsequently the customer satisfaction level under different degrees of uncertainty. The effectiveness of proposed method will be illustrated by an example.
Customer satisfaction assessment at the Pacific Northwest National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
DN Anderson; ML Sours
2000-03-23
The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists ofmore » nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.
2000-04-01
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were appliedmore » to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.« less
NASA Astrophysics Data System (ADS)
Örnek, Cem; Burke, M. G.; Hashimoto, T.; Engelberg, D. L.
2017-04-01
22Cr-5Ni duplex stainless steel (DSS) was aged at 748 K (475 °C) and the microstructure development correlated to changes in mechanical properties and fracture behavior. Tensile testing of aged microstructures confirmed the occurrence of 748 K (475 °C) embrittlement, which was accompanied by an increase of strength and hardness and loss of toughness. Aging caused spinodal decomposition of the ferrite phase, consisting of Cr-enriched α″ and Fe-rich α' and the formation of a large number of R-phase precipitates, with sizes between 50 and 400 nm. Fracture surface analyses revealed a gradual change of the fracture mode from ductile to brittle delamination fracture, associated with slip incompatibility between ferrite and austenite. Ferrite became highly brittle after 255 hours of aging, mainly due to the presence of precipitates, while austenite was ductile and accommodated most plastic strain. The fracture mechanism as a function of 748 K (475 °C) embrittlement is discussed in light of microstructure development.
NASA Astrophysics Data System (ADS)
Lohmar, Johannes; Bambach, Markus; Karhausen, Kai F.
2013-01-01
Integrated computational materials engineering is an up to date method for developing new materials and optimizing complete process chains. In the simulation of a process chain, material models play a central role as they capture the response of the material to external process conditions. While much effort is put into their development and improvement, less attention is paid to their implementation, which is problematic because the representation of microstructure in the model has a decisive influence on modeling accuracy and calculation speed. The aim of this article is to analyze the influence of different microstructure representation concepts on the prediction of flow stress and microstructure evolution when using the same set of material equations. Scalar, tree-based and cluster-based concepts are compared for a multi-stage rolling process of an AA5182 alloy. It was found that implementation influences the predicted flow stress and grain size, in particular in the regime of coupled hardening and softening.
Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi
2017-01-01
We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.
Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring
Soto, Matias; Esteva, Milton; Martínez-Romero, Oscar; Baez, Jesús; Elías-Zúñiga, Alex
2015-01-01
A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature. PMID:28793594
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarm, Samuel C.; Mburu, Sarah N.; Kolli, Ratna P.
Cast duplex stainless steel piping in light water nuclear reactors expe- rience thermal aging embrittlement during operational service. Interest in extending the operational life to 80 years requires an increased understanding of the microstructural evolution and corresponding changes in mechanical behavior. We analyze the evolution of the microstructure during thermal aging of cast CF-3 and CF-8 stainless steels using electron microscopy and atom probe tomography. The evolution of the mechanical properties is measured concurrently by mechanical methods such as tensile tests, Charpy V-notch tests, and instrumented nanoinden- tation. A microstructure-based finite element method model is developed and uti- lized inmore » conjunction with the characterization results in order to correlate the local stress-strain effects in the microstructure with the bulk measurements. This work is supported by the DOE Nuclear Energy University Programs (NEUP), contract number DE-NE0000724.« less
NASA Astrophysics Data System (ADS)
Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi
2017-12-01
We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.
Customer service: developing a new mindset for today's instant gratification society.
Stockburger, W T
1998-01-01
Today's society expects and demands immediate service, results and access to information. Can those of us in leadership positions say that the service we provide is equal to or exceeds what our customers expect? How can we redesign our services so they are better than those we currently provide? Some people look to advances in technology as one means to improve services and access to information, but this should not be the only means. If we are to develop a philosophy of exceptional service, we must develop a vision of those services. We must gain an understanding of our customers, plus a knowledge of products, the availability of resources and any industry constraints. In healthcare, we must look to leadership to achieve our goals. A goal of exceptional customer service must be communicated to all levels of service providers from management. Top-down action by management--leadership by example--is critical. Leadership must gain the trust of both customers and employees by actively listening to both verbal and nonverbal comments at all points of service. Without an understanding of our customers' needs, it won't be possible to deliver services at or above their expectations.
2008-04-01
Hot Working of Titanium 5a. CONTRACT NUMBER F33615-03-D-5801-0043 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61202F 6 . AUTHOR(S) A.A...micrographs and thus to correlate microstructural features and texture data [3- 6 ]. For instance, Germain, et al. [3, 4 ] linked local orientations...microstructures can be developed in alpha/beta titanium alloys by TMP [2- 4 ], namely, fully lamellar, fully equiaxed, and duplex (bi-modal). A mixture
Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.
2012-06-01
The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.
Baka, Maria; Verheyen, Davy; Cornette, Nicolas; Vercruyssen, Stijn; Van Impe, Jan F
2017-01-02
The limited knowledge concerning the influence of food (micro)structure on microbial dynamics decreases the accuracy of the developed predictive models, as most studies have mainly been based on experimental data obtained in liquid microbiological media or in/on real foods. The use of model systems has a great potential when studying this complex factor. Apart from the variability in (micro)structural properties, model systems vary in compositional aspects, as a consequence of their (micro)structural variation. In this study, different experimental food model systems, with compositional and physicochemical properties similar to fish patés, are developed to study the influence of food (micro)structure on microbial dynamics. The microbiological safety of fish products is of major importance given the numerous cases of salmonellosis and infections attributed to staphylococcus toxins. The model systems understudy represent food (micro)structures of liquids, aqueous gels, emulsions and gelled emulsions. The growth/inactivation dynamics and a modelling approach of combined growth and inactivation of Salmonella Typhimurium and Staphylococcus aureus, related to fish products, are investigated in/on these model systems at temperatures relevant to fish products' common storage (4°C) and to abuse storage temperatures (8 and 12°C). ComBase (http://www.combase.cc/) predictions compared with the maximum specific growth rate (μ max ) values estimated by the Baranyi and Roberts model in the current study indicated that the (micro)structure influences the microbial dynamics. Overall, ComBase overestimated microbial growth at the same pH, a w and storage temperature. Finally, the storage temperature had also an influence on how much each model system affected the microbial dynamics. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Heeager, Lise Tordrup; Tjørnehøj, Gitte
Quality assurance technology is a formal control mechanism aiming at increasing the quality of the product exchanged between vendors and customers. Studies of the adoption of this technology in the field of system development rarely focus on the role of the relationship between the customer and vendor in the process. We have studied how the process of adopting quality assurance technology by a small Danish IT vendor developing pharmacy software for a customer in the public sector was influenced by the relationship with the customer. The case study showed that the adoption process was shaped to a high degree by the relationship and vice versa. The prior high level of trust and mutual knowledge helped the parties negotiate mutually feasible solutions throughout the adoption process. We thus advise enhancing trust-building processes to strengthen the relationships and to balance formal control and social control to increase the likelihood of a successful outcome of the adoption of quality assurance technology in a customer-vendor relationship.
Extracting Product Features and Opinion Words Using Pattern Knowledge in Customer Reviews
Lynn, Khin Thidar
2013-01-01
Due to the development of e-commerce and web technology, most of online Merchant sites are able to write comments about purchasing products for customer. Customer reviews expressed opinion about products or services which are collectively referred to as customer feedback data. Opinion extraction about products from customer reviews is becoming an interesting area of research and it is motivated to develop an automatic opinion mining application for users. Therefore, efficient method and techniques are needed to extract opinions from reviews. In this paper, we proposed a novel idea to find opinion words or phrases for each feature from customer reviews in an efficient way. Our focus in this paper is to get the patterns of opinion words/phrases about the feature of product from the review text through adjective, adverb, verb, and noun. The extracted features and opinions are useful for generating a meaningful summary that can provide significant informative resource to help the user as well as merchants to track the most suitable choice of product. PMID:24459430
Extracting product features and opinion words using pattern knowledge in customer reviews.
Htay, Su Su; Lynn, Khin Thidar
2013-01-01
Due to the development of e-commerce and web technology, most of online Merchant sites are able to write comments about purchasing products for customer. Customer reviews expressed opinion about products or services which are collectively referred to as customer feedback data. Opinion extraction about products from customer reviews is becoming an interesting area of research and it is motivated to develop an automatic opinion mining application for users. Therefore, efficient method and techniques are needed to extract opinions from reviews. In this paper, we proposed a novel idea to find opinion words or phrases for each feature from customer reviews in an efficient way. Our focus in this paper is to get the patterns of opinion words/phrases about the feature of product from the review text through adjective, adverb, verb, and noun. The extracted features and opinions are useful for generating a meaningful summary that can provide significant informative resource to help the user as well as merchants to track the most suitable choice of product.
NASA Astrophysics Data System (ADS)
Roberts, N.; Cunningham, H.; Snell, A.; Newman, J.; Tikoff, B.; Chatzaras, V.; Walker, J. D.; Williams, R. T.
2017-12-01
There is currently no repository where a geologist can survey microstructural datasets that have been collected from a specific field area or deformation experiment. New development of the StraboSpot digital data system provides a such a repository as well as visualization and analysis tools. StraboSpot is a graph database that allows field geologists to share primary data and develop new types of scientific questions. The database can be accessed through: 1) a field-based mobile application that runs on iOS and Android mobile devices; and 2) a desktop system. We are expanding StraboSpot to include the handling of a variety of microstructural data types. Presented here is the detailed vocabulary and logic used for the input of microstructural data, and how this system operates with the anticipated workflow of users. Microstructural data include observations and interpretations from photomicrographs, scanning electron microscope images, electron backscatter diffraction, and transmission electron microscopy data. The workflow for importing microstructural data into StraboSpot is organized into the following tabs: Images, Mineralogy & Composition; Sedimentary; Igneous; Metamorphic; Fault Rocks; Grain size & configuration; Crystallographic Preferred Orientation; Reactions; Geochronology; Relationships; and Interpretations. Both the sample and the thin sections are also spots. For the sample spot, the user can specify whether a sample is experimental or natural; natural samples are inherently linked to their field context. For the thin section (sub-sample) spot, the user can select between different options for sample preparation, geometry, and methods. A universal framework for thin section orientation is given, which allows users to overlay different microscope images of the same area and keeps georeferenced orientation. We provide an example dataset of field and microstructural data from the Mt Edgar dome, a granitic complex in the Paleoarchean East Pilbara craton, Australia. StraboSpot provides a single place for georeferenced geologic data at every spatial scale, in which data are interconnected. Incorporating microstructural data into an open-access platform will give field and experimental geologists a library of microstructural data across a range of tectonic and experimental contexts.
NASA Astrophysics Data System (ADS)
Xu, X.; West, G. D.; Siefert, J. A.; Parker, J. D.; Thomson, R. C.
2018-04-01
The microstructure in the heat-affected zone (HAZ) of multipass welds typical of those used in power plants and made from 9 wt pct chromium martensitic Grade 92 steel is complex. Therefore, there is a need for systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds manufactured using the traditional arc welding processes in order to understand possible failure mechanisms after long-term service. In this study, the microstructure in the HAZ of an as-fabricated two-pass bead-on-plate weld on a parent metal of Grade 92 steel has been systematically investigated and compared to a complex, multipass thick section weldment using an extensive range of electron and ion-microscopy-based techniques. A dilatometer has been used to apply controlled thermal cycles to simulate the microstructures in distinctly different regions in a multipass HAZ using sequential thermal cycles. A wide range of microstructural properties in the simulated materials were characterized and compared with the experimental observations from the weld HAZ. It has been found that the microstructure in the HAZ can be categorized by a combination of sequential thermal cycles experienced by the different zones within the complex weld metal, using the terminology developed for these regions based on a simpler, single-pass bead-on-plate weld, categorized as complete transformation, partial transformation, and overtempered.
Improving Customer Satisfaction in an R and D Environment
NASA Technical Reports Server (NTRS)
Alexander, Anita; Liou, Y. H. Andrew
1998-01-01
Satisfying customer needs is critical to the sustained competitive advantage of service suppliers. It is therefore important to understand the types of customer needs which, if fulfilled or exceeded, add value and contribute to overall customer satisfaction. This study identifies the needs of various research and development (R&D) customers who contract for engineering and design support services. The Quality Function Deployment (QFD) process was used to organize and translate each customer need into performance measures that, if implemented, can improve customer satisfaction. This study also provides specific performance measures that will more accurately guide the efforts of the engineering supplier. These organizations can either implement the QFD methodology presented herein or extract a few performance measures that are specific to the quality dimensions in need of improvement. Listening to 'what' customers talk about is a good first start.
Menapace, I; Masad, E; Bhasin, A
2016-04-01
This paper offers important insights on the development of the microstructure in asphalt binders as a function of the treatment temperature. Different treatment temperatures are useful to understand how dispersed domains form when different driving energies for the mobility of molecular species are provided. Small and flat dispersed domains, with average diameter between 0.02 and 0.70 μm, were detected on the surface of two binders at room temperature, and these domains were observed to grow with an increase in treatment temperature (up to over 2 μm). Bee-like structures started to appear after treatment at or above 100°C. Moreover, the effect of the binder thickness on its microstructure at room temperature and at higher treatment temperatures was investigated and is discussed in this paper. At room temperature, the average size of the dispersed domains increased as the binder thickness decreased. A hypothesis that conciliates current theories on the origin and development of dispersed domains is proposed. Small dispersed domains (average diameter around 0.02 μm) are present in the bulk of the binder, whereas larger domains and bee-like structures develop on the surface, following heat treatment or mechanical disturbance that reduces the film thickness. Molecular mobility and association are the key factors in the development of binder microstructure. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
1991-12-01
customer satisfaction (DOD, 1988). While the application of TQM in the manufacturing industry and the military acquisition system has been successful, the...improvement of products and services. The overriding objective of TOM is to increase customer satisfaction (DOD, 1988). While the application of TOM in the...25 Description of the Organization ................... 26 Internal Customers ..................... ....... 30 External Customers
Microstructural evolution during the homogenization heat treatment of 6XXX and 7XXX aluminum alloys
NASA Astrophysics Data System (ADS)
Priya, Pikee
Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy and also hamper the age-hardenability and are hence dissolved during solution heat treatment. Microstructural development during homogenization and subsequent cooling occurs both at the length scale of the Secondary Dendrite Arm Spacing (SDAS) in micrometers and dispersoids in nanometers. Numerical tools to simulate microstructural development at both the length scales have been developed and validated against experiments. These tools provide easy and convenient means to study the process. A Cellular Automaton-Finite Volume-based model for evolution of interdendritic phases is coupled with a Particle Size Distribution-based model for precipitation of dispersoids across the grain. This comprehensive model has been used to study the effect of temperature, composition, as-cast microstructure, and cooling rates during post-homogenization quenching on microstructural evolution. The numerical study has been complimented with experiments involving Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction and Differential Scanning Calorimetry and a good agreement has with numerical results has been found. The current work aims to study the microstructural evolution during homogenization heat treatment at both length scales which include the (i) dissolution and transformation of the as-cast secondary phases; (ii) precipitation of dispersoids; and (iii) reprecipitation of some of the secondary phases during post-homogenization cooling. The kinetics of the phase transformations are mostly diffusion controlled except for the eta to S phase transformation in 7XXX alloys which is interface reaction rate controlled which has been implemented using a novel approach. Recommendations for homogenization temperature, time, cooling rates and compositions are made for Al-Si-Mg-Fe-Mn and Al-Zn-Cu-Mg-Zr alloys. The numerical model developed has been applied for a through process solidification-homogenization modeling of a Direct-Chill cast AA7050 cylindrical billet to study the radial variation of microstructure after solidification, homogenization and post-homogenization cooling.
Service quality and perceived customer value in community pharmacies.
Guhl, Dennis; Blankart, Katharina E; Stargardt, Tom
2018-01-01
A patient's perception of the service provided by a health care provider is essential for the successful delivery of health care. This study examines the value created by community pharmacies-defined as perceived customer value-in the prescription drug market through varying elements of service quality. We develop a path model that describes the relationship between service elements and perceived customer value. We then analyze the effect of perceived customer value on customer satisfaction and loyalty. We use data obtained from 289 standardized interviews on respondents' prescription fill in the last six months in Germany. The service elements personal interaction (path coefficient: 0.31), physical aspect (0.12), store policy (0.24), and availability (0.1) have a positive significant effect on perceived customer value. Consultation and reliability have no significant influence. We further find a strong positive interdependency between perceived customer value, customer satisfaction (0.75), and customer loyalty (0.71). Thus, pharmacies may enhance customer satisfaction and loyalty if they consider the customer perspective and focus on the relevant service elements. To enhance benefit, personal interaction appears to be most important to address appropriately.
Tsai, Ming-Tien; Chuang, Li-Min; Chao, Shu-Tsung; Chang, Hsiao-Ping
2012-07-01
The purpose of this study is to examine why both parties (industry and consumer market) have mutual interests in protecting the environment but they still are hesitant to act green. The study used two-stage sampling from consumer market to depict ideal green product characteristics and reliable toy companies, and visit these companies for the second sample collection to examine whether the organizational eco-innovation strategy with customer value has a positive effect on green product development. In other words, the customer's benefit is an important factor for new product development strategy for green toys. This research shows that the willingness to buy green toys increases if most people in society buy green toys. This represents that customers are environmentally conscious and care about protecting the environment, or buying green toys is the result of a new economic trend and childhood education. The willingness to buy green toys increases if customers think that green products implies an enhancement on new product development to toy manufacturers. Further, if manufacturers are able to manage the difficulty of cooperation with all parties in the supply chain and difficulties related to production, they are willing to adopt customers' perceived value on green toys for their new product development strategy. It is rare to find academic research discussing the perspectives of both consumers and manufacturers in the same study because the research topic is very broad and many conditions must be considered. This research aims to find the effect of consumer-perceived value and company eco-innovation on green product development.
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1987-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Y.; Cheng, T. -L.; Wen, Y. H.
Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less
Lei, Y.; Cheng, T. -L.; Wen, Y. H.
2017-07-05
Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less
NASA Astrophysics Data System (ADS)
Li, You Yun; Tsai, DeChang; Hwang, Weng Sing
2008-06-01
The purpose of this study is to develop a technique of numerically simulating the microstructure of 17-4PH (precipitation hardening) stainless steel during investment casting. A cellular automation (CA) algorithm was adopted to simulate the nucleation and grain growth. First a calibration casting was made, and then by comparing the microstructures of the calibration casting with those simulated using different kinetic growth coefficients (a2, a3) in CA, the most appropriate set of values for a2 and a3 would be obtained. Then, this set of values was applied to the microstructure simulation of a separate casting, where the casting was actually made. Through this approach, this study has arrived at a set of growth kinetic coefficients from the calibration casting: a2 is 2.9 × 10-5, a3 is 1.49 × 10-7, which is then used to predict the microstructure of the other test casting. Consequently, a good correlation has been found between the microstructure of actual 17-4PH casting and the simulation result.
Mesoscale modeling of solute precipitation and radiation damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Ke, Huibin
2015-09-01
This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulationmore » and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.« less
NASA Astrophysics Data System (ADS)
Latypov, Marat I.; Kalidindi, Surya R.
2017-10-01
There is a critical need for the development and verification of practically useful multiscale modeling strategies for simulating the mechanical response of multiphase metallic materials with heterogeneous microstructures. In this contribution, we present data-driven reduced order models for effective yield strength and strain partitioning in such microstructures. These models are built employing the recently developed framework of Materials Knowledge Systems that employ 2-point spatial correlations (or 2-point statistics) for the quantification of the heterostructures and principal component analyses for their low-dimensional representation. The models are calibrated to a large collection of finite element (FE) results obtained for a diverse range of microstructures with various sizes, shapes, and volume fractions of the phases. The performance of the models is evaluated by comparing the predictions of yield strength and strain partitioning in two-phase materials with the corresponding predictions from a classical self-consistent model as well as results of full-field FE simulations. The reduced-order models developed in this work show an excellent combination of accuracy and computational efficiency, and therefore present an important advance towards computationally efficient microstructure-sensitive multiscale modeling frameworks.
Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing
NASA Astrophysics Data System (ADS)
Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier
2017-10-01
Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.
TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Gan; Brandon Miller; Dennis Keiser
2014-04-01
As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less
NASA Astrophysics Data System (ADS)
Song, Hye Yun
Additive manufacturing (AM) is the process for making 3-D objects by adding materials layer by layer. It can result in a marked reduction of the time and cost associated with designing and producing highly complex parts. Over the past decade, significant progress has been made in machine hardware and control software for process development to achieve dimensional accuracy and mitigate defects. On the other hand, the knowledge on microstructure-property relationship in the additively manufactured builds is still being established. In additive manufacturing, the interactions between the heat source and the material lead to a series of physical phenomena including localized heating, melting, solidification and micro-segregation, and cooling. Far-from-equilibrium microstructure can form as the material experiences a large number of repeated, rapid heating and cooling cycles (i.e. temperature gyrations) during depositions. The mechanical properties of additively manufactured parts are significantly influenced by their final microstructure. The overarching goal of the present research is to improve the fundamental understanding of microstructure-property relationship for AM parts. Specially, it is investigated the high-temperature creep strength of InconelRTM 718 (abbreviated as IN718 thereafter) fabricated by laser-powder bed fusion (L-PBF) AM. The specific objectives include (1) effect of support on the local microstructure, (2) microstructure evolution during post-built heat treatment, and (3) creep strength. Detailed microstructure characterization is performed using a multitude of tools including micro-hardness mapping, scanning electron microscope (SEM) along with electron backscatter diffraction (EBSD), and transmission electron microscope (TEM) for selected area diffraction (SAD) analysis and energy-dispersive X-ray spectroscopy (EDS). The characterized microstructure is correlated to the mechanical properties. Highlights of the research findings are discussed in the following. A support is a "temporary" structure typically built in-situ with the primary part to provide the structural support to the mass of overhanging features; it is subsequently removed after fabrication. During the building process, the existence of such support can affect the local heat flow from the build to the substrate, which in turn may influence the local microstructure. The first objective of this research is to develop a fundamental understanding of the effect of the support on the microstructure fabricated by L-PBF AM. Two groups of as-built samples, with support and without support, are studied. SEM along with EBSD is used to analyze the microstructure characteristics including the growth of the microstructures, the fraction of different microstructure and the misorientation among the microstructure grains. At the nano-scale resolution, TEM is used to identify the precipitate phases. In addition, the micro-hardness values are also measured for samples built with and without support. As a precipitation-strengthened alloy, the heat treatment is critical for IN718, since the desired mechanical properties, such as high-temperature tensile and creep strength, are only acquired by the formation of the strengthening precipitates, namely gamma' prime and gamma''. Currently, the industrial standards for the heat treatment of IN718 are developed for cast and wrought cases and not specifically for AM builds. Thus, it is essential to evaluate the effect of the heat treatment on the formation of the strengthening precipitates in IN718 builds fabricated by L-PBF AM, which is the focus of the second objective. Particularly, a modification to the industry standard heat treatment is developed to maximize the fraction of the strengthening precipitates in the IN718 builds. The microstructural characterizations are performed for several modified heat treatment cases including a homogenization step, solution annealing step and aging step. The micro-hardness values are measured for as-built conditions and several heat-treated conditions including the modified homogenization, solution anneal and aging steps. Finally, the oxidation behavior during the heat treatment is also discussed and compared to that for a piece of actual cast. The third objective of the present study is the evaluation of the mechanical properties of heat-treated IN718 builds produced by L-PBF AM. Particularly, creep test are performed to quantify the mechanical properties of the heat-treated IN718 builds. The creep samples are heat-treated using the following condition: homogenization at 1100 °C for 2 hours followed by air cooling (AC), and aging at 760 °C for 10 hours also followed by AC. For the creep test, the samples are loaded at a constant stress (690 MPa or 100 ksi) at 649 °C (1200 °F) in accordance to Aerospace Material Standards (AMS) 5663. The creep rate of the heat-treated AM sample is compared with the literature data for wrought cases. The relationship of creep strength to the characteristic of the microstructures in the heat-treated IN718 builds is discussed. In summary, the research results provide insights into the microstructure-creep-strength relationship for IN718 fabricated by additive manufacturing. Particularly, a modified post-built heat treatment is developed to maximize the formation of strengthening precipitates and achieve large grains in IN718, resulting in a markedly higher creep strength when compared to the literature data for wrought cases. Taken as a whole, the new knowledge generated in this dissertation is essential to ensure the performance of additively manufactured parts in structural applications.
Characteristics of a semi-custom library development system
NASA Technical Reports Server (NTRS)
Yancey, M.; Cannon, R.
1990-01-01
Standard cell and gate array macro libraries are in common use with workstation computer aided design (CAD) tools for application specific integrated circuit (ASIC) semi-custom application and have resulted in significant improvements in the overall design efficiencies as contrasted with custom design methodologies. Similar design methodology enhancements in providing for the efficient development of the library cells is an important factor in responding to the need for continuous technology improvement. The characteristics of a library development system that provides design flexibility and productivity enhancements for the library development engineer as he provides libraries in the state-of-the-art process technologies are presented. An overview of Gould's library development system ('Accolade') is also presented.
The Ties that Bind: Creating Great Customer Service.
ERIC Educational Resources Information Center
Lisker, Peter
2000-01-01
Offers suggestions for libraries on how to develop a customer service plan to provide excellent service, create a positive environment for staff members, foster new and continued positive relationships with patrons, and evaluate customer service goals and objectives. Also discusses policies and building appearance. (Author/LRW)
47 CFR 32.2 - Basis of the accounts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (natural groupings) do take place in the course of providing products and services to customers. These... intended to permit technological distinctions. Similarly, the primary bases of plant operations, customer... products and services purchased by customers. (c) In the course of developing the bases for this account...
Quality-improvement initiatives focused on enhancing customer service in the outpatient pharmacy.
Poulin, Tenley J; Bain, Kevin T; Balderose, Bonnie K
2015-09-01
The development and implementation of quality-improvement initiatives to enhance customer service in an outpatient pharmacy of a Veterans Affairs (VA) medical center are described. Historically low customer service satisfaction rates with the outpatient pharmacy at the Philadelphia Veterans Affairs Medical Center prompted this quality-improvement project. A three-question survey was designed to be easily and quickly administered to veterans in the outpatient pharmacy waiting area. Using 5-point Likert scale, veterans were asked to rate (1) their overall experience with the outpatient pharmacy service and (2) their satisfaction with the customer service provided by the pharmacy department. They were also asked how they thought the pharmacy department could improve its customer service. After receiving feedback from the survey, several quality-improvement initiatives were developed. The initiatives were categorized as environmental, personnel, communicative, and technological. For each initiative, one or more tasks were developed and the initiatives were subsequently implemented over eight months. After each task was completed, veterans were surveyed to measure the impact of the change. A total of 79 veterans were surveyed before the implementation of the quality-improvement initiatives, and 49% and 68% rated their experience with the outpatient pharmacy and customer service favorably, respectively. Twenty-five veterans were surveyed after the implementation of numerous quality-improvement interventions, with 44% and 72% rating their experience with the outpatient pharmacy and customer service favorably. Customer service satisfaction with an outpatient pharmacy service at a VA medical center was enhanced through the implementation of various quality-improvement initiatives. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Markgraf, Rainer; Deutschinoff, Gerd; Pientka, Ludger; Scholten, Theo; Lorenz, Cristoph
2001-01-01
Background: Mortality predictions calculated using scoring scales are often not accurate in populations other than those in which the scales were developed because of differences in case-mix. The present study investigates the effect of first-level customization, using a logistic regression technique, on discrimination and calibration of the Acute Physiology and Chronic Health Evaluation (APACHE) II and III scales. Method: Probabilities of hospital death for patients were estimated by applying APACHE II and III and comparing these with observed outcomes. Using the split sample technique, a customized model to predict outcome was developed by logistic regression. The overall goodness-of-fit of the original and the customized models was assessed. Results: Of 3383 consecutive intensive care unit (ICU) admissions over 3 years, 2795 patients could be analyzed, and were split randomly into development and validation samples. The discriminative powers of APACHE II and III were unchanged by customization (areas under the receiver operating characteristic [ROC] curve 0.82 and 0.85, respectively). Hosmer-Lemeshow goodness-of-fit tests showed good calibration for APACHE II, but insufficient calibration for APACHE III. Customization improved calibration for both models, with a good fit for APACHE III as well. However, fit was different for various subgroups. Conclusions: The overall goodness-of-fit of APACHE III mortality prediction was improved significantly by customization, but uniformity of fit in different subgroups was not achieved. Therefore, application of the customized model provides no advantage, because differences in case-mix still limit comparisons of quality of care. PMID:11178223
Product assurance technology for custom LSI/VLSI electronics
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Blaes, B. R.; Jennings, G. A.; Moore, B. T.; Nixon, R. H.; Pina, C. A.; Sayah, H. R.; Sievers, M. W.; Stahlberg, N. F.
1985-01-01
The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification.
Thamjamrassri, Punyotai; Song, YuJin; Tak, JaeHyun; Kang, HoYong; Kong, Hyoun-Joong; Hong, Jeeyoung
2018-01-01
Customer discovery (CD) is a method to determine if there are actual customers for a product/service and what they would want before actually developing the product/service. This concept, however, is rather new to health information technology (IT) systems. Therefore, the aim of this paper was to demonstrate how to use the CD method in developing a comprehensive health IT service for patients with knee/leg pain. We participated in a 6-week I-Corps program to perform CD, in which we interviewed 55 people in person, by phone, or by video conference within 6 weeks: 4 weeks in the United States and 2 weeks in Korea. The interviewees included orthopedic doctors, physical therapists, physical trainers, physicians, researchers, pharmacists, vendors, and patients. By analyzing the interview data, the aim was to revise our business model accordingly. Using the CD approach enabled us to understand the customer segments and identify value propositions. We concluded that a facilitating tele-rehabilitation system is needed the most and that the most suitable customer segment is early stage arthritis patients. We identified a new design concept for the customer segment. Furthermore, CD is required to identify value propositions in detail. CD is crucial to determine a more desirable direction in developing health IT systems, and it can be a powerful tool to increase the potential for successful commercialization in the health IT field.
C-Coupon Studies of CMCS: Fracture Behavior and Microstructural Characterization
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.; Abdul-Aziz, Ali
2001-01-01
A curved beam 'C-coupon' was used to assess fracture behavior in a Sylramic(tm)/melt infiltration (MI) SiC matrix composite. Failure stresses and fracture mechanisms, as determined by optical and scanning electron microstructural analysis, are compared with finite element stress calculations to analyze failure modes. Material microstructure was found to have a strong influence on mechanical behavior. Fracture occurs in interlaminar tension (ILT), provided that the ratio of ILT to tensile strength for the material is less than the ratio of radial to hoop stresses for the C-coupon geometry. Utilization of 3D architectures to improve interlaminar strength requires significant development efforts to incorporate through thickness fibers in regions with high curvatures while maintaining uniform thickness, radius, and microstructure.
Get inside the lives of your customers.
Seybold, P B
2001-05-01
Many companies have become adept at the art of customer relationship management. They've collected mountains of data on preferences and behavior, divided buyers into ever-finer segments, and refined their products, services, and marketing pitches. But all too often those efforts are too narrow--they concentrate only on the points where the customer comes into contact with the company. Few businesses have bothered to look at what the author calls the customer scenario--the broad context in which customers select, buy, and use products and services. As a result, consultant Patricia Seybold maintains, they've routinely missed chances to deepen loyalty and expand sales. In this article, the author shows how effective three very different companies have been at using customer scenarios as the centerpiece of their marketing plans. Chip maker National Semiconductor looked beyond the purchasing agents that buy in bulk to find ways to make it easier for engineers to design National's components into their specifications for mobile telephones. Each time they do so, it translates into millions of dollars in orders. By developing a customer scenario that describes how people actually shop for groceries, Tesco learned the importance of decentralizing its Web shopping site and how the extra costs of decentralization could be outweighed by the higher profit margins on-line customers generate. And Buzzsaw.com used customer scenarios as the basis for its entire business. It has used the Web to create a better way for the dozens of participants in a construction project to share their drawings and manage their projects. Seybold lays out the steps managers can take to develop their own customer scenarios. By thinking broadly about the challenges your customers face, she suggests, you can almost always find ways to make their lives easier--and thus earn their loyalty.
Ozasa, Ryosuke; Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Yun, Hui-Suk; Nakano, Takayoshi
2018-02-01
Bone tissue has anisotropic microstructure based on collagen/biological apatite orientation, which plays essential roles in the mechanical and biological functions of bone. However, obtaining an appropriate anisotropic microstructure during the bone regeneration process remains a great challenging. A powerful strategy for the control of both differentiation and structural development of newly-formed bone is required in bone tissue engineering, in order to realize functional bone tissue regeneration. In this study, we developed a novel anisotropic culture model by combining human induced pluripotent stem cells (hiPSCs) and artificially-controlled oriented collagen scaffold. The oriented collagen scaffold allowed hiPSCs-derived osteoblast alignment and further construction of anisotropic bone matrix which mimics the bone tissue microstructure. To the best of our knowledge, this is the first report showing the construction of bone mimetic anisotropic bone matrix microstructure from hiPSCs. Moreover, we demonstrated for the first time that the hiPSCs-derived osteoblasts possess a high level of intact functionality to regulate cell alignment. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 360-369, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.
Microstructure Modeling of 3rd Generation Disk Alloys
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2010-01-01
The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.
Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses
NASA Astrophysics Data System (ADS)
Sarac, Baran
Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology, size, spacing, volume fraction of the second phase, and strength and toughness of the interface. Previous studies suggest these contributions, however, do not provide quantitative experimental evidence. Within this thesis, we paid tribute to the complexity of the toughening mechanism by revealing the correlation between plastic zone size (Rp) and second phase spacing (s ), and the results guided us how to design elasticity through the second phase morphology (AB pore stacking) in MG heterostructures. The second phase elasticity and shear modulus were also found to be contributing to the overall elasticity. We identified the pores' ratio of diameter to spacing (d/s) as one of the major factors controlling the mechanical properties of MG hetero structures, which is most efficient when d/s ≈ 1. Effectiveness of MG heterostructures also depends on the size of the sample, w, in comparison to s. Our experimental findings illuminate the complexity in MG composites, which can be resolved with our artificial microstructure approach. Another subject where we use artificial microstructures is to identify the effect of length scales on structural properties of MG heterostructures. MG structures can be fabricated over 7 orders of magnitude length scale (nm to cm), where the effect of the feature size determines whether the deformation will be homogenous throughout the sample, it will be localized into shear bands, or it will not show any shear bands (no plasticity) during bending and tension. We investigated the deformation modes of Zr-based MGs in hexagonal cellular structures controlled by the relative density, and revealed three distinctive deformation regions: collective buckling, local failure, and global failure which originate from size effects in metallic glasses. The relative density of ˜25.0% was determined as the ideal relative density for energy absorption, strength and plasticity in MG cellular structures. Besides two specific examples studied in detail here, the artificial microstructure concept can be applied to a wide range of problems in microstructures and micro structural architectures of porous and natural materials. Furthermore, it can be used to determine the flaw tolerance, and to investigate the sensitivity of microstructures to imperfections. For example, a mechanistic understanding of shear localization would help address the major shortcoming of metallic glasses and enable predictive models to be developed which would permit one to intelligently design microstructures to exhibit desirable properties.
Microstructural Evolution During Friction Stir Welding of Near-Alpha Titanium
2009-02-01
completion of the weld and the weld end was quenched with cold water. This process was intended to preserve the microstructure surrounding the...limited the statistics supporting this result. 16 Mironov et al. [31] also measured the texture developed from friction stir processing of pure iron
Steel alloys with lower bainite microstructures for use in railroad cars and track
DOT National Transportation Integrated Search
2002-01-01
In-line hardening of railroad rails to produce a very fine pearlite microstructure has become a commercial reality. A question that this report seeks to answer is whether or not it is possible to find an alloy composition that will permit the develop...
Identifying the Needs of Customers in Higher Education
ERIC Educational Resources Information Center
Maguad, Ben A.
2007-01-01
Many institutions of higher education are hesitant to consider themselves as customer-driven entities. Even the suggestion of the term customer can arouse many emotions, preconceptions, and misconceptions. The idea that students are partners in developing and delivering quality education threatens the historic, traditional academic role of faculty…
Do Professors Have Customer-Based Brand Equity?
ERIC Educational Resources Information Center
Jillapalli, Ravi K.; Jillapalli, Regina
2014-01-01
This research endeavors to understand whether certain professors have customer-based brand equity (CBBE) in the minds of students. Consequently, the purpose of this study is to conceptualize, develop, and empirically test a model of customer-based professor brand equity. Survey data gathered from 465 undergraduate business students were used to…
75 FR 8425 - Agency Information Collection Activity Seeking OMB Approval
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Transportation (AST) conducts this survey in order to obtain industry input on customer service standards which have been developed and distributed to industry customers. DATES: Please submit comments by March 26... Customer Service Survey. Type of Request: Extension without change of a currently approved collection. OMB...
NASA Astrophysics Data System (ADS)
Zhang, Ping
Microelectromechanical systems (MEMS) have a wide range of applications. In the field of wireless and microwave technology, considerable attention has been given to the development and integration of MEMS-based RF (radio frequency) components. An RF MEMS switch requires low insertion loss, high isolation, and low actuation voltage - electrical aspects that have been extensively studied. The mechanical requirements of the switch, such as low sensitivity to built-in stress and high reliability, greatly depend on the micromechanical properties of the switch materials, and have not been thoroughly explored. RF MEMS switches are typically in the form of a free-standing thin film structure. Large stress gradients and across-wafer stress variations developed during fabrication severely degrade their electrical performance. A micromachined stress measurement sensor has been developed that can potentially be employed for in-situ monitoring of stress evolution and stress variation. The sensors were micromachined using five masks on two wafer levels, each measuring 5x3x1 mm. They function by means of an electron tunneling mechanism, where a 2x2 mm silicon nitride membrane elastically deflects under an applied deflection voltage via an external feedback circuitry. For the current design, the sensors are capable of measuring tensile stresses up to the GPa range under deflection voltages of 50--100 V. Sensor functionality was studied by finite element modeling and a theoretical analysis of square membrane deflection. While the mechanical properties of thin films on substrates have been extensively studied, studies of free-standing thin films have been limited due to the practical difficulties in sample handling and testing. Free-standing Al and Al-Ti thin films specimens have been successfully fabricated and microtensile and stress relaxation tests have been performed using a custom-designed micromechanical testing apparatus. A dedicated TEM (transmission electron microscopy) sample preparation technique allows the investigation of the microstructures of these thin films both before and after mechanical testing to correlate the microstructural findings with the mechanical behavior. Major studies include grain boundary strengthening in pure Al, plastic deformation in pure Al by inhomogeneous deformation and localized grain thinning, solid solution and precipitate strengthening in Al-Ti alloys, and stress relaxation of Al and Al-Ti.
