Science.gov

Sample records for developing fuel cell

  1. ARPA advanced fuel cell development

    SciTech Connect

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.

  2. Development of PEM fuel cell technology at international fuel cells

    SciTech Connect

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  3. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  4. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.; Ingersoll, D.

    1996-12-31

    Fuel cells are being considered as alternative power sources for transportation and stationary applications. The degradation of commonly used electrode catalysts (e.g. Pt, Ag, and others) and corrosion of carbon substrates are making commercialization of fuel cells incorporating present day technologies economically problematic. Furthermore, due to the instability of the Pt catalyst, the performance of fuel cells declines on long-term operation. When methanol is used as the fuel, a voltage drop, as well as significant thermal management problems can be encountered, the later being due to chemical oxidation of methanol at the platinized carbon at the cathode. Though extensive work was conducted on platinized electrodes for both the oxidation and reduction reactions, due to the problems mentioned above, fuel cells have not been fully developed for widespread commercial use. Several investigators have previously evaluated metal macrocyclic complexes as alternative catalysts to Pt and Pt/Ru in fuel cells. Unfortunately, though they have demonstrated catalytic activity, these materials were found to be unstable on long term use in the fuel cell environment. In order to improve the long-term stability of metal macrocyclic complexes, we have chemically bonded these complexes to the carbon substrate, thereby enhancing their catalytic activity as well as their chemical stability in the fuel cell environment. We have designed, synthesized, and evaluated these catalysts for O{sub 2} reduction, H{sub 2} oxidation, and direct methanol oxidation in Proton Exchange Membrane (PEM) and aqueous carbonate fuel cells. These catalysts exhibited good catalytic activity and long-term stability. In this paper we confine our discussion to the initial performance results of some of these catalysts in H{sub 2}/O{sub 2} PEM fuel cells, including their long-term performance characteristics as well as CO poisoning effects on these catalysts.

  5. Development of portable fuel cells

    SciTech Connect

    Nakatou, K.; Sumi, S.; Nishizawa, N.

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  6. Mobile fuel cell development at Siemens

    NASA Astrophysics Data System (ADS)

    Strasser, K.

    1992-01-01

    Recent mobile fuel cell developments are reported with particular attention given to fuel cell technology based on photon exchange membrane (PEM) as electrolyte. Advantages of PEM fuel cells over conventional systems include their overload capacity, low power degradation, long lifetime, and the possibility to operate the fuel cell at different temperatures. The PEM fuel cells can be operated with CO2-containing reactants and have a considerable potential for increasing power. These facts make it possible to construct energy storage systems with H2/air fuel cells for electric cars or long-term storage facilities for regenerative energy systems.

  7. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  8. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  9. Development of a lightweight fuel cell vehicle

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  10. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1982-01-01

    The phosphoric acid fuel cell module (stack) development which culminated in an 80 cell air-cooled stack with separated gas cooling and treed cooling plates is described. The performance of the 80 cell stack was approx. 100 mV per cell higher than that attained during phase 1. The components and materials performed stably for over 8000 hours in a 5 cell stack. The conceptual design of a fuel conditioning system is described.

  11. Strategic Partnerships in Fuel Cell Development

    ERIC Educational Resources Information Center

    Diab, Dorey

    2006-01-01

    This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…

  12. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  13. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1981-01-01

    A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.

  14. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  15. Monolithic solid oxide fuel cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.

  16. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  17. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1982-01-01

    The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.

  18. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  19. Tubular solid oxide fuel cell development program

    SciTech Connect

    1995-08-01

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  20. Unitized Regenerative Fuel Cell System Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2003-01-01

    Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.

  1. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described.

  2. Status of commercial fuel cell powerplant system development

    NASA Technical Reports Server (NTRS)

    Warshay, Marvin

    1987-01-01

    The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.

  3. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect

    Reifsnider, Kenneth

    2011-07-31

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  4. Hydrogen Fuel Cell development in Columbia (SC)

    SciTech Connect

    Reifsnider, Kenneth; Chen, Fanglin; Popov, Branko; Chao, Yuh; Xue, Xingjian

    2012-09-15

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  5. Monolithic Solid Oxide Fuel Cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  6. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  7. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  8. Fuel Cell Research and Development for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa

    2006-01-01

    NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.

  9. Solid oxide fuel cell power system development

    SciTech Connect

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  10. PEM fuel cell applications and their development at International Fuel Cells

    SciTech Connect

    Fuller, T.F.; Gorman, M.E.; Van Dine, L.L.

    1996-12-31

    International Fuel Cells (IFC) is involved with the full spectrum of fuel cell power plants including the development of Proton Exchange Membrane (PEM) fuel cell systems. The extensive background in systems, design, materials and manufacturing technologies has been brought to bear on the development of highly competitive PEM power plants. IFC is aggressively pursuing these opportunities and is developing low-cost designs for a wide variety of PEM fuel cell applications with special emphasis on portable power and transportation. Experimental PEM power plants for each of these applications have been successfully tested.

  11. Fuel cell development at McDermott Technology, Inc.

    SciTech Connect

    Tharp, M.R.; Privette, R.M.; Rowley, D.R.; Khandkar, A.

    1999-07-01

    McDermott Technology, Inc. (MTI) has been involved with the development of a wide variety of fuel cell technologies since 1990. Current programs include the development of planar solid fuel cell (pSOFC) stacks and systems and fuel processing and balance of plant development for proton exchange membrane (PEM) systems. These programs are described.

  12. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  13. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.

    PubMed

    Brett, Daniel J L; Kucernak, Anthony R; Aguiar, Patricia; Atkins, Stephen C; Brandon, Nigel P; Clague, Ralph; Cohen, Lesley F; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-09-10

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an 'experimental functional map' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models.

  14. Fuel cell transit bus development & commercialization programs at Gerogetown University

    SciTech Connect

    Wimmer, R.; Larkins, J.; Romano, S.

    1996-12-31

    Fourteen years ago, Georgetown University (GU) perceived the need for a clean, efficient power systems for transportation that could operate on non-petroleum based fuels. The transit bus application was selected to begin system development. GU recognized the range and recharge constraints of a pure battery powered transit bus. A Fuel Cell power system would circumvent these limitations and, with an on board reformer, accommodate liquid fuel for rapid refueling. Feasibility studies for Fuel Cell power systems for transit buses were conducted with the Los Alamos National Laboratory in 1983. Successful results of this investigation resulted in the DOT/DOE Fuel Cell transit bus development program. The first task was to prove that small Fuel Cell power plants were possible. This was achieved with the Phase I development of two 25 kW Phosphoric Acid Fuel Cell (PAFC) brassboard systems. A liquid cooled version was selected for the Phase II activity in which three 30-foot Fuel Cell powered Test Bed Buses (TBBs) were fabricated. The first of these TBBs was delivered in the spring of 1994. All three of these development vehicles are now in Phase III of the program to conduct testing and evaluation, is conducting operational testing of the buses. The test will involve two fuel cell-operated buses; one with a proton exchange fuel cell and the other with a phosphoric acid fuel cell.

  15. Development of internal reforming carbonate fuel cell stack technology

    SciTech Connect

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  16. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The test results of and post test analysis of Stack 559 are reported. The design features and construction status of Stacks 560, 561, 562 and 563 are described. The measurements of cell materials compressibility are rationalized and summarized and an explanation of their uses is given. Preliminary results of a manifold material/coating survey are given. The results of shift converter catalyst performance tests and reforming catalyst aging tests are reported. State points for full load and part load operation of the fuel conditioning subsystem tabulated. Work on the data base for the fuel conditioner ancillary subsystems is summarized.

  17. Intermediate Temperature Solid Oxide Fuel Cell Development

    SciTech Connect

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600

  18. Development of a fuel cell for the EMU

    NASA Technical Reports Server (NTRS)

    Beckstrom, Paula; Rosso, Matthew J., Jr.; Adlhart, Otto J.

    1990-01-01

    The fuel cell technology for the advanced portable life support system is reviewed, using the breadboard test data, and the design concepts are presented for the development of the improved preprototype fuel cell. Subscale test results confirm the suitability of the solid polymer electrolyte fuel cell fueled by hydride stored hydrogen and oxygen for extravehicular mobility unit (EMU) power generation. Issues verified include passive, zero-G product water removal, nonventing operation in the EMU duty cycle, and complete recovery of product water in potable form. The long cycle life and quick rechargeability are confirmed in 600 h of testing including 150 deep discharge cycles.

  19. Development of molten carbonate fuel cell power plant, volume 1

    NASA Astrophysics Data System (ADS)

    1985-03-01

    The technical results of a molten carbonate fuel cell power plant evelopment program are presented which establish the necessary technology base and demonstrate readiness to proceed with the fabrication and test of full size prototype stacks for coal fueled molten carbonate fuel cell power plants. The effort covered power plant systems studies, fuel cell component technology development, fuel cell stack design and analysis, manufacturing process definition, and an extensive experimental program. The reported results include: the definition and projected costs for a reference coal fueled power plant system based on user requirements, state-of-the-art advances in anode and electrolyte matrix technology, the detailed description of an internally manifolded stack design concept offering a number of attractive advantages, and the specification of the fabrication processes and methods necessary to produce and assemble this design. Results from the experimental program are documented.

