Sample records for developing effective print

  1. Direct and Indirect Effects of Print Exposure on Silent Reading Fluency

    ERIC Educational Resources Information Center

    Mano, Quintino R.; Guerin, Julia M.

    2018-01-01

    Print exposure is an important causal factor in reading development. Little is known, however, of the mechanisms through which print exposure exerts an effect onto reading. To address this gap, we examined the direct and indirect effects of print exposure on silent reading fluency among college students (n = 52). More specifically, we focused on…

  2. Comparative analysis of print and multimedia health materials: a review of the literature.

    PubMed

    Wilson, Elizabeth A H; Makoul, Gregory; Bojarski, Elizabeth A; Bailey, Stacy Cooper; Waite, Katherine R; Rapp, David N; Baker, David W; Wolf, Michael S

    2012-10-01

    Evaluate the evidence regarding the relative effectiveness of multimedia and print as modes of dissemination for patient education materials; examine whether development of these materials addressed health literacy. A structured literature review utilizing Medline, PsycInfo, and the Cumulative Index to the Nursing and Allied Health Literature (CINAHL), supplemented by reference mining. Of 738 studies screened, 30 effectively compared multimedia and print materials. Studies offered 56 opportunities for assessing the effect of medium on various outcomes (e.g., knowledge). In 30 instances (54%), no difference was noted between multimedia and print in terms of patient outcomes. Multimedia led to better outcomes vs. print in 21 (38%) comparisons vs. 5 (9%) instances for print. Regarding material development, 12 studies (40%) assessed readability and 5 (17%) involved patients in tool development. Multimedia appears to be a promising medium for patient education; however, the majority of studies found that print and multimedia performed equally well in practice. Few studies involved patients in material development, and less than half assessed the readability of materials. Future research should focus on comparing message-equivalent tools and assessing their effect on behavioral outcomes. Material development should include explicit attention to readability and patient input. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Print material as a public health education tool.

    PubMed

    Paul, C L; Redman, S; Sanson-Fisher, R W

    1998-02-01

    Despite the widespread use of print materials in public health education, little is known about the costs and processes involved in developing these materials and their effectiveness in practice. We examined a sample of printed health education materials, using interviews and checklists. The most cost-effective processes for developing materials were not being used and the effectiveness of materials was rarely evaluated.

  4. The Development of Education, Printing and Publishing in Ethiopia.

    ERIC Educational Resources Information Center

    Gupta, Sushma

    1994-01-01

    Discusses the importance of literacy, education, printing, and publishing for the effective use of libraries and gives a detailed account of the development of these factors in Ethiopia. Highlights include the role of the church; the development of education, including higher education; and printing presses and publishing houses. (LRW)

  5. Accelerating preschoolers' early literacy development through classroom-based teacher-child storybook reading and explicit print referencing.

    PubMed

    Justice, Laura M; Kaderavek, Joan N; Fan, Xitao; Sofka, Amy; Hunt, Aileen

    2009-01-01

    This study examined the impact of teacher use of a print referencing style during classroom-based storybook reading sessions conducted over an academic year. Impacts on preschoolers' early literacy development were examined, focusing specifically on the domain of print knowledge. This randomized, controlled trial examined the effects of a print referencing style on 106 preschool children attending 23 classrooms serving disadvantaged preschoolers. Following random assignment, teachers in 14 classrooms used a print referencing style during 120 large-group storybook reading sessions during a 30-week period. Teachers in 9 comparison classrooms read at the same frequency and with the same storybooks but used their normal style of reading. Children whose teachers used a print referencing style showed larger gains on 3 standardized measures of print knowledge: print concept knowledge, alphabet knowledge, and name writing, with medium-sized effects. The convergence of the present findings with those of previous efficacy studies indicates that print referencing intervention can be used confidently as an approach for facilitating print knowledge in preschool-age children. Speech-language pathologists can serve an important role in supporting preschool educators as they use this evidence-based technique with pupils in their classrooms.

  6. Review of Recent Inkjet-Printed Capacitive Tactile Sensors

    PubMed Central

    Salim, Ahmed

    2017-01-01

    Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile) are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research. PMID:29125584

  7. Development of high-performance printed organic field-effect transistors and integrated circuits.

    PubMed

    Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young

    2015-10-28

    Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.

  8. Print-Focused Read-Alouds in Preschool Classrooms: Intervention Effectiveness and Moderators of Child Outcomes

    ERIC Educational Resources Information Center

    Justice, Laura M.; McGinty, Anita S.; Piasta, Shayne B.; Kaderavek, Joan N.; Fan, Xitao

    2010-01-01

    Purpose: This study was conducted to determine the effectiveness of teachers' use of a print-referencing style during whole-class read-alouds with respect to accelerating 4- and 5-year-old children's print-knowledge development. It also examined 8 specific child- and setting-level moderators to determine whether these influenced the relation…

  9. Point-of-care testing: applications of 3D printing.

    PubMed

    Chan, Ho Nam; Tan, Ming Jun Andrew; Wu, Hongkai

    2017-08-08

    Point-of-care testing (POCT) devices fulfil a critical need in the modern healthcare ecosystem, enabling the decentralized delivery of imperative clinical strategies in both developed and developing worlds. To achieve diagnostic utility and clinical impact, POCT technologies are immensely dependent on effective translation from academic laboratories out to real-world deployment. However, the current research and development pipeline is highly bottlenecked owing to multiple restraints in material, cost, and complexity of conventionally available fabrication techniques. Recently, 3D printing technology has emerged as a revolutionary, industry-compatible method enabling cost-effective, facile, and rapid manufacturing of objects. This has allowed iterative design-build-test cycles of various things, from microfluidic chips to smartphone interfaces, that are geared towards point-of-care applications. In this review, we focus on highlighting recent works that exploit 3D printing in developing POCT devices, underscoring its utility in all analytical steps. Moreover, we also discuss key advantages of adopting 3D printing in the device development pipeline and identify promising opportunities in 3D printing technology that can benefit global health applications.

  10. Development of a precision reverse offset printing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunchang; Lee, Eonseok; Choi, Young-Man

    2016-01-15

    In printed electronics technology, the overlay accuracy of printed patterns is a very important issue when applying printing technology to the production of electric devices. In order to achieve accurate positioning of the printed patterns, this study proposes a novel precision reverse offset printing system. Furthermore, the study evaluates the effects of synchronization and printing force on position errors of the printed patterns, and presents methods of controlling synchronization and printing force so as to eliminate positional errors caused by the above-mentioned reasons. Finally, the printing position repeatability of 0.40 μm and 0.32 μm (x and y direction, respectively) atmore » a sigma level is obtained over the dimension of 100 mm under repeated printing tests with identical printing conditions.« less

  11. Surface Finish Effects Using Coating Method on 3D Printing (FDM) Parts

    NASA Astrophysics Data System (ADS)

    Haidiezul, AHM; Aiman, AF; Bakar, B.

    2018-03-01

    One of three-dimensional (3-D) printing economical processes is by using Fused Deposition Modelling (FDM). The 3-D printed object was built using layer-by-layer approach which caused “stair stepping” effects. This situation leads to uneven surface finish which mostly affect the objects appearance for product designers in presenting their models or prototypes. The objective of this paper is to examine the surface finish effects from the application of XTC-3D coating developed by Smooth-On, USA on the 3D printed parts. From the experimental works, this study shows the application of XTC-3D coating to the 3-D printed parts has improve the surface finish by reducing the gap between the layer

  12. Criminalystic: effectiveness of lysochromes on the developing of invisible lipstick-contaminated lipmarks on human skin. A preliminary study.

    PubMed

    Navarro, Esperanza; Castelló, Ana; López, Jose L; Verdú, Fernando

    2006-04-20

    Latent prints are an important evidence for identification. Nowadays, the technical means, the implementation of image processing techniques and the use of database makes it possible to detect and get information from some prints that seem to be useless at first sight. On the other hand, the possibility of using the print as a DNA source has to be considered, so as to double its identifying value. Human skin is a particularly difficult surface for developing this kind of evidences. Although different methods for locating and developing latent fingerprints on the skin have been already described, it has not been found any method, at the revised bibliography, to obtain and develop invisible lipmarks, that is, lipmarks from protective lipstick, or permanent or long-lasting lipstick. The aim of the work that follows is to determine the effectiveness of several reagents for developing invisible lipmarks on the corpses' skin. Preliminary results show that, under the described experimental conditions, the reagents used, Sudan III, Oil Red O and Sudan Black, are effective for obtaining recent latent lip prints on corpse's skin.

  13. Future opportunities for advancing glucose test device electronics.

    PubMed

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-09-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.

  14. Inkjet-Printed Biofunctional Thermo-Plasmonic Interfaces for Patterned Neuromodulation.

    PubMed

    Kang, Hongki; Lee, Gu-Haeng; Jung, Hyunjun; Lee, Jee Woong; Nam, Yoonkey

    2018-02-27

    Localized heat generation by the thermo-plasmonic effect of metal nanoparticles has great potential in biomedical engineering research. Precise patterning of the nanoparticles using inkjet printing can enable the application of the thermo-plasmonic effect in a well-controlled way (shape and intensity). However, a universally applicable inkjet printing process that allows good control in patterning and assembly of nanoparticles with good biocompatibility is missing. Here we developed inkjet-printing-based biofunctional thermo-plasmonic interfaces that can modulate biological activities. We found that inkjet printing of plasmonic nanoparticles on a polyelectrolyte layer-by-layer substrate coating enables high-quality, biocompatible thermo-plasmonic interfaces across various substrates (rigid/flexible, hydrophobic/hydrophilic) by induced contact line pinning and electrostatically assisted nanoparticle assembly. We experimentally confirmed that the generated heat from the inkjet-printed thermo-plasmonic patterns can be applied in micrometer resolution over a large area. Lastly, we demonstrated that the patterned thermo-plasmonic effect from the inkjet-printed gold nanorods can selectively modulate neuronal network activities. This inkjet printing process therefore can be a universal method for biofunctional thermo-plasmonic interfaces in various bioengineering applications.

  15. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters

    NASA Astrophysics Data System (ADS)

    Hashemi Sanatgar, Razieh; Campagne, Christine; Nierstrasz, Vincent

    2017-05-01

    In this paper, 3D printing as a novel printing process was considered for deposition of polymers on synthetic fabrics to introduce more flexible, resource-efficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. Adhesion of polymer and nanocomposite layers which were 3D printed directly onto the textile fabrics using fused deposition modeling (FDM) technique was investigated. Different variables which may affect the adhesion properties including 3D printing process parameters, fabric type and filler type incorporated in polymer were considered. A rectangular shape according to the peeling standard was designed as 3D computer-aided design (CAD) to find out the effect of the different variables. The polymers were printed in different series of experimental design: nylon on polyamide 66 (PA66) fabrics, polylactic acid (PLA) on PA66 fabric, PLA on PLA fabric, and finally nanosize carbon black/PLA (CB/PLA) and multi-wall carbon nanotubes/PLA (CNT/PLA) nanocomposites on PLA fabrics. The adhesion forces were quantified using the innovative sample preparing method combining with the peeling standard method. Results showed that different variables of 3D printing process like extruder temperature, platform temperature and printing speed can have significant effect on adhesion force of polymers to fabrics while direct 3D printing. A model was proposed specifically for deposition of a commercial 3D printer Nylon filament on PA66 fabrics. In the following, among the printed polymers, PLA and its composites had high adhesion force to PLA fabrics.

  16. The Revolution in Print Technology. Text & Readers Programme, Technical Report #1.

    ERIC Educational Resources Information Center

    Macdonald-Ross, Michael

    The two papers presented in this document discuss aspects of the computer revolution and its effects on the production of print materials. The papers are addressed to readers who are educators rather than technologists. The first article, entitled "Print," interprets that term broadly to include text development and production, and…

  17. Solvent-Free Toner Printing of Organic Semiconductor Layer in Flexible Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Koh, Tokuyuki; Toyoshima, Kenji; Nakamori, Kouta; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Shinamura, Shoji; Kudo, Kazuhiro

    2017-07-01

    A solvent-free printing process for printed electronics is successfully developed using toner-type patterning of organic semiconductor toner particles and the subsequent thin-film formation. These processes use the same principle as that used for laser printing. The organic thin-film transistors are prepared by electrically distributing the charged toner onto a Au electrode on a substrate film, followed by thermal lamination. The thermal lamination is effective for obtaining an oriented and crystalline thin film. Toner printing is environmentally friendly compared with other printing technologies because it is solvent free, saves materials, and enables easy recycling. In addition, this technology simultaneously enables both wide-area and high-resolution printing.

  18. Improved performance of inkjet-printed Ag source/drain electrodes for organic thin-film transistors by overcoming the coffee ring effects

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Fang; Lin, Yan; Lai, Wen-Yong; Huang, Wei

    2017-11-01

    Inkjet printing is a promising technology for the scalable fabrication of organic electronics because of the material conservation and facile patterning as compared with other solution processing techniques. In this study, we have systematically investigated the cross-sectional profile control of silver (Ag) electrode via inkjet printing. A facile methodology for achieving inkjet-printed Ag source/drain with improved profiles is developed. It is demonstrated that the printing conditions such as substrate temperature, drop spacing and printing layers affect the magnitude of the droplet deposition and the rate of evaporation, which can be optimized to greatly reduce the coffee ring effects for improving the inkjet-printed electrode profiles. Ag source/drain electrodes with uniform profiles were successfully inkjet-printed and incorporated into organic thin-film transistors (OTFTs). The resulting devices showed superior electrical performance than those without special treatments. It is noted to mention that the strategy for modulating the inkjet-printed Ag electrodes in this work does not demand the ink formulation or complicated steps, which is beneficial for scaling up the printing techniques for potential large-area/mass manufacturing.

  19. Development of karanja oil based offset printing ink in comparison with linseed oil.

    PubMed

    Bhattacharjee, Moumita; Roy, Ananda Sankar; Ghosh, Santinath; Dey, Munmun

    2011-01-01

    The conventional offset lithographic printing ink is mainly based on linseed oil. But in recent years, due to stiff competition from synthetic substitutes mainly from petroleum products, the crop production shrinks down to an unsustainable level, which increases the price of linseed oil. Though soyabean oil has replaced a major portion of linseed oil, it is also necessary to develop alternate cost effective vegetable oils for printing ink industry. The present study aims to evaluate the performance of karanja oil (Pongamia glabra) as an alternative of linseed oil in the formulation of offset printing ink because karanja oil is easily available in rural India. Physical properties of raw karanja oil are measured and compared with that of alkali refined linseed oil. Rosin modified phenolic resin based varnishes were made with linseed oil as well as with karanja oil and their properties are compared. Sheetfed offset inks of process colour yellow and cyan is chosen to evaluate the effect of karanja oil in ink properties. In conclusion, karanja oil can be accepted as an alternate vegetable oil source with its noticeable effect on print and post print properties with slower drying time on paper. However, the colour and odour of the oil will restrict its usage on offset inks.

  20. Inkjet Printing of Proteins: an Experimental Approach.

    PubMed

    Montenegro-Nicolini, Miguel; Miranda, Víctor; Morales, Javier O

    2017-01-01

    Peptides and proteins represent a promissory group of molecules used by the pharmaceutical industry for drug therapy with great potential for development. However, the administration of these molecules presents a series of difficulties, making necessary the exploration of new alternatives like the buccal route of administration to improve drug therapy compliance. Although drop-on demand printers have been explored for small molecule drugs with promising results, the development of delivery systems for peptides and proteins through inkjet printing has seen little development. Therefore, the aim of this study was to assess the feasibility of using a thermal inkjet printing system for dispensing lysozyme and ribonuclease-A as model proteins. To address the absorption limitations of a potential buccal use, a permeation enhancer (sodium deoxycholate) was also studied in formulations. We found that a conventional printer successfully printed both proteins, exhibiting very high printing efficiency. Furthermore, the protein structure was not affected and minor effects were observed in the enzymatic activity after the printing process. In conclusion, we provide evidence for the usage of an inexpensive, easy to use, reliable, and reproducible thermal inkjet printing system to dispense proteins solutions for potential buccal application. Our research significantly contributes to present an alternative for manufacturing biologics delivery systems, with emphasis in buccal applications. Next steps of developments will be aimed at the use of new materials for printing, controlled release, and protection strategies for proteins and peptides.

  1. 3D printing of nano- and micro-structures

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Additive manufacturing or 3D printing techniques are being vigorously investigated as a replacement to the traditional and conventional methods in fabrication to bring forth cost and time effective approaches. Introduction of 3D printing has led to printing micro and nanoscale structures including tissues and organelles, bioelectric sensors and devices, artificial bones and transplants, microfluidic devices, batteries and various other biomaterials. Various microfabrication processes have been developed to fabricate micro components and assemblies at lab scale. 3D Fabrication processes that can accommodate the functional and geometrical requirements to realize complicated structures are becoming feasible through advances in additive manufacturing. This advancement could lead to simpler development mechanisms of novel components and devices exhibiting complex features. For instance, development of microstructure electrodes that can penetrate the epidermis of the skin to collect the bio potential signal may prove very effective than the electrodes that measure signal from the skin's surface. The micro and nanostructures will have to possess extraordinary material and mechanical properties for its dexterity in the applications. A substantial amount of research being pursued on stretchable and flexible devices based on PDMA, textiles, and organic electronics. Despite the numerous advantages these substrates and techniques could solely offer, 3D printing enables a multi-dimensional approach towards finer and complex applications. This review emphasizes the use of 3D printing to fabricate micro and nanostructures for that can be applied for human healthcare.

  2. 3-D Printing as an Effective Educational Tool for MEMS Design and Fabrication

    ERIC Educational Resources Information Center

    Dahle, Reena; Rasel, Rafiul

    2016-01-01

    This paper presents a series of course modules developed as a high-impact and cost-effective learning tool for modeling and simulating the microfabrication process and design of microelectromechanical systems (MEMS) devices using three-dimensional (3-D) printing. Microfabrication technology is an established fabrication technique for small and…

  3. Some advances in the silver physical development of latent prints on paper

    NASA Astrophysics Data System (ADS)

    Cantu, Antonio A.; Leben, Deborah A.; Wilson, Kelley

    2003-09-01

    Silver physical development, a now-abandoned technique used for developing photographic film or paper, is one of the most powerful methods for visualizing latent prints on paper. The method develops the water-insoluble components in the print residue. These components include the "fats and oils" or lipids found on the skin of fingers. The resulting developed print, referred to as a silver physically developed (Ag-PD) print, is made up of (gray to black) silver particles adhered to the fingerprint residue. Such prints are usually intensified (made darker) with a hypochlorite treatment. This process converts silver to silver oxide making the Ag-PD print become a Ag2O-PD prints. Often such (Ag-PD or Ag2O-PD) prints are found on areas with heavy or patterned printing making them difficult to see. This work resolves this problem by chemically lightening the print and darkening (suppressing) the interfering background.

  4. Viscoplastic Matrix Materials for Embedded 3D Printing.

    PubMed

    Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A

    2018-03-16

    Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.

  5. EUV microexposures at the ALS using the 0.3-NA MET projectionoptics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik

    2005-09-01

    The recent development of high numerical aperture (NA) EUV optics such as the 0.3-NA Micro Exposure Tool (MET) optic has given rise to a new class of ultra-high resolution microexposure stations. Once such printing station has been developed and implemented at Lawrence Berkeley National Laboratory's Advanced Light Source. This flexible printing station utilizes a programmable coherence illuminator providing real-time pupil-fill control for advanced EUV resist and mask development. The Berkeley exposure system programmable illuminator enables several unique capabilities. Using dipole illumination out to {sigma}=1, the Berkeley tool supports equal-line-space printing down to 12 nm, well beyond the capabilities of similarmore » tools. Using small-sigma illumination combined with the central obscuration of the MET optic enables the system to print feature sizes that are twice as small as those coded on the mask. In this configuration, the effective 10x-demagnification for equal lines and spaces reduces the mask fabrication burden for ultra-high-resolution printing. The illuminator facilitates coherence studies such as the impact of coherence on line-edge roughness (LER) and flare. Finally the illuminator enables novel print-based aberration monitoring techniques as described elsewhere in these proceedings. Here we describe the capabilities of the new MET printing station and present system characterization results. Moreover, we present the latest printing results obtained in experimental resists. Limited by the availability of high-resolution photoresists, equal line-space printing down to 25 nm has been demonstrated as well as isolated line printing down to 29 nm with an LER of approaching 3 nm.« less

  6. 3D printing: making things at the library.

    PubMed

    Hoy, Matthew B

    2013-01-01

    3D printers are a new technology that creates physical objects from digital files. Uses for these printers include printing models, parts, and toys. 3D printers are also being developed for medical applications, including printed bone, skin, and even complete organs. Although medical printing lags behind other uses for 3D printing, it has the potential to radically change the practice of medicine over the next decade. Falling costs for hardware have made 3D printers an inexpensive technology that libraries can offer their patrons. Medical librarians will want to be familiar with this technology, as it is sure to have wide-reaching effects on the practice of medicine.

  7. Novel target fabrication using 3D printing developed at University of Michigan

    DOE PAGES

    Klein, Sallee R.; Deininger, Michael; Gillespie, Robb S.; ...

    2016-05-24

    The University of Michigan has been fabricating targets for high-energy-density experiments for the past decade. We utilize the technique of machined acrylic bodies and mating components acting as constraints to build repeatable targets. Combining 3D printing with traditional machining, we are able to take advantage of the very best part of both aspects of manufacturing. Furthermore, we present several recent campaigns to act as showcase and introduction of our techniques and our experience with 3D printing, effecting how we utilize 3D printing in our target builds.

  8. Novel target fabrication using 3D printing developed at University of Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Sallee R.; Deininger, Michael; Gillespie, Robb S.

    The University of Michigan has been fabricating targets for high-energy-density experiments for the past decade. We utilize the technique of machined acrylic bodies and mating components acting as constraints to build repeatable targets. Combining 3D printing with traditional machining, we are able to take advantage of the very best part of both aspects of manufacturing. Furthermore, we present several recent campaigns to act as showcase and introduction of our techniques and our experience with 3D printing, effecting how we utilize 3D printing in our target builds.

  9. Inkjet printing of aligned single-walled carbon-nanotube thin films

    NASA Astrophysics Data System (ADS)

    Takagi, Yuki; Nobusa, Yuki; Gocho, Shota; Kudou, Hikaru; Yanagi, Kazuhiro; Kataura, Hiromichi; Takenobu, Taishi

    2013-04-01

    We report a method for the inkjet printing of aligned single-walled carbon-nanotube (SWCNT) films by combining inkjet technology with the strong wettability contrast between hydrophobic and hydrophilic areas based on the patterning of self-assembled monolayers. Both the drying process control using the strong wettability boundary and the coffee-stain effect strongly promote the aggregation of SWCNTs along the contact line of a SWCNT ink droplet, thereby demonstrating our achievement of inkjet-printed aligned SWCNT films. This method could open routes for developing high-performance and environmentally friendly SWCNT printed electronics.

  10. Assessing generative braille responding following training in a matching-to-sample format.

    PubMed

    Putnam, Brittany C; Tiger, Jeffrey H

    2016-12-01

    We evaluated the effects of teaching sighted college students to select printed text letters given a braille sample stimulus in a matching-to-sample (MTS) format on the emergence of untrained (a) construction of print characters given braille samples, (b) construction of braille characters given print samples, (c) transcription of print characters given braille sample sentences, and (d) vocal reading given braille sample passages. The results demonstrated the generative development of these repertoires given MTS instruction. © 2016 Society for the Experimental Analysis of Behavior.

  11. 3D printing of optical materials: an investigation of the microscopic properties

    NASA Astrophysics Data System (ADS)

    Persano, Luana; Cardarelli, Francesco; Arinstein, Arkadii; Uttiya, Sureeporn; Zussman, Eyal; Pisignano, Dario; Camposeo, Andrea

    2018-02-01

    3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.

  12. Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines

    NASA Astrophysics Data System (ADS)

    Mu, Quanyi; Dunn, Conner K.; Wang, Lei; Dunn, Martin L.; Qi, H. Jerry; Wang, Tiejun

    2017-04-01

    Recent developments in soft materials and 3D printing are promoting the rapid development of novel technologies and concepts, such as 4D printing and soft machines, that in turn require new methods for fabricating conductive materials. Despite the ubiquity of silver nanoparticles (NPs) in the conducting electrodes of printed electronic devices, their potential use in stretchable conductors has not been fully explored in 4D printing and soft machines. This paper studies the effect of thermal cure conditions on conductivity and electro-mechanical behaviors of silver ink by the direct ink write (DIW) printing approach. We found that the electro-mechanical properties of silver wires can be tailored by controlling cure time and cure temperature to achieve conductivity as well as stretchability. For the silver NP ink we used in the experiments, silver wires cured at 80 °C for 10-30 min have conductivity >1% bulk silver, Young’s modulus <100 MPa, yield strain ˜9%, and can retain conductivity up to 300% strain. In addition, under stress controlled cyclic loading/unloading conditions, the resistance of these wires is only about 1.3 times the initial value after the 100th repeat cycle (7.6% maximum strain in the first cycle). Silver wires cured at 120 °C for 10-20 min are more sensitive to strain and have a yield strain of around 6%. These properties indicate that the silver ink can be used to fabricate stretchable electrodes and flex sensors. Using the DIW fabrication method, we printed silver ink patterns on the surface of 3D printed polymer parts, with the future goal of constructing fully 3D printed arbitrarily formed soft and stretchable devices and of applying them to 4D printing. We demonstrated a fully printed functional soft-matter sensor and a circuit element that can be stretched by as much as 45%.

  13. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate

    PubMed Central

    2013-01-01

    Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130

  14. Three-dimensional bio-printing: A new frontier in oncology research

    PubMed Central

    Charbe, Nitin; McCarron, Paul A; Tambuwala, Murtaza M

    2017-01-01

    Current research in oncology deploys methods that rely principally on two-dimensional (2D) mono-cell cultures and animal models. Although these methodologies have led to significant advancement in the development of novel experimental therapeutic agents with promising anticancer activity in the laboratory, clinicians still struggle to manage cancer in the clinical setting. The disappointing translational success is attributable mainly to poor representation and recreation of the cancer microenvironment present in human neoplasia. Three-dimensional (3D) bio-printed models could help to simulate this micro-environment, with recent bio-printing of live human cells demonstrating that effective in vitro replication is achievable. This literature review outlines up-to-date advancements and developments in the use of 3D bio-printed models currently being used in oncology research. These innovative advancements in 3D bio-printing open up a new frontier for oncology research and could herald an era of progressive clinical cancer therapeutics. PMID:28246583

  15. Why 3D Print? The 21st-Century Skills Students Develop While Engaging in 3D Printing Projects

    ERIC Educational Resources Information Center

    Trust, Torrey; Maloy, Robert W.

    2017-01-01

    The emergence of 3D printing has raised hopes and concerns about how it can be used effectively as an educational technology in school classrooms. This paper presents the results of a survey asking teachers from multiple grade levels and subject fields about the impact of 3D projects on student learning. Teachers were asked about the kinds of 3D…

  16. Preparation of active 3D film patches via aligned fiber electrohydrodynamic (EHD) printing

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Chuan; Zheng, Hongxia; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2017-03-01

    The design, preparation and application of three-dimensional (3D) printed structures have gained appreciable interest in recent times, particularly for drug dosage development. In this study, the electrohydrodynamic (EHD) printing technique was developed to fabricate aligned-fiber antibiotic (tetracycline hydrochloride, TE-HCL) patches using polycaprolactone (PCL), polyvinyl pyrrolidone (PVP) and their composite system (PVP-PCL). Drug loaded 3D patches possessed perfectly aligned fibers giving rise to fibrous strut orientation, variable inter-strut pore size and controlled film width (via layering). The effect of operating parameters on fiber deposition and alignment were explored, and the impact of the film structure, composition and drug loading was evaluated. FTIR demonstrated successful TE-HCL encapsulation in aligned fibers. Patches prepared using PVP and TE-HCL displayed enhanced hydrophobicity. Tensile tests exhibited changes to mechanical properties arising from additive effects. Release of antibiotic from PCL-PVP dosage forms was shown over 5 days and was slower compared to pure PCL or PVP. The printed patch void size also influenced antibiotic release behavior. The EHDA printing technique provides an exciting opportunity to tailor dosage forms in a single-step with minimal excipients and operations. These developments are crucial to meet demands where dosage forms cannot be manufactured rapidly or when a personalized approach is required.

  17. Preparation of active 3D film patches via aligned fiber electrohydrodynamic (EHD) printing

    PubMed Central

    Wang, Jun-Chuan; Zheng, Hongxia; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2017-01-01

    The design, preparation and application of three-dimensional (3D) printed structures have gained appreciable interest in recent times, particularly for drug dosage development. In this study, the electrohydrodynamic (EHD) printing technique was developed to fabricate aligned-fiber antibiotic (tetracycline hydrochloride, TE-HCL) patches using polycaprolactone (PCL), polyvinyl pyrrolidone (PVP) and their composite system (PVP-PCL). Drug loaded 3D patches possessed perfectly aligned fibers giving rise to fibrous strut orientation, variable inter-strut pore size and controlled film width (via layering). The effect of operating parameters on fiber deposition and alignment were explored, and the impact of the film structure, composition and drug loading was evaluated. FTIR demonstrated successful TE-HCL encapsulation in aligned fibers. Patches prepared using PVP and TE-HCL displayed enhanced hydrophobicity. Tensile tests exhibited changes to mechanical properties arising from additive effects. Release of antibiotic from PCL-PVP dosage forms was shown over 5 days and was slower compared to pure PCL or PVP. The printed patch void size also influenced antibiotic release behavior. The EHDA printing technique provides an exciting opportunity to tailor dosage forms in a single-step with minimal excipients and operations. These developments are crucial to meet demands where dosage forms cannot be manufactured rapidly or when a personalized approach is required. PMID:28272513

  18. Print exposure modulates the effects of repetition priming during sentence reading.

    PubMed

    Lowder, Matthew W; Gordon, Peter C

    2017-12-01

    Individual readers vary greatly in the quality of their lexical representations, and consequently in how quickly and efficiently they can access orthographic and lexical knowledge. This variability may be explained, at least in part, by individual differences in exposure to printed language, because practice at reading promotes the development of stronger reading skills. In the present eyetracking experiment, we tested the hypothesis that the efficiency of word recognition during reading improves with increases in print exposure, by determining whether the magnitude of the repetition-priming effect is modulated by individual differences in scores on the author recognition test (ART). Lexical repetition of target words was manipulated across pairs of unrelated sentences that were presented on consecutive trials. The magnitude of the repetition effect was modulated by print exposure in early measures of processing, such that the magnitude of the effect was inversely related to scores on the ART. The results showed that low levels of print exposure, and thus lower-quality lexical representations, are associated with high levels of difficulty recognizing words, and thus with the greatest room to benefit from repetition. Furthermore, the interaction between scores on the ART and repetition suggests that print exposure is not simply an index of general reading speed, but rather that higher levels of print exposure are associated with an enhanced ability to access lexical knowledge and recognize words during reading.

  19. Photothermal effect of gold nanostars inkjet-printed on coated paper substrate under near-infrared irradiation

    NASA Astrophysics Data System (ADS)

    Borzenkov, Mykola; Chirico, Giuseppe; Collini, Maddalena; Määttänen, Anni; Ihalainen, Petri; Cabrini, Elisa; Dacarro, Giacomo; Pallavicini, Piersandro

    2016-04-01

    The research and development of personalized medical treatments is increasing steadily fostered by its large societal impact. The ability of non-spherical gold nanoparticles to locally and efficiently release heat when irradiated in Near Infrared (NIR) wavelength region is a promising tool for photothermal medical therapies. In the present work, stable inks containing PEGylated gold nanostars (GNS) were obtained and inkjet-printed on a pigment coated paper substrate. Significant photothermal effect of the printed patterns was observed under Near Infrared (NIR) excitation of the Localized Surface Plasmon Resonance (LSPR) of the GNS. These preliminary results support, in perspective, the application of printed GNS patterns for thermal medical treatments either by direct localized heating, or by temperature triggered drug release.

  20. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process

    PubMed Central

    Cheng, Xingxing; Li, Bohan; Chen, Zhangwei; Mi, Shengli; Lao, Changshi

    2017-01-01

    LiFePO4 (LFP) is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW)-based 3D printing was used to fabricate three-dimensional (3D) LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes. PMID:28796182

  1. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO₄ Electrodes by Low Temperature Direct Writing Process.

    PubMed

    Liu, Changyong; Cheng, Xingxing; Li, Bohan; Chen, Zhangwei; Mi, Shengli; Lao, Changshi

    2017-08-10

    LiFePO₄ (LFP) is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW)-based 3D printing was used to fabricate three-dimensional (3D) LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes.

  2. 3D Printing of Biosamples: A Concise Review

    NASA Astrophysics Data System (ADS)

    Zhao, Victoria Xin Ting; Wong, Ten It; Zhou, Xiaodong

    This paper reviews the recent development of 3D printing of biosamples, in terms of the 3D structure design, suitable printing technology, and available materials. Successfully printed 3D biosamples should possess the properties of high cell viability, vascularization and good biocompatibility. These goals are attained by printing the materials of hydrogels, polymers and cells, with a carefully selected 3D printer from the categories of inkjet printing, extrusion printing and laser printing, based on the uniqueness, advantages and disadvantages of these technologies. For recent developments, we introduce the 3D applications of creating scaffolds, printing cells for self-assembly and testing platforms. We foresee more bio-applications of 3D printing will be developed, with the advancements on materials and 3D printing machines.

  3. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.

    PubMed

    Zhao, Qian; Liang, Yunhong; Ren, Lei; Qiu, Feng; Zhang, Zhihui; Ren, Luquan

    2018-02-01

    A hydrogel material system which was fit for molding and 3D printing was developed to fabricate bilayer hydrogel actuators with controllable temperature and near infrared laser responses. Polymerization on interface boundary of layered structure enhanced the bonding strength of hydrogel actuators. By utilizing anisotropic of microstructure along with thickness direction, bilayer hydrogel actuators fabricated via molding realized intelligent bending/shrinking responses, which guided the preparation of hydrogel ink for 3D printing. In-situ free radical polymerization under vacuum realized the solidification of printed hydrogel actuators with graphene oxide. Based on anisotropic swelling/deswelling behaviors of precise structure fabricated via 3D printing, the printed bilayer hydrogel actuators achieved temperature and near infrared laser responsive deformation. Changes of programmable printing path effectively resulted in corresponding deformation patterns. Combination of advantages of molding and 3D printing can promote the design and fabrication of hydrogel actuators with high mechanical strength, response speed and deformation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Readability in 1968.

    ERIC Educational Resources Information Center

    Bormuth, John R., Ed.

    This bulletin presents four papers on how to control, manipulate, and predict the readability of printed materials. The first paper describes trends in readability brought about by research tools developed by psychologists and linguists. The second paper explores the effects of word frequency in printed materials on comprehension and concludes…

  5. 3D-Printing: an emerging and a revolutionary technology in pharmaceuticals.

    PubMed

    Singhvi, Gautam; Patil, Shalini; Girdhar, Vishal; Chellappan, Dinesh K; Gupta, Gaurav; Dua, Kamal

    2018-06-01

    One of the novel and progressive technology employed in pharmaceutical manufacturing, design of medical device and tissue engineering is threedimensional (3D) printing. 3D printing technologies provide great advantages in 3D scaffolds fabrication over traditional methods in the control of pore size, porosity, and interconnectivity. Various techniques of 3Dprinting include powder bed fusion, fused deposition modeling, binder deposition, inkjet printing, photopolymerization and many others which are still evolving. 3Dprinting technique been employed in developing immediate release products, various systems to deliver multiple release modalities etc. 3D printing has opened the door for new generation of customized drug delivery with builtin flexibility for safer and effective therapy. Our minireview provides a quick snapshot on an overview of 3D printing, various techniques employed, applications and its advancements in pharmaceutical sciences.

  6. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.

    PubMed

    Deng, Xiaohu; Zeng, Zhi; Peng, Bei; Yan, Shuo; Ke, Wenchao

    2018-01-30

    Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  7. La Presse ecrite pas a pas (The Printed Media, Step by Step).

    ERIC Educational Resources Information Center

    Nott, David

    1985-01-01

    Argues that effective use of the print media in French instruction requires considerable preparation and participation on the teacher's part. A variety of exercises for thematic and lexical awareness, comprehension, guided production, autonomous production, simulation, grammar development, and other objectives are suggested. (MSE)

  8. More about the developing of invisible lipstick-contaminated lipmarks on human skin: the usefulness of fluorescent dyes.

    PubMed

    Navarro, E; Castelló, A; López-Alfaro, J A; Verdú, F

    2007-08-01

    At the present time fingerprints are one of the simplest, and most reliable means of identification. Increasingly, crime scene investigators look for palm, foot, ear or lip prints. With regard to lip prints, the use, very common today, of protective or permanent lipsticks allow the production an invisible lipmark (or invisible lipstick-contaminated lipmark) which is possible to develop. Some results have already been published about developers useful for different kinds of surfaces (both porous and non-porous) as well as those which are more efficient in case of old or recent prints. The latest studies are about the developing on human skin, and they prove the usefulness of lysochromes (specifically Sudan Black) for the develop of recent invisible lipstick-contaminated lipmarks on corpse skin. This study attempts to determine the efficiency of fluorescent reagents to develop invisible lipstick-contaminated lipmark on human skin. Results show that REDescent Fluorescent Latent Prints Powder is effective for obtaining recent invisible lipstick-contaminated lip mark on the skin of deceased.

  9. Characterization of screen-printed electrodes for dielectric elastomer (DE) membranes: influence of screen dimensions and electrode thickness on actuator performance

    NASA Astrophysics Data System (ADS)

    Fasolt, Bettina; Hodgins, Micah; Seelecke, Stefan

    2016-04-01

    Screen printing is used as a method for printing electrodes on silicone thin films for the fabrication of dielectric elastomer transducers (DET). This method can be used to manufacture a multitude of patternable designs for actuator and sensor applications, implementing the same method for prototyping as well as large-scale production. The fabrication of DETs does not only require the development of a flexible, highly conductive electrode material, which adheres to a stretched and unstretched silicone film, but also calls for a thorough understanding of the effects of the different printing parameters. This work studies the influence of screen dimensions (open area, mesh thickness) as well as the influence of multiple-layer- printing on the electrode stiffness, electrical resistance and capacitance as well as actuator performance. The investigation was conducted in a custom-built testing device, which enabled an electro-mechanical characterization of the DET, simultaneously measuring parameters such as strain, voltage, current, force, sheet resistance, capacitance and membrane thickness. Magnified pictures of the electrodes will additionally illustrate the effects of the different printing parameters.

  10. Clinical efficacy and effectiveness of 3D printing: a systematic review

    PubMed Central

    Diment, Laura E; Thompson, Mark S; Bergmann, Jeroen H M

    2017-01-01

    Objective To evaluate the clinical efficacy and effectiveness of using 3D printing to develop medical devices across all medical fields. Design Systematic review compliant with Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Data sources PubMed, Web of Science, OVID, IEEE Xplore and Google Scholar. Methods A double-blinded review method was used to select all abstracts up to January 2017 that reported on clinical trials of a three-dimensional (3D)-printed medical device. The studies were ranked according to their level of evidence, divided into medical fields based on the International Classification of Diseases chapter divisions and categorised into whether they were used for preoperative planning, aiding surgery or therapy. The Downs and Black Quality Index critical appraisal tool was used to assess the quality of reporting, external validity, risk of bias, risk of confounding and power of each study. Results Of the 3084 abstracts screened, 350 studies met the inclusion criteria. Oral and maxillofacial surgery contained 58.3% of studies, and 23.7% covered the musculoskeletal system. Only 21 studies were randomised controlled trials (RCTs), and all fitted within these two fields. The majority of RCTs were 3D-printed anatomical models for preoperative planning and guides for aiding surgery. The main benefits of these devices were decreased surgical operation times and increased surgical accuracy. Conclusions All medical fields that assessed 3D-printed devices concluded that they were clinically effective. The fields that most rigorously assessed 3D-printed devices were oral and maxillofacial surgery and the musculoskeletal system, both of which concluded that the 3D-printed devices outperformed their conventional comparators. However, the efficacy and effectiveness of 3D-printed devices remain undetermined for the majority of medical fields. 3D-printed devices can play an important role in healthcare, but more rigorous and long-term assessments are needed to determine if 3D-printed devices are clinically relevant before they become part of standard clinical practice. PMID:29273650

  11. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes.

    PubMed

    Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil

    2018-06-14

    Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.

  12. Effects of Coaching on Educators' and Preschoolers' Use of References to Print and Phonological Awareness during a Small-Group Craft/Writing Activity

    ERIC Educational Resources Information Center

    Milburn, Trelani F.; Hipfner-Boucher, Kathleen; Weitzman, Elaine; Greenberg, Janice; Pelletier, Janette; Girolametto, Luigi

    2015-01-01

    Purpose: The current study investigated the effects of coaching as part of an emergent literacy professional development program to increase early childhood educators' use of verbal references to print and phonological awareness during interactions with children. Method: Thirty-one educators and 4 children from each of their classrooms (N = 121)…

  13. Temperature-controlled microintaglio printing for high-resolution micropatterning of RNA molecules.

    PubMed

    Kobayashi, Ryo; Biyani, Manish; Ueno, Shingo; Kumal, Subhashini Raj; Kuramochi, Hiromi; Ichiki, Takanori

    2015-05-15

    We have developed an advanced microintaglio printing method for fabricating fine and high-density micropatterns and applied it to the microarraying of RNA molecules. The microintaglio printing of RNA reported here is based on the hybridization of RNA with immobilized complementary DNA probes. The hybridization was controlled by switching the RNA conformation via the temperature, and an RNA microarray with a diameter of 1.5 µm and a density of 40,000 spots/mm(2) with high contrast was successfully fabricated. Specifically, no size effects were observed in the uniformity of patterned signals over a range of microarray feature sizes spanning one order of magnitude. Additionally, we have developed a microintaglio printing method for transcribed RNA microarrays on demand using DNA-immobilized magnetic beads. The beads were arrayed on wells fabricated on a printing mold and the wells were filled with in vitro transcription reagent and sealed with a DNA-immobilized glass substrate. Subsequently, RNA was in situ synthesized using the bead-immobilized DNA as a template and printed onto the substrate via hybridization. Since the microintaglio printing of RNA using DNA-immobilized beads enables the fabrication of a microarray of spots composed of multiple RNA sequences, it will be possible to screen or analyze RNA functions using an RNA microarray fabricated by temperature-controlled microintaglio printing (TC-µIP). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A cost-effective approach to the development of printed materials: a randomized controlled trial of three strategies.

    PubMed

    Paul, C L; Redman, S; Sanson-Fisher, R W

    2004-12-01

    Printed materials have been a primary mode of communication in public health education. Three major approaches to the development of these materials--the application of characteristics identified in the literature, behavioral strategies and marketing strategies--have major implications for both the effectiveness and cost of materials. However, little attention has been directed towards the cost-effectiveness of such approaches. In the present study, three pamphlets were developed using successive addition of each approach: first literature characteristics only ('C' pamphlet), then behavioral strategies ('C + B' pamphlet) and then marketing strategies ('C + B + M' pamphlet). Each pamphlet encouraged women to join a Pap Test Reminder Service (PTRS). Each pamphlet was mailed to a randomly selected sample of 2700 women aged 50-69 years. Registrations with the PTRS were monitored and 420 women in each pamphlet group were surveyed by telephone. It was reported that the 'C + B' and 'C + B + M' pamphlets were significantly more effective than the 'C' pamphlet. The 'C + B' pamphlet was the most cost-effective of the three pamphlets. There were no significant differences between any of the pamphlet groups on acceptability, knowledge or attitudes. It was suggested that the inclusion of behavioral strategies is likely to be a cost-effective approach to the development of printed health education materials.

  15. Reading handprinted addresses on IRS tax forms

    NASA Astrophysics Data System (ADS)

    Ramanaprasad, Vemulapati; Shin, Yong-Chul; Srihari, Sargur N.

    1996-03-01

    The hand-printed address recognition system described in this paper is a part of the Name and Address Block Reader (NABR) system developed by the Center of Excellence for Document Analysis and Recognition (CEDAR). NABR is currently being used by the IRS to read address blocks (hand-print as well as machine-print) on fifteen different tax forms. Although machine- print address reading was relatively straightforward, hand-print address recognition has posed some special challenges due to demands on processing speed (with an expected throughput of 8450 forms/hour) and recognition accuracy. We discuss various subsystems involved in hand- printed address recognition, including word segmentation, word recognition, digit segmentation, and digit recognition. We also describe control strategies used to make effective use of these subsystems to maximize recognition accuracy. We present system performance on 931 address blocks in recognizing various fields, such as city, state, ZIP Code, street number and name, and personal names.

  16. Printed photodetectors

    NASA Astrophysics Data System (ADS)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-10-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems.

  17. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    PubMed

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  18. Cost-effectiveness of television, radio, and print media programs for public mental health education.

    PubMed

    Austin, L S; Husted, K

    1998-06-01

    Mass media campaigns to influence public attitudes and behaviors in the area of mental health must consider cost-effectiveness, which is based on actual costs, the number of people reached (exposures), and the impact of the program on the individual. Cost per exposure is a critical factor. The authors review their experience in developing media programs in several broadcast formats and in print. Their experience suggests that an effective television production has a very high per-exposure cost and that radio is a more cost-effective way to present health messages. Radio programs also have the advantage of reaching people in their homes or cars or at work. Brief segments may be particularly cost-effective because they can be can be inserted between programs during prime-time hours. Print media--newspapers, magazines, and newsletters--can be cost-effective if magazine or newspaper space is free, but newsletters can be costly due to fixed postage costs. One advantage of print is that it can be reread, clipped out, copied, and passed on.

  19. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution

    PubMed Central

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2018-01-01

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid: glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements. PMID:28244880

  20. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.

    PubMed

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2017-04-12

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid:glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements.

  1. PRINTING TECHNIQUES: RECENT DEVELOPMENTS IN PHARMACEUTICAL TECHNOLOGY.

    PubMed

    Jamroz, Witold; Kurek, Mateusz; Lyszczarz, Ewelina; Brniak, Witold; Jachowicz, Renata

    2017-05-01

    In the last few years there has been a huge progress in a development of printing techniques and their application in pharmaceutical sciences and particularly in the pharmaceutical technology. The variety of printing methods makes it necessary to systemize them, explain the principles of operation, and specify the possibilities of their use in pharmaceutical technology. This paper aims to review the printing techniques used in a drug development process. The growing interest in 2D and 3D printing methods results in continuously increasing number of scientific papers. Introduction of the first printed drug Spritam@ to the market seems to be a milestone of the 3D printing development. Thus, a particular aim of this review is to show the latest achievements of the researchers in the field of the printing medicines.

  2. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology.

    PubMed

    Fukuda, Kenjiro; Someya, Takao

    2017-07-01

    Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 3D printing via ambient reactive extrusion

    DOE PAGES

    Rios, Orlando; Carter, William G.; Post, Brian K.; ...

    2018-03-14

    Here, Additive Manufacturing (AM) has the potential to offer many benefits over traditional manufacturing methods in the fabrication of complex parts with advantages such as low weight, complex geometry, and embedded functionality. In practice, today’s AM technologies are limited by their slow speed and highly directional properties. To address both issues, we have developed a reactive mixture deposition approach that can enable 3D printing of polymer materials at over 100X the volumetric deposition rate, enabled by a greater than 10X reduction in print head mass compared to existing large-scale thermoplastic deposition methods, with material chemistries that can be tuned formore » specific properties. Additionally, the reaction kinetics and transient rheological properties are specifically designed for the target deposition rates, enabling the synchronized development of increasing shear modulus and extensive cross linking across the printed layers. This ambient cure eliminates the internal stresses and bulk distortions that typically hamper AM of large parts, and yields a printed part with inter-layer covalent bonds that significantly improve the strength of the part along the build direction. The fast cure kinetics combined with the fine-tuned viscoelastic properties of the mixture enable rapid vertical builds that are not possible using other approaches. Through rheological characterization of mixtures that were capable of printing in this process as well as materials that have sufficient structural integrity for layer-on-layer printing, a “printability” rheological phase diagram has been developed, and is presented here. We envision this approach implemented as a deployable manufacturing system, where manufacturing is done on-site using the efficiently-shipped polymer, locally-sourced fillers, and a small, deployable print system. Unlike existing additive manufacturing approaches which require larger and slower print systems and complex thermal management strategies as scale increases, liquid reactive polymers decouple performance and print speed from the scale of the part, enabling a new class of cost-effective, fuel-efficient additive manufacturing.« less

  4. 3D printing via ambient reactive extrusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Carter, William G.; Post, Brian K.

    Here, Additive Manufacturing (AM) has the potential to offer many benefits over traditional manufacturing methods in the fabrication of complex parts with advantages such as low weight, complex geometry, and embedded functionality. In practice, today’s AM technologies are limited by their slow speed and highly directional properties. To address both issues, we have developed a reactive mixture deposition approach that can enable 3D printing of polymer materials at over 100X the volumetric deposition rate, enabled by a greater than 10X reduction in print head mass compared to existing large-scale thermoplastic deposition methods, with material chemistries that can be tuned formore » specific properties. Additionally, the reaction kinetics and transient rheological properties are specifically designed for the target deposition rates, enabling the synchronized development of increasing shear modulus and extensive cross linking across the printed layers. This ambient cure eliminates the internal stresses and bulk distortions that typically hamper AM of large parts, and yields a printed part with inter-layer covalent bonds that significantly improve the strength of the part along the build direction. The fast cure kinetics combined with the fine-tuned viscoelastic properties of the mixture enable rapid vertical builds that are not possible using other approaches. Through rheological characterization of mixtures that were capable of printing in this process as well as materials that have sufficient structural integrity for layer-on-layer printing, a “printability” rheological phase diagram has been developed, and is presented here. We envision this approach implemented as a deployable manufacturing system, where manufacturing is done on-site using the efficiently-shipped polymer, locally-sourced fillers, and a small, deployable print system. Unlike existing additive manufacturing approaches which require larger and slower print systems and complex thermal management strategies as scale increases, liquid reactive polymers decouple performance and print speed from the scale of the part, enabling a new class of cost-effective, fuel-efficient additive manufacturing.« less

  5. Towards roll-to-roll fabrication of electronics, optics, and optoelectronics for smart and intelligent packaging

    NASA Astrophysics Data System (ADS)

    Kololuoma, Terho K.; Tuomikoski, Markus; Makela, Tapio; Heilmann, Jali; Haring, Tomi; Kallioinen, Jani; Hagberg, Juha; Kettunen, Ilkka; Kopola, Harri K.