The Integration of COTS/GOTS within NASA's HST Command and Control System
NASA Technical Reports Server (NTRS)
Pfarr, Thomas; Reis, James E.; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
NASA's mission critical Hubble Space Telescope (HST) command and control system has been re-engineered with COTS/GOTS and minimal custom code. This paper focuses on the design of this new HST Control Center System (CCS) and the lessons learned throughout its development. CCS currently utilizes 31 COTS/GOTS products with an additional 12 million lines of custom glueware code; the new CCS exceeds the capabilities of the original system while significantly reducing the lines of custom code by more than 50%. The lifecycle of COTS/GOTS products will be examined including the pack-age selection process, evaluation process, and integration process. The advantages, disadvantages, issues, concerns, and lessons teamed for integrating COTS/GOTS into the NASA's mission critical HST CCS will be examined in detail. Command and control systems designed with traditional custom code development efforts will be compared with command and control systems designed with new development techniques relying heavily on COTS/COTS integration. This paper will reveal the many hidden costs of COTS/GOTS solutions when compared to traditional custom code development efforts; this paper will show the high cost of COTS/GOTS solutions including training expenses, consulting fees, and long-term maintenance expenses.
Developing customer databases.
Rao, S K; Shenbaga, S
2000-01-01
There is a growing consensus among pharmaceutical companies that more product and customer-specific approaches to marketing and selling a new drug can result in substantial increases in sales. Marketers and researchers taking a proactive micro-marketing approach to identifying, profiling, and communicating with target customers are likely to facilitate such approaches and outcomes. This article provides a working framework for creating customer databases that can be effectively mined to achieve a variety of such marketing and sales force objectives.
Meeting Customer Service Standards Under Executive Order 12862: NASA’s Space Science Grant Process.
1995-07-01
Logistics Management Institute Meeting Customer Service Standards Under Executive Order 12862 NASA’s Space Science Grant Process NS302MR2...Logistics Management Institute to survey the customers — proposal writers and peer review panelists — of its science grant process. This effort benefited... Management Institute (LMI) to develop customer satisfac- tion surveys for both proposal writers and peer review panelists as well as to conduct those
Innovative Product Design Based on Comprehensive Customer Requirements of Different Cognitive Levels
Zhao, Wu; Zheng, Yake; Wang, Rui; Wang, Chen
2014-01-01
To improve customer satisfaction in innovative product design, a topology structure of customer requirements is established and an innovative product approach is proposed. The topology structure provides designers with reasonable guidance to capture the customer requirements comprehensively. With the aid of analytic hierarchy process (AHP), the importance of the customer requirements is evaluated. Quality function deployment (QFD) is used to translate customer requirements into product and process design demands and pick out the technical requirements which need urgent improvement. In this way, the product is developed in a more targeted way to satisfy the customers. the theory of innovative problems solving (TRIZ) is used to help designers to produce innovative solutions. Finally, a case study of automobile steering system is used to illustrate the application of the proposed approach. PMID:25013862
Li, Xiaolong; Zhao, Wu; Zheng, Yake; Wang, Rui; Wang, Chen
2014-01-01
To improve customer satisfaction in innovative product design, a topology structure of customer requirements is established and an innovative product approach is proposed. The topology structure provides designers with reasonable guidance to capture the customer requirements comprehensively. With the aid of analytic hierarchy process (AHP), the importance of the customer requirements is evaluated. Quality function deployment (QFD) is used to translate customer requirements into product and process design demands and pick out the technical requirements which need urgent improvement. In this way, the product is developed in a more targeted way to satisfy the customers. the theory of innovative problems solving (TRIZ) is used to help designers to produce innovative solutions. Finally, a case study of automobile steering system is used to illustrate the application of the proposed approach.
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Tainger, Karen M.
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
A predictive machine learning approach for microstructure optimization and materials design
Liu, Ruoqian; Kumar, Abhishek; Chen, Zhengzhang; ...
2015-06-23
This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involving design of magnetoelastic Fe-Ga alloy microstructure for enhanced elastic, plastic and magnetostrictive properties. While theoretical models for computing properties given the microstructure are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging, primarily due to the high dimensionality of microstructure space, multi-objective design requirement and non-uniquenessmore » of solutions. These challenges render traditional search-based optimization methods incompetent in terms of both searching efficiency and result optimality. In this paper, a route to address these challenges using a machine learning methodology is proposed. A systematic framework consisting of random data generation, feature selection and classification algorithms is developed. In conclusion, experiments with five design problems that involve identification of microstructures that satisfy both linear and nonlinear property constraints show that our framework outperforms traditional optimization methods with the average running time reduced by as much as 80% and with optimality that would not be achieved otherwise.« less
Flexible Control and Interprocess Communication on the Rogue GPS Receiver
NASA Technical Reports Server (NTRS)
Blau, R.
1999-01-01
The Rogue receivers are a series of custom high-accuracy Global Positioning System receivers being developed at NASA's Jet Propulsion Laboratory. This thesis describes two additions to the RogueOS, a custom operation system developed for these recievers.
Toward Mass Customization of Health Information
de la Cruz, Norberto B.; Kahn, Charles E.
1999-01-01
As a part of its community outreach efforts, the Medical College of Wisconsin developed the “MCW HealthLink” health information resource. The philosophy, design and implementation of the site lend well to steering future developments towards mass customization of health information.
1983-05-01
CLASS 3 STEEL - by G. E. Hitcho *L. C. Smith S. Singhal R. J. Fields U.S. Department of Commerce National Bureau of Standards Fracture and Deformation...IN HEAT TREATMENT ON THE Research & Development MECHANICAL PROPERTIES AND MICROSTRUCTURE OF ASTM A710 GRADE A CLASS 3 STEEL 4. PERFORMING ORGM REPORT...NOTES SIS 1IS. KEY MaR05 (C~ueus ee m. .E If .eum Edalr br Slek ami.) Age hardening steel Microstructure Cleavage fracture Precipitate Ductile
A Simulation Model for Measuring Customer Satisfaction through Employee Satisfaction
NASA Astrophysics Data System (ADS)
Zondiros, Dimitris; Konstantopoulos, Nikolaos; Tomaras, Petros
2007-12-01
Customer satisfaction is defined as a measure of how a firm's product or service performs compared to customer's expectations. It has long been a subject of research due to its importance for measuring marketing and business performance. A lot of models have been developed for its measurement. This paper propose a simulation model using employee satisfaction as one of the most important factors leading to customer satisfaction (the others being expectations and disconfirmation of expectations). Data obtained from a two-year survey in customers of banks in Greece were used. The application of three approaches regarding employee satisfaction resulted in greater customer satisfaction when there is serious effort to keep employees satisfied.
Data Mining Techniques for Customer Relationship Management
NASA Astrophysics Data System (ADS)
Guo, Feng; Qin, Huilin
2017-10-01
Data mining have made customer relationship management (CRM) a new area where firms can gain a competitive advantage, and play a key role in the firms’ management decision. In this paper, we first analyze the value and application fields of data mining techniques for CRM, and further explore how data mining applied to Customer churn analysis. A new business culture is developing today. The conventional production centered and sales purposed market strategy is gradually shifting to customer centered and service purposed. Customers’ value orientation is increasingly affecting the firms’. And customer resource has become one of the most important strategic resources. Therefore, understanding customers’ needs and discriminating the most contributed customers has become the driving force of most modern business.
A research model of health-care competition and customer satisfaction.
Asoh, Derek A; Rivers, Patrick A
2007-11-01
In all industries, competition among businesses has long been encouraged as a mechanism to increase value for customers. In other words, competition ensures the provision of better products and services to satisfy the needs of customers. Various perspectives of competition, the nature of service quality, health-care system costs and customer satisfaction in health care are examined. A model of the relationship among these variables is developed. The model depicts customer satisfaction as an outcome measure directly dependent on competition. Quality of care and health-care system costs, while also directly dependent on competition, are considered as determinants of customer satisfaction as well. The model is discussed in the light of propositions for empirical research.
Customer orientation among employees in public administration: a transnational, longitudinal study.
Korunka, Christian; Scharitzer, Dieter; Carayon, Pascale; Hoonakker, Peter; Sonnek, Angelika; Sainfort, Francois
2007-05-01
The relation between ergonomic principles and quality management initiatives, both, in the private and public sector, has received increasing attention in the recent years. Customer orientation among employees is not only an important quality principle, but also an essential prerequisite for customer satisfaction, especially in service organizations. In this context, the objective of introducing new public management (NPM) in public-service organizations is to increase customer orientation among employees who are at the forefront of service providing. In this study, we developed a short scale to measure perceived customer orientation. In two separate longitudinal studies carried out in Austria and the US, we analyzed changes in customer orientation resulting from the introduction of NPM. In both organizations, we observed a significant increase in customer orientation. Perceived customer orientation was related to job characteristics, organizational characteristics and employee quality of working life. Creating positive influences on these characteristics within the framework of an organizational change process has positive effects on employee customer orientation.
Current trends for customized biomedical software tools.
Khan, Haseeb Ahmad
2017-01-01
In the past, biomedical scientists were solely dependent on expensive commercial software packages for various applications. However, the advent of user-friendly programming languages and open source platforms has revolutionized the development of simple and efficient customized software tools for solving specific biomedical problems. Many of these tools are designed and developed by biomedical scientists independently or with the support of computer experts and often made freely available for the benefit of scientific community. The current trends for customized biomedical software tools are highlighted in this short review.
19 CFR 202.5 - Type of information to be developed at hearing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 3 2010-04-01 2010-04-01 false Type of information to be developed at hearing. 202.5 Section 202.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF COSTS OF PRODUCTION § 202.5 Type of information to be developed at hearing...
19 CFR 202.5 - Type of information to be developed at hearing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 3 2012-04-01 2012-04-01 false Type of information to be developed at hearing. 202.5 Section 202.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF COSTS OF PRODUCTION § 202.5 Type of information to be developed at hearing...
19 CFR 202.5 - Type of information to be developed at hearing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 3 2011-04-01 2011-04-01 false Type of information to be developed at hearing. 202.5 Section 202.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF COSTS OF PRODUCTION § 202.5 Type of information to be developed at hearing...
19 CFR 202.5 - Type of information to be developed at hearing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 3 2014-04-01 2014-04-01 false Type of information to be developed at hearing. 202.5 Section 202.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF COSTS OF PRODUCTION § 202.5 Type of information to be developed at hearing...
19 CFR 202.5 - Type of information to be developed at hearing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 3 2013-04-01 2013-04-01 false Type of information to be developed at hearing. 202.5 Section 202.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF COSTS OF PRODUCTION § 202.5 Type of information to be developed at hearing...
NASA Astrophysics Data System (ADS)
Hwang, Stephen
Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.
Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.
Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao
2018-04-12
Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.
Computer simulation of solder joint failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchett, S.N.; Frear, D.R.; Rashid, M.M.
The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide themore » fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holohan, D.
1995-03-01
Some suggestions for increasing business in the fuel oil marketing sector are given: These include: (1) give your customers a good reason to buy from you; (2) never take customers for granted; (3) use newsletters to educate customers about new developments, the latest technology; (4) establish a personal relationship with customers. Call them and tell them how much you appreciate their business; (5) educate them about possible scams-for instance chimney cleaning companies that might bend the truth; and (6) give your {open_quotes}full-service{close_quotes} company a small town personality and a caring voice. Customers will have difficulty leaving you.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Brush, L. N.
1996-01-01
Highly segregated macrostructures tend to develop during processing of hypermonotectic alloys because of the density difference existing between the two liquid phases. The approximately 4.6 seconds of low-gravity provided by Marshall Space Flight Center's 105 meter drop tube was utilized to minimize density-driven separation and promote uniform microstructures in hypermonotectic Ag-Ni and Ag-Mn alloys. For the Ag-Ni alloys a numerical model was developed to track heat flow and solidification of the bi-metal drop configuration. Results, potential applications, and future work are presented.
Kevrekidis, Dimitrios Phaedon; Minarikova, Daniela; Markos, Angelos; Malovecka, Ivona; Minarik, Peter
2018-01-01
Within the competitive pharmacy market environment, community pharmacies are required to develop efficient marketing strategies based on contemporary information about consumer behavior in order to attract clients and develop customer loyalty. This study aimed to investigate the consumers' preferences concerning the selection of pharmacy and over-the-counter (OTC) medicines, and to identify customer segments in relation to these preferences. A cross-sectional study was conducted between February and March 2016 on a convenient quota sample of 300 participants recruited in the metropolitan area of Thessaloniki, Greece. The main instrument used for data collection was a structured questionnaire with close-ended, multiple choice questions. To identify customer segments, Two-Step cluster analysis was conducted. Three distinct pharmacy customer clusters emerged. Customers of the largest cluster (49%; 'convenience customers') were mostly younger consumers. They gave moderate to positive ratings to factors affecting the selection of pharmacy and OTCs; convenience, and previous experience and the pharmacist's opinion, received the highest ratings. Customers of the second cluster (35%; 'loyal customers') were mainly retired; most of them reported visiting a single pharmacy. They gave high ratings to all factors that influence pharmacy selection, especially the pharmacy's staff, and factors influencing the purchase of OTCs, particularly previous experience and the pharmacist's opinion. Customers of the smallest cluster (16%; 'convenience and price-sensitive customers') were mainly retired or unemployed with low to moderate education, and low personal income. They gave the lowest ratings to most of the examined factors; convenience among factors influencing pharmacy selection, whereas previous experience, the pharmacist's opinion and product price among those affecting the purchase of OTCs, received the highest ratings. The community pharmacy market comprised of distinct customer segments that varied in the consumer preferences concerning the selection of pharmacy and OTCs, the evaluation of pharmaceutical services and products, and demographic characteristics.
NASA Astrophysics Data System (ADS)
Avasilcăi, S.; Rusu, G.
2015-11-01
To foster the development of innovative products and new technologies, nowadays companies use an open innovation system, encouraging stakeholders to contribute, using the companies’ online platforms for open innovation or social media, bringing and sharing creative solutions and ideas in order to respond to challenging needs the company directly expresses. Accordingly, the current research continues the analysis of the LEGO Group innovation efforts, aiming to provide a case study approach based on describing the most important projects and online instruments company uses to interact with customers and other external stakeholders. Thus, by analysing the experience of the company in developing projects of involving stakeholders in the innovation processes, the article emphasizes the objective of these past projects developed by LEGO Group, outlining their objectives regarding the focus on the product or process innovation, the team management and stakeholders involved in the innovation actions and the results they obtained. Moreover, the case study highlights the features of the most important online instruments LEGO Group uses at the moment for engaging LEGO fans, children, parents, and other external stakeholders in developing new LEGO sets. Thus, LEGO online instruments provide the opportunity for customers to be creative and to respond to LEGO management team challenges. Accordingly, LEGO involve customers in bringing innovative ideas for LEGO sets through LEGO Ideas instrument, which aims to engage customers in submitting projects, voting and supporting ideas and also sharing them on social media. Also, the research emphasizes the role of supporting the open dialogue and interaction with customers and other external stakeholders through LEGO.com Create & Share Galleries instrument, using their creativity to upload innovative models in the public galleries. The continuous challenges LEGO launches for their fans create a long-term connection between company and its customers, supporting the value co-creation process, as the submitted ideas can materialize in new LEGO products which can be found on the market. As a consequence, customers’ engagement in the co-creation process facilitated by the multiple online instruments provided by LEGO, resulted in positive outcomes for the company regarding new product development for the sets launched on the market to satisfy changing needs of their customers. The results provided by this case study approach can be useful for the business environment and academia as well in order to understand the role of engaging customers in the open innovation process, creating a competitive advantage on the market for companies.
Collaboration, Communication and Co-ordination in Agile Software Development Practice
NASA Astrophysics Data System (ADS)
Robinson, Hugh; Sharp, Helen
This chapter analyses the results of a series of observational studies of
Microstructure Characterization of RERTR Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Gan; B. D. Miller; D. D. Keiser
2008-09-01
A variety of phases have the potential to develop in the irradiated fuels for the reduced enrichment research test reactor (RERTR) program. To study the radiation stability of these potential phases, three depleted uranium alloys were cast. The phases of interest were identified including U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, UAl4, and U6Mo4Al43. These alloys were irradiated with 2.6 MeV protons at 200ºC up to 3.0 dpa. The microstructure is characterized using SEM and TEM. Microstructural characterization for an archive dispersion fuel plate (U-7Mo fuel particles in Al-2%Si cladding) was also carried out. TEM sample preparation for the irradiated dispersion fuel has beenmore » developed.« less
Liquid Phase Miscibility Gap Materials
NASA Technical Reports Server (NTRS)
Gelles, S. H.; Markworth, A. J.
1985-01-01
The manner in which the microstructural features of liquid-phase miscibility gap alloys develop was determined. This will allow control of the microstructures and the resultant properties of these alloys. The long-duration low gravity afforded by the shuttle will allow experiments supporting this research to be conducted with minimal interference from buoyancy effects and gravitationally driven convection currents. Ground base studies were conducted on Al-In, Cu-Pb, and Te-Tl alloys to determine the effect of cooling rate, composition, and interfacial energies on the phase separation and solidification processes that influence the development of microstructure in these alloys. Isothermal and directional cooling experiments and simulations are conducted. The ground based activities are used as a technological base from which flight experiments formulated and to which these flight experiments are compared.
Prediction of Microstructure in High-Strength Ductile Forging Parts
NASA Astrophysics Data System (ADS)
Urban, M.; Keul, C.; Back, A.; Bleck, W.; Hirt, G.
2010-06-01
Governmental, environmental and economic demands call for lighter, stiffer and at the same time cheaper products in the vehicle industry. Especially safety relevant parts have to be stiff and at the same time ductile. The strategy of this project was to improve the mechanical properties of forging steel alloys by employing a high-strength and ductile bainitic microstructure in the parts while maintaining cost effective process chains to reach these goals for high stressed forged parts. Therefore, a new steel alloy combined with an optimized process chain has been developed. To optimize the process chain with a minimum of expensive experiments, a numerical approach was developed to predict the microstructure of the steel alloy after the process chain based on FEM simulations of the forging and cooling combined with deformation-time-temperature-transformation-diagrams.
Recrystallization and superplasticity at 300 C in an aluminum-magnesium alloy
NASA Technical Reports Server (NTRS)
Hales, S. J.; Mcnelley, T. R.; Mcqueen, H. J.
1991-01-01
Variations in thermomechanical processing (TMP) which regulate the microstructural characteristics and superplastic response of an Al-10Mg-0.1Zr alloy at 300 C were evaluated. Mechanical property data revealed that the superplastic ductility can be enhanced by simultaneously increasing the total rolling strain, the reduction per pass, and the duration of reheating intervals between passes during isothermal rolling. Texture and microscopy data were consistent with the development of a refined microstructure by recovery-dominated processes, i.e., continuous recrystallization, during the processing. The mechanisms by which a refined substructure can be progressively converted into a fine-grained structure during repeated cycles of deformation and annealing are addressed. A qualitative description of the complex sequence of developments leading to a microstructure better suited to support superplastic response is presented.
ERIC Educational Resources Information Center
Shaheen, Amer N.
2011-01-01
This research investigated Electronic Service Quality (E-SQ) features that contribute to customer satisfaction in an online environment. The aim was to develop an approach which improves E-CRM processes and enhances online customer satisfaction. The research design adopted mixed methods involving qualitative and quantitative methods to…
Saying What We Will Do, and Doing What We Say: Implementing a Customer Service Plan.
ERIC Educational Resources Information Center
Wehmeyer, Susan; And Others
1996-01-01
Contends that the corporate literature on customer service is significantly applicable to academic libraries, and chronicles the development, implementation, and evaluation of a customer pledge at the Wright State University Libraries in Dayton, Ohio. The text of the fall 1995 version of the service pledge is appended. (BEW)
Listening to the Voice of the Customer.
ERIC Educational Resources Information Center
Schauerman, Sam; And Others
One of the major tenets of Total Quality Management (TQM) is that organizations need to adopt a strong customer focus. At El Camino College (ECC) in Torrance, California, a matrix was developed to identify and describe ECC's direct and indirect internal and external customers. ECC then applied Quality Function Deployment (QFD), a strategic tool…
Intelligent scheduling of execution for customized physical fitness and healthcare system.