  20. Development of small polymer electrolyte fuel cell stacks

    SciTech Connect

    Paganin, V.A.; Ticianelli, E.A.; Gonzalez, E.R.

    1996-12-31

    The polymer electrolyte fuel cell (PEFC) has been one of the most studied fuel cell systems, because of several advantages for transportation applications. Research involve fundamental aspects related to the water transport and the fuel cell reactions, the practical aspects related to the optimization of the structure and operational conditions of gas diffusion electrodes, and technological aspects related to water management and the engineering of operational sized fuel cell modules. In many of these works it is observed that very satisfactory results regarding the performance of low catalyst loading electrodes (0.15 to 0.4 mg Pt/cm{sup 2}) have been obtained in single cells. However, the use of such electrodes is not yet being considered for building fuel cell stacks and, although not usually mentioned, fuel cell modules are assembled employing electrodes presenting catalyst loadings in the range of 2 to 4 mgPt cm{sup -2}. In this work the results on the research and development of small polymer electrolyte fuel cell stacks employing low catalyst loading electrodes are described. The systems include the assembly of single cells, 6-cell and 21-cell modules. Testing of the stacks was conducted in a specially designed test station employing non-pressurized H{sub 2}/O{sub 2} reactants and measuring the individual and the overall cell voltage versus current characteristics under several operational conditions for the system.

  1. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  2. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The results of pretesting and performance testing of Stack 564 are reported. The design features, progress in fabrication and plans for assembly of Stack 800 are given. The status of endurance testing of Stack 560 is reported. The design, fabrication, test procedures and preliminary tests of the 10 kW double counterflow reformer and the reformer test stand are described. Results of vendor contacts to define the performance and cost of fuel conditioning system components are reported. The results of burner tests and continuing development of the BOLTAR program are reported.

  3. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  4. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  5. Battery and Fuel Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  6. Battery and Fuel Cell Development for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  7. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    SciTech Connect

    none,

    2010-11-01

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and commercialization.

  8. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  9. Advanced PEFC development for fuel cell powered vehicles

    NASA Astrophysics Data System (ADS)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  10. Regenerative Fuel Cells for Space Power and Energy Conversion (NaBH4/H2O2 Fuel Cell Development)

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Miley, George H.; Luo, Nie; Burton, Rodney; Mather, Joseph; Hawkins, Glenn; Byrd, Ethan; Gu, Lifeng; Shrestha, Prajakti Joshi

    2006-01-01

    A viewgraph presentation describing hydrogen peroxide and sodium borohydride development is shown. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Fuel Cell Comparisons; 4) MEA Optimization; 5) 500-Watt Stack Testing; 6) System Modeling: Fuel Cell Power Source for Lunar Rovers; and 7) Conclusions

  11. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1983-01-01

    The first phase of a planned multiphase program to develop a Phosphoric is addressed. This report describes the efforts performed that culminated in the: (1) Establishment of the preliminary design requirements and system conceptual design for the nominally rated 375 kW PAFC module and is interfacing power plant systems; (2) Establishment of PAFC component and stack performance, endurance, and design parameter data needed for design verification for power plant application; (3) Improvement of the existing PAFC materials data base and establishment of materials specifications and process procedes for the cell components; and (4) Testing of 122 subscale cell atmospheric test for 110,000 cumulative test hours, 12 subscale cell pressurized tests for 15,000 cumulative test hours, and 12 pressurized stack test for 10,000 cumulative test hours.

  12. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  13. Texas LPG fuel cell development and demonstration project

    SciTech Connect

    None, None

    2004-07-26

    The State Energy Conservation Office has executed its first Fuel Cell Project which was awarded under a Department of Energy competitive grant process. The Texas LPG Fuel Processor Development and Fuel Cell Demonstration Program is a broad-based public/private partnership led by the Texas State Energy Conservation Office (SECO). Partners include the Alternative Fuels Research and Education Division (AFRED) of the Railroad Commission of Texas; Plug Power, Inc., Latham, NY, UOP/HyRadix, Des Plaines, IL; Southwest Research Institute (SwRI), San Antonio, TX; the Texas Natural Resource Conservation Commission (TNRCC), and the Texas Department of Transportation (TxDOT). The team proposes to mount a development and demonstration program to field-test and evaluate markets for HyRadix's LPG fuel processor system integrated into Plug Power's residential-scale GenSys(TM) 5C (5 kW) PEM fuel cell system in a variety of building types and conditions of service. The program's primary goal is to develop, test, and install a prototype propane-fueled residential fuel cell power system supplied by Plug Power and HyRadix in Texas. The propane industry is currently funding development of an optimized propane fuel processor by project partner UOP/HyRadix through its national checkoff program, the Propane Education and Research Council (PERC). Following integration and independent verification of performance by Southwest Research Institute, Plug Power and HyRadix will produce a production-ready prototype unit for use in a field demonstration. The demonstration unit produced during this task will be delivered and installed at the Texas Department of Transportation's TransGuide headquarters in San Antonio, Texas. Simultaneously, the team will undertake a market study aimed at identifying and quantifying early-entry customers, technical and regulatory requirements, and other challenges and opportunities that need to be addressed in planning commercialization of the units. For further

  14. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  15. Development of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony

    2011-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.

  16. A development of direct hydrazine/hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Lao, Shao Jiang; Qin, Hai Ying; Ye, Li Qiang; Liu, Bin Hong; Li, Zhou Peng

    A direct hydrazine fuel cell using H 2O 2 as the oxidizer has been developed. The N 2H 4/H 2O 2 fuel cell is assembled by using Ni-Pt/C composite catalyst as the anode catalyst, Au/C as the cathode catalyst, and Nafion membrane as the electrolyte. Both anolyte and catholyte show significant influences on cell voltage and cell performance. The open-circuit voltage of the N 2H 4/H 2O 2 fuel cell reaches up to 1.75 V when using alkaline N 2H 4 solution as the anolyte and acidic H 2O 2 solution as the catholyte. A maximum power density of 1.02 W cm -2 has been achieved at operation temperature of 80 °C. The number of electrons exchanged in the H 2O 2 reduction reaction on Au/C catalyst is 2.

  17. Status of commercial phosphoric acid fuel cell system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  18. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.

  19. Status of solid polymer fuel cell system development

    NASA Astrophysics Data System (ADS)

    Shoesmith, J. P.; Collins, R. D.; Oakley, M. J.; Stevenson, D. K.

    1994-04-01

    Solid polymer fuel cell (SPFC) systems are expected to see service in a wide variety of applications, including road vehicles, trains, ships, undersea power, and small scale stationary power generation. Each application brings unique requirements in terms of fuel, power, efficiency, volume and weight and, consequently, SPFC systems are expected to take a variety of forms. This paper reviews the development issues which must be resolved before SPFC systems can enter commercial service. It includes the results of system studies completed by Rolls-Royce and Associates during the last two years. Development priorities are highlighted, particularly for the stack and fuel processing system. Results of the testing of a novel compact fuel processing system are presented.

  20. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    SciTech Connect

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  1. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  2. Research and development issues for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  3. PEM fuel cell stack development for automotive applications

    SciTech Connect

    Ernst, W.D.

    1996-12-31

    Presently, the major challenges to the introduction of fuel cell power systems for automotive applications are to maximize the effective system power density and minimize cost. The material cost, especially for Platinum, had been a significant factor until recent advances by Los Alamos National Laboratory and others in low Platinum loading electrode design has brought these costs within control. Since the initiation of its PEM stack development efforts, MTI has focused on applying its system and mechanical engineering heritage on both increasing power density and reducing cost. In May of 1995, MTI was selected (along with four other companies) as a subcontractor by the Ford Motor Company to participate in Phase I of the DOE Office of Transportation Technology sponsored PNGV Program entitled: {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}. This Program was instituted to: (1) Advance the performance and economic viability of a direct-hydrogen-fueled PEM fuel cell system, (2) Identify the critical problems that must be resolved before system scale-up and vehicle integration, and (3) Integrate the fuel cell power system into a sub-scale vehicle propulsion system. The Phase I objective was to develop and demonstrate a nominal 10 kW stack meeting specific criteria. Figure I is a photograph of the stack used for these demonstrations. After completion of Phase I, MTI was one of only two companies selected to continue into Phase II of the Program. This paper summarizes Phase I stack development and results.

  4. Development of an External Fuel Processor for a Solid Oxide Fuel Cell

    SciTech Connect

    Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

    2008-02-28

    A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell

  5. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  6. Advanced fuel cell development. Progress report, October-December 1979

    SciTech Connect

    Pierce, R. D.; Kucera, G. H.; Kupperman, D. S.; Poeppel, R. B.; Sim, J. W.; Singh, R. N.; Smith, J. L.

    1980-05-01

    Advanced fuel cell research and development activities at Argonne National Laboratory (ANL) during the period October-December 1979 are described. These efforts have been directed toward understanding and improving components of molten carbonate fuel cells and have included operation of 10-cm square cells. The principal focus has been on the development of electrolyte structures (LiAlO/sub 2/ and Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/) that have good electrolyte retention and mechanical properties as well as long-term stability. This effort included work on preparation of sintered LiAlO/sub 2/ as electrolyte support, use of a scanning laser acoustic microscope to evaluate electrolyte structures, and measurements of the thermal expansion coefficients of various mixtures of ..beta..-LiAlO/sub 2/ and carbonate eutectic.