    2004-06-01

    Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like packages and printed matter can be used to increase their information content. These functionalities make also possible the realization of new type of entertaining, impressive or guiding effects on the product packages and printed matter. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Additionally, the price of the components for low-end products has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid materials - inks - have made it possible to fabricate functional electrical, optical and optoelectrical components by conventional roll-to-roll techniques such as gravure printing, embossing, digital printing, offset, and screen printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated, optics, electronics and optoelectronics. With few examples, we also demonstrate the printing and hot-embossing capabilities of table scale printing machines and VTT Electronic's 'PICO' roll-to-roll pilot production facility.

  6. Effects of coaching on educators' and preschoolers' use of references to print and phonological awareness during a small-group craft/writing activity.

    PubMed

    Milburn, Trelani F; Hipfner-Boucher, Kathleen; Weitzman, Elaine; Greenberg, Janice; Pelletier, Janette; Girolametto, Luigi

    2015-04-01

    The current study investigated the effects of coaching as part of an emergent literacy professional development program to increase early childhood educators' use of verbal references to print and phonological awareness during interactions with children. Thirty-one educators and 4 children from each of their classrooms (N = 121) were randomly assigned to an experimental group (21 hr of in-service workshops plus 5 coaching sessions) and a comparison group (workshops alone). The in-service workshops included instruction on how to talk about print and phonological awareness during a post-story craft/writing activity. All educators were video-recorded during a 15-min craft/writing activity with a small group of preschoolers at pretest and posttest. All videotapes were transcribed and coded for verbal references to print and phonological awareness by the educators and children. Although at posttest, there were no significant group differences in the educators' or the children's references to print as measured by rate per minute, both the educators and the children in the experimental group used a significantly higher rate per minute of references to phonological awareness relative to the comparison group. Professional development that included coaching with a speech-language pathologist enabled educators and children to engage in more phonological awareness talk during this activity.

  7. Study on embedding fiber Bragg grating sensor into the 3D printing structure for health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Ruiya; Tan, Yuegang; Zhou, Zude; Fang, Liang; Chen, Yiyang

    2016-10-01

    3D printing technology is a rapidly developing manufacturing technology, which is known as a core technology in the third industrial revolution. With the continuous improvement of the application of 3D printing products, the health monitoring of the 3D printing structure is particularly important. Fiber Bragg grating (FBG) sensing technology is a new type of optical sensing technology with unique advantages comparing to traditional sensing technology, and it has great application prospects in structural health monitoring. In this paper, the FBG sensors embedded in the internal structure of the 3D printing were used to monitor the static and dynamic strain variation of 3D printing structure during loading process. The theoretical result and experimental result has good consistency and the characteristic frequency detected by FBG sensor is consistent with the testing results of traditional accelerator in the dynamic experiment. The results of this paper preliminary validate that FBG embedded in the 3D printing structure can effectively detecting the static and dynamic stain change of the 3D printing structure, which provide some guidance for the health monitoring of 3D printing structure.

  8. The influence of print exposure on the body-object interaction effect in visual word recognition.

    PubMed

    Hansen, Dana; Siakaluk, Paul D; Pexman, Penny M

    2012-01-01

    We examined the influence of print exposure on the body-object interaction (BOI) effect in visual word recognition. High print exposure readers and low print exposure readers either made semantic categorizations ("Is the word easily imageable?"; Experiment 1) or phonological lexical decisions ("Does the item sound like a real English word?"; Experiment 2). The results from Experiment 1 showed that there was a larger BOI effect for the low print exposure readers than for the high print exposure readers in semantic categorization, though an effect was observed for both print exposure groups. However, the results from Experiment 2 showed that the BOI effect was observed only for the high print exposure readers in phonological lexical decision. The results of the present study suggest that print exposure does influence the BOI effect, and that this influence varies as a function of task demands.

  9. 3D printed e-tongue

    NASA Astrophysics Data System (ADS)

    Gaál, Gabriel; da Silva, Tatiana A.; Gaál, Vladimir; Hensel, Rafael C.; Amaral, Lucas R.; Rodrigues, Varlei; Riul, Antonio

    2018-05-01

    Nowadays, one of the biggest issues addressed to electronic sensor fabrication is the build-up of efficient electrodes as an alternative way to the expensive, complex and multistage processes required by traditional techniques. Printed electronics arises as an interesting alternative to fulfill this task due to the simplicity and speed to stamp electrodes on various surfaces. Within this context, the Fused Deposition Modeling 3D printing is an emerging, cost-effective and alternative technology to fabricate complex structures that potentiates several fields with more creative ideas and new materials for a rapid prototyping of devices. We show here the fabrication of interdigitated electrodes using a standard home-made CoreXY 3D printer using transparent and graphene-based PLA filaments. Macro 3D printed electrodes were easily assembled within 6 minutes with outstanding reproducibility. The electrodes were also functionalized with different nanostructured thin films via dip-coating Layer-by-Layer technique to develop a 3D printed e-tongue setup. As a proof of concept, the printed e-tongue was applied to soil analysis. A control soil sample was enriched with several macro-nutrients to the plants (N, P, K, S, Mg and Ca) and the discrimination was done by electrical impedance spectroscopy of water solution of the soil samples. The data was analyzed by Principal Component Analysis and the 3D printed sensor distinguished clearly all enriched samples despite the complexity of the soil chemical composition. The 3D printed e-tongue successfully used in soil analysis encourages further investments in developing new sensory tools for precision agriculture and other fields exploiting the simplicity and flexibility offered by the 3D printing techniques.

  10. Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices.

    PubMed

    Bariya, Mallika; Shahpar, Ziba; Park, Hyejin; Sun, Junfeng; Jung, Younsu; Gao, Wei; Nyein, Hnin Yin Yin; Liaw, Tiffany Sun; Tai, Li-Chia; Ngo, Quynh P; Chao, Minghan; Zhao, Yingbo; Hettick, Mark; Cho, Gyoujin; Javey, Ali

    2018-06-25

    As recent developments in noninvasive biosensors spearhead the thrust toward personalized health and fitness monitoring, there is a need for high throughput, cost-effective fabrication of flexible sensing components. Toward this goal, we present roll-to-roll (R2R) gravure printed electrodes that are robust under a range of electrochemical sensing applications. We use inks and electrode morphologies designed for electrochemical and mechanical stability, achieving devices with uniform redox kinetics printed on 150 m flexible substrate rolls. We show that these electrodes can be functionalized into consistently high performing sensors for detecting ions, metabolites, heavy metals, and other small molecules in noninvasively accessed biofluids, including sensors for real-time, in situ perspiration monitoring during exercise. This development of robust and versatile R2R gravure printed electrodes represents a key translational step in enabling large-scale, low-cost fabrication of disposable wearable sensors for personalized health monitoring applications.

  11. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.

    PubMed

    Liu, Min; Zhang, Chunsun; Liu, Feifei

    2015-09-03

    In this work, we first introduce the fabrication of microfluidic cloth-based analytical devices (μCADs) using a wax screen-printing approach that is suitable for simple, inexpensive, rapid, low-energy-consumption and high-throughput preparation of cloth-based analytical devices. We have carried out a detailed study on the wax screen-printing of μCADs and have obtained some interesting results. Firstly, an analytical model is established for the spreading of molten wax in cloth. Secondly, a new wax screen-printing process has been proposed for fabricating μCADs, where the melting of wax into the cloth is much faster (∼5 s) and the heating temperature is much lower (75 °C). Thirdly, the experimental results show that the patterning effects of the proposed wax screen-printing method depend to a certain extent on types of screens, wax melting temperatures and melting time. Under optimized conditions, the minimum printing width of hydrophobic wax barrier and hydrophilic channel is 100 μm and 1.9 mm, respectively. Importantly, the developed analytical model is also well validated by these experiments. Fourthly, the μCADs fabricated by the presented wax screen-printing method are used to perform a proof-of-concept assay of glucose or protein in artificial urine with rapid high-throughput detection taking place on a 48-chamber cloth-based device and being performed by a visual readout. Overall, the developed cloth-based wax screen-printing and arrayed μCADs should provide a new research direction in the development of advanced sensor arrays for detection of a series of analytes relevant to many diverse applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nano-scale composition of commercial white powders for development of latent fingerprints on adhesives.

    PubMed

    Jones, B J; Reynolds, A J; Richardson, M; Sears, V G

    2010-09-01

    Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide can be suspended in a surfactant and used in the form of a powder suspension. Commercially available products, whilst having nominally similar composition, show varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. X-ray fluorescence (XRF), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and laser particle sizing of the fingerprint powders show TiO(2) particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material, with traces of sodium and sulphur. Such aluminosilicates are commonly used as anti-caking agents and to aid adhesion or functionality of some fingerprint powders; however, the morphology, thickness, coverage and composition of the aluminosilicates are the primary differences between the white powder formulations and could be related to variation in the efficacy of print development. Copyright © 2009 Forensic Science Society. All rights reserved.

  13. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keicher, David M.; Cook, Adam W.

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capabilitymore » in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.« less

  14. SU-G-BRB-01: A Novel 3D Printed Patient-Specific Phantom for Spine SBRT Quality Assurance: Comparison of 3D Printing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Kim, M; Lee, M

    Purpose: The novel 3 dimensional (3D)-printed spine quality assurance (QA) phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet, were developed and evaluated for spine stereotactic body radiation treatment (SBRT). Methods: The developed 3D-printed spine QA phantom consisted of an acrylic body and a 3D-printed spine phantom. DLP and Polyjet 3D printers using the high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. To verify dosimetric effects, the novel phantom was made it enable to insert films between each slabs of acrylic body phantom. Also, for measuring internal dose of spine, 3D-printedmore » spine phantom was designed as divided laterally exactly in half. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield unit (HU) was measured based on each CT image. Intensity-modulated radiotherapy plans to deliver a fraction of a 16 Gy dose to a planning target volume (PTV) based on the two 3D-printing techniques were compared for target coverage and normal organ-sparing. Results: Image fusion demonstrated good reproducibility of the fabricated spine QA phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than for the Polyjet-generated phantom. The organs at risk received a lower dose when the DLP technique was used than when the Polyjet technique was used. Conclusion: This study confirmed that a novel 3D-printed phantom mimicking a high-density organ can be created based on CT images, and that a developed 3D-printed spine phantom could be utilized in patient-specific QA for SBRT. Despite using the same main material, DLP and Polyjet yielded different HU values. Therefore, the printing technique and materials must be carefully chosen in order to accurately produce a patient-specific QA phantom.« less

  15. Laser direct writing and inkjet printing for a sub-2 μm channel length MoS2 transistor with high-resolution electrodes

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Jun; Chung, Seungjun; Jang, Jaewon; Grigoropoulos, Costas P.

    2016-10-01

    Patterns formed by the laser direct writing (LDW) lithography process are used either as channels or barriers for MoS2 transistors fabricated via inkjet printing. Silver (Ag) nanoparticle ink is printed over patterns formed on top of the MoS2 flakes in order to construct high-resolution source/drain (S/D) electrodes. When positive photoresist is used, the produced grooves are filled with inkjetted Ag ink by capillary forces. On the other hand, in the case of negative photoresist, convex barrier-like patterns are written on the MoS2 flakes and patterns, dividing the printed Ag ink into the S/D electrodes by self-alignment. LDW lithography combined with inkjet printing is applied to MoS2 thin-film transistors that exhibit moderate electrical performance such as mobility and subthreshold swing. However, especially in the linear operation regime, their features are limited by the contact effect. The Y-function method can exclude the contact effect and allow proper evaluation of the maximum available mobility and contact resistance. The presented fabrication methods may facilitate the development of cost-effective fabrication processes.

  16. Clinical efficacy and effectiveness of 3D printing: a systematic review.

    PubMed

    Diment, Laura E; Thompson, Mark S; Bergmann, Jeroen H M

    2017-12-21

    To evaluate the clinical efficacy and effectiveness of using 3D printing to develop medical devices across all medical fields. Systematic review compliant with Preferred Reporting Items for Systematic Reviews and Meta-Analyses. PubMed, Web of Science, OVID, IEEE Xplore and Google Scholar. A double-blinded review method was used to select all abstracts up to January 2017 that reported on clinical trials of a three-dimensional (3D)-printed medical device. The studies were ranked according to their level of evidence, divided into medical fields based on the International Classification of Diseases chapter divisions and categorised into whether they were used for preoperative planning, aiding surgery or therapy. The Downs and Black Quality Index critical appraisal tool was used to assess the quality of reporting, external validity, risk of bias, risk of confounding and power of each study. Of the 3084 abstracts screened, 350 studies met the inclusion criteria. Oral and maxillofacial surgery contained 58.3% of studies, and 23.7% covered the musculoskeletal system. Only 21 studies were randomised controlled trials (RCTs), and all fitted within these two fields. The majority of RCTs were 3D-printed anatomical models for preoperative planning and guides for aiding surgery. The main benefits of these devices were decreased surgical operation times and increased surgical accuracy. All medical fields that assessed 3D-printed devices concluded that they were clinically effective. The fields that most rigorously assessed 3D-printed devices were oral and maxillofacial surgery and the musculoskeletal system, both of which concluded that the 3D-printed devices outperformed their conventional comparators. However, the efficacy and effectiveness of 3D-printed devices remain undetermined for the majority of medical fields. 3D-printed devices can play an important role in healthcare, but more rigorous and long-term assessments are needed to determine if 3D-printed devices are clinically relevant before they become part of standard clinical practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. The American print news media 'construction' of five natural disasters.

    PubMed

    Ploughman, P

    1995-12-01

    In 1985, five international 'natural' disasters received prominent print news media coverage in the United States. Content analyses of selected print news media accounts of these five disasters were conducted. The purported evidence of alleged cause-effect relationships describing and explaining these disasters as 'objective' realities was evaluated in the light of the subjective selection of explanatory factors, themes, frameworks, and value assumptions which underlie the media's analysis and 'construction' of these events as 'natural' disasters. Analysis of the American print news media coverage of these disasters indicated an emphasis upon the dramatic, descriptive, climatological or geological qualities of these events rather than upon causal explanations emphasizing the role of human acts or omissions in the development of these disasters. The print news media 'constructed' these events as 'natural' disasters despite clear evidence of their hybrid, natural-human origins.

  18. Manufacturing of polylactic acid nanocomposite 3D printer filaments for smart textile applications

    NASA Astrophysics Data System (ADS)

    Hashemi Sanatgar, R.; Cayla, A.; Campagne, C.; Nierstrasz, V.

    2017-10-01

    In this paper, manufacturing of polylactic acid nanocomposite 3D printer filaments was considered for smart textile applications. 3D printing process was applied as a novel process for deposition of nanocomposites on PLA fabrics to introduce more flexible, resourceefficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity.

  19. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting

    NASA Astrophysics Data System (ADS)

    Catros, Sylvain; Guillotin, Bertrand; Bačáková, Markéta; Fricain, Jean-Christophe; Guillemot, Fabien

    2011-04-01

    Biofabrication of three dimensional tissues by Laser-Assisted Bioprinting (LAB) implies to develop specific strategies for assembling the extracellular matrix (ECM) and cells. Possible strategies consist in (i) printing cells onto or in the depth of ECM layer and/or (ii) printing bioinks containing both cells and ECM-like printable biomaterial. The aim of this article was to evaluate combinatorial effects of laser pulse energy, ECM thickness and viscosity of the bioink on cell viability. A LAB workstation was used to print Ea.hy926 endothelial cells onto a quartz substrate covered with a film of ECM mimicking Matrigel™. Hence, effect of laser energy, Matrigel™ film thickness and bioink viscosity was addressed for different experimental conditions (8-24 μJ, 20-100 μm and 40-110 mPa s, respectively). Cell viability was assessed by live/dead assay performed 24 h post-printing. Results show that increasing the laser energy tends to augment the cell mortality while increasing the thickness of the Matrigel™ film and the viscosity of the bioink support cell viability. Hence, critical printing parameters influencing high cell viability have been related to the cell landing conditions and more specifically to the intensity of the cell impacts occurring at the air-ECM interface and at the ECM-glass interface.

  20. Processes involved in the development of latent fingerprints using the cyanoacrylate fuming method.

    PubMed

    Lewis, L A; Smithwick, R W; Devault, G L; Bolinger, B; Lewis, S A

    2001-03-01

    Chemical processes involved in the development of latent fingerprints using the cyanoacrylate fuming method have been studied. Two major types of latent prints have been investigated-clean and oily prints. Scanning electron microscopy (SEM) has been used as a tool for determining the morphology of the polymer developed separately on clean and oily prints after cyanoacrylate fuming. A correlation between the chemical composition of an aged latent fingerprint, prior to development, and the quality of a developed fingerprint has been observed in the morphology. The moisture in the print prior to fuming has been found to be more important than the moisture in the air during fuming for the development of a useful latent print. In addition, the amount of time required to develop a high quality latent print has been found to be within 2 min. The cyanoacrylate polymerization process is extremely rapid. When heat is used to accelerate the fuming process, typically a period of 2 min is required to develop the print. The optimum development time depends upon the concentration of cyanoacrylate vapors within the enclosure.

  1. Study of thermo-fluidic behavior of micro-droplet in inkjet-based micro manufacturing processes

    NASA Astrophysics Data System (ADS)

    Das, Raju; Mahapatra, Abhijit; Ball, Amit Kumar; Roy, Shibendu Shekhar; Murmu, Naresh Chandra

    2017-06-01

    Inkjet printing technology, a maskless, non-contact patterning operation, which has been a revelation in the field of micro and nano manufacturing for its use in the selective deposition of desired materials. It is becoming an exciting alternative technology such as lithography to print functional material on to a substrate. Selective deposition of functional materials on desired substrates is a basic requirement in many of the printing based micro and nano manufacturing operations like the fabrication of microelectronic devices, solar cell, Light-emitting Diode (LED) research fields like pharmaceutical industries for drug discovery purposes and in biotechnology to make DNA microarrays. In this paper, an attempt has been made to design and develop an indigenous Electrohydrodynamic Inkjet printing system for micro fabrication and to study the interrelationships between various thermos-fluidic parameters of the ink material in the printing process. The effect of printing process parameters on printing performance characteristics has also been studied. And the applicability of the process has also been experimentally demonstrated. The experimentally found results were quite satisfactory and accordance to its applicability.

  2. A model-based approach for the scattering-bar printing avoidance

    NASA Astrophysics Data System (ADS)

    Du, Yaojun; Li, Liang; Zhang, Jingjing; Shao, Feng; Zuniga, Christian; Deng, Yunfei

    2018-03-01

    As the technology node for the semiconductor manufacturing approaches advanced nodes, the scattering-bars (SBs) are more crucial than ever to ensure a good on-wafer printability of the line space pattern and hole pattern. The main pattern with small pitches requires a very narrow PV (process variation) band. A delicate SB addition scheme is thus needed to maintain a sufficient PW (process window) for the semi-iso- and iso-patterns. In general, the wider, longer, and closer to main feature SBs will be more effective in enhancing the printability; on the other hand, they are also more likely to be printed on the wafer; resulting in undesired defects transferable to subsequent processes. In this work, we have developed a model based approach for the scattering-bar printing avoidance (SPA). A specially designed optical model was tuned based on a broad range of test patterns which contain a variation of CDs and SB placements showing printing and non-printing scattering bars. A printing threshold is then obtained to check the extra-printings of SBs. The accuracy of this threshold is verified by pre-designed test patterns. The printing threshold associated with our novel SPA model allows us to set up a proper SB rule.

  3. Printed organo-functionalized graphene for biosensing applications.

    PubMed

    Wisitsoraat, A; Mensing, J Ph; Karuwan, C; Sriprachuabwong, C; Jaruwongrungsee, K; Phokharatkul, D; Daniels, T M; Liewhiran, C; Tuantranont, A

    2017-01-15

    Graphene is a highly promising material for biosensors due to its excellent physical and chemical properties which facilitate electron transfer between the active locales of enzymes or other biomaterials and a transducer surface. Printing technology has recently emerged as a low-cost and practical method for fabrication of flexible and disposable electronics devices. The combination of these technologies is promising for the production and commercialization of low cost sensors. In this review, recent developments in organo-functionalized graphene and printed biosensor technologies are comprehensively covered. Firstly, various methods for printing graphene-based fluids on different substrates are discussed. Secondly, different graphene-based ink materials and preparation methods are described. Lastly, biosensing performances of printed or printable graphene-based electrochemical and field effect transistor sensors for some important analytes are elaborated. The reported printed graphene based sensors exhibit promising properties with good reliability suitable for commercial applications. Among most reports, only a few printed graphene-based biosensors including screen-printed oxidase-functionalized graphene biosensor have been demonstrated. The technology is still at early stage but rapidly growing and will earn great attention in the near future due to increasing demand of low-cost and disposable biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Printing medicines as orodispersible dosage forms: Effect of substrate on the printed micro-structure.

    PubMed

    Planchette, C; Pichler, H; Wimmer-Teubenbacher, M; Gruber, M; Gruber-Woelfler, H; Mohr, S; Tetyczka, C; Hsiao, W-K; Paudel, A; Roblegg, E; Khinast, J

    2016-07-25

    We present our recent advancements in developing a viable manufacturing process for printed medicine. Our approach involves using a non-contact printing system that incorporates both piezoelectric- and solenoid valve-based inkjet printing technologies, to deliver both active and inactive pharmaceutical materials onto medical-graded orodispersible films. By using two complimentary inkjet technologies, we were able to dispense an extensive range of fluids, from aqueous drug solutions to viscous polymer coating materials. Essentially, we demonstrate printing of a wide range of formulations for patient-ready, orodispersible drug dosage forms, without the risk of drug degradation by ink heating and of substrate damages (by contact printing). In addition, our printing process has been optimized to ensure that the drug doses can be loaded onto the orally dissolvable films without introducing defects, such as holes or tears, while retaining a smooth surface texture that promotes patient adherence and allows for uniform post-coatings. Results show that our platform technology can address key issues in manufacturing orodispersible drug dosage forms and bring us closer to delivering personalized and precision medicine to targeted patient populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of Processing Parameters on 3D Printing of Cement - based Materials

    NASA Astrophysics Data System (ADS)

    Lin, Jia Chao; Wang, Jun; Wu, Xiong; Yang, Wen; Zhao, Ri Xu; Bao, Ming

    2018-06-01

    3D printing is a new study direction of building method in recent years. The applicability of 3D printing equipment and cement based materials is analyzed, and the influence of 3D printing operation parameters on the printing effect is explored in this paper. Results showed that the appropriate range of 3D printing operation parameters: print height/nozzle diameter is between 0.4 to 0.6, the printing speed 4-8 cm/s with pumpage 9 * 10-2 m 3/ h.

  6. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines.

    PubMed

    Kuzmenko, Volodymyr; Karabulut, Erdem; Pernevik, Elin; Enoksson, Peter; Gatenholm, Paul

    2018-06-01

    Neural tissue engineering (TE), an innovative biomedical method of brain study, is very dependent on scaffolds that support cell development into a functional tissue. Recently, 3D patterned scaffolds for neural TE have shown significant positive effects on cells by a more realistic mimicking of actual neural tissue. In this work, we present a conductive nanocellulose-based ink for 3D printing of neural TE scaffolds. It is demonstrated that by using cellulose nanofibrils and carbon nanotubes as ink constituents, it is possible to print guidelines with a diameter below 1 mm and electrical conductivity of 3.8 × 10 -1  S cm -1 . The cell culture studies reveal that neural cells prefer to attach, proliferate, and differentiate on the 3D printed conductive guidelines. To our knowledge, this is the first research effort devoted to using cost-effective cellulosic 3D printed structures in neural TE, and we suppose that much more will arise in the near future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  8. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  9. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  10. Continuous tone printing in silicone from CNC milled matrices

    NASA Astrophysics Data System (ADS)

    Hoskins, S.; McCallion, P.

    2014-02-01

    Current research at the Centre for Fine Print Research (CFPR) at the University of the West of England, Bristol, is exploring the potential of creating coloured pictorial imagery from a continuous tone relief surface. To create the printing matrices the research team have been using CNC milled images where the height of the relief image is dictated by creating a tone curve and then milling this curve into a series of relief blocks from which the image is cast in a silicone ink. A translucent image is cast from each of the colour matrices and each colour is assembled - one on top of another - resulting is a colour continuous tone print, where colour tone is created by physical depth of colour. This process is a contemporary method of continuous tone colour printing based upon the Nineteenth Century black and white printing process of Woodburytype as developed by Walter Bentley Woodbury in 1865. Woodburytype is the only true continuous tone printing process invented, and although its delicate and subtle surfaces surpassed all other printing methods at the time. The process died out in the late nineteenth century as more expedient and cost effective methods of printing prevailed. New research at CFPR builds upon previous research that combines 19th Century Photomechanical techniques with digital technology to reappraise the potential of these processes.

  11. Recent developments and directions in printed nanomaterials

    NASA Astrophysics Data System (ADS)

    Choi, Hyung Woo; Zhou, Tianlei; Singh, Madhusudan; Jabbour, Ghassan E.

    2015-02-01

    In this review, we survey several recent developments in printing of nanomaterials for contacts, transistors, sensors of various kinds, light-emitting diodes, solar cells, memory devices, and bone and organ implants. The commonly used nanomaterials are classified according to whether they are conductive, semiconducting/insulating or biological in nature. While many printing processes are covered, special attention is paid to inkjet printing and roll-to-roll printing in light of their complexity and popularity. In conclusion, we present our view of the future development of this field.

  12. Characterization of relief printing

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Chen, Lin; Ortiz-Segovia, Maria-Valezzka; Ferwerda, James; Allebach, Jan

    2014-03-01

    Relief printing technology developed by Océ allows the superposition of several layers of colorant on different types of media which creates a variation of the surface height defined by the input to the printer. Evaluating the reproduction accuracy of distinct surface characteristics is of great importance to the application of the relief printing system. Therefore, it is necessary to develop quality metrics to evaluate the relief process. In this paper, we focus on the third dimension of relief printing, i.e. height information. To achieve this goal, we define metrics and develop models that aim to evaluate relief prints in two aspects: overall fidelity and surface finish. To characterize the overall fidelity, three metrics are calculated: Modulation Transfer Function (MTF), difference and root-mean-squared error (RMSE) between the input height map and scanned height map, and print surface angle accuracy. For the surface finish property, we measure the surface roughness, generate surface normal maps and develop a light reflection model that serves as a simulation of the differences between ideal prints and real prints that may be perceived by human observers. Three sets of test targets are designed and printed by the Océ relief printer prototypes for the calculation of the above metrics: (i) twisted target, (ii) sinusoidal wave target, and (iii) ramp target. The results provide quantitative evaluations of the printing quality in the third dimension, and demonstrate that the height of relief prints is reproduced accurately with respect to the input design. The factors that affect the printing quality include: printing direction, frequency and amplitude of the input signal, shape of relief prints. Besides the above factors, there are two additional aspects that influence the viewing experience of relief prints: lighting condition and viewing angle.

  13. Can tailored interventions increase mammography use among HMO women?

    PubMed

    Lipkus, I M; Rimer, B K; Halabi, S; Strigo, T S

    2000-01-01

    Telephone counseling and tailored print communications have emerged as promising methods for promoting mammography screening. However, there has been little research testing, within the same randomized field trial, of the efficacy of these two methods compared to a high-quality usual care system for enhancing screening. This study addressed the question: Compared to usual care, is tailored telephone counseling more effective than tailored print materials for promoting mammography screening? Three-year randomized field trial. One thousand ninety-nine women aged 50 and older recruited from a health maintenance organization in North Carolina. Women were randomized to 1 of 3 groups: (1) usual care, (2) tailored print communications, and (3) tailored telephone counseling. Adherence to mammography screening based on self-reports obtained during 1995, 1996, and 1997. Compared to usual care alone, telephone counseling promoted a significantly higher proportion of women having mammograms on schedule (71% vs 61%) than did tailored print (67% vs 61%) but only after the first year of intervention (during 1996). Furthermore, compared to usual care, telephone counseling was more effective than tailored print materials at promoting being on schedule with screening during 1996 and 1997 among women who were off-schedule during the previous year. The effects of the intervention were most pronounced after the first intervention. Compared to usual care, telephone counseling seemed particularly effective at promoting change among nonadherent women, the group for whom the intervention was developed. These results suggest that telephone counseling, rather than tailored print, might be the preferred first-line intervention for getting nonadherent women on schedule for mammography screening. Many questions would have to be answered about why the tailored print intervention was not more powerful. Nevertheless, it is clear that additional interventions will be needed to maintain women's adherence to mammography. Medical Subject Headings (MeSH): mammography screening, telephone counseling, tailored print communications, barriers.

  14. Effects of Processing and Medical Sterilization Techniques on 3D-Printed and Molded Polylactic Acid

    NASA Astrophysics Data System (ADS)

    Geritano, Mariah Nicole

    Manufacturing industries have evolved tremendously in the past decade with the introduction of Additive Manufacturing (AM), also known as 3D Printing. The medical device industry has been a leader in adapting this new technology into research and development. 3D printing enables medical devices and implants to become more customizable, patient specific, and allows for low production numbers. This study compares the mechanical and thermal properties of traditionally manufactured parts versus parts manufactured through 3D printing before and after sterilization, and the ability of an FDM printer to produce reliable, identical samples. It was found that molded samples and 100% infill high-resolution samples have almost identical changes in properties when exposed to different sterilization methods, and similar cooling rates. The data shown throughout this investigation confirms that manipulation of printing parameters can result in an object with comparable material properties to that created through traditional manufacturing methods.

  15. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review.

    PubMed

    Feng, Chunyan; Zhang, Min; Bhandari, Bhesh

    2018-06-01

    Interest in additive manufacture has grown significantly in recent years, driving a need for printable materials that can sustain high strains and still fulfill their function in applications such as tissue engineering, regenerative medicine field, food engineering and field of aerospace, etc. As an emerging and promising technology, 3Dprinting has attracted more and more attention with fast manipulation, reduce production cost, customize geometry, increase competitiveness and advantages in many hot research areas. Many researchers have done a lot of investigations on printable materials, ranging from a single material to composite material. Main content: This review focuses on the contents of printable edible inks. It also gathers and analyzes information on the effects of printable edible ink material properties on 3D print accuracy. In addition, it discusses the impact of printing parameters on accurate printing, and puts forward current challenges and recommendations for future research and development.

  16. Supporting the Teaching of Information Literacy with First Year BSC Nursing Students: The Case for a Printed Workbook

    ERIC Educational Resources Information Center

    Ryba, Helen M.; Pledger, Trudi

    2016-01-01

    Information literacy (IL) is increasingly considered to be an important life skill and there are a number of challenges that librarians face in implementing an effective IL program. This article examines the experience of library staff at Birmingham City University (BCU) and how they developed a printed workbook to be embedded within sessions…

  17. Printing enzymatic reactions.

    PubMed

    Tian, Junfei; Shen, Wei

    2011-02-07

    We used relief and planographic printing methods to print the catalytic effect of an enzyme, but not the enzyme molecules, onto paper. Printing enzymatic reactions have applications in bioactive papers, low-cost diagnostics, anti-counterfeiting devices and advanced packaging materials. These methods can create novel printing effects on commodity surfaces for advanced applications.

  18. 3D Printing technology over a drug delivery for tissue engineering.

    PubMed

    Lee, Jin Woo; Cho, Dong-Woo

    2015-01-01

    Many researchers have attempted to use computer-aided design (CAD) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (DDS) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and DDSs have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future.

  19. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.

    PubMed

    Kuang, Xiao; Chen, Kaijuan; Dunn, Conner K; Wu, Jiangtao; Li, Vincent C F; Qi, H Jerry

    2018-02-28

    The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.

  20. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    NASA Astrophysics Data System (ADS)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  1. 3D printed porous ceramic scaffolds for bone tissue engineering: a review.

    PubMed

    Wen, Yu; Xun, Sun; Haoye, Meng; Baichuan, Sun; Peng, Chen; Xuejian, Liu; Kaihong, Zhang; Xuan, Yang; Jiang, Peng; Shibi, Lu

    2017-08-22

    This study summarizes the recent research status and development of three-dimensional (3D)-printed porous ceramic scaffolds in bone tissue engineering. Recent literature on 3D-printed porous ceramic scaffolds was reviewed. Compared with traditional processing and manufacturing technologies, 3D-printed porous ceramic scaffolds have obvious advantages, such as enhancement of the controllability of the structure or improvement of the production efficiency. More sophisticated scaffolds were fabricated by 3D printing technology. 3D printed bioceramics have broad application prospects in bone tissue engineering. Through understanding the advantages and limitations of different 3D-printing approaches, new classes of bone graft substitutes can be developed.

  2. Multifunctional optical security features based on bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Hampp, Norbert A.; Neebe, Martin; Juchem, Thorsten; Wolperdinger, Markus; Geiger, Markus; Schmuck, Arno

    2004-06-01

    Bacteriorhodopsin (BR), a photochromic retinal protein, has been developed into a new materials platform for applications in anti-counterfeiting. The combination of three different properties of the material on its molecular level, a light-inducible color change, photochemical data storage and traceability of the protein due to molecular marker sequences make this protein a promising material for security applications. The crystalline structure of the biopigment combines these properties with high stability. As BR is a biological material specialized knowledge for modification, cost- effective production and suitable processing of the material is required. Photochromic BR-based inks have been developed for screen printing, pad printing and ink jet printing. These prints show a high photochromic sensitivity towards variation of illumination. For this reason it is not possible to reproduce the dynamic color by photocopying. In addition to such visual inspection the printed symbols offer the possibility for digital write-once-read-many (WORM) data storage. Photochemical recording is accomplished by a two-photon process. Recording densities in a range from 106 bit/cm2 to 108 bit/cm2 have been achieved. Data structures are stored in a polarization sensitive mode which allows an easy and efficient data encryption.

  3. [Validation and clinical application of MammaPrint® in patients with breast cancer].

    PubMed

    Sánchez-Forgach, Ernesto Roberto; Carpinteyro-Espín, Ubaldo; Alemán-Áviles, Jorge Alberto; Sánchez-Basurto, Carlos

    In recent years, advances in molecular biology have resulted in innovations in breast cancer diagnostics and therapeutics. The development of genomics has revolutionized our understanding of this disease. MammaPrint ® was developed as a diagnostic tool to predict risk of breast cancer recurrence using the expression of 70 genes altering the clinicopathologic paradigm of selection of patients for adjuvant cytotoxic chemotherapy. A study of stage i-ii breast cancer patients on whom the MammaPrint ® genomic assay was performed. The use of the MammaPrint ® assay was a decisive factor for the recommendation of adjuvant treatment with chemotherapy and/or hormone therapy in patients with high risk for relapse. In our group, the patients with low-risk have not presented local or systemic recurrences DISCUSSION: The determination of the genetic characteristics and its alterations in breast cancer, is fundamentally important for a better identification of risk, as well as a better selection of cancer therapy. MammaPrint ® is an effective study to determine risk of recurrence of in early stage breast cancer. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  4. Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine

    PubMed Central

    Lee, Vivian K.; Dai, Guohao

    2016-01-01

    3-D cell printing, which can accurately deposit cells, biomaterial scaffolds and growth factors in precisely defined spatial patterns to form biomimetic tissue structures, has emerged as a powerful enabling technology to create live tissue and organ structures for drug discovery and tissue engineering applications. Unlike traditional 3-D printing that uses metals, plastics and polymers as the printing materials, cell printing has to be compatible with living cells and biological matrix. It is also required that the printing process preserves the biological functions of the cells and extracellular matrix, and to mimic the cell-matrix architectures and mechanical properties of the native tissues. Therefore, there are significant challenges in order to translate the technologies of traditional 3-D printing to cell printing, and ultimately achieve functional outcomes in the printed tissues. So it is essential to develop new technologies specially designed for cell printing and in-depth basic research in the bioprinted tissues, such as developing novel biomaterials specifically for cell printing applications, understanding the complex cell-matrix remodeling for the desired mechanical properties and functional outcomes, establishing proper vascular perfusion in bioprinted tissues, etc. In recent years, many exciting research progresses have been made in the 3-D cell printing technology and its application in engineering live tissue constructs. This review paper summarized the current development in 3-D cell printing technologies; focus on the outcomes of the live printed tissues and their potential applications in drug discovery and regenerative medicine. Current challenges and limitations are highlighted, and future directions of 3-D cell printing technology are also discussed. PMID:27066784

  5. Design and development of a 3D printed UAV

    NASA Astrophysics Data System (ADS)

    Banfield, Christopher P.

    The purpose of this project was to investigate the viability and practicality of using a desktop 3D printer to fabricate small UAV airframes. To that end, ASTM based bending and tensile tests were conducted to assess the effects of print orientation, infill density, infill pattern, and infill orientation on the structural properties of 3D printed components. A Vernier Structures & Materials Tester was used to record force and displacement data from which stress-strain diagrams, yielding strength, maximum strength, and the moduli of elasticity were found. Results indicated that print orientation and infill density had the greatest impact on strength. In bending, vertically printed test pieces showed the greatest strength, with yield strengths 1.6 - 10.4% higher than conventionally extruded ABS's 64.0MPa average flexural strength. In contrast, the horizontally printed specimens showed yield strengths reduced anywhere from 17.0 - 34.9%. The tensile test specimens also exhibited reduced strength relative to ABS's average tensile yield strength of 40.7MPa. Test pieces with 20% infill density saw strength reductions anywhere from 47.8 - 55.6%, and those with 50% saw strength reductions from 33.6 - 47.8%. Only a single test piece with 100%, 45° crisscross infill achieved tensile performance on par with that of conventionally fabricated ABS. Its yield strength was 43MPa, a positive strength difference of 5.5%. As a supplement to the tensile and bending tests, a prototype printable airplane, the Phoebe, was designed. Its development process in turn provided the opportunity to develop techniques for printing various aircraft components such as fuselage sections, airfoils, and live-in hinges. Initial results seem promising, with the prototype's first production run requiring 19 hours of print time and an additional 4 - 5 hours of assembly time. The maiden flight test demonstrated that the design was stable and controllable in sustained flight.

  6. The Effects of Font Type and Spacing of Text for Online Readability and Performance

    ERIC Educational Resources Information Center

    Hojjati, Nafiseh; Muniandy, Balakrishnan

    2014-01-01

    Texts are a group of letters which are printed or displayed in a particular style and size. In the course of the fast speed of technological development everywhere and expanding use of computer based instruction such as online courses, students spend more time on a computer screen than printed media. Texts have been the main element to convey…

  7. Development of an organ-specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols.

    PubMed

    Abdullah, Kamarul A; McEntee, Mark F; Reed, Warren; Kench, Peter L

    2018-04-30

    An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom. Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan ® 500 phantom. The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan ® 500 phantom. A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  8. Fabrication of a wettability-gradient surface on copper by screen-printing techniques

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2015-08-01

    In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future.

  9. Development of sensitivity versus specificity for print in the visual word form area.

    PubMed

    Centanni, Tracy M; King, Livia W; Eddy, Marianna D; Whitfield-Gabrieli, Susan; Gabrieli, John D E

    2017-07-01

    An area near the left lateral occipito-temporal sulcus that responds preferentially to print has been designated as the visual word form area (VWFA). Research suggests that specialization in this brain region increases as reading expertise is achieved. Here we aimed to characterize that development in terms of sensitivity (response to printed words relative to non-linguistic faces) versus specificity (response to printed words versus line drawings of nameable objects) in typically reading children ages 7-14 versus young adults as measured by functional magnetic resonance imaging (fMRI). Relative to adults, children displayed equivalent sensitivity but reduced specificity. These findings suggest that sensitivity for print relative to non-linguistic stimuli develops relatively early in the VWFA in the course of reading development, but that specificity for printed words in VWFA is still developing through at least age 14. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Application of quality by design for 3D printed bone prostheses and scaffolds

    PubMed Central

    Martinez-Marquez, Daniel; Mirnajafizadeh, Ali; Carty, Christopher P.

    2018-01-01

    3D printing is an emergent manufacturing technology recently being applied in the medical field for the development of custom bone prostheses and scaffolds. However, successful industry transformation to this new design and manufacturing approach requires technology integration, concurrent multi-disciplinary collaboration, and a robust quality management framework. This latter change enabler is the focus of this study. While a number of comprehensive quality frameworks have been developed in recent decades to ensure that the manufacturing of medical devices produces reliable products, they are centred on the traditional context of standardised manufacturing techniques. The advent of 3D printing technologies and the prospects for mass customisation provides significant market opportunities, but also presents a serious challenge to regulatory bodies tasked with managing and assuring product quality and safety. Before 3D printing bone prostheses and scaffolds can gain traction, industry stakeholders, such as regulators, clients, medical practitioners, insurers, lawyers, and manufacturers, would all require a high degree of confidence that customised manufacturing can achieve the same quality outcomes as standardised manufacturing. A Quality by Design (QbD) approach to custom 3D printed prostheses can help to ensure that products are designed and manufactured correctly from the beginning without errors. This paper reports on the adaptation of the QbD approach for the development process of 3D printed custom bone prosthesis and scaffolds. This was achieved through the identification of the Critical Quality Attributes of such products, and an extensive review of different design and fabrication methods for 3D printed bone prostheses. Research outcomes include the development of a comprehensive design and fabrication process flow diagram, and categorised risks associated with the design and fabrication processes of such products. An extensive systematic literature review and post-hoc evaluation survey with experts was completed to evaluate the likely effectiveness of the herein suggested QbD framework. PMID:29649231

  11. Application of quality by design for 3D printed bone prostheses and scaffolds.

    PubMed

    Martinez-Marquez, Daniel; Mirnajafizadeh, Ali; Carty, Christopher P; Stewart, Rodney A

    2018-01-01

    3D printing is an emergent manufacturing technology recently being applied in the medical field for the development of custom bone prostheses and scaffolds. However, successful industry transformation to this new design and manufacturing approach requires technology integration, concurrent multi-disciplinary collaboration, and a robust quality management framework. This latter change enabler is the focus of this study. While a number of comprehensive quality frameworks have been developed in recent decades to ensure that the manufacturing of medical devices produces reliable products, they are centred on the traditional context of standardised manufacturing techniques. The advent of 3D printing technologies and the prospects for mass customisation provides significant market opportunities, but also presents a serious challenge to regulatory bodies tasked with managing and assuring product quality and safety. Before 3D printing bone prostheses and scaffolds can gain traction, industry stakeholders, such as regulators, clients, medical practitioners, insurers, lawyers, and manufacturers, would all require a high degree of confidence that customised manufacturing can achieve the same quality outcomes as standardised manufacturing. A Quality by Design (QbD) approach to custom 3D printed prostheses can help to ensure that products are designed and manufactured correctly from the beginning without errors. This paper reports on the adaptation of the QbD approach for the development process of 3D printed custom bone prosthesis and scaffolds. This was achieved through the identification of the Critical Quality Attributes of such products, and an extensive review of different design and fabrication methods for 3D printed bone prostheses. Research outcomes include the development of a comprehensive design and fabrication process flow diagram, and categorised risks associated with the design and fabrication processes of such products. An extensive systematic literature review and post-hoc evaluation survey with experts was completed to evaluate the likely effectiveness of the herein suggested QbD framework.

  12. Influence of verbal and nonverbal references to print on preschoolers' visual attention to print during storybook reading.

    PubMed

    Justice, Laura M; Pullen, Paige C; Pence, Khara

    2008-05-01

    How much do preschool children look at print within storybooks when adults read to them? This study sought to answer this question as well as to examine the effects of adult verbal and nonverbal references to print on children's visual attention to print during storybook reading. Forty-four preschool-aged children participated in this study designed to determine the amount of visual attention children paid to print in 4 planned variations of storybook reading. Children's visual attention to print was examined when adults commented and questioned about print (verbal print condition) or pointed to and tracked the print (nonverbal print condition), relative to 2 comparison conditions (verbatim reading and verbal picture conditions). Results showed that children rarely look at print, with about 5%-6% of their fixations allocated to print in verbatim and verbal picture reading conditions. However, preschoolers' visual attention to print increases significantly when adults verbally and nonverbally reference print; both reading styles exerted similar effects. The authors conclude that explicit referencing of print is 1 way to increase young children's contacts with print during shared storybook reading. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  13. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.

    PubMed

    Fu, Kun; Yao, Yonggang; Dai, Jiaqi; Hu, Liangbing

    2017-03-01

    The additive-manufacturing (AM) technique, known as three-dimensional (3D) printing, has attracted much attention in industry and academia in recent years. 3D printing has been developed for a variety of applications. Printable inks are the most important component for 3D printing, and are related to the materials, the printing method, and the structures of the final 3D-printed products. Carbon materials, due to their good chemical stability and versatile nanostructure, have been widely used in 3D printing for different applications. Good inks are mainly based on volatile solutions having carbon materials as fillers such as graphene oxide (GO), carbon nanotubes (CNT), carbon blacks, and solvent, as well as polymers and other additives. Studies of carbon materials in 3D printing, especially GO-based materials, have been extensively reported for energy-related applications. In these circumstances, understanding the very recent developments of 3D-printed carbon materials and their extended applications to address energy-related challenges and bring new concepts for material designs are becoming urgent and important. Here, recent developments in 3D printing of emerging devices for energy-related applications are reviewed, including energy-storage applications, electronic circuits, and thermal-energy applications at high temperature. To close, a conclusion and outlook are provided, pointing out future designs and developments of 3D-printing technology based on carbon materials for energy-related applications and beyond. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication.

    PubMed

    Yang, Long; Shang, Xian-Wen; Fan, Jian-Nan; He, Zhi-Xu; Wang, Jian-Ji; Liu, Miao; Zhuang, Yong; Ye, Chuan

    2016-01-01

    To evaluate the effect of 3D printing in treating trimalleolar fractures and its roles in physician-patient communication, thirty patients with trimalleolar fractures were randomly divided into the 3D printing assisted-design operation group (Group A) and the no-3D printing assisted-design group (Group B). In Group A, 3D printing was used by the surgeons to produce a prototype of the actual fracture to guide the surgical treatment. All patients underwent open reduction and internal fixation. A questionnaire was designed for doctors and patients to verify the verisimilitude and effectiveness of the 3D-printed prototype. Meanwhile, the operation time and the intraoperative blood loss were compared between the two groups. The fracture prototypes were accurately printed, and the average overall score of the verisimilitude and effectiveness of the 3D-printed prototypes was relatively high. Both the operation time and the intraoperative blood loss in Group A were less than those in Group B (P < 0.05). Patient satisfaction using the 3D-printed prototype and the communication score were 9.3 ± 0.6 points. A 3D-printed prototype can faithfully reflect the anatomy of the fracture site; it can effectively help the doctors plan the operation and represent an effective tool for physician-patient communication.

  15. Loading mode dependent effective properties of octet-truss lattice structures using 3D-printing

    NASA Astrophysics Data System (ADS)

    Challapalli, Adithya

    Cellular materials, often called lattice materials, are increasingly receiving attention for their ultralight structures with high specific strength, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. In alignment with emerging additive manufacturing (AM) technology, realization of the structural applications of the lattice materials appears to be becoming faster. Considering the direction dependent material properties of the products with AM, by directionally dependent printing resolution, effective moduli of lattice structures appear to be directionally dependent. In this paper, a constitutive model of a lattice structure, which is an octet-truss with a base material having an orthotropic material property considering AM is developed. In a case study, polyjet based 3D printing material having an orthotropic property with a 9% difference in the principal direction provides difference in the axial and shear moduli in the octet-truss by 2.3 and 4.6%. Experimental validation for the effective properties of a 3D printed octet-truss is done for uniaxial tension and compression test. The theoretical value based on the micro-buckling of truss member are used to estimate the failure strength. Modulus value appears a little overestimate compared with the experiment. Finite element (FE) simulations for uniaxial compression and tension of octettruss lattice materials are conducted. New effective properties for the octet-truss lattice structure are developed considering the observed behavior of the octet-truss structure under macroscopic compression and tension trough simulations.

  16. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE FOR SPINAL IMPLANTS].

    PubMed

    Lu, Qi; Yu, Binsheng

    2016-09-08

    To summarize the current research progress of three-dimensional (3D) printing technique for spinal implants manufacture. The recent original literature concerning technology, materials, process, clinical applications, and development direction of 3D printing technique in spinal implants was reviewed and analyzed. At present, 3D printing technologies used to manufacture spinal implants include selective laser sintering, selective laser melting, and electron beam melting. Titanium and its alloys are mainly used. 3D printing spinal implants manufactured by the above materials and technology have been successfully used in clinical. But the problems regarding safety, related complications, cost-benefit analysis, efficacy compared with traditional spinal implants, and the lack of relevant policies and regulations remain to be solved. 3D printing technique is able to provide individual and customized spinal implants for patients, which is helpful for the clinicians to perform operations much more accurately and safely. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal implants will be developed and used clinically.

  17. Organ Printing

    NASA Astrophysics Data System (ADS)

    Cho, Dong-Woo; Lee, Jung-Seob; Jang, Jinah; Jung, Jin Woo; Park, Jeong Hun; Pati, Falguni

    2015-10-01

    This book introduces various 3D printing systems, biomaterials, and cells for organ printing. In view of the latest applications of several 3D printing systems, their advantages and disadvantages are also discussed. A basic understanding of the entire spectrum of organ printing provides pragmatic insight into the mechanisms, methods, and applications of this discipline. Organ printing is being applied in the tissue engineering field with the purpose of developing tissue/organ constructs for the regeneration of both hard (bone, cartilage, osteochondral) and soft tissues (heart). There are other potential application areas including tissue/organ models, disease/cancer models, and models for physiology and pathology, where in vitro 3D multicellular structures developed by organ printing are valuable.

  18. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development.

    PubMed

    Da Cruz, M J; Francis, H W

    2015-07-01

    To assess the face and content validity of a novel synthetic, three-dimensional printed temporal bone for surgical skills development and training. A synthetic temporal bone was printed using composite materials and three-dimensional printing technology. Surgical trainees were asked to complete three structured temporal bone dissection exercises. Attitudes and impressions were then assessed using a semi-structured questionnaire. Previous cadaver and real operating experiences were used as a reference. Trainees' experiences of the synthetic temporal bone were analysed in terms of four domains: anatomical realism, usefulness as a training tool, task-based usefulness and overall reactions. Responses across all domains indicated a high degree of acceptance, suggesting that the three-dimensional printed temporal bone was a useful tool in skills development. A sophisticated three-dimensional printed temporal bone that demonstrates face and content validity was developed. The efficiency in cost savings coupled with low associated biohazards make it likely that the printed temporal bone will be incorporated into traditional temporal bone skills development programmes in the near future.