Huang, Chung-Chi; Liu, Hsiao-Man; Huang, Chung-Lin
2015-01-01
Physical fitness and health of white collar business person is getting worse and worse in recent years. Therefore, it is necessary to develop a system which can enhance physical fitness and health for people. Although the exercise prescription can be generated after diagnosing for customized physical fitness and healthcare. It is hard to meet individual execution needs for general scheduling of physical fitness and healthcare system. So the main purpose of this research is to develop an intelligent scheduling of execution for customized physical fitness and healthcare system. The results of diagnosis and prescription for customized physical fitness and healthcare system will be generated by fuzzy logic Inference. Then the results of diagnosis and prescription for customized physical fitness and healthcare system will be scheduled and executed by intelligent computing. The scheduling of execution is generated by using genetic algorithm method. It will improve traditional scheduling of exercise prescription for physical fitness and healthcare. Finally, we will demonstrate the advantages of the intelligent scheduling of execution for customized physical fitness and healthcare system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tianyu; Xu, Hongyi; Chen, Wei
Fiber-reinforced polymer composites are strong candidates for structural materials to replace steel and light alloys in lightweight vehicle design because of their low density and relatively high strength. In the integrated computational materials engineering (ICME) development of carbon fiber composites, microstructure reconstruction algorithms are needed to generate material microstructure representative volume element (RVE) based on the material processing information. The microstructure RVE reconstruction enables the material property prediction by finite element analysis (FEA)This paper presents an algorithm to reconstruct the microstructure of a chopped carbon fiber/epoxy laminate material system produced by compression molding, normally known as sheet molding compounds (SMC).more » The algorithm takes the result from material’s manufacturing process as inputs, such as the orientation tensor of fibers, the chopped fiber sheet geometry, and the fiber volume fraction. The chopped fiber sheets are treated as deformable rectangle chips and a random packing algorithm is developed to pack these chips into a square plate. The RVE is built in a layer-by-layer fashion until the desired number of lamina is reached, then a fine tuning process is applied to finalize the reconstruction. Compared to the previous methods, this new approach has the ability to model bended fibers by allowing limited amount of overlaps of rectangle chips. Furthermore, the method does not need SMC microstructure images, for which the image-based characterization techniques have not been mature enough, as inputs. Case studies are performed and the results show that the statistics of the reconstructed microstructures generated by the algorithm matches well with the target input parameters from processing.« less
Microstructural Changes in Inconel 740 After Long-Term Aging in the Presence and Absence of Stress
NASA Astrophysics Data System (ADS)
Unocic, K. A.; Shingledecker, J. P.; Tortorelli, P. F.
2014-12-01
The Ni-based alloy, Inconel® 740, is being extensively examined for use in advanced ultrasupercritical steam boilers because its precipitation-strengthened microstructure appears to offer the necessary creep strength under the high temperatures and pressures (up to 760°C and 35 MPa) needed for high efficiency power generation. However, because this application requires extremely long lifetimes under these conditions (up to 30 years), long-term microstructure stability is a major concern. In this paper, results from microstructural analyses of Inconel 740 specimens aged at 700 and 750°C in the presence and absence of creep loading for times up to ~31,000 h are presented. The primary focus was on the development of the eta η (Ni3Ti) phase and coarsening of coherent γ'-Ni3(Al,Ti) precipitates and its depletion near eta/matrix interfaces. However, despite these processes, Inconel 740 showed adequate long-term microstructural stability to assure adequate creep strength for the intended application.
NASA Astrophysics Data System (ADS)
Unfried-Silgado, Jimy; Ramirez, Antonio J.
2014-03-01
In part II of this work is evaluated the as-welded microstructure of Ni-Cr-Fe alloys, which were selected and modeled in part I. Detailed characterization of primary and secondary precipitates, subgrain and grain structures, partitioning, and grain boundary morphology were developed. Microstructural characterization was carried out using optical microscopy, SEM, TEM, EBSD, and XEDS techniques. These results were analyzed and compared to modeling results displaying a good agreement. The Hf additions produced the highest waviness of grain boundaries, which were related to distribution of Hf-rich carbonitrides. Experimental evidences about Mo distribution into crystal lattice have provided information about its possible role in ductility-dip cracking (DDC). Characterization results of studied alloys were analyzed and linked to their DDC resistance data aiming to establish relationships between as-welded microstructure and hot deformation performance. Wavy grain boundaries, primary carbides distribution, and strengthened crystal lattice are metallurgical characteristics related to high DDC resistance.
Alfaro, Freddy J; Gavrieli, Anna; Saade-Lemus, Patricia; Lioutas, Vasileios-Arsenios; Upadhyay, Jagriti; Novak, Vera
2018-01-01
Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shim, Hyun-Woo; Lee, Ji-Hye; Choi, Chang-Hyoung; Song, Hwan-Moon; Kim, Bo-Yeol; Kim, Dong-Pyo; Lee, Chang-Soo
2007-12-01
The patterning of biomolecules in well-defined microstructures is critical issue for the development of biosensors and biochips. However, the fabrication of microstructures with well-ordered and spatially discrete forms to provide the patterned surface for the immobilization of biomolecules is difficult because of the lack of distinct physical and chemical barriers separating patterns. This study present rapid biomolecule patterning using micromolding in capillaries (MIMIC), soft-lithographic fabrication of PEG microstructures for prevention of nonspecific binding as a biological barrier, and self assembled polymeric thin film for efficient immobilization of proteins or cells. For the proof of concept, protein (FITC-BSA), bacteria (E.coli BL21-pET23b-GFP) were used for biomolecules patterning on polyelectrolyte coated surface within PEG microstructures. The novel approach of MIMIC combined with LbL coating provides a general platform for patterning a broad range of materials because it can be easily applied to various substrates such as glass, silicon, silicon dioxide, and polymers.
Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells.
Huang, Fuzhi; Pascoe, Alexander R; Wu, Wu-Qiang; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Caruso, Rachel A; Cheng, Yi-Bing
2017-05-01
The efficiencies of the hybrid organic-inorganic perovskite solar cells have been rapidly approaching the benchmarks held by the leading thin-film photovoltaic technologies. Arguably, one of the most important factors leading to this rapid advancement is the ability to manipulate the microstructure of the perovskite layer and the adjacent functional layers within the device. Here, an analysis of the nucleation and growth models relevant to the formation of perovskite films is provided, along with the effect of the perovskite microstructure (grain sizes and voids) on device performance. In addition, the effect of a compact or mesoporous electron-transport-layer (ETL) microstructure on the perovskite film formation and the optical/photoelectric properties at the ETL/perovskite interface are overviewed. Insight into the formation of the functional layers within a perovskite solar cell is provided, and potential avenues for further development of the perovskite microstructure are identified. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transforming Multidisciplinary Customer Requirements to Product Design Specifications
NASA Astrophysics Data System (ADS)
Ma, Xiao-Jie; Ding, Guo-Fu; Qin, Sheng-Feng; Li, Rong; Yan, Kai-Yin; Xiao, Shou-Ne; Yang, Guang-Wu
2017-09-01
With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.
Effect of Cold-rolling on Mechanical Properties and Microstructure of an Al-12%Si-0.2%Mg Alloy
NASA Astrophysics Data System (ADS)
Liao, Hengcheng; Cai, Mingdong; Jing, Qiumin; Ding, Ke
2011-11-01
Effect of multi-pass cold-rolling on the mechanical properties and microstructure of a near-eutectic Al-12%Si-0.2%Mg casting alloy was investigated. Optical microscopy, SEM, and TEM were employed to resolve the as-rolled microstructure, and the microstructure of samples after aging treatment. It has been found that Brinell hardness increases considerably with rolling reduction ratio; and further annealing leads to a remarkable drop in hardness. Two mechanisms, namely precipitation hardening and recovery softening, were found to develop simultaneously in the subsequent aging treatment following cold rolling. In contrast, recovery softening dominated the aging of cold-rolled specimen with prior intermediate annealing. Tensile properties were also performed to measure the effect of cold rolling and subsequent aging treatment.
Method to control artifacts of microstructural fabrication
Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.
2006-09-12
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.
Thamjamrassri, Punyotai; Song, YuJin; Tak, JaeHyun; Kang, HoYong; Hong, Jeeyoung
2018-01-01
Objectives Customer discovery (CD) is a method to determine if there are actual customers for a product/service and what they would want before actually developing the product/service. This concept, however, is rather new to health information technology (IT) systems. Therefore, the aim of this paper was to demonstrate how to use the CD method in developing a comprehensive health IT service for patients with knee/leg pain. Methods We participated in a 6-week I-Corps program to perform CD, in which we interviewed 55 people in person, by phone, or by video conference within 6 weeks: 4 weeks in the United States and 2 weeks in Korea. The interviewees included orthopedic doctors, physical therapists, physical trainers, physicians, researchers, pharmacists, vendors, and patients. By analyzing the interview data, the aim was to revise our business model accordingly. Results Using the CD approach enabled us to understand the customer segments and identify value propositions. We concluded that a facilitating tele-rehabilitation system is needed the most and that the most suitable customer segment is early stage arthritis patients. We identified a new design concept for the customer segment. Furthermore, CD is required to identify value propositions in detail. Conclusions CD is crucial to determine a more desirable direction in developing health IT systems, and it can be a powerful tool to increase the potential for successful commercialization in the health IT field. PMID:29503756
Hitchhiker: Customer Accommodations and Requirements Specifications (CARS)
NASA Technical Reports Server (NTRS)
1992-01-01
In 1984, NASA Headquarters established projects at the Goddard Space Flight Center (GSFC) and the Marshall Space Flight Center (MSFC) to develop quick-reaction carrier systems for low-cost 'flight of opportunity' or secondary payloads on the Space Transportation System (STS). One of these projects is the Hitchhiker (HH) Program. GSFC has developed a family of carrier equipment known as the Shuttle Payload of Opportunity Carrier (SPOC) system for mounting small payloads such as HH to the side of the Orbiter payload bay. The side-mounted HHs are referred to as Hitchhiker-G (HH-G). MSFC developed a cross-bay 'bridge-type' carrier structure called the Hitchhiker-M (HH-M). In 1987, responsibility for the HH-M carrier was transferred to and is now managed by the HH Project Office at the GSFC. The HH-M carrier now uses the same interchangeable SPOC avionics unit and the same electrical interfaces and services developed for HH-G. National Aeronautics and Space Administration (NASA) has created this document to acquaint potential HH system customers with the facilities NASA provides and the requirements which customers must satisfy to use these facilities. This publication defines interface items required for integrating customer equipment with the HH carrier system. Those items such as mounting equipment and electrical inputs and outputs; configuration, environmental, command, telemetry, and operational constraints are described as well as weight, power, and communications. The purpose of this publication is to help the customer understand essential integration documentation requirements and to prepare a Customer Payload Requirements (CPR) document.
NASA Astrophysics Data System (ADS)
Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.
2018-05-01
Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.
3D Microfabrication Using Emulsion Mask Grayscale Photolithography Technique
NASA Astrophysics Data System (ADS)
Lee, Tze Pin; Mohamed, Khairudin
2016-02-01
Recently, the rapid development of technology such as biochips, microfluidic, micro-optical devices and micro-electromechanical-systems (MEMS) demands the capability to create complex design of three-dimensional (3D) microstructures. In order to create 3D microstructures, the traditional photolithography process often requires multiple photomasks to form 3D pattern from several stacked photoresist layers. This fabrication method is extremely time consuming, low throughput, costly and complicated to conduct for high volume manufacturing scale. On the other hand, next generation lithography such as electron beam lithography (EBL), focused ion beam lithography (FIB) and extreme ultraviolet lithography (EUV) are however too costly and the machines require expertise to setup. Therefore, the purpose of this study is to develop a simplified method in producing 3D microstructures using single grayscale emulsion mask technique. By using this grayscale fabrication method, microstructures of thickness as high as 500μm and as low as 20μm are obtained in a single photolithography exposure. Finally, the fabrication of 3D microfluidic channel has been demonstrated by using this grayscale photolithographic technique.
NASA Astrophysics Data System (ADS)
Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.
2018-04-01
Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.
Simulations of Precipitate Microstructure Evolution during Heat Treatment
NASA Astrophysics Data System (ADS)
Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul
Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.
He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl
NASA Astrophysics Data System (ADS)
Pouchon, Manuel A.; Chen, Jiachao; Hoffelner, Wolfgang
2009-05-01
TiAl is a well known high temperature material with good creep properties. It is investigated as a potential structural material for Generation IV high temperature gas cooled nuclear reactors. The tests are performed with the ABB-2 (Ti-rich TiAl with 2 at.% W) developed by ASEA Brown Boveri Ltd. (ABB). Thin samples are irradiated throughout with 24 MeV 4He2+ ions; the irradiated material is then investigated towards its microstructure and its hardness. The microstructure is studied by transmission electron microscopy and the hardness is investigated using a micro-hardness tester and a nano-indenter. Different effects can be identified. From room to moderate irradiation temperatures, the radiation induced hardening of the material slowly vanishes until the material completely recovers at about 943 K. Beyond this temperature, He-bubble formation seems to harden the material again, until beyond 1200 K a steep increase in hardening is detected. This effect can be correlated with bubbles being identified in the micrographs. The results are consistent and give strong indications to a microstructural development as a function of temperature.
Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models
NASA Astrophysics Data System (ADS)
Katsaga, T.; Young, P.
2009-05-01
The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the sample testing, in relation to the CT images allows the precise reconstruction of the failure sequence. Our proposed modelling approach illustrates realistic fracture formation and growth predictions at different loading conditions.
NASA Astrophysics Data System (ADS)
Sedighi Gilani, Marjan; Pflaum, Johanna; Hartmann, Stefan; Kaufmann, Rolf; Baumgartner, Michael; Schwarze, Francis Willis Mathew Robert
2016-04-01
Wood varnish coatings not only are aesthetically important, but also preserve the musical instrument from wear and fluctuations in the ambient humidity. Depending on the thickness, extent of penetration into the wood and the physical and mechanical properties after hardening, varnishes may change the mechanical and also vibro-acoustical properties of the coated wood. Contrary to studies on the chemistry of the varnish and primer used for old and contemporary musical instruments, the physical and mechanical properties of the varnished wood in relation to the geometry of their interface have been poorly studied. We implemented non-destructive test methods, i.e., vibration tests and X-ray tomography, to characterize the hardening-dependent change in the vibrational properties of master grade tone wood specimens after coating with four different varnishes. Two were manufactured in the laboratory, and two were supplied from master violin makers. For a controlled accelerated hardening of the varnish, a UV exposure method was used. It was demonstrated that varnishes increase wood damping, along and perpendicular to the grain directions. Varnishes reduce the sound radiation along the grain, but increase it in the perpendicular direction. Changes in the vibrational properties were discussed together with results of 3D images of wood and varnish microstructure, obtained from a customized tabletop X-ray microtomographic setup. For comparison, the microstructure of the interface of the varnished wood in the laboratory and of specimens from two old violins was analyzed with the same X-ray tomography setup. Laboratory varnishes with various compositions penetrated differently into the wood structure. One varnish of a master grade old violin had a higher density and was also thicker and penetrated weaker into the wood, which is more likely related to a more sophisticated primer and varnish application. The study demonstrates the importance of the vibro-mechanical properties of varnish, its chemical composition, thickness and penetration into wood.
Building customer capital through knowledge management processes in the health care context.
Liu, Sandra S; Lin, Carol Yuh-Yun
2007-01-01
Customer capital is a value generated and an asset developed from customer relationships. Successfully managing these relationships is enhanced by knowledge management (KM) infrastructure that captures and transfers customer-related knowledge. The execution of such a system relies on the vision and determination of the top management team (TMT). The health care industry in today's knowledge economy encounters similar challenges of consumerism as its business sector. Developing customer capital is critical for hospitals to remain competitive in the market. This study aims to provide taxonomy for cultivating market-based organizational learning that leads to building of customer capital and attaining desirable financial performance in health care. With the advancement of technology, the KM system plays an important moderating role in the entire process. The customer capital issue has not been fully explored either in the business or the health care industry. The exploratory nature of such a pursuit calls for a qualitative approach. This study examines the proposed taxonomy with the case hospital. The lessons learned also are reflected with three US-based health networks. The TMT incorporated the knowledge process of conceptualization and transformation in their organizational mission. The market-oriented learning approach promoted by TMT helps with the accumulation and sharing of knowledge that prepares the hospital for the dynamics in the marketplace. Their key knowledge advancement relies on both the professional arena and the feedback of customers. The institutionalization of the KM system and organizational culture expands the hospital's customer capital. The implication is twofold: (1) the TMT is imperative for the success of building customer capital through KM process; and (2) the team effort should be enhanced with a learning culture and sharing spirit, in particular, active nurse participation in decision making and frontline staff's role in providing a delightfully surprising patient experience.
Deffenbaugh, J L
1997-01-01
Addresses the severe criticism by the Health Service Commissioner of NHS trusts for their handling of patient complaints, particularly the attitude of managers and the new NHS trust culture, which emphasized that patients should be considered as more than just customers. Argues that the word "customer" should not be thrown out because managers are uncomfortable with it; takes the view that while they may have tried to adopt the term, they have failed to appreciate its meaning. Makes a comparison between customer and consumer and presents a case for regarding patients as customers. Concludes that lessons can be learned from private business in developing the provider-customer relationship and that attitude and behaviour changes can be brought about by a long-term cultural change programme.
Westbrook, K W; Pedrick, D; Bush, V
1996-01-01
This study defines a company's quality orientation as "all process-related activities that can be discerned by customers." This even includes certain processes internal to the company that can be seen and evaluated by customers. One significant contribution this study provides is scale development centered on customer rather than employee perceptions. To generate scale items, input was gathered from experts involved in the study, senior managers employed with the target company, focus groups of employees working on the front line with customers, and users of the services. Because the sale measures customer perceptions of quality in comparison with the firm's closest competitor, it provides managers with information for benchmarking performance relative to others in the marketplace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggiero, A.; Orgren, A.
This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan formore » the customer.« less
Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Johnson, Bradley R.; Sundaram, S. K.
2006-12-01
Nanowire Formation in Arsenic Trisulfide Brian J. Riley, S.K. Sundaram*, Bradley R. Johnson, Mark Engelhard Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 * Corresponding author: Phone: 509-373-6665; Fax: 509-376-3108, E-mail: sk.Sundaram@pnl.gov Abstract: Arsenic trisulfide (As2S3) nanowires, nano-droplets, and micro-islands were synthesized on fused silica substrates, using a sublimation-condensation process at reduced pressures (70 mtorr – 70 torr) in a sealed ampoule. Microstructural control of the deposited thin film was achieved by controlling initial pressure, substrate temperature and substrate surface treatment. Microstructures were characterized using scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). Surface topography and chemistrymore » of the substrates were characterized using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Semi-quantitative image analysis and basic curve-fitting were used to develop empirical models to mathematically describe the variation of microstructure as a function of initial pressure and substrate temperature and map out the regions of different microstructures in P-T space. Thermodyamic properties (available from literature) of this system are also incorporated in this map. Nanowires of an amorphous, transparent in visible-LWIR region, semi-conducting material, like As2S3, provide new opportunities for the development of novel nano-photonic and electronic devices. Additionally, this system provides an excellent opportunity to model (and control) microstructure development from nanometer to micron scales in a physical vapor deposition process, which is of great value to nanoscience and nanotechnology in general.« less
Ring rolling process simulation for microstructure optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Metal undergoes complicated microstructural evolution during Hot Ring Rolling (HRR), which determines the quality, mechanical properties and life of the ring formed. One of the principal microstructure properties which mostly influences the structural performances of forged components, is the value of the average grain size. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular velocity of driver roll) on microstructural and on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR has been developed in SFTC DEFORM V11, taking into account also microstructural development of the material used (the nickel superalloy Waspalloy). The Finite Element (FE) model has been used to formulate a proper optimization problem. The optimization procedure has been developed in order to find the combination of process parameters which allows to minimize the average grain size. The Response Surface Methodology (RSM) has been used to find the relationship between input and output parameters, by using the exact values of output parameters in the control points of a design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. Then, an optimization procedure based on Genetic Algorithms has been applied. At the end, the minimum value of average grain size with respect to the input parameters has been found.
Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.
2016-09-15
Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less
Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement
NASA Astrophysics Data System (ADS)
Raoul, S.; Marini, B.; Pineau, A.
1998-11-01
In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc...) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate ( Vc) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50°C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed.
Modeling of microstructure evolution in direct metal laser sintering: A phase field approach
NASA Astrophysics Data System (ADS)
Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev
2017-02-01
Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.
Molecular modeling of the microstructure evolution during carbon fiber processing
NASA Astrophysics Data System (ADS)
Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro
2017-12-01
The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.
ERIC Educational Resources Information Center
Liu, Chang; Mackie, Brian G.
2008-01-01
Throughout the last decade, companies have increased their investment in electronic commerce (EC) by developing and implementing Web-based applications on the Internet. This paper describes a class project to develop a customized computer website which is similar to Dell Computer Corporation's (Dell) website. The objective of this project is to…
Mid-infrared chalcogenide fiber devices for medical applications
NASA Astrophysics Data System (ADS)
Chenard, Francois; Alvarez, Oseas; Buff, Andrew
2018-02-01
High-purity chalcogenide glasses and fiber draw processes enable the production of state-of-the-art mid-infrared fibers for 1.5 to 10 micron transmission. Multimode and single-mode mid-infrared fibers are produced with low-loss (<0.2 dB/m), high tensile strength (>25 kpsi), and high power laser handling capability (>11.8 MW/cm2). Chalcogenide fibers support the development of cutting-edge devices for mid-infrared medical applications. Connectorized cables transmit laser power to a sample or mid-infrared radiation to a detector. Broadband antireflection microstructures are thermally stamped on the chalcogenide fiber tip to reduce the surface reflection from 17% to <5%. Also custom fiber-optic probe bundles are made with multiple fiber legs (source, sample, signal) for reflection and backscatter spectroscopy measurement. For example, a 7 x 1 fiber probe bundle is presented. Additionally imaging fiber bundle is made to perform remote thermal and spectral imaging. Square preforms are drawn, stacked, squared and fused multiple times to produce a 64 x 64 imaging fiber bundle with fiber pixel size of 34 microns and the numerical aperture of 0.3. The 2- meter long imaging fiber bundle is small (2.2 mm x 2.2 mm), flexible (bend radius >10 mm) and transmits over the spectral range of 1.5 to 6.5 micron.
Micromilled optical elements for edge-lit illumination panels
NASA Astrophysics Data System (ADS)
Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Nikumb, Suwas
2013-04-01
Edge-lit light guide panels (LGPs) with micropatterned surfaces represent a new technology for developing small- and medium-sized illumination sources for application such as automotive, residential lighting, and advertising displays. The shape, density, and spatial distribution of the micro-optical structures (MOSs) imprinted on the transparent LGP must be selected to achieve high brightness and uniform luminance over the active surface. We examine how round-tip cylindrical MOSs fabricated by precision micromilling can be used to create patterned surfaces on low-cost transparent polymethyl-methacrylate substrates for high-intensity illumination applications. The impact of varying the number, pitch, spatial distribution, and depth of the optical microstructures on lighting performance is initially investigated using LightTools™ simulation software. To illustrate the microfabrication process, several 100×100×6 mm3 LGP prototypes are constructed and tested. The prototypes include an "optimized" array of MOSs that exhibit near-uniform illumination (approximately 89%) across its active light-emitting surface. Although the average illumination was 7.3% less than the value predicted from numerical simulation, it demonstrates how LGPs can be created using micromilling operations. Customized MOS arrays with a bright rectangular pattern near the center of the panel and a sequence of MOSs that illuminate a predefined logo are also presented.
Preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films.
Chen, Zhiwen; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L
2012-01-01
Metal/semiconductor thin films are a class of unique materials that are widespread technological applications, particularly in the field of microelectronic devices. Assessment strategies of fractal and tures are of fundamental importance in the development of nano/microdevices. This review presents the preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films including Au/Ge bilayer films and Pd-Ge alloy thin films, which show in the form of fractals and nanocrystals. Firstly, the extended version of Au/Ge thin films for the fractal crystallization of amorphous Ge and the formation of nanocrystals developed with improved micro- and nanostructured features are described in Section 2. Secondly, the nano/microstructural characteristics of Pd/Ge alloy thin films during annealing have been investigated in detail and described in Section 3. Finally, we will draw the conclusions from the present work as shown in Section 4. It is expected that the preparation methodologies developed and the knowledge of nano/microstructural evolution gained in metal/semiconductor thin films, including Au/Ge bilayer films and Pd-Ge alloy thin films, will provide an important fundamental basis underpinning further interdisciplinary research in these fields such as physics, chemistry, materials science, and nanoscience and nanotechnology, leading to promising exciting opportunities for future technological applications involving these thin films.
Flexible forecasts: a key to better customer service.
Neuhaus, C A
1997-05-01
Good customer service requires companies to keep their fingers on their customers' pulse and develop intelligent forecasts with their needs built in. As even the smallest factories today are placing at least some emphasis on lead time reductions to improve flexibility and the speed of response to customer requirements, the role of the forecast, now more than ever, is to provide at all times the best, most recent, and most accurate picture of what exactly will be required and when.
A Mechanism of Modeling and Verification for SaaS Customization Based on TLA
NASA Astrophysics Data System (ADS)
Luan, Shuai; Shi, Yuliang; Wang, Haiyang
With the gradually mature of SOA and the rapid development of Internet, SaaS has become a popular software service mode. The customized action of SaaS is usually subject to internal and external dependency relationships. This paper first introduces a method for modeling customization process based on Temporal Logic of Actions, and then proposes a verification algorithm to assure that each step in customization will not cause unpredictable influence on system and follow the related rules defined by SaaS provider.
NASA Astrophysics Data System (ADS)
Wells, M. A.; Samarasekera, I. V.; Brimacombe, J. K.; Hawbolt, E. B.; Lloyd, D. J.
1998-06-01
A comprehensive mathematical model of the hot tandem rolling process for aluminum alloys has been developed. Reflecting the complex thermomechanical and microstructural changes effected in the alloys during rolling, the model incorporated heat flow, plastic deformation, kinetics of static recrystallization, final recrystallized grain size, and texture evolution. The results of this microstructural engineering study, combining computer modeling, laboratory tests, and industrial measurements, are presented in three parts. In this Part I, laboratory measurements of static recrystallization kinetics and final recrystallized grain size are described for AA5182 and AA5052 aluminum alloys and expressed quantitatively by semiempirical equations. In Part II, laboratory measurements of the texture evolution during static recrystallization are described for each of the alloys and expressed mathematically using a modified form of the Avrami equation. Finally, Part III of this article describes the development of an overall mathematical model for an industrial aluminum hot tandem rolling process which incorporates the microstructure and texture equations developed and the model validation using industrial data. The laboratory measurements for the microstructural evolution were carried out using industrially rolled material and a state-of-the-art plane strain compression tester at Alcan International. Each sample was given a single deformation and heat treated in a salt bath at 400 °C for various lengths of time to effect different levels of recrystallization in the samples. The range of hot-working conditions used for the laboratory study was chosen to represent conditions typically seen in industrial aluminum hot tandem rolling processes, i.e., deformation temperatures of 350 °C to 500 °C, strain rates of 0.5 to 100 seconds and total strains of 0.5 to 2.0. The semiempirical equations developed indicated that both the recrystallization kinetics and the final recrystallized grain size were dependent on the deformation history of the material i.e., total strain and Zener-Hollomon parameter ( Z), where Z = dot \\varepsilon exp left( {{Q_{def} }/{RT_{def }}} right) and time at the recrystallization temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brackney, Larry J.
North East utility National Grid (NGrid) is developing a portfolio-scale application of OpenStudio designed to optimize incentive and marketing expenditures for their energy efficiency (EE) programs. NGrid wishes to leverage a combination of geographic information systems (GIS), public records, customer data, and content from the Building Component Library (BCL) to form a JavaScript Object Notation (JSON) input file that is consumed by an OpenStudio-based expert system for automated model generation. A baseline model for each customer building will be automatically tuned using electricity and gas consumption data, and a set of energy conservation measures (ECMs) associated with each NGrid incentivemore » program will be applied to the model. The simulated energy performance and return on investment (ROI) will be compared with customer hurdle rates and available incentives to A) optimize the incentive required to overcome the customer hurdle rate and B) determine if marketing activity associated with the specific ECM is warranted for that particular customer. Repeated across their portfolio, this process will enable NGrid to substantially optimize their marketing and incentive expenditures, targeting those customers that will likely adopt and benefit from specific EE programs.« less
Xie, Peng; Qin, Bangyong; Song, Ganjun; Zhang, Yi; Cao, Song; Yu, Jin; Wu, Jianjiang; Wang, Jiang; Zhang, Tijiang; Zhang, Xiaoming; Yu, Tian; Zheng, Hong
2016-01-01
Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease. PMID:28066193
Anisotropic and Hierarchical Porosity in Multifunctional Ceramics
NASA Astrophysics Data System (ADS)
Lichtner, Aaron Zev
The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiali, E-mail: j.zhang@mpie.de; Morsdorf, Lutz, E-mail: l.morsdorf@mpie.de; Tasan, Cemal Cem, E-mail: c.tasan@mpie.de
In-situ scanning electron microscopy observations of the microstructure evolution during heat treatments are increasingly demanded due to the growing number of alloys with complex microstructures. Post-mortem characterization of the as-processed microstructures rarely provides sufficient insight on the exact route of the microstructure formation. On the other hand, in-situ SEM approaches are often limited due to the arising challenges upon using an in-situ heating setup, e.g. in (i) employing different detectors, (ii) preventing specimen surface degradation, or (iii) controlling and measuring the temperature precisely. Here, we explore and expand the capabilities of the “mid-way” solution by step-wise microstructure tracking, ex-situ, atmore » selected steps of heat treatment. This approach circumvents the limitations above, as it involves an atmosphere and temperature well-controlled dilatometer, and high resolution microstructure characterization (using electron channeling contrast imaging, electron backscatter diffraction, atom probe tomography, etc.). We demonstrate the capabilities of this approach by focusing on three cases: (i) nano-scale carbide precipitation during low-temperature tempering of martensitic steels, (ii) formation of transformation-induced geometrically necessary dislocations in a dual-phase steel during intercritical annealing, and (iii) the partial recrystallization of a metastable β-Ti alloy. - Highlights: • A multi-probe method to track microstructures during heat treatment is developed. • It enables the analysis of various complex phenomena, even those at atomistic scale. • It circumvents some of the free surface effects of classical in-situ experiments.« less
Phase transformations in steels: Processing, microstructure, and performance
Gibbs, Paul J.
2014-04-03
In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.
Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment.
Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy
2017-04-01
We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.
Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment
NASA Astrophysics Data System (ADS)
Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy
2017-04-01
We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.
Wrought stainless steel compositions having engineered microstructures for improved heat resistance
Maziasz, Philip J [Oak Ridge, TN; Swindeman, Robert W [Oak Ridge, TN; Pint, Bruce A [Knoxville, TN; Santella, Michael L [Knoxville, TN; More, Karren L [Knoxville, TN
2007-08-21
A wrought stainless steel alloy composition includes 12% to 25% Cr, 8% to 25% Ni, 0.05% to 1% Nb, 0.05% to 10% Mn, 0.02% to 0.15% C, 0.02% to 0.5% N, with the balance iron, the composition having the capability of developing an engineered microstructure at a temperature above 550.degree. C. The engineered microstructure includes an austenite matrix having therein a dispersion of intragranular NbC precipitates in a concentration in the range of 10.sup.10 to 10.sup.17 precipitates per cm.sup.3.
Control of microfabricated structures powered by flagellated bacteria using phototaxis
NASA Astrophysics Data System (ADS)
Steager, Edward; Kim, Chang-Beom; Patel, Jigarkumar; Bith, Socheth; Naik, Chandan; Reber, Lindsay; Kim, Min Jun
2007-06-01
Flagellated bacteria have been employed as microactuators in low Reynolds number fluidic environments. SU-8 microstructures have been fabricated and released on the surface of swarming Serratia marcescens, and the flagella propel the structures along the swarm surface. Phototactic control of these structures is demonstrated by exposing the localized regions of the swarm to ultraviolet light. The authors additionally discuss the control of microstructures in an open channel powered by bacteria which have been docked through a blotting technique. A tracking algorithm has been developed to analyze swarming patterns of the bacteria as well as the kinematics of the microstructures.
Wang, Li-Juan; Yin, Ye-Chong; Yin, Shou-Wei; Yang, Xiao-Quan; Shi, Wei-Jian; Tang, Chuan-He; Wang, Jin-Mei
2013-11-20
This work attempted to develop novel high barrier zein/SC nanoparticle (ZP)-stabilized emulsion films through microfluidic emulsification (ZPE films) or in combination with solvent (ethyl acetate) evaporation techniques (ZPE-EA films). Some physical properties, including tensile and optical properties, water vapor permeability (WVP), and surface hydrophobicity, as well as the microstructure of ZP-stabilized emulsion films were evaluated and compared with SC emulsion (SCE) films. The emulsion/solvent evaporation approach reduced lipid droplets of ZP-stabilized emulsions, and lipid droplets of ZP-stabilized emulsions were similar to or slightly lower than that of SC emulsions. However, ZP- and SC-stabilized emulsion films exhibited a completely different microstructure, nanoscalar lipid droplets were homogeneously distributed in the ZPE film matrix and interpenetrating protein-oil complex networks occurred within ZPE-EA films, whereas SCE films presented a heterogeneous microstructure. The different stabilization mechanisms against creaming or coalescence during film formation accounted for the preceding discrepancy of the microstructures between ZP-and SC-stabilized emulsion films. Interestingly, ZP-stabilized emulsion films exhibited a better water barrier efficiency, and the WVP values were only 40-50% of SCE films. A schematic representation for the formation of ZP-stabilized emulsion films was proposed to relate the physical performance of the films with their microstructure and to elucidate the possible forming mechanism of the films.
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri
2014-01-01
A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.
Development of fish-based model systems with various microstructures.
Verheyen, Davy; Baka, Maria; Glorieux, Seline; Duquenne, Barbara; Fraeye, Ilse; Skåra, Torstein; Van Impe, Jan F
2018-04-01
The effectiveness of predictive microbiology is limited by the lack of knowledge concerning the influence of food microstructure on microbial dynamics. Therefore, future modelling attempts should be based on experiments in structured food model systems as well as liquid systems. In this study, fish-based model systems with various microstructures were developed, i.e., two liquid systems (with and without xanthan gum), an emulsion, an aqueous gel, and a gelled emulsion. The microstructural effect was isolated by minimising compositional and physico-chemical changes among the different model systems. The systems were suitable for common growth and mild thermal inactivation experiments involving both homogeneous and surface inoculation. Average pH of the model systems was 6.36±0.03 and average a w was 0.988±0.002. The liquid system without xanthan gum behaved like a Newtonian fluid, while the emulsion and the liquid containing xanthan gum exhibited (non-Newtonian) pseudo-plastic behaviour. Both the aqueous gel and gelled emulsion were classified as strong gels, with a hardness of 1.35±0.07N and 1.25±0.05N, respectively. Fat droplet size of the emulsion and gelled emulsion model systems was evenly distributed around 1μm. In general, the set of model systems was proven to be suitable to study the influence of important aspects of food microstructure on microbial dynamics. Copyright © 2017. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Clark, Karlene T.; Walker, Stephanie R.
2017-01-01
The University of North Dakota (UND) Libraries have developed a multi-award winning Customer Service Program (CSP) involving longitudinal assessment and continuous improvement. The CSP consists of iterative training modules; constant reinforcement of Customer Service Principles with multiple communication strategies and tools, and incentives that…
Meeting Market Demands. New Roles for One-Stop Centers: Serving the Business Customer.
ERIC Educational Resources Information Center
2000
This booklet explains how local communities can organize and structure their one-stop centers so that business is viewed as a customer of the system. The introduction provides an overview of the booklet's development and purpose. The following key attributes underpinning a workforce investment system that views business as its customer are…
Customer Loyalty in Virtual Environments: An Empirical Study in e-Bank
NASA Astrophysics Data System (ADS)
Chao, Yu; Lee, Gin-Yuan; Ho, Yung-Ching
2009-08-01
The advent of e-commerce has increased the importance of consumer financing operations. Internet banking helps banks to develop relationship marketing, thus improve customer loyalty. This study proposes a research framework to examine the relationships among e-service quality, customer satisfaction, customer trust and e-loyalty in e-bank in Taiwan. Data are collected through a survey using a structured questionnaire. The 442 valid respondents who have experience with e-bank are analyzed by partial least squares structural equation modeling (PLS-SEM) method. The managerial implication is e-bank must focus on e-service quality to increase customer satisfaction and trust for obtaining the e-loyalty.
Seamless service: maintaining momentum.
Grinstead, N; Timoney, R
1994-01-01
Describes the process used by the Mater Infirmorum Hospital in Belfast in 1992-1994 to achieve high quality care (Seamless Service), motivate staff to deliver and measure performance. Aims of the project include focusing the organization on the customer, improving teamwork and motivation at all levels. After comprehensive data collection from GPs, patients and staff management forums developed a full TQM strategy to gain support and maintain momentum including innovative staff events (every staff member was given the opportunity to attend) where multilevel, multidisciplinary workshops enabled staff to design customer care standards, develop teams and lead customer-driven change.
Airport electrotechnology resource guide. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geba, V.; Nesbit, M.
1998-06-01
Electrotechnologies offer utilities a cutting edge marketing tool to work with airport customers to increase passenger comfort, and achieve environmental and economic goals. At the same time, utility objectives such as customer retention, and revenue and sales goals can be enhanced. This guide provides electric utility marketing staff with the necessary information to market electrotechnologies in airport applications. The airport industry is profiled and an overview of airport building, infrastructure technologies and electric vehicles is provided. In addition, the guide offers market strategies for customer targeting, market research, market plan development and development of trade ally partnerships.
Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson
2012-06-01
The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less
Do Librarians Really Do That? Or Providing Custom, Fee-Based Services.
ERIC Educational Resources Information Center
Whitmore, Susan; Heekin, Janet
This paper describes some of the fee-based, custom services provided by National Institutes of Health (NIH) Library to NIH staff, including knowledge management, clinical liaisons, specialized database searching, bibliographic database development, Web resource guide development, and journal management. The first section discusses selecting the…
New Models and Metaphors for Human Resource Development.
ERIC Educational Resources Information Center
1999
This document contains two reports from a poster session on new ideas and models in human resource development (HRD). The first presentation, "Two-way Customer-Service Provider Cycle" (Harriet V. Lawrence, Albert K. Wiswell), discusses a two-way supply cycle model that illustrates relational issues in customer service, including needs…
Microstructure-Property-Design Relationships in the Simulation Era: An Introduction (PREPRINT)
2010-01-01
Astronautics (AIAA) paper #1026. 20. Dimiduk DM (1998) Systems engineering of gamma titanium aluminides : impact of fundamentals on development strategy...microstructure-sensitive design tools for single-crystal turbine blades provides an accessible glimpse into future computational tools and their data...requirements. 15. SUBJECT TERMS single-crystal turbine blades , computational methods, integrated computational materials 16. SECURITY
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. This image shows the overview for the EDSE in the Microgravity Development Lab (MDL).
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Video and power rack for the EDSE in the Microgravity Development Lab (MDL).
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrite irritator control for the EDSE in the Microgravity Development Lab (MDL).