  7. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  8. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, J. L., Jr.; Louis, G. A.; Abrams, M. L.

    1980-08-01

    During this quarter, effort was continued in all four major task areas: system studies to define the reference power plant design; cell and stack design, development and verification; preparation for fabrication and testing of the full-scale prototype stack; and developing the capability for operation of stacks on coal-derived gas. Preliminary module and cell stack design requirements were completed. Fuel processor characterization was completed. Design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping were defined. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication was made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated. Theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects.

  9. Development of large scale internal reforming molten carbonate fuel cell

    SciTech Connect

    Sasaki, A.; Shinoki, T.; Matsumura, M.

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  10. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  11. Development and Experimental Evaluation of Passive Fuel Cell Thermal Control

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Jakupca, Ian J.; Castle, Charles H.; Burke, Kenneth A.

    2014-01-01

    To provide uniform cooling for a fuel cell stack, a cooling plate concept was evaluated. This concept utilized thin cooling plates to extract heat from the interior of a fuel cell stack and move this heat to a cooling manifold where it can be transferred to an external cooling fluid. The advantages of this cooling approach include a reduced number of ancillary components and the ability to directly utilize an external cooling fluid loop for cooling the fuel cell stack. A number of different types of cooling plates and manifolds were developed. The cooling plates consisted of two main types; a plate based on thermopyrolytic graphite (TPG) and a planar (or flat plate) heat pipe. The plates, along with solid metal control samples, were tested for both thermal and electrical conductivity. To transfer heat from the cooling plates to the cooling fluid, a number of manifold designs utilizing various materials were devised, constructed, and tested. A key aspect of the manifold was that it had to be electrically nonconductive so it would not short out the fuel cell stack during operation. Different manifold and cooling plate configurations were tested in a vacuum chamber to minimize convective heat losses. Cooling plates were placed in the grooves within the manifolds and heated with surface-mounted electric pad heaters. The plate temperature and its thermal distribution were recorded for all tested combinations of manifold cooling flow rates and heater power loads. This testing simulated the performance of the cooling plates and manifold within an operational fuel cell stack. Different types of control valves and control schemes were tested and evaluated based on their ability to maintain a constant temperature of the cooling plates. The control valves regulated the cooling fluid flow through the manifold, thereby controlling the heat flow to the cooling fluid. Through this work, a cooling plate and manifold system was developed that could maintain the cooling plates

  12. Commercial ballard PEM fuel cell natural gas power plant development

    SciTech Connect

    Watkins, D.S.; Dunnison, D.; Cohen, R.

    1996-12-31

    The electric utility industry is in a period of rapid change. Deregulation, wholesale and retail wheeling, and corporate restructuring are forcing utilities to adopt new techniques for conducting their business. The advent of a more customer oriented service business with tailored solutions addressing such needs as power quality is a certain product of the deregulation of the electric utility industry. Distributed and dispersed power are fundamental requirements for such tailored solutions. Because of their modularity, efficiency and environmental benefits, fuel cells are a favored solution to implement distributed and dispersed power concepts. Ballard Power Systems has been working to develop and commercialize Proton Exchange Membrane (PEM) fuel cell power plants for stationary power markets. PEM`s capabilities of flexible operation and multiple market platforms bodes well for success in the stationary power market. Ballard`s stationary commercialization program is now in its second phase. The construction and successful operation of a 10 kW natural gas fueled, proof-of-concept power plant marked the completion of phase one. In the second phase, we are developing a 250 kW market entry power plant. This paper discusses Ballard`s power plant development plan philosophy, the benefits from this approach, and our current status.

  13. Development and experimental characterization of a fuel cell powered aircraft

    NASA Astrophysics Data System (ADS)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E.

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers.

  14. Development of Advanced Fuel Cell System (Phase 4)

    NASA Technical Reports Server (NTRS)

    Meyer, A. P.; Bell, W. F.

    1976-01-01

    A multiple-task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. During Phase 4, the lowest stabilized degradation rate observed in all the testing completed during four phases of the program, 1 microvolt/hour, was demonstrated. This test continues after 5,000 hours of operation. The cell incorporates a PPf anode, a 90Au/10Pt cathode, a hybrid frame, and a Fybex matrix. These elements were developed under this program to extend cell life. The result demonstrated that the 80Au/20Pt cathode is as stable as a 90Au/10Pt cathode of twice the precious metal loading, was confirmed in full-scale cells. A hybrid frame two-cell plaque with dedicated flow fields and manifolds for all fluids was demonstrated to prevent the cell-to cell electrolyte transfer that limited the endurance of multicell plaques. At the conclusion of Phase 4, more than 90,900 hours of testing had been completed and twelve different cell designs had been evaluated. A technology base has been established which is ready for evaluation at the powerplant level.

  15. Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2005-01-01

    A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.

  16. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  17. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    NASA Astrophysics Data System (ADS)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  18. An update of ERC's carbonate fuel cell development program

    SciTech Connect

    Farooque, M.; Bernard, R.; Doyon, J.; Paetsch, L.; Patel, P.; Skok, A.; Yuh, C.; Steinfield, G.; O'Shea, T.

    1992-01-01

    Energy Research Corporation's molten carbonate fuel goals are commericalization of the MW-class natural gas units and 100 MW-class coal gas/natural gas dual fuel units (long-term). Accomplishments have been made in stack height scale-up, issues relevant to attaining a long useful life for the carbonate fuel cell have been resolved, and organizational and financial aspects of power plant demonstration have been addressed. 10 figs, 7 refs. (DLC)

  19. Development of advanced fuel cell system, phase 3

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1975-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.

  20. Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupta, Ian

    2005-01-01

    High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.

  1. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  2. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  3. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  4. Microscale Fuel Cells

    SciTech Connect

    Holladay, Jamie D.; Viswanathan, Vish V.

    2005-11-03

    Perhaprs some of the most innovative work on fuel cells has been the research dedicated to applying silicon fabrication techniques to fuel cells technology creating low power microscale fuel cells applicable to microelectro mechanical systems (MEMS), microsensors, cell phones, PDA’s, and other low power (0.001 to 5 We) applications. In this small power range, fuel cells offer the decoupling of the energy converter from the energy storage which may enable longer operating times and instant or near instant charging. To date, most of the microscale fuel cells being developed have been based on proton exchange membrane fuel cell technology (PEMFC) or direct methanol fuel cell (DMFC) technology. This section will discuss requirements and considerations that need to be addressed in the development of microscale fuel cells, as well as some proposed designs and fabrication strategies.

  5. Development of low temperature solid oxide fuel cells

    SciTech Connect

    Bakker, W.T.; Goldstein, R.

    1996-12-31

    The historical focus of the electric utility industry has been central station power plants. These plants are usually sited outside urban areas and electricity was delivered via high voltage transmission lines. Several things are beginning to change this historical precedent One is the popular concern with EMF as a health hazard. This has rendered the construction of new lines as well as upgrading old ones very difficult. Installation of power generating equipment near the customer enables the utility to better utilize existing transmission and distribution networks and defer investments. Power quality and lark of disturbances and interruptions is also becoming increasingly more important to many customers. Grid connected, but dedicated small power plants can greatly improve power quality. Finally the development of high efficiency, low emission, modular fuel cells promises near pollution free localized power generation with an efficiency equal to or exceeding that of even the most efficient central power stations.

  6. Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.

  7. High temperature tubular solid oxide fuel cell development

    SciTech Connect

    Ray, E.R.

    1992-09-01

    Important to the development commercialization of any new technology is a field test program. This is a mutually beneficial program for both the developer and the prospective user. The developer is able to acquire valuable field operating experience that is not available in a laboratory while the user has the opportunity to become familiar with the new technology and gains a working knowledge of it through hands-on experience. Westinghouse, recognizing these benefits, initiated a program in 1986 by supplying a 400 W SOFC generator to Tennessee Valley Authority. This generator operated for approximately 1,760 hours and was constructed of twenty-four 30 cm thick-wall PST cells. In 1987, three, 3 kW SOFC generators were installed and operated at the facilities of the Tokyo Gas Company and the Osaka Gas Company. At Osaka Gas, two generators were used. First a training generator, operated for 2900 hours before it was replaced on a preplanned schedule with the second generator. The second generator operated for 3,600 hours. Tokyo Gas generator was operated for 4,900 hours. These generators had a 98% availability and measured NO{sub x} levels of less than 1.3 ppM. The 3 kW SOFC generators were constructed of 144 36 cm thick-wall PST cells. The 3 kW generators, as was the TVA generator, were fueled with hydrogen and carbon monoxide. The next major milestone in the field unit program was reached in early 1992 with the delivery to The UTILITIES, a consortium of the Kansai Electric Power company, the Tokyo Gas Company, and the Osaka Gas Company, of a natural gas fueled all electric SOFC system. This system is rated at a nominal 25 kW dc with a peak capacity of 40 kW dc. The NO{sub x} was measured at <0.3 ppM (corrected to 15% oxygen). The system consists of 1152 cells (thin-wall PST) of 50 cm active length, manufactured at the PPMF. Cells are contained in two independently controlled and operated generators. 2,300 hours of stable operation has been obtained on the first unit.

  8. High temperature tubular solid oxide fuel cell development

    SciTech Connect

    Ray, E.R.