  19. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.

    PubMed

    Cui, Zheng; Han, Yiwei; Huang, Qijin; Dong, Jingyan; Zhu, Yong

    2018-04-19

    A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc. With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.

  20. A new chapter in pharmaceutical manufacturing: 3D-printed drug products.

    PubMed

    Norman, James; Madurawe, Rapti D; Moore, Christine M V; Khan, Mansoor A; Khairuzzaman, Akm

    2017-01-01

    FDA recently approved a 3D-printed drug product in August 2015, which is indicative of a new chapter for pharmaceutical manufacturing. This review article summarizes progress with 3D printed drug products and discusses process development for solid oral dosage forms. 3D printing is a layer-by-layer process capable of producing 3D drug products from digital designs. Traditional pharmaceutical processes, such as tablet compression, have been used for decades with established regulatory pathways. These processes are well understood, but antiquated in terms of process capability and manufacturing flexibility. 3D printing, as a platform technology, has competitive advantages for complex products, personalized products, and products made on-demand. These advantages create opportunities for improving the safety, efficacy, and accessibility of medicines. Although 3D printing differs from traditional manufacturing processes for solid oral dosage forms, risk-based process development is feasible. This review highlights how product and process understanding can facilitate the development of a control strategy for different 3D printing methods. Overall, the authors believe that the recent approval of a 3D printed drug product will stimulate continual innovation in pharmaceutical manufacturing technology. FDA encourages the development of advanced manufacturing technologies, including 3D-printing, using science- and risk-based approaches. Published by Elsevier B.V.

  1. Cost-Effective Fabrication of Wettability Gradient Copper Surface by Screen Printing and its Application to Condensation Heat Transfer

    NASA Astrophysics Data System (ADS)

    Leu, Tzong-Shyng; Huang, Hung-Ming; Huang, Ding-Jun

    2016-06-01

    In this paper, wettability gradient pattern is applied to condensation heat transfer on a copper tube surface. For this application, the vital issue is how to fabricate gradient patterns on a curve tube surface to accelerate the droplet collection efficiently. For this purpose, novel fabrication processes are developed to form wettability gradient patterns on a curve copper tube surface by using roller screen printing surface modification techniques. The roller screen printing surface modification techniques can easily realize wettability gradient surfaces with superhydrophobicity and superhydrophilicity on a copper tube surface. Experimental results show the droplet nucleation sites, movement and coalescence toward the collection areas can be effectively controlled which can assist in removing the condensation water from the surface. The effectiveness of droplet collection is appropriate for being applied to condensation heat transfer in the foreseeable future.

  2. Thermal characterization of three-dimensional printed components for light-emitting diode lighting system applications

    NASA Astrophysics Data System (ADS)

    Perera, Indika U.; Narendran, Nadarajah; Terentyeva, Valeria

    2018-04-01

    This study investigated the thermal properties of three-dimensional (3-D) printed components with the potential to be used for thermal management in light-emitting diode (LED) applications. Commercially available filament materials with and without a metal filler were characterized with changes to the print orientation. 3-D printed components with an in-plane orientation had >30 % better effective thermal conductivity compared with components printed with a cross-plane orientation. A finite-element analysis was modeled to understand the effective thermal conductivity changes in the 3-D printed components. A simple thermal resistance model was used to estimate the required effective thermal conductivity of the 3-D printed components to be a viable alternative in LED thermal management applications.

  3. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.

    PubMed

    Knowlton, Stephanie; Yenilmez, Bekir; Tasoglu, Savas

    2016-09-01

    Organ-on-a-chip engineering employs microfabrication of living tissues within microscale fluid channels to create constructs that closely mimic human organs. With the advent of 3D printing, we predict that single-step fabrication of these devices will enable rapid design and cost-effective iterations in the development stage, facilitating rapid innovation in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications.

    PubMed

    Stassi, Stefano; Fantino, Erika; Calmo, Roberta; Chiappone, Annalisa; Gillono, Matteo; Scaiola, Davide; Pirri, Candido Fabrizio; Ricciardi, Carlo; Chiadò, Alessandro; Roppolo, Ignazio

    2017-06-07

    In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.

  5. Printed microfluidic filter for heparinized blood.

    PubMed

    Bilatto, Stanley E R; Adly, Nouran Y; Correa, Daniel S; Wolfrum, Bernhard; Offenhäusser, Andreas; Yakushenko, Alexey

    2017-05-01

    A simple lab-on-a-chip method for blood plasma separation was developed by combining stereolithographic 3D printing with inkjet printing, creating a completely sealed microfluidic device. In some approaches, one dilutes the blood sample before separation, reducing the concentration of a target analyte and increasing a contamination risk. In this work, a single drop (8  μ l) of heparinized whole blood could be efficiently filtered using a capillary effect without any external driving forces and without dilution. The blood storage in heparin tubes during 24 h at 4 °C initiated the formation of small crystals that formed auto-filtration structures in the sample upon entering the 3D-printed device, with pores smaller than the red blood cells, separating plasma from the cellular content. The total filtration process took less than 10 s. The presented printed plasma filtration microfluidics fabricated with a rapid prototyping approach is a miniaturized, fast and easy-to-operate device that can be integrated into healthcare/portable systems for point-of-care diagnostics.

  6. Learning-Based Cell Injection Control for Precise Drop-on-Demand Cell Printing.

    PubMed

    Shi, Jia; Wu, Bin; Song, Bin; Song, Jinchun; Li, Shihao; Trau, Dieter; Lu, Wen F

    2018-06-05

    Drop-on-demand (DOD) printing is widely used in bioprinting for tissue engineering because of little damage to cell viability and cost-effectiveness. However, satellite droplets may be generated during printing, deviating cells from the desired position and affecting printing position accuracy. Current control on cell injection in DOD printing is primarily based on trial-and-error process, which is time-consuming and inflexible. In this paper, a novel machine learning technology based on Learning-based Cell Injection Control (LCIC) approach is demonstrated for effective DOD printing control while eliminating satellite droplets automatically. The LCIC approach includes a specific computational fluid dynamics (CFD) simulation model of piezoelectric DOD print-head considering inverse piezoelectric effect, which is used instead of repetitive experiments to collect data, and a multilayer perceptron (MLP) network trained by simulation data based on artificial neural network algorithm, using the well-known classification performance of MLP to optimize DOD printing parameters automatically. The test accuracy of the LCIC method was 90%. With the validation of LCIC method by experiments, satellite droplets from piezoelectric DOD printing are reduced significantly, improving the printing efficiency drastically to satisfy requirements of manufacturing precision for printing complex artificial tissues. The LCIC method can be further used to optimize the structure of DOD print-head and cell behaviors.

  7. Printable thermoelectric devices and conductive patterns for medical applications

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Kim, Hyunjung; Chen, Linfeng; Choi, Sang H.; Varadan, Vijay K.

    2012-10-01

    Remote point-of-care is expected to revolutionize the modern medical practice, and many efforts have been made for the development of wireless health monitoring systems for continuously detecting the physiological signals of patients. To make the remote point-of-care generally accepted and widely used, it is necessary to develop cost-effective and durable wireless health monitoring systems. Printing technique will be helpful for the fabrication of high-quality and low-cost medical devices and systems because it allows high-resolution and high-speed fabrication, low material consumption and nano-sized patterning on both flexible and rigid substrates. Furthermore, application of thermoelectric generators can replace conventional batteries as the power sources for wireless health monitoring systems because thermoelectric generators can convert the wasted heat or the heat from nature into electricity which is required for the operation of the wireless health monitoring systems. In this research, we propose the concept of printable thermoelectric devices and conductive patterns for the realization of more portable and cost-effective medical devices. To print thermoelectric generators and conductive patterns on substrates, printing inks with special characteristics should be developed. For the development of thermoelectric inks, nano-structured thermoelectric materials are synthesized and characterized; and for the development of conductive inks, two kinds of surface treated carbon nanotubes are used as active materials.

  8. Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction.

    PubMed

    Park, Ju Young; Choi, Yeong-Jin; Shim, Jin-Hyung; Park, Jeong Hun; Cho, Dong-Woo

    2017-07-01

    Surgical technique using autologs cartilage is considered as the best treatment for cartilage tissue reconstruction, although the burdens of donor site morbidity and surgical complications still remain. The purpose of this study is to apply three-dimensional (3D) cell printing to fabricate a tissue-engineered graft, and evaluate its effects on cartilage reconstruction. A multihead tissue/organ building system is used to print cell-printed scaffold (CPS), then assessed the effect of the CPS on cartilage regeneration in a rabbit ear. The cell viability and functionality of chondrocytes were significantly higher in CPS than in cell-seeded scaffold (CSS) and cell-seeded hybrid scaffold (CSHS) in vitro. CPS was then implanted into a rabbit ear that had an 8 mm-diameter cartilage defect; at 3 months after implantation the CPS had fostered complete cartilage regeneration whereas CSS and autologs cartilage (AC) fostered only incomplete healing. This result demonstrates that cell printing technology can provide an appropriate environment in which encapsulated chondrocytes can survive and differentiate into cartilage tissue in vivo. Moreover, the effects of CPS on cartilage regeneration were even better than those of AC. Therefore, we confirmed the feasibility of CPS as an alternative to AC for auricular reconstruction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1016-1028, 2017. © 2016 Wiley Periodicals, Inc.

  9. 3D Printing Factors Important for the Fabrication of Polyvinylalcohol Filament-Based Tablets.

    PubMed

    Tagami, Tatsuaki; Fukushige, Kaori; Ogawa, Emi; Hayashi, Naomi; Ozeki, Tetsuya

    2017-01-01

    Three-dimensional (3D) printers have been applied in many fields, including engineering and the medical sciences. In the pharmaceutical field, approval of the first 3D-printed tablet by the U.S. Food and Drug Administration in 2015 has attracted interest in the manufacture of tablets and drugs by 3D printing techniques as a means of delivering tailor-made drugs in the future. In current study, polyvinylalcohol (PVA)-based tablets were prepared using a fused-deposition-modeling-type 3D printer and the effect of 3D printing conditions on tablet production was investigated. Curcumin, a model drug/fluorescent marker, was loaded into PVA-filament. We found that several printing parameters, such as the rate of extruding PVA (flow rate), can affect the formability of the resulting PVA-tablets. The 3D-printing temperature is controlled by heating the print nozzle and was shown to affect the color of the tablets and their curcumin content. PVA-based infilled tablets with different densities were prepared by changing the fill density as a printing parameter. Tablets with lower fill density floated in an aqueous solution and their curcumin content tended to dissolve faster. These findings will be useful in developing drug-loaded PVA-based 3D objects and other polymer-based articles prepared using fused-deposition-modeling-type 3D printers.

  10. Comparative Study on Cushion Performance Between 3D Printed Kelvin Structure and 3D Printed Lattice Structure

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Lakshmi

    Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves.

  11. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    PubMed

    Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.

  12. Colour in flux: describing and printing colour in art

    NASA Astrophysics Data System (ADS)

    Parraman, Carinna

    2008-01-01

    This presentation will describe artists, practitioners and scientists, who were interested in developing a deeper psychological, emotional and practical understanding of the human visual system who were working with wavelength, paint and other materials. From a selection of prints at The Prints and Drawings Department at Tate London, the presentation will refer to artists who were motivated by issues relating to how colour pigment was mixed and printed, to interrogate and explain colour perception and colour science, and in art, how artists have used colour to challenge the viewer and how a viewer might describe their experience of colour. The title Colour in Flux refers, not only to the perceptual effect of the juxtaposition of one colour pigment with another, but also to the changes and challenges for the print industry. In the light of screenprinted examples from the 60s and 70s, the presentation will discuss 21 st century ideas on colour and how these notions have informed the Centre for Fine Print Research's (CFPR) practical research in colour printing. The latter part of this presentation will discuss the implications for the need to change methods in mixing inks that moves away from existing colour spaces, from non intuitive colour mixing to bespoke ink sets, colour mixing approaches and colour mixing methods that are not reliant on RGB or CMYK.

  13. 3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field.

    PubMed

    Huber, Christian; Abert, Claas; Bruckner, Florian; Groenefeld, Martin; Schuschnigg, Stephan; Teliban, Iulian; Vogler, Christoph; Wautischer, Gregor; Windl, Roman; Suess, Dieter

    2017-08-25

    Additive manufacturing of polymer-bonded magnets is a recently developed technique, for single-unit production, and for structures that have been impossible to manufacture previously. Also, new possibilities to create a specific stray field around the magnet are triggered. The current work presents a method to 3D print polymer-bonded magnets with a variable magnetic compound fraction distribution. This means the saturation magnetization can be adjusted during the printing process to obtain a required external field of the manufactured magnets. A low-cost, end-user 3D printer with a mixing extruder is used to mix permanent magnetic filaments with pure polyamide (PA12) filaments. The magnetic filaments are compounded, extruded, and characterized for the printing process. To deduce the quality of the manufactured magnets with a variable magnetic compound fraction, an inverse stray field framework is developed. The effectiveness of the printing process and the simulation method is shown. It can also be used to manufacture magnets that produce a predefined stray field in a given region. This opens new possibilities for magnetic sensor applications. This setup and simulation framework allows the design and manufacturing of polymer-bonded permanent magnets, which are impossible to create with conventional methods.

  14. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics.

    PubMed

    Carey, Tian; Cacovich, Stefania; Divitini, Giorgio; Ren, Jiesheng; Mansouri, Aida; Kim, Jong M; Wang, Chaoxia; Ducati, Caterina; Sordan, Roman; Torrisi, Felice

    2017-10-31

    Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm 2  V -1  s -1 , at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates.

  15. Communicating Cardiovascular Disease Risk Due to Elevated Homocysteine Levels: Using the EPPM to Develop Print Materials

    ERIC Educational Resources Information Center

    McKay, Diane L.; Berkowitz, Judy M.; Blumberg, Jeffrey B.; Goldberg, Jeanne P.

    2004-01-01

    Improving the effectiveness of written information to promote compliance with therapeutic regimens is essential, particularly among older adults. Guiding their development and evaluating their effectiveness with an accepted communication theory or model may help. A preliminary test of written materials developed within the context of the Extended…

  16. Development of novel 3D-printed robotic prosthetic for transradial amputees.

    PubMed

    Gretsch, Kendall F; Lather, Henry D; Peddada, Kranti V; Deeken, Corey R; Wall, Lindley B; Goldfarb, Charles A

    2016-06-01

    Upper extremity myoelectric prostheses are expensive. The Robohand demonstrated that three-dimensional printing reduces the cost of a prosthetic extremity. The goal of this project was to develop a novel, inexpensive three-dimensional printed prosthesis to address limitations of the Robohand. The prosthesis was designed for patients with transradial limb amputation. It is shoulder-controlled and externally powered with an anthropomorphic terminal device. The user can open and close all five fingers, and move the thumb independently. The estimated cost is US$300. After testing on a patient with a traumatic transradial amputation, several advantages were noted. The independent thumb movement facilitated object grasp, the device weighed less than most externally powered prostheses, and the size was easily scalable. Limitations of the new prosthetic include low grip strength and decreased durability compared to passive prosthetics. Most children with a transradial congenital or traumatic amputation do not use a prosthetic. A three-dimensional printed shoulder-controlled robotic prosthesis provides a cost effective, easily sized and highly functional option which has been previously unavailable. © The International Society for Prosthetics and Orthotics 2015.

  17. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications.

    PubMed

    Placone, Jesse K; Engler, Adam J

    2018-04-01

    Additive manufacturing, or 3D printing, has become significantly more commonplace in tissue engineering over the past decade, as a variety of new printing materials have been developed. In extrusion-based printing, materials are used for applications that range from cell free printing to cell-laden bioinks that mimic natural tissues. Beyond single tissue applications, multi-material extrusion based printing has recently been developed to manufacture scaffolds that mimic tissue interfaces. Despite these advances, some material limitations prevent wider adoption of the extrusion-based 3D printers currently available. This progress report provides an overview of this commonly used printing strategy, as well as insight into how this technique can be improved. As such, it is hoped that the prospective report guides the inclusion of more rigorous material characterization prior to printing, thereby facilitating cross-platform utilization and reproducibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-performance all-printed amorphous oxide FETs and logics with electronically compatible electrode/ channel interface.

    PubMed

    Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2018-06-12

    Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.

  19. Triple shape memory polymers by 4D printing

    NASA Astrophysics Data System (ADS)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2018-06-01

    This article aims at introducing triple shape memory polymers (SMPs) by four-dimensional (4D) printing technology and shaping adaptive structures for mechanical/bio-medical devices. The main approach is based on arranging hot–cold programming of SMPs with fused decomposition modeling technology to engineer adaptive structures with triple shape memory effect (SME). Experiments are conducted to characterize elasto-plastic and hyper-elastic thermo-mechanical material properties of SMPs in low and high temperatures at large deformation regime. The feasibility of the dual and triple SMPs with self-bending features is demonstrated experimentally. It is advantageous in situations either where it is desired to perform mechanical manipulations on the 4D printed objects for specific purposes or when they experience cold programming inevitably before activation. A phenomenological 3D constitutive model is developed for quantitative understanding of dual/triple SME of SMPs fabricated by 4D printing in the large deformation range. Governing equations of equilibrium are established for adaptive structures on the basis of the nonlinear Green–Lagrange strains. They are then solved by developing a finite element approach along with an elastic-predictor plastic-corrector return map procedure accomplished by the Newton–Raphson method. The computational tool is applied to simulate dual/triple SMP structures enabled by 4D printing and explore hot–cold programming mechanisms behind material tailoring. It is shown that the 4D printed dual/triple SMPs have great potential in mechanical/bio-medical applications such as self-bending gripers/stents and self-shrinking/tightening staples.

  20. Watermarking and copyright labeling of printed images

    NASA Astrophysics Data System (ADS)

    Hel-Or, Hagit Z.

    2001-07-01

    Digital watermarking is a labeling technique for digital images which embeds a code into the digital data so the data are marked. Watermarking techniques previously developed deal with on-line digital data. These techniques have been developed to withstand digital attacks such as image processing, image compression and geometric transformations. However, one must also consider the readily available attack of printing and scanning. The available watermarking techniques are not reliable under printing and scanning. In fact, one must consider the availability of watermarks for printed images as well as for digital images. An important issue is to intercept and prevent forgery in printed material such as currency notes, back checks, etc. and to track and validate sensitive and secrete printed material. Watermarking in such printed material can be used not only for verification of ownership but as an indicator of date and type of transaction or date and source of the printed data. In this work we propose a method of embedding watermarks in printed images by inherently taking advantage of the printing process. The method is visually unobtrusive to the printed image, the watermark is easily extracted and is robust under reconstruction errors. The decoding algorithm is automatic given the watermarked image.

  1. Anatomic modeling using 3D printing: quality assurance and optimization.

    PubMed

    Leng, Shuai; McGee, Kiaran; Morris, Jonathan; Alexander, Amy; Kuhlmann, Joel; Vrieze, Thomas; McCollough, Cynthia H; Matsumoto, Jane

    2017-01-01

    The purpose of this study is to provide a framework for the development of a quality assurance (QA) program for use in medical 3D printing applications. An interdisciplinary QA team was built with expertise from all aspects of 3D printing. A systematic QA approach was established to assess the accuracy and precision of each step during the 3D printing process, including: image data acquisition, segmentation and processing, and 3D printing and cleaning. Validation of printed models was performed by qualitative inspection and quantitative measurement. The latter was achieved by scanning the printed model with a high resolution CT scanner to obtain images of the printed model, which were registered to the original patient images and the distance between them was calculated on a point-by-point basis. A phantom-based QA process, with two QA phantoms, was also developed. The phantoms went through the same 3D printing process as that of the patient models to generate printed QA models. Physical measurement, fit tests, and image based measurements were performed to compare the printed 3D model to the original QA phantom, with its known size and shape, providing an end-to-end assessment of errors involved in the complete 3D printing process. Measured differences between the printed model and the original QA phantom ranged from -0.32 mm to 0.13 mm for the line pair pattern. For a radial-ulna patient model, the mean distance between the original data set and the scanned printed model was -0.12 mm (ranging from -0.57 to 0.34 mm), with a standard deviation of 0.17 mm. A comprehensive QA process from image acquisition to completed model has been developed. Such a program is essential to ensure the required accuracy of 3D printed models for medical applications.

  2. Color analysis and image rendering of woodblock prints with oil-based ink

    NASA Astrophysics Data System (ADS)

    Horiuchi, Takahiko; Tanimoto, Tetsushi; Tominaga, Shoji

    2012-01-01

    This paper proposes a method for analyzing the color characteristics of woodblock prints having oil-based ink and rendering realistic images based on camera data. The analysis results of woodblock prints show some characteristic features in comparison with oil paintings: 1) A woodblock print can be divided into several cluster areas, each with similar surface spectral reflectance; and 2) strong specular reflection from the influence of overlapping paints arises only in specific cluster areas. By considering these properties, we develop an effective rendering algorithm by modifying our previous algorithm for oil paintings. A set of surface spectral reflectances of a woodblock print is represented by using only a small number of average surface spectral reflectances and the registered scaling coefficients, whereas the previous algorithm for oil paintings required surface spectral reflectances of high dimension at all pixels. In the rendering process, in order to reproduce the strong specular reflection in specific cluster areas, we use two sets of parameters in the Torrance-Sparrow model for cluster areas with or without strong specular reflection. An experiment on a woodblock printing with oil-based ink was performed to demonstrate the feasibility of the proposed method.

  3. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  4. Insertion of Vertically Aligned Nanowires into Living Cells by Inkjet Printing of Cells.

    PubMed

    Lee, Donggyu; Lee, Daehee; Won, Yulim; Hong, Hyeonaug; Kim, Yongjae; Song, Hyunwoo; Pyun, Jae-Chul; Cho, Yong Soo; Ryu, Wonhyoung; Moon, Jooho

    2016-03-01

    Effective insertion of vertically aligned nanowires (NWs) into cells is critical for bioelectrical and biochemical devices, biological delivery systems, and photosynthetic bioenergy harvesting. However, accurate insertion of NWs into living cells using scalable processes has not yet been achieved. Here, NWs are inserted into living Chlamydomonas reinhardtii cells (Chlamy cells) via inkjet printing of the Chlamy cells, representing a low-cost and large-scale method for inserting NWs into living cells. Jetting conditions and printable bioink composed of living Chlamy cells are optimized to achieve stable jetting and precise ink deposition of bioink for indentation of NWs into Chlamy cells. Fluorescence confocal microscopy is used to verify the viability of Chlamy cells after inkjet printing. Simple mechanical considerations of the cell membrane and droplet kinetics are developed to control the jetting force to allow penetration of the NWs into cells. The results suggest that inkjet printing is an effective, controllable tool for stable insertion of NWs into cells with economic and scale-related advantages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education

    ERIC Educational Resources Information Center

    Chien, Yu-Hung

    2017-01-01

    This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…

  6. Young Children's Visual Attention to Environmental Print as Measured by Eye Tracker Analysis

    ERIC Educational Resources Information Center

    Neumann, Michelle M.; Acosta, Camillia; Neumann, David L.

    2014-01-01

    Environmental print, such as signs and product labels, consist of both print and contextual cues designed to attract the visual attention of the reader. However, contextual cues may draw young children's attention away from the print, thus questioning the value of environmental print in early reading development. Eye tracker technology was used to…

  7. Disposable screen-printed sensors for determination of duloxetine hydrochloride

    PubMed Central

    2012-01-01

    A screen-printed disposable electrode system for the determination of duloxetine hydrochloride (DL) was developed using screen-printing technology. Homemade printing has been characterized and optimized on the basis of effects of the modifier and plasticizers. The fabricated bi-electrode potentiometric strip containing both working and reference electrodes was used as duloxetine hydrochloride sensor. The proposed sensors worked satisfactorily in the concentration range from 1.0 × 10-6-1.0 × 10-2 mol L-1 with detection limit reaching 5.0 × 10-7 mol L-1 and adequate shelf life of 6 months. The method is accurate, precise and economical. The proposed method has been applied successfully for the analysis of the drug in pure and in its dosage forms. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically by recovery studies. PMID:22264225

  8. Defining microchannels and valves on a hydrophobic paper by low-cost inkjet printing of aqueous or weak organic solutions.

    PubMed

    Cai, Longfei; Zhong, Minghua; Li, Huolin; Xu, Chunxiu; Yuan, Biyu

    2015-07-01

    We describe a simple and cost-effective strategy for rapid fabrication of microfluidic paper-based analytical devices and valves by inkjet printing. NaOH aqueous solution was printed onto a hydrophobic filter paper, which was previously obtained by soaking in a trimethoxyoctadecylsilane-heptane solution, allowing selective wet etching of hydrophobic cellulose to create hydrophilic-hydrophobic contrast with a relatively good resolution. Hexadecyltrimethylammonium bromide (CTMAB)-ethanol solution was printed onto hydrophobic paper to fabricate temperature-controlled valves. At low temperature, CTMAB deposited on the paper is insoluble in aqueous fluid, thus the paper remains hydrophobic. At high temperature, CTMAB becomes soluble so the CTMAB-deposited channel becomes hydrophilic, allowing the wicking of aqueous solution through the valve. We believe that this strategy will be very attractive for the development of simple micro analytical devices for point-of-care applications, including diagnostic testing, food safety control, and environmental monitoring.

  9. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy

    PubMed Central

    Tyson, Adam L.; Hilton, Stephen T.; Andreae, Laura C.

    2015-01-01

    The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods. PMID:25797056

  10. Effect of Cartoon Illustrations on the Comprehension and Evaluation of Information Presented in the Print and Audio Mode.

    ERIC Educational Resources Information Center

    Sewell, Edward H., Jr.

    This study investigates the effects of cartoon illustrations on female and male college student comprehension and evaluation of information presented in several combinations of print, audio, and visual formats. Subjects were assigned to one of five treatment groups: printed text, printed text with cartoons, audiovisual presentations, audio only…

  11. Effect of printing parameters on gravure patterning with conductive silver ink

    NASA Astrophysics Data System (ADS)

    Kim, Seunghwan; Sung, Hyung Jin

    2015-04-01

    Conductive line patterns were printed on a poly-dimethylsiloxane (PDMS) substrate using a gravure printing method with conductive silver ink. A plate-to-roll gravure print was prepared for this experiment. Gravure plates with fine lines 5-25 μm in width and 0-90° in tilted angles were fabricated using photolithography techniques. The printability, defined as the ratio of the real printed area to the ideal printed area, was measured and analyzed with respect to the process parameters and the line pattern designs. The effect of the process parameters on the fine line patterning was discussed, including the wiping condition, the printing pressure and the printing speed. The printability of the high adhesive substrate was examined by preparing a nanostructured PDMS substrate featuring a forest of 200 nm nanopillars using an anodic aluminum oxide (AAO) template. The patterns printed onto the nanostructured PDMS were compared with those printed on a flat PDMS substrate.

  12. Ligament flow during drop-on-demand inkjet printing of bioink containing living cells

    NASA Astrophysics Data System (ADS)

    Zhang, Mengyun; Krishnamoorthy, Srikumar; Song, Hongtao; Zhang, Zhengyi; Xu, Changxue

    2017-03-01

    Organ printing utilizes tissue spheroids or filaments as building blocks to fabricate three-dimensional (3D) functional tissues and organs based on a layer-by-layer manufacturing mechanism. These fabricated tissues and organs are envisioned as alternatives to replace the damaged human tissues and organs, which is emerging as a promising solution to solve the organ donor shortage problem being faced all over the world. Inkjetting, one of the key technologies in organ printing, has been widely developed because of its moderate fabrication cost, good process controllability, and scale-up potentials. There are several key steps towards inkjet-based organ printing: generation of droplets from bioink, fabrication of 3D cellular structures, and post-printing tissue fusion and maturation. The droplet formation process is the first step, affecting the overall feasibility of the envisioned organ printing technology. This paper focuses on the ligament flow of the droplet formation process during inkjet printing of bioink containing living cells and its corresponding effect on post-printing cell viability and cell distribution. It is found that (1) two types of ligament flow are observed: at 30 V (Type I), the ligament flow has two different directions at the locations near the nozzle orifice and the forming droplet; at 60 V (Type II), the ligament flow directions are the same at both locations; (2) compared to Type II, fewer cells are ejected into the primary droplets in Type I, because some cells move back into the nozzle driven by the ligament flow in the positive z direction; and (3) cell viability in both Type I and Type II is around 90% without a significant difference. The resulting knowledge will benefit precise control of printing dynamics during inkjet printing of viscoelastic bioink for 3D biofabrication applications.

  13. Cost Effective Printing of Laboratory Reports: Biochemist's and Physician's debate and Institutions Dilemma.

    PubMed

    Harith, Arun Kumar; Avs, Anil Kumar; Sampath, Sangeetha

    2017-02-01

    Laboratory investigations account for significant percentage of healthcare expenses. Every hospital and laboratory especially in the government sector wants to cut down the expenses on reports and offer inferior printouts of reports. The debate of printing attractive reports (clientele aspiration) Vs costs cutting (managerial issues) continues. It becomes the moral responsibility of doctors to guide the management into implementing an effective and economical option of report transcription. Cutting cost is always good but it should be achieved in an effective way keeping in mind the expectation of all the stake holders and ensuring that quality is not significantly compromised. The data regarding economics of printing available on the Internet may be market driven and not a true reflection of printing cost. The present study was undertaken to generate data on the economics of printing reports on various platforms to enable managers to make informed decision on choice of optimal printing option. To provide practical data on economics of printing reports using various printing options available in the country. Four printing devices (laser printer, inkjet printer, dotmatrix printer and thermal printer) were connected to the laboratory information system and the reports printed from them were critically evaluated for the following parameters - cost of stationary, printing cost, time of printing and clientele satisfaction. The cost of printing a single report on laser printer, inkjet printer, dotmatrix printer and thermal printers was Rs 0.75, Rs 0.65, Rs 0.20 and Rs 0.93 respectively. The time taken to print 30 reports were 162 sec, 193 sec, 210 and 60 sec respectively. Clientele satisfaction scores were best with Laser and Inkjet printed reports. The most economical mode of printing is Dot Matrix printer using DOS output for printing. However, when the workload of a laboratory is high, then the use of laser printer is not prohibitively expensive option and can be resorted to. Use of thermal printer was found to be unsatisfactory.

  14. 3D Printing and Assay Development for Point-of-Care Applications

    NASA Astrophysics Data System (ADS)

    Jagadeesh, Shreesha

    Existing centralized labs do not serve patients adequately in remote areas. To enable universal timely healthcare, there is a need to develop low cost, portable systems that can diagnose multiple disease (Point-of-Care (POC) devices). Future POC diagnostics can be more multi-functional if medical device vendors can develop interoperability standards. This thesis developed the following medical diagnostic modules: Plasma from 25 microl blood was extracted through a filter membrane to demonstrate a 3D printed sample preparation module. Sepsis biomarker, C - reactive protein, was quantified through adsorption on nylon beads to demonstrate bead-based assay suitable for 3D printed disposable cartridge module. Finally, a modular fluorescent detection kit was built using 3D printed parts to detect CD4 cells in a disposable cartridge from ChipCare Corp. Due to the modularity enabled by 3D printing technique, the developed units can be easily adapted to detect other diseases.

  15. Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer.

    PubMed

    Oliveira, Juliana; Correia, Vitor; Sowade, Enrico; Etxebarria, Ikerne; Rodriguez, Raul D; Mitra, Kalyan Y; Baumann, Reinhard R; Lanceros-Mendez, Senentxu

    2018-04-18

    Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.

  16. Three-Dimensional Printing of Tissue/Organ Analogues Containing Living Cells.

    PubMed

    Park, Jeong Hun; Jang, Jinah; Lee, Jung-Seob; Cho, Dong-Woo

    2017-01-01

    The technical advances of three-dimensional (3D) printing in the field of tissue engineering have enabled the creation of 3D living tissue/organ analogues. Diverse 3D tissue/organ printing techniques with computer-aided systems have been developed and used to dispose living cells together with biomaterials and supporting biochemicals as pre-designed 3D tissue/organ models. Furthermore, recent advances in bio-inks, which are printable hydrogels with living cell encapsulation, have greatly enhanced the versatility of 3D tissue/organ printing. Here, we introduce 3D tissue/organ printing techniques and biomaterials that have been developed and widely used thus far. We also review a variety of applications in an attempt to repair or replace the damaged or defective tissue/organ, and develop the in vitro tissue/organ models. The potential challenges are finally discussed from the technical perspective of 3D tissue/organ printing.

  17. Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing

    PubMed Central

    Tao, Yubo; Wang, Honglei; Li, Zelong; Li, Peng; Shi, Sheldon Q.

    2017-01-01

    This paper presents the development of wood flour (WF)-filled polylactic acid (PLA) composite filaments for a fused deposition modeling (FDM) process with the aim of application to 3D printing. The composite filament consists of wood flour (5 wt %) in a PLA matrix. The detailed formulation and characterization of the composite filament were investigated experimentally, including tensile properties, microstructure, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The feedstock filaments of this composite were produced and used successfully in an assembled FDM 3D printer. The research concludes that compared with pure PLA filament, adding WF changed the microstructure of material fracture surface, the initial deformation resistance of the composite was enhanced, the starting thermal degradation temperature of the composite decreased slightly, and there were no effects on the melting temperature. The WF/PLA composite filament is suitable to be printed by the FDM process. PMID:28772694

  18. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics.

    PubMed

    Kim, Yebyeol; Bae, Jaehyun; Song, Hyun Woo; An, Tae Kyu; Kim, Se Hyun; Kim, Yun-Hi; Park, Chan Eon

    2017-11-15

    Electrohydrodynamic-jet (EHD-jet) printing provides an opportunity to directly assembled amorphous polymer chains in the printed pattern. Herein, an EHD-jet printed amorphous polymer was employed as the active layer for fabrication of organic field-effect transistors (OFETs). Under optimized conditions, the field-effect mobility (μ FET ) of the EHD-jet printed OFETs was 5 times higher than the highest μ FET observed in the spin-coated OFETs, and this improvement was achieved without the use of complex surface templating or additional pre- or post-deposition processing. As the chain alignment can be affected by the surface energy of the dielectric layer in EHD-jet printed OFETs, dielectric layers with varying wettability were examined. Near-edge X-ray absorption fine structure measurements were performed to compare the amorphous chain alignment in OFET active layers prepared by EHD-jet printing and spin coating.

  19. Measurements of print-through in graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.

    1989-01-01

    High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.

  20. Direct-write fabrication of 4D active shape-changing behavior based on a shape memory polymer and its nanocomposite (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.

  1. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    PubMed

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  2. Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Hohimer, Cameron J.; Petrossian, Gayaneh; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2018-03-01

    Additive manufacturing (AM) is an emerging field experiencing rapid growth. This paper presents a feasibility study of using fused-deposition modeling (FDM) techniques with smart materials to fabricate objects with sensing and actuating capabilities. The fabrication of objects with sensing typically requires the integration and assembly of multiple components. Incorporating sensing elements into a single FDM process has the potential to significantly simplify manufacturing. The integration of multiple materials, especially smart materials and those with multi-functional properties, into the FDM process is challenging and still requires further development. Previous works by the authors have demonstrated a good printability of thermoplastic polyurethane/multiwall carbon nanotubes (TPU/MWCNT) while maintaining conductivity and piezoresistive response. This research explores the effects of layer height, nozzle temperature, and bed temperature on the electrical conductivity and piezoresistive response of printed TPU/MWCNT nanocomposites. An impedance analyzer was used to determine the conductivity of printed samples under different printing conditions from 5Hz-13MHz. The samples were then tested under compression loads to measure the piezoresistive response. Results show the conductivity and piezoresistive response are only slightly affected by the print parameters and they can be largely considered independent of the print conditions within the examined ranges of print parameters. This behavior simplifies the printing process design for TPU/MWCNT complex structures. This work demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics, flexible electronics, and health monitoring.

  3. Fabrication of Conductive Paths on a Fused Deposition Modeling Substrate using Inkjet Deposition

    DOE PAGES

    Zhou, Wenchao; List, III, Frederick Alyious; Duty, Chad E.; ...

    2015-01-15

    Inkjet deposition is one of the most attractive fabrication techniques for producing cost efficient and lightweight electronic devices on various substrates with low environmental impact. Fused Deposition Modeling (FDM) is one of the most used and reliable additive manufacturing processes by extrusion of wire-shaped thermoplastic materials, which provides an opportunity for embedding printed electronics into mechanical structures during the building process and enables the design of compact smart structures that can sense and adapt to their own state and the environment. This paper represents one of the first explorations of integrating inkjet deposition of silver nanoparticle inks with the FDMmore » process for making compact electro-mechanical structures. Three challenges have been identified and investigated, including the discontinuity of the printed lines resulting from the irregular surface of the FDM substrate, the non-conductivity of the printed lines due to the particle segregation during the droplet drying process, and the slow drying process caused by the skinning effect . Two different techniques are developed in this paper to address the issue of continuity of the printed lines, including surface ironing and a novel thermal plow technique that plows a channel in the FDM substrate to seal off the pores in the substrate and contain the deposited inks. Two solutions are also found for obtaining conductivity from the continuous printed lines, including porous surface coating and using a more viscous ink with larger nanoparticle size. Then the effects of the printing and post-processing parameters on the conductivity are examined. It is found that post-processing is a dominant factor in determining the conductivity of the printed lines.« less

  4. Development of Web-Based Computer-Tailored Advice to Promote Physical Activity Among People Older Than 50 Years

    PubMed Central

    van Stralen, Maartje M; Bolman, Catherine; Golsteijn, Rianne HJ; de Vries, Hein; Mudde, Aart N; Lechner, Lilian

    2012-01-01

    Background The Active Plus project is a systematically developed theory- and evidence-based, computer-tailored intervention, which was found to be effective in changing physical activity behavior in people aged over 50 years. The process and effect outcomes of the first version of the Active Plus project were translated into an adapted intervention using the RE-AIM framework. The RE-AIM model is often used to evaluate the potential public health impact of an intervention and distinguishes five dimensions: reach, effectiveness, adoption, implementation, and maintenance. Objective To gain insight into the systematic translation of the first print-delivered version of the Active Plus project into an adapted (Web-based) follow-up project. The focus of this study was on the reach and effectiveness dimensions, since these dimensions are most influenced by the results from the original Active Plus project. Methods We optimized the potential reach and effect of the interventions by extending the delivery mode of the print-delivered intervention into an additional Web-based intervention. The interventions were adapted based on results of the process evaluation, analyses of effects within subgroups, and evaluation of the working mechanisms of the original intervention. We pretested the new intervention materials and the Web-based versions of the interventions. Subsequently, the new intervention conditions were implemented in a clustered randomized controlled trial. Results Adaptations resulted in four improved tailoring interventions: (1) a basic print-delivered intervention, (2) a basic Web-based intervention, (3) a print-delivered intervention with an additional environmental component, and (4) a Web-based version with an additional environmental component. Pretest results with participants showed that all new intervention materials had modest usability and relatively high appreciation, and that filling in an online questionnaire and performing the online tasks was not problematic. We used the pretest results to improve the usability of the different interventions. Implementation of the new interventions in a clustered randomized controlled trial showed that the print-delivered interventions had a higher response rate than the Web-based interventions. Participants of both low and high socioeconomic status were reached by both print-delivered and Web-based interventions. Conclusions Translation of the (process) evaluation of an effective intervention into an adapted intervention is challenging and rarely reported. We discuss several major lessons learned from our experience. Trial Registration Nederlands Trial Register (NTR): 2297; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2297 (Archived by WebCite at http://www.webcitation.org/65TkwoESp). PMID:22390878

  5. Development of web-based computer-tailored advice to promote physical activity among people older than 50 years.

    PubMed

    Peels, Denise A; van Stralen, Maartje M; Bolman, Catherine; Golsteijn, Rianne Hj; de Vries, Hein; Mudde, Aart N; Lechner, Lilian

    2012-03-02

    The Active Plus project is a systematically developed theory- and evidence-based, computer-tailored intervention, which was found to be effective in changing physical activity behavior in people aged over 50 years. The process and effect outcomes of the first version of the Active Plus project were translated into an adapted intervention using the RE-AIM framework. The RE-AIM model is often used to evaluate the potential public health impact of an intervention and distinguishes five dimensions: reach, effectiveness, adoption, implementation, and maintenance. To gain insight into the systematic translation of the first print-delivered version of the Active Plus project into an adapted (Web-based) follow-up project. The focus of this study was on the reach and effectiveness dimensions, since these dimensions are most influenced by the results from the original Active Plus project. We optimized the potential reach and effect of the interventions by extending the delivery mode of the print-delivered intervention into an additional Web-based intervention. The interventions were adapted based on results of the process evaluation, analyses of effects within subgroups, and evaluation of the working mechanisms of the original intervention. We pretested the new intervention materials and the Web-based versions of the interventions. Subsequently, the new intervention conditions were implemented in a clustered randomized controlled trial. Adaptations resulted in four improved tailoring interventions: (1) a basic print-delivered intervention, (2) a basic Web-based intervention, (3) a print-delivered intervention with an additional environmental component, and (4) a Web-based version with an additional environmental component. Pretest results with participants showed that all new intervention materials had modest usability and relatively high appreciation, and that filling in an online questionnaire and performing the online tasks was not problematic. We used the pretest results to improve the usability of the different interventions. Implementation of the new interventions in a clustered randomized controlled trial showed that the print-delivered interventions had a higher response rate than the Web-based interventions. Participants of both low and high socioeconomic status were reached by both print-delivered and Web-based interventions. Translation of the (process) evaluation of an effective intervention into an adapted intervention is challenging and rarely reported. We discuss several major lessons learned from our experience. Nederlands Trial Register (NTR): 2297; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2297 (Archived by WebCite at http://www.webcitation.org/65TkwoESp).

  6. Effect of pigment concentration on fastness and color values of thermal and UV curable pigment printing

    NASA Astrophysics Data System (ADS)

    Baysal, Gulcin; Kalav, Berdan; Karagüzel Kayaoğlu, Burçak

    2017-10-01

    In the current study, it is aimed to determine the effect of pigment concentration on fastness and colour values of thermal and ultraviolet (UV) curable pigment printing on synthetic leather. For this purpose, thermal curable solvent-based and UV curable water-based formulations were prepared with different pigment concentrations (3, 5 and 7%) separately and applied by screen printing technique using a screen printing machine. Samples printed with solvent-based formulations were thermally cured and samples printed with water-based formulations were cured using a UV curing machine equipped with gallium and mercury (Ga/Hg) lamps at room temperature. The crock fastness values of samples printed with solvent-based formulations showed that increase in pigment concentration was not effective on both dry and wet crock fastness values. On the other hand, in samples printed with UV curable water-based formulations, dry crock fastness was improved and evaluated as very good for all pigment concentrations. However, increasing the pigment concentration affected the wet crock fastness values adversely and lower values were observed. As the energy level increased for each irradiation source, the fastness values were improved. In comparison with samples printed with solvent-based formulations, samples printed with UV curable water-based formulations yielded higher K/S values at all pigment concentrations. The results suggested that, higher K/S values can be obtained in samples printed with UV curable water-based formulations at a lower pigment concentration compared to samples printed with solvent-based formulations.

  7. Additive Manufacturing for Affordable Rocket Engines

    NASA Technical Reports Server (NTRS)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch labor required, and increases reliability. When certification is achieved, NASA missions will be able to realize these benefits.

  8. Graphene Inks with Cellulosic Dispersants: Development and Applications for Printed Electronics

    NASA Astrophysics Data System (ADS)

    Secor, Ethan Benjamin

    Graphene offers promising opportunities for applications in printed and flexible electronic devices due to its high electrical and thermal conductivity, mechanical flexibility and strength, and chemical and environmental stability. However, scalable production and processing of graphene presents a critical technological challenge preventing the application of graphene for flexible electronic interconnects, electrochemical energy storage, and chemically robust electrical contacts. In this thesis, a promising and versatile platform for the production, patterning, and application of graphene inks is presented based on cellulosic dispersants. Graphene is produced from flake graphite using scalable liquid-phase exfoliation methods, using the polymers ethyl cellulose and nitrocellulose as multifunctional dispersing agents. These cellulose derivatives offer high colloidal stability and broadly tunable rheology for graphene dispersions, providing an effective and tunable platform for graphene ink development. Thermal or photonic annealing decomposes the polymer dispersant to yield high conductivity, flexible graphene patterns for various electronics applications. In particular, the chemical stability of graphene enables robust electrical contacts for ceramic, metallic, organic and electrolytic materials, validating the diverse applicability of graphene in printed electronics. Overall, the strategy for graphene ink design presented here offers a simple, efficient, and versatile method for integrating graphene in a wide range of printed devices and systems, providing both fundamental insight for nanomaterial ink development and realistic opportunities for practical applications.

  9. 3D printing of soft-matter to open a new era of soft-matter MEMS/robotics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu

    2017-04-01

    3D printing technology is becoming useful and applicable by the progress of information and communication technology (ICT). It means 3D printer is a kind of useful robot for additive manufacturing and is controlled by computer with human-friendly software. Once user starts to use 3D printing of soft-matter, one can immediately understand computer-aided design (CAD) and engineering (CAE) technology will be more important and applicable for soft-matter systems. User can easily design soft-matter objects and 3D-print them. User can easily apply 3D-printed soft-matter objects to develop new research and application on MEMS and robotics. Here we introduce the recent progress of 3D printing (i.e. additive manufacturing), especially focusing on our 3D gel printing. We are trying to develop new advanced research and applications of 3D gel printer, including GEL-MECHANICS, GEL-PHOTONICS, and GEL-ROBOTICS. In the gel-mechanics, we are developing new gel materials for mechanical engineering. Some gels have high-mechanical strength and shape memory properties. In the gel-photonics. We are applying our original characterizing system, named `Scanning Microscopic Light Scattering (SMILS)', to analyze 3D printed gel materials. In the gel-robotics, we focus on 3D printing of soft parts for soft-robotics made form gel materials, like gel finger. Also we are challenging to apply 3D gel printing to start new company, to innovate new businesses in county side, and to create new 3D-printed foods.

  10. The Differentiated Effectiveness of a Printed versus a Web-Based Tailored Physical Activity Intervention among Adults Aged over 50

    ERIC Educational Resources Information Center

    Peels, D. A.; van Stralen, M. M.; Bolman, C.; Golsteijn, R. H. J.; de Vries, H.; Mudde, A. N.; Lechner, L.

    2014-01-01

    This study provides insight in the effectiveness of a print-delivered and a Web-based physical activity (PA) intervention (with or without additional environmental information on local PA possibilities) among people aged over 50. Intervention groups (print-delivered basic [PB; n = 439], print-delivered environmental [PE; n = 435], Web-based basic…

  11. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    PubMed Central

    Jammalamadaka, Udayabhanu

    2018-01-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched. PMID:29494503

  12. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.

    PubMed

    Jammalamadaka, Udayabhanu; Tappa, Karthik

    2018-03-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  13. Tactile Media for the Visually Handicapped.

    ERIC Educational Resources Information Center

    Diodato, Virgil

    New technological developments allow even the most severely visually handicapped person to read print, sense images, and operate calculators and meters. One of these new developments is the Optacon, which converts printed images to vibrations sensed by finger touch, and may be used to read print, handwriting, and calculator displays. Another…

  14. A novel approach: high resolution inspection with wafer plane defect detection

    NASA Astrophysics Data System (ADS)

    Hess, Carl; Wihl, Mark; Shi, Rui-fang; Xiong, Yalin; Pang, Song

    2008-05-01

    High Resolution reticle inspection is well-established as a proven, effective, and efficient means of detecting yield-limiting mask defects as well as defects which are not immediately yield-limiting yet can enable manufacturing process improvements. Historically, RAPID products have enabled detection of both classes of these defects. The newly-developed Wafer Plane Inspection (WPI) detector technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. Wafer Plane Inspection accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. This has the effect of reducing sensitivity to non-printing defects while enabling higher sensitivity focused in high MEEF areas where small reticle defects still yield significant printing defects on wafers. WPI is a new inspection mode that has been developed by KLA-Tencor and is currently under test with multiple customers. It employs the same transmitted and reflected-light high-resolution images as the industry-standard high-resolution inspections, but with much more sophisticated processing involved. A rigorous mask pattern recovery algorithm is used to convert the transmitted and reflected light images into a modeled representation of the reticle. Lithographic modeling of the scanner is then used to generate an aerial image of the mask. This is followed by resist modeling to determine the exposure of the photoresist. The defect detectors are then applied on this photoresist plane so that only printing defects are detected. Note that no hardware modifications to the inspection system are required to enable this detector. The same tool will be able to perform both our standard High Resolution inspections and the Wafer Plane Inspection detector. This approach has several important features. The ability to ignore non-printing defects and to apply additional effective sensitivity in high MEEF areas enables advanced node development. In addition, the modeling allows the inclusion of important polarization effects that occur in the resist for high NA operation. This allows for the results to better match wafer print results compared to alternate approaches. Finally, the simulation easily allows for the application of arbitrary illumination profiles. With this approach, users of WPI can make use of unique or custom scanner illumination profiles. This allows the more precise modeling of profiles without inspection system hardware modification or loss of company intellectual property. This paper examines WPI in Die:Die mode. Future work includes a review of Die:Database WPI capability.

  15. The power of print reading: comics in the classroom.

    PubMed

    Gabaron, Sabine

    2017-09-01

    Evidence from neuroscience and psychological studies supporting benefits of print reading over digital reading has recently been discussed in these columns (Perbal 2017 J. Cell Commun. Signal. 11:1-4). In the present commentary, I would like to add my perspective as a Humanities educator, and build upon the idea that print reading results in better comprehension, learning and communication. The argumentation that is presented herein is based on a study performed in a French Comics language class aimed at broadening students' knowledge and experience of graphic novels, and providing them with a cultural representation in the foreign language. The results that are discussed in this commentary indicate that upon reading printed books students created connections for a more meaningful learning experience, leading to personal growth and linguistic development. The impact these graphic novels had on students' learning capacity and relationship to reading was tremendous. The kinesthetic relationship with printed text was deeply enriching and gratifying. The stimulatory effects on their imagination allowed for a more creative reading, and a deeper comprehension, resulting in meaningful communication.