Residual stress in obliquely deposited MgF2 thin films.
Jaing, Cheng-Chung; Liu, Ming-Chung; Lee, Cheng-Chung; Cho, Wen-Hao; Shen, Wei-Ting; Tang, Chien-Jen; Liao, Bo-Huei
2008-05-01
MgF(2) films with a columnar microstructure are obliquely deposited on glass substrates by resistive heating evaporation. The columnar angles of the films increases with the deposition angle. Anisotropic stress does not develop in the films with tilted columns. The residual stresses in the films depend on the deposition and columnar angles in a columnar microstructure.
Ciesielski, Peter N.; Crowley, Michael F.; Nimlos, Mark R.; ...
2014-12-09
Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. In this study, we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, includingmore » cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species ( Populus tremuloides, quaking aspen) and a softwood pine ( Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. In conclusion, we show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollinger, J.; Newson, D.; Yeh, H.
1992-06-01
The objective of this program was to develop a net shape forming process for an in-situ reinforced Si{sub 3}N{sub 4} (AS-700). AS-700 was initially developed using cold isostatic pressing (CIP) of alcohol milled powders. The CIP`ed AS-700 material exhibited a moderate strength (690 MPa) and high toughness (9 MPa{radical}m) at room temperature. In addition to net-shape process development, optimization of AS-700 properties was also investigated through the refinement of densification processes, and evaluation of the effect of Si{sub 3}N{sub 4} powder properties on resulting microstructure and mechanical properties. Slip casting was chosen as the net-shape forming process. A slip castingmore » process was successfully developed for forming green parts ranging from thin plates to thick cylinders, and to large complex shaped turbine rotors. The densification cycle was optimized to achieve full density parts without any cracks or warpage, and with comparable properties and microstructure to the CIP`ed baseline AS-700 material. The evaluation of six (6) alternate Si{sub 3}N{sub 4} powders indicated that Si{sub 3}N{sub 4} powders have a very strong influence on the development of resulting AS-700 in-situ microstructures and mechanical properties. The AS-700 slip casting process and optimized densification process were then combined and a number of test specimens were fabricated. The mechanical properties and microstructure of the optimized slip cast AS-700 Si{sub 3}N{sub 4} were then fully characterized. The key property values are: 695 MPa at room temperature, 446 MPa at 1370{degree}C flexural strengths and 8.25 MPa{radical}m toughness.« less
COMBATXXI: Usage and Analysis at TACOM
2011-06-20
Prescribed by ANSI Std Z39-18 Operational Effectiveness UNCLASSIFIED UNCLASSIFIED Outline Who We Are Our Equipment Our Customers COMBATXXI Model ...Research, Development and Engineering Center Our Customers 5 Operational Effectiveness UNCLASSIFIED UNCLASSIFIED Model Overview Combined Arms...Analysis Tool for the 21st Century (COMBATXXI) - Developed jointly by TRAC- White Sands Missle Range (WSMR) and Marine Corps Combat Development Command
Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel
NASA Astrophysics Data System (ADS)
Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.
2012-10-01
The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.
MRI tools for assessment of microstructure and nephron function of the kidney.
Xie, Luke; Bennett, Kevin M; Liu, Chunlei; Johnson, G Allan; Zhang, Jeff Lei; Lee, Vivian S
2016-12-01
MRI can provide excellent detail of renal structure and function. Recently, novel MR contrast mechanisms and imaging tools have been developed to evaluate microscopic kidney structures including the tubules and glomeruli. Quantitative MRI can assess local tubular function and is able to determine the concentrating mechanism of the kidney noninvasively in real time. Measuring single nephron function is now a near possibility. In parallel to advancing imaging techniques for kidney microstructure is a need to carefully understand the relationship between the local source of MRI contrast and the underlying physiological change. The development of these imaging markers can impact the accurate diagnosis and treatment of kidney disease. This study reviews the novel tools to examine kidney microstructure and local function and demonstrates the application of these methods in renal pathophysiology. Copyright © 2016 the American Physiological Society.
Gountas, Sandra; Gountas, John
2016-02-01
Much research focuses on organizational culture and its impact on customer orientation or emotional states and their impact on job satisfaction and well-being. This study aims to combine the complex roles of nurses' emotion states and job satisfaction in a model that identifies the effects of standards for service delivery (organizational culture), supervisor and co-worker support and the development of customer orientation. A previous study examined the relationships between nurses' personal resources, job satisfaction and customer orientation. This study examines how these variables relate to organizational standards and social support. A cross-sectional survey using a self-completion questionnaire with validated, existing scales to measure standards for service delivery, supervisor and co-worker support, job satisfaction, empathic concern, emotional exhaustion and customer orientation. Nurses (159) completed the questionnaire in 2010. The data were analysed using WarpPLS, a structural equation modelling software package. The results indicate that the final model fits the data well and explains 84% of the variance in customer orientation. The findings show the importance of standard for service delivery (organizational culture), supervisor and co-worker support on customer orientation. Nurses' personal resources interact with these, particularly supervisor and co-worker support, to develop staff job satisfaction and empathy. The need for support mechanisms in stressful times is discussed. We propose that training in compassion and empathy would help leaders to model desirable attributes that contribute towards customer orientation. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Browning, R.
1986-01-01
A custom scanning Auger electron microscope (SAM) capable of introducing a 3-5 keV electron beam of several nA into a 30 nm diameter sample area was fitted with a sample introduction system and was fully computerized to be used for materials science research. The method of multispectral Auger imaging was devised and implemented. The instrument was applied to various problems in materials science, including the study of the fiber/matrix interface in a SiC reinforced titanium alloy, the study of SiC whiskers in Al alloy 2124 (in cooperation with NASA-Langley), the study of NiCrAl superalloys (in collaboration with NASA-Lewis), the study of zircalloy specimens (in collaboration with Stanford University), and the microstructure of sintered SiC specimens (in collaboration with NASA-Lewis). The report contains a number of manuscripts submitted for publication on these subjects.
Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Jarmon, David C.; Ojard, Greg; Brewer, David N.
2013-01-01
As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya
The research built upon a prior investigation to develop a unified constitutive model for design-by-analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-fatigue and creep-ratcheting tests were conducted on the nickel-base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-fatigue and creep-ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less
Predicting mesoscale microstructural evolution in electron beam welding
Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; ...
2016-03-16
Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less
Hsieh, Pei-Ling
2015-05-01
Recent developments in service marketing have demonstrated the potential value co-creation by customers who participate in online brand communities (OBCs). Therefore, this study forecasts the co-created value by understanding the participation/behavior of customers in a multi-stakeholder OBC. This six-phase qualitative and quantitative investigation conceptualizes, constructs, refines, and tests a 12-item three-dimensional scale for measuring key factors that are related to the experience, interpersonal interactions, and social relationships that affect the value co-creation by customers in an OBC. The scale captures stable psychometric properties, measured using various reliability and validity tests, and can be applied across various industries. Finally, the utility implications and limitations of the proposed scale are discussed, and potential future research directions considered.
Custom software development for use in a clinical laboratory
Sinard, John H.; Gershkovich, Peter
2012-01-01
In-house software development for use in a clinical laboratory is a controversial issue. Many of the objections raised are based on outdated software development practices, an exaggeration of the risks involved, and an underestimation of the benefits that can be realized. Buy versus build analyses typically do not consider total costs of ownership, and unfortunately decisions are often made by people who are not directly affected by the workflow obstacles or benefits that result from those decisions. We have been developing custom software for clinical use for over a decade, and this article presents our perspective on this practice. A complete analysis of the decision to develop or purchase must ultimately examine how the end result will mesh with the departmental workflow, and custom-developed solutions typically can have the greater positive impact on efficiency and productivity, substantially altering the decision balance sheet. Involving the end-users in preparation of the functional specifications is crucial to the success of the process. A large development team is not needed, and even a single programmer can develop significant solutions. Many of the risks associated with custom development can be mitigated by a well-structured development process, use of open-source tools, and embracing an agile development philosophy. In-house solutions have the significant advantage of being adaptable to changing departmental needs, contributing to efficient and higher quality patient care. PMID:23372985
Custom software development for use in a clinical laboratory.
Sinard, John H; Gershkovich, Peter
2012-01-01
In-house software development for use in a clinical laboratory is a controversial issue. Many of the objections raised are based on outdated software development practices, an exaggeration of the risks involved, and an underestimation of the benefits that can be realized. Buy versus build analyses typically do not consider total costs of ownership, and unfortunately decisions are often made by people who are not directly affected by the workflow obstacles or benefits that result from those decisions. We have been developing custom software for clinical use for over a decade, and this article presents our perspective on this practice. A complete analysis of the decision to develop or purchase must ultimately examine how the end result will mesh with the departmental workflow, and custom-developed solutions typically can have the greater positive impact on efficiency and productivity, substantially altering the decision balance sheet. Involving the end-users in preparation of the functional specifications is crucial to the success of the process. A large development team is not needed, and even a single programmer can develop significant solutions. Many of the risks associated with custom development can be mitigated by a well-structured development process, use of open-source tools, and embracing an agile development philosophy. In-house solutions have the significant advantage of being adaptable to changing departmental needs, contributing to efficient and higher quality patient care.
NASA Astrophysics Data System (ADS)
Ailianou, Artemis
New and promising treatments for coronary heart disease are enabled by vascular scaffolds made of poly(L-lactic acid) (PLLA), as demonstrated by Abbott Vascular's bioresorbable vascular scaffold. PLLA is a semicrystalline polymer whose degree of crystallinity and crystalline microstructure depend on the thermal and deformation history during processing. In turn, the semicrystalline morphology determines scaffold strength and biodegradation time. However, spatially-resolved information about the resulting material structure (crystallinity and crystal orientation) is needed to interpret in vivo observations. The first manufacturing step of the scaffold is tube expansion in a process similar to injection blow molding. Spatial uniformity of the tube microstructure is essential for the consistent production and performance of the final scaffold. For implantation into the artery, solid-state deformation below the glass transition temperature is imposed on a laser-cut subassembly to crimp it into a small diameter. Regions of localized strain during crimping are implicated in deployment behavior. To examine the semicrystalline microstructure development of the scaffold, we employed complementary techniques of scanning electron and polarized light microscopy, wide-angle X-ray scattering, and X-ray microdiffraction. These techniques enabled us to assess the microstructure at the micro and nano length scale. The results show that the expanded tube is very uniform in the azimuthal and axial directions and that radial variations are more pronounced. The crimping step dramatically changes the microstructure of the subassembly by imposing extreme elongation and compression. Spatial information on the degree and direction of chain orientation from X-ray microdiffraction data gives insight into the mechanism by which the PLLA dissipates the stresses during crimping, without fracture. Finally, analysis of the microstructure after deployment shows that it is inherited from the crimping step and contributes to the scaffold's successful implantation in vivo.
SMRT: A new, modular snow microwave radiative transfer model
NASA Astrophysics Data System (ADS)
Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas
2017-04-01
Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the community.
The Customer Flow Toolkit: A Framework for Designing High Quality Customer Services.
ERIC Educational Resources Information Center
New York Association of Training and Employment Professionals, Albany.
This document presents a toolkit to assist staff involved in the design and development of New York's one-stop system. Section 1 describes the preplanning issues to be addressed and the intended outcomes that serve as the framework for creation of the customer flow toolkit. Section 2 outlines the following strategies to assist in designing local…
ERIC Educational Resources Information Center
Nistor, Nicolae; Dehne, Anina; Drews, Frank Thomas
2010-01-01
In search of methods that improve the efficiency of teaching and training in organizations, several authors point out that mass customization (MC) is a principle that covers individual needs of knowledge and skills and, at the same time limits the development costs of customized training to those of mass training. MC is proven and established in…
Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials
NASA Astrophysics Data System (ADS)
Jothi, Sathiskumar
Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and to improve the resistance to hydrogen embrittlement in aerospace materials are also suggested. This knowledge can play an important role in the development of new hydrogen embrittlement resistant materials. A novel micro/macro-scale coupled finite element method incorporating multi-scale experimental data is presented with which it is possible to perform full scale component analyses in order to investigate hydrogen embrittlement at the design stage. Finally, some preliminary and very encouraging results of grain boundary engineering based techniques to develop alloys that are resistant to hydrogen induced failure are presented. Keywords: Hydrogen embrittlement; Aerospace materials; Ariane 5 combustion chamber; Pulse plated nickel; Nickel based super alloy 718; SSRT test; Weldability test; TDA; SEM/EBSD; Hydrogen induced hot and cold cracking; Multiscale modelling and experimental methods.
Age-Related Alterations in the Retinal Microvasculature, Microcirculation, and Microstructure.
Wei, Yantao; Jiang, Hong; Shi, Yingying; Qu, Dongyi; Gregori, Giovanni; Zheng, Fang; Rundek, Tatjana; Wang, Jianhua
2017-07-01
To characterize age-related alterations in the retinal microcirculation, microvascular network, and microstructure in healthy subjects. Seventy-four healthy subjects aged from 18 to 82 years were recruited and divided into four age groups (G1 with age <35 years, G2 with age 35 ∼ 49 years, G3 with age 50 ∼ 64 years, and G4 with age ≥65 years). Custom ultra-high resolution optical coherence tomography (UHR-OCT) was used to acquire six intraretinal layers of the macula. OCT angiography (OCTA) was used to image the retinal microvascular network. The retinal blood flow velocity (BFV) was measured using a Retinal Function Imager (RFI). Compared to G1, G2 had significant thinning of the retinal nerve fiber layer (RNFL) (P < 0.05), while G3 had thinning of the RNFL and ganglion cell and inner plexiform layer (GCIPL) (P < 0.05), in addition to thickening of the outer plexiform layer (OPL) and photoreceptor layer (PR) (P < 0.05). G4 had loss in retinal vessel density, thinning in RNFL and GCIPL, and decrease in venular BFV, in addition to thickening of the OPL and PR (P < 0.05). Age was negatively related to retinal vessel densities, the inner retinal layers, and venular BFV (P < 0.05). By contrast, age was positively related to OPL and PR (P < 0.05). During aging, decreases in retinal vessel density, inner retinal layer thickness, and venular BFV were evident and impacted each other as observed by simultaneous changes in multiple retinal components.
Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.
Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L
2016-06-01
White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.
Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder
Travers, Brittany G.; Adluru, Nagesh; Tromp, Do P.M.; Destiche, Daniel J.; Samsin, Danica; Prigge, Molly B.; Zielinski, Brandon A.; Fletcher, P. Thomas; Anderson, Jeffrey S.; Froehlich, Alyson L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.; Alexander, Andrew L.
2016-01-01
Abstract White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD. PMID:27021440
Customer Satisfaction Assessment at the Pacific Northwest National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Dale N.; Sours, Mardell L.
2000-03-20
The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consistsmore » of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.« less
Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar
2018-06-01
TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.
Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, Lucia; Appavou, Marie-Sousai
2017-04-01
To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50μm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The security concern on internet banking adoption among Malaysian banking customers.
Sudha, Raju; Thiagarajan, A S; Seetharaman, A
2007-01-01
The existing literatures highlights that the security is the primary factor which determines the adoption of Internet banking technology. The secondary information on Internet banking development in Malaysia shows a very slow growth rate. Hence, this study aims to study the banking customers perception towards security concern and Internet banking adoption through the information collected from 150 sample respondents. The data analysis reveals that the customers have much concern about security and privacy issue in adoption of Internet banking, whether the customers are adopted Internet banking or not. Hence, it infers that to popularize Internet banking system there is a need for improvement in security and privacy issue among the banking customers.
Automatic Generation of Customized, Model Based Information Systems for Operations Management.
The paper discusses the need for developing a customized, model based system to support management decision making in the field of operations ... management . It provides a critique of the current approaches available, formulates a framework to classify logistics decisions, and suggests an approach for the automatic development of logistics systems. (Author)
Developing Customized Programs for Steel and Other Heavy Industries: A Case Study.
ERIC Educational Resources Information Center
Day, Philip R., Jr.
1984-01-01
This article discusses the successful implementation of a unique customized training program for steel and other industries. A contextual framework for understanding both the process and the product is presented. Traditional labor management problems are examined as well as the DACUM (Developing a Curriculum) procedure of identifying job-related…
ERIC Educational Resources Information Center
Gamrat, Christopher; Zimmerman, Heather Toomey; Dudek, Jaclyn; Peck, Kyle
2014-01-01
To provide customized workplace learning opportunities, a digital badge system was designed by a university, governmental agency and national professional association to support teachers' implementation of professional development (PD). Teacher Learning Journeys (TLJ) is an approach that allows for teachers to customize their PD experience to…
Wang, Ximing; Liu, Brent J; Martinez, Clarisa; Zhang, Xuejun; Winstein, Carolee J
2015-01-01
Imaging based clinical trials can benefit from a solution to efficiently collect, analyze, and distribute multimedia data at various stages within the workflow. Currently, the data management needs of these trials are typically addressed with custom-built systems. However, software development of the custom- built systems for versatile workflows can be resource-consuming. To address these challenges, we present a system with a workflow engine for imaging based clinical trials. The system enables a project coordinator to build a data collection and management system specifically related to study protocol workflow without programming. Web Access to DICOM Objects (WADO) module with novel features is integrated to further facilitate imaging related study. The system was initially evaluated by an imaging based rehabilitation clinical trial. The evaluation shows that the cost of the development of system can be much reduced compared to the custom-built system. By providing a solution to customize a system and automate the workflow, the system will save on development time and reduce errors especially for imaging clinical trials. PMID:25870169
Yilmaz Eroglu, Duygu; Caglar Gencosman, Burcu; Cavdur, Fatih; Ozmutlu, H. Cenk
2014-01-01
In this paper, we analyze a real-world OVRP problem for a production company. Considering real-world constrains, we classify our problem as multicapacitated/heterogeneous fleet/open vehicle routing problem with split deliveries and multiproduct (MCHF/OVRP/SDMP) which is a novel classification of an OVRP. We have developed a mixed integer programming (MIP) model for the problem and generated test problems in different size (10–90 customers) considering real-world parameters. Although MIP is able to find optimal solutions of small size (10 customers) problems, when the number of customers increases, the problem gets harder to solve, and thus MIP could not find optimal solutions for problems that contain more than 10 customers. Moreover, MIP fails to find any feasible solution of large-scale problems (50–90 customers) within time limits (7200 seconds). Therefore, we have developed a genetic algorithm (GA) based solution approach for large-scale problems. The experimental results show that the GA based approach reaches successful solutions with 9.66% gap in 392.8 s on average instead of 7200 s for the problems that contain 10–50 customers. For large-scale problems (50–90 customers), GA reaches feasible solutions of problems within time limits. In conclusion, for the real-world applications, GA is preferable rather than MIP to reach feasible solutions in short time periods. PMID:25045735
The development and validation of the Incivility from Customers Scale.