    1992-01-01

    Important to the development commercialization of any new technology is a field test program. This is a mutually beneficial program for both the developer and the prospective user. The developer is able to acquire valuable field operating experience that is not available in a laboratory while the user has the opportunity to become familiar with the new technology and gains a working knowledge of it through hands-on experience. Westinghouse, recognizing these benefits, initiated a program in 1986 by supplying a 400 W SOFC generator to Tennessee Valley Authority. This generator operated for approximately 1,760 hours and was constructed of twenty-four 30 cm thick-wall PST cells. In 1987, three, 3 kW SOFC generators were installed and operated at the facilities of the Tokyo Gas Company and the Osaka Gas Company. At Osaka Gas, two generators were used. First a training generator, operated for 2900 hours before it was replaced on a preplanned schedule with the second generator. The second generator operated for 3,600 hours. Tokyo Gas generator was operated for 4,900 hours. These generators had a 98% availability and measured NO{sub x} levels of less than 1.3 ppM. The 3 kW SOFC generators were constructed of 144 36 cm thick-wall PST cells. The 3 kW generators, as was the TVA generator, were fueled with hydrogen and carbon monoxide. The next major milestone in the field unit program was reached in early 1992 with the delivery to The UTILITIES, a consortium of the Kansai Electric Power company, the Tokyo Gas Company, and the Osaka Gas Company, of a natural gas fueled all electric SOFC system. This system is rated at a nominal 25 kW dc with a peak capacity of 40 kW dc. The NO{sub x} was measured at <0.3 ppM (corrected to 15% oxygen). The system consists of 1152 cells (thin-wall PST) of 50 cm active length, manufactured at the PPMF. Cells are contained in two independently controlled and operated generators. 2,300 hours of stable operation has been obtained on the first unit.

  9. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    Bushnell, C. L.; Davis, C. L.; Dayton, J. E.; Johnson, C. K.; Katz, M.; Krasij, M.; Kunz, H. R.; Maricle, D. L.; Meyer, A. P.; Pivar, J. C.

    1984-09-01

    A prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive, coal-fired electrical utility central station, or industrial cogeneration power plant was developed. Compressive creep testing of the present anode is continuedl the samples and support the earlier data showing improved creep resistance. Testing to define the operating limits that are suitable for extending the life of nickel oxide cathodes to an acceptable level is continuing. The mechanical characteristics of several one-piece cathode current collector candidates are measured for suitability. Metallographic evaluation of stack separators was initiated. Posttest characterization of surface treated INCO 825 was completed, retort corrosion testing of this material is continuing, potentiostatic immersion testing of alternative single piece cathode current collector materials is initiated. The 20-cell Stack No. 3 progressed from completion and delivery of the Test Plan through Design Review, assembly, and initial heat-up for the start of testing. Manufacture of separator plates for the upcoming 20-cell Stack No. 4 has begun. The primary objective of this follow-on test is stack cost reduction.

  10. Development of improved cathodes for solid oxide fuel cells

    SciTech Connect

    Anderson, H.U.

    1991-03-01

    The University of Missouri-Rolla conducted a 17 month research program focused on the development and evaluation of improved cathode materials for solid oxide fuel cells (SOFC). The objectives of this program were: (1) the development of cathode materials of improved stability in reducing environments; and (2) the development of cathode materials with improved electrical conductivity. The program was successful in identifying some potential candidate materials: Air sinterable (La,Ca)(Cr,Co)O{sub 3} compositions were developed and found to be more stable than La{sub .8}Sr{sub .2}MnO{sub 3} towards reduction. Their conductivity at 1000{degrees}C ranged between 30 to 60 S/cm. Compositions within the (Y,Ca)(Cr,Co,Mn)O{sub 3} system were developed and found to have higher electrical conductivity than La{sub .8}Sr{sub .2}MnO{sub 3} and preliminary results suggest that their stability towards reduction is superior.

  11. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  12. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  13. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Jakupca, Ian J.

    2011-01-01

    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  14. Micro fuel cell

    SciTech Connect

    Zook, L.A.; Vanderborgh, N.E.; Hockaday, R.

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  15. Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development

    NASA Technical Reports Server (NTRS)

    Jakupca, Ian; Burke, Kenneth A.

    2003-01-01

    The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.

  16. Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  17. Simulated coal-gas-fueled molten carbonate fuel cell development program

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  18. NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2011-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.

  19. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  20. Fuel Cell Handbook update

    SciTech Connect

    Owens, W.R.; Hirschenhofer, J.H.; Engleman, R.R. Jr.; Stauffer, D.B.

    1993-11-01

    The objective of this work was to update the 1988 version of DOE`s Fuel Cell Handbook. Significant developments in the various fuel cell technologies required revisions to reflect state-of-the-art configurations and performance. The theoretical presentation was refined in order to make the handbook more useful to both the casual reader and fuel cell or systems analyst. In order to further emphasize the practical application of fuel cell technologies, the system integration information was expanded. In addition, practical elements, such as suggestions and guidelines to approximate fuel cell performance, were provided.

  1. Toward developing a computational capability for PEM fuel cell design and optimization.

    SciTech Connect

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming; Carnes, Brian; Chen, Ken Shuang

    2010-05-01

    In this paper, we report the progress made in our project recently funded by the US Department of Energy (DOE) toward developing a computational capability, which includes a two-phase, three-dimensional PEM (polymer electrolyte membrane) fuel cell model and its coupling with DAKOTA (a design and optimization toolkit developed and being enhanced by Sandia National Laboratories). We first present a brief literature survey in which the prominent/notable PEM fuel cell models developed by various researchers or groups are reviewed. Next, we describe the two-phase, three-dimensional PEM fuel cell model being developed, tested, and later validated by experimental data. Results from case studies are presented to illustrate the utility of our comprehensive, integrated cell model. The coupling between the PEM fuel cell model and DAKOTA is briefly discussed. Our efforts in this DOE-funded project are focused on developing a validated computational capability that can be employed for PEM fuel cell design and optimization.

  2. NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects

    SciTech Connect

    2015-09-01

    This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.

  3. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  4. Fueling dreams of grandeur: Fuel cell research and development and the pursuit of the technological panacea, 1940--2005

    NASA Astrophysics Data System (ADS)

    Eisler, Matthew Nicholas

    The record of fuel cell research and development is one of the great enigmas in the history of science and technology. For years, this electrochemical power source, which combines hydrogen and oxygen to produce electricity and waste water, excited the imaginations of researchers in many countries. Because fuel cells directly convert chemical into electrical energy, people have long believed them exempt from the so-called Carnot cycle limitation on heat engines, which dictates that such devices must operate at less than 100 per cent efficiency owing to the randomization of energy as heat. Fuel cells have thus struck some scientists and engineers as the "magic bullet" of energy technologies. This dissertation explores why people have not been able to develop a cheap, durable commercial fuel cell despite more than 50 years of concerted effort since the end of Second World War. I argue this is so mainly because expectations have always been higher than the knowledge base. I investigate fuel cell research and development communities as central nodes of expectation generation. They have functioned as a nexus where the physical realities of fuel cell technology meet external factors, those political, economic and cultural pressures that create a "need" for a "miracle" power source. The unique economic exigencies of these communities have shaped distinct material practices that have done much to inform popular ideas of the capabilities of fuel cell technology. After the Second World War, the fuel cell was relatively unknown in industrial and governmental science and technology circles. Researchers in most leading industrialized countries, above all the United States, sought to raise the technology's profile through dramatic demonstrations in reductive circumstances, employing notional fuel cells using pure hydrogen and oxygen. Researchers paid less attention to cost and durability, concentrating on increasing power output, a criterion that could be met relatively easily in

  5. Development of electrically conductive DLC coated stainless steel separators for polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuo; Watanabe, Masanori; Toda, Tadao; Fujii, Toshiaki

    2013-06-01

    Polymer electrolyte fuel cell (PEFC) as one of generation devices of electrical power is rapidly expanding the market as clean energy instead of petroleum and atomic energy. Residential fuel cell goes into quantity production and introduction of fuel cell for use in automobiles starts in the year 2015 in Japan. Critical subject for making fuel cell expand is how to reduce cost of fuel cell. In this paper we describe about separator plate which domains large ratio of cost in fuel cell stack. In present time, carbon is used in material of residential fuel cell separator. Metal separators are developed in fuel cell for use in automobiles because of need of mechanical strength at first. In order to make fuel cell expand in market, further cost reduction is required. But the metal separator has problem that by using metal separator contact resistance occurred by metal corrosion increases and catalyst layer and membrane degrade. In recent time we found out to protect from corrosion and dissolution of metals by coating the film of porous free conductive DLC with plasma ion implantation and deposition technology that we have developed. Film of electrically conductive DLC was formed with high speed of 13 μm/hr by ICP plasma, and coating cost breakout was performed.