  16. A Robust and Fast Computation Touchless Palm Print Recognition System Using LHEAT and the IFkNCN Classifier

    PubMed Central

    Jaafar, Haryati; Ibrahim, Salwani; Ramli, Dzati Athiar

    2015-01-01

    Mobile implementation is a current trend in biometric design. This paper proposes a new approach to palm print recognition, in which smart phones are used to capture palm print images at a distance. A touchless system was developed because of public demand for privacy and sanitation. Robust hand tracking, image enhancement, and fast computation processing algorithms are required for effective touchless and mobile-based recognition. In this project, hand tracking and the region of interest (ROI) extraction method were discussed. A sliding neighborhood operation with local histogram equalization, followed by a local adaptive thresholding or LHEAT approach, was proposed in the image enhancement stage to manage low-quality palm print images. To accelerate the recognition process, a new classifier, improved fuzzy-based k nearest centroid neighbor (IFkNCN), was implemented. By removing outliers and reducing the amount of training data, this classifier exhibited faster computation. Our experimental results demonstrate that a touchless palm print system using LHEAT and IFkNCN achieves a promising recognition rate of 98.64%. PMID:26113861

  17. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-01

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00015k

  18. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing

    PubMed Central

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-01-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article. PMID:27877783

  19. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.

    PubMed

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  20. Freedom to read: A personal account of the ‘book famine’

    PubMed Central

    2014-01-01

    Even in the digital age, access to literature and other information for people with print impairments remains extremely poor, especially in the developing world. Reading access holds cascading implications for education, economic empowerment, social participation and self-worth. In June 2013 member states of WIPO (the World Intellectual Property Organization) concluded a landmark treaty to reduce copyright impediments to the dissemination of literature to print impaired people. Its effectiveness is not yet clear. Meanwhile, critics hold that disability studies’ analyses have too often lacked insight into the personal and psychological ramifications of exclusion. This article provides an account of the ‘book famine’ from the perspective of a print impaired South African disability researcher, arguing that thorough investigation of the impressions of exclusion is necessary for change. The account highlights the personal, even malignant psychological reverberations of deprivations such as the ‘book famine’, which may carry traumatic effects which cement the status quo. PMID:28730006

  1. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy.

    PubMed

    Kim, Min-Joo; Lee, Seu-Ran; Lee, Min-Young; Sohn, Jason W; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won; Suh, Tae Suk

    2017-01-01

    Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient's age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom.

  2. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy

    PubMed Central

    Lee, Min-Young; Sohn, Jason W.; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won

    2017-01-01

    Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient’s age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom. PMID:28472175

  3. Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers

    PubMed Central

    Andò, Bruno; Baglio, Salvatore; Bulsara, Adi R.; Emery, Teresa; Marletta, Vincenzo; Pistorio, Antonio

    2017-01-01

    Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology. PMID:28368318

  4. A brief review of extrusion-based tissue scaffold bio-printing.

    PubMed

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Collection development and outsourcing in academic health sciences libraries: a survey of current practices.

    PubMed Central

    Blecic, D D; Hollander, S; Lanier, D

    1999-01-01

    Academic health sciences libraries in the United States and Canada were surveyed regarding collection development trends, including their effect on approval plan and blanket order use, and use of outsourcing over the past four years. Results of the survey indicate that serials market forces, budgetary constraints, and growth in electronic resources purchasing have resulted in a decline in the acquisition of print items. As a result, approval plan use is being curtailed in many academic health sciences libraries. Although use of blanket orders is more stable, fewer than one-third of academic health sciences libraries report using them currently. The decline of print collections suggests that libraries should explore cooperative collection development of print materials to ensure access and preservation. The decline of approval plan use and the need for cooperative collection development may require additional effort for sound collection development. Libraries were also surveyed about their use of outsourcing. Some libraries reported outsourcing cataloging and shelf preparation of books, but none reported using outsourcing for resource selection. The reason given most often for outsourcing was that it resulted in cost savings. As expected, economic factors are driving both collection development and outsourcing practices. PMID:10219477

  6. Control of cell growth on 3D-printed cell culture platforms for tissue engineering.

    PubMed

    Tan, Zhikai; Liu, Tong; Zhong, Juchang; Yang, Yikun; Tan, Weihong

    2017-12-01

    Biocompatible tissue growth has excellent prospects for tissue engineering. These tissues are built over scaffolds, which can influence aspects such as cell adhesion, proliferation rate, morphology, and differentiation. However, the ideal 3D biological structure has not been developed yet. Here, we applied the electro-hydrodynamic jet (E-jet) 3D printing technology using poly-(lactic-co-glycolic acid, PLGA) solution to print varied culture platforms for engineered tissue structures. The effects of different parameters (electrical voltage, plotting speed, and needle sizes) on the outcome were investigated. We compared the biological compatibility of the 3D printed culture platforms with that of random fibers. Finally, we used the 3D-printed PLGA platforms to culture fibroblasts, the main cellular components of loose connective tissue. The results show that the E-jet printed platforms could guide and improve cell growth. These highly aligned fibers were able to support cellular alignment and proliferation. Cell angle was consistent with the direction of the fibers, and cells cultured on these fibers showed a much faster migration, potentially enhancing wound healing performance. Thus, the potential of this technology for 3D biological printing is large. This process can be used to grow biological scaffolds for the engineering of tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3281-3292, 2017. © 2017 Wiley Periodicals, Inc.

  7. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules.

    PubMed

    Ahn, Geunseon; Min, Kyung-Hyun; Kim, Changhwan; Lee, Jeong-Seok; Kang, Donggu; Won, Joo-Yun; Cho, Dong-Woo; Kim, Jun-Young; Jin, Songwan; Yun, Won-Soo; Shim, Jin-Hyung

    2017-08-17

    Three-dimensional (3D) cell printing systems allow the controlled and precise deposition of multiple cells in 3D constructs. Hydrogel materials have been used extensively as printable bioinks owing to their ability to safely encapsulate living cells. However, hydrogel-based bioinks have drawbacks for cell printing, e.g. inappropriate crosslinking and liquid-like rheological properties, which hinder precise 3D shaping. Therefore, in this study, we investigated the influence of various factors (e.g. bioink concentration, viscosity, and extent of crosslinking) on cell printing and established a new 3D cell printing system equipped with heating modules for the precise stacking of decellularized extracellular matrix (dECM)-based 3D cell-laden constructs. Because the pH-adjusted bioink isolated from native tissue is safely gelled at 37 °C, our heating system facilitated the precise stacking of dECM bioinks by enabling simultaneous gelation during printing. We observed greater printability compared with that of a non-heating system. These results were confirmed by mechanical testing and 3D construct stacking analyses. We also confirmed that our heating system did not elicit negative effects, such as cell death, in the printed cells. Conclusively, these results hold promise for the application of 3D bioprinting to tissue engineering and drug development.

  8. Recent trends in print portals and Web2Print applications

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2009-01-01

    For quite some time now, the printing business has been under heavy pressure because of overcapacity, dropping prices and the delocalization of the production to low income countries. To survive in this competitive world, printers have to invest in tools that, on one hand, reduce the production costs and, on the other hand, create additional value for their customers (print buyers). The creation of customer portals on top of prepress production systems allowing print buyers to upload their content, approve the uploaded pages based on soft proofs (rendered by the underlying production system) and further follow-up the generation of the printed material, has been illustrative in this respect. These developments resulted in both automation for the printer and added value for the print buyer. Many traditional customer portals assume that the printed products have been identified before they are presented to the print buyer in the portal environment. The products are, in this case, typically entered by the printing organization in a so-called MISi system after the official purchase order has been received from the print buyer. Afterwards, the MIS system then submits the product to the customer portal. Some portals, however, also support the initiation of printed products by the print buyer directly. This workflow creates additional flexibility but also makes things much more complex. We here have to distinguish between special products that are defined ad-hoc by the print buyer and standardized products that are typically selected out of catalogs. Special products are most of the time defined once and the level of detail required in terms of production parameters is quite high. Systems that support such products typically have a built-in estimation module, or, at least, a direct connection to an MIS system that calculates the prices and adds a specific mark-up to calculate a quote. Often, the markup is added by an account manager on a customer by customer basis; in this case, the ordering process is, of course, not fully automated. Standardized products, on the other hand, are easily identified and the cost charged to the print buyer can be retrieved from predefined price lists. Typically, higher volumes will result in more attractive prices. An additional advantage of this type of products is that they are often defined such that they can be produced in bulk using conventional printing techniques. If one wants to automate the ganging, a connection must be established between the on-line ordering and the production planning system. (For digital printing, there typically is no need to gang products since they can be produced more effectively separately.) Many of the on-line print solutions support additional features also available in general purpose e-commerce sites. We here think of the availability of virtual shopping baskets, the connectivity with payment gateways and the support of special facilities for interfacing with courier services (bar codes, connectivity to courier web sites for tracking shipments etc.). Supporting these features also assumes an intimate link with the print production system. Another development that goes beyond the on-line ordering of printed material and the submission of full pages and/or documents, is the interactive, on-line definition of the content itself. Typical applications in this respect are, e.g., the creation of business cards, leaflets, letter heads etc. On a more professional level, we also see that more and more publishing organizations start using on-line publishing platforms to organize their work. These professional platforms can also be connected directly to printing portals and thus enable extra automation. In this paper, we will discuss for each of the different applications presented above (traditional Print Portals, Web2Print applications and professional, on-line publishing platforms) how they interact with prepress and print production systems and how they contribute to the improvement of the overall operations of a printing organization.

  9. Stabilization of glucose-oxidase in the graphene paste for screen-printed glucose biosensor

    NASA Astrophysics Data System (ADS)

    Pepłowski, Andrzej; Janczak, Daniel; Jakubowska, Małgorzata

    2015-09-01

    Various methods and materials for enzyme stabilization within screen-printed graphene sensor were analyzed. Main goal was to develop technology allowing immediate printing of the biosensors in single printing process. Factors being considered were: toxicity of the materials used, ability of the material to be screen-printed (squeezed through the printing mesh) and temperatures required in the fabrication process. Performance of the examined sensors was measured using chemical amperometry method, then appropriate analysis of the measurements was conducted. The analysis results were then compared with the medical requirements. Parameters calculated were: correlation coefficient between concentration of the analyte and the measured electrical current (0.986) and variation coefficient for the particular concentrations of the analyte used as the calibration points. Variation of the measured values was significant only in ranges close to 0, decreasing for the concentrations of clinical importance. These outcomes justify further development of the graphene-based biosensors fabricated through printing techniques.

  10. Controlling Propagation Properties of Surface Plasmon Polariton at Terahertz Frequency

    NASA Astrophysics Data System (ADS)

    Gupta, Barun

    Despite great scientific exploration since the 1900s, the terahertz range is one of the least explored regions of electromagnetic spectrum today. In the field of plasmonics, texturing and patterning allows for control over electromagnetic waves bound to the interface between a metal and the adjacent dielectric medium. The surface plasmon-polaritons (SPPs) display unique dispersion characteristics that depend upon the plasma frequency of the medium. In the long wavelength regime, where metals are highly conductive, such texturing can create an effective medium that can be characterized by an effective plasma frequency that is determined by the geometrical parameters of the surface structure. The terahertz (THz) spectral range offers unique opportunities to utilize such materials. This thesis describes a number of terahertz plasmonic devices, both passive and active, fabricated using different techniques. As an example, inkjet printing is exploited for fabricating two-dimensional plasmonic devices. In this case, we demonstrated the terahertz plasmonic structures in which the conductivity of the metallic film is varied spatially in order to further control the plasmonic response. Using a commercially available inkjet printers, in which one cartridge is filled with conductive silver ink and a second cartridge is filled with resistive carbon ink, computer generated drawings of plasmonic structures are printed in which the individual printed dots can have differing amounts of the two inks, thereby creating a spatial variation in the conductivity. The inkjet printing technique is limited to the two-dimensional structurers. In order to expand the capability of printing complex terahertz devices, which cannot otherwise be fabricated using standard fabricating techniques, we employed 3D printing techniques. 3D printing techniques using polymers to print out the complex structures. In the realm of active plasmonic devices, a wide range of innovative approaches have been developed utilizing a variety of materials. We discuss the use of SMAs for terahertz (THz) plasmonics that allows for switching between different physical geometries corresponding to different electromagnetic responses.

  11. A step toward development of printable dosage forms for poorly soluble drugs.

    PubMed

    Raijada, Dhara; Genina, Natalja; Fors, Daniela; Wisaeus, Erik; Peltonen, Jouko; Rantanen, Jukka; Sandler, Niklas

    2013-10-01

    The purpose of this study was to formulate printable dosage forms for a poorly soluble drug (piroxicam; PRX) and to gain understanding of critical parameters to be considered during development of such dosage forms. Liquid formulations of PRX were printed on edible paper using piezoelectric inkjet printing (PIJ) and impression printing (flexography). The printed dosage forms were characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and the amount of drug was determined using high-performance liquid chromatography. Solutions of PRX in polyethylene glycol 400 (PEG-400):ethanol (40:60) and in PEG-400 were found to be optimal formulations for PIJ and flexography, respectively. SEM-EDX analysis revealed no visible solid particles on the printed dosage forms indicating the drug most likely remained in solution after printing. More accurate drug deposition was obtained by PIJ as compared with flexography. More than 90% drug release was achieved within 5 min regardless of printing method used. The solubility of drug in solvents/cosolvents, rheological properties of formulations, properties of substrate, feasibility and accuracy of the printing methods, and detection limit of analytical techniques for characterization of printed dosage forms are some of the concerns that need to be addressed for development of printable dosage forms of poorly soluble drugs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures.

    PubMed

    Christensen, Kyle; Davis, Brian; Jin, Yifei; Huang, Yong

    2018-08-01

    Additive manufacturing, or 3D printing, is a promising approach for the fabrication of biological structures for regenerative medicine applications using tissue-like materials such as hydrogels. Herein, inkjet printing is implemented as a model droplet-based 3D printing technology for which interfaces have been shown to form between printed lines within printed layers of hydrogel structures. Experimental samples with interfaces in two orientations are fabricated by inkjet printing and control samples with and without interfaces are fabricated by extrusion printing and casting, respectively. The formation of partial and full interfaces is modeled in terms of printing conditions and gelation parameters, and an approach to predicting the ratio of interfacial area to the total contact area between two adjacent lines is presented. Digital image correlation is used to determine strain distributions and identify regions of increased localized deformation for samples under uniaxial tension. Despite the presence of interfaces in inkjet-printed samples, strain distributions are found to be homogeneous regardless of interface orientation, which may be attributed to the multi-layer nature of samples. Conversely, single-layer extrusion-printed samples exhibit localized regions of increased deformation between printed lines, indicating delamination along interfaces. The effective stiffness, failure strength, and failure strain of inkjet-printed samples are found to be dependent on the orientation of interfaces within layers. Specifically, inkjet-printed samples in which tensile forces pull apart interfaces exhibit significantly decreased mechanical properties compared to cast samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Child and Maternal Contributions to Shared Reading: Effects on Language and Literacy Development

    ERIC Educational Resources Information Center

    Deckner, Deborah F.; Adamson, Lauren B.; Bakeman, Roger

    2006-01-01

    Fifty-five children and their mothers were studied longitudinally from 18 to 42 months to determine the effects of home literacy practices, children's interest in reading, and mothers' metalingual utterances during reading on children's expressive and receptive language development, letter knowledge, and knowledge of print concepts. At 27 months,…

  14. A Practical Science Investigation for Middle School Students: Designing a Simple Cost Effective Chemical Solar Padiation Dosimeter

    ERIC Educational Resources Information Center

    Downs, Nathan; Larsen, Kim; Parisi, Alfio; Schouten, Peter; Brennan, Chris

    2012-01-01

    A practical exercise for developing a simple cost-effective solar ultraviolet radiation dosimeter is presented for use by middle school science students. Specifically, this exercise investigates a series of experiments utilising the historical blue print reaction, combining ammonium iron citrate and potassium hexacyanoferrate to develop an…

  15. Streamlined, Inexpensive 3D Printing of the Brain and Skull

    PubMed Central

    Cash, Sydney S.

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  16. Does Intensity Matter? Preschoolers' Print Knowledge Development within a Classroom-Based Intervention

    ERIC Educational Resources Information Center

    McGinty, Anita S.; Breit-Smith, Allison; Fan, Xitao; Justice, Laura M.; Kaderavek, Joan N.

    2011-01-01

    The present study examined the extent to which two dimensions of intervention intensity, ("dose frequency" and "dose") of a 30-week print-referencing intervention related to the print knowledge development of 367 randomly selected children from 55 preschool classrooms. "Dose frequency" refers to the number of intervention sessions implemented per…

  17. Preschool Teachers' Beliefs about Children's Print Literacy Development

    ERIC Educational Resources Information Center

    Lynch, Jacqueline

    2009-01-01

    Beliefs have often been considered important because of their relation to practice. Little is known about the literacy beliefs of preschool teachers, particularly their print literacy beliefs, even though young children's experiences with print have implications for formal schooling. Therefore, this study explored the print literacy beliefs of…

  18. Corporate Web Sites in Traditional Print Advertisements.

    ERIC Educational Resources Information Center

    Pardun, Carol J.; Lamb, Larry

    1999-01-01

    Describes the Web presence in print advertisements to determine how marketers are creating bridges between traditional advertising and the Internet. Content analysis showed Web addresses in print ads; categories of advertisers most likely to link print ads with Web sites; and whether the Web site attempts to develop a database of potential…

  19. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, W; Siderits, R; McKenna, M

    2014-06-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scannedmore » on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.« less

  20. Pattern size tolerance of reverse offset printing: a proximity deformation effect related to local PDMS slipping

    NASA Astrophysics Data System (ADS)

    Kusaka, Yasuyuki; Kanazawa, Shusuke; Koutake, Masayoshi; Ushijima, Hirobumi

    2017-10-01

    We investigated the shape integrity of silver nanoparticle ink patterns formed by reverse offset printing, focusing particularly on the proximity effect of neighbouring patterns due to the local deformation of a polydimethylsiloxane (PDMS) blanket during contact with a hard cliché. We performed printing tests using a cliché having circular patterns with smaller neighbouring circles located at various distances (2-20 µm), and the results revealed that as we decrease the thickness of PDMS and the inter-pattern gap distance, and as we increase the printing indentations, the shape integrity of the printed pattern was worsened. A complementary numerical simulation of PDMS deformations suggested that the pattern distortion during the contact with clichés was caused by the horizontal deformation of PDMS during the printing, which becomes a significant burden when the uplifted region of PDMS is closer to the gap distance of each pattern. Our analysis further indicates that during printing, there is slipping of the ink at the PDMS interface. In addition, we examined the effects of a synchronization mismatch in a roll-to-sheet printing on the pattern size tolerance. The magnitude of the size distortions was severely influenced not only by the mismatch ratio but also by the nip width. This result verifies the scraping of the ink accompanied by the slipping of the PDMS during the printing process, and thereby determines the size tolerance of printed patterns in reverse offset printing. Finally, we discuss the optimization of process parameters to ensure the size integrity of reverse offset printing.

  1. Functional inks and printing of two-dimensional materials.

    PubMed

    Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique

    2018-05-08

    Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

  2. Medieval and Renaissance anatomists: the printing and unauthorized copying of illustrations, and the dissemination of ideas.

    PubMed

    Lanska, Douglas J; Lanska, John Robert

    2013-01-01

    The vanguard that began to question Galenic anatomical dogma originated in northern Italy in the latter half of the thirteenth century, and not coincidentally this was where human dissection was introduced, which in turn eventually fostered the origins of realistic anatomical illustration in the late fifteenth century. With the advent of the printing press and moveable type at this time, printed books began to supersede hand-copied medieval manuscripts, and labor-intensive techniques were soon developed to integrate text and illustrations on the printed page. The same technology was used to pirate the illustrations of prior authors with varying fidelity. Specific medieval and Renaissance anatomical illustrations can often be traced from their inceptions through different stages of development to the final printed images, and then through subsequent pirated versions in various abridgements or other compendia. The most important milestone in the development of anatomy and anatomical illustration was the publication in 1543 by Andreas Vesalii of De humani corporis fabrica (On the Fabric of the Human Body), commonly referred to simply as the Fabrica. With this work, Vesalii succeeded in coordinating a publication production team (author, artists, block cutters, publisher, and typesetters) to achieve an unprecedented integration of scientific discourse, medical illustration, and typography. However, despite Vesalii's valiant efforts to prevent unauthorized duplication, the illustrations from the Fabrica were extensively plagiarized. Although Vesalii found such piracy frustrating and annoying, the long-term effect was to make Vesalii's ideas known to a wider readership and to help solidify his own revolutionary contributions to anatomy. © 2013 Elsevier B.V. All rights reserved.

  3. Biofabrication: an overview of the approaches used for printing of living cells.

    PubMed

    Ferris, Cameron J; Gilmore, Kerry G; Wallace, Gordon G; In het Panhuis, Marc

    2013-05-01

    The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs.

  4. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.

    PubMed

    Kuss, Mitchell A; Wu, Shaohua; Wang, Ying; Untrauer, Jason B; Li, Wenlong; Lim, Jung Yul; Duan, Bin

    2017-09-13

    Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  5. Cost Effective Printing of Laboratory Reports: Biochemist’s and Physician’s debate and Institutions Dilemma

    PubMed Central

    Harith, Arun Kumar; Sampath, Sangeetha

    2017-01-01

    Introduction Laboratory investigations account for significant percentage of healthcare expenses. Every hospital and laboratory especially in the government sector wants to cut down the expenses on reports and offer inferior printouts of reports. The debate of printing attractive reports (clientele aspiration) Vs costs cutting (managerial issues) continues. It becomes the moral responsibility of doctors to guide the management into implementing an effective and economical option of report transcription. Cutting cost is always good but it should be achieved in an effective way keeping in mind the expectation of all the stake holders and ensuring that quality is not significantly compromised. The data regarding economics of printing available on the Internet may be market driven and not a true reflection of printing cost. The present study was undertaken to generate data on the economics of printing reports on various platforms to enable managers to make informed decision on choice of optimal printing option. Aim To provide practical data on economics of printing reports using various printing options available in the country. Materials and Methods Four printing devices (laser printer, inkjet printer, dotmatrix printer and thermal printer) were connected to the laboratory information system and the reports printed from them were critically evaluated for the following parameters - cost of stationary, printing cost, time of printing and clientele satisfaction. Results The cost of printing a single report on laser printer, inkjet printer, dotmatrix printer and thermal printers was Rs 0.75, Rs 0.65, Rs 0.20 and Rs 0.93 respectively. The time taken to print 30 reports were 162 sec, 193 sec, 210 and 60 sec respectively. Clientele satisfaction scores were best with Laser and Inkjet printed reports. Conclusion The most economical mode of printing is Dot Matrix printer using DOS output for printing. However, when the workload of a laboratory is high, then the use of laser printer is not prohibitively expensive option and can be resorted to. Use of thermal printer was found to be unsatisfactory. PMID:28384854

  6. Zero Launch Mass Three Dimensional Print Head

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Gelino, Nathan J.; Smith, Jonathan D.; Buckles, Brad C.; Lippitt, Thomas; Schuler, Jason M.; Nick, Andrew J.; Nugent, Matt W.; Townsend, Ivan I.

    2018-01-01

    NASA's strategic goal is to put humans on Mars in the 2030's. The NASA Human Spaceflight Architecture Team (HAT) and NASA Mars Design Reference Architecture (DRA) 5.0 has determined that in-situ resource utilization (ISRU) is an essential technology to accomplish this mission. Additive construction technology using in-situ materials from planetary surfaces will reduce launch mass, allow structures to be three dimensionally (3D) printed on demand, and will allow building designs to be transmitted digitally from Earth and printed in space. This will ultimately lead to elimination of reliance on structural materials launched from Earth (zero launch mass of construction consumables). The zero launch mass (ZLM) 3D print head project addressed this need by developing a system that 3D prints using a mixture of in-situ regolith and polymer as feedstock, determining the optimum mixture ratio and regolith particle size distribution, developing software to convert g-code into motion instructions for a FANUC robotic arm, printing test samples, performing materials testing, and printing a reduced scale habitable structure concept. This paper will focus on the ZLM 3D Print Head design, materials selection, software development, and lessons learned from operating the system in the NASA KSC Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory.

  7. 3D direct writing fabrication of electrodes for electrochemical storage devices

    NASA Astrophysics Data System (ADS)

    Wei, Min; Zhang, Feng; Wang, Wei; Alexandridis, Paschalis; Zhou, Chi; Wu, Gang

    2017-06-01

    Among different printing techniques, direct ink writing is commonly used to fabricate 3D battery and supercapacitor electrodes. The major advantages of using the direct ink writing include effectively building 3D structure for energy storage devices and providing higher power density and higher energy density than traditional techniques due to the increased surface area of electrode. Nevertheless, direct ink writing has high standards for the printing inks, which requires high viscosity, high yield stress under shear and compression, and well-controlled viscoelasticity. Recently, a number of 3D-printed energy storage devices have been reported, and it is very important to understand the printing process and the ink preparation process for further material design and technology development. We discussed current progress of direct ink writing technologies by using various electrode materials including carbon nanotube-based material, graphene-based material, LTO (Li4Ti5O12), LFP (LiFePO4), LiMn1-xFexPO4, and Zn-based metallic oxide. Based on achieve electrochemical performance, these 3D-printed devices deliver performance comparable to the energy storage device fabricated using traditional methods still leaving large room for further improvement. Finally, perspectives are provided on the potential future direction of 3D printing for all solid-state electrochemical energy storage devices.

  8. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration.

    PubMed

    Varan, Cem; Wickström, Henrika; Sandler, Niklas; Aktaş, Yeşim; Bilensoy, Erem

    2017-10-15

    Personalized medicine is an important treatment approach for diseases like cancer with high intrasubject variability. In this framework, printing is one of the most promising methods since it permits dose and geometry adjustment of the final product. With this study, a combination product consisting of anticancer (paclitaxel) and antiviral (cidofovir) drugs was manufactured by inkjet printing onto adhesive film for local treatment of cervical cancers as a result of HPV infection. Furthermore, solubility problem of paclitaxel was overcome by maintaining this poorly soluble drug in a cyclodextrin inclusion complex and release of cidofovir was controlled by encapsulation in polycaprolactone nanoparticles. In vitro characterization studies of printed film formulations were performed and cell culture studies showed that drug loaded film formulation was effective on human cervical adenocarcinoma cells. Our study suggests that inkjet printing technology can be utilized in the development of antiviral/anticancer combination dosage forms for mucosal application. The drug amount in the delivery system can be accurately controlled and modified. Moreover, prolonged drug release time can be obtained. Printing of anticancer and antiviral drugs on film seem to be a potential approach for HPV-related cervical cancer treatment and a good candidate for further studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A High-yield Two-step Transfer Printing Method for Large-scale Fabrication of Organic Single-crystal Devices on Arbitrary Substrates

    PubMed Central

    Deng, Wei; Zhang, Xiujuan; Pan, Huanhuan; Shang, Qixun; Wang, Jincheng; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng

    2014-01-01

    Single-crystal organic nanostructures show promising applications in flexible and stretchable electronics, while their applications are impeded by the large incompatibility with the well-developed photolithography techniques. Here we report a novel two-step transfer printing (TTP) method for the construction of organic nanowires (NWs) based devices onto arbitrary substrates. Copper phthalocyanine (CuPc) NWs are first transfer-printed from the growth substrate to the desired receiver substrate by contact-printing (CP) method, and then electrode arrays are transfer-printed onto the resulting receiver substrate by etching-assisted transfer printing (ETP) method. By utilizing a thin copper (Cu) layer as sacrificial layer, microelectrodes fabricated on it via photolithography could be readily transferred to diverse conventional or non-conventional substrates that are not easily accessible before with a high transfer yield of near 100%. The ETP method also exhibits an extremely high flexibility; various electrodes such as Au, Ti, and Al etc. can be transferred, and almost all types of organic devices, such as resistors, Schottky diodes, and field-effect transistors (FETs), can be constructed on planar or complex curvilinear substrates. Significantly, these devices can function properly and exhibit closed or even superior performance than the device counterparts fabricated by conventional approach. PMID:24942458

  10. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom.

    PubMed

    Craft, Daniel F; Howell, Rebecca M

    2017-09-01

    Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer

    NASA Astrophysics Data System (ADS)

    Teoh, Joanne Ee Mei; Zhao, Yue; An, Jia; Chua, Chee Kai; Liu, Yong

    2017-12-01

    Shape memory polymers (SMPs) have gained a presence in additive manufacturing due to their role in 4D printing. They can be printed either in multi-materials for multi-stage shape recovery or in a single material for single-stage shape recovery. When printed in multi-materials, material or material-based design is used as a controlling factor for multi-stage shape recovery. However, when printed in a single material, it is difficult to design multi-stage shape recovery due to the lack of a controlling factor. In this research, we explore the use of geometric thickness as a controlling factor to design smart structures possessing multi-stage shape recovery using a single SMP. L-shaped hinges with a thickness ranging from 0.3-2 mm were designed and printed in four different SMPs. The effect of thickness on SMP’s response time was examined via both experiment and finite element analysis using Ansys transient thermal simulation. A method was developed to accurately measure the response time in millisecond resolution. Temperature distribution and heat transfer in specimens during thermal activation were also simulated and discussed. Finally, a spiral square and an artificial flower consisting of a single SMP were designed and printed with appropriate thickness variation for the demonstration of a controlled multi-stage shape recovery. Experimental results indicated that smart structures printed using single material with controlled thickness parameters are able to achieve controlled shape recovery characteristics similar to those printed with multiple materials and uniform geometric thickness. Hence, the geometric parameter can be used to increase the degree of freedom in designing future smart structures possessing complex shape recovery characteristics.

  12. Surface processing and ageing behavior of silk fabrics treated with atmospheric-pressure plasma for pigment-based ink-jet printing

    NASA Astrophysics Data System (ADS)

    Zhang, Chunming; Wang, Libing; Yu, Miao; Qu, Lijun; Men, Yajing; Zhang, Xiangwu

    2018-03-01

    Pigment inkjet printing has highlighted the advantages of cost-effective, short production cycle and environment-friendly. However, patterns directly printed with pigment inks usually have low color yields and blurry images which are caused by bleeding phenomenon. This work presents an atmospheric-pressure plasma method for improving the pigment-based ink-jet printing performance of silk fabrics. The effects of surface changes induced are discussed, with data derived from morphological study by atomic force microscopy (AFM), chemical analysis using X-ray photoelectron spectroscopy (XPS) and contact angle measurement. Ink-jet printing experiments were conducted to study the influence of measured changes on anti-bleeding property and color strength of treated and original samples. The ageing experiment indicates that the modified silk fabrics should be printed within 24 h after plasma processing for maximum color yields. This study explores an effective approach for the atmospheric-pressure plasma, which can provide its significant use in improving the surface properties and ink-jet printing performance of fabrics.

  13. Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins

    NASA Astrophysics Data System (ADS)

    Scott, Mark Andrew

    When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3-D printing of full length proteins in collagen, fibrin and gelatin methacrylate scaffolds, as well as printing in agarose and agarose methacrylate scaffolds. We also present a novel method for 3-D printing collagen scaffolds at unprecedented speeds, up to 14layers per second, generating complex shapes in seconds with sub-micron resolution. Finally, we demonstrate that 3-D printing of scaffold architecture and protein cues inside the scaffold can be combined, for the first time enabling structures with complex sub-micron architectures and chemical cues for directing development. We believe that the ultra-rapid printing technology presented in this thesis will be a key enabler in the development of complex, artificially engineered tissues and organs. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  14. Evaluation of Lip Prints on Different Supports Using a Batch Image Processing Algorithm and Image Superimposition.

    PubMed

    Herrera, Lara Maria; Fernandes, Clemente Maia da Silva; Serra, Mônica da Costa

    2018-01-01

    This study aimed to develop and to assess an algorithm to facilitate lip print visualization, and to digitally analyze lip prints on different supports, by superimposition. It also aimed to classify lip prints according to sex. A batch image processing algorithm was developed, which facilitated the identification and extraction of information about lip grooves. However, it performed better for lip print images with a uniform background. Paper and glass slab allowed more correct identifications than glass and the both sides of compact disks. There was no significant difference between the type of support and the amount of matching structures located in the middle area of the lower lip. There was no evidence of association between types of lip grooves and sex. Lip groove patterns of type III and type I were the most common for both sexes. The development of systems for lip print analysis is necessary, mainly concerning digital methods. © 2017 American Academy of Forensic Sciences.

  15. Open source 3D printers: an appropriate technology for building low cost optics labs for the developing communities

    NASA Astrophysics Data System (ADS)

    Gwamuri, J.; Pearce, Joshua M.

    2017-08-01

    The recent introduction of RepRap (self-replicating rapid prototyper) 3-D printers and the resultant open source technological improvements have resulted in affordable 3-D printing, enabling low-cost distributed manufacturing for individuals. This development and others such as the rise of open source-appropriate technology (OSAT) and solar powered 3-D printing are moving 3-D printing from an industry based technology to one that could be used in the developing world for sustainable development. In this paper, we explore some specific technological improvements and how distributed manufacturing with open-source 3-D printing can be used to provide open-source 3-D printable optics components for developing world communities through the ability to print less expensive and customized products. This paper presents an open-source low cost optical equipment library which enables relatively easily adapted customizable designs with the potential of changing the way optics is taught in resource constraint communities. The study shows that this method of scientific hardware development has a potential to enables a much broader audience to participate in optical experimentation both as research and teaching platforms. Conclusions on the technical viability of 3-D printing to assist in development and recommendations on how developing communities can fully exploit this technology to improve the learning of optics through hands-on methods have been outlined.

  16. Using Environmental Print to Enhance Emergent Literacy and Print Motivation

    ERIC Educational Resources Information Center

    Neumann, Michelle M.; Hood, Michelle; Ford, Ruth M.

    2013-01-01

    Given the ubiquitous and salient nature of environmental print, it has the potential to scaffold emergent literacy in young children. This randomised control study evaluated the effects of using environmental print compared to standard print (the same labels in manuscript form) in an 8-week intervention (30 min per week) to foster 3- to…

  17. Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing

    NASA Astrophysics Data System (ADS)

    Hines, Daniel R.

    Printing methods are fast becoming important processing techniques for the fabrication of flexible electronics. Some goals for flexible electronics are to produce cheap, lightweight, disposable radio frequency identification (RFID) tags, very large flexible displays that can be produced in a roll-to-roll process and wearable electronics for both the clothing and medical industries. Such applications will require fabrication processes for the assembly of dissimilar materials onto a common substrate in ways that are compatible with organic and polymeric materials as well as traditional solid-state electronic materials. A transfer printing method has been developed with these goals and application in mind. This printing method relies primarily on differential adhesion where no chemical processing is performed on the device substrate. It is compatible with a wide variety of materials with each component printed in exactly the same way, thus avoiding any mixed processing steps on the device substrate. The adhesion requirements of one material printed onto a second are studied by measuring the surface energy of both materials and by surface treatments such as plasma exposure or the application of self-assembled monolayers (SAM). Transfer printing has been developed within the context of fabricating organic electronics onto plastic substrates because these materials introduce unique opportunities associated with processing conditions not typically required for traditional semiconducting materials. Compared to silicon, organic semiconductors are soft materials that require low temperature processing and are extremely sensitive to chemical processing and environmental contamination. The transfer printing process has been developed for the important and commonly used organic semiconducting materials, pentacene (Pn) and poly(3-hexylthiophene) (P3HT). A three-step printing process has been developed by which these materials are printed onto an electrode subassembly consisting of previously printed electrodes separated by a polymer dielectric layer all on a plastic substrate. These bottom contact, flexible organic thin-film transistors (OTFT) have been compared to unprinted (reference) devices consisting of top contact electrodes and a silicon dioxide dielectric layer on a silicon substrate. Printed Pn and P3HT TFTs have been shown to out-perform the reference devices. This enhancement has been attributed to an annealing under pressure of the organic semiconducting material.

  18. Three dimensional printing technology and materials for treatment of elbow fractures.

    PubMed

    Yang, Long; Grottkau, Brian; He, Zhixu; Ye, Chuan

    2017-11-01

    3D printing is a rapid prototyping technology that uses a 3D digital model to physically build an object. The aim of this study was to evaluate the peri-operative effect of 3D printing in treating complex elbow fractures and its role in physician-patient communication and determine which material is best for surgical model printing. Forty patients with elbow fractures were randomly divided into a 3D printing-assisted surgery group (n = 20) and a conventional surgery group (n = 20). Surgery duration, intra-operative blood loss, anatomic reduction rate, incidence of complications and elbow function score were compared between the two groups. The printing parameters, the advantages and the disadvantages of PLA and ABS were also compared. The independent-samples t-test was used to compare the data between groups. A questionnaire was designed for orthopaedic surgeons to evaluate the verisimilitude, the appearance of being true or real, and effectiveness of the 3D printing fracture model. Another questionnaire was designed to evaluate physician-patient communication effectiveness. The 3D group showed shorter surgical duration, lower blood loss and higher elbow function score, compared with the conventional group. PLA is an environmentally friendly material, whereas ABS produce an odour in the printing process. Curling edges occurred easily in the printing process with ABS and were observed in four of ten ABS models but in only one PLA model. The overall scores given by the surgeons about the verisimilitude and effectiveness of the 3D model were relatively high. Patient satisfaction scores for the 3D model were higher than those for the 2D imaging data during physician-patient discussions. 3D-printed models can accurately depict the anatomic characteristics of fracture sites, help surgeons determine a surgical plan and represent an effective tool for physician-patient communication. PLA is more suitable for desktop fused deposition printing in surgical modeling applications.

  19. Relevance of 19th century continuous tone photomechanical printing techniques to digitally generated imagery

    NASA Astrophysics Data System (ADS)

    Hoskins, Stephen; Thirkell, Paul

    2003-01-01

    Collotype and Woodburytype are late 19th early 20th century continuous tone methods of reproducing photography in print, which do not have an underlying dot structure. The aesthetic and tactile qualities produced by these methods at their best, have never been surpassed. Woodburytype is the only photomechanical print process using a printing matrix and ink, that is capable of rendering true continuous tone; it also has the characteristic of rendering a photographic image by mapping a three-dimensional surface topography. Collotype"s absence of an underlying dot structure enables an image to be printed in as many colours as desired without creating any form of interference structure. Research at the Centre for Fine Print Research, UWE Bristol aims to recreate these processes for artists and photographers and assess their potential to create a digitally generated image printed in full colour and continuous tone that will not fade or deteriorate. Through this research the Centre seeks to provide a context in which the development of current four-colour CMYK printing may be viewed as an expedient rather than a logical route for the development of colour printing within the framework of digitally generated hard copy paper output.

  20. Determination of orthotropic mechanical properties of 3D printed parts for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Poissenot-Arrigoni, Bastien; Scheyer, Austin; Anton, Steven R.

    2017-04-01

    The evolution of additive manufacturing has allowed engineers to use 3D printing for many purposes. As a natural consequence of the 3D printing process, the printed object is anisotropic. As part of an ongoing project to embed piezoelectric devices in 3D printed structures for structural health monitoring (SHM), this study aims to find the mechanical properties of the 3D printed material and the influence of different external factors on those properties. The orthotropic mechanical properties of a 3D printed structure are dependent on the printing parameters used to create the structure. In order to develop an orthotropic material model, mechanical properties will be found experimentally from additively manufactured samples created from polylactic acid (PLA) using a consumer-level fused deposition modeling (FDM) printer; the Lulzbot TAZ 6. Nine mechanical constants including three Young's moduli, three Poisson's ratios, and three shear moduli are needed to fully describe the 3D elastic behavior of the material. Printed specimens with different raster orientations and print orientations allow calculation of the different material constants. In this work, seven of the nine mechanical constants were found. Two shear moduli were unable to be measured due to difficulties in printing two of the sample orientations. These mechanical properties are needed in order to develop orthotropic material models of systems employing 3D printed PLA. The results from this paper will be used to create a model of a piezoelectric transducer embedded in a 3D printed structure for structural health monitoring.

  1. Improving the transition from medical school to internship - evaluation of a preparation for internship course.

    PubMed

    Scicluna, Helen A; Grimm, Michael C; Jones, Philip D; Pilotto, Louis S; McNeil, H Patrick

    2014-02-03

    This study evaluates the impact of a new 'Preparation for Internship' (PRINT) course, which was developed to facilitate the transition of University of New South Wales (UNSW) medical graduates from Medical School to Internship. During a period of major curricular reform, the 2007 (old program) and 2009 (new program) cohorts of UNSW final year students completed the Clinical Capability Questionnaire (CCQ) prior to and after undertaking the PRINT course. Clinical supervisors' ratings and self-ratings of UNSW 2009 medical graduates were obtained from the Hospital-based Prevocational Progress Review Form. Prior to PRINT, students from both cohorts perceived they had good clinical skills, with lower ratings for capability in procedural skills, operational management, and administrative tasks. After completing PRINT, students from both cohorts perceived significant improvement in their capability in procedural skills, operational management, and administrative tasks. Although PRINT also improved student-perceived capability in confidence, interpersonal skills and collaboration in both cohorts, curriculum reform to a new outcomes-based program was far more influential in improving self-perceptions in these facets of preparedness for hospital practice than PRINT. The PRINT course was most effective in improving students' perceptions of their capability in procedural skills, operational management and administrative tasks, indicating that student-to-intern transition courses should be clinically orientated, address relevant skills, use experiential learning, and focus on practical tasks. Other aspects that are important in preparation of medical students for hospital practice cannot be addressed in a PRINT course, but major improvements are achievable by program-wide curriculum reform.

  2. Improving the transition from medical school to internship – evaluation of a preparation for internship course

    PubMed Central

    2014-01-01

    Background This study evaluates the impact of a new 'Preparation for Internship’ (PRINT) course, which was developed to facilitate the transition of University of New South Wales (UNSW) medical graduates from Medical School to Internship. Methods During a period of major curricular reform, the 2007 (old program) and 2009 (new program) cohorts of UNSW final year students completed the Clinical Capability Questionnaire (CCQ) prior to and after undertaking the PRINT course. Clinical supervisors’ ratings and self-ratings of UNSW 2009 medical graduates were obtained from the Hospital-based Prevocational Progress Review Form. Results Prior to PRINT, students from both cohorts perceived they had good clinical skills, with lower ratings for capability in procedural skills, operational management, and administrative tasks. After completing PRINT, students from both cohorts perceived significant improvement in their capability in procedural skills, operational management, and administrative tasks. Although PRINT also improved student-perceived capability in confidence, interpersonal skills and collaboration in both cohorts, curriculum reform to a new outcomes-based program was far more influential in improving self-perceptions in these facets of preparedness for hospital practice than PRINT. Conclusions The PRINT course was most effective in improving students’ perceptions of their capability in procedural skills, operational management and administrative tasks, indicating that student-to-intern transition courses should be clinically orientated, address relevant skills, use experiential learning, and focus on practical tasks. Other aspects that are important in preparation of medical students for hospital practice cannot be addressed in a PRINT course, but major improvements are achievable by program-wide curriculum reform. PMID:24485072

  3. Three-dimensional Printing in Developing Countries

    PubMed Central

    Ibrahim, Ahmed M. S.; Jose, Rod R.; Rabie, Amr N.; Gerstle, Theodore L.; Lee, Bernard T.

    2015-01-01

    Summary: The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents. PMID:26301132

  4. Three-dimensional Printing in Developing Countries.

    PubMed

    Ibrahim, Ahmed M S; Jose, Rod R; Rabie, Amr N; Gerstle, Theodore L; Lee, Bernard T; Lin, Samuel J

    2015-07-01

    The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents.

  5. Evaluation of Reading Habits of Teacher Candidates: Study of Scale Development

    ERIC Educational Resources Information Center

    Erkan, Senem Seda Sahenk; Dagal, Asude Balaban; Tezcan, Özlem

    2016-01-01

    The main purpose of this study was to develop a valid and reliable scale for printed and digital competencies ("The Printed and Digital Reading Habits Scale"). The problem statement of this research can be expressed as: "The Printed and Digital Reading Habits Scale: is a valid and reliable scale?" In this study, the scale…

  6. Accelerating Preschoolers' Early Literacy Development through Classroom-Based Teacher-Child Storybook Reading and Explicit Print Referencing

    ERIC Educational Resources Information Center

    Justice, Laura M.; Kaderavek, Joan N.; Fan, Xitao; Sofka, Amy; Hunt, Aileen

    2009-01-01

    Purpose: This study examined the impact of teacher use of a print referencing style during classroom-based storybook reading sessions conducted over an academic year. Impacts on preschoolers' early literacy development were examined, focusing specifically on the domain of print knowledge. Method: This randomized, controlled trial examined the…

  7. Printable Transparent Conductive Films for Flexible Electronics.

    PubMed

    Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei

    2018-03-01

    Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pregnancy and IBD

    MedlinePlus

    ... Center Home > Resources > Pregnancy and IBD Go Back Pregnancy and IBD Email Print + Share If you have ... on the developing fetus or newborn. EFFECT OF PREGNANCY ON WOMEN WITH IBD Women should be well ...

  9. The Papers Printing Quality Complex Assessment Algorithm Development Taking into Account the Composition and Production Technological Features

    NASA Astrophysics Data System (ADS)

    Babakhanova, Kh A.; Varepo, L. G.; Nagornova, I. V.; Babluyk, E. B.; Kondratov, A. P.

    2018-04-01

    Paper is one of the printing system key components causing the high-quality printed products output. Providing the printing companies with the specified printing properties paper, while simultaneously increasing the paper products range and volume by means of the forecasting methods application and evaluation during the production process, is certainly a relevant problem. The paper presents the printing quality control algorithm taking into consideration the paper printing properties quality assessment depending on the manufacture technological features and composition variation. The information system including raw material and paper properties data and making possible pulp and paper enterprises to select paper composition optimal formulation is proposed taking into account the printing process procedure peculiarities of the paper manufacturing with specified printing properties.

  10. 4D printing of polymeric materials for tissue and organ regeneration.

    PubMed

    Miao, Shida; Castro, Nathan; Nowicki, Margaret; Xia, Lang; Cui, Haitao; Zhou, Xuan; Zhu, Wei; Lee, Se-Jun; Sarkar, Kausik; Vozzi, Giovanni; Tabata, Yasuhiko; Fisher, John; Zhang, Lijie Grace

    2017-12-01

    Four dimensional (4D) printing is an emerging technology with great capacity for fabricating complex, stimuli-responsive 3D structures, providing great potential for tissue and organ engineering applications. Although the 4D concept was first highlighted in 2013, extensive research has rapidly developed, along with more-in-depth understanding and assertions regarding the definition of 4D. In this review, we begin by establishing the criteria of 4D printing, followed by an extensive summary of state-of-the-art technological advances in the field. Both transformation-preprogrammed 4D printing and 4D printing of shape memory polymers are intensively surveyed. Afterwards we will explore and discuss the applications of 4D printing in tissue and organ regeneration, such as developing synthetic tissues and implantable scaffolds, as well as future perspectives and conclusions.

  11. Three-Dimensional (3-D) Printing: A Cost-Effective Solution for Improving Global Accessibility to Prostheses.

    PubMed

    Silva, Kyle; Rand, Stephanie; Cancel, David; Chen, Yuxi; Kathirithamby, Rani; Stern, Michelle

    2015-12-01

    The lack of access to prostheses is a global problem, partially caused by the high cost associated with the current manufacturing process. Three-dimensional printing is gaining use in the medical field, and one such area is prosthetics. In addition to using cost-effective materials, this technology allows for rapid prototyping, making it an efficient solution for the development of affordable prostheses. If the rehabilitation medicine community embraces this novel technology, we can help alleviate the global disparity of access to prostheses. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  12. Enhancing the quality of aged latent fingerprints developed by superglue fuming: loss and replenishment of initiator.

    PubMed

    Wargacki, Stephen P; Lewis, Linda A; Dadmun, Mark D

    2008-09-01

    The recovery and identification of latent fingerprints from a crime scene are crucial to many investigations. The cyanoacrylate (superglue) fuming method (CFM), which develops fingerprints by growing a polymer coating over the print residue, is a powerful method but encounters severe limitations when prints are aged or exposed to harsh environmental conditions. We examine the aging process and how the changes that occur to a fingerprint residue over time influence the growth of polymer during development. We identify loss of initiator by erosion and degradation that, when coupled with a loss of water from the print residue, result in a decreased ability to polymerize ethylcyanoacrylate. Then, we present a methodology by which the ability of aged latent fingerprints to polymerize ethylcyanoacrylate is recovered. Two print enhancement agents, acetic acid and ammonia, are demonstrated to improve the growth of polymer from the print ridges by over an order of magnitude, while retaining the integrity of the print structure. Comparison between the two enhancement agents indicate that the enhancement occurs due to ridge coating by the ammonia or acetic acid and pH control of the latent print.

  13. Study of gelatin as an effective energy absorbing layer for laser bioprinting.

    PubMed

    Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Chrisey, Douglas B; Huang, Yong

    2017-06-09

    Laser-induced forward transfer printing, also commonly known as laser printing, has been widely implemented for three-dimensional bioprinting due to its unique orifice-free nature during printing. However, the printing quality has the potential to be further improved for various laser bioprinting applications. The objectives of this study are to investigate the feasibility of using gelatin as an energy absorbing layer (EAL) material for laser bioprinting and its effects on the quality of printed constructs, bioink printability, and post-printing cell viability and process-induced DNA damage. The gelatin EAL is applied between the quartz support and the coating of build material, which is to be printed. Printing quality can be improved by EAL-assisted laser printing when using various alginate solutions (1%, 2%, and 4%) and cell-laden bioinks (2% alginate and 5 × 10 6 cells ml -1 in cell culture medium). The required laser fluence is also reduced due to a higher absorption coefficient of gelatin gel, in particular when to achieve the best printing type/quality. The post-printing cell viability is improved by ∼10% and DNA double-strand breaks are reduced by ∼50%. For all the build materials investigated, the gelatin EAL helps reduce the droplet size and average jet velocity.

  14. [Research progress on the technique and materials for three-dimensional bio-printing].

    PubMed

    Yang, Runhuai; Chen, Yueming; Ma, Changwang; Wang, Huiqin; Wang, Shuyue

    2017-04-01

    Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.

  15. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer

    NASA Astrophysics Data System (ADS)

    Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; Windl, R.; Suess, D.

    2016-10-01

    3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup, a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our calibration method is shown. With our setup, we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.

  16. Reduce on the Cost of Photovoltaic Power Generation for Polycrystalline Silicon Solar Cells by Double Printing of Ag/Cu Front Contact Layer

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Zhou; Chen, Jianlin; Liao, Lida; Chen, Jian; Li, Cong; Li, Wei

    2018-06-01

    With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.