Wilson, Nicole L; Holmvall, Camilla M
2013-07-01
Scant research has examined customers as sources of workplace incivility, despite evidence suggesting that mistreatment is more common from organizational outsiders, including customers, than from organizational members (Grandey, Kern, & Frone, 2007; Schat & Kelloway, 2005). As an important step in extending the literature on customer incivility, we conducted two studies to develop and validate a measure of this construct. Study 1 used focus groups of retail and restaurant employees (n = 30) to elicit a list of uncivil customer behaviors, based on which we wrote initial scale items. Study 2 used a correlational survey design (n = 439) to pare down the number of scale items to 10 and to garner reliability and validity evidence for the scale. Exploratory and confirmatory factor analyses show that the scale is unidimensional and distinguishable from measures of the related, but distinct, constructs of interpersonal justice and psychological aggression from customers. Reliability analyses show that the scale is internally consistent. Significant correlations between the scale and individuals' job satisfaction, turnover intentions, and general and job-specific psychological strain provide evidence of criterion-related validity. Hierarchical regression analyses show that the scale significantly predicts three of four organizational and personal strain outcomes over and above a workplace incivility measure adapted for customer incivility, providing some evidence of incremental validity. Limitations and future research directions are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Baka, Maria; Noriega, Estefanía; Van Langendonck, Kristof; Van Impe, Jan F
2016-10-17
Food intrinsic factors e.g., food (micro)structure, compositional and physicochemical aspects, which are mutually dependent, influence microbial growth. While the effect of composition and physicochemical properties on microbial growth has been thoroughly assessed and characterised, the role of food (micro)structure still remains unravelled. Most studies on food (micro)structure focus on comparing planktonic growth in liquid (microbiological) media with colonial growth in/on solid-like systems or on real food surfaces. However, foods are not only liquids or solids; they can also be emulsions or gelled emulsions and have complex compositions. In this study, Listeria monocytogenes growth was studied on the whole spectrum of (micro)structure, in terms of food (model) systems. The model systems varied not only in (micro)structure, which was the target of the study, but also in compositional and physicochemical characteristics, which was an inevitable consequence of the (micro)structural variability. The compositional and physicochemical differences were mainly due to the presence or absence of fat and gelling agents. The targeted (micro)structures were: i) liquids, ii) aqueous gels, iii) emulsions and iv) gelled emulsions. Furthermore, the microbial dynamics were studied and compared in/on all these model systems, as well as on a compositionally predefined canned meat, developed in order to have equal compositional level to the gelled emulsion model system and represent a real food system. Frankfurter sausages were the targeted real foods, selected as a case study, to which the canned meat had similar compositional characteristics. All systems were vacuum packed and incubated at 4, 8 and 12°C. The most appropriate protocol for the preparation of the model systems was developed. The pH, water activity and resistance to penetration of the model systems were characterised. Results indicated that low temperature contributes to growth variations among the model systems. Additionally, the firmer the solid system, the faster L. monocytogenes grew on it. Finally, it was found that L. monocytogenes grows faster on canned meat and real Frankfurters, as found in a previous study, followed by liquids, aqueous gels, emulsions and gelled emulsions. This observation indicates that all model systems, developed in this study, underestimated L. monocytogenes growth. Despite some limitations, model systems are overall advantageous and therefore, their validation is always recommended prior to further use. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mukherjee, Manidipto; Pal, Tapan Kumar
2012-06-01
This article describes in detail the effect of the modes of metal transfer on the microstructure and mechanical properties of gas metal arc-welded modified ferritic stainless steel (SSP 409M) sheets (as received) of 4 mm thickness. The welded joints were prepared under three modes of metal transfer, i.e., short-circuit (SC), spray (S), transfer, and mix (M) mode transfer using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5 pct CO2. The welded joints were evaluated by means of microstructural, hardness, notched tensile strength, Charpy impact toughness, and high cycle fatigue. The dependence of weld metal microstructure on modes of metal transfer and filler wires has been determined by dilution calculation, WRC-1992 diagram, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM), and transmission electron microscopy (TEM). It was observed that the microstructure as well as the tensile, Charpy impact, and high cycle fatigue of weld metal is significantly affected by the mode of metal transfer and filler wire used. However, the heat-affected zone (HAZ) is affected only by the modes of metal transfer. The results have been correlated with the microstructures of weld and HAZ developed under different modes of metal transfer.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Modeling of the flow behavior of SAE 8620H combing microstructure evolution in hot forming
NASA Astrophysics Data System (ADS)
Fu, Xiaobin; Wang, Baoyu; Tang, Xuefeng
2017-10-01
With the development of net-shape forming technology, hot forming process is widely applied to manufacturing gear parts, during which, materials suffer severe plastic distortion and microstructure changes continually. In this paper, to understand and model the flow behavior and microstructure evolution, SAE 8620H, a widely used gear steel, is selected as the object and the flow behavior and microstructure evolution are observed by an isothermal hot compression tests at 1273-1373 K with a strain rate of 0.1-10 s-1. Depending on the results of the compression test, a set of internal-state-variable based unified constitutive equations is put forward to describe the flow behavior and microstructure evaluation of SAE 8620H. Moreover, the evaluation of the dislocation density and the fraction of dynamic recrystallization based on the theory of thermal activation is modeled and reincorporated into the constitutive law. The material parameters in the constitutive model are calculated based on the measured flow stress and dynamic recrystallization fraction. The predicted flow stress under different deformation conditions has a good agreement with the measured results.
Microstructural Changes in Inconel ® 740 After Long-Term Aging in the Presence and Absence of Stress
Unocic, Kinga A.; Shingledecker, John Paul; Tortorelli, Peter F.
2014-11-18
The Ni-based alloy, Inconel ® 740, is being extensively examined for use in advanced ultrasupercritical steam boilers because its precipitation-strengthened microstructure appears to offer the necessary creep strength under the high temperatures and pressures (up to 760°C and 35 MPa) needed for high efficiency power generation. However, because this application requires extremely long lifetimes under these conditions (up to 30 years), long-term microstructure stability is a major concern. In this study, results from microstructural analyses of Inconel 740 specimens aged at 700 and 750°C in the presence and absence of creep loading for times up to ~31,000 h are presented.more » The primary focus was on the development of the eta η (Ni 3Ti) phase and coarsening of coherent γ'-Ni 3(Al,Ti) precipitates and its depletion near eta/matrix interfaces. Finally, however, despite these processes, Inconel 740 showed adequate long-term microstructural stability to assure adequate creep strength for the intended application.« less
Evaluation of Subsequent Heat Treatment Routes for Near-β Forged TA15 Ti-Alloy
Sun, Zhichao; Wu, Huili; Yang, He
2016-01-01
TA15 Ti-alloy is widely used to form key load-bearing components in the aerospace field, where excellent service performance is needed. Near-β forging technology provides an attractive way to form these complicated Ti-alloy components but subsequent heat treatment has a great impact on the final microstructure and mechanical properties. Therefore evaluation and determination of the heat treatment route is of particular significance. In this paper, for the near-β forged TA15 alloy, the formation and evolution of microstructures under different subsequent heat treatment routes (annealing, solution and aging, toughening and strengthening) were studied and the cooling mode after forging was also considered. Then, the type and characteristics of the obtained microstructures were discussed through quantitative metallographic analysis. The corresponding mechanical properties (tensile, impact toughness, and fracture toughness) and effects of microstructural characteristics were investigated. Finally, for a required microstructure and performance a reasonable heat treatment route was recommended. The work is of importance for the application and development of near-β forging technology. PMID:28773994
Method to fabricate multi-level silicon-based microstructures via use of an etching delay layer
Manginell, Ronald P.; Schubert, W. Kent; Shul, Randy J.
2005-08-16
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Structures having features with different depth can be formed thereby in a single etching step.
Finite Element Analysis of Eutectic Structures
2014-03-12
Reported are the details of processing conditions, microstructure development, and temperature dependent thermoelectric properties . The material system...Sootsman et al ., Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites, Chem. Mater. 22 (2010) 869. 7. J...Professor) CASE WESTERN RESERVE UNIVERSTY Thermoelectric Properties of WSi2-SixGe1-x Composites Thermoelectric properties of the W/Si/Ge alloy
1998-06-01
transformation ( CCT ) diagram Figure 2.2. The microstructures that develop are determined by the cooling rate, alloying element and oxygen content of the weld...TIME Figure 2.2 CCT Diagram for the weld metal of low-carbon, low-alloy steels [From Ref. 2] To assist material scientists in microstructure
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. This image shows the isothermal bath and video system for the EDSE in the Microgravity Development Lab (MDL).
Seamless service: research and action.
Grinstead, N; Timoney, R
1994-01-01
Describes the process used by the Mater Infirmorum Hospital in Belfast in 1992-1994 to achieve high quality care (Seamless Service), and motivate staff to deliver and measure performance. Aims of the project include focusing the organization on the customer, improving teamwork and motivation at all levels. After comprehensive data collection from GPs, patients and staff forums developed a full TQM strategy to gain support and maintain momentum including innovative staff events (every staff member was given the opportunity to attend) where multilevel, multidisciplinary workshops enabled staff to design customer care standards, develop teams and lead customer-driven change.
Deformation-Induced Microstructural Banding in TRIP Steels
NASA Astrophysics Data System (ADS)
Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.
2018-05-01
Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.
Melanin-based color of plumage: role of condition and of feathers' microstructure
D'Alba, Liliana; Van Hemert, Caroline R.; Spencer, Karen A.; Heidinger, Britt J.; Gill, Lisa; Evans, Neil P.; Monaghan, Pat; Handel, Colleen M.; Shawkey, Matthew D.
2014-01-01
Whether melanin-based colors honestly signal a bird's condition during the growth of feathers is controversial, and it is unclear if or how the physiological processes underlying melanogenesis or color-imparting structural feather microstructure may be adversely affected by condition. Here we report results from two experiments designed to measure the effect of condition on expression of eumelanic and pheomelanic coloration in black-capped chickadees (Poecile atricapillus) and zebra finches (Taeniopygia guttata), respectively. In chickadees, we compared feathers of birds affected and unaffected by avian keratin disorder, while in zebra finches we compared feathers of controls with feathers of those subjected to an unpredictable food supply during development. In both cases we found that control birds had brighter feathers (higher total reflectance) and more barbules, but similar densities of melanosomes. In addition, the microstructure of the feathers explained variation in color more strongly than did melanosome density. Together, these results suggest that melanin-based coloration may in part be condition-dependent, but that this may be driven by changes in keratin and feather development, rather than melanogenesis itself. Researchers should be cautious when assigning variation in melanin-based color to melanin alone and microstructure of the feather should be taken into account.
Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised
NASA Technical Reports Server (NTRS)
Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.
1995-01-01
The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.
NASA Astrophysics Data System (ADS)
Mohan, Nisha
Modeling the evolution of microstructure during sintering is a persistent challenge in ceramics science, although needed as the microstructure impacts properties of an engineered material. Bridging the gap between microscopic and continuum models, kinetic Monte Carlo (kMC) methods provide a stochastic approach towards sintering and microstructure evolution. These kMC models work at the mesoscale, with length and time-scales between those of atomistic and continuum approaches. We develop a sintering/compacting model for the two-phase sintering of boron nitride ceramics and allotropes alike. Our formulation includes mechanisms for phase transformation between h-BN and c-BN and takes into account thermodynamics of pressure and temperature on interaction energies and mechanism rates. In addition to replicating the micro-structure evolution observed in experiments, it also captures the phase diagram of Boron Nitride materials. Results have been analyzed in terms of phase diagrams and crystal growth. It also serves with insights to guide the choice of additives and conditions for the sintering process.While detailed time and spatial resolutions are lost in any MC, the progression of stochastic events still captures plausible local energy minima and long-time temporal developments. DARPA.
Deformation-Induced Microstructural Banding in TRIP Steels
NASA Astrophysics Data System (ADS)
Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.
2018-07-01
Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.
Combined Use of Shrinkage Reducing Admixture and CaO in Cement Based Materials
NASA Astrophysics Data System (ADS)
Tittarelli, Francesca; Giosuè, Chiara; Monosi, Saveria
2017-10-01
The combined addition of a Shrinkage-Reducing Admixture (SRA) with a CaO-based expansive agent (CaO) has been found to have a synergistic effect to improve the dimensional stability of cement based materials. In this work, aimed to further investigate the effect, mortar and self-compacting concrete specimens were prepared either without admixtures, as reference, or with SRA alone and/or CaO. Their performance was compared in terms of compressive strength and free shrinkage measurements. Results showed that the synergistic effect in reducing shrinkage is confirmed in the specimens manufactured with SRA and CaO. In order to clarify this phenomenon, the effect of SRA on the hydration of CaO as well as cement was evaluated through different techniques. The obtained results show that SRA induces a finer microstructure of the CaO hydration products and a retarding effect on the microstructure development of cement based materials. A more deformable mortar or concrete, due to the delay in microstructure development by SRA, coupled with a finer microstructure of CaO hydration products could allow higher early expansion, which might contribute in contrasting better the successive drying shrinkage.
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
The ASMEx snow slab experiment: snow microwave radiative transfer (SMRT) model evaluation
NASA Astrophysics Data System (ADS)
Sandells, Melody; Löwe, Henning; Picard, Ghislain; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas
2017-04-01
A major uncertainty in snow microwave modelling to date has been the treatment of the snow microstructure. Although observations of microstructural parameters such as the optical grain diameter, specific surface area and correlation length have improved drastically over the last few years, scale factors have been used to derive the parameters needed in microwave emission models from these observations. Previous work has shown that a major difference between electromagnetic models of scattering coefficients is due to the specific snow microstructure models used. The snow microwave radiative transfer model (SMRT) is a new model developed to advance understanding of the role of microstructure and isolate different assumptions in existing microwave models that collectively hinder interpretation of model intercomparison studies. SMRT is implemented in Python and is modular, thus allows switching between different representations in its various components. Here, the role of microstructure is examined with the Improved Born Approximation electromagnetic model. The model is evaluated against scattering and absorption coefficients derived from radiometer measurements of snow slabs taken as part of the Arctic Snow Microstructure Experiment (ASMEx), which took place in Sodankylä, Finland over two seasons. Microtomography observations of slab samples were used to determine parameters for five microstructure models: spherical, exponential, sticky hard sphere, Teubner-Strey and Gaussian random field. SMRT brightness temperature simulations are also compared with radiometric observations of the snow slabs over a reflector plate and an absorber substrate. Agreement between simulations and observations is generally good except for slabs that are highly anisotropic.
NASA Astrophysics Data System (ADS)
Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo
2018-04-01
The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.
Mercado, Karla P.; Helguera, María; Hocking, Denise C.
2015-01-01
Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13–47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices. PMID:25517512
Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane
2015-07-01
Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.
Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment
NASA Astrophysics Data System (ADS)
Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.
2016-03-01
The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
Antecedents of Corporate Environmental Commitments: The Role of Customers.
Afshar Jahanshahi, Asghar; Brem, Alexander
2018-06-06
The management of natural environments has become a fundamental issue for companies in recent years. A firm’s environmental commitment affects all levels of its operation. In this study, we investigated whether having an effective and constant relationship with customers over time (customer capital) makes a difference to firms with a high environmental commitment compared with less environmentally committed firms. We found support for our idea by using original survey data from 149 small and medium-sized enterprises (SMEs) in Iran (2016⁻2017). Furthermore, we found that customer capital enhances environmental collaboration with customers which, in turn, has a positive impact on the firm’s environmental commitments. These findings provide empirical evidence for the important role of “getting closer to customers” as a way of enhancing corporate environmental responsibility in developing countries with weak institutional environments.
NASA Technical Reports Server (NTRS)
Troeger, L. P.; Domack, M. S.; Wagner, J. A.
1998-01-01
Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationship for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which have undergone various amounts of shear-forming strain have been studied to assess the microstructure and mechanical properties developed during and after shear forming.
Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures
NASA Astrophysics Data System (ADS)
Freed, Shaun; Blackshire, James L.; Na, Jeong K.
2016-02-01
Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.
Microstructural correlates of infant functional development: example of the visual pathways.
Dubois, Jessica; Dehaene-Lambertz, Ghislaine; Soarès, Catherine; Cointepas, Yann; Le Bihan, Denis; Hertz-Pannier, Lucie
2008-02-20
The development of cognitive functions during childhood relies on several neuroanatomical maturation processes. Among these processes is myelination of the white matter pathways, which speeds up electrical conduction. Quantitative indices of such structural processes can be obtained in vivo with diffusion tensor imaging (DTI), but their physiological significance remains uncertain. Here, we investigated the microstructural correlates of early functional development by combining DTI and visual event-related potentials (VEPs) in 15 one- to 4-month-old healthy infants. Interindividual variations of the apparent conduction speed, computed from the latency of the first positive VEP wave (P1), were significantly correlated with the infants' age and DTI indices measured in the optic radiations. This demonstrates that fractional anisotropy and transverse diffusivity are structural markers of functionally efficient myelination. Moreover, these indices computed along the optic radiations showed an early wave of maturation in the anterior region, with the posterior region catching up later in development, which suggests two asynchronous fronts of myelination in both the geniculocortical and corticogeniculate fibers. Thus, in addition to microstructural information, DTI provides noninvasive exquisite information on the functional development of the brain in human infants.
NASA Astrophysics Data System (ADS)
Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji
2015-12-01
Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.
NASA Astrophysics Data System (ADS)
Hansen, Lars N.
Many features of plate tectonics cannot be explained with standard rheological models of the upper mantle. In particular, the localization of deformation at plate boundaries requires the viscosity of the constituent rocks to evolve spatially and temporally. Such rheological complexity may arise from changing microstructural state variables (e.g., grain size and crystallographic-fabric strength), but the degree to which microstructure contributes to the evolution of viscosity is unclear given our current understanding of deformation mechanisms in mantle minerals. Dislocation-accommodated grain-boundary sliding (GBS) is a potentially critical mechanism for localizing deformation in olivine because it imparts a sensitivity of the viscosity to the state of the microstructure while simultaneously providing mechanisms for changing the microstructure. However, many details of GBS in olivine are currently unknown including 1) the magnitude of the sensitivity of strain rate to crystallographic fabric and grain size, 2) the strength of the crystallographic fabrics produced, and 3) the anisotropy in viscosity of polycrystalline aggregates. Detailed knowledge of these unknowns is necessary to assess the importance of microstructural evolution in the operation of plate tectonics. This dissertation investigates the details of GBS in olivine through four sets of laboratory-based experiments. In Chapter 2, triaxial compressive creep experiments on aggregates of San Carlos olivine are used to develop a flow law for olivine deforming by GBS. Extrapolations of strain rate to geological conditions using the derived flow law indicate that GBS is the dominant deformation mechanism throughout the uppermost mantle. Crystallographic fabrics observed in deformed samples are consistent with upper-mantle seismic anisotropy. In Chapter 3, torsion experiments on iron-rich olivine are used to determine the rheological behavior of olivine deforming by GBS at large strains. The sensitivity of the strain rate to grain size and stress is demonstrated to be consistent with low-strain experiments. Additionally, the sensitivity of strain rate to the development of a crystallographic fabric is determined. Constitutive relationships including microstructural evolution are developed that accurately predict the observed stress as a function of strain. The results of Chapter 3 confirm that significant weakening is associated with both grain-size reduction and crystallographic-fabric development. In Chapter 4, torsion experiments on iron-rich olivine are used to determine if microstructural evolution can lead to strain localization. Experiments were conducted with either constant-strain-rate or constant-stress boundary conditions. Localization is only observed in samples deformed at constant-stress, which suggests boundary conditions affect the critical size of strength perturbation necessary for localization to occur. Strain localization is correlated with fine-grained regions, and a feedback mechanism between grain-size reduction and strain rate is proposed. In Chapter 5, both torsion and tension experiments are used to assess the mechanical anisotropy of previously deformed samples. Based on the direction of the applied stress relative to the orientation of a pre-existing crystallographic fabric, the viscosity is demonstrated to vary by over an order of magnitude. This observation suggests deformation can localize in regions that were previously deformed and retained a strong crystallographic fabric. The results of this dissertation elucidate the interplay between microstructure and deformation of olivine in the GBS regime. Because the viscosity of olivine-rich rocks deforming by GBS is dependent on both grain size and crystallographic fabric, heterogeneities in these microstructural parameters can lead to spatial and temporal variations in viscosity, possibly explaining the large-scale patterns of deformation in the upper mantle. Future numerical simulations can test the importance of microstructure in geodynamic processes by incorporating the constitutive relationships outlined in this dissertation.