  6. Convergent development of anodic bacterial communities in microbial fuel cells

    PubMed Central

    Yates, Matthew D; Kiely, Patrick D; Call, Douglas F; Rismani-Yazdi, Hamid; Bibby, Kyle; Peccia, Jordan; Regan, John M; Logan, Bruce E

    2012-01-01

    Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m−2). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source. PMID:22572637

  7. Membrane and MEA Development in Polymer Electrolyte Fuel Cells

    NASA Astrophysics Data System (ADS)

    Trogadas, Panagiotis; Ramani, Vijay

    The polymer electrolyte fuel cell (PEFC) is based on Nafion polymer membranes operating at a temperature of 80°C. The main characteristics (structure and properties) and problems of Nafion-based PEFC technology are discussed. The primary drawbacks of Nafion membranes are poor conductivity at low relative humidities (and consequently at temperatures >100°C and ambient pressure) and large crossover of methanol in direct methanol fuel cell (DMFC) applications. These drawbacks have prompted an extensive effort to improve the properties of Nafion and identify alternate materials to replace Nafion. Polymer electrolyte membranes (PEMs) are classified in modified Nafion, membranes based on functionalized non-fluorinated backbones and acid-base polymer systems. Perhaps the most widely employed approach is the addition of inorganic additives to Nafion membranes to yield organic/inorganic composite membranes. Four major types of inorganic additives that have been studied (zirconium phosphates, heteropolyacids, metal hydrogen sulfates, and metal oxides) are reviewed in the following. DMFC and H2/O2 (air) cells based on modified Nafion membranes have been successfully operated at temperatures up to 120°C under ambient pressure and up to 150°C under 3-5 atm. Membranes based on functionalized non-fluorinated backbones are potentially promising for high-temperature operation. High conductivities have been obtained at temperatures up to 180°C. The final category of polymeric PEMs comprises non-functionalized polymers with basic character doped with proton-conducting acids such as phosphoric acid. The advanced features include high CO tolerance and thermal management. The advances made in the fabrication of electrodes for PEM fuel cells from the PTFE-bound catalyst layers of almost 20 years ago to the present technology are briefly discussed. There are two widely employed electrode designs: (1) PTFE-bound, and (2) thin-film electrodes. Emerging methods include those featuring

  8. The Development of Fuel Cell Technology for NASA's Human Spaceflight Program

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2007-01-01

    My task this morning is to review the history and current direction of fuel cell technology development for NASA's human spaceflight program and to compare it to the directions being taken in that field for The Hydrogen Economy. The concept of "The Hydrogen Economy" involves many applications for fuel cells, but for today's discussion, I'll focus on automobiles.

  9. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  10. Development of Hot Pressing as a Low Cost Processing Technique for Fuel Cell Fabrication

    SciTech Connect

    Sarin, V

    2003-01-14

    Dependable, plentiful, and economical energy has been the driving force for financial, industrial, and political growth in the US since the mid 19th century. For a country whose progress is so deeply rooted in abundant energy and whose current political agenda involves stabilizing world fossil fuel prices, the development of a reliable, efficient and environmentally friendly power generating source seems compulsory. The maturing of high technology fuel cells may be the panacea the country will find indispensable to free itself from foreign dependence. Fuel cells offer an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions. Fuel cells have few moving parts and run almost silently. Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly to electrical energy. Unlike batteries, which store a finite amount of energy, fuel cells will generate electricity continuously, as long as fuel and oxidant are available to the electrodes. Additionally, fuel cells offer clean, efficient, and reliable power and they can be operated using a variety of fuels. Hence, the fuel cell is an extremely promising technology. Over the course of this research, the fundamental knowledge related to ceramic processing, sintering, and hot pressing to successfully hot press a single operational SOFC in one step has been developed. Ceramic powder processing for each of the components of an SOFC has bene tailored towards this goal. Processing parameter for the electrolyte and cathode have been studied and developed until they converted. Several anode fabrication techniques have been developed. Additionally, a novel anode structured has been developed and refined. These individual processes have been cultivated until a single cell SOFC has been fabricated in one step.

  11. Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Civinskas, Kestutis C.

    2004-01-01

    Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.

  12. Seventh Edition Fuel Cell Handbook

    SciTech Connect

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  13. Development of structured polymer electrolyte membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC < 1 meq/g), the composite membranes exhibited excellent dimensional stability in water at elevated temperatures (30-90 °C). Also, the resistance to swelling of these composite membranes in methanol-water mixtures was far better than NafionRTM, and so was the methanol permeability. Another technique explored was blending with non-conductive polymers (poly(ether imide) and poly(ether sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The

  14. HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT

    SciTech Connect

    S.E. Veyo

    1998-09-01

    During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

  15. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect

    Joseph Pierre

    2007-09-30

    This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

  16. NASA's Planned Fuel Cell Development Activities for 2009 and Beyond in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2010-01-01

    NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.

  17. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect

    Joseph F. Pierre

    2006-08-21

    Work performed during the period February 21, 2006 through August 21, 2006 is summarized herein. During this period, efforts were focused on 5 kWe bundle testing, development of on-cell reformation, the conceptual design of an advanced module, and the development of a manufacturing roadmap for cells and bundles. A 5 kWe SOFC system was built and delivered to the Pennsylvania State University; fabrication of a second 5 kWe SOFC for delivery to Montana State University was initiated. Cell testing and microstructural analysis in support of these efforts was also conducted.

  18. Characterization of Thermal and Mechanical Properties of Polypropylene-Based Composites for Fuel Cell Bipolar Plates and Development of Educational Tools in Hydrogen and Fuel Cell Technologies

    ERIC Educational Resources Information Center

    Lopez Gaxiola, Daniel

    2011-01-01

    In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…

  19. Fuel cell

    SciTech Connect

    Struthers, R.C.

    1983-06-28

    An improved fuel cell comprising an anode section including an anode terminal, an anode fuel, and an anolyte electrolyte, a cathode section including a cathode terminal, an electron distributor and a catholyte electrolyte, an ion exchange section between the anode and cathode sections and including an ionolyte electrolyte, ion transfer membranes separating the ionolyte from the anolyte and the catholyte and an electric circuit connected with and between the terminals conducting free electrons from the anode section and delivering free electrons to the cathode section, said ionolyte receives ions of one polarity moving from the anolyte through the membrane related thereto preventing chemical equilibrium in the anode section and sustaining chemical reaction and the generating of free electrons therein, said ions received by the ionolyte from the anolyte release different ions from the ionolyte which move through the membrane between the ionolyte and catholyte and which add to the catholyte.

  20. Development of a 10 kW PEM fuel cell for stationary applications

    SciTech Connect

    Barthels, H.; Mergel, J.; Oetjen, H.F.

    1996-12-31

    A 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) is being developed as part of a long-term energy storage path for electricity in the photovoltaic demonstration plant called PHOEBUS at the Forschungszentrum Julich.

  1. Fuel processors for fuel cell APU applications

    NASA Astrophysics Data System (ADS)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  2. 2009 Fuel Cell Market Report

    SciTech Connect

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  3. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  4. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  5. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    SciTech Connect

    Zia Mirza, Program Manager

    2011-12-06

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  6. Development of the work on fuel cells in the Ministry for Atomic Energy of Russian Federation

    SciTech Connect

    Lubovin, B.Y.; Novitski, E.Z.

    1996-04-01

    This paper describes research on fuel cells in the Russian Federation. The beginning of the practical work on fuel cells in Russia dates back to the 50`s and 60`s when the Ural Electrochemical Plant and the Ural Electromechanical Plant of the Ministry of Medium Machine-Building of the USSR, all Russian Research Institute of the power sources and many other institutes of the Ministry of Electrotechnical Industry of the USSR got to the development of the alkaline fuel cells for the spaceships according to the tasks of the SPC `Energy` and for the submarines on the tasks of the Ministry of Defense.

  7. Advanced Water-Cooled Phosphoric Acid Fuel Cell Development

    SciTech Connect

    Not Available

    1988-01-01

    The initial conceptual design configuration was completed. Baseline on-site electrodes were tested at electric utility conditions in 2 x 2 inch cells. GSB-18P cathodes were fabricated. Design of small area development stack was initiated and long lead time items ordered. Molded cooler thermal cycling tests were initiated. Equipment to evaluate alternative manifold coating processes and materials were procured.

  8. Internal reforming development for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, A. L.

    1987-02-01

    Internal reforming of natural gas within a solid oxide fuel cell (SOFC) should simplify the overall system design and make the SOFC an attractive means for producing electrical power. This program was undertaken to investigate the catalytic properties of nickel cermets, which are prime candidates for SOFC anodes. The initial task in this program was an extensive literature search for information on steam reforming of light hydrocarbons. The second task was to modify and calibrate the reactor systems that were used in the experimental kinetic studies. Two systems were used in this investigation; a continuously stirred tank reactor system (CSTR) and a plug flow reactor system (PFR). In the third task, 16 nickel-zirconia cermets were prepared using four procedures, tape casting, Westinghouse slurry, incorporation of performers, and granulation. The catalytic behavior of three cermets was determined in the fourth task. The reaction was first order with respect to methane and -1.25 for steam. Ethane and propane in the feed did not affect the methane conversion rate. The cermet has a higher initial tolerance for sulfur than standard nickel reforming catalysts. The final task was a mechanistic study of the steam reforming reaction on nickel and nickel-zirconia catalysts.

  9. Development and validation of a two-phase, three-dimensional model for PEM fuel cells.

    SciTech Connect

    Chen, Ken Shuang

    2010-04-01

    The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.