  17. An evaluation of the transferability of Munsell's colour notation methodology to modern inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Olen, Melissa; Geisow, Adrian; Parraman, Carinna

    2015-01-01

    This paper examines the transferability of the Munsell system to modern inkjet colorants and printing technology following a similar approach to his original methods. While extensive research and development has gone into establishing methods for measuring and modelling the modern colour gamut, this study seeks to reintegrate the psychophysical and artistic principles used in Munsell's early colour studies with digital print. Contemporary inkjet printing, with ink sets containing a greater number of primary colorants, are significantly higher in chroma compared to the limited colorants available at the time of Munsell's original work. Following Munsell's design and implementation, our experiments replicate the use of Clerk-Maxwell's spinning disks in order to examine the effects of colour mixing with these expanded colour capacities, and to determine hue distribution and placement. This work revisits Munsell's project in light of known issues, and formulates questions about how we can reintegrate Munsell's approach for colour description and mixing into modern colour science, understanding, and potential application.

  18. Future of printing: changes and challenges, technologies and markets

    NASA Astrophysics Data System (ADS)

    Kipphan, Helmut

    1998-01-01

    Digitalization within the graphic arts industry is described and it is explained how it is improving and changing the print production strategies and which new kinds of print production systems are developed or can be expected. The relationship of printed media and electronic media is analyzed and a positioning for the next century is given. The state of the art of conventional printing technologies, especially using direct imagine techniques, and their position within the digital workflow are shortly described. Non-impact printing multicolor printing systems are explained, based on general design criteria and linked to existing and newly announced equipment. The use of high-tech components for building up successful systems with high reliability, high quality and low production costs is included with some examples. Digital printing systems open many opportunities in print production: distributed printing, personalization, print and book on demand are explained as examples. The overview of the several printing technologies and their positioning regarding quality and productivity leads to the scenario about the important position of printed media, also in the distant future.

  19. Philadelphia Printing and Publishing, 1876-1976

    ERIC Educational Resources Information Center

    Whitehead, Thomas M.

    1976-01-01

    Two Philadelphia printing histories, both reflecting the relationship of printing to publishing, are examined in this article: the manufacture by the publisher of his own product and the development and commercialization of the photomechanical halftone process. (Author)

  20. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, S

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have alsomore » provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be reported.« less

  1. The Decline of Print: Ten Years of Print Serial Use in a Small Academic Medical Library

    ERIC Educational Resources Information Center

    Rosati, Karen Thompson

    2006-01-01

    Tracking use of print journals over a ten-year period has allowed The University of South Carolina (USC) School of Medicine Library an essential tool for more accurate collection development, for both print and electronic selection. This lengthy study has provided usage statistics for purchasing decisions regarding electronic subscriptions still…

  2. Impacts of Parent-Implemented Early-Literacy Intervention for Spanish-Speaking Children with Language Impairment

    ERIC Educational Resources Information Center

    Pratt, Amy S.; Justice, Laura M.; Perez, Ashanty; Duran, Lillian K.

    2015-01-01

    Background: Children with language impairment (LI) often have lags in development of print knowledge, an important early-literacy skill. This study explores impacts of a print-focused intervention for Spanish-speaking children with LI in Southeastern Mexico. Aims: Aims were twofold. First, we sought to describe the print knowledge (print-concept…

  3. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies.

    PubMed

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-03-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  4. Electromechanical modeling and experimental verification of a directly printed nanocomposite

    NASA Astrophysics Data System (ADS)

    Nafari, Alireza; Sodano, Henry A.

    2018-03-01

    Piezoelectric materials are currently among the most promising building blocks of sensing, actuating and energy harvesting systems. However, these materials are limited in applications due to difficulty in machining and casting it on to curve surfaces. To mitigate this issue, one method is through additive manufacturing (direct printing) of piezoelectric nanocomposite in which piezoelectric nanomaterials are embedded into a polymer matrix. Although significant progress has been recently made in this area, modeling the electromechanical response of a directly printed nanocomposite remains a challenge. Thus the objective of this study is to develop robust micromechanical and finite element models that allows the study of the electroelastic properties of a directly printed nanocomposite containing piezoelectric inclusions. Furthermore, the dependence of these properties on geometrical parameters such as aspect ratio and alignment of the active phase are investigated. The focus of this work is a demonstration of the effect gradual alignment of piezoelectric nanowires in a nanocomposite from randomly oriented to purely aligned improves the electroelastic properties of a directly printed nanocomposite. Finally, these models are verified through experimental measurement of electroelastic properties of the nanocomposites containing barium titanate nanowires in Polydimethylsiloxane (PDMS) polymer.

  5. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  6. Analysis of Impact of 3D Printing Technology on Traditional Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Wu, Niyan; Chen, Qi; Liao, Linzhi; Wang, Xin

    With quiet rise of 3D printing technology in automobile, aerospace, industry, medical treatment and other fields, many insiders hold different opinions on its development. This paper objectively analyzes impact of 3D printing technology on mold making technology and puts forward the idea of fusion and complementation of 3D printing technology and mold making technology through comparing advantages and disadvantages of 3D printing mold and traditional mold making technology.

  7. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Influence of Verbal and Nonverbal References to Print on Preschoolers' Visual Attention to Print during Storybook Reading

    ERIC Educational Resources Information Center

    Justice, Laura M.; Pullen, Paige C.; Pence, Khara

    2008-01-01

    How much do preschool children look at print within storybooks when adults read to them? This study sought to answer this question as well as to examine the effects of adult verbal and nonverbal references to print on children's visual attention to print during storybook reading. Forty-four preschool-aged children participated in this study…

  9. Application of 3D printing to prototype and develop novel plant tissue culture systems.

    PubMed

    Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P

    2017-01-01

    Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.

  10. Fabrication of Bendable Circuits on a Polydimethylsiloxane (PDMS) Surface by Inkjet Printing Semi-Wrapped Structures

    PubMed Central

    Sun, Jiazhen; Jiang, Jieke; Bao, Bin; Wang, Si; He, Min; Zhang, Xingye; Song, Yanlin

    2016-01-01

    In this work, an effective method was developed to fabricate bendable circuits on a polydimethylsiloxane (PDMS) surface by inkjet printing semi-wrapped structures. It is demonstrated that the precured PDMS liquid film could influence the depositing morphology of coalesced silver precursor inkjet droplets. Accordingly, continuous and uniform lines with a semi-wrapped structure were fabricated on the PDMS surface. When the printed silver precursor was reduced to Ag nanoparticles, the fabricated conductive film exhibited good transparency and high bendability. This work presented a facile way to fabricate flexible patterns on a PDMS surface without any complicated modification or special equipment. Meanwhile, an in situ hydrazine reduction of Ag has been reported using the vapor phase method in the fabricating process. PMID:28773374

  11. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi

    2018-05-01

    Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10-6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.

  12. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing.

    PubMed

    Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi

    2018-05-04

    Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10 -6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.

  13. Teaching and Testing Early Reading. Focus On

    ERIC Educational Resources Information Center

    Mraz, Maryann; Kissel, Brian

    2007-01-01

    This issue of "Focus On" provides an overview of several key early literacy components: phonemic awareness, alphabet knowledge, concepts of print, oral language development, writing, family literacy, and reading aloud. Suggestions for assessing early literacy development are provided, and examples of implementation of effective early literacy…

  14. A Straightforward Approach for 3D Bacterial Printing

    PubMed Central

    2017-01-01

    Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials. PMID:28225616

  15. A Straightforward Approach for 3D Bacterial Printing.

    PubMed

    Lehner, Benjamin A E; Schmieden, Dominik T; Meyer, Anne S

    2017-07-21

    Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials.

  16. Additive Manufacturing of Syntactic Foams: Part 2: Specimen Printing and Mechanical Property Characterization

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar; Saltonstall, Brooks; Patil, Balu; Hoffmann, Niklas; Doddamani, Mrityunjay; Gupta, Nikhil

    2018-03-01

    High-density polyethylene (HDPE) and its fly ash cenosphere-filled syntactic foam filaments have been recently developed. These filaments are used for three-dimensional (3D) printing using a commercial printer. The developed syntactic foam filament (HDPE40) contains 40 wt.% cenospheres in the HDPE matrix. Printing parameters for HDPE and HDPE40 were optimized for use in widely available commercial printers, and specimens were three-dimensionally (3D) printed for tensile testing at strain rate of 10-3 s-1. Process optimization resulted in smooth operation of the 3D printer without nozzle clogging or cenosphere fracture during the printing process. Characterization results revealed that the tensile modulus values of 3D-printed HDPE and HDPE40 specimens were higher than those of injection-molded specimens, while the tensile strength was comparable, but the fracture strain and density were lower.

  17. The Effect of Inkjet Printing over Polymeric Films as Potential Buccal Biologics Delivery Systems.

    PubMed

    Montenegro-Nicolini, Miguel; Reyes, Patricio E; Jara, Miguel O; Vuddanda, Parameswara R; Neira-Carrillo, Andrónico; Butto, Nicole; Velaga, Sitaram; Morales, Javier O

    2018-06-22

    The buccal mucosa appears as a promissory route for biologic drug administration, and pharmaceutical films are flexible dosage forms that can be used in the buccal mucosa as drug delivery systems for either a local or systemic effect. Recently, thin films have been used as printing substrates to manufacture these dosage forms by inkjet printing. As such, it is necessary to investigate the effects of printing biologics on films as substrates in terms of their physical and mucoadhesive properties. Here, we explored solvent casting as a conventional method with two biocompatible polymers, hydroxypropyl methylcellulose, and chitosan, and we used electrospinning process as an electrospun film fabrication of polycaprolactone fibers due to its potential to elicit mucoadhesion. Lysozyme was used as biologic drug model and was formulated as a solution for printing by thermal inkjet printing. Films were characterized before and after printing by mechanical and mucoadhesive properties, surface, and ultrastructure morphology through scanning electron microscopy and solid state properties by thermal analysis. Although minor differences were detected in micrographs and thermograms in all polymeric films tested, neither mechanical nor mucoadhesive properties were affected by these differences. Thus, biologic drug printing on films was successful without affecting their mechanical or mucoadhesive properties. These results open way to explore biologics loading on buccal films by inkjet printing, and future efforts will include further in vitro and in vivo evaluations.

  18. 3D printed optical phantoms and deep tissue imaging for in vivo applications including oral surgery

    NASA Astrophysics Data System (ADS)

    Bentz, Brian Z.; Costas, Alfonso; Gaind, Vaibhav; Garcia, Jose M.; Webb, Kevin J.

    2017-03-01

    Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing, evaluation, and calibration. This work demonstrates that 3D printing is an ideal method for fabricating such objects, allowing intricate inhomogeneities to be placed at exact locations in complex or anatomically realistic geometries, a process that is difficult or impossible using molds. We show printed mouse phantoms we have fabricated for developing deep tissue fluorescence imaging methods, and measurements of both their optical and mechanical properties. Additionally, we present a printed phantom of the human mouth that we use to develop an artery localization method to assist in oral surgery.

  19. Emerging Role of Three-Dimensional Printing in Simulation in Otolaryngology.

    PubMed

    VanKoevering, Kyle K; Malloy, Kelly Michele

    2017-10-01

    Simulation is rapidly expanding across medicine as a valuable component of trainee education. For procedural simulation, development of low-cost simulators that allow a realistic, haptic experience for learners to practice maneuvers while appreciating anatomy has become highly valuable. Otolaryngology has seen significant advancements in development of improved, specialty-specific simulators with the expansion of three-dimensional (3D) printing. This article highlights the fundamental components of 3D printing and the multitude of subspecialty simulators that have been developed with the assistance of 3D printing. It briefly discusses important considerations such as cost, fidelity, and validation where available in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Flexible Regenerative Nanoelectronics for Advanced Peripheral Neural Interfaces

    DTIC Science & Technology

    2017-10-01

    these materials will be developed based on 3D printing . Page 4 Task 3. Construct nerve guidance scaffolds comprising of embedded mesh electrodes with...Develop photo mask patterning methods. 1-9 In progress 50% Subtask 2.2.2. Develop 3D printing patterning methods. 9-18 9/1/2017 Milestone(s...research into patterning techniques, we found that 10% gelatin methacrylate (GelMA) base gel was the best for performing 3D printing of the gels

  1. Digital printing

    NASA Astrophysics Data System (ADS)

    Sobotka, Werner K.

    1997-02-01

    Digital printing is described as a tool to replace conventional printing machines completely. Still this goal was not reached until now with any of the digital printing technologies to be described in the paper. Productivity and costs are still the main parameters and are not really solved until now. Quality in digital printing is no problem anymore. Definition of digital printing is to transfer digital datas directly on the paper surface. This step can be carried out directly or with the use of an intermediate image carrier. Keywords in digital printing are: computer- to-press; erasable image carrier; image carrier with memory. Digital printing is also the logical development of the new digital area as it is pointed out in Nicholas Negropotes book 'Being Digital' and also the answer to networking and Internet technologies. Creating images text and color in one country and publishing the datas in another country or continent is the main advantage. Printing on demand another big advantage and last but not least personalization the last big advantage. Costs and being able to coop with this new world of prepress technology is the biggest disadvantage. Therefore the very optimistic growth rates for the next few years are really nonexistent. The development of complete new markets is too slow and the replacing of old markets is too small.

  2. Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles

    PubMed Central

    Cinti, Stefano; Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe; Killard, Anthony J.

    2014-01-01

    A sensor for the simple and sensitive measurement of hydrogen peroxide has been developed which is based on screen printed electrodes (SPEs) modified with Prussian blue nanoparticles (PBNPs) deposited using piezoelectric inkjet printing. PBNP-modified SPEs were characterized using physical and electrochemical techniques to optimize the PBNP layer thickness and electroanalytical conditions for optimum measurement of hydrogen peroxide. Sensor optimization resulted in a limit of detection of 2 × 10−7 M, a linear range from 0 to 4.5 mM and a sensitivity of 762 μA·mM−1·cm−2 which was achieved using 20 layers of printed PBNPs. Sensors also demonstrated excellent reproducibility (<5% rsd). PMID:25093348

  3. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.

    PubMed

    Bendtsen, Stephanie T; Quinnell, Sean P; Wei, Mei

    2017-05-01

    Three-dimensional printed biomaterials used as personalized tissue substitutes have the ability to promote and enhance regeneration in areas of defected tissue. The challenge with 3D printing for bone tissue engineering remains the selection of a material with optimal rheological properties for printing in addition to biocompatibility and capacity for uniform cell incorporation. Hydrogel biomaterials may provide sufficient printability to allow cell encapsulation and bioprinting of scaffolds with uniform cell distribution. In this study, a novel alginate-polyvinyl alcohol (PVA)-hydroxyapatite (HA) hydrogel formulation with optimal rheological properties for 3D bioprinting of mouse calvaria 3T3-E1 (MC3T3) cells into scaffolds of high shape fidelity has been developed. A systematic investigation was conducted to determine the effect of varying concentrations of alginate, phosphate, calcium, and the PVA-HA suspension in the formulation on the resulting viscosity and thus printability of the hydrogel. HA, the main mineral component in natural bone, was incorporated into the hydrogel formulation to create a favorable bone-forming environment due to its excellent osteoconductivity. Degradation studies in α-MEM cell culture media showed that the 3D printed alginate-PVA-HA scaffolds remained in-tact for 14 days. MC3T3 cells were well distributed and encapsulated throughout the optimal hydrogel formulation and expressed high viability through the completion of the 3D printing process. Thus, the development of this novel, osteoconductive, biodegradable, alginate-PVA-HA formulation and its ability to 3D bioprint tissue engineered scaffolds make it a promising candidate for treating personalized bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1457-1468, 2017. © 2017 Wiley Periodicals, Inc.

  4. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.

    PubMed

    Ouyang, Liliang; Yao, Rui; Zhao, Yu; Sun, Wei

    2016-09-16

    3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality. However, the influences of printing parameters on the shape fidelity of 3D constructs as well as on cell viability after the cell printing process have been poorly characterized. Furthermore, parameter optimization based on a specific cell type might not be suitable for other types of cells, especially cells with high sensibility. In this study, we systematically studied the influence of bioink properties and printing parameters on bioink printability and embryonic stem cell (ESC) viability in the process of extrusion-based cell printing, also known as bioplotting. A novel method was established to determine suitable conditions for bioplotting ESCs to achieve both good printability and high cell viability. The rheological properties of gelatin/alginate bioinks were evaluated to determine the gelation properties under different bioink compositions, printing temperatures and holding times. The bioink printability was characterized by a newly developed semi-quantitative method. The results demonstrated that bioinks with longer gelation times would result in poorer printability. The live/dead assay showed that ESC viability increased with higher printing temperatures and lower gelatin concentrations. Furthermore, an exponential relationship was obtained between ESC viability and induced shear stress. By defining the proper printability and acceptable viability ranges, a combined parameters region was obtained. This study provides guidance for parameter optimization and the fine-tuning of 3D cell printing processes regarding both bioink printability and cell viability after bioplotting, especially for easily damaged cells, like ESCs.

  5. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Development and Application of 3D Printed Mesoreactors in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Tabassum, Tahseen; Iloska, Marija; Scuereb, Daniel; Taira, Noriko; Jin, Chongguang; Zaitsev, Vladimir; Afshar, Fara; Kim, Taejin

    2018-01-01

    3D printing technology has an enormous potential to apply to chemical engineering education. In this paper, we describe several designs of 3D printed mesoreactors (Y-shape, T-shape, and Long channel shape) using the following steps: reactor sketching, CAD modeling, and reactor printing. With a focus on continuous plug flow mesoreactors (PFRs, i.d.…

  7. Special Issue: 3D Printing for Biomedical Engineering.

    PubMed

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2017-02-28

    Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  8. The Print and Computer Enlargement System--PACE. Final Report.

    ERIC Educational Resources Information Center

    Morford, Ronald A.

    The Print and Computer Enlargement (PACE) System is being designed as a portable computerized reading and writing system that enables a low-vision person to read regular print and then create and edit text using large-print computerized output. The design goal was to develop a system that: weighed no more than 12 pounds so it could be easily…

  9. Visual Attention to Print-Salient and Picture-Salient Environmental Print in Young Children

    ERIC Educational Resources Information Center

    Neumann, Michelle M.; Summerfield, Katelyn; Neumann, David L.

    2015-01-01

    Environmental print is composed of words and contextual cues such as logos and pictures. The salience of the contextual cues may influence attention to words and thus the potential of environmental print in promoting early reading development. The present study explored this by presenting pre-readers (n = 20) and beginning readers (n = 16) with…

  10. [Non-biological 3D printed simulator for training in percutaneous nephro- lithotripsy].

    PubMed

    Alyaev, Yu G; Sirota, E S; Bezrukov, E A; Ali, S Kh; Bukatov, M D; Letunovskiy, A V; Byadretdinov, I Sh

    2018-03-01

    To develop a non-biological 3D printed simulator for training and preoperative planning in percutaneous nephrolithotripsy (PCNL), which allows doctors to master and perform all stages of the operation under ultrasound and fluoroscopy guidance. The 3D model was constructed using multislice spiral computed tomography (MSCT) images of a patient with staghorn urolithiasis. The MSCT data were processed and used to print the model. The simulator consisted of two parts: a non-biological 3D printed soft model of a kidney with reproduced intra-renal vascular and collecting systems and a printed 3D model of a human body. Using this 3D printed simulator, PCNL was performed in the interventional radiology operating room under ultrasound and fluoroscopy guidance. The designed 3D printed model of the kidney completely reproduces the individual features of the intra-renal structures of the particular patient. During the training, all the main stages of PCNL were performed successfully: the puncture, dilation of the nephrostomy tract, endoscopic examination, intra-renal lithotripsy. Our proprietary 3D-printed simulator is a promising development in the field of endourologic training and preoperative planning in the treatment of complicated forms of urolithiasis.

  11. Layerless fabrication with continuous liquid interface production.

    PubMed

    Janusziewicz, Rima; Tumbleston, John R; Quintanilla, Adam L; Mecham, Sue J; DeSimone, Joseph M

    2016-10-18

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.

  12. Layerless fabrication with continuous liquid interface production

    PubMed Central

    Janusziewicz, Rima; Tumbleston, John R.; Quintanilla, Adam L.; Mecham, Sue J.; DeSimone, Joseph M.

    2016-01-01

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology. PMID:27671641

  13. 3D-printing and the effect on medical costs: a new era?

    PubMed

    Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Kondiah, Pierre P D; Pillay, Viness

    2016-01-01

    3D-printing (3DP) is the art and science of printing in a new dimension using 3D printers to transform 3D computer aided designs (CAD) into life-changing products. This includes the design of more effective and patient-friendly pharmaceutical products as well as bio-inspired medical devices. It is poised as the next technology revolution for the pharmaceutical and medical-device industries. After decorous implementation scientists in collaboration with CAD designers have produced innovative medical devices ranging from pharmaceutical tablets to surgical transplants of the human face and skull, spinal implants, prosthetics, human organs and other biomaterials. While 3DP may be cost-efficient, a limitation exists in the availability of 3D printable biomaterials for most applications. In addition, the loss of skilled labor in producing medical devices such as prosthetics and other devices may affect developing economies. This review objectively explores the potential growth and impact of 3DP costs in the medical industry.

  14. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    NASA Astrophysics Data System (ADS)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola; Morari, Francesco

    2017-04-01

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial cores were scanned in a micro x-ray CT scanner at a resolution of 35 µm. The reconstructed image of each soil core was printed with 3D multijet printing technology at a resolution of 29 µm. In some reconstructed digital volumes of the natural soil cores, pores of different sizes (equivalent diameter of 35, 70, 100, and 200 µm) were removed before additional 3D printing. Effective air-filled porosity, Darcian air permeability, and oxygen diffusion were measured on all natural, artificial and printed cores. The comparison of the natural and the artificial cores emphasized the difference in pore architecture between topsoil (sponge like) and subsoil (dominated by large vertical macropores). This study showed the high potential of using printed soil cores for understanding soil pore functions. The results confirm the suitability of the Ball model partitioning the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport.

  15. An investigation of document aesthetics for web-to-print repurposing of small-medium business marketing collateral

    NASA Astrophysics Data System (ADS)

    Allebach, J. P.; Ortiz Segovia, Maria; Atkins, C. Brian; O'Brien-Strain, Eamonn; Damera-Venkata, Niranjan; Bhatti, Nina; Liu, Jerry; Lin, Qian

    2010-02-01

    Businesses have traditionally relied on different types of media to communicate with existing and potential customers. With the emergence of the Web, the relation between the use of print and electronic media has continually evolved. In this paper, we investigate one possible scenario that combines the use of the Web and print. Specifically, we consider the scenario where a small- or medium-sized business (SMB) has an existing web site from which they wish to pull content to create a print piece. Our assumption is that the web site was developed by a professional designer, working in conjunction with the business owner or marketing team, and that it contains a rich assembly of content that is presented in an aesthetically pleasing manner. Our goal is to understand the process that a designer would follow to create an effective and aesthetically pleasing print piece. We are particularly interested to understand the choices made by the designer with respect to placement and size of the text and graphic elements on the page. Toward this end, we conducted an experiment in which professional designers worked with SMBs to create print pieces from their respective web pages. In this paper, we report our findings from this experiment, and examine the underlying conclusions regarding the resulting document aesthetics in the context of the existing design, and engineering and computer science literatures that address this topic

  16. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before beingmore » printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.« less

  17. Comparing image quality of print-on-demand books and photobooks from web-based vendors

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan; Bajorski, Peter; Burns, Peter; Fredericks, Erin; Rosen, Mitchell

    2010-01-01

    Because of the emergence of e-commerce and developments in print engines designed for economical output of very short runs, there are increased business opportunities and consumer options for print-on-demand books and photobooks. The current state of these printing modes allows for direct uploading of book files via the web, printing on nonoffset printers, and distributing by standard parcel or mail delivery services. The goal of this research is to assess the image quality of print-on-demand books and photobooks produced by various Web-based vendors and to identify correlations between psychophysical results and objective metrics. Six vendors were identified for one-off (single-copy) print-on-demand books, and seven vendors were identified for photobooks. Participants rank ordered overall quality of a subset of individual pages from each book, where the pages included text, photographs, or a combination of the two. Observers also reported overall quality ratings and price estimates for the bound books. Objective metrics of color gamut, color accuracy, accuracy of International Color Consortium profile usage, eye-weighted root mean square L*, and cascaded modulation transfer acutance were obtained and compared to the observer responses. We introduce some new methods for normalizing data as well as for strengthening the statistical significance of the results. Our approach includes the use of latent mixed-effect models. We found statistically significant correlation with overall image quality and some of the spatial metrics, but correlations between psychophysical results and other objective metrics were weak or nonexistent. Strong correlation was found between psychophysical results of overall quality assessment and estimated price associated with quality. The photobook set of vendors reached higher image-quality ratings than the set of print-on-demand vendors. However, the photobook set had higher image-quality variability.

  18. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.

    PubMed

    Jin, Yifei; Compaan, Ashley; Bhattacharjee, Tapomoy; Huang, Yong

    2016-06-03

    Freeform fabrication of soft structures has been of great interest in recent years. In particular, it is viewed as a critical step toward the grand vision of organ printing--the on-demand design and fabrication of three-dimensional (3D) human organ constructs for implantation and regenerative medicine. The objective of this study is to develop a novel granular gel support material-enabled, two-step gelation-based 'printing-then-gelation' approach to fabricate 3D alginate structures using filament extrusion. Specifically, a granular Carbopol microgel bath holds the ungelled alginate structure being extruded, avoiding the instantaneous gelation of each printed layer as well as resultant surface tension-induced nozzle clogging. Since Carbopol microgels react with multivalent cations, which are needed for alginate crosslinking, gelatin is introduced as a sacrificial material to make an alginate and gelatin bioink for extrusion, which gels thermally (step-one gelation) to initially stabilize the printed structure for removal from Carbopol. Then gelatin is melted and diffused away while alginate is ionically crosslinked in a 37 °C calcium chloride bath (step-two gelation), resulting in an alginate structure. The proposed 'printing-then-gelation' approach works for alginate structure fabrication, and it is also applicable for the printing of cellular constructs and other similar homogeneous soft structures using a two-step or even multi-step approach. The main conclusions are: (1) 0.8% (w/v) Carbopol bath with a neutral pH value may be most suitable for soft structure printing; (2) it is most effective to use a 0.9% (w/v) NaCl solution to facilitate the removal of residual Carbopol; and (3) alginate structures fabricated using the proposed approach demonstrate better mechanical properties than those fabricated using the conventional 'gelation-while-printing' approach.

  19. Observations of Kindergarten and First Grade Children's Development of Oral Language, Concepts about Print, and Reading Readiness.

    ERIC Educational Resources Information Center

    Day, Kaaren C.; Day, H. D.

    A study originally involving 56 children from four schools was undertaken to observe the development of children's oral language and concepts of print during the kindergarten year using the Record of Oral Language (ROL) and the Concepts about Print (Sand) tests. In addition, the Sand test was administered early in the first grade to the available…

  20. 3D Printing in Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth C.; Edmunson, Jennifer E.; Dunn, Jason; Snyder, Michael

    2013-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA's Marshall Space Fligth Center (MSFC) and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the frst machine to perform 3D printing in space.

  1. Enabling personalized implant and controllable biosystem development through 3D printing.

    PubMed

    Nagarajan, Neerajha; Dupret-Bories, Agnes; Karabulut, Erdem; Zorlutuna, Pinar; Vrana, Nihal Engin

    The impact of additive manufacturing in our lives has been increasing constantly. One of the frontiers in this change is the medical devices. 3D printing technologies not only enable the personalization of implantable devices with respect to patient-specific anatomy, pathology and biomechanical properties but they also provide new opportunities in related areas such as surgical education, minimally invasive diagnosis, medical research and disease models. In this review, we cover the recent clinical applications of 3D printing with a particular focus on implantable devices. The current technical bottlenecks in 3D printing in view of the needs in clinical applications are explained and recent advances to overcome these challenges are presented. 3D printing with cells (bioprinting); an exciting subfield of 3D printing, is covered in the context of tissue engineering and regenerative medicine and current developments in bioinks are discussed. Also emerging applications of bioprinting beyond health, such as biorobotics and soft robotics, are introduced. As the technical challenges related to printing rate, precision and cost are steadily being solved, it can be envisioned that 3D printers will become common on-site instruments in medical practice with the possibility of custom-made, on-demand implants and, eventually, tissue engineered organs with active parts developed with biorobotics techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Tailoring metal oxide nanoparticle dispersions for inkjet printing.

    PubMed

    Gebauer, J S; Mackert, V; Ognjanović, S; Winterer, M

    2018-05-04

    There is a growing interest in science and industry for printed electronics. Printed electronics enable the production of large quantities of electronic components at low cost. Even though organic semiconductors are already widely used for printed components, inorganic materials may be advantageous due to their higher durability and superior device performance. Nevertheless, inorganic materials still remain difficult to print making the development of printable and functional inks a necessity. In this work we present the formulation, inkjet printing and processing of newly developed inks based on ethylene glycol as dispersion medium. Different metal oxide nanoparticles (ZnO, TiO 2 , CuO, SnO 2 and In 2 O 3 ) with high crystallinity and narrow size distribution were produced by chemical vapor synthesis. The particles were stabilized and the colloidal stability was evaluated by a combination of DLVO simulations and dynamic light scattering measurements. Measurements of rheological and interfacial properties, like viscosity and surface tension, are used to determine the printability on the basis of the inverse Ohnesorge number. Inks, developed in this work, have adjustable rheological properties as well as long-term stabilities without particle sedimentation over a period of several months. They are suitable for printing on different substrate materials like silicon and flexible polymeric substrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The Effects of Practice with Prescribed Reading Glasses on Students with Low Vision.

    ERIC Educational Resources Information Center

    Smith, Janice K.; Erin, Jane N.

    2002-01-01

    A study investigated effects of regular instruction and practice with prescription reading glasses with three adolescents with low vision. Two students demonstrated no advantage in reading large print and one student experienced a decreased reading rate using standard print and reading glasses. Students preferred reading standard print with…

  4. Flow-Directed Crystallization for Printed Electronics.

    PubMed

    Qu, Ge; Kwok, Justin J; Diao, Ying

    2016-12-20

    The solution printability of organic semiconductors (OSCs) represents a distinct advantage for materials processing, enabling low-cost, high-throughput, and energy-efficient manufacturing with new form factors that are flexible, stretchable, and transparent. While the electronic performance of OSCs is not comparable to that of crystalline silicon, the solution processability of OSCs allows them to complement silicon by tackling challenging aspects for conventional photolithography, such as large-area electronics manufacturing. Despite this, controlling the highly nonequilibrium morphology evolution during OSC printing remains a challenge, hindering the achievement of high electronic device performance and the elucidation of structure-property relationships. Many elegant morphological control methodologies have been developed in recent years including molecular design and novel processing approaches, but few have utilized fluid flow to control morphology in OSC thin films. In this Account, we discuss flow-directed crystallization as an effective strategy for controlling the crystallization kinetics during printing of small molecule and polymer semiconductors. Introducing the concept of flow-directed crystallization to the field of printed electronics is inspired by recent advances in pharmaceutical manufacturing and flow processing of flexible-chain polymers. Although flow-induced crystallization is well studied in these areas, previous findings may not apply directly to the field of printed electronics where the molecular structures (i.e., rigid π-conjugated backbone decorated with flexible side chains) and the intermolecular interactions (i.e., π-π interactions, quadrupole interactions) of OSCs differ substantially from those of pharmaceuticals or flexible-chain polymers. Another critical difference is the important role of solvent evaporation in open systems, which defines the flow characteristics and determines the crystallization kinetics and pathways. In other words, flow-induced crystallization is intimately coupled with the mass transport processes driven by solvent evaporation during printing. In this Account, we will highlight these distinctions of flow-directed crystallization for printed electronics. In the context of solution printing of OSCs, the key issue that flow-directed crystallization addresses is the kinetics mismatch between crystallization and various transport processes during printing. We show that engineering fluid flows can tune the kinetics of OSC crystallization by expediting the nucleation and crystal growth processes, significantly enhancing thin film morphology and device performance. For small molecule semiconductors, nucleation can be enhanced and patterned by directing the evaporative flux via contact line engineering, and defective crystal growth can be alleviated by enhancing mass transport to yield significantly improved coherence length and reduced grain boundaries. For conjugated polymers, extensional and shear flow can expedite nucleation through flow-induced conformation change, facilitating the control of microphase separation, degree of crystallinity, domain alignment, and percolation. Although the nascent concept of flow-directed solution printing has not yet been widely adopted in the field of printed electronics, we anticipate that it can serve as a platform technology in the near future for improving device performance and for systematically tuning thin film morphology to construct structure-property relationships. From a fundamental perspective, it is imperative to develop a better understanding of the effects of fluid flow and mass transport on OSC crystallization as these processes are ubiquitous across all solution processing techniques and can critically impact charge transport properties.

  5. Effect of Layer Thickness and Printing Orientation on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Samples for Bone Tissue Engineering

    PubMed Central

    Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2014-01-01

    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity. PMID:25233468

  6. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels.

    PubMed

    Yu, Yin; Zhang, Yahui; Martin, James A; Ozbolat, Ibrahim T

    2013-09-01

    Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.

  7. Development and Initial Porcine and Cadaver Experience with Three-Dimensional Printing of Endoscopic and Laparoscopic Equipment

    PubMed Central

    del Junco, Michael; Okhunov, Zhamshid; Yoon, Renai; Khanipour, Ramtin; Juncal, Samuel; Abedi, Garen; Lusch, Achim

    2015-01-01

    Abstract Introduction: Recent advances in three-dimensional (3D) printing technology have made it possible to print surgical devices. We report our initial experience with the printing and deployment of endoscopic and laparoscopic equipment. Materials and Methods: We created computer-aided designs for ureteral stents and laparoscopic trocars using SolidWorks. We developed three generations of stents, which were printed with an Objet500 Connex printer, and a fourth generation was printed with an EOSINT P395 printer. The trocars were printed with an Objet30 Pro printer. We deployed the printed stents and trocars in a female cadaver and in vivo porcine model. We compared the printed trocars to two standard trocars for defect area and length using a digital caliper. Paired T-tests and ANOVA were used to test for statistical difference. Results: The first two generations of stents (7F and 9F) were functional failures as their diminutive inner lumen failed to allow the passage of a 0.035 guidewire. The third generation 12F stent allowed passage of a 0.035 guidewire. The 12F diameter limited its deployment, but it was introduced in a cadaver through a ureteral access sheath. The fourth-generation 9F stents were printed and deployed in a porcine model using the standard Seldinger technique. The printed trocars were functional for the maintenance of the pneumoperitoneum and instrument passage. The printed trocars had larger superficial defect areas (p<0.001) and lengths (p=0.001) compared to Karl Storz and Ethicon trocars (29.41, 18.06, and 17.22 mm2, respectively, and 14.29, 11.39, and 12.15 mm, respectively). Conclusions: In this pilot study, 3D printing of ureteral stents and trocars is feasible, and these devices can be deployed in the porcine and cadaver models. Three-dimensional printing is rapidly advancing and may be clinically viable in the future. PMID:24983138

  8. Development and initial porcine and cadaver experience with three-dimensional printing of endoscopic and laparoscopic equipment.

    PubMed

    del Junco, Michael; Okhunov, Zhamshid; Yoon, Renai; Khanipour, Ramtin; Juncal, Samuel; Abedi, Garen; Lusch, Achim; Landman, Jaime

    2015-01-01

    Recent advances in three-dimensional (3D) printing technology have made it possible to print surgical devices. We report our initial experience with the printing and deployment of endoscopic and laparoscopic equipment. We created computer-aided designs for ureteral stents and laparoscopic trocars using SolidWorks. We developed three generations of stents, which were printed with an Objet500 Connex printer, and a fourth generation was printed with an EOSINT P395 printer. The trocars were printed with an Objet30 Pro printer. We deployed the printed stents and trocars in a female cadaver and in vivo porcine model. We compared the printed trocars to two standard trocars for defect area and length using a digital caliper. Paired T-tests and ANOVA were used to test for statistical difference. The first two generations of stents (7F and 9F) were functional failures as their diminutive inner lumen failed to allow the passage of a 0.035 guidewire. The third generation 12F stent allowed passage of a 0.035 guidewire. The 12F diameter limited its deployment, but it was introduced in a cadaver through a ureteral access sheath. The fourth-generation 9F stents were printed and deployed in a porcine model using the standard Seldinger technique. The printed trocars were functional for the maintenance of the pneumoperitoneum and instrument passage. The printed trocars had larger superficial defect areas (p<0.001) and lengths (p=0.001) compared to Karl Storz and Ethicon trocars (29.41, 18.06, and 17.22 mm(2), respectively, and 14.29, 11.39, and 12.15 mm, respectively). In this pilot study, 3D printing of ureteral stents and trocars is feasible, and these devices can be deployed in the porcine and cadaver models. Three-dimensional printing is rapidly advancing and may be clinically viable in the future.

  9. Different carcinogenic process in cholangiocarcinoma cases epidemically developing among workers of a printing company in Japan.

    PubMed

    Sato, Yasunori; Kubo, Shoji; Takemura, Shigekazu; Sugawara, Yasuhiko; Tanaka, Shogo; Fujikawa, Masahiro; Arimoto, Akira; Harada, Kenichi; Sasaki, Motoko; Nakanuma, Yasuni

    2014-01-01

    Recently, cholangiocarcinoma has epidemically developed among young adult workers of a printing company in Japan. Exposure to organic solvents including 1,2-dichloropropane and/or dichloromethane is supposed to be associated with the carcinoma development. The metabolism of dichloromethane proceeds through a Theta-class glutathione S-transferase (GST) T1-1-catalyzed pathway, where its reactive intermediates have been implicated in genotoxicity and carcinogenicity. This study examined features of the carcinogenic process of the cholangiocarcinoma developed in the printing company. Surgically resected specimens of the cholangiocarcinoma cases were analyzed, where all cases were associated with precursor lesions such as biliary intraepithelial neoplasia (BilIN) and/or intraductal papillary neoplasm of the bile duct (IPNB). Immunohistochemical analysis confirmed constitutional expression of GST T1-1 in normal hepatobiliary tract. Immunostaining of γ-H2AX, a marker of DNA double strand break, showed that its expression was significantly increased in foci of BilIN, IPNB and invasive carcinoma as well as in non-neoplastic biliary epithelial cells of the printing company cases when compared to that of control groups. In the printing company cases, immunohistochemical expression of p53 was observed in non-neoplastic biliary epithelial cells and BilIN-1. Mutations of KRAS and GNAS were detected in foci of BilIN in one out of 3 cases of the printing company. These results revealed different carcinogenic process of the printing company cases, suggesting that the exposed organic solvents might act as a carcinogen for biliary epithelial cells by causing DNA damage, thereby contributing to the carcinoma development.

  10. Metallurgy: No more tears for metal 3D printing

    NASA Astrophysics Data System (ADS)

    Todd, Iain

    2017-09-01

    3D printing could revolutionize manufacturing processes involving metals, but few industrially useful alloys are compatible with the technique. A method has been developed that might open up the 3D printing of all metals. See Letter p.365

  11. Knowledge Growth and Maintenance across the Lifespan: The Role of Print Exposure.

    ERIC Educational Resources Information Center

    Stanowich, Keith E.; And Others

    1995-01-01

    Examined the effects of print exposure on growth of declarative knowledge and vocabulary in 133 college students and 49 elderly adults. Compared groups on two general knowledge tasks, vocabulary, working memory, syllogistic reasoning, and print exposure. Found that exposure to print was a significant predictor of declarative and vocabulary…

  12. Identification of Matra Region and Overlapping Characters for OCR of Printed Bengali Scripts

    NASA Astrophysics Data System (ADS)

    Goswami, Subhra Sundar

    One of the important reasons for poor recognition rate in optical character recognition (OCR) system is the error in character segmentation. In case of Bangla scripts, the errors occur due to several reasons, which include incorrect detection of matra (headline), over-segmentation and under-segmentation. We have proposed a robust method for detecting the headline region. Existence of overlapping characters (in under-segmented parts) in scanned printed documents is a major problem in designing an effective character segmentation procedure for OCR systems. In this paper, a predictive algorithm is developed for effectively identifying overlapping characters and then selecting the cut-borders for segmentation. Our method can be successfully used in achieving high recognition result.

  13. Stochastic effects in EUV lithography: random, local CD variability, and printing failures

    NASA Astrophysics Data System (ADS)

    De Bisschop, Peter

    2017-10-01

    Stochastic effects in lithography are usually quantified through local CD variability metrics, such as line-width roughness or local CD uniformity (LCDU), and these quantities have been measured and studied intensively, both in EUV and optical lithography. Next to the CD-variability, stochastic effects can also give rise to local, random printing failures, such as missing contacts or microbridges in spaces. When these occur, there often is no (reliable) CD to be measured locally, and then such failures cannot be quantified with the usual CD-measuring techniques. We have developed algorithms to detect such stochastic printing failures in regular line/space (L/S) or contact- or dot-arrays from SEM images, leading to a stochastic failure metric that we call NOK (not OK), which we consider a complementary metric to the CD-variability metrics. This paper will show how both types of metrics can be used to experimentally quantify dependencies of stochastic effects to, e.g., CD, pitch, resist, exposure dose, etc. As it is also important to be able to predict upfront (in the OPC verification stage of a production-mask tape-out) whether certain structures in the layout are likely to have a high sensitivity to stochastic effects, we look into the feasibility of constructing simple predictors, for both stochastic CD-variability and printing failure, that can be calibrated for the process and exposure conditions used and integrated into the standard OPC verification flow. Finally, we briefly discuss the options to reduce stochastic variability and failure, considering the entire patterning ecosystem.

  14. Special Issue: 3D Printing for Biomedical Engineering

    PubMed Central

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2017-01-01

    Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research. PMID:28772604

  15. Reading and the Development of Intelligence.

    ERIC Educational Resources Information Center

    Cahn, Lorynne D.

    Through the meaningful interpretation of sensory data and a background in language experiences, an individual can build more effective knowledge structures. With more effective knowledge structures, one can react more discriminatingly to the written and printed word. Sound knowledge structures involve not only the ability to organize and…

  16. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.

    PubMed

    Jung, Jin Woo; Lee, Hyungseok; Hong, Jung Min; Park, Jeong Hun; Shim, Jung Hee; Choi, Tae Hyun; Cho, Dong-Woo

    2015-11-03

    Due to its simplicity and effectiveness, the physical blending of polymers is considered to be a practical strategy for developing a versatile scaffold having desirable mechanical and biochemical properties. In the present work, an indirect three-dimensional (i3D) printing technique was proposed to fabricate a 3D free-form scaffold using a blend of immiscible materials, such as polycaprolactone (PCL) and gelatin. The i3D printing technique includes 3D printing of a mold and a sacrificial molding process. PCL/chloroform and gelatin/water were physically mixed to prepare the blend solution, which was subsequently injected into the cavity of a 3D printed mold. After solvent removal and gelatin cross-linking, the mold was dissolved to obtain a PCL-gelatin (PG) scaffold, with a specific 3D structure. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis indicated that PCL masses and gelatin fibers in the PG scaffold homogenously coexisted without chemical bonding. Compression tests confirmed that gelatin incorporation into the PCL enhanced its mechanical flexibility and softness, to the point of being suitable for soft-tissue engineering, as opposed to pure PCL. Human adipose-derived stem cells, cultured on a PG scaffold, exhibited enhanced in vitro chondrogenic differentiation and tissue formation, compared with those on a PCL scaffold. The i3D printing technique can be used to blend a variety of materials, facilitating 3D scaffold fabrication for specific tissue regeneration. Furthermore, this convenient and versatile technique may lead to wider application of 3D printing in tissue engineering.

  17. The drama of illumination: artist's approaches to the creation of HDR in paintings and prints

    NASA Astrophysics Data System (ADS)

    Parraman, Carinna

    2010-02-01

    For many centuries artists have considered and depicted illumination in art, from the effect of sunlight on objects at different times of the day, of shadows and highlights as cast by the moon, through indirect light as that through an open window or the artificial light of the candle or firelight. The presentation will consider artists who were fascinated by the phenomena of natural and artificial illumination and how they were able to render the natural world as a form of dynamic range through pigment. Artists have been long aware of the psychological aspects of the juxtaposition of colour in exploiting the optical qualities and arranging visual effects in painting and prints. Artists in the 16th century were attempting to develop an extended dynamic range through multi-colour, wood-block printing. Artists working at the height of naturalist realism in the 17th through the 19th century were fascinated by the illusory nature of light on objects. The presentation will also consider the interpretation of dynamic range through the medium of mezzotint, possibly the most subtle of printing methods, which was used by printers to copy paintings, and to create highly original works of art containing a dynamic range of tones.

  18. 3D printing in chemistry: past, present and future

    NASA Astrophysics Data System (ADS)

    Shatford, Ryan; Karanassios, Vassili

    2016-05-01

    During the last years, 3d printing for rapid prototyping using additive manufacturing has been receiving increased attention in the technical and scientific literature including some Chemistry-related journals. Furthermore, 3D printing technology (defining size and resolution of 3D objects) and properties of printed materials (e.g., strength, resistance to chemical attack, electrical insulation) proved to be important for chemistry-related applications. In this paper these are discussed in detail. In addition, application of 3D printing for development of Micro Plasma Devices (MPDs) is discussed and 2d-profilometry data of a 3D printed surfaces is reported. And, past and present chemistry and bio-related applications of 3D printing are reviewed and possible future directions are postulated.

  19. Printing quality control automation

    NASA Astrophysics Data System (ADS)

    Trapeznikova, O. V.

    2018-04-01

    One of the most important problems in the concept of standardizing the process of offset printing is the control the quality rating of printing and its automation. To solve the problem, a software has been developed taking into account the specifics of printing system components and the behavior in printing process. In order to characterize the distribution of ink layer on the printed substrate the so-called deviation of the ink layer thickness on the sheet from nominal surface is suggested. The geometric data construction the surface projections of the color gamut bodies allows to visualize the color reproduction gamut of printing systems in brightness ranges and specific color sectors, that provides a qualitative comparison of the system by the reproduction of individual colors in a varying ranges of brightness.

  20. Printing Insecurity? The Security Implications of 3D-Printing of Weapons.

    PubMed

    Walther, Gerald

    2015-12-01

    In 2013, the first gun printed out of plastic by a 3D-printer was successfully fired in the U.S. This event caused a major media hype about the dangers of being able to print a gun. Law enforcement agencies worldwide were concerned about this development and the potentially huge security implications of these functional plastic guns. As a result, politicians called for a ban of these weapons and a control of 3D-printing technology. This paper reviews the security implications of 3D-printing technology and 3D guns. It argues that current arms control and transfer policies are adequate to cover 3D-printed guns as well. However, while this analysis may hold up currently, progress in printing technology needs to be monitored to deal with future dangers pre-emptively.

  1. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    PubMed

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  2. Multi-dimensional printing in thoracic surgery: current and future applications

    PubMed Central

    Kwok, Jackson K. S.; Lau, Rainbow W. H.; Zhao, Ze-Rui; Yu, Peter S. Y.; Ho, Jacky Y. K.; Chow, Simon C. Y.; Wan, Innes Y. P.

    2018-01-01

    Three-dimensional (3D) printing has been gaining much attention in the medical field in recent years. At present, 3D printing most commonly contributes in pre-operative surgical planning of complicated surgery. It is also utilized for producing personalized prosthesis, well demonstrated by the customized rib cage, vertebral body models and customized airway splints. With on-going research and development, it will likely play an increasingly important role across the surgical fields. This article reviews current application of 3D printing in thoracic surgery and also provides a brief overview on the extended and updated use of 3D printing in bioprinting and 4D printing. PMID:29732197

  3. Text Density and Learner-Control as Design Variables with CBI and Print Media.

    ERIC Educational Resources Information Center

    Ross, Steven M.; And Others

    This study investigated the effects of computer and print text density on learning, and the nature and effects of learner preference for different density levels in both print and computer presentation modes. Subjects were 48 undergraduate teacher education majors, who were assigned at random to six treatment groups in which a statistics lesson…

  4. Electromagnetic shielding effectiveness of 3D printed polymer composites

    NASA Astrophysics Data System (ADS)

    Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.

    2017-12-01

    We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.

  5. SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B; Yang, M; Yan, Y

    2015-06-15

    Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized inmore » order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.« less

  6. A Web-Based and Print-Based Computer-Tailored Physical Activity Intervention for Prostate and Colorectal Cancer Survivors: A Comparison of User Characteristics and Intervention Use

    PubMed Central

    Bolman, Catherine; Peels, Denise Astrid; Volders, Esmee; de Vries, Hein; Lechner, Lilian

    2017-01-01

    Background Physical activity (PA) is beneficial in improving negative physical and psychological effects of cancer. The rapidly increasing number of cancer survivors, resulting from aging and improved cancer care, emphasizes the importance to develop and provide low cost, easy accessible PA programs. Such programs could be provided through the Internet, but that could result in the exclusion of cancer survivors not familiar with the Internet. Therefore, we developed a computer-tailored PA intervention for prostate and colorectal cancer survivors in which both Web-based and print materials are provided, and participants can choose their own preferred delivery mode. Objective The aim of this study was to assess participants’ characteristics related to delivery mode and use of intervention materials. Methods We studied characteristics of participants using Web-based and printed intervention materials in a randomized controlled trial (RCT). Prostate and colorectal cancer survivors recruited from hospitals were randomized to OncoActive (computer-tailored PA intervention) or a usual-care control group. OncoActive participants received both Web-based and printed materials. Participants were classified into initial print- or Web-based participants based on their preferred mode of completion of the first questionnaire, which was needed for the computer-tailored PA advice. Intervention material use during the remainder of the intervention was compared for initial print- or Web-based participants. Additionally, participants were classified into those using only print materials and those using Web-based materials. Differences in participant characteristics and intervention material use were studied through analysis of variance (ANOVAs), chi-square tests, and logistic regressions. Results The majority of the participants in the intervention group were classified as initial Web-based participants (170/249, 68.3%), and 84.9% (191/249) used Web-based intervention materials. Dropout was low (15/249, 6.0%) and differed between initial Web-based (4/170, 2.4%) and print-based (11/79, 14%) participants. Participants were less likely to start Web-based with higher age (odds ratio [OR]=0.93), longer time since last treatment (OR=0.87), and higher fatigue (OR=0.96), and more likely with higher education (OR=4.08) and having completed treatments (OR=5.58). Those who were older (OR=0.93) and post treatment for a longer time (OR=0.86) were less likely to use Web-based intervention materials. Initial print-based participants predominantly used print-based materials, whereas initial Web-based participants used both print- and Web-based materials. Conclusions To our knowledge, this is one of the first studies that assessed participant characteristics related to delivery mode in an intervention in which participants had a free choice of delivery modes. Use of print-based materials among the initial Web-based participants was substantial, indicating the importance of print-based materials. According to our findings, it may be important to offer Web- and print-based materials alongside each other. Providing Web-based materials only may exclude older, less educated, more fatigued, or currently treated participants; these groups are especially more vulnerable and could benefit most from PA interventions. PMID:28835353

  7. Quality and Processes of Bangladesh Open University Course Materials Development

    ERIC Educational Resources Information Center

    Islam, Tofazzal; Rahman, Morshedur; Rahman, K. M. Rezanur

    2006-01-01

    A new member of the mega-Universities, Bangladesh Open University (BOU) introduced a course team approach for developing effective course materials for distance students. BOU teaching media includes printed course books, study guides, radio and television broadcasts, audiocassettes and occasional face-to-face tutorials. Each course team…

  8. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    NASA Astrophysics Data System (ADS)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  9. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.