The Value of Doctrine for a Developing Organization
2009-12-01
increasingly public topic since the events of September 11, 2001. Customs and Border Protection (CBP) is one of the Department of Homeland Security’s...CBP was created, the majority of the existing organization came from two legacy agencies, U.S. Customs and the Immigration and Naturalization Service...Collaboration, Merger, Trust, Customs And Border Protection, CBP 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY
ERIC Educational Resources Information Center
Kolesar, Mark B.; Galbraith, R. Wayne
2000-01-01
Applying a body of theory and empirical research in the study of customer loyalty drivers in the services sector, this paper sets out a number of marketing and Web site design implications for e-retailers. It then suggests several means by which e-retailers can manage customer perceptions to increase sales and develop greater customer loyalty.…
ERIC Educational Resources Information Center
Asamoah, Daniel A.; Sharda, Ramesh; Kalgotra, Pankush; Ott, Mark
2016-01-01
Within the context of the telecom industry, this teaching case is an active learning analytics exercise to help students build hands-on expertise on how to utilize Big Data to solve a business problem. Particularly, the case utilizes an analytics method to help develop a customer retention strategy to mitigate against an increasing customer churn…
Hubbard, Grace B
2014-04-01
To discuss the teaching/learning strategy of customized role play to enhance psychiatric mental health nurse practitioner (PMHNP) students' entry level competency. Customized role play facilitates application of new content, understanding of the patient's experience, and assessment of skill deficits. New PMHNP graduates have entry level proficiency across the life span with a range of psychotherapeutic interventions. © 2013 Wiley Periodicals, Inc.
[Customer orientation in ambulant medicine].
Heinrich, M
2014-07-01
Due to developments of the health market, economic aspects of the health system are more relevant. In this upcoming market the patient is regarded as customer and the doctor as provider of medical services. Studies on customer orientation in the ambulant medicine lag behind this dynamic. An aim of the study is to comprehend the attitudes of the doctors referring to the customer orientation. In a second step the findings are discussed according to statements of health-care paticipants. Developments in role comprehension of doctor and patient are focused to gain results in scientific and practical applications. Guideline-supported, partly narrative interviews with n=9 gynaecologists and n=11 general practitioners in Freiburg/Germany are recorded, transcribed and reviewed in a qualitative analysis. The statements of the doctors show patient satisfaction has an incremental meaning sspecially regarding the sequence of patient relationship and economic management of the doctor's workplace. The doctor's role comprehension meets with a refusal of the role of salesman and the patient as customer. The method of interviews is suitable to gather empirical impressions of the doctors. The control sample is adequate, however a bias due to inhomogeneous thematic affinitiy and local social-demographics might be possible. The customer orientation has become an important factor in doctor-patient relationtships. The relevance of the doctor-patient conversation and the risk of misuse of the patient confidence are mentioned by the doctors. The doctor as paternalistic care provider gives way to the customer-focused service provider. The doctor's necessity of autonomyssss and dependency on patient satisfaction have potential for conflict. Intensive mention of customer orientation in medicine in the media emphasises its importance. Rational handling with the possibilities of individual health markets is a prospective challange. Further research could be established in all aspects of customer orientation, especially the changing relevance of ethical responsibility. An enlargement or comparison with other control samples (n>20, other medical subfields, structurally weak areas) could be illuminating. The results of this qualitative study can be used to develop quantitative inquiries. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Guo, H.; Xu, S. S.; Mao, M. J.; Chen, L.; Gokhman, O.; Zhang, Z. W.
2018-05-01
Solid solution treatment (SST) and age hardening are the two main treatments used to produce nanoscale precipitation-strengthened steels. In this work, solution treatment and aging are employed to develop a nanoscale precipitation-strengthened steel displaying high degrees of strength, ductility, and toughness. The effects of SST on the microstructure and mechanical properties of the produced steel are investigated. The results show that the solution temperature strongly influences the matrix microstructure. Partial austenitization between A_{{{c}1}} and A_{{{c}3}} favors the formation of granular ferrite, while complete austenitization above A_{{{c}3}} leads to the formation of polygonal ferrite. Refined granular ferrite with a low dislocation density can effectively improve the plasticity and low-temperature toughness of steel. Precipitation strengthening is mainly related to the nature of the nano-precipitates, specifically their size and number density, independently of the matrix microstructure.
Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carro, G.; Flanagan, W.F.
1992-08-01
The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while themore » time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3. 14 refs.« less
Microstructural observations in rapidly-solidified and heat-treated Ni sub 3 Al-Cr alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carro, G.; Flanagan, W.F.
1992-01-01
In this paper , the microstructural development following heat treatments of several rapidly-solidified Ni{sub 3}Al-Cr and Ni{sub 3}Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100% {gamma} phase-in the form of fine anti-phase domains (APD)-or a mixture of {gamma} (APDs) and {beta} phases. Upon annealing, the as-solidified microstructures transform to either APD-free {gamma}or mixtures of {gamma}and {gamma}{prime} phases. For those compositions where the quenched microstructures were 100{gamma}{prime} it was observed that APD coarsening followed conventional grain-growth kinetics, but when {gamma} phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remainedmore » unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr{sub 5}B{sub 3}.« less
Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys
NASA Technical Reports Server (NTRS)
Carro, G.; Flanagan, W. F.
1992-01-01
The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3.
Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi
2017-01-01
Abstract We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process–microstructure–property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts. PMID:28970868
Deformation microstructures of Barre granite: An optical, Sem and Tem study
Schedl, A.; Kronenberg, A.K.; Tullis, J.
1986-01-01
New scanning electron microscope techniques have been developed for characterizing ductile deformation microstructures in felsic rocks. In addition, the thermomechanical history of the macroscopically undeformed Barre granite (Vermont, U.S.A.) has been reconstructed based on examination of deformation microstructures using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The microstructures reveal three distinct events: 1. (1) a low-stress, high-temperature event that produced subgrains in feldspars, and subgrains and recrystallized grains in quartz; 2. (2) a high-stress, low-temperature event that produced a high dislocation density in quartz and feldspars; and 3. (3) a lowest-temperature event that produced cracks, oriented primarily along cleavage planes in feldspars, and parallel to the macroscopic rift in quartz. The first two events are believed to reflect various stages in the intrusion and cooling history of the pluton, and the last may be related to the last stages of cooling, or to later tectonism. ?? 1986.
Ultrasonic attenuation in pearlitic steel.
Du, Hualong; Turner, Joseph A
2014-03-01
Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Strain Characterization and Microstructure Evolution Under Deformation in 2060 Alloy
NASA Astrophysics Data System (ADS)
Jin, X.; Zhang, G. D.; Zhao, Y. F.; Xue, F.
2018-05-01
A new method of DIC combined with EBSD is developed for the characterization of strain and microstructure evolution during bending. The traditional microhardness point and DIC methods are used to study the microstructure evolution in 2060 alloy during bending; the interested area suffers under tensile stress, the microstructure evolution is collected by SEM, EBSD, digital image correlation (DIC) method during bending. The results shows that the DIC method can both realize the strain tensor characterization of the interested area, and can also express the local strain tensor in the micro-area even more. The degree of grain division in the process of deformation is related to the strain in this region; the grains have larger strain of small angle grain boundary (SLGBs), which results in a new micro-organizational structure. The misorientation is smaller with larger strain degree while the misorientation is larger with smaller strain.
An Experimental Investigation on Hardness and Microstructure of Heat Treated EN 9 Steel
NASA Astrophysics Data System (ADS)
Biswas, Palash; Kundu, Arnab; Mondal, Dhiraj
2017-08-01
In the modern engineering world, extensive research has led to the development of some special grades of steel, often suited for enhanced functions. EN 9 steel is one such grade, having major applications in power plants, automobile and aerospace industry. Different heat treatment processes are employed to achieve high hardness and high wear resistance, but machinability subsequently decreases. Existing literature is not sufficient to achieve a balance between hardness and machinability. The aim of this experimental work is to determine the hardness values and observe microstructural changes in EN9 steel, when it is subjected to annealing, normalizing and quenching. Finally, the effects of tempering after each of these heat treatments on hardness and microstructure have also been shown. It is seen that the tempering after normalizing the specimen achieved satisfactory results. The microstructure was also observed to be consisting of fine grains.
Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys
NASA Astrophysics Data System (ADS)
Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin
Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.
Open circuit potential monitored digital photocorrosion of GaAs/AlGaAs quantum well microstructures
NASA Astrophysics Data System (ADS)
Aithal, Srivatsa; Dubowski, Jan J.
2018-04-01
Nanostructuring of semiconductor wafers with an atomic level depth resolution is a challenging task, primarily due to the limited availability of instruments for in situ monitoring of such processes. Conventional digital etching relies on calibration procedures and cumbersome diagnostics applied between or at the end of etching cycles. We have developed a photoluminescence (PL) based process for monitoring in situ digital photocorrosion (DPC) of GaAs/AlGaAs microstructures at rates below 0.2 nm per cycle. In this communication, we demonstrate that DPC of GaAs/AlGaAs microstructures could be monitored with open circuit potential (OCP) measured between the photocorroding surface of a microstructure and an Ag/AgCl reference electrode installed in the sample chamber. The excellent correlation between the position of both PL and OCP maxima indicates that the DPC process could be monitored in situ for materials that do not necessarily exhibit measurable PL emission.
NASA Astrophysics Data System (ADS)
Klusemann, Benjamin; Bambach, Markus
2018-05-01
Processing conditions play a crucial role for the resulting microstructure and properties of the material. In particular, processing materials under non-equilibrium conditions can lead to a remarkable improvement of the final properties [1]. Additive manufacturing represents a specific process example considered in this study. Models for the prediction of residual stresses and microstructure in additive manufacturing processes, such as laser metal deposition, are being developed with huge efforts to support the development of materials and processes as well as to support process design [2-4]. Since the microstructure predicted after each heating and cooling cycle induced by the moving laser source enters the phase transformation kinetics and microstucture evolution of the subsequent heating and cooling cycle, a feed-back loop for the microstructure calculation is created. This calculation loop may become unstable so that the computed microstructure and related properties become very sensitive to small variations in the input parameters, e.g. thermal conductivity. In this paper, a model for phase transformation in Ti-6Al-4V, originally proposed by Charles Murgau et al. [5], is adopted and minimal adjusted concerning the decomposition of the martensite phase are made. This model is subsequently used to study the changes in the predictions of the different phase volume fractions during heating and cooling under the conditions of laser metal deposition with respect to slight variations in the thermal process history.
NASA Astrophysics Data System (ADS)
Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li
In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.
Advances in multi-scale modeling of solidification and casting processes
NASA Astrophysics Data System (ADS)
Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang
2011-04-01
The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.
NASA Astrophysics Data System (ADS)
Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.
2015-09-01
Coarse-grained Fe-based oxide dispersion-strengthened (ODS) steels are a class of advanced materials for combined cycle gas turbine systems to deal with operating temperatures and pressures of around 1100°C and 15-30 bar in aggressive environments, which would increase biomass energy conversion efficiencies up to 45% and above. This two-part paper reports the possibility of the development of simultaneous corrosion barrier and optimized microstructure in a FeCrAl heat-resistant alloy for energy applications. The first part reports the mechanism of generating a dense, self-healing α-alumina layer by thermal oxidation, during a heat treatment that leads to a coarse-grained microstructure with a potential value for high-temperature creep resistance in a FeCrAl ODS ferritic alloy, which will be described in more detail in the second part.
Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test
Shin, Jun-Ho; Struble, Leslie J.; Kirkpatrick, R. James
2015-01-01
The microstructural development of mortar bars with silica glass aggregate undergoing alkali-silica reaction (ASR) under the conditions of American Society for Testing and Materials (ASTM) Standard Test C1260 was analyzed using scanning electron microscopy and qualitative X-ray microanalysis. Cracking in the aggregate, the hydrated paste, and the paste-aggregate interface was important in the development of the microstructure. Cracks were characterized according to their location, their relationship to other cracks, and whether they are filled with ASR gel. Expansion of the bars was approximately 1% at 12 days and 2% at 53 days. They fell apart by 63 days. The bars contained two zones, an inner region that was undergoing ASR and an outer and much more highly damaged zone that extended further inward over time. Evidence of ASR was present even during the period when specimens were immersed in water, prior to immersion in NaOH solution. PMID:28793711
Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test
Shin, Jun-Ho; Struble, Leslie; Kirkpatrick, R.
2015-12-01
The microstructural development of mortar bars with silica glass aggregate undergoing alkali-silica reaction (ASR) under the conditions of American Society for Testing and Materials (ASTM) Standard Test C1260 was analyzed using scanning electron microscopy and qualitative X-ray microanalysis. Cracking in the aggregate, the hydrated paste, and the paste-aggregate interface was important in the development of the microstructure. Cracks were characterized according to their location, their relationship to other cracks, and whether they are filled with ASR gel. Expansion of the bars was approximately 1% at 12 days and 2% at 53 days. They fell apart by 63 days. The barsmore » contained two zones, an inner region that was undergoing ASR and an outer and much more highly damaged zone that extended further inward over time. Evidence of ASR was present even during the period when specimens were immersed in water, prior to immersion in NaOH solution.« less
Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test.
Shin, Jun-Ho; Struble, Leslie J; Kirkpatrick, R James
2015-12-02
The microstructural development of mortar bars with silica glass aggregate undergoing alkali-silica reaction (ASR) under the conditions of American Society for Testing and Materials (ASTM) Standard Test C1260 was analyzed using scanning electron microscopy and qualitative X-ray microanalysis. Cracking in the aggregate, the hydrated paste, and the paste-aggregate interface was important in the development of the microstructure. Cracks were characterized according to their location, their relationship to other cracks, and whether they are filled with ASR gel. Expansion of the bars was approximately 1% at 12 days and 2% at 53 days. They fell apart by 63 days. The bars contained two zones, an inner region that was undergoing ASR and an outer and much more highly damaged zone that extended further inward over time. Evidence of ASR was present even during the period when specimens were immersed in water, prior to immersion in NaOH solution.
AxTract: Toward microstructure informed tractography.
Girard, Gabriel; Daducci, Alessandro; Petit, Laurent; Thiran, Jean-Philippe; Whittingstall, Kevin; Deriche, Rachid; Wassermann, Demian; Descoteaux, Maxime
2017-11-01
Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, tractography algorithms produce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tissue configurations. Moreover, the relationship between the resulting streamlines and the underlying white matter microstructure characteristics remains poorly understood. In this work, we introduce a new approach to simultaneously reconstruct white matter fascicles and characterize the apparent distribution of axon diameters within fascicles. To achieve this, our method, AxTract, takes full advantage of the recent development DW-MRI microstructure acquisition, modeling, and reconstruction techniques. This enables AxTract to separate parallel fascicles with different microstructure characteristics, hence reducing ambiguities in areas of complex tissue configuration. We report a decrease in the incidence of erroneous streamlines compared to the conventional deterministic tractography algorithms on simulated data. We also report an average increase in streamline density over 15 known fascicles of the 34 healthy subjects. Our results suggest that microstructure information improves tractography in crossing areas of the white matter. Moreover, AxTract provides additional microstructure information along the fascicle that can be studied alongside other streamline-based indices. Overall, AxTract provides the means to distinguish and follow white matter fascicles using their microstructure characteristics, bringing new insights into the white matter organization. This is a step forward in microstructure informed tractography, paving the way to a new generation of algorithms able to deal with intricate configurations of white matter fibers and providing quantitative brain connectivity analysis. Hum Brain Mapp 38:5485-5500, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foulk, James W.; Alleman, Coleman N.; Mota, Alejandro
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeledmore » with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of freedom.« less
The power of product integrity.
Clark, K B; Fujimoto, T
1990-01-01
In the dictionary, integrity means wholeness, completeness, soundness. In products, integrity is the source of sustainable competitive advantage. Products with integrity perform superbly, provide good value, and satisfy customers' expectations in every respect, including such intangibles as their look and feel. Consider this example from the auto industry. In 1987, Mazda put a racy four-wheel steering system in a five-door family hatchback. Honda introduced a comparable system in the Prelude, a sporty, two-door coupe. Most of Honda's customers installed the new technology; Mazda's system sold poorly. Potential customers felt the fit--or misfit--between the car and the new component, and they responded accordingly. Companies that consistently develop products with integrity are coherent, integrated organizations. This internal integrity is visible at the level of strategy and structure, in management and organization, and in the skills, attitudes, and behavior of individual designers, engineers, and operators. Moreover, these companies are integrated externally: customers become part of the development organization. Integrity starts with a product concept that describes the new product from the potential customer's perspective--"pocket rocket" for a sporty, subcompact car, for example. Whether the final product has integrity will depend on two things: how well the concept satisfies potential customers' wants and needs and how completely the concept has been embodied in the product's details. In the most successful development organizations, "heavyweight" product managers are responsible for leading both tasks, as well as for guiding the creation of a strong product concept.
NASA Astrophysics Data System (ADS)
Clos, Frediano; Gilio, Mattia; van Roermund, Herman L. M.
2014-04-01
Formation conditions of olivine microstructures are investigated in the Kittelfjäll spinel peridotite (KSP), a fragment of lithospheric mantle which occurs as an isolated body within high grade metamorphic crustal rocks of the Seve Nappe Complex (SNC), southern Västerbotten, central Sweden. The KSP is an orogenic peridotite containing a well developed penetrative compositional layering, defined by highly depleted dunite with olivine Mg# (100 × Mg/Mg + Fe) of 92.0-93.5 and harzburgite with lower Mg# (91.0-92.5). Dunite is characterized by three contrasting olivine microstructures formed in response to different tectonometamorphic events: Coarse-grained, highly strained olivine porphyroclasts (M1) up to 20 cm long are surrounded by dynamically recrystallized olivine grains (M2) defining a characteristic olivine "foam" microstructure (grain size: 200-2000 μm). An olivine "mortar" (M3) microstructure (10-50 μm) forms a penetrative fabric element only in strongly localized, cm-to-m sized shear zones that crosscut earlier structures/foliations. Olivine fabric analysis in synergy, with mineralogical and chemical analyses, reveals that the KSP body represents old, possibly Archean, sub-continental lithospheric mantle that was crustally emplaced into the Caledonian tectonic edifice from the hanging wall mantle during exhumation of the subducted Seve Nappe Complex (Jämtlandian orogeny ~ 454 Ma). Olivine porphyroclasts (M1) grew at high temperature during dominant isobaric cooling after extensive polybaric melt extraction (> 40%) and subsequent refertilization. The onset of the early Caledonian deformation is interpreted to be related to the crustal emplacement of the KSP during eduction of the SNC. This phase is characterized by the development of the olivine M2 foam microstructure, formed at 650-830 °C/1-2 GPa by dislocation creep processes producing an E-type CPO's by the operation of the [100](001) and subordinate [001](100) slip systems with operating flow stress levels around 8-48 MPa. In contrast the M3 olivine "mortar" microstructure formed at 550-600 °C/0.45-0.6 GPa and represents deformation after the subducted slab had returned to shallow crustal levels. It is proposed here that the presence of a penetrative olivine M2 "foam" microstructure can be used as an easy tool in the field to discriminate between mantle wedge (i.e. sub-continental affinity), ophiolite (i.e. sub-oceanic affinity), and/or hyper-extensional peridotite in the Scandinavian Caledonides. The latter two peridotite subtypes may have similar M2 microstructures, but exclusively restricted to the structural base of the bodies. Alternatively in basal parts of ophiolites, M3 microstructures directly overprint coarser grained proto-granular olivine microstructures.
Copper-silicon-magnesium alloys for latent heat storage
Gibbs, P. J.; Withey, E. A.; Coker, E. N.; ...
2016-06-21
The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.
NASA Astrophysics Data System (ADS)
Deschamps, A.; de Geuser, F.; Decreus, B.; Malard, B.
Al-Cu-Li based alloys are experiencing a rapid development for aerospace applications. The main hardening phase of this system (T1-Al2CuLi) forms as thin platelets (1 nm) that can reach diameters of 50 to 100 nm with remarkable stability in temperature. The nucleation, growth and thickening mechanisms of this phase are of crucial importance for the understanding of the microstructures resulting from simple to complex thermo-mechanical treatments, including friction stir welding of such alloys.