  10. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  11. Microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Kjeang, Erik

    Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the microfluidic fuel cells developed here are targeted to eventual integration with biocatalysts, the contributions of this thesis have more general applicability. The cell architectures are developed and evaluated based on conventional non-biological electrocatalysts. The fuel cells employ co-laminar flow of fuel and oxidant streams that do not require a membrane for physical separation, and comprise carbon or gold electrodes compatible with most enzyme immobilization schemes developed to date. The demonstrated microfluidic fuel cell architectures include the following: a single cell with planar gold electrodes and a grooved channel architecture that accommodates gaseous product evolution while preventing crossover effects; a single cell with planar carbon electrodes based on graphite rods; a three-dimensional hexagonal array cell based on multiple graphite rod electrodes with unique scale-up opportunities; a single cell with porous carbon electrodes that provides enhanced power output mainly attributed to the increased active area; a single cell with flow-through porous carbon electrodes that provides improved performance and overall energy conversion efficiency; and a single cell with flow-through porous gold electrodes with similar capabilities and reduced ohmic resistance. As compared to previous results, the microfluidic fuel cells developed in this work show improved fuel cell performance (both in terms of power density and efficiency). In addition, this dissertation includes the development of an integrated electrochemical velocimetry approach for microfluidic devices, and a computational modeling study of strategic enzyme patterning for microfluidic biofuel cells with consecutive reactions.

  12. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect

    Not Available

    1989-01-01

    Fabrication of repeat parts for small area short stack is underway: 100 electrode substrates and 150 ERP substrates were graphitized, and 30 electrode substrates were run through each manufacturing step. Teflon content and compaction pressure of shop-made electrodes for the small area short stack was optimized based on single cell tests. A single cell with GSB-18P catalyst and 1 mg/cm[sup 2] loading is performing very well; performance is 0.66 V per cell after 1200 h at 300 ASF. 3 integral separator plate configurations have been selected for verification in the upcoming short stack. Bubble pressures over 7 psid have been demonstrated in filler bands applied with a production curtain and coating process. 5 full-size (small area) coolers were molded, and encapsulation development for molded and commercial graphite coolers continued.

  13. Fuel Cell Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  14. Mass transfer in fuel cells

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Developments in the following areas are reported: surface area and pore size distribution in electrolyte matrices, electron microscopy of electrolyte matrices, surface tension of KOH solutions, water transport in fuel cells, and effectiveness factors for fuel cell components.

  15. Internet Fuel Cells Forum

    SciTech Connect

    Sudhoff, Frederick A.

    1996-08-01

    The rapid development and integration of the Internet into the mainstream of professional life provides the fuel cell industry with the opportunity to share new ideas with unprecedented capabilities. The U.S. Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) has undertaken the task to maintain a Fuel Cell Forum on the Internet. Here, members can exchange ideas and information pertaining to fuel cell technologies. The purpose of this forum is to promote a better understanding of fuel cell concepts, terminology, processes, and issues relating to commercialization of fuel cell power technology. The Forum was developed by METC to provide those interested with fuel cell conference information for its current concept of exchanging ideas and information pertaining to fuel cells. Last August, the Forum expanded to an on-line and world-wide network. There are 250 members, and membership is growing at a rate of several new subscribers per week. The forum currently provides updated conference information and interactive information exchange. Forum membership is encouraged from utilities, industry, universities, and government. Because of the public nature of the internet, business sensitive, confidential, or proprietary information should not be placed on this system. The Forum is unmoderated; therefore, the views and opinions of authors expressed in the forum do not necessarily state or reflect those of the U.S. government or METC.

  16. Handbook of fuel cell performance

    SciTech Connect

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  17. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  18. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  19. Fuel Processors for PEM Fuel Cells

    SciTech Connect

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  20. Final Technical Report for the Martin County Hydrogen Fuel Cell Development Project

    SciTech Connect

    Eshraghi, Ray

    2011-03-09

    In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processes must be enhanced to meet the extrusion line’s speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energy’s goal of fuel cell commercialization.

  1. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    Reducing cost and increasing reliability were the technology drivers in both the electric utility and on-site integrated energy system applications. The longstanding barrier to the attainment of these goals was materials. Differences in approaches and their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection, and system design philosophy were discussed.

  2. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  3. PEM regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.

    1993-01-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  4. Development of biologically modified anodes for energy harvesting using microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Ganguli, Rahul; Chmelka, Brad

    2012-06-01

    Biological fuel cells hold promise as an alternative energy source to batteries for unattended ground sensor applications due to the fact that they can be extremely long lived. This lifetime can be extended over batteries by scavenging fuel from the deployed environment. Microbial fuel cells (MFC) are one class of such sources that produce usable energy from small organic compounds (i.e. sugars, alcohols, organic acids, and biopolymers) which can be easily containerized or scavenged from the environment. The use of microorganisms as the anodic catalysts is what makes these systems unique from other biofuel cell designs. One of the main drawbacks of engineering a sensor system powered by an MFC is that power densities and current flux are extremely low in currently reported systems. The power density is limited by the mass transfer of the fuel source to the catalyst, the metabolism of the microbial catalysts and the electron transfer from the organism to the anode. This presentation will focus on the development of a new style of microbially-modified anodes which will increase power density to a level where a practical power source can be engineered. This is being achieved by developing a three dimensional matrix as an artificial, conductive biofilm. These artificial biofilms will allow the capture of a consortium of microbes designed for efficient metabolism of the available fuel source. Also it will keep the microbes close to the electrode allowing ready access by fuel and providing a low resistance passage of the liberated electrons from fuel oxidation.

  5. Development of 50 kW Fuel Processor for Stationary Fuel Cell Applications

    SciTech Connect

    James F. Stevens; Balaji Krishnamurthy; Paolina Atanassova; Kerry Spilker

    2007-08-29

    The objective of the project was to develop and test a fuel processor capable of producing high hydrogen concentration (>98%) with less than ppm quantities of carbon dioxide and carbon monoxide at lower capital cost and higher efficiency, compared to conventional natural gas reformers. It was intended that we achieve our objective by developing simple reactor/process design, and high durability CO2 absorbents, to replace pressure swing adsorption (PSA) or membrane separators. Cost analysis indicated that we would not meet DOE cost goals so the project was terminated before construction of the full scale fuel processor. The work on adsorbent development was focused on the development of calcium oxide-based reversible CO2 absorbents with various microstructures and morphologies to determine the optimum microstructure for long-term reversible CO2 absorption. The effect of powder production process variables was systematically studied including: the final target compositions, the reagents from which the final products were derived, the pore forming additives, the processing time and temperature. The sorbent materials were characterized in terms of their performance in the reversible reaction with CO2 and correlation made to their microstructure.

  6. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  7. Development of a 1 kW polymer electrolyte fuel cell power source

    NASA Astrophysics Data System (ADS)

    Susai, T.; Kawakami, A.; Hamada, A.; Miyake, Y.; Azegami, Y.

    This paper reports on the development of key components, specifications, configuration and operating characteristics of a hydrogen-fueled portable power source with polymer electrolyte fuel cell (PEFC). A 1 kW class fuel cell module operating on an exclusive method of internal humidification was developed for the power source. A dc-ac inverter, in which a general-purpose integrated power module (IPM) was used as a switching device for microprocessor-based power conversion control, was developed to save the cost of generating dc power output from the cell module. The power source supplies full power within 2 min from start-up, and is capable of generating rated 1 kW power for about 3 h and even longer if the cylinders are replaced. This power source has been confirmed to offer a high power generation efficiency of 30% or higher in overall output range, yielding good-quality power with little noise.

  8. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  9. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Baglee, D.; Knowles, M. J.

    2012-05-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  10. Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Bansal, Narottam P.; Dynys, Fred W.; Lang, Jerry; Daniels, Christopher C.; Palko, Joeseph L.; Choi, S. R.

    2004-01-01

    Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications.

  11. Status of commercial phosphoric acid fuel cell system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    In both the electric utility and onsite integrated energy system applications, reducing cost and increasing reliability are the main technology drivers. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, was materials. The differences in approach among the three major participants (United Technologies Corporation, Westinghouse Electric Corporation/Energy Research Corporation, and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  12. Fuel cell cogeneration

    SciTech Connect

    Wimer, J.G.; Archer, D.

    1995-08-01

    The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) sponsors the research and development of engineered systems which utilize domestic fuel supplies while achieving high standards of efficiency, economy, and environmental performance. Fuel cell systems are among the promising electric power generation systems that METC is currently developing. Buildings account for 36 percent of U.S. primary energy consumption. Cogeneration systems for commercial buildings represent an early market opportunity for fuel cells. Seventeen percent of all commercial buildings are office buildings, and large office buildings are projected to be one of the biggest, fastest-growing sectors in the commercial building cogeneration market. The main objective of this study is to explore the early market opportunity for fuel cells in large office buildings and determine the conditions in which they can compete with alternative systems. Some preliminary results and conclusions are presented, although the study is still in progress.