    PubMed

    Göhl, Johan; Markstedt, Kajsa; Mark, Andreas; Håkansson, Karl; Gatenholm, Paul; Edelvik, Fredrik

    2018-06-18

    3D bioprinting with cell containing bioinks show great promise in the biofabrication of patient specific tissue constructs. To fulfil the multiple requirements of a bioink, a wide range of materials and bioink composition are being developed and evaluated with regard to cell viability, mechanical performance and printability. It is essential that the printability and printing fidelity is not neglected since failure in printing the targeted architecture may be catastrophic for the survival of the cells and consequently the function of the printed tissue. However, experimental evaluation of bioinks printability is time-consuming and must be kept at a minimum, especially when 3D bioprinting with cells that are valuable and costly. This paper demonstrates how experimental evaluation could be complemented with computer based simulations to evaluate newly developed bioinks. Here, a computational fluid dynamics simulation tool was used to study the influence of different printing parameters and evaluate the predictability of the printing process. Based on data from oscillation frequency measurements of the evaluated bioinks, a full stress rheology model was used, where the viscoelastic behaviour of the material was captured. Simulation of the 3D bioprinting process is a powerful tool and will help in reducing the time and cost in the development and evaluation of bioinks. Moreover, it gives the opportunity to isolate parameters such as printing speed, nozzle height, flow rate and printing path to study their influence on the printing fidelity and the viscoelastic stresses within the bioink. The ability to study these features more extensively by simulating the printing process will result in a better understanding of what influences the viability of cells in 3D bioprinted tissue constructs.

  10. The effect of added dimensionality on perceived image value

    NASA Astrophysics Data System (ADS)

    Farnand, Susan

    2008-01-01

    Texture is an important element of the world around us. It can convey information about the object at hand. Although embossing has been used in a limited way, to enhance the appearance of greeting cards and book covers for example, texture is something that printed material traditionally lacks. Recently, techniques have been developed that allow the incorporation of texture in printed material. Prints made using such processes are similar to traditional 2D prints but have added texture such that a reproduction of an oil painting can have the texture of oil paint on canvas or a picture of a lizard can actually have the texture of lizard skin. It seems intuitive that the added dimensionality would add to the perceived quality of the image, but to what degree? To examine the question of the impact of a third dimension on the perceived quality of printed images, a survey was conducted asking participants to determine the relative worth of sets of print products. Pairs of print products were created, where one print of each pair was 2D and the other was the same image with added texture. Using these print pairs, thirty people from the Rochester Institute of Technology community were surveyed. The participants were shown seven pairs of print products and asked to rate the relative value of each pair by apportioning a specified amount of money between the two items according to their perception of what each item was worth. The results indicated that the addition of a third dimension or texture to the printed images gave a clear boost to the perceived worth of the printed products. The rating results were 50% higher for the 3D products than the 2D products, with the participants apportioning approximately 60% of each dollar to the 3D product and 40% to the 2D product. About 80% of the time participants felt that the 3D items had at least some added value over their 2D counterparts, about 15% of the time, they felt the products were essentially equivalent in value and 4% of the time they rated the 3D product as having lower value than the 2D product. The comments of the participants indicated that they were clearly impressed with the 3D technology and their ratings indicated that they were might be willing to pay more for it, meaning advertisers and package designers will be interested in using this technology in their products. As 3D printing technology emerges it will add yet another dimension to the work of print quality analysis.

  11. 3D printed rapid disaster response

    NASA Astrophysics Data System (ADS)

    Lacaze, Alberto; Murphy, Karl; Mottern, Edward; Corley, Katrina; Chu, Kai-Dee

    2014-05-01

    Under the Department of Homeland Security-sponsored Sensor-smart Affordable Autonomous Robotic Platforms (SAARP) project, Robotic Research, LLC is developing an affordable and adaptable method to provide disaster response robots developed with 3D printer technology. The SAARP Store contains a library of robots, a developer storefront, and a user storefront. The SAARP Store allows the user to select, print, assemble, and operate the robot. In addition to the SAARP Store, two platforms are currently being developed. They use a set of common non-printed components that will allow the later design of other platforms that share non-printed components. During disasters, new challenges are faced that require customized tools or platforms. Instead of prebuilt and prepositioned supplies, a library of validated robots will be catalogued to satisfy various challenges at the scene. 3D printing components will allow these customized tools to be deployed in a fraction of the time that would normally be required. While the current system is focused on supporting disaster response personnel, this system will be expandable to a range of customers, including domestic law enforcement, the armed services, universities, and research facilities.

  12. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    NASA Technical Reports Server (NTRS)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to wet the CNT thin-film area and enable good contact with the source and drain contact after annealing. A passivation layer to protect the device channel is developed by bonding a thin Kapton film on top of the device channel. This film is also used as the media for transferring the aligned CNT thin-film on the device substrate. A simple and cost-effective technique to form multilayer metal interconnections on flexible substrate is developed and demonstrated. Contact vias are formed on the second substrate prior to bonding on the first substrate. Inkjet printing is used to fill the silver ink into the via structure. The printed silver ink penetrates through the vias to contact with the contact pads on the bottom layer. It is then annealed to form a good connection. One-dimensional and two-dimensional PAAs were fabricated and characterized. In these circuits, multilayer metal interconnects were used to make a complete PAA system.

  13. 75 FR 81218 - Laminated Woven Sacks From the People's Republic of China: Preliminary Results of the Second...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... (``BOPP'') or to an exterior ply of paper that is suitable for high quality print graphics; \\4\\ printed... suitable for high quality print graphics,'' as used herein, means paper having an ISO brightness of 82 or... high quality print graphics. Effective July 1, 2007, laminated woven sacks are classifiable under...

  14. Assessing Generative Braille Responding Following Training in a Matching-to-Sample Format

    ERIC Educational Resources Information Center

    Putnam, Brittany C.; Tiger, Jeffrey H.

    2016-01-01

    We evaluated the effects of teaching sighted college students to select printed text letters given a braille sample stimulus in a matching-to-sample (MTS) format on the emergence of untrained (a) construction of print characters given braille samples, (b) construction of braille characters given print samples, (c) transcription of print characters…

  15. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory.

    PubMed

    Ng, Tse Nga; Schwartz, David E; Lavery, Leah L; Whiting, Gregory L; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic.

  16. Basics of Compounding: 3D Printing--Pharmacy Applications, Part 1.

    PubMed

    Allen, Loyd V

    2017-01-01

    Three-dimensional printing quickly became a standard tool in the automotive, aerospace, and consumer goods industries and, recently, has begun gaining traction in pharmaceutical manufacturing. 3D printing has steadily grown, introducing a new element into dosage form development, and has received a boost with U.S. Food and Drug Administration (FDA) approval of the 3D-printed orodispersible tablet, Spritam (levetiracetam). This part 1 of a 3-part article introduces 3D printing and its application to pharmacy. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  17. A new photocrosslinkable polycaprolactone-based ink for three-dimensional inkjet printing.

    PubMed

    He, Yinfeng; Tuck, Christopher J; Prina, Elisabetta; Kilsby, Sam; Christie, Steven D R; Edmondson, Stephen; Hague, Richard J M; Rose, Felicity R A J; Wildman, Ricky D

    2017-08-01

    A new type of photocrosslinkable polycaprolactone (PCL) based ink that is suitable for three-dimensional (3D) inkjet printing has been developed. Photocrosslinkable Polycaprolactone dimethylacrylate (PCLDMA) was synthesized and mixed with poly(ethylene glycol) diacrylate (PEGDA) to prepare an ink with a suitable viscosity for inkjet printing. The ink performance under different printing environments, initiator concentrations, and post processes was studied. This showed that a nitrogen atmosphere during printing was beneficial for curing and material property optimization, as well as improving the quality of structures produced. A simple structure, built in the z-direction, demonstrated the potential for this material for the production of 3D printed objects. Cell tests were carried out to investigate the biocompatibility of the developed ink. © 2016 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1645-1657, 2017. © 2016 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  18. Advancing the field of 3D biomaterial printing.

    PubMed

    Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N

    2016-01-11

    3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications.

  19. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.

    PubMed

    Weinstock, Peter; Rehder, Roberta; Prabhu, Sanjay P; Forbes, Peter W; Roussin, Christopher J; Cohen, Alan R

    2017-07-01

    OBJECTIVE Recent advances in optics and miniaturization have enabled the development of a growing number of minimally invasive procedures, yet innovative training methods for the use of these techniques remain lacking. Conventional teaching models, including cadavers and physical trainers as well as virtual reality platforms, are often expensive and ineffective. Newly developed 3D printing technologies can recreate patient-specific anatomy, but the stiffness of the materials limits fidelity to real-life surgical situations. Hollywood special effects techniques can create ultrarealistic features, including lifelike tactile properties, to enhance accuracy and effectiveness of the surgical models. The authors created a highly realistic model of a pediatric patient with hydrocephalus via a unique combination of 3D printing and special effects techniques and validated the use of this model in training neurosurgery fellows and residents to perform endoscopic third ventriculostomy (ETV), an effective minimally invasive method increasingly used in treating hydrocephalus. METHODS A full-scale reproduction of the head of a 14-year-old adolescent patient with hydrocephalus, including external physical details and internal neuroanatomy, was developed via a unique collaboration of neurosurgeons, simulation engineers, and a group of special effects experts. The model contains "plug-and-play" replaceable components for repetitive practice. The appearance of the training model (face validity) and the reproducibility of the ETV training procedure (content validity) were assessed by neurosurgery fellows and residents of different experience levels based on a 14-item Likert-like questionnaire. The usefulness of the training model for evaluating the performance of the trainees at different levels of experience (construct validity) was measured by blinded observers using the Objective Structured Assessment of Technical Skills (OSATS) scale for the performance of ETV. RESULTS A combination of 3D printing technology and casting processes led to the creation of realistic surgical models that include high-fidelity reproductions of the anatomical features of hydrocephalus and allow for the performance of ETV for training purposes. The models reproduced the pulsations of the basilar artery, ventricles, and cerebrospinal fluid (CSF), thus simulating the experience of performing ETV on an actual patient. The results of the 14-item questionnaire showed limited variability among participants' scores, and the neurosurgery fellows and residents gave the models consistently high ratings for face and content validity. The mean score for the content validity questions (4.88) was higher than the mean score for face validity (4.69) (p = 0.03). On construct validity scores, the blinded observers rated performance of fellows significantly higher than that of residents, indicating that the model provided a means to distinguish between novice and expert surgical skills. CONCLUSIONS A plug-and-play lifelike ETV training model was developed through a combination of 3D printing and special effects techniques, providing both anatomical and haptic accuracy. Such simulators offer opportunities to accelerate the development of expertise with respect to new and novel procedures as well as iterate new surgical approaches and innovations, thus allowing novice neurosurgeons to gain valuable experience in surgical techniques without exposing patients to risk of harm.

  20. A Low-Cost Inkjet-Printed Aptamer-Based Electrochemical Biosensor for the Selective Detection of Lysozyme.

    PubMed

    Khan, Niazul Islam; Maddaus, Alec G; Song, Edward

    2018-01-15

    Recently, inkjet-printing has gained increased popularity in applications such as flexible electronics and disposable sensors, as well as in wearable sensors because of its multifarious advantages. This work presents a novel, low-cost immobilization technique using inkjet-printing for the development of an aptamer-based biosensor for the detection of lysozyme, an important biomarker in various disease diagnosis. The strong affinity between the carbon nanotube (CNT) and the single-stranded DNA is exploited to immobilize the aptamers onto the working electrode by printing the ink containing the dispersion of CNT-aptamer complex. The inkjet-printing method enables aptamer density control, as well as high resolution patternability. Our developed sensor shows a detection limit of 90 ng/mL with high target selectivity against other proteins. The sensor also demonstrates a shelf-life for a reasonable period. This technology has potential for applications in developing low-cost point-of-care diagnostic testing kits for home healthcare.

  1. Improving the Yule-Nielsen modified Neugebauer model by dot surface coverages depending on the ink superposition conditions

    NASA Astrophysics Data System (ADS)

    Hersch, Roger David; Crété, Frédérique

    2004-12-01

    Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In the case of offset prints, the mean difference between predictions and measurements expressed in CIE-LAB CIE-94 ΔE94 values is reduced at 100 lpi from 1.54 to 0.90 (accuracy improvement factor: 1.7) and at 150 lpi it is reduced from 1.87 to 1.00 (accuracy improvement factor: 1.8). Similar improvements have been observed for a thermal transfer printer at 600 dpi, at lineatures of 50 and 75 lpi. In the case of an ink-jet printer at 600 dpi, the mean ΔE94 value is reduced at 75 lpi from 3.03 to 0.90 (accuracy improvement factor: 3.4) and at 100 lpi from 3.08 to 0.91 (accuracy improvement factor: 3.4).

  2. Improving the Yule-Nielsen modified Neugebauer model by dot surface coverages depending on the ink superposition conditions

    NASA Astrophysics Data System (ADS)

    Hersch, Roger David; Crete, Frederique

    2005-01-01

    Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In the case of offset prints, the mean difference between predictions and measurements expressed in CIE-LAB CIE-94 ΔE94 values is reduced at 100 lpi from 1.54 to 0.90 (accuracy improvement factor: 1.7) and at 150 lpi it is reduced from 1.87 to 1.00 (accuracy improvement factor: 1.8). Similar improvements have been observed for a thermal transfer printer at 600 dpi, at lineatures of 50 and 75 lpi. In the case of an ink-jet printer at 600 dpi, the mean ΔE94 value is reduced at 75 lpi from 3.03 to 0.90 (accuracy improvement factor: 3.4) and at 100 lpi from 3.08 to 0.91 (accuracy improvement factor: 3.4).

  3. Your Next Airplane: Just Hit Print

    DTIC Science & Technology

    2013-04-01

    American access to cheap and near instant fabrication. If left to development only by those envisioning cheap plastic gimmicks, 3-D printing will fail to...only by those envisioning cheap plastic gimmicks, 3-D printing will fail to significantly impact the market, but if properly managed, 3-D printing can...resolution, typically between 10 and 100 micrometers. In the filament fusing process, usually with plastic , but possible with many low melting point

  4. Basics of Compounding: 3D Printing--Pharmacy Applications, Part 2.

    PubMed

    Allen, Loyd V

    2017-01-01

    3D printing is a standard tool in the automotive, aerospace, and consumer goods in industry and is gaining traction in pharmaceutical manufacturing, which has introduced a new element into dosage-form development. This article, which represents part 2 of a 3-part article on the topic of 3D printing, discusses the different technologies available for 3D printing. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  5. The Use of 3D Printing in the Development of Gaseous Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Fargher, Sam; Steer, Chris; Thompson, Lee

    2018-01-01

    Fused Deposition Modelling has been used to produce a small, single wire, Iarocci-style drift tube to demonstrate the feasibility of using the Additive Manufacturing technique to produce cheap detectors, quickly. Recent technological developments have extended the scope of Additive Manufacturing, or 3D printing, to the possibility of fabricating Gaseous Radiation Detectors, such as Single Wire Proportional Counters and Time Projection Chambers. 3D printing could allow for the production of customisable, modular detectors; that can be easily created and replaced and the possibility of printing detectors on-site in remote locations and even for outreach within schools. The 3D printed drift tube was printed using Polylactic acid to produce a gas volume in the shape of an inverted triangular prism; base length of 28 mm, height 24.25 mm and tube length 145 mm. A stainless steel anode wire was placed in the centre of the tube, mid-print. P5 gas (95% Argon, 5% Methane) was used as the drift gas and a circuit was built to capacitively decouple signals from the high voltage. The signal rate and average pulse height of cosmic ray muons were measured over a range of bias voltages to characterise and prove correct operation of the printed detector.

  6. An investigation into the enhancement of sea-spray exposed fingerprints on glass.

    PubMed

    Goldstone, S L; Francis, S C; Gardner, S J

    2015-07-01

    Fingerprints are considered one of the best forms of personal identification. While numerous enhancement techniques exist to develop fingerprints under various conditions, the enhancement of fingerprints exposed to sea spray aerosol (SSA) still remains problematic. 1056 fingerprints from four donors, using a depletion series and triplicate repeats, were deposited onto glass panels and exposed to SSA for 1 week and 1 month. Control prints were deposited in the same manner and left under laboratory conditions. All prints were enhanced using fingerprint enhancement techniques available to Forensic Police Officers and subsequently examined for identifiability by a Fingerprint Expert. Significantly fewer identifiable prints (p<0.01) were developed after exposure to SSA for 1 month (11%) compared to exposure for 1 week (69%) (compared to the control prints 99%) for all enhancement techniques. After 1 week's exposure, all techniques enhanced over 50% of prints, except SPR white (12%), with iron (III) oxide and Wetwop™ white producing over 90% identifiable prints. Only iron (III) oxide, Wetwop™ white and SPR black returned any identifiable prints following 1 month's SSA exposure. Iron (III) oxide being significantly better (p<0.01, 67%) than the other techniques. Iron (III) oxide suspension and Wetwop™ white were found to be superior at enhancing prints at both SSA exposure times. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Ventriculostomy Simulation Using Patient-Specific Ventricular Anatomy, 3D Printing, and Hydrogel Casting.

    PubMed

    Ryan, Justin R; Chen, Tsinsue; Nakaji, Peter; Frakes, David H; Gonzalez, L Fernando

    2015-11-01

    Educational simulators provide a means for students and experts to learn and refine surgical skills. Educators can leverage the strengths of medical simulators to effectively teach complex and high-risk surgical procedures, such as placement of an external ventricular drain. Our objective was to develop a cost-effective, patient-derived medical simulacrum for cerebral lateral ventriculostomy. A cost-effective, patient-derived medical simulacrum was developed for placement of an external lateral ventriculostomy. Elastomeric and gel casting techniques were used to achieve realistic brain geometry and material properties. 3D printing technology was leveraged to develop accurate cranial properties and dimensions. An economical, gravity-driven pump was developed to provide normal and abnormal ventricular pressures. A small pilot study was performed to gauge simulation efficacy using a technology acceptance model. An accurate geometric representation of the brain was developed with independent lateral cerebral ventricular chambers. A gravity-driven pump pressurized the ventricular cavities to physiologic values. A qualitative study illustrated that the simulation has potential as an educational tool to train medical professionals in the ventriculostomy procedure. The ventricular simulacrum can improve learning in a medical education environment. Rapid prototyping and multi-material casting techniques can produce patient-derived models for cost-effective and realistic surgical training scenarios. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. AIDS education for a low literate audience in Zambia.

    PubMed

    Msimuko, A K

    1988-04-01

    A workshop funded by the USA Program for Appropriate Technology in Health (PATH) was an effort by Zambia toward prevention and control of AIDS. The lack of educational materials about AIDS for a low-literate audience was the major problem addressed by the workshop. Other problems include the lack of collaborative effort in the development of materials on AIDS, and the lack of skills needed in the development of such materials in Zambia. 1 of the objectives of the workshop was to launch the Planned Parenthood Association of Zambia's (PPAZ) materials development project. The scope of this project includes the production of educational materials on AIDS for low-literate audiences and a counseling handbook for family planning workers. Print materials should be simply written, using words, idioms, and graphics that are familiar to the target audience. Other workshop objectives included the establishment of collaborative relationships between organizations involved in existing AIDS educational activities in Zambia, and the development of practical skills needed to produce print materials. Education was identified as the most important strategy for the prevention and control of AIDS, and PPAZ should be the executing agency of the print materials project. Audience research, using focus group techniques, focus group discussions, behavioral messages, and pretesting of messages, should be the most effective means of reaching targeted audiences. PPAZ is contracted by PATH to begin development of educational materials, and 2 committees have formed to implement the project and to establish interagency collaboration. Audience research was begun between January and March of 1988, focusing on people's beliefs, practices, and ideas about AIDS. The final phase of the project will be the printing, distribution, and use of the AIDS materials and the training of family planning field workers in the proper use of these materials.

  9. Cerebral NIRS performance testing with molded and 3D-printed phantoms (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Huang, Stanley; Chen, Yu; Welle, Cristin G.; Pfefer, T. Joshua

    2017-03-01

    Near-infrared spectroscopy (NIRS) has emerged as a low-cost, portable approach for rapid, point-of-care detection of hematomas caused by traumatic brain injury. As a new technology, there is a need to develop standardized test methods for objective, quantitative performance evaluation of these devices. Towards this goal, we have developed and studied two types of phantom-based testing approaches. The first involves 3D-printed phantoms incorporating hemoglobin-filled inclusions. Phantom layers representing specific cerebral tissues were printed using photopolymers doped with varying levels of titanium oxide and black resin. The accuracy, precision and spectral dependence of printed phantom optical properties were validated using spectrophotometry. The phantom also includes a hematoma inclusion insert which was filled with a hemoglobin solution. Oxygen saturation levels were modified by adding sodium dithionite at calibrated concentrations. The second phantom approach involves molded silicone layers with a superficial region - simulating the scalp and skull - comprised of removable layers to vary hematoma size and depth, and a bottom layer representing brain matter. These phantoms were tested with both a commercial hematoma detector and a custom NIRS system to optimize their designs and validate their utility in performing inter-device comparisons. The effects of hematoma depth, diameter, and height, as well as tissue optical properties and biological variables including hemoglobin saturation level and scalp/skull thickness were studied. Results demonstrate the ability to quantitatively compare NIRS device performance and indicate the promise of using 3D printing to achieve phantoms with realistic variations in tissue optical properties for evaluating biophotonic device performance.

  10. High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    PubMed

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

  11. [Application of digital design and three-dimensional printing technique on individualized medical treatment].

    PubMed

    Qin, Mian; Liu, Yaxiong; He, Jiankang; Wang, Ling; Lian, Qin; Li, Dichen; Jin, Zhongmin; He, Sanhu; Li, Gang; Liu, Yanpu; Wang, Zhen

    2014-03-01

    To summarize the latest research development of the application of digital design and three-dimensional (3-D) printing technique on individualized medical treatment. Recent research data and clinical literature about the application of digital design and 3-D printing technique on individualized medical treatment in Xi'an Jiaotong University and its cooperation unit were summarized, reviewed, and analyzed. Digital design and 3-D printing technique can design and manufacture individualized implant based on the patient's specific disease conditions. And the implant can satisfy the needs of specific shape and function of the patient, reducing dependence on the level of experience required for the doctor. So 3-D printing technique get more and more recognition of the surgeon on the individualized repair of human tissue. Xi'an Jiaotong University is the first unit to develop the commercial 3-D printer and conduct depth research on the design and manufacture of individualized medical implant. And complete technological processes and quality standards of product have been developed. The individualized medical implant manufactured by 3-D printing technique can not only achieve personalized match but also meet the functional requirements and aesthetic requirements of patients. In addition, the individualized medical implant has the advantages of accurate positioning, stable connection, and high strength. So 3-D printing technique has broad prospects in the manufacture and application of individualized implant.

  12. Scan, plan, print, practice, perform: Development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery.

    PubMed

    Hermsen, Joshua L; Burke, Thomas M; Seslar, Stephen P; Owens, David S; Ripley, Beth A; Mokadam, Nahush A; Verrier, Edward D

    2017-01-01

    Static 3-dimensional printing is used for operative planning in cases that involve difficult anatomy. An interactive 3D print allowing deliberate surgical practice would represent an advance. Two patients with hypertrophic cardiomyopathy had 3-dimensional prints constructed preoperatively. Stereolithography files were generated by segmentation of chest computed tomographic scans. Prints were made with hydrogel material, yielding tissue-like models that can be surgically manipulated. Septal myectomy of the print was performed preoperatively in the simulation laboratory. Volumetric measures of print and patient resected specimens were compared. An assessment tool was developed and used to rate the utility of this process. Clinical and echocardiographic data were reviewed. There was congruence between volumes of print and patient resection specimens (patient 1, 3.5 cm 3 and 3.0 cm 3 , respectively; patient 2, 4.0 cm 3 and 4.0 cm 3 , respectively). The prints were rated useful (3.5 and 3.6 on a 5-point Likert scale) for preoperative visualization, planning, and practice. Intraoperative echocardiographic assessment showed adequate relief of left ventricular outflow tract obstruction (patient 1, 80 mm Hg to 18 mm Hg; patient 2, 96 mm Hg to 9 mm Hg). Both patients reported symptomatic improvement (New York Heart Association functional class III to class I). Three-dimensional printing of interactive hypertrophic cardiomyopathy heart models allows for patient-specific preoperative simulation. Resection volume relationships were congruous on both specimens and suggest evidence of construct validity. This model also holds educational promise for simulation of a low-volume, high-risk operation that is traditionally difficult to teach. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  13. 3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography.

    PubMed

    Palaganas, Napolabel B; Mangadlao, Joey Dacula; de Leon, Al Christopher C; Palaganas, Jerome O; Pangilinan, Katrina D; Lee, Yan Jie; Advincula, Rigoberto C

    2017-10-04

    The advantages of 3D printing on cost, speed, accuracy, and flexibility have attracted several new applications in various industries especially in the field of medicine where customized solutions are highly demanded. Although this modern fabrication technique offers several benefits, it also poses critical challenges in materials development suitable for industry use. Proliferation of polymers in biomedical application has been severely limited by their inherently weak mechanical properties despite their other excellent attributes. Earlier works on 3D printing of polymers focus mainly on biocompatibility and cellular viability and lack a close attention to produce robust specimens. Prized for superior mechanical strength and inherent stiffness, cellulose nanocrystal (CNC) from abaca plant is incorporated to provide the necessary toughness for 3D printable biopolymer. Hence, this work demonstrates 3D printing of CNC-filled biomaterial with significant improvement in mechanical and surface properties. These findings may potentially pave the way for an alternative option in providing innovative and cost-effective patient-specific solutions to various fields in medical industry. To the best of our knowledge, this work presents the first successful demonstration of 3D printing of CNC nanocomposite hydrogel via stereolithography (SL) forming a complex architecture with enhanced material properties potentially suited for tissue engineering.

  14. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    PubMed

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

  15. Inter-printer color calibration using constrained printer gamut

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Humet, Jacint

    2005-01-01

    Due to the drop size variation of the print heads in inkjet printers, consistent color reproduction becomes challenge for high quality color printing. To improve the color consistency, we developed a method and system to characterize a pair of printers using a colorimeter or a color scanner. Different from prior known approaches that simply try to match colors of one printer to the other without considering the gamut differences, we first constructed an overlapped gamut in which colors can be produced by both printers, and then characterized both printers using a pair of 3-D or 4-D lookup tables (LUT) to produce same colors limited to the overlapped gamut. Each LUT converts nominal device color values into engine-dependent device color values limited to the overlapped gamut. Compared to traditional approaches, the color calibration accuracy is significantly improved. This method can be simply extended to calibrate more than two engines. In a color imaging system that includes a scanner and more than one print engine, this method improves the color consistency very effectively without increasing hardware costs. A few examples for applying this method are: 1) one-pass bi-directional inkjet printing; 2) a printer with two or more sets of pens for printing; and 3) a system embedded with a pair of printers (the number of printers could be easily incremented).

  16. Implementing traceability using particle randomness-based textile printed tags

    NASA Astrophysics Data System (ADS)

    Agrawal, T. K.; Koehl, L.; Campagne, C.

    2017-10-01

    This article introduces a random particle-based traceability tag for textiles. The proposed tag not only act as a unique signature for the corresponding textile product but also possess the features such as easy to manufacture and hard to copy. It seeks applications in brand authentication and traceability in textile and clothing (T&C) supply chain. A prototype has been developed by screen printing process, in which micron-scale particles were mixed with the printing paste and printed on cotton fabrics to attain required randomness. To encode the randomness, the image of the developed tag was taken and analyzed using image processing. The randomness of the particles acts as a product key or unique signature which is required to decode the tag. Finally, washing and abrasion resistance tests were conducted to check the durability of the printed tag.

  17. Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Cui, Xiaofeng; Boland, Thomas; D’Lima, Darryl D.; Lotz, Martin K.

    2013-01-01

    With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting living systems and the bioprinting in tissue engineering field. PMID:22436025

  18. Communicating headings and preview sentences in text and speech.

    PubMed

    Lorch, Robert F; Chen, Hung-Tao; Lemarié, Julie

    2012-09-01

    Two experiments tested the effects of preview sentences and headings on the quality of college students' outlines of informational texts. Experiment 1 found that performance was much better in the preview sentences condition than in a no-signals condition for both printed text and text-to-speech (TTS) audio rendering of the printed text. In contrast, performance in the headings condition was good for the printed text but poor for the auditory presentation because the TTS software failed to communicate nonverbal information carried by the visual headings. Experiment 2 compared outlining performance for five headings conditions during TTS presentation. Using a theoretical framework, "signaling available, relevant, accessible" (SARA) information, to provide an analysis of the information content of headings in the printed text, the manipulation of the headings systematically restored information that was omitted by the TTS application in Experiment 1. The result was that outlining performance improved to levels similar to the visual headings condition of Experiment 1. It is argued that SARA is a useful framework for guiding future development of TTS software for a wide variety of text signaling devices, not just headings.

  19. Academic reading format preferences and behaviors among university students worldwide: A comparative survey analysis

    PubMed Central

    Kurbanoglu, Serap; Boustany, Joumana

    2018-01-01

    This study reports the descriptive and inferential statistical findings of a survey of academic reading format preferences and behaviors of 10,293 tertiary students worldwide. The study hypothesized that country-based differences in schooling systems, socioeconomic development, culture or other factors might have an influence on preferred formats, print or electronic, for academic reading, as well as the learning engagement behaviors of students. The main findings are that country of origin has little to no relationship with or effect on reading format preferences of university students, and that the broad majority of students worldwide prefer to read academic course materials in print. The majority of participants report better focus and retention of information presented in print formats, and more frequently prefer print for longer texts. Additional demographic and post-hoc analysis suggests that format preference has a small relationship with academic rank. The relationship between task demands, format preferences and reading comprehension are discussed. Additional outcomes and implications for the fields of education, psychology, computer science, information science and human-computer interaction are considered. PMID:29847560

  20. Lightweight custom composite prosthetic components using an additive manufacturing-based molding technique.

    PubMed

    Leddy, Michael T; Belter, Joseph T; Gemmell, Kevin D; Dollar, Aaron M

    2015-01-01

    Additive manufacturing techniques are becoming more prominent and cost-effective as 3D printing becomes higher quality and more inexpensive. The idea of 3D printed prosthetics components promises affordable, customizable devices, but these systems currently have major shortcomings in durability and function. In this paper, we propose a fabrication method for custom composite prostheses utilizing additive manufacturing, allowing for customizability, as well the durability of professional prosthetics. The manufacturing process is completed using 3D printed molds in a multi-stage molding system, which creates a custom finger or palm with a lightweight epoxy foam core, a durable composite outer shell, and soft urethane gripping surfaces. The composite material was compared to 3D printed and aluminum materials using a three-point bending test to compare stiffness, as well as gravimetric measurements to compare weight. The composite finger demonstrates the largest stiffness with the lowest weight compared to other tested fingers, as well as having customizability and lower cost, proving to potentially be a substantial benefit to the development of upper-limb prostheses.

  1. Modes of information delivery in radiologic anatomy education: Impact on student performance.

    PubMed

    Ketelsen, Dominik; Schrödl, Falk; Knickenberg, Inés; Heckemann, Rolf A; Hothorn, Torsten; Neuhuber, Winfried; Bautz, Werner A L; Grunewald, Markus

    2007-01-01

    This study provides a systematic assessment of different methods of delivering radiologic teaching content (lecture, printed text, and digital content delivery) under standard conditions, enabling comparison of the effectiveness of these methods. A printed atlas of sectional anatomy was used as a standard. Digital content was developed on the basis of the printed atlas. Lecturers used both the printed and the digital content to prepare lectures. Standardized teaching material thus created was presented to second-term undergraduate students who had attended the school's anatomy course, but had not received any radiology teaching. Multiple choice examinations were used to assess the students' ability to recognize anatomical structures in known as well as unknown images. In a survey, the students' subjective experience of the learning process was assessed. No difference was seen between the groups regarding examination results. Students preferred a combination of digital media and lectures by enthusiastic teachers. The shortage of teachers requires a compromise concerning the delivery of radiologic anatomy content in a medical school setting. Based on our results, we recommend a combined approach of lecture and digital content delivery.

  2. 3D printed nervous system on a chip.

    PubMed

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  3. Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing.

    PubMed

    Kucherov, Fedor A; Gordeev, Evgeny G; Kashin, Alexey S; Ananikov, Valentine P

    2017-12-11

    Biomass-derived poly(ethylene-2,5-furandicarboxylate) (PEF) has been used for fused deposition modeling (FDM) 3D printing. A complete cycle from cellulose to the printed object has been performed. The printed PEF objects created in the present study show higher chemical resistance than objects printed with commonly available materials (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), glycol-modified poly(ethylene terephthalate) (PETG)). The studied PEF polymer has shown key advantages for 3D printing: optimal adhesion, thermoplasticity, lack of delamination and low heat shrinkage. The high thermal stability of PEF and relatively low temperature that is necessary for extrusion are optimal for recycling printed objects and minimizing waste. Several successive cycles of 3D printing and recycling were successfully shown. The suggested approach for extending additive manufacturing to carbon-neutral materials opens a new direction in the field of sustainable development. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Clinical application of three-dimensional printing technology in craniofacial plastic surgery.

    PubMed

    Choi, Jong Woo; Kim, Namkug

    2015-05-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models.

  5. Scale Control and Quality Management of Printed Image Parameters

    NASA Astrophysics Data System (ADS)

    Novoselskaya, O. A.; Kolesnikov, V. L.; Solov'eva, T. V.; Nagornova, I. V.; Babluyk, E. B.; Trapeznikova, O. V.

    2017-06-01

    The article provides a comparison of the main valuation techniques for a regulated parameter of printability of the offset paper by current standards GOST 24356 and ISO 3783: 2006. The results of development and implementation of a complex test scale for management and control the quality of printed production are represented. The estimation scale is introduced. It includes normalized parameters of print optical density, print uniformity, picking out speed, the value of dot gain, print contrast with the added criteria of minimizing microtexts, a paper slip, resolution threshold and effusing ability of paper surface. The results of analysis allow directionally form surface properties of the substrate to facilitate achieving the required quality of the printed image parameters, i. e. optical density of a print at a predetermined level not less than 1.3, the print uniformity with minimal deviation of dot gain about the order of 10 per cents.

  6. Reprocessable thermosets for sustainable three-dimensional printing.

    PubMed

    Zhang, Biao; Kowsari, Kavin; Serjouei, Ahmad; Dunn, Martin L; Ge, Qi

    2018-05-08

    Among all three-dimensional (3D) printing materials, thermosetting photopolymers claim almost half of the market, and have been widely used in various fields owing to their superior mechanical stability at high temperatures, excellent chemical resistance as well as good compatibility with high-resolution 3D printing technologies. However, once these thermosetting photopolymers form 3D parts through photopolymerization, the covalent networks are permanent and cannot be reprocessed, i.e., reshaped, repaired, or recycled. Here, we report a two-step polymerization strategy to develop 3D printing reprocessable thermosets (3DPRTs) that allow users to reform a printed 3D structure into a new arbitrary shape, repair a broken part by simply 3D printing new material on the damaged site, and recycle unwanted printed parts so the material can be reused for other applications. These 3DPRTs provide a practical solution to address environmental challenges associated with the rapid increase in consumption of 3D printing materials.

  7. Direct Desktop Printed-Circuits-on-Paper Flexible Electronics

    PubMed Central

    Zheng, Yi; He, Zhizhu; Gao, Yunxia; Liu, Jing

    2013-01-01

    There currently lacks of a way to directly write out electronics, just like printing pictures on paper by an office printer. Here we show a desktop printing of flexible circuits on paper via developing liquid metal ink and related working mechanisms. Through modifying adhesion of the ink, overcoming its high surface tension by dispensing machine and designing a brush like porous pinhead for printing alloy and identifying matched substrate materials among different papers, the slightly oxidized alloy ink was demonstrated to be flexibly printed on coated paper, which could compose various functional electronics and the concept of Printed-Circuits-on-Paper was thus presented. Further, RTV silicone rubber was adopted as isolating inks and packaging material to guarantee the functional stability of the circuit, which suggests an approach for printing 3D hybrid electro-mechanical device. The present work paved the way for a low cost and easygoing method in directly printing paper electronics.

  8. Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery

    PubMed Central

    Kim, Namkug

    2015-01-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models. PMID:26015880

  9. Future enhancements to 3D printing and real time production

    NASA Astrophysics Data System (ADS)

    Landa, Joseph; Jenkins, Jeffery; Wu, Jerry; Szu, Harold

    2014-05-01

    The cost and scope of additive printing machines range from several hundred to hundreds of thousands of dollars. For the extra money, one can get improvements in build size, selection of material properties, resolution, and consistency. However, temperature control during build and fusing predicts outcome and protects the IP by large high cost machines. Support material options determine geometries that can be accomplished which drives cost and complexity of printing heads. Historically, 3D printers have been used for design and prototyping efforts. Recent advances and cost reduction sparked new interest in developing printed products and consumables such as NASA who is printing food, printing consumer parts (e.g. cell phone cases, novelty toys), making tools and fixtures in manufacturing, and recursively print a self-similar printer (c.f. makerbot). There is a near term promise of the capability to print on demand products at the home or office... directly from the printer to use.

  10. Supporting Biomaterials for Articular Cartilage Repair

    PubMed Central

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  11. Non-Print Social Studies Materials--Elementary School Level.

    ERIC Educational Resources Information Center

    Lynn, Karen

    Types of non-print social studies materials developed for presentation to, and use by, elementary school students are identified. "Non-print" materials include films, filmstrips, video cassettes, audio recordings, computer databases, telecommunications, and hypertext. An explanation of why elementary school students can benefit from the use of…

  12. Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators.

    PubMed

    Memon, Muhammad Usman; Lim, Sungjoon

    2017-09-09

    The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing.

  13. Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators

    PubMed Central

    2017-01-01

    The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing. PMID:28891947

  14. The effects of a systematically developed photo-novella on knowledge, attitudes, communication and behavioural intentions with respect to sexually transmitted infections among secondary school learners in South Africa.

    PubMed

    James, Shamagonam; Reddy, Priscilla S; Ruiter, Robert A C; Taylor, Myra; Jinabhai, Champaklal C; Van Empelen, Pepijn; Van den Borne, Bart

    2005-06-01

    A pre-post test follow-up design was used to test the effects of a systematically developed photo-novella (Laduma) on knowledge, attitudes, communication and behavioural intentions with respect to sexually transmitted infections, after a single reading by 1168 secondary school learners in South Africa. The reading resulted in an increase in knowledge on the spread of sexually transmitted infections (STIs), change in attitude to condom use and towards people with STIs and/or HIV/AIDS, as well as increased intention to practice safe sex. Laduma did not influence communication about sexually transmitted infections and reported sexual behaviour and condom use. While print media proved to be an effective strategy to reach large numbers of youth and prepare them for adequate preventive behaviours, the study also identified the need to combine print media with other planned theory-based interventions that build confidence and skills to initiate the preventive behaviour.

  15. Three-Dimensional Printing of Nanomaterial Scaffolds for Complex Tissue Regeneration

    PubMed Central

    O'Brien, Christopher M.; Holmes, Benjamin; Faucett, Scott

    2015-01-01

    Three-dimensional (3D) printing has recently expanded in popularity, and become the cutting edge of tissue engineering research. A growing emphasis from clinicians on patient-specific care, coupled with an increasing knowledge of cellular and biomaterial interaction, has led researchers to explore new methods that enable the greatest possible control over the arrangement of cells and bioactive nanomaterials in defined scaffold geometries. In this light, the cutting edge technology of 3D printing also enables researchers to more effectively compose multi-material and cell-laden scaffolds with less effort. In this review, we explore the current state of 3D printing with a focus on printing of nanomaterials and their effect on various complex tissue regeneration applications. PMID:25084122

  16. 3D printed electromagnetic transmission and electronic structures fabricated on a single platform using advanced process integration techniques

    NASA Astrophysics Data System (ADS)

    Deffenbaugh, Paul Issac

    3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.

  17. 75 FR 55568 - Laminated Woven Sacks From the People's Republic of China: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... that is suitable for high quality print graphics; \\8\\ printed with three colors or more in register... goods such as pet foods and bird seed. \\8\\ ``Paper suitable for high quality print graphics,'' as used.... Coated free sheet is an example of a paper suitable for high quality print graphics. Effective July 1...

  18. The Nonsubscription Side of Periodicals: Changes in Library Operations and Costs between Print and Electronic Formats

    ERIC Educational Resources Information Center

    Schonfeld, Roger C.; King, Donald W.; Okerson, Ann; Fenton, Eileen Gifford

    2004-01-01

    Many academic and research libraries are in the midst of what may ultimately be a major transition for various parts of their collection--a shift from print to electronic format. Libraries that had long subscribed only to print versions of journals are, in increasing numbers, licensing electronic versions to replace the print. What effects will…

  19. Investigation on synchronization of the offset printing process for fine patterning and precision overlay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dongwoo; Lee, Eonseok; Kim, Hyunchang

    2014-06-21

    Offset printing processes are promising candidates for producing printed electronics due to their capacity for fine patterning and suitability for mass production. To print high-resolution patterns with good overlay using offset printing, the velocities of two contact surfaces, which ink is transferred between, should be synchronized perfectly. However, an exact velocity of the contact surfaces is unknown due to several imperfections, including tolerances, blanket swelling, and velocity ripple, which prevents the system from being operated in the synchronized condition. In this paper, a novel method of measurement based on the sticking model of friction force was proposed to determine themore » best synchronized condition, i.e., the condition in which the rate of synchronization error is minimized. It was verified by experiment that the friction force can accurately represent the rate of synchronization error. Based on the measurement results of the synchronization error, the allowable margin of synchronization error when printing high-resolution patterns was investigated experimentally using reverse offset printing. There is a region where the patterning performance is unchanged even though the synchronization error is varied, and this may be viewed as indirect evidence that printability performance is secured when there is no slip at the contact interface. To understand what happens at the contact surfaces during ink transfer, the deformation model of the blanket's surface was developed. The model estimates how much deformation on the blanket's surface can be borne by the synchronization error when there is no slip at the contact interface. In addition, the model shows that the synchronization error results in scale variation in the machine direction (MD), which means that the printing registration in the MD can be adjusted actively by controlling the synchronization if there is a sufficient margin of synchronization error to guarantee printability. The effect of synchronization on the printing registration was verified experimentally using gravure offset printing. The variations in synchronization result in the differences in the MD scale, and the measured MD scale matches exactly with the modeled MD scale.« less

  20. Comparing Children with ASD and Their Peers' Growth in Print Knowledge.

    PubMed

    Dynia, Jaclyn M; Brock, Matthew E; Logan, Jessica A R; Justice, Laura M; Kaderavek, Joan N

    2016-07-01

    Many children with autism spectrum disorder (ASD) struggle with reading. An increased focus on emergent literacy skills-particularly print knowledge-might improve later reading outcomes. We analyzed longitudinal measures of print knowledge (i.e., alphabet knowledge and print-concept knowledge) for 35 preschoolers with ASD relative to a sample of 35 typically developing peers. Through multilevel growth curve analysis, we found that relative to their peers, children with ASD had comparable alphabet knowledge, lower print-concept knowledge, and acquired both skills at a similar rate. These findings suggest that children with ASD are unlikely to acquire print-concept knowledge commensurate to their peers without an increased emphasis on high-quality instruction that targets this skill.

  1. Screen printed UHF antennas on flexible substrates

    NASA Astrophysics Data System (ADS)

    Janeczek, Kamil; Młożniak, Anna; Kozioł, Grażyna; Araźna, Aneta; Jakubowska, Małgorzata; Bajurko, Paweł

    2010-09-01

    Printed electronics belongs to the most important developing electronics technologies. It provides new possibilities to produce low cost and large area devices. In its range several applications can be distinguished like printed batteries, OLED, biosensors, photovoltaic cells or RFID tags. In the presented investigation, antennas working in UHF frequency range were elaborated. It can be applied in the future for flexible RFID tags. To produce these antennas polymer paste with silver flakes was used. It was deposited on two flexible substrates (foil and photo paper) with screen printing techniques. After printing process surface profile, electrical and microwave parameters of performed antennas were measured using digital multimeter and network analyzer, relatively. Furthermore, a thickness of printed layers was measured.

  2. Development of paper-based wireless communication modules for point-of-care diagnostic applications

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Bezuidenhout, Petroné H.; Land, Kevin; Korvink, Jan G.; Mager, Dario

    2016-02-01

    We present an ultra-high frequency radio frequency identification based wireless communication set-up for paper-based point-of-care diagnostic applications, based on a sensing radio frequency identification chip. Paper provides a low-cost, disposable platform for ease of fluidic handling without bulky instrumentation, and is thus ideally suited for point-ofcare applications; however, result communication - a crucial aspect for healthcare to be implemented effectively - is still lacking. Printing of radio frequency identification antennas and electronic circuitry for sensing on paper are presented, with read out of the results using a radio frequency identification reader illustrated, demonstrating the feasibility of developing integrated, all-printed solutions for point-of-care diagnosis in resource-limited settings.

  3. Three-dimensional printing physiology laboratory technology.

    PubMed

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  4. Development of paper-based electrochemical sensors for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Bezuidenhout, Petroné; Mbanjwa, Mesuli; Zheng, Haitao; Conning, Mariette; Palaniyandy, Nithyadharseni; Ozoemena, Kenneth; Land, Kevin

    2016-02-01

    We present a method for the development of paper-based electrochemical sensors for detection of heavy metals in water samples. Contaminated water leads to serious health problems and environmental issues. Paper is ideally suited for point-of-care testing, as it is low cost, disposable, and multi-functional. Initial sensor designs were manufactured on paper substrates using combinations of inkjet printing and screen printing technologies using silver and carbon inks. Bismuth onion-like carbon nanoparticle ink was manufactured and used as the active material of the sensor for both commercial and paper-based sensors, which were compared using standard electrochemical analysis techniques. The results highlight the potential of paper-based sensors to be used effectively for rapid water quality monitoring at the point-of-need.

  5. Thumbnail Sketches: The Chemistry of Printed Circuit Substrates: Some of the Latest Developments.

    ERIC Educational Resources Information Center

    Freeman, James H.

    1984-01-01

    Discusses some of the latest developments in the chemistry of printed circuit substrates. Topics considered include soldering, dicy (a catalyst), Kevlar (an aramid polymer fiber), maleimide copolymers, and flexible circuits. (JN)

  6. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    NASA Astrophysics Data System (ADS)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  7. 'Miracle cure' or 'liquid handcuffs': reporting on naltrexone and methadone in the Australian print media.

    PubMed

    Matthew-Simmons, Francis; Ritter, Alison

    2014-09-01

    The news media is an important source of information regarding new developments in medicine and public health interventions. Previous research has indicated that in many cases, reporting on new treatments can be inaccurate or sensationalist. This paper presents analysis of Australian print media reporting on two treatment options for heroin dependence (naltrexone and methadone). The aim of this study was to quantitatively compare the volume and content of Australian print media reporting on these two treatments, one of which had a long history of use in Australia, and the other which was comparatively newer. The study constituted a quantitative content analysis of a sample of 859 Australian newspaper articles, published over a 10-year period (1997-2007). Each article paragraph was coded for positive outcomes/benefits of treatment, as well as negative outcomes associated with treatment. The analysis revealed that during this period, the Australian print media was significantly more likely to report the potential positive outcomes of naltrexone treatment, compared with the negative outcomes. In contrast, reporting on methadone focused more on the negative outcomes and side effects. The relative frequency by which the benefits of naltrexone were mentioned in this sample of news content is somewhat at odds with the extant efficacy and effectiveness research evidence. The findings suggest that reporting on these treatments in the Australian print media has not been balanced. This type of reporting has potential implications for public attitudes, as well as policy decisions. © 2014 Australasian Professional Society on Alcohol and other Drugs.

  8. Bio-printing cell-laden Matrigel–agarose constructs

    PubMed Central

    Fan, Rong; Piou, Marine; Darling, Evan; Cormier, Denis; Sun, Jun; Wan, Jiandi

    2017-01-01

    3D printing of biological architectures that mimic the structural and functional features of in vivo tissues is of great interest in tissue engineering and the development of transplantable organ constructs. Printable bio-inks that are compatible with cellular activities play critical roles in the process of 3D bio-printing. Although a variety of hydrogels have been used as bio-inks for 3D bio-printing, they inherit poor mechanical properties and/or the lack of essential protein components that compromise their performance. Here, a hybrid Matrigel–agarose hydrogel system has been demonstrated that possesses both desired rheological properties for bio-printing and biocompatibility for long-term (11 days) cell culture. The agarose component in the hybrid hydrogel system enables the maintenance of 3D-printed structures, whereas Matrigel provides essential microenvironments for cell growth. When human intestinal epithelial HCT116 cells are encapsulated in the printed Matrigel–agarose constructs, high cell viability and proper cell spreading morphology are observed. Given that Matrigel is used extensively for 3D cell culturing, the developed 3D-printable Matrigel–agarose system will open a new way to construct Matrigel-based 3D constructs for cell culture and tissue engineering. PMID:27638155

  9. Novel Materials for 3D Printing by Photopolymerization.

    PubMed

    Layani, Michael; Wang, Xiaofeng; Magdassi, Shlomo

    2018-05-13

    The field of 3D printing, also known as additive manufacturing (AM), is developing rapidly in both academic and industrial research environments. New materials and printing technologies, which enable rapid and multimaterial printing, have given rise to new applications and utilizations. However, the main bottleneck for achieving many more applications is the lack of materials with new physical properties. Here, some of the recent reports on novel materials in this field, such as ceramics, glass, shape-memory polymers, and electronics, are reviewed. Although new materials have been reported for all three main printing approaches-fused deposition modeling, binder jetting or laser sintering/melting, and photopolymerization-based approaches, apparently, most of the novel physicochemical properties are associated with materials printed by photopolymerization approaches. Furthermore, the high resolution that can be achieved using this type of 3D printing, together with the new properties, has resulted in new implementations such as microfluidic, biomedical devices, and soft robotics. Therefore, the focus here is on photopolymerization-based additive manufacturing including the recent development of new methods, novel monomers, and photoinitiators, which result in previously inaccessible applications such as complex ceramic structures, embedded electronics, and responsive 3D objects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cerebral Aneurysm Clipping Surgery Simulation Using Patient-Specific 3D Printing and Silicone Casting.