  13. 1986 fuel cell seminar: Program and abstracts

    SciTech Connect

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  14. The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications for Developing Durable Catalysts

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Kou, Rong; Engelhard, Mark H.; Liu, Jun; Wang, Yong; Lin, Yuehe

    2009-01-03

    Studying the corrosion behavior of catalyst support materials is of great significance for understanding the degradation of PEM fuel cell performance and developing durable catalysts. The oxidation of Vulcan carbon black (the most widely-used catalyst support for PEM fuel cells) was investigated using various electrochemical stressing methods (fixed-potential holding vs. potential step cycling), among which the potential step cycling was considered to mimic more closely the real drive cycle operation of vehicle PEM fuel cells. The oxidation of carbon was accelerated under potential step conditions as compared with the fixed-potential holding condition. Increasing potential step frequency or decreasing the lower potential limit in the potential step can further accelerate the corrosion of carbon. The accelerated corrosion of carbon black was attributed to the cycle of consumption/regeneration of some easily oxidized species. These findings are being employed to develop a test protocol for fast screening durable catalyst support.

  15. Development and demonstration flight of a fuel cell system for high-altitude balloons

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Shimada, Takanobu; Ariyama, Yusuke; Fukuzawa, Naoya; Noguchi, Daisuke; Ogawa, Keita; Naito, Hitoshi; Sone, Yoshitsugu; Saito, Yoshitaka

    Proton exchange membrane fuel cell offers higher energy density than the existing battery technologies for high-energy applications, and it is a promising power source for various industries including aerospace vehicles. We have been developing and testing a non-external humidified fuel cell system for high-altitude balloons, which require simple, light, and easy-to-operate power systems. This system consists of three major subsystems-a fuel cell stack, a reactant supply subsystem, and an electrical control subsystem. Ground performance testing in a vacuum chamber simulating the high-altitude vacuum condition was performed before the flight. Then, a demonstration flight of the fuel cell system was launched using a large balloon for verifying its performance under practical high-altitude conditions. Cell voltage variations synchronized with oxygen pressure spikes were observed that were probably caused by condensed product water plugging the flow passages of the back pressure regulator. Flight results indicated that the fuel cell system operated better when water was expelled as vapor, rather than in the liquid form. In addition, a back pressure regulator should be installed to avoid the accumulation of water droplets for realizing a stable performance.

  16. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    SciTech Connect

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  17. Fuel cells seminar

    SciTech Connect

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  18. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  19. Development of planar solid oxide fuel cells for power generation applications

    SciTech Connect

    Minh, N.Q.

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress, improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.

  20. Developing and Implementing a Simple, Affordable Hydrogen Fuel Cell Laboratory in Introductory Chemistry

    ERIC Educational Resources Information Center

    Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong

    2014-01-01

    A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…

  1. Status of molten carbonate fuel cell technology development

    NASA Astrophysics Data System (ADS)

    Parsons, E. L., Jr.; Williams, M. C.; George, T. J.

    The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.

  2. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    SciTech Connect

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  3. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  4. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect

    Not Available

    1989-01-01

    150 electrolyte reservoir plates (ERP's) were carbonized for the small area short stack. A process was developed which allows thin (1--2 mil) matrix to be applied to full-size electrodes using a curtain coater. Full-size cooler samples were molded with and without cooler tube arrays. Two alternative cooler hoses were evaluated and found to be acceptable based on 1400 h testing at simulated conditions.

  5. Fuel Cell Handbook, Fifth Edition

    SciTech Connect

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  6. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  7. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  8. Integrated fuel processor development challenges.

    SciTech Connect

    Ahmed, S.; Pereira, Lee, S. H. D.; Kaun, T.; Krumpelt, M.

    2002-01-09

    In the absence of a hydrogen-refueling infrastructure, the success of the fuel cell system in the market will depend on fuel processors to enable the use of available fuels, such as gasoline, natural gas, etc. The fuel processor includes several catalytic reactors, scrubbers to remove chemical species that can poison downstream catalysts or the fuel cell electrocatalyst, and heat exchangers. Most fuel cell power applications seek compact, lightweight hardware with rapid-start and load- following capabilities. Although packaging can partially address the size and volume, balancing the performance parameters while maintaining the fuel conversion (to hydrogen) efficiency requires careful integration of the unit operations and processes. Argonne National Laboratory has developed integrated fuel processors that are compact and light, and that operate efficiently. This paper discusses some of the difficulties encountered in the development process, focusing on the factors/components that constrain performance, and areas that need further research and development.

  9. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  10. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  11. Development of a hydrogen generator for fuel cells based on the partial oxidation of methane

    SciTech Connect

    Recupero, V.; Torre, T.; Saija, G.; Fiordano, N.

    1996-12-31

    As well known, the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas (SRM). The reaction is endothermic ({Delta}H{sub 298}= 206 kJ/mole) and high H{sub 2}O/CH{sub 4} ratios are required in order to limit coke formation at T higher than 1000 K. Moreover, it is a common practice that the process`s fuel economy is highly sensitive to proper heat fluxes and reactor design (tubular type) and to operational conditions. Efficient heat recovery can be accomplished only on large scale units (> 40,000 Nm{sup 3}/h), far from the range of interest of {open_quotes}on-site{close_quotes} fuel cells. Even if, to fit the needs of the fuel cell technology, medium sized external reforming units (50-200 Nm{sup 3} H{sub 2}/h) have been developed and/or planned for integration with both the first and the second generation fuel cells, amelioration in their heat recovery and efficiency is at the expense of an increased sophistication and therefore at higher per unit costs. In all cases, SRM requires an extra {open_quotes}fuel{close_quotes} supply (to substain the endothermicity of the reaction) in addition to stoichiometric requirements ({open_quotes}feed{close_quotes} gas). A valid alternative could be a process based on catalytic partial oxidation of CH{sub 4} (CSPOM), since the process is mildly exothermic ({Delta}H{sub 298}= -35.6 kJ/mole) and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed.

  12. Develop and test fuel cell powered on-site integrated total energy systems

    NASA Astrophysics Data System (ADS)

    Kaufman, A.; Werth, J.

    1984-10-01

    Work has been performed leading toward the development of a 50kW on-site integrated energy system. A sub-scale 5kW system was constructed and tested in the steady-load (with shutdowns) and transient modes. A parallel effort has been conducted to develop the full-size sub-systems for the on-site system; these include the fuel cell stack, a methanol processor, and a d.c.-a.c. power conditioner. Stack technology development activities have been carried out to improve the performance, cost and reliability of stack components and hardware. In the fuel processing area, screening tests have been conducted for various methanol steam-reforming catalysts, and the preferred catalysts have been subjected to extended testing. Application-related work has been pursued largely under subcontracts. A study has been completed in which the applicability of on-site fuel cell cogeneration systems to various building types was analyzed and the potential economic attractiveness ascertained. The overall system was analyzed in terms of its operating characteristics at part load and its response to transients. Preferred heating, ventilating, and air conditioning approaches for various building types using fuel cell cogeneration units are determined.

  13. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system. The program was to be accomplished in a 13 month period.

  14. Development of a 10 kW hydrogen/air PEM fuel cell stack

    SciTech Connect

    Barbir, F.; Marken, F.; Bahar, B.; Kolde, J.A.

    1996-12-31

    PEM fuel cells have potential for meeting automotive industry`s power density and cost requirements, such as 0.8 kW/kg, 0.8 kW/1 and $30/kW. For automotive applications, the fuel cell power requirements are in the 10-100 kW range. As the first phase in reaching this power output, a 10 kW PEM fuel cell stack has been developed at Energy Partners. The stack consists of 50 cells with relatively large active area of 780 cm{sup 2}. The main feature of the stack is the advanced membrane electrode assembly (MEA) developed by W.L. Gore & Associates, Inc. These novel MEAs consist of a thin composite perfluorinated polymer membrane with a catalyst layer with platinum loading of 0.3 Mg/cm{sup 2} on each side. The combination of reinforcement and thinness provides high membrane conductance and improved water distribution in the operating cell. In addition, the membrane has excellent mechanical properties (particularly when it is hydrated) and dimensional stability.

  15. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  16. Solid oxide fuel cells developed by the sol-gel process for oxygen generation

    NASA Astrophysics Data System (ADS)

    Finch, Joshua S.

    Electrochemical fuel cells convert chemical energy directly to electrical energy through the reaction of a fuel and an oxidant. Solid oxide fuel cells (SOFC) are solid-state devices that operate at temperatures around 800°C, using a solid oxygen electrolyte. The goal of this thesis is to prepare a defect-free solid oxygen electrolyte by a sol-gel process that is capable of (a) functioning in a fuel cell; and (b) producing measurable oxygen when operated as an oxygen generator. Sol-gel processing was chosen for membrane development because it offers a means of applying high-purity layers with controlled doping and a variety of geometries. In this study, the sol-gel process was used to produce yttria-stabilized zirconia (YSZ) electrolyte membranes as well as the electrodes required for an operational fuel cell. Zirconium oxychloride (ZOC) was used as the precursor material for the electrolyte. The YSZ solution was prepared by mixing yttrium nitrate and ZOC in a 50/50 ETOH and water solvent. The reaction was catalyzed with 1.5M NH4OH. Viscosity and solution application techniques were varied to monitor the effect on membrane development. The YSZ layer was sintered to full density. The sol-gel process was used to synthesize supported lanthanum strontium manganate (LSM) electrodes separated by a YSZ electrolyte. The LSM solution was made by mixing strontium nitrate, lanthanum chloride, and manganese acetate solutions. The LSM layers were sintered but were porous. After the membranes were assembled by successive layering and sintering, the membranes and completed fuel cells were characterized using TGA, XRD, FE-SEM, a gas pressurization technique, and electrochemical testing. The YSZ membrane exhibited a stable tetragonal crystal phase and formed a triple phase boundary (TPB) with the cathode. The three phases are the electrode, the electrolyte, and air. Electrochemical testing showed successful membrane development. Although oxygen production was not measured

  17. Fuel cells feasibility

    NASA Technical Reports Server (NTRS)

    Schonfeld, D.; Charng, T.