    PubMed

    Ryan, Justin R; Almefty, Kaith K; Nakaji, Peter; Frakes, David H

    2016-04-01

    Neurosurgery simulator development is growing as practitioners recognize the need for improved instructional and rehearsal platforms to improve procedural skills and patient care. In addition, changes in practice patterns have decreased the volume of specific cases, such as aneurysm clippings, which reduces the opportunity for operating room experience. The authors developed a hands-on, dimensionally accurate model for aneurysm clipping using patient-derived anatomic data and three-dimensional (3D) printing. Design of the model focused on reproducibility as well as adaptability to new patient geometry. A modular, reproducible, and patient-derived medical simulacrum was developed for medical learners to practice aneurysmal clipping procedures. Various forms of 3D printing were used to develop a geometrically accurate cranium and vascular tree featuring 9 patient-derived aneurysms. 3D printing in conjunction with elastomeric casting was leveraged to achieve a patient-derived brain model with tactile properties not yet available from commercial 3D printing technology. An educational pilot study was performed to gauge simulation efficacy. Through the novel manufacturing process, a patient-derived simulacrum was developed for neurovascular surgical simulation. A follow-up qualitative study suggests potential to enhance current educational programs; assessments support the efficacy of the simulacrum. The proposed aneurysm clipping simulator has the potential to improve learning experiences in surgical environment. 3D printing and elastomeric casting can produce patient-derived models for a dynamic learning environment that add value to surgical training and preparation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.

    PubMed

    Baeg, Kang-Jun; Caironi, Mario; Noh, Yong-Young

    2013-08-21

    For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge transport properties. Among this class of materials, various polymers can show well balanced electrons and holes mobility, therefore being indicated as ambipolar semiconductors, good environmental stability, and a small band-gap, which simplifies the tuning of charge injection. This opened up the possibility of taking advantage of the superior performances offered by complementary "CMOS-like" logic for the design of digital ICs, easing the scaling down of critical geometrical features, and achieving higher complexity from robust single gates (e.g., inverters) and test circuits (e.g., ring oscillators) to more complete circuits. Here, we review the recent progress in the development of printed ICs based on polymeric semiconductors suitable for large-volume micro- and nano-electronics applications. Particular attention is paid to the strategies proposed in the literature to design and synthesize high mobility polymers and to develop suitable printing tools and techniques to allow for improved patterning capability required for the down-scaling of devices in order to achieve the operation frequencies needed for applications, such as flexible radio-frequency identification (RFID) tags, near-field communication (NFC) devices, ambient electronics, and portable flexible displays. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Developing a Campus-Wide Print Strategy: A Call for Consistency.

    ERIC Educational Resources Information Center

    Hawkins, Brian L.

    1989-01-01

    The advent of microcomputers, laser printers, FAX machines, and desktop publishing has brought about an alarming increase in the amount and variation of printing. Coordination between service units is essential to create a coherent set of print choices, pricing options, and policies for the campus as a whole. (MLW)

  13. 75 FR 59086 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... package printing entitled ``Control Techniques Guidelines for Flexible Package Printing'' (Publication No... adoption of the EPA CTG for flexible packaging printing. EPA develops CTGs as guidance on control... Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control Techniques Guidelines for...

  14. High fidelity nanopatterning of proteins onto well-defined surfaces through subtractive contact printing

    PubMed Central

    García, José R.; Singh, Ankur; García, Andrés J.

    2016-01-01

    In the pursuit to develop enhanced technologies for cellular bioassays as well as understand single cell interactions with its underlying substrate, the field of biotechnology has extensively utilized lithographic techniques to spatially pattern proteins onto surfaces in user-defined geometries. Microcontact printing (μCP) remains an incredibly useful patterning method due to its inexpensive nature, scalability, and the lack of considerable use of specialized clean room equipment. However, as new technologies emerge that necessitate various nano-sized areas of deposited proteins, traditional microcontact printing methods may not be able to supply users with the needed resolution size. Recently, our group developed a modified “subtractive microcontact printing” method which still retains many of the benefits offered by conventional μCP. Using this technique, we have been able to reach resolution sizes of fibronectin as small as 250 nm in largely spaced arrays for cell culture. In this communication, we present a detailed description of our subtractive μCP procedure that expands on many of the little tips and tricks that together make this procedure an easy and effective method for controlling protein patterning. PMID:24439290

  15. The interaction of synesthetic and print color and its relation to visual imagery

    PubMed Central

    Alvarez, Bryan D.; Robertson, Lynn C.

    2013-01-01

    Synesthetic color induced by graphemes is well understood to be an automatic perceptual phenomenon paralleling print color in some ways but also differing in others. We address this juxtaposition by asking how synesthetes are affected by synesthetic and print colors that are the same. We tested two groups of grapheme-color synesthetes using a basic color priming method in which a grapheme prime was presented followed by a color patch (probe), the color of which was to be named as quickly and accurately as possible. Primes induced either no color, print color only, synesthetic color only, or both forms of color (e.g., a letter “A” printed in red that also triggers synesthetic red). As expected, responses to name the probe color were faster if it was congruent with the prime color than if it was incongruent. The new finding (Expt 1) was that a prime that induced the same print and synesthetic color led to substantially larger priming effects than either one individually, an effect that could not be attributed to semantic priming (Expt 2). In addition, the synesthesia effects correlated with a standard measure of visual imagery. These findings are discussed as consistent with the hypothesis that print and synesthestic color converge on similar color mechanisms. PMID:23922190

  16. International Space Station (ISS) 3D Printer Performance and Material Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Bean, Q. A.; Cooper, K. G.; Edmunson, J. E.; Johnston, M. M.; Werkheiser, M. J.

    2015-01-01

    In order for human exploration of the Solar System to be sustainable, manufacturing of necessary items on-demand in space or on planetary surfaces will be a requirement. As a first step towards this goal, the 3D Printing In Zero-G (3D Print) technology demonstration made the first items fabricated in space on the International Space Station. From those items, and comparable prints made on the ground, information about the microgravity effects on the printing process can be determined. Lessons learned from this technology demonstration will be applicable to other in-space manufacturing technologies, and may affect the terrestrial manufacturing industry as well. The flight samples were received at the George C. Marshall Space Flight Center on 6 April 2015. These samples will undergo a series of tests designed to not only thoroughly characterize the samples, but to identify microgravity effects manifested during printing by comparing their results to those of samples printed on the ground. Samples will be visually inspected, photographed, scanned with structured light, and analyzed with scanning electron microscopy. Selected samples will be analyzed with computed tomography; some will be assessed using ASTM standard tests. These tests will provide the information required to determine the effects of microgravity on 3D printing in microgravity.

  17. In-situ Roll-to-Roll Printing of Highly Efficient Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Zhenan; Toney, Michael; Clancy, Paulette

    2016-05-30

    This project focuses on developing a roll-to-roll printing setup for organic solar cells with the capability to follow the film formation in situ with small and wide angle X-ray scattering, and to improve the performance of printed organic solar cells. We demonstrated the use of the printing setup to capture important aspects of existing industrial printing methods, which ensures that the solar cell performance achieved in our printing experiments would be largely retained in an industrial fabrication process. We employed both known and newly synthesized polymers as the donor and acceptor materials, and we studied the morphological changes in realmore » time during the printing process by X-ray scattering. Our experimental efforts are also accompanied by theoretical modeling of both the fluid dynamic aspects of the printing process and the nucleation and crystallization kinetics during the film formation. The combined insight into the printing process gained from the research provides a detailed understanding of the factors governing the printed solar cell’s performance. Finally using the knowledge we gained, we demonstrated large area ( > 10 cm2) printed organic solar cells with more than 5 percent power conversion efficiency, which is best achieved performance for roll-to-roll printed organic solar cells.« less

  18. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    PubMed Central

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  19. Printing versus coating - What will be the future production technology for printed electronics?

    NASA Astrophysics Data System (ADS)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank

    2015-02-01

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  20. Improving Assistive Technology Service by Using 3D Printing: Three Case Studies.

    PubMed

    Watanabe, Takashi; Hatakeyama, Takuro; Tomiita, Mitsuru

    2015-01-01

    Assistive technology services are essential for adapting assistive devices to the individual needs of users with disabilities. In this study, we attempted to apply three-dimensional (3D) printing technology to three actual cases, and to study its use, effectiveness, and future applications. We assessed the usefulness of 3D printing technology by categorizing its utilization after reviewing the outcomes of these case studies. In future work, we aim to gather additional case studies and derive information on using 3D printing technology that will enable its effective application in the process of assistive technology services.

  1. Noble Logic for Preventing Scratch on Roll-to-Roll Printed Layers in Noncontacting Transportation

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Kang, Hyunkyoo; Kim, Hojoon; Shin, Keehyun

    2010-05-01

    The use of roll-to-roll (R2R) printed electronics is a relatively new method of mass producing flexible electronic devices while keeping production costs down. The geometrical qualities of a printed pattern, such as surface roughness and uniformity, could deteriorate. Moreover, the geometric qualities of a printed layer affect the functional qualities of a printed electronic device directly. Therefore, the functional qualities (conductivity and mobility) of a multilayer electronic device could deteriorate in the presence of a scratch defect on the printed layer. In general, a scratch on a printed pattern on a flexible substrate is induced by contact between the rolls and printed pattern in R2R printing systems. To prevent such contact, one of the best solutions is to use an air flotation unit. However, a scratch defect could be induced even though an air flotation process is used to minimize contact, because the flotation height of a moving web is affected by web tension. In this paper, we discuss an analytical model of an air-floated moving substrate. For the noncontacting transfer of a moving web without a scratch defect, a mathematical tension model has been developed by considering an induced strain due to aerodynamic forces and verified by numerical and experimental studies. Additionally, the correlation between the flotation height of an air-floated moving web and speed compensation used to control the tension are investigated. The analysis shows that tension fluctuations can cause the substrate to touch the air-flotation subsystem, which is installed to prevent contact, resulting in defects such as scratches on the printed layer. On the basis of the proposed model, a logic is developed to minimize scratch defects on R2R printed layers in noncontacting transportation. Through a guideline based on this logic, the scratched area density on R2R printed layers can be reduced by approximately 70%.

  2. Summary Report on Phase I and Phase II Results From the 3D Printing in Zero-G Technology Demonstration Mission. Volume II

    NASA Technical Reports Server (NTRS)

    Prater, T. J.; Werkheiser, N. J.; Ledbetter, F. E., III

    2018-01-01

    In-space manufacturing seeks to develop the processes, skill sets, and certification architecture needed to provide a rapid response manufacturing capability on long-duration exploration missions. The first 3D printer on the Space Station was developed by Made in Space, Inc. and completed two rounds of operation on orbit as part of the 3D Printing in Zero-G Technology Demonstration Mission. This Technical Publication provides a comprehensive overview of the technical objections of the mission, the two phases of hardware operation conducted on orbit, and the subsequent detailed analysis of specimens produced. No engineering significant evidence of microgravity effects on material outcomes was noted. This technology demonstration mission represents the first step in developing a suite of manufacturing capabilities to meet future mission needs.

  3. The Role of "Kilimani Sesame" in the Healthy Development of Tanzanian Preschool Children

    ERIC Educational Resources Information Center

    Borzekowski, Dina L. G.; Macha, Jacob E.

    2010-01-01

    "Kilimani Sesame," a media intervention that employs print, radio, and television, was developed to entertain and educate preschool children in Tanzania. This study examined the effects of a six-week intervention delivering "Kilimani Sesame" material to 223 children in the rural district of Kisarawe and the city of Dar es…

  4. Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2007-01-01

    This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…

  5. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs).

    PubMed

    Damiati, Samar; Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A; Becker, Holger; Kodzius, Rimantas; Schuster, Bernhard

    2018-02-14

    Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection.

  6. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    ERIC Educational Resources Information Center

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  7. [Research progress of three-dimensional printing technique in joint surgery].

    PubMed

    Wang, Fuyou; Ren, Xiang; Yang, Liu

    2014-03-01

    To summarize the application status of three-dimensional (3-D) printing technique in joint surgery and look forward to the future research directions. The recent original articles about the application and research of 3-D printing technique in joint surgery were extensively reviewed and analyzed. In clinical applications, 3-D printing technique can provide "tailored" treatment and custom implants for patients, which helps doctors to perform the complex operations easier and more safely; in fundamental research, tissue engineered scaffolds with desirable external shape and internal organization are easily fabricated with 3-D printing technique, which can meet the demand of cell adherence and proliferation. Even more, cells may be deposited with the biomaterials during the printing. With the development of medical imaging, digital medicine and new materials, 3-D printing technique will have a wider range of applications in joint surgery.

  8. Plasma jet printing for flexible substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.

    2016-03-21

    Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and foundmore » to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.« less

  9. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  10. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability.

    PubMed

    Bandodkar, Amay J; Jeerapan, Itthipon; You, Jung-Min; Nuñez-Flores, Rogelio; Wang, Joseph

    2016-01-13

    We present the first example of an all-printed, inexpensive, highly stretchable CNT-based electrochemical sensor and biofuel cell array. The synergistic effect of utilizing specially tailored screen printable stretchable inks that combine the attractive electrical and mechanical properties of CNTs with the elastomeric properties of polyurethane as a binder along with a judiciously designed free-standing serpentine pattern enables the printed device to possess two degrees of stretchability. Owing to these synergistic design and nanomaterial-based ink effects, the device withstands extremely large levels of strains (up to 500% strain) with negligible effect on its structural integrity and performance. This represents the highest stretchability offered by a printed device reported to date. Extensive electrochemical characterization of the printed device reveal that repeated stretching, torsional twisting, and indenting stress has negligible impact on its electrochemical properties. The wide-range applicability of this platform to realize highly stretchable CNT-based electrochemical sensors and biofuel cells has been demonstrated by fabricating and characterizing potentiometric ammonium sensor, amperometric enzyme-based glucose sensor, enzymatic glucose biofuel cell, and self-powered biosensor. Highly stretchable printable multianalyte sensor, multifuel biofuel cell, or any combination thereof can thus be realized using the printed CNT array. Such combination of intrinsically stretchable printed nanomaterial-based electrodes and strain-enduring design patterns holds considerable promise for creating an attractive class of inexpensive multifunctional, highly stretchable printed devices that satisfy the requirements of diverse healthcare and energy fields wherein resilience toward extreme mechanical deformations is mandatory.

  11. Fracture network created by 3D printer and its validation using CT images

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Watanabe, N.; Li, K.; Horne, R. N.

    2017-12-01

    Understanding flow mechanisms in fractured media is essential for geoscientific research and geological development industries. This study used 3D printed fracture networks in order to control the properties of fracture distributions inside the sample. The accuracy and appropriateness of creating samples by the 3D printer was investigated by using a X-ray CT scanner. The CT scan images suggest that the 3D printer is able to reproduce complex three-dimensional spatial distributions of fracture networks. Use of hexane after printing was found to be an effective way to remove wax for the post-treatment. Local permeability was obtained by the cubic law and used to calculate the global mean. The experimental value of the permeability was between the arithmetic and geometric means of the numerical results, which is consistent with conventional studies. This methodology based on 3D printed fracture networks can help validate existing flow modeling and numerical methods.

  12. Gravure printing of graphene for large-area flexible electronics.

    PubMed

    Secor, Ethan B; Lim, Sooman; Zhang, Heng; Frisbie, C Daniel; Francis, Lorraine F; Hersam, Mark C

    2014-07-09

    Gravure printing of graphene is demonstrated for the rapid production of conductive patterns on flexible substrates. Development of suitable inks and printing parameters enables the fabrication of patterns with a resolution down to 30 μm. A mild annealing step yields conductive lines with high reliability and uniformity, providing an efficient method for the integration of graphene into large-area printed and flexible electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Distributed Interoperable Metadata Registry; How Do Physicists Use an E-Print Archive? Implications for Institutional E-Print Services; A Framework for Building Open Digital Libraries; Implementing Digital Sanborn Maps for Ohio: OhioLINK and OPLIN Collaborative Project.

    ERIC Educational Resources Information Center

    Blanchi, Christophe; Petrone, Jason; Pinfield, Stephen; Suleman, Hussein; Fox, Edward A.; Bauer, Charly; Roddy, Carol Lynn

    2001-01-01

    Includes four articles that discuss a distributed architecture for managing metadata that promotes interoperability between digital libraries; the use of electronic print (e-print) by physicists; the development of digital libraries; and a collaborative project between two library consortia in Ohio to provide digital versions of Sanborn Fire…

  14. 3D Printing of Transparent and Conductive Heterogeneous Hydrogel-Elastomer Systems.

    PubMed

    Tian, Kevin; Bae, Jinhye; Bakarich, Shannon E; Yang, Canhui; Gately, Reece D; Spinks, Geoffrey M; In Het Panhuis, Marc; Suo, Zhigang; Vlassak, Joost J

    2017-03-01

    A hydrogel-dielectric-elastomer system, polyacrylamide and poly(dimethylsiloxane) (PDMS), is adapted for extrusion printing for integrated device fabrication. A lithium-chloride-containing hydrogel printing ink is developed and printed onto treated PDMS with no visible signs of delamination and geometrically scaling resistance under moderate uniaxial tension and fatigue. A variety of designs are demonstrated, including a resistive strain gauge and an ionic cable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery.

    PubMed

    Kizawa, Hideki; Nagao, Eri; Shimamura, Mitsuru; Zhang, Guangyuan; Torii, Hitoshi

    2017-07-01

    The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.

  16. Media and memory: the efficacy of video and print materials for promoting patient education about asthma.

    PubMed

    Wilson, Elizabeth A H; Park, Denise C; Curtis, Laura M; Cameron, Kenzie A; Clayman, Marla L; Makoul, Gregory; Vom Eigen, Keith; Wolf, Michael S

    2010-09-01

    We examined the effects of presentation medium on immediate and delayed recall of information and assessed the effect of giving patients take-home materials after initial presentations. Primary-care patients received video-based, print-based or no asthma education about asthma symptoms and triggers and then answered knowledge-based questions. Print participants and half the video participants received take-home print materials. A week later, available participants completed the knowledge assessment again. Participants receiving either intervention outperformed controls on immediate and delayed assessments (p<0.001). For symptom-related information, immediate performance did not significantly differ between print and video participants. A week later, receiving take-home print predicted better performance (p<0.05), as did self-reported review among recipients of take-home print (p<0.01). For content about inhaler usage, although video watchers outperformed print participants immediately after seeing the materials (p<0.001), a week later these two groups' performance did not significantly differ. Among participants given take-home materials, review predicted marginally better recall (p=0.06). Video and print interventions can promote recall of health-related information. Additionally, reviewable materials, if they are utilized, may improve retention. When creating educational tools, providers should consider how long information must be retained, its content, and the feasibility of providing tangible supporting materials. Copyright (c) 2010. Published by Elsevier Ireland Ltd.

  17. Universal Strategy To Reduce Noise Current for Sensitive Organic Photodetectors.

    PubMed

    Xiong, Sixing; Li, Lingliang; Qin, Fei; Mao, Lin; Luo, Bangwu; Jiang, Youyu; Li, Zaifang; Huang, Jinsong; Zhou, Yinhua

    2017-03-15

    Low noise current is critical for achieving high-detectivity organic photodetectors. Inserting charge-blocking layers is an effective approach to suppress the reverse-biased dark current. However, in solution-processed organic photodetectors, the charge-transport material needs to be dissolved in solvents that do not dissolve the underneath light-absorbing layer, which is not always possible for all kinds of light-absorbing materials developed. Here, we introduce a universal strategy of transfer-printing a conjugated polymer, poly(3-hexylthiophene) (P3HT), as the electron-blocking layer to realize highly sensitive photodetectors. The transfer-printed P3HT layers substantially and universally reduced the reverse-biased dark current by about 3 orders of magnitude for various photodetectors with different active layers. These photodetectors can detect the light signal as weak as several picowatts per square centimeter, and the device detectivity is over 10 12 Jones. The results suggest that the strategy of transfer-printing P3HT films as the electron-blocking layer is universal and effective for the fabrication of sensitive organic photodetectors.

  18. A Web-Based and Print-Based Computer-Tailored Physical Activity Intervention for Prostate and Colorectal Cancer Survivors: A Comparison of User Characteristics and Intervention Use.

    PubMed

    Golsteijn, Rianne Henrica Johanna; Bolman, Catherine; Peels, Denise Astrid; Volders, Esmee; de Vries, Hein; Lechner, Lilian

    2017-08-23

    Physical activity (PA) is beneficial in improving negative physical and psychological effects of cancer. The rapidly increasing number of cancer survivors, resulting from aging and improved cancer care, emphasizes the importance to develop and provide low cost, easy accessible PA programs. Such programs could be provided through the Internet, but that could result in the exclusion of cancer survivors not familiar with the Internet. Therefore, we developed a computer-tailored PA intervention for prostate and colorectal cancer survivors in which both Web-based and print materials are provided, and participants can choose their own preferred delivery mode. The aim of this study was to assess participants' characteristics related to delivery mode and use of intervention materials. We studied characteristics of participants using Web-based and printed intervention materials in a randomized controlled trial (RCT). Prostate and colorectal cancer survivors recruited from hospitals were randomized to OncoActive (computer-tailored PA intervention) or a usual-care control group. OncoActive participants received both Web-based and printed materials. Participants were classified into initial print- or Web-based participants based on their preferred mode of completion of the first questionnaire, which was needed for the computer-tailored PA advice. Intervention material use during the remainder of the intervention was compared for initial print- or Web-based participants. Additionally, participants were classified into those using only print materials and those using Web-based materials. Differences in participant characteristics and intervention material use were studied through analysis of variance (ANOVAs), chi-square tests, and logistic regressions. The majority of the participants in the intervention group were classified as initial Web-based participants (170/249, 68.3%), and 84.9% (191/249) used Web-based intervention materials. Dropout was low (15/249, 6.0%) and differed between initial Web-based (4/170, 2.4%) and print-based (11/79, 14%) participants. Participants were less likely to start Web-based with higher age (odds ratio [OR]=0.93), longer time since last treatment (OR=0.87), and higher fatigue (OR=0.96), and more likely with higher education (OR=4.08) and having completed treatments (OR=5.58). Those who were older (OR=0.93) and post treatment for a longer time (OR=0.86) were less likely to use Web-based intervention materials. Initial print-based participants predominantly used print-based materials, whereas initial Web-based participants used both print- and Web-based materials. To our knowledge, this is one of the first studies that assessed participant characteristics related to delivery mode in an intervention in which participants had a free choice of delivery modes. Use of print-based materials among the initial Web-based participants was substantial, indicating the importance of print-based materials. According to our findings, it may be important to offer Web- and print-based materials alongside each other. Providing Web-based materials only may exclude older, less educated, more fatigued, or currently treated participants; these groups are especially more vulnerable and could benefit most from PA interventions. ©Rianne Henrica Johanna Golsteijn, Catherine Bolman, Denise Astrid Peels, Esmee Volders, Hein de Vries, Lilian Lechner. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.08.2017.

  19. The Effect of Communication Strategy and Planning Intervention on the Processes and Performance of Course Material Development Teams

    ERIC Educational Resources Information Center

    Padmo Putri, Dewi A.

    2012-01-01

    In most open and distance learning institutions, the development of learning materials, whether in print or electronic form, is created by teams consisting of people with different skills. Team communication has a critical influence on the development of team shared mental models (SMMs) as well as team performance. A review of the literature…

  20. Development of Vocabulary in Spanish-Speaking and Cantonese-Speaking English Language Learners

    ERIC Educational Resources Information Center

    Uchikoshi, Yuuko

    2014-01-01

    This study examines vocabulary growth rates in first and second languages for Spanish-speaking and Cantonese-speaking English language learners from kindergarten through second grade. Growth-modeling results show a within-language effect of concepts about print on vocabulary. Language exposure also had an effect on English vocabulary: earlier…

  1. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    ERIC Educational Resources Information Center

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  2. Design and Development of 3D Printed Teaching Aids for Architecture Education

    ERIC Educational Resources Information Center

    Song, Min Jeong; Ha, Euna; Goo, Sang-Kwon; Cho, JaeKyung

    2018-01-01

    This article describes how the implementation of 3D printing in classrooms has brought many opportunities to educators as it provides affordability and accessibility in creating and customizing teaching aids. The study reports on the process of fabricating teaching aids for architecture education using 3D printing technologies. The practice-based…

  3. Computer program documentation user information for the MPAD trajectory tape print program (TRJPR1)

    NASA Technical Reports Server (NTRS)

    Gibbs, P. M.

    1981-01-01

    The Trajectory Tape Print Program (TRJPR1) was developed to print applicable information from a Space Trajectory tape created by the Mission Planning and Analysis Division (MPAD) in the MPAD Common Format for the on-orbit phase of the Mission. Instructions for TRJPR1's use are given.

  4. High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure.

    PubMed

    Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng

    2018-05-09

    A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.

  5. Development of three-dimensional prints of arthritic joints for supporting patients' awareness to structural damage.

    PubMed

    Kleyer, Arnd; Beyer, Laura; Simon, Christoph; Stemmler, Fabian; Englbrecht, Matthias; Beyer, Christian; Rech, Jürgen; Manger, Bernhard; Krönke, Gerhard; Schett, Georg; Hueber, Axel J

    2017-02-10

    Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) result in severe joint destruction and functional disability if left untreated. We aim to develop tools that help patients with RA and PsA to understand and experience the impact of inflammatory joint disease on the integrity of their (juxta-articular) bone and increase adherence to medical treatment. In this study, we used high-resolution peripheral quantitative computed tomography (HR-pQCT) to develop 3D prototypes of patients' finger joints. HR-pQCT (XtremeCT, Scanco) measurements were performed in healthy individuals and patients with inflammatory joint disease, followed by a 3D print using the objet30 printer. Healthy participants (n = 10), and patients (n = 15 with RA and 15 with PsA) underwent a detailed, standardized interview with demonstration of printed joints. Utilizing HR-pQCT images of metacarpophalangeal (MCP) heads, high quality and exact 3D prints as prototypes were created. Erosions in different sizes and the trabecular network printed in detail were visualized, demonstrating structural reduction in arthritic vs. healthy bone. After demonstration of 3D prints (healthy vs. erosive joint, visual and haptic) 26/39 (66%) participants (including healthy volunteers) were deeply affected, often quoting "shock". Of the patients with RA and PsA, 13/15 (86%) and 11/15 (73%), respectively, stated that they would rethink their attitude to medication adherence. More importantly, 21/24 patients with RA or PsA (87.5%) expressed that they would have wished to see such 3D prints during their first disease-specific conversations. Using arthro-haptic 3D printed prototypes of joints may help to better understand the impact of inflammatory arthritides on bone integrity and long-term damage.

  6. Color reproduction for advanced manufacture of soft tissue prostheses.

    PubMed

    Xiao, Kaida; Zardawi, Faraedon; van Noort, Richard; Yates, Julian M

    2013-11-01

    The objectives of this study were to develop a color reproduction system in advanced manufacture technology for accurate and automatic processing of soft tissue prostheses. The manufacturing protocol was defined to effectively and consistently produce soft tissue prostheses using a 3D printing system. Within this protocol printer color profiles were developed using a number of mathematical models for the proposed 3D color printing system based on 240 training colors. On this basis, the color reproduction system was established and their system errors including accuracy of color reproduction, performance of color repeatability and color gamut were evaluated using 14 known human skin shades. The printer color profile developed using the third-order polynomial regression based on least-square fitting provided the best model performance. The results demonstrated that by using the proposed color reproduction system, 14 different skin colors could be reproduced and excellent color reproduction performance achieved. Evaluation of the system's color repeatability revealed a demonstrable system error and this highlighted the need for regular evaluation. The color gamut for the proposed 3D printing system was simulated and it was demonstrated that the vast majority of skin colors can be reproduced with the exception of extreme dark or light skin color shades. This study demonstrated that the proposed color reproduction system can be effectively used to reproduce a range of human skin colors for application in advanced manufacture of soft tissue prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Comparative Study of Learning Using E-Learning and Printed Materials on Independent Learning and Creativity

    NASA Astrophysics Data System (ADS)

    Wahyu Utami, Niken; Aziz Saefudin, Abdul

    2018-01-01

    This study aims to determine: 1) differences in students taking independent learning by using e-learning and the students who attend the learning by using the print instructional materials ; 2) differences in the creativity of students who follow learning with e-learning and the students who attend the learning by using the print instructional materials ; 3) differences in learning independence and creativity of students attend learning with e-learning and the students who attend lessons using printed teaching materials in the subject of Mathematics Instructional Media Development. This study was a quasi-experimental research design using only posttest control design. The study population was all students who take courses in Learning Mathematics Media Development, Academic Year 2014/2015 100 students and used a random sample (random sampling) is 60 students. To test the hypothesis used multivariate analysis of variance or multivariable analysis of variance (MANOVA) of the track. The results of this study indicate that 1) There is a difference in student learning independence following study using the e-learning and the students who attend lessons using printed teaching materials in the lecture PMPM ( F = 4.177, p = 0.046 < 0.05 ) ; 2 ) There is no difference in the creativity of the students who complete the learning by using e -learning and students to follow the learning using printed teaching materials in the lecture PMPM ( F = 0.470, p = 0.496 > 0.05) ; No difference learning independence and creativity of students attend learning by using e-learning and the students who attend the learning using printed teaching materials in the lecture PMPM (F = 2.452, p = 0.095 > 0.05). Based on these studies suggested that the learning using e -learning can be used to develop student creativity, while learning to use e -learning and teaching materials can be printed to use to develop students’ independence.

  8. A Pilot Study to Investigate the Effectiveness of Multimedia CD-ROM vis-a-vis Traditional Print-Based Technology in Teaching Fourth-Grade Children

    ERIC Educational Resources Information Center

    Shana, Zuhrieh A.

    2009-01-01

    The purpose of this study was to examine the degree of effectiveness of multimedia technology in teaching in comparison to the traditional print-based teaching methods. Multimedia CD was designed to teach the second semester unit of science and Islamic studies for the fourth graders. The unit's content was the same in the print-based teaching…

  9. Print quality analysis for ink-saving algorithms

    NASA Astrophysics Data System (ADS)

    Ortiz Segovia, Maria V.; Bonnier, Nicolas; Allebach, Jan P.

    2012-01-01

    Ink-saving strategies for CMYK printers have evolved from their earlier stages where the 'draft' print mode was the main option available to control ink usage. The savings were achieved by printing alternate dots in an image at the expense of reducing print quality considerably. Nowadays, customers are not only unwilling to compromise quality but have higher expectations regarding both visual print quality and ink reduction solutions. Therefore, the need for more intricate ink-saving solutions with lower impact on print quality is evident. Printing-related factors such as the way the printer places the dots on the paper and the ink-substrate interaction play important and complex roles in the characterization and modeling of the printing process that make the ink reduction topic a challenging problem. In our study, we are interested in benchmarking ink-saving algorithms to find the connections between different ink reduction levels of a given ink-saving method and a set of print quality attributes. This study is mostly related to CMYK printers that use dispersed dot halftoning algorithms. The results of our efforts to develop such an evaluation scheme are presented in this paper.

  10. Three-dimensional (3D) printed endovascular simulation models: a feasibility study.

    PubMed

    Mafeld, Sebastian; Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob

    2017-02-01

    Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Initial data supports the value of 3D printed endovascular models although further educational validation is required.

  11. Inkjet-printed optoelectronics.

    PubMed

    Zhan, Zhaoyao; An, Jianing; Wei, Yuefan; Tran, Van Thai; Du, Hejun

    2017-01-19

    Inkjet printing is a powerful and cost-effective technique for deposition of liquid inks with high accuracy, which is not only of great significance for graphic applications but also has enormous potential for the direct printing of optoelectronic devices. This review highlights a comprehensive overview of the progress that has been made in optoelectronics fabrication by the inkjet printing technique. The first part briefly covers the droplet-generation process in the nozzles of printheads and the physical properties affecting droplet formation and the profiles of the printed patterns. The second section outlines the recent activities related to applications of inkjet printing in optoelectronics fabrication including solar cells, light-emitting diodes, photodetectors and transparent electrodes. In each application field, the challenges with the inkjet printing process and the possible solutions are discussed before a few remarks. In the last section, a brief summary on the progress of inkjet printing fabrication of optoelectronics and an outlook for future research effort are presented.

  12. Concept of heat-induced inkless eco-printing.

    PubMed

    Chen, Jinxiang; Wang, Yong; Xie, Juan; Meng, Chuang; Wu, Gang; Zu, Qiao

    2012-07-01

    Existing laser and inkjet printers often produce adverse effects on human health, the recycling of printing paper and the environment. Therefore, this paper examines the thermogravimetry curves for printer paper, analyzes the discoloration of paper using heat-induction, and investigates the relationship between paper discoloration and the heat-inducing temperature. The mechanism of heat-induced printing is analyzed initially, and its feasibility is determined by a comparative analysis of heat-induced (laser ablation) printing and commercial printing. The innovative concept of heat-induced inkless eco-printing is proposed, in which the required text or graphics are formed on the printing paper via yellowing and blackening produced by thermal energy. This process does not require ink during the printing process; thus, it completely eliminates the aforementioned health and environmental issues. This research also contributes to related interdisciplinary research in biology, laser technology, photochemistry, nano-science, paper manufacturing and color science. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. 3D Printing of Carbon Nanotubes-Based Microsupercapacitors.

    PubMed

    Yu, Wei; Zhou, Han; Li, Ben Q; Ding, Shujiang

    2017-02-08

    A novel 3D printing procedure is presented for fabricating carbon-nanotubes (CNTs)-based microsupercapacitors. The 3D printer uses a CNTs ink slurry with a moderate solid content and prints a stream of continuous droplets. Appropriate control of a heated base is applied to facilitate the solvent removal and adhesion between printed layers and to improve the structure integrity without structure delamination or distortion upon drying. The 3D-printed electrodes for microsupercapacitors are characterized by SEM, laser scanning confocal microscope, and step profiler. Effect of process parameters on 3D printing is also studied. The final solid-state microsupercapacitors are assembled with the printed multilayer CNTs structures and poly(vinyl alcohol)-H 3 PO 4 gel as the interdigitated microelectrodes and electrolyte. The electrochemical performance of 3D printed microsupercapacitors is also tested, showing a significant areal capacitance and excellent cycle stability.

  14. DNA-nucleobases: Gate Dielectric/Passivation Layer for Flexible GFET-based Sensor Applications (Postprint)

    DTIC Science & Technology

    2015-09-24

    kapton, Polydimethylsiloxane ( PDMS ), photo-print paper (laminate side) and Corning Willow glass (WG). Guanine was deposited onto graphene that had been...flexible substrates-kapton, PDMS , photo-print paper, and WG were performed to determine whether the graphene-substrate interface effects the graphene...flexible substrates-kapton, PDMS , photo-print paper, and WG. Kapton, PDMS , and photo-print paper were chosen as flexible substrates due to their

  15. Commercial printing and electronic color printing

    NASA Astrophysics Data System (ADS)

    Webb, Joseph W.

    1995-04-01

    Technologies such as Xeikon, Indigo, and the Heidelberg/Presstek GTO-DI can change both the way print buyers may purchase printed material and the way printers and trade services respond to changing demands. Our recent study surveys the graphic arts industry for their current views of these new products and provides forecasts of installations and usage with breakdowns by market segment and size of firm. The acceptance of desktop publishing and electronic prepress have not only paved the way for a totally electronic printing process, but it has broadened the base of people who develop color originals for reproduction. Electronic printing adds the ability to customize jobs on the fly. How print providers will respond to the impact of electronic color printing depends on how each firm perceives the 'threat.' Most printing companies are run by entrepreneurial individuals who have, as their highest priority, their own economic survival. Service bureaus are already looking at electronic color printing as yet another way to differentiate their businesses. The study was based on a mail survey with 682 responses from graphic arts firms, interviews with printers, suppliers, associations and industry executives, and detailed secondary research. Results of a new survey in progress in January 1995 is also presented.

  16. High-Performance Screen-Printed Thermoelectric Films on Fabrics

    DOE PAGES

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; ...

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screenprinting of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5Sb 1.5Te 3 or n-type Bi 2Te 2.7Se 0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscositymore » for printability at a very small concentration (0.45–0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.« less

  17. High-Performance Screen-Printed Thermoelectric Films on Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screenprinting of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5Sb 1.5Te 3 or n-type Bi 2Te 2.7Se 0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscositymore » for printability at a very small concentration (0.45–0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.« less

  18. Can dead man tooth do tell tales? Tooth prints in forensic identification.

    PubMed

    Christopher, Vineetha; Murthy, Sarvani; Ashwinirani, S R; Prasad, Kulkarni; Girish, Suragimath; Vinit, Shashikanth Patil

    2017-01-01

    We know that teeth trouble us a lot when we are alive, but they last longer for thousands of years even after we are dead. Teeth being the strongest and resistant structure are the most significant tool in forensic investigations. Patterns of enamel rod end on the tooth surface are known as tooth prints. This study is aimed to know whether these tooth prints can become a forensic tool in personal identification such as finger prints. A study has been targeted toward the same. In the present in-vivo study, acetate peel technique has been used to obtain the replica of enamel rod end patterns. Tooth prints of upper first premolars were recorded from 80 individuals after acid etching using cellulose acetate strips. Then, digital images of the tooth prints obtained at two different intervals were subjected to biometric conversion using Verifinger standard software development kit version 6.5 software followed by the use of Automated Fingerprint Identification System (AFIS) software for comparison of the tooth prints. Similarly, each individual's finger prints were also recorded and were subjected to the same software. Further, recordings of AFIS scores obtained from images were statistically analyzed using Cronbach's test. We observed that comparing two tooth prints taken from an individual at two intervals exhibited similarity in many cases, with wavy pattern tooth print being the predominant type. However, the same prints showed dissimilarity when compared with other individuals. We also found that most of the individuals with whorl pattern finger print showed wavy pattern tooth print and few loop type fingerprints showed linear pattern of tooth prints. Further more experiments on both tooth prints and finger prints are required in establishing an individual's identity.

  19. Can dead man tooth do tell tales? Tooth prints in forensic identification

    PubMed Central

    Christopher, Vineetha; Murthy, Sarvani; Ashwinirani, S. R.; Prasad, Kulkarni; Girish, Suragimath; Vinit, Shashikanth Patil

    2017-01-01

    Background: We know that teeth trouble us a lot when we are alive, but they last longer for thousands of years even after we are dead. Teeth being the strongest and resistant structure are the most significant tool in forensic investigations. Patterns of enamel rod end on the tooth surface are known as tooth prints. Aim: This study is aimed to know whether these tooth prints can become a forensic tool in personal identification such as finger prints. A study has been targeted toward the same. Settings and Design: In the present in-vivo study, acetate peel technique has been used to obtain the replica of enamel rod end patterns. Materials and Methods: Tooth prints of upper first premolars were recorded from 80 individuals after acid etching using cellulose acetate strips. Then, digital images of the tooth prints obtained at two different intervals were subjected to biometric conversion using Verifinger standard software development kit version 6.5 software followed by the use of Automated Fingerprint Identification System (AFIS) software for comparison of the tooth prints. Similarly, each individual's finger prints were also recorded and were subjected to the same software. Statistical Analysis: Further, recordings of AFIS scores obtained from images were statistically analyzed using Cronbach's test. Results: We observed that comparing two tooth prints taken from an individual at two intervals exhibited similarity in many cases, with wavy pattern tooth print being the predominant type. However, the same prints showed dissimilarity when compared with other individuals. We also found that most of the individuals with whorl pattern finger print showed wavy pattern tooth print and few loop type fingerprints showed linear pattern of tooth prints. Conclusions: Further more experiments on both tooth prints and finger prints are required in establishing an individual's identity. PMID:28584483

  20. Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates.

    PubMed

    Chen, Bolin; Jiang, Yizhou; Tang, Xiaohui; Pan, Yayue; Hu, Shan

    2017-08-30

    The ability to print fully packaged integrated energy storage components (e.g., supercapacitors) is of critical importance for practical applications of printed electronics. Due to the limited variety of printable materials, most studies on printed supercapacitors focus on printing the electrode materials but rarely the full-packaged cell. This work presents for the first time the printing of a fully packaged single-wall carbon nanotube-based supercapacitor with direct ink writing (DIW) technology. Enabled by the developed ink formula, DIW setup, and cell architecture, the whole printing process is mask free, transfer free, and alignment free with precise and repeatable control on the spatial distribution of all constituent materials. Studies on cell design show that a wider electrode pattern and narrower gap distance between electrodes lead to higher specific capacitance. The as-printed fully packaged supercapacitors have energy and power performances that are among the best in recently reported planar carbon-based supercapacitors that are only partially printed or nonprinted.

  1. Characterisation of the n-colour printing process using the spot colour overprint model.

    PubMed

    Deshpande, Kiran; Green, Phil; Pointer, Michael R

    2014-12-29

    This paper is aimed at reproducing the solid spot colours using the n-colour separation. A simplified numerical method, called as the spot colour overprint (SCOP) model, was used for characterising the n-colour printing process. This model was originally developed for estimating the spot colour overprints. It was extended to be used as a generic forward characterisation model for the n-colour printing process. The inverse printer model based on the look-up table was implemented to obtain the colour separation for n-colour printing process. Finally the real-world spot colours were reproduced using 7-colour separation on lithographic offset printing process. The colours printed with 7 inks were compared against the original spot colours to evaluate the accuracy. The results show good accuracy with the mean CIEDE2000 value between the target colours and the printed colours of 2.06. The proposed method can be used successfully to reproduce the spot colours, which can potentially save significant time and cost in the printing and packaging industry.

  2. Inkjet printing of aqueous rivulets: Formation, deposition, and applications

    NASA Astrophysics Data System (ADS)

    Bromberg, Vadim

    The past two decades have seen an explosion of research and development into nanotechnology, ranging from synthesis of novel materials that exhibit unique behavior to the assembly of fully functional devices that hold the potential to benefit all sectors of industry and society as a whole. One significant challenge for this emerging technology is the scaling of newly developed processes to the industrial level where manufacturing should be cheap, fast and with high throughput. One approach to this problem has been to develop processes of material deposition and device fabrication via solution-based additive manufacturing techniques such as printing. Specifically, it is envisioned that (in)organic functional nanomaterial that can be processed into solution form can be deposited in a precise manner (i.e., printed) onto sheets of flexible plastic/glass in a process similar to the printing of newspaper (formally, the process is dubbed Roll-to-Roll). This work is focused on experimentally studying and developing one type of solution-based material deposition technique---drop-on-demand ink-jet printing. This technique allows highly-repeatable deposition of small (pico-liter) droplets of functional ink in precise locations on a given target substrate. Although the technology has been in existence and in continuous use for many decades in the paper graphics industry, its application to nanotechnology-based fabrication processes on non-porous substrates presents many challenges stemming from the coupling of the wetting, material transport, evaporation and solid deposition phenomena that occur when printing patterns more complex than single droplets. The focus of this research has been to investigate these phenomena for the case of printed rivulets of water-based inks. A custom ink-jet apparatus has been assembled to allow direct optical observation of the flow and deposition that occur during printing. Experimental results show the importance of substrate surface energy and early-time dynamics during rivulet formation in determining the nature of subsequent particle convection and deposition. New flow and deposition phenomena have also been identified and leveraged to develop novel processes for deposition of micron-scale electrically conducting lines of silver nanoparticles. Low-temperature processing of printed silver nitrate lines with environmentally benign Ar plasma to improve electrical properties has also been investigated and will be discussed.

  3. Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers.

    PubMed

    Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao; Fuh, Jerry Ying Hsi

    2018-05-17

    Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters.

  4. Impact of a compound droplet on a flat surface: A model for single cell epitaxy.

    PubMed

    Tasoglu, Savas; Kaynak, Gozde; Szeri, Andrew J; Demirci, Utkan; Muradoglu, Metin

    2010-08-01

    The impact and spreading of a compound viscous droplet on a flat surface are studied computationally using a front-tracking method as a model for the single cell epitaxy. This is a technology developed to create two-dimensional and three-dimensional tissue constructs cell by cell by printing cell-encapsulating droplets precisely on a substrate using an existing ink-jet printing method. The success of cell printing mainly depends on the cell viability during the printing process, which requires a deeper understanding of the impact dynamics of encapsulated cells onto a solid surface. The present study is a first step in developing a model for deposition of cell-encapsulating droplets. The inner droplet representing the cell, the encapsulating droplet, and the ambient fluid are all assumed to be Newtonian. Simulations are performed for a range of dimensionless parameters to probe the deformation and rate of deformation of the encapsulated cell, which are both hypothesized to be related to cell damage. The deformation of the inner droplet consistently increases: as the Reynolds number increases; as the diameter ratio of the encapsulating droplet to the cell decreases; as the ratio of surface tensions of the air-solution interface to the solution-cell interface increases; as the viscosity ratio of the cell to encapsulating droplet decreases; or as the equilibrium contact angle decreases. It is observed that maximum deformation for a range of Weber numbers has (at least) one local minimum at We=2. Thereafter, the effects of cell deformation on viability are estimated by employing a correlation based on the experimental data of compression of cells between parallel plates. These results provide insight into achieving optimal parameter ranges for maximal cell viability during cell printing.

  5. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.

    PubMed

    Wang, Chong; Zhao, Qilong; Wang, Min

    2017-06-07

    The performance of bone tissue engineering scaffolds can be assessed through cell responses to scaffolds, including cell attachment, infiltration, morphogenesis, proliferation, differentiation, etc, which are determined or heavily influenced by the composition, structure, mechanical properties, and biological properties (e.g. osteoconductivity and osteoinductivity) of scaffolds. Although some promising 3D printing techniques such as fused deposition modeling and selective laser sintering could be employed to produce biodegradable bone tissue engineering scaffolds with customized shapes and tailored interconnected pores, effective methods for fabricating scaffolds with well-designed hierarchical porous structure (both interconnected macropores and surface micropores) and tunable osteoconductivity/osteoinductivity still need to be developed. In this investigation, a novel cryogenic 3D printing technique was investigated and developed for producing hierarchical porous and recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium phosphate (Ca-P) nanoparticle/poly(L-lactic acid) nanocomposite scaffolds, in which the Ca-P nanoparticle-incorporated scaffold layer and rhBMP-2-encapsulated scaffold layer were deposited alternatingly using different types of emulsions as printing inks. The mechanical properties of the as-printed scaffolds were comparable to those of human cancellous bone. Sustained releases of Ca 2+ ions and rhBMP-2 were achieved and the biological activity of rhBMP-2 was well-preserved. Scaffolds with a desirable hierarchical porous structure and dual delivery of Ca 2+ ions and rhBMP-2 exhibited superior performance in directing the behaviors of human bone marrow-derived mesenchymal stem cells and caused improved cell viability, attachment, proliferation, and osteogenic differentiation, which has suggested their great potential for bone tissue engineering.

  6. Graphics-Printing Program For The HP Paintjet Printer

    NASA Technical Reports Server (NTRS)

    Atkins, Victor R.

    1993-01-01

    IMPRINT utility computer program developed to print graphics specified in raster files by use of Hewlett-Packard Paintjet(TM) color printer. Reads bit-mapped images from files on UNIX-based graphics workstation and prints out three different types of images: wire-frame images, solid-color images, and gray-scale images. Wire-frame images are in continuous tone or, in case of low resolution, in random gray scale. In case of color images, IMPRINT also prints by use of default palette of solid colors. Written in C language.

  7. [The clinical application of three dimention printing technology].

    PubMed

    Zhong, S Z; Fang, C H

    2016-09-01

    In recent years, the three-dimentional(3D)printing technology is gradually applied in medicine.Now, the 3D printing has already play an important role in medical education, surgical device development, prosthesis implantation and so on.There are still many challenges and difficulties in the clinical overall application of 3D printing for some time, but it also contains a huge application prospect.Once with appropriate applications of this technology, it will be a major breakthrough in iatrical history once more.

  8. Basics of Compounding: 3D Printing: Pharmacy Applications, Part 3: Compounding, Formulation Considerations, and the Future.

    PubMed

    Allen, Loyd V

    2017-01-01

    3D printing is a standard tool in the automotive, aerospace, and consumer goods in industry and is gaining traction in pharmaceutical manufacturing, which has introduced a new element into dosage form development. This article, which represents part 3 of a 3-part article on the topic of 3D printing, discusses the compounding, formulation considerations, and the future of 3D printing. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  9. Recent U. S. Government Printing Office Publications and Periodicals Useful for Rural Development.

    ERIC Educational Resources Information Center

    Delaware Univ., Georgetown. Cooperative Extension Service.

    The bibliography cites 127 publications and periodicals useful for rural development which were in the most current Government Printing Office's price lists. It is divided into 5 categories: (1) People Building; (2) Community Facilities; (3) Environmental Improvement; (4) Economic Development; and (5) Government Periodicals. Topics covered are:…

  10. High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes.

    PubMed

    Secor, Ethan B; Smith, Jeremy; Marks, Tobin J; Hersam, Mark C

    2016-07-13

    Recent developments in solution-processed amorphous oxide semiconductors have established indium-gallium-zinc-oxide (IGZO) as a promising candidate for printed electronics. A key challenge for this vision is the integration of IGZO thin-film transistor (TFT) channels with compatible source/drain electrodes using low-temperature, solution-phase patterning methods. Here we demonstrate the suitability of inkjet-printed graphene electrodes for this purpose. In contrast to common inkjet-printed silver-based conductive inks, graphene provides a chemically stable electrode-channel interface. Furthermore, by embedding the graphene electrode between two consecutive IGZO printing passes, high-performance IGZO TFTs are achieved with an electron mobility of ∼6 cm(2)/V·s and current on/off ratio of ∼10(5). The resulting printed devices exhibit robust stability to aging in ambient as well as excellent resilience to thermal stress, thereby offering a promising platform for future printed electronics applications.

  11. A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery

    PubMed Central

    Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan

    2018-01-01

    Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting. PMID:29503698

  12. A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery.

    PubMed

    Cho, Woojin; Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan

    2018-02-01

    Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting.

  13. Study on recognition technology of complementary image

    NASA Astrophysics Data System (ADS)

    Liu, Chengxiang; Hu, Xuejuan; Jian, Yaobo; Zhang, Li

    2006-11-01

    Complementation image is often used as a guard technology in the trademark and paper currency. The key point of recognizing this kind of images is judging the complementary effect of complementation printing. The perspective images are usually not clear and legible, so it is difficult to recognize them. In this paper, a new method is proposed. Firstly, capture the image by reflex. Secondly, find the same norm to man-made pair printing. Lastly, judge the true and false of paper currency by the complementary effect of complementation printing. This is the purpose of inspecting the false. Theoretic analysis and simulation results reveal that the effect of man-made pair printing is good, the method has advantages such as simplicity, high calculating speed, and good robust to different RMB. The experiment results reveal that the conclusion is reasonable, and demonstrates that this approach is effective.

  14. Review: Polymeric-Based 3D Printing for Tissue Engineering.

    PubMed

    Wu, Geng-Hsi; Hsu, Shan-Hui

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.

  15. Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system.

    PubMed

    Chang, Jaehyuk; Lee, Sunggun; Lee, Ki Beom; Lee, Seungjun; Cho, Young Tae; Seo, Jungwoo; Lee, Sukwon; Jo, Gugrae; Lee, Ki-yong; Kong, Hyang-Shik; Kwon, Sin

    2015-05-01

    For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5μm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

  16. Development of the Improving Process for the 3D Printed Structure

    NASA Astrophysics Data System (ADS)

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-01

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics.

  17. Development of the Improving Process for the 3D Printed Structure

    PubMed Central

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-01

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics. PMID:28054558

  18. Development of the Improving Process for the 3D Printed Structure.

    PubMed

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-05

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics.

  19. Raman Spectroscopy of 3-D Printed Polymers

    NASA Astrophysics Data System (ADS)

    Espinoza, Vanessa; Wood, Erin; Hight Walker, Angela; Seppala, Jonathan; Kotula, Anthony

    Additive manufacturing (AM) techniques, such as 3-D printing are becoming an innovative and efficient way to produce highly customized parts for applications ranging from automotive to biomedical. Polymer-based AM parts can be produced from a myriad of materials and processing conditions to enable application-specific products. However, bringing 3-D printing from prototype to production relies on understanding the effect of processing conditions on the final product. Raman spectroscopy is a powerful and non-destructive characterization technique that can assist in determining the chemical homogeneity and physical alignment of polymer chains in 3-D printed materials. Two polymers commonly used in 3-D printing, acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), were investigated using 1- and 2-D hyperspectral Raman imaging. In the case of ABS, a complex thermoplastic, the homogeneity of the material through the weld zone was investigated by comparing Raman peaks from each of the three components. In order to investigate the effect of processing conditions on polymer chain alignment, polarized Raman spectroscopy was used. In particular, the print speed or shear rate and effect of strain on PC filaments was investigated with perpendicular and parallel polarizations. National Institute of Standards and Technology Gaithersburg, MD ; Society of Physics Students.

  20. Gender determination: Role of lip prints, finger prints and mandibular canine index

    PubMed Central

    KRISHNAN, RESHMA POOTHAKULATH; THANGAVELU, RADHIKA; RATHNAVELU, VIDHYA; NARASIMHAN, MALATHI

    2016-01-01

    Personal identification has a pivotal role in forensic investigations. Gender determination is an essential step in personal identification. Despite the advent of advanced techniques such as DNA fingerprinting, methods such as lip print and fingerprint analysis and mandibular canine index calculations are routinely used in gender determination, as they are simple and cost-effective. The present study investigated the hypothesis that lip print analysis is an effective tool in gender determination compared with fingerprint analysis and the mandibular canine index. The predominant patterns of lip prints and fingerprints were analyzed in males and females, and the efficacy of the mandibular canine index in gender determination was evaluated. The study group comprised 50 students, 25 males and 25 females who were 18–25 years of age. Lip prints and fingerprints were obtained and classified according to Tsuchihashi's classification and Kücken and Newell's classification, respectively. Mandibular impressions were made and the mandibular canine index was calculated. Type I and Type I' lip prints were predominant in females, and Type IV lip prints were predominant in males. The analysis of fingerprints revealed that the loop fingerprint pattern was predominant in both males and females. The mandibular canine index was not found to be significant in gender identification. The predominant patterns of lip prints were distinct for males and females; conversely, fingerprints were demonstrated to be similar in both genders. Therefore, lip prints hold an increased potential for gender determination, as compared with fingerprints, and the mandibular canine index is not a reliable indicator of gender. PMID:27284316

  1. Semantic information mediates visual attention during spoken word recognition in Chinese: Evidence from the printed-word version of the visual-world paradigm.

    PubMed

    Shen, Wei; Qu, Qingqing; Li, Xingshan

    2016-07-01

    In the present study, we investigated whether the activation of semantic information during spoken word recognition can mediate visual attention's deployment to printed Chinese words. We used a visual-world paradigm with printed words, in which participants listened to a spoken target word embedded in a neutral spoken sentence while looking at a visual display of printed words. We examined whether a semantic competitor effect could be observed in the printed-word version of the visual-world paradigm. In Experiment 1, the relationship between the spoken target words and the printed words was manipulated so that they were semantically related (a semantic competitor), phonologically related (a phonological competitor), or unrelated (distractors). We found that the probability of fixations on semantic competitors was significantly higher than that of fixations on the distractors. In Experiment 2, the orthographic similarity between the spoken target words and their semantic competitors was manipulated to further examine whether the semantic competitor effect was modulated by orthographic similarity. We found significant semantic competitor effects regardless of orthographic similarity. Our study not only reveals that semantic information can affect visual attention, it also provides important new insights into the methodology employed to investigate the semantic processing of spoken words during spoken word recognition using the printed-word version of the visual-world paradigm.

  2. Forensic print extraction using 3D technology and its processing

    NASA Astrophysics Data System (ADS)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Panetta, Karen; Agaian, Sos S.

    2017-05-01

    Biometric evidence plays a crucial role in criminal scene analysis. Forensic prints can be extracted from any solid surface such as firearms, doorknobs, carpets and mugs. Prints such as fingerprints, palm prints, footprints and lip-prints can be classified into patent, latent, and three-dimensional plastic prints. Traditionally, law enforcement officers capture these forensic traits using an electronic device or extract them manually, and save the data electronically using special scanners. The reliability and accuracy of the method depends on the ability of the officer or the electronic device to extract and analyze the data. Furthermore, the 2-D acquisition and processing system is laborious and cumbersome. This can lead to the increase in false positive and true negative rates in print matching. In this paper, a method and system to extract forensic prints from any surface, irrespective of its shape, is presented. First, a suitable 3-D camera is used to capture images of the forensic print, and then the 3-D image is processed and unwrapped to obtain 2-D equivalent biometric prints. Computer simulations demonstrate the effectiveness of using 3-D technology for biometric matching of fingerprints, palm prints, and lip-prints. This system can be further extended to other biometric and non-biometric modalities.

  3. A new framework for an electrophotographic printer model

    NASA Astrophysics Data System (ADS)

    Colon-Lopez, Fermin A.

    Digital halftoning is a printing technology that creates the illusion of continuous tone images for printing devices such as electrophotographic printers that can only produce a limited number of tone levels. Digital halftoning works because the human visual system has limited spatial resolution which blurs the printed dots of the halftone image, creating the gray sensation of a continuous tone image. Because the printing process is imperfect it introduces distortions to the halftone image. The quality of the printed image depends, among other factors, on the complex interactions between the halftone image, the printer characteristics, the colorant, and the printing substrate. Printer models are used to assist in the development of new types of halftone algorithms that are designed to withstand the effects of printer distortions. For example, model-based halftone algorithms optimize the halftone image through an iterative process that integrates a printer model within the algorithm. The two main goals of a printer model are to provide accurate estimates of the tone and of the spatial characteristics of the printed halftone pattern. Various classes of printer models, from simple tone calibrations to complex mechanistic models, have been reported in the literature. Existing models have one or more of the following limiting factors: they only predict tone reproduction, they depend on the halftone pattern, they require complex calibrations or complex calculations, they are printer specific, they reproduce unrealistic dot structures, and they are unable to adapt responses to new data. The two research objectives of this dissertation are (1) to introduce a new framework for printer modeling and (2) to demonstrate the feasibility of such a framework in building an electrophotographic printer model. The proposed framework introduces the concept of modeling a printer as a texture transformation machine. The basic premise is that modeling the texture differences between the output printed images and the input images encompasses all printing distortions. The feasibility of the framework was tested with a case study modeling a monotone electrophotographic printer. The printer model was implemented as a bank of feed-forward neural networks, each one specialized in modeling a group of textural features of the printed halftone pattern. The textural features were obtained using a parametric representation of texture developed from a multiresolution decomposition proposed by other researchers. The textural properties of halftone patterns were analyzed and the key texture parameters to be modeled by the bank were identified. Guidelines for the multiresolution texture decomposition and the model operational parameters and operational limits were established. A method for the selection of training sets based on the morphological properties of the halftone patterns was also developed. The model is fast and has the capability to continue to learn with additional training. The model can be easily implemented because it only requires a calibrated scanner. The model was tested with halftone patterns representing a range of spatial characteristics found in halftoning. Results show that the model provides accurate predictions for the tone and the spatial characteristics when modeling halftone patterns individually and it provides close approximations when modeling multiple halftone patterns simultaneously. The success of the model justifies continued research of this new printer model framework.

  4. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study.

    PubMed

    Ritz, Ulrike; Gerke, Rebekka; Götz, Hermann; Stein, Stefan; Rommens, Pol Maria

    2017-11-29

    Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering.

  5. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination.

    PubMed

    Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing

    2017-07-01

    Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study

    PubMed Central

    Gerke, Rebekka; Götz, Hermann; Rommens, Pol Maria

    2017-01-01

    Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering. PMID:29186036

  7. Soft tissue models: easy and inexpensive flexible 3D printing as a help in surgical planning of cardiovascular disorders

    NASA Astrophysics Data System (ADS)

    Starosolski, Zbigniew; Ezon, David S.; Krishnamurthy, Rajesh; Dodd, Nicholas; Heinle, Jeffrey; Mckenzie, Dean E.; Annapragada, Ananth

    2017-03-01

    We developed a technology that allows a simple desktop 3D printer with dual extruder to fabricate 3D flexible models of Major AortoPulmonary Collateral Arteries. The study was designed to assess whether the flexible 3D printed models could help during surgical planning phase. Simple FDM 3D printers are inexpensive, versatile in use and easy to maintain, but complications arise when the designed model is complex and has tubular structures with small diameter less than 2mm. The advantages of FDM printers are cost and simplicity of use. We use precisely selected materials to overcome the obstacles listed above. Dual extruder allows to use two different materials while printing, which is especially important in the case of fragile structures like pulmonary vessels and its supporting structures. The latter should not be removed by hand to avoid a truncation of the model. We utilize the water soluble PVA as a supporting structure and Poro-Lay filament for flexible model of AortoPulmonary collateral arteries. Poro-Lay filament is different as compared to all the other flexible ones like polymer-based. Poro-Lay is rigid while printing and this allows printing of structures small in diameter. It achieves flexibility after washing out of printed model with water. It becomes soft in touch and gelatinous. Using both PVA and Poro-Lay gives a huge advantage allowing to wash out the supporting structures and achieve flexibility in one washing operation, saving time and avoiding human error with cleaning the model. We evaluated 6 models for MAPCAS surgical planning study. This approach is also cost-effective - an average cost of materials for print is less than $15; models are printed in facility without any delays. Flexibility of 3D printed models approximate soft tissues properly, mimicking Aortopulmonary collateral arteries. Second utilization models has educational value for both residents and patients' family. Simplification of 3D flexible process could help in other models of soft tissue pathologies like aneurysms, ventricular septal defects and other vascular anomalies.

  8. Developing Print Repositories: Models for Shared Preservation and Access. Managing Economic Challenges.

    ERIC Educational Resources Information Center

    Reilly, Bernard F., Jr.

    This study is an outgrowth of recommendations made in a report issued by the Council on Library and Information Resources (CLIR) in 2001 (Nichols and Smith 2001). The report made three broad recommendations for addressing print preservation: (1) Establish regional repositories to house and provide proper treatment of low-use print matter drawn…

  9. Recycling Metals from Spent Screen-Printed Electrodes While Learning the Fundamentals of Electrochemical Sensing

    ERIC Educational Resources Information Center

    González-Sánchez, María-Isabel; Gómez-Monedero, Beatriz; Agrisuelas, Jerónimo; Valero, Edelmira

    2018-01-01

    A laboratory experiment in which students recycle silver and platinum selectively from spent screen-printed platinum electrodes is described. The recovered silver in solution is used to show its spontaneous redox reaction with a copper sheet. The recovered platinum is electrodeposited onto a screen-printed carbon electrode to develop a sensor for…

  10. Dyed and Printed Textiles: Javanese Batik [and] Dutch Wax Prints [and] West African Adire. Third Edition.

    ERIC Educational Resources Information Center

    Burke, Sue

    Three booklets focusing on dyed and printed textile techniques of Java, West Africa, and the Netherlands describe historical and ethnographic materials as well as the development of particular technical traditions. Each section may be used alone or with either or both of the others. When used together, these booklets illustrate the…

  11. Contextual and Non-Contextual Knowledge in Emergent Literacy Development: A Comparison between Children from Low Ses and Middle Ses Communities

    ERIC Educational Resources Information Center

    Korat, O.

    2005-01-01

    This research had three aims: first, to examine the relationship between two components of emergent literacy: contextual (environmental print, print functions, identifying literacy activities) and non-contextual knowledge (e.g., letters' names, phonemic awareness, concept of print, etc.); second, to explore the relationship between children's…

  12. Employee Motivation on the Organisational Growth of Printing Industry in the Kumasi Metropolis

    ERIC Educational Resources Information Center

    Enninful, Ebenezer Kofi; Boakye-Amponsah, Abraham; Osei-Poku, Patrick

    2015-01-01

    The printing industry is supposed to be a major contributor to Ghana's development through employment creation and the enhancement of information to the general public. The main purpose of the study was to assess employee motivation on the printing industry within Kumasi Metropolis. The study employed both the quantitative and qualitative surveys…

  13. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].

    PubMed

    Wu, Tianqi; Yang, Chunxi

    2016-04-01

    To summarize the research progress of several three-dimensional (3-D)-printing scaffold materials in bone tissue engineering. The recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized. Compared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention. The development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.

  14. Experimental model of developing and analysis of lip prints in atypical surface: A metallic straw (bombilla)

    PubMed Central

    Fonseca, Gabriel M.; Bonfigli, Esteban; Cantín, Mario

    2014-01-01

    Background: The interaction between the offender and the victim produces visible or latent prints on objects and utensils. The study of lip prints has reportedly stayed away from the basic cinematic concept of the lip-to-surface relationship. Materials and Methods: Three regular powders were used to reveal the latent lip prints on a typical metallic straw called bombilla, and the revealed prints were photographed, preserved, and analyzed. Results: Better definition was observed in the lower lip print, and nine anatomical patterns were identified, but a higher definition of wrinkles was observed with indestructible white powder. Conclusion: Knowledge of labial dynamics, the real value of the processed surfaces, and the need for testing in field conditions are discussed. PMID:25125921

  15. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy

    NASA Astrophysics Data System (ADS)

    Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.

    2018-03-01

    Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.

  16. Water Activated Graphene Oxide Transfer Using Wax Printed Membranes for Fast Patterning of a Touch Sensitive Device.

    PubMed

    Baptista-Pires, Luis; Mayorga-Martínez, Carmen C; Medina-Sánchez, Mariana; Montón, Helena; Merkoçi, Arben

    2016-01-26

    We demonstrate a graphene oxide printing technology using wax printed membranes for the fast patterning and water activation transfer using pressure based mechanisms. The wax printed membranes have 50 μm resolution, longtime stability and infinite shaping capability. The use of these membranes complemented with the vacuum filtration of graphene oxide provides the control over the thickness. Our demonstration provides a solvent free methodology for printing graphene oxide devices in all shapes and all substrates using the roll-to-roll automatized mechanism present in the wax printing machine. Graphene oxide was transferred over a wide variety of substrates as textile or PET in between others. Finally, we developed a touch switch sensing device integrated in a LED electronic circuit.

  17. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace

    2016-10-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials.

  18. Inkjet printed graphene-based field-effect transistors on flexible substrate

    NASA Astrophysics Data System (ADS)

    Monne, Mahmuda Akter; Enuka, Evarestus; Wang, Zhuo; Chen, Maggie Yihong

    2017-08-01

    This paper presents the design and fabrication of inkjet printed graphene field-effect transistors (GFETs). The inkjet printed GFET is fabricated on a DuPont Kapton FPC Polyimide film with a thickness of 5 mill and dielectric constant of 3.9 by using a Fujifilm Dimatix DMP-2831 materials deposition system. A layer by layer 3D printing technique is deployed with an initial printing of source and drain by silver nanoparticle ink. Then graphene active layer doped with molybdenum disulfide (MoS2) monolayer/multilayer dispersion, is printed onto the surface of substrate covering the source and drain electrodes. High capacitance ion gel is adopted as the dielectric material due to the high dielectric constant. Then the dielectric layer is then covered with silver nanoparticle gate electrode. Characterization of GFET has been done at room temperature (25°C) using HP-4145B semiconductor parameter analyzer (Hewlett-Packard). The characterization result shows for a voltage sweep from -2 volts to 2 volts, the drain current changes from 949 nA to 32.3 μA and the GFET achieved an on/off ratio of 38:1, which is a milestone for inkjet printed flexible graphene transistor.

  19. Vibration analysis of printed circuit boards: Effect of boundary condition

    NASA Astrophysics Data System (ADS)

    Prashanth, M. D.

    2018-04-01

    A spacecraft consists of a number of electronic packages to meet the functional requirements. An electronic package is generally an assembly of printed circuit boards placed in a mechanical housing. A number of electronic components are mounted on the printed circuit board (PCB). A spacecraft experiences various types of loads during its launch such as vibration, acoustic and shock loads. Prediction of response for printed circuit boards due to vibration loads is important for mechanical design and reliability of electronic packages. The modeling and analysis of printed circuit boards is required for accurate prediction of response due to vibration loads. The response of PCB is highly dependent on the mounting configuration of PCB. In addition, anti-vibration mounts or stiffeners are used to reduce the PCB response. Vibration analysis of printed circuit boards is carried out using finite element method. The objective of this paper is to determine the dynamic characteristics of a printed circuit board. Modeling and analysis of PCB shall be carried out to study the effect of boundary conditions on the vibration response. The modeling of stiffeners or ribs shall also be considered in detail. The analysis results shall be validated using vibration tests of PCB.

  20. Clinical application of a 3D-printed scaffold in chronic wound treatment: a case series.

    PubMed

    Sun, Haining; Lv, Huayao; Qiu, Fanghui; Sun, Duolun; Gao, Yue; Chen, Ning; Zheng, YongKe; Deng, Kunxue; Yang, Yaya; Zhang, Haitao; Xu, Tao; Ren, Dongni

    2018-05-02

    This case series evaluates the safety and effectiveness of 3D-printed scaffold in chronic wounds. The scaffold is a composite of natural and synthetic materials, and can be prepared in the form of powder or membrane. We recruited patients with pressure ulcera (PU) and/or a diabetic foot ulcers (DFU). We used two methods: 3D-printed scaffolds alone, or 3D-printing powder mixed with platelet-rich fibrinogen (PRF). Clinicians and patients were asked to rate the scaffold's ease of application and comfort during use. A total of five patients were recruited; four with a PU and one with a DFU. For the patient treated with the 3D-printed scaffold membrane (n=1), their PU healed in 28 days, and for patients treated with the 3D-printed scaffold powder (n=2), their PUs healed in 54 days. For the patients treated with the 3D-printing powder mixed with PRF (n=2), the patient with a PU healed in 11 days, and the patient with the DFU healed in 14 days. All clinicians rated the 3D-printed scaffold as 'easy' or 'very easy' to use, and patients rated their comfort during wear and at dressing change as 'good' or 'very good'. This study demonstrated that 3D-printed scaffold was convenient to use, have the potential to improve wound healing rates, and provided a safe and effective way for treating chronic wounds.

  1. Substrate stiffness influences high resolution printing of living cells with an ink-jet system.

    PubMed

    Tirella, Annalisa; Vozzi, Federico; De Maria, Carmelo; Vozzi, Giovanni; Sandri, Tazio; Sassano, Duccio; Cognolato, Livio; Ahluwalia, Arti

    2011-07-01

    The adaptation of inkjet printing technology for the realisation of controlled micro- and nano-scaled biological structures is of great potential in tissue and biomaterial engineering. In this paper we present the Olivetti BioJet system and its applications in tissue engineering and cell printing. BioJet, which employs a thermal inkjet cartridge, was used to print biomolecules and living cells. It is well known that high stresses and forces are developed during the inkjet printing process. When printing living particles (i.e., cell suspensions) the mechanical loading profile can dramatically damage the processed cells. Therefore computational models were developed to predict the velocity profile and the mechanical load acting on a droplet during the printing process. The model was used to investigate the role of the stiffness of the deposition substrate during droplet impact and compared with experimental investigations on cell viability after printing on different materials. The computational model and the experimental results confirm that impact forces are highly dependent on the deposition substrate and that soft and viscous surfaces can reduce the forces acting on the droplet, preventing cell damage. These results have high relevance for cell bioprinting; substrates should be designed to have a good compromise between substrate stiffness to conserve spatial patterning without droplet coalescence but soft enough to absorb the kinetic energy of droplets in order to maintain cell viability. Copyright © 2011. Published by Elsevier B.V.

  2. 3D Printing of Ball Grid Arrays

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Hines, Daniel; Dasgupta, Abhijit; Das, Siddhartha

    Ball grid arrays (BGA) are interconnects between an integrated circuit (IC) and a printed circuit board (PCB), that are used for surface mounting electronic components. Typically, lead free alloys are used to make solder balls which, after a reflow process, establish a mechanical and electrical connection between the IC and the PCB. High temperature processing is required for most of these alloys leading to thermal shock causing damage to ICs. For producing flexible circuits on a polymer substrate, there is a requirement for low temperature processing capabilities (around 150 C) and for reducing strain from mechanical stresses. Additive manufacturing techniques can provide an alternative methodology for fabricating BGAs as a direct replacement for standard solder bumped BGAs. We have developed aerosol jet (AJ) printing methods to fabricate a polymer bumped BGA. As a demonstration of the process developed, a daisy chain test chip was polymer bumped using an AJ printed ultra violet (UV) curable polymer ink that was then coated with an AJ printed silver nanoparticle laden ink as a conducting layer printed over the polymer bump. The structure for the balls were achieved by printing the polymer ink using a specific toolpath coupled with in-situ UV curing of the polymer which provided good control over the shape, resulting in well-formed spherical bumps on the order of 200 um wide by 200 um tall for this initial demonstration. A detailed discussion of the AJ printing method and results from accelerated life-time testing will be presented

  3. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    PubMed

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  4. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

    PubMed Central

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-01-01

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T.; Hu, M.; Guo, Q.

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexiblemore » electronics manufacturing.« less

  6. Facilitating emergent literacy: efficacy of a model that partners speech-language pathologists and educators.

    PubMed

    Girolametto, Luigi; Weitzman, Elaine; Greenberg, Janice

    2012-02-01

    This study examined the efficacy of a professional development program for early childhood educators that facilitated emergent literacy skills in preschoolers. The program, led by a speech-language pathologist, focused on teaching alphabet knowledge, print concepts, sound awareness, and decontextualized oral language within naturally occurring classroom interactions. Twenty educators were randomly assigned to experimental and control groups. Educators each recruited 3 to 4 children from their classrooms to participate. The experimental group participated in 18 hr of group training and 3 individual coaching sessions with a speech-language pathologist. The effects of intervention were examined in 30 min of videotaped interaction, including storybook reading and a post-story writing activity. At posttest, educators in the experimental group used a higher rate of utterances that included print/sound references and decontextualized language than the control group. Similarly, the children in the experimental group used a significantly higher rate of utterances that included print/sound references and decontextualized language compared to the control group. These findings suggest that professional development provided by a speech-language pathologist can yield short-term changes in the facilitation of emergent literacy skills in early childhood settings. Future research is needed to determine the impact of this program on the children's long-term development of conventional literacy skills.

  7. Thermal inkjet printing in tissue engineering and regenerative medicine.

    PubMed

    Cui, Xiaofeng; Boland, Thomas; D'Lima, Darryl D; Lotz, Martin K

    2012-08-01

    With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting of living systems and the applications of bioprinting in tissue engineering field.

  8. Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms.

    PubMed

    Kim, Tae-Young; Ha, Jewook; Cho, Kyungjune; Pak, Jinsu; Seo, Jiseok; Park, Jongjang; Kim, Jae-Keun; Chung, Seungjun; Hong, Yongtaek; Lee, Takhee

    2017-10-24

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable band gap energy. However, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Motivated by this challenge, we report fully printed transparent chemical vapor deposition (CVD)-synthesized monolayer molybdenum disulfide (MoS 2 ) phototransistor arrays on flexible polymer substrates. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS 2 , and their annealing temperature of <180 °C allows the direct fabrication on commercial flexible substrates without additional assisted-structures. By integrating the soft organic components with ultrathin MoS 2 , the fully printed MoS 2 phototransistors exhibit excellent transparency and mechanically stable operation.

  9. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures.

    PubMed

    Bodkhe, Sampada; Turcot, Gabrielle; Gosselin, Frederick P; Therriault, Daniel

    2017-06-21

    Development of a 3D printable material system possessing inherent piezoelectric properties to fabricate integrable sensors in a single-step printing process without poling is of importance to the creation of a wide variety of smart structures. Here, we study the effect of addition of barium titanate nanoparticles in nucleating piezoelectric β-polymorph in 3D printable polyvinylidene fluoride (PVDF) and fabrication of the layer-by-layer and self-supporting piezoelectric structures on a micro- to millimeter scale by solvent evaporation-assisted 3D printing at room temperature. The nanocomposite formulation obtained after a comprehensive investigation of composition and processing techniques possesses a piezoelectric coefficient, d 31 , of 18 pC N -1 , which is comparable to that of typical poled and stretched commercial PVDF film sensors. A 3D contact sensor that generates up to 4 V upon gentle finger taps demonstrates the efficacy of the fabrication technique. Our one-step 3D printing of piezoelectric nanocomposites can form ready-to-use, complex-shaped, flexible, and lightweight piezoelectric devices. When combined with other 3D printable materials, they could serve as stand-alone or embedded sensors in aerospace, biomedicine, and robotic applications.

  10. Modelling Polymer Deformation during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  11. Cell-printing and transfer technology applications for bone defects in mice.

    PubMed

    Tsugawa, Junichi; Komaki, Motohiro; Yoshida, Tomoko; Nakahama, Ken-ichi; Amagasa, Teruo; Morita, Ikuo

    2011-10-01

    Bone regeneration therapy based on the delivery of osteogenic factors and/or cells has received a lot of attention in recent years since the discovery of pluripotent stem cells. We reported previously that the implantation of capillary networks engineered ex vivo by the use of cell-printing technology could improve blood perfusion. Here, we developed a new substrate prepared by coating glass with polyethylene glycol (PEG) to create a non-adhesive surface and subsequent photo-lithography to finely tune the adhesive property for efficient cell transfer. We examined the cell-transfer efficiency onto amniotic membrane and bone regenerative efficiency in murine calvarial bone defect. Cell transfer of KUSA-A1 cells (murine osteoblasts) to amniotic membrane was performed for 1 h using the substrates. Cell transfer using the substrate facilitated cell engraftment onto the amniotic membrane compared to that by direct cell inoculation. KUSA-A1 cells transferred onto the amniotic membrane were applied to critical-sized calvarial bone defects in mice. Micro-computed tomography (micro-CT) analysis showed rapid and effective bone formation by the cell-equipped amniotic membrane. These results indicate that the cell-printing and transfer technology used to create the cell-equipped amniotic membrane was beneficial for the cell delivery system. Our findings support the development of a biologically stable and effective bone regeneration therapy. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Low-cost printing of computerised tomography (CT) images where there is no dedicated CT camera.

    PubMed

    Tabari, Abdulkadir M

    2007-01-01

    Many developing countries still rely on conventional hard copy images to transfer information among physicians. We have developed a low-cost alternative method of printing computerised tomography (CT) scan images where there is no dedicated camera. A digital camera is used to photograph images from the CT scan screen monitor. The images are then transferred to a PC via a USB port, before being printed on glossy paper using an inkjet printer. The method can be applied to other imaging modalities like ultrasound and MRI and appears worthy of emulation elsewhere in the developing world where resources and technical expertise are scarce.

  13. Inkjet printing of single-crystal films.

    PubMed

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-13

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  14. Age differences and format effects in working memory.

    PubMed

    Foos, Paul W; Goolkasian, Paula

    2010-07-01

    Format effects refer to lower recall of printed words from working memory when compared to spoken words or pictures. These effects have been attributed to an attenuation of attention to printed words. The present experiment compares younger and older adults' recall of three or six items presented as pictures, spoken words, printed words, and alternating case WoRdS. The latter stimuli have been shown to increase attention to printed words and, thus, reduce format effects. The question of interest was whether these stimuli would also reduce format effects for older adults whose working memory capacity has fewer attentional resources to allocate. Results showed that older adults performed as well as younger adults with three items but less well with six and that format effects were reduced for both age groups, but more for young, when alternating case words were used. Other findings regarding executive control of working memory are discussed. The obtained differences support models of reduced capacity in older adult working memory.

  15. Emergent Literacy: A Comparison of Formal and Informal Assessment Methods.

    ERIC Educational Resources Information Center

    Harlin, Rebecca; Lipa, Sally

    1990-01-01

    Compares the effectiveness of the Concepts about Print (CAP) Test and the Metropolitan Readiness Test (MRT) in assessing the literacy development of both normal and at-risk primary students. Finds the CAP to be an effective predictor for at-risk children. Finds the MRT not worth the time, effort, and cost of administration. (RS)

  16. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs.

    PubMed

    Mouser, V H M; Abbadessa, A; Levato, R; Hennink, W E; Vermonden, T; Gawlitta, D; Malda, J

    2017-03-23

    Fine-tuning of bio-ink composition and material processing parameters is crucial for the development of biomechanically relevant cartilage constructs. This study aims to design and develop cartilage constructs with tunable internal architectures and relevant mechanical properties. More specifically, the potential of methacrylated hyaluronic acid (HAMA) added to thermosensitive hydrogels composed of methacrylated poly[N-(2-hydroxypropyl)methacrylamide mono/dilactate] (pHPMA-lac)/polyethylene glycol (PEG) triblock copolymers, to optimize cartilage-like tissue formation by embedded chondrocytes, and enhance printability was explored. Additionally, co-printing with polycaprolactone (PCL) was performed for mechanical reinforcement. Chondrocyte-laden hydrogels composed of pHPMA-lac-PEG and different concentrations of HAMA (0%-1% w/w) were cultured for 28 d in vitro and subsequently evaluated for the presence of cartilage-like matrix. Young's moduli were determined for hydrogels with the different HAMA concentrations. Additionally, hydrogel/PCL constructs with different internal architectures were co-printed and analyzed for their mechanical properties. The results of this study demonstrated a dose-dependent effect of HAMA concentration on cartilage matrix synthesis by chondrocytes. Glycosaminoglycan (GAG) and collagen type II content increased with intermediate HAMA concentrations (0.25%-0.5%) compared to HAMA-free controls, while a relatively high HAMA concentration (1%) resulted in increased fibrocartilage formation. Young's moduli of generated hydrogel constructs ranged from 14 to 31 kPa and increased with increasing HAMA concentration. The pHPMA-lac-PEG hydrogels with 0.5% HAMA were found to be optimal for cartilage-like tissue formation. Therefore, this hydrogel system was co-printed with PCL to generate porous or solid constructs with different mesh sizes. Young's moduli of these composite constructs were in the range of native cartilage (3.5-4.6 MPa). Interestingly, the co-printing procedure influenced the mechanical properties of the final constructs. These findings are relevant for future bio-ink development, as they demonstrate the importance of selecting proper HAMA concentrations, as well as appropriate print settings and construct designs for optimal cartilage matrix deposition and final mechanical properties of constructs, respectively.

  17. Printing. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Seivert, Chester

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 17 terminal objectives for a secondary level basic printing course. The materials were developed for a two-semester (2 hours daily) course with specialized classroom and shop experiences designed to enable the student to develop basic…

  18. Material and fabrication strategies for artificial muscles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spinks, Geoffrey M.

    2017-04-01

    Soft robotic and wearable robotic devices seek to exploit polymer based artificial muscles and sensor materials to generate biomimetic movements and forces. A challenge is to integrate the active materials into a complex, three-dimensional device with integrated electronics, power supplies and support structures. Both 3D printing and textiles technologies offer attractive fabrication strategies, but require suitable functional materials. 3D printing of actuating hydrogels has been developed to produce simple devices, such as a prototype valve. Tough hydrogels based on interpenetrating networks of ionicially crosslinked alginate and covalently crosslinked polyacrylamide and poly(N-isopropylacrylamide) have been developed in a form suitable for extrusion printing with UV curing. Combined with UV-curable and extrudable rigid acrylated urethanes, the tough hydrogels can be 3D printed into composite materials or complex shapes with multiple different materials. An actuating valve was printed that operated thermally to open or close the flow path using 6 parallel hydrogel actuators. Textile processing methods such as knitting and weaving can be used to generate assemblies of actuating fibres. Low cost and high performance coiled fibres made from oriented polymers have been used for developing actuating textiles. Similarly, braiding methods have been developed to fabricate new forms of McKibben muscles that operate without any external apparatus, such as pumps, compressors or piping.

  19. [Biofabrication: new approaches for tissue regeneration].

    PubMed

    Horch, Raymund E; Weigand, Annika; Wajant, Harald; Groll, Jürgen; Boccaccini, Aldo R; Arkudas, Andreas

    2018-04-01

    The advent of Tissue Engineering (TE) in the early 1990ies was fostered by the increasing need for functional tissue and organ replacement. Classical TE was based on the combination of carrier matrices, cells and growth factors to reconstitute lost or damaged tissue and organs. Despite considerable results in vitro and in experimental settings the lack of early vascularization has hampered its translation into daily clinical practice so far. A new field of research, called "biofabrication" utilizing latest 3D printing technologies aims at hierarchically and spatially incorporating different cells, biomaterials and molecules into a matrix to alleviate a directed maturation of artificial tissue. A literature research of the relevant publications regarding biofabrication and bioprinting was performed using the PubMed data base. Relevant papers were selected and evaluated with secondary analysis of specific citations on the bioprinting techniques. 180 relevant papers containing the key words were identified and evaluated. Basic principles into the developing field of bioprinting technology could be discerned. Key elements comprise the high-throughput assembly of cells and the fabrication of complex and functional hierarchically organized tissue constructs. Five relevant technological principles for bioprinting were identified, such as stereolithography, extrusion-based printing, laser-assisted printing, inkjet-based printing and nano-bioprinting. The different technical methods of 3D printing were found to be associated with various positive but also negative effects on cells and proteins during the printing process. Research efforts in this field obviously aim towards the development of optimizing the so called bioinks and the printing technologies. This review details the evolution of the classical methods of TE in Regenerative Medicine into the evolving field of biofabrication by bioprinting. The advantages of 3D bioprinting over traditional tissue engineering techniques are based on the assembling of cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissue macro-, micro- and nanoarchitectures, that can be utilized not only to potentially produce functional replacement tissues or organs but also to serve as new models for basic research. Mimicking the stromal microenvironment of tumor cells to study the process of tumor formation and progression, metastasis, angiogenesis and modulation of the associated processes is one of these applications under research. To this end a close collaboration of specialists from the fields of engineering, biomaterial science, cell biology and reconstructive microsurgery will be necessary to develop future strategies that can overcome current limitations of tissue generation. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Development of Oromucosal Dosage Forms by Combining Electrospinning and Inkjet Printing.

    PubMed

    Palo, Mirja; Kogermann, Karin; Laidmäe, Ivo; Meos, Andres; Preis, Maren; Heinämäki, Jyrki; Sandler, Niklas

    2017-03-06

    Printing technology has been shown to enable flexible fabrication of solid dosage forms for personalized drug therapy. Several methods can be applied for tailoring the properties of the printed pharmaceuticals. In this study, the use of electrospun fibrous substrates in the fabrication of inkjet-printed dosage forms was investigated. A single-drug formulation with lidocaine hydrochloride (LH) and a combination drug system containing LH and piroxicam (PRX) for oromucosal administration were prepared. The LH was deposited on the electrospun and cross-linked gelatin substrates by inkjet printing, whereas PRX was incorporated within the substrate fibers during electrospinning. The solid state analysis of the electrospun substrates showed that PRX was in an amorphous state within the fibers. Furthermore, the results indicated the entrapment and solidification of the dissolved LH within the fibrous gelatin matrix. The printed drug amount (2-3 mg) was in good correlation with the theoretical dose calculated based on the printing parameters. However, a noticeable degradation of the printed LH was detected after a few months. An immediate release (over 85% drug release after 8 min) of both drugs from the printed dosage forms was observed. In conclusion, the prepared electrospun gelatin scaffolds were shown to be suitable substrates for inkjet printing of oromucosal formulations. The combination of electrospinning and inkjet printing allowed the preparation of a dual drug system.

  1. 3D Printing: current use in facial plastic and reconstructive surgery.

    PubMed

    Hsieh, Tsung-Yen; Dedhia, Raj; Cervenka, Brian; Tollefson, Travis T

    2017-08-01

    To review the use of three-dimensional (3D) printing in facial plastic and reconstructive surgery, with a focus on current uses in surgical training, surgical planning, clinical outcomes, and biomedical research. To evaluate the limitations and future implications of 3D printing in facial plastic and reconstructive surgery. Studies reviewed demonstrated 3D printing applications in surgical planning including accurate anatomic biomodels, surgical cutting guides in reconstruction, and patient-specific implants fabrication. 3D printing technology also offers access to well tolerated, reproducible, and high-fidelity/patient-specific models for surgical training. Emerging research in 3D biomaterial printing have led to the development of biocompatible scaffolds with potential for tissue regeneration in reconstruction cases involving significant tissue absence or loss. Major limitations of utilizing 3D printing technology include time and cost, which may be offset by decreased operating times and collaboration between departments to diffuse in-house printing costs SUMMARY: The current state of the literature shows promising results, but has not yet been validated by large studies or randomized controlled trials. Ultimately, further research and advancements in 3D printing technology should be supported as there is potential to improve resident training, patient care, and surgical outcomes.

  2. Direct Printing of Graphene onto Plastic Substrates.

    NASA Astrophysics Data System (ADS)

    Hines, Daniel; Lock, Evgeniya; Walton, Scott; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn; Sheehan, Paul; Lee, Woo; Robinson, Jeremy

    2011-03-01

    Graphene films have been synthesized on metal foils using CVD growth and have the potential to be compatible with roll-to-roll printing. To be usable in electronic devices, these films need to be removed from the metallic substrate. Currently this is accomplished by spin coating a polymer film over the graphene and chemically etching away the metal substrate. We have developed a direct printing method that allows graphene films to be printed off the metal substrate onto a polymer substrate. This printing process does not generate chemical waste, is compatible with roll-to-toll processing and renders the metal foil reusable. Adhesion of the graphene film to the polymer substrate is established by attaching perfluorophenylazides (PFPA) azide linker molecules to a plasma activated polymer surface. The transfer printing was performed by placing the PFPA treated polymer surface in contact with a graphene covered Cu foil and heating under pressure. Graphene films successfully printed onto a polystyrene substrate have been characterized by Raman spectroscopy and electrical measurements revealed the presence of Gr on the polymer surface. Details of the printing process along with characteristics of the graphene film after printing will be presented.

  3. The role of printing techniques for large-area dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mariani, Paolo; Vesce, Luigi; Di Carlo, Aldo

    2015-10-01

    The versatility of printing technologies and their intrinsic ability to outperform other techniques in large-area deposition gives scope to revolutionize the photovoltaic (PV) manufacturing field. Printing methods are commonly used in conventional silicon-based PVs to cover part of the production process. Screen printing techniques, for example, are applied to deposit electrical contacts on the silicon wafer. However, it is with the advent of third generation PVs that printing/coating techniques have been extensively used in almost all of the manufacturing processes. Among all the third generation PVs, dye sensitized solar cell (DSSC) technology has been developed up to commercialization levels. DSSCs and modules can be fabricated by adopting all of the main printing techniques on both rigid and flexible substrates. This allows an easy tuning of cell/module characteristics to the desired application. Transparency, colour, shape, layout and other DSSC’s features can be easily varied by changing the printing parameters and paste/ink formulations used in the printing process. This review focuses on large-area printing/coating technologies for the fabrication of DSSCs devices. The most used and promising techniques are presented underlining the process parameters and applications.

  4. 3D Printed "Starmix" Drug Loaded Dosage Forms for Paediatric Applications.

    PubMed

    Scoutaris, Nicolaos; Ross, Steven A; Douroumis, Dennis

    2018-01-16

    Three- dimensional (3D) printing has received significant attention as a manufacturing process for pharmaceutical dosage forms. In this study, we used Fusion Deposition Modelling (FDM) in order to print "candy - like" formulations by imitating Starmix® sweets to prepare paediatric medicines with enhanced palatability. Hot melt extrusion processing (HME) was coupled with FDM to prepare extruded filaments of indomethacin (IND), hypromellose acetate succinate (HPMCAS) and polyethylene glycol (PEG) formulations and subsequently feed them in the 3D printer. The shapes of the Starmix® objects were printed in the form of a heart, ring, bottle, ring, bear and lion. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier Transform Infra-red Spectroscopy (FT-IR) and confocal Raman analysis were used to assess the drug - excipient interactions and the content uniformity. Physicochemical analysis showed the presence of molecularly dispersed IND in the printed tablets. In vivo taste masking evaluation demonstrated excellent masking of the drug bitterness. The printed forms were evaluated for drug dissolution and showed immediate IND release independently of the printed shape, within 60 min. 3D printing was used successfully to process drug loaded filaments for the development of paediatric printed tablets in the form of Starmix® designs.

  5. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review.

    PubMed

    Awasthi, Abhishek Kumar; Zlamparet, Gabriel Ionut; Zeng, Xianlai; Li, Jinhui

    2017-04-01

    Rapid generation of waste printed circuit boards has become a very serious issue worldwide. Numerous techniques have been developed in the last decade to resolve the pollution from waste printed circuit boards, and also recover valuable metals from the waste printed circuit boards stream on a large-scale. However, these techniques have their own certain specific drawbacks that need to be rectified properly. In this review article, these recycling technologies are evaluated based on a strength, weaknesses, opportunities and threats analysis. Furthermore, it is warranted that, the substantial research is required to improve the current technologies for waste printed circuit boards recycling in the outlook of large-scale applications.

  6. 3D-printed Bioanalytical Devices

    PubMed Central

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-01-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  7. [Possibility of 3D Printing in Ophthalmology - First Experiences by Stereotactic Radiosurgery Planning Scheme of Intraocular Tumor].

    PubMed

    Furdová, A; Furdová, Ad; Thurzo, A; Šramka, M; Chorvát, M; Králik, G

    Nowadays 3D printing allows us to create physical objects on the basis of digital data. Thanks to its rapid development the use enormously increased in medicine too. Its creations facilitate surgical planning processes, education and research in context of organ transplantation, individualization prostheses, breast forms, and others.Our article describes the wide range of applied 3D printing technology possibilities in ophthalmology. It is focusing on innovative implementation of eye tumors treatment planning in stereotactic radiosurgery irradiation.We analyze our first experience with 3D printing model of the eye in intraocular tumor planning stereotactic radiosurgery. 3D printing, model, Fused Deposition Modelling, stereotactic radiosurgery, prostheses, intraocular tumor.

  8. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.

    PubMed

    Zhang, Bin; Seong, Baekhoon; Lee, Jaehyun; Nguyen, VuDat; Cho, Daehyun; Byun, Doyoung

    2017-09-06

    A one-step sub-micrometer-scale electrohydrodynamic (EHD) inkjet three-dimensional (3D)-printing technique that is based on the drop-on-demand (DOD) operation for which an additional postsintering process is not required is proposed. Both the numerical simulation and the experimental observations proved that nanoscale Joule heating occurs at the interface between the charged silver nanoparticles (Ag-NPs) because of the high electrical contact resistance during the printing process; this is the reason why an additional postsintering process is not required. Sub-micrometer-scale 3D structures were printed with an above-35 aspect ratio via the use of the proposed printing technique; furthermore, it is evident that the designed 3D structures such as a bridge-like shape can be printed with the use of the proposed printing technique, allowing for the cost-effective fabrication of a 3D touch sensor and an ultrasensitive air flow-rate sensor. It is believed that the proposed one-step printing technique may replace the conventional 3D conductive-structure printing techniques for which a postsintering process is used because of its economic efficiency.

  9. PyzoFlex: a printed piezoelectric pressure sensing foil for human machine interfaces

    NASA Astrophysics Data System (ADS)

    Zirkl, M.; Scheipl, G.; Stadlober, B.; Rendl, C.; Greindl, P.; Haller, M.; Hartmann, P.

    2013-09-01

    Ferroelectric material supports both pyro- and piezoelectric effects that can be used for sensing pressures on large, bended surfaces. We present PyzoFlex, a pressure-sensing input device that is based on a ferroelectric material (PVDF:TrFE). It is constructed by a sandwich structure of four layers that can easily be printed on any substrate. The PyzoFlex foil is sensitive to pressure- and temperature changes, bendable, energy-efficient, and it can easily be produced by a screen-printing routine. Even a hovering input-mode is feasible due to its pyroelectric effect. In this paper, we introduce this novel, fully printed input technology and discuss its benefits and limitations.

  10. Diplomatic Solutions to Additive Challenges

    DTIC Science & Technology

    Additive manufacturing (AM) technology, colloquially known as 3D printing , will bring significant benefits to society, but also poses great risks...regimes, are not sufficient to address the challenges presented by 3D printing technology. The DOS should evaluate and promote unconventional strategies...from printed weapons proliferation. Working with other nations to resolve the appropriate balance between development and security, and to promote norms

  11. 3D Modeling and Printing in History/Social Studies Classrooms: Initial Lessons and Insights

    ERIC Educational Resources Information Center

    Maloy, Robert; Trust, Torrey; Kommers, Suzan; Malinowski, Allison; LaRoche, Irene

    2017-01-01

    This exploratory study examines the use of 3D technology by teachers and students in four middle school history/social studies classrooms. As part of a university-developed 3D Printing 4 Teaching & Learning project, teachers integrated 3D modeling and printing into curriculum topics in world geography, U.S. history, and government/civics.…

  12. Thin-Film Thermoelectric Module for Power Generator Applications Using a Screen-Printing Method

    NASA Astrophysics Data System (ADS)

    Lee, Heon-Bok; Yang, Hyun Jeong; We, Ju Hyung; Kim, Kukjoo; Choi, Kyung Cheol; Cho, Byung Jin

    2011-05-01

    A new process for fabricating a low-cost thermoelectric module using a screen-printing method has been developed. Thermoelectric properties of screen-printed ZnSb films were investigated in an effort to develop a thermoelectric module with low cost per watt. The screen-printed Zn x Sb1- x films showed a low carrier concentration and high Seebeck coefficient when x was in the range of 0.5 to 0.57 and the annealing temperature was kept below 550°C. When the annealing temperature was higher than 550°C, the carrier concentration of the Zn x Sb1- x films reached that of a metal, leading to a decrease of the Seebeck coefficient. In the present experiment, the optimized carrier concentration of screen-printed ZnSb was 7 × 1018/cm3. The output voltage and power density of the ZnSb film were 10 mV and 0.17 mW/cm2, respectively, at Δ T = 50 K. A thermoelectric module was produced using the proposed screen-printing approach with ZnSb and CoSb3 as p-type and n-type thermoelectric materials, respectively, and copper as the pad metal.

  13. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.

    PubMed

    Cochis, Andrea; Bonetti, Lorenzo; Sorrentino, Rita; Contessi Negrini, Nicola; Grassi, Federico; Leigheb, Massimiliano; Rimondini, Lia; Farè, Silvia

    2018-04-10

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na₂SO₄ and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  14. Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration.

    PubMed

    Bourget, Jean-Michel; Kérourédan, Olivia; Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain; Devillard, Raphaël

    2016-01-01

    Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro . Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors.

  15. Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration

    PubMed Central

    Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain

    2016-01-01

    Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro. Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors. PMID:27833916

  16. 3D-Printed Transparent Glass

    DOE PAGES

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.; ...

    2017-04-28

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  17. Conductive nanomaterials for printed electronics.

    PubMed

    Kamyshny, Alexander; Magdassi, Shlomo

    2014-09-10

    This is a review on recent developments in the field of conductive nanomaterials and their application in printed electronics, with particular emphasis on inkjet printing of ink formulations based on metal nanoparticles, carbon nanotubes, and graphene sheets. The review describes the basic properties of conductive nanomaterials suitable for printed electronics (metal nanoparticles, carbon nanotubes, and graphene), their stabilization in dispersions, formulations of conductive inks, and obtaining conductive patterns by using various sintering methods. Applications of conductive nanomaterials for electronic devices (transparent electrodes, metallization of solar cells, RFID antennas, TFTs, and light emitting devices) are also briefly reviewed.

  18. 3D-Printed Transparent Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  19. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs)

    PubMed Central

    Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A.; Schuster, Bernhard

    2018-01-01

    Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection. PMID:29443890

  20. Individualized Communications

    NASA Technical Reports Server (NTRS)

    1997-01-01

    IntelliWeb and IntelliPrint, products from MicroMass Communications, utilize C Language Integrated Production System (CLIPS), a development and delivery expert systems tool developed at Johnson Space Center. IntelliWeb delivers personalized messages by dynamically creating single web pages or entire web sites based on information provided by each website visitor. IntelliPrint is a product designed to create tailored, individualized messages via printed media. The software uses proprietary technology to generate printed messages that are personally relevant and tailored to meet each individual's needs. Intelliprint is in use in many operations including Brystol-Myers Squibb's personalized newsletter, "Living at Your Best," geared to each recipient based on a health and lifestyle survey taken earlier; and SmithKline Beecham's "Nicorette Committed Quitters Program," in which customized motivational materials support participants in their attempt to quit smoking.

Top