    1981-01-01

    The technical and economic status of fuel cells is assessed with emphasis on their potential benefits to the Deep Space Network. The fuel cell, what it is, how it operates, and what its outputs are, is reviewed. Major technical problems of the fuel cell and its components are highlighted. Due to these problems and economic considerations it is concluded that fuel cells will not become commercially viable until the early 1990s.

  18. Research development and demonstration of a fuel cell/battery powered bus system. Annual report, January 1--December 31, 1994

    SciTech Connect

    Wimmer, R.

    1995-01-01

    This report describes the progress in the Georgetown University research, development and demonstration project of a fuel cell/battery powered bus system. The topics addressed in the report include demonstrations, vehicle design and application analysis, technology transfer activities, coordination and monitoring of system design and integration contractor, fuel cell bus test program, current problems, work planned, and manpower, cost and schedule reports.

  19. Development of molten carbonate fuel cell technology at M-C Power Corporation

    SciTech Connect

    Dilger, D.

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  20. Fuel cell arrangement

    DOEpatents

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  1. Fuel cell arrangement

    DOEpatents

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  2. A membraneless alkaline direct liquid fuel cell (DLFC) platform developed with a catalyst-selective strategy

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Pascual, Emilio J.; Wauson, Joshua C.; Manthiram, Arumugam

    2016-11-01

    With a logical management of the catalyst selectivity, we present a scalable, membraneless alkaline direct liquid fuel cell (DLFC) platform. The uniqueness of this innovation is that the inexpensive (non-platinum) cathode catalysts, based on strongly coupled transition-metal-oxide nanocrystals and nano-structured carbon materials (e. g., NiCo2O4 nano-particles on a nitrogen-doped graphene and MnNiCoO4 nano-particles on a nitrogen-doped multi-wall carbon nanotube), exhibit high activity for the oxygen reduction reaction (ORR) but without activity for the anode fuel oxidation reaction (FOR). Therefore, operation of the DLFCs allows the anode fuel to freely enter the cathode. This strategy avoids the reliance on expensive or difficult-to-develop cation- or anion-exchange membranes and circumvents the scalability concerns of the conventional membraneless DLFCs that are operated under a laminar-flow principle. With proper catalyst selectivity, a variety of organic liquids can be used as anode fuels. The high power density delivered by the membraneless DLFCs with inexpensive components and safe fuels can enable the development of not only small-scale portable power sources but also large-scale energy generation systems for transportation and stationary storage.

  3. Study and development of sulfated zirconia based proton exchange fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Kemp, Brittany Wilson

    With the increasing consumption of energy, fuel cells are among the most promising alternatives to fossil fuels, provided some technical challenges are overcome. Proton exchange membrane fuel cells (PEMFCs) have been investigated and improvements have been made, but the problem with NafionRTM, the main membrane for PEMFCs, has not been solved. NafionRTM restricts the membranes from operating at higher temperatures, thus preventing them from working in small electronics. The problem is to develop a novel fuel cell membrane that performs comparably to NafionRTM in PEMFCs. The membranes were fabricated by applying sulfated zirconia, via template wetting, to porous alumina membranes. The fabricated membranes showed a proton conductivity of 0.016 S/cm in comparison to the proton conductivity of Nafion RTM (0.05 S/cm). Both formic acid and methanol had a lower crossover flux through the sulfated zirconia membranes (formic acid- 2.89x10 -7 mols/cm2s and methanol-1.78x10-9 mols/cm2s) than through NafionRTM (formic acid-2.03x10 -8 mols/cm2s methanol-2.42x10-6 mols/cm 2s), indicating that a sulfated zirconia PEMFC may serve as a replacement for NafionRTM.

  4. Develop and test fuel cell powered on site integrated total energy sysems: Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1986-01-01

    A 25-cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 8300 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests have been carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. A 25kW stack containing 175 cells of the same size and utilizing a technology base representative of the 25-cell stacks has been constructed and is undergoing initial testing. A third 4kW stack is being prepared, and this stack will incorporate several new technology features.

  5. Materials and design development for bipolar/end plates in fuel cells

    NASA Astrophysics Data System (ADS)

    Kumar, Atul; Reddy, Ramana G.

    Bipolar/end plate is one of the most important and costliest components of the fuel cell stack and accounts to more than 80% of the total weight of the stack. In the present work, we focus on the development of alternative materials and design concepts for these plates. A prototype one-cell polymer electrolyte membrane (PEM) fuel cell stack made out of SS-316 bipolar/end plate was fabricated and assembled. The use of porous material in the gas flow-field of bipolar/end plates was proposed, and the performance of these was compared to the conventional channel type of design. Three different porous materials were investigated, viz. Ni-Cr metal foam (50 PPI), SS-316 metal foam (20 PPI), and the carbon cloth. It was seen that the performance of fuel cell with Ni-Cr metal foam was highest, and decreased in the order SS-316 metal foam, conventional multi-parallel flow-field channel design and carbon cloth. This trend was explained based on the effective permeability of the gas flow-field in the bipolar/end plates. The use of metal foams with low permeability values resulted in an increased pressure drop across the flow-field which enhanced the cell performance.

  6. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Not Available

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  7. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  8. Development of gold alloy catalyst cathode for alkaline electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Freed, M. S.; Lawrance, R. J.

    1975-01-01

    A program for the development of improved catalyst and Teflon-bonded electrode structures using this improved catalyst is described, for use in fuel cell cathodes. It was found that Au-Pt was superior to the traditional platinum black as a catalyst. The impetus to the program was provided by the discovery that a life-limiting mechanism on the old catalyst was the gradual dissolution of platinum from the cathode and subsequent redeposition in the electrolyte-containing matrix.

  9. Characterization and development of a new ceramic electrolyte for fuel cell applications

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This work consisted of research directed toward characterization and development of new solid electrolyte materials that are potentially superior to other solid electrolyte materials currently under development (such as yttria-stabilized zirconia). The solid electrolyte technology described herein is based on new ceramic materials generally described as bismuth oxide doped with niobium or yttrium oxides that were exclusively licensed to Solid-State Fuel Cells, Inc. by CeramPhysics, Inc. The technology is also based on further material, cell, and stack technology concepts and manufacturing methods that were earlier reduced to practice by Solid State Fuel Cells, Inc., and which are, therefore, proprietary to the Company. In this report, a presentation of the overall program background is provided in Section 2.0. This includes a technical discussion of the technology in the context of the current state of the art. The task work description for the applicable portion of Phase 1 is presented in Section 3.0. Specifically, Phase 1-A comprises the following elements: electrolyte materials development; testing of electrolyte stability under a reducing environment; development of cell electrodes; test fixtures design and facility erection; and preliminary coupon cell tests.

  10. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.

  11. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    SciTech Connect

    1996-01-01

    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  12. Hybrid Fuel Cell Technology Overview

    SciTech Connect

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  13. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  14. NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock

    2011-01-01

    At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.

  15. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  16. Orbiter fuel cell improvement assessment

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1981-01-01

    The history of fuel cells and the theory of fuel cells is given. Expressions for thermodynamic and electrical efficiencies are developed. The voltage losses due to electrode activation, ohmic resistance and ionic diffusion are discussed. Present limitations of the Orbiter Fuel Cell, as well as proposed enhancements, are given. These enhancements are then evaluated and recommendations are given for fuel cell enhancement both for short-range as well as long-range performance improvement. Estimates of reliability and cost savings are given for enhancements where possible.

  17. Development and characterization of a 280 cm2 vanadium/oxygen fuel cell

    NASA Astrophysics Data System (ADS)

    Noack, Jens; Cremers, Carsten; Bayer, Domnik; Tübke, Jens; Pinkwart, Karsten

    2014-05-01

    A vanadium/oxygen fuel cell with an active area of 280 cm2 has been developed. The cell consisted of two membranes with two half-cells and an intermediate chamber. The maximum achieved power density was 23 mW cm-2 at 0.56 V with lambda air = 3 and a 1.6 M V2+ solution at room temperature. The average discharge power density was 19.6 mW cm-2 at a constant current density of 40 mA cm-2 with an average voltage efficiency of 33%. The fuel based energy density was 18.2% of the theoretical value with 11.8 Wh L-1. In comparison with a similarly constructed 50 cm2 cell, both achieved similar performance levels. An analysis using the half-cell potential profiles and by means of impedance spectroscopy revealed that, as for the 50 cm2 cell, the low rate of oxygen reduction reaction significantly affected the performance of the cell. Thus gives potential for the optimization of the cathode reaction and a reduction in the ohmic resistances potential for higher power densities.

  18. Development of sensors and sensing technology for hydrogen fuel cell vehicle applications

    SciTech Connect

    Brosha, Eric L; Sekhar, Praveen K; Mukundan, Rangchary; Williamson, Todd L; Barzon, Fernando H; Woo, Leta Y; Glass, Robert S

    2010-01-01

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features.

  19. Development of a polymer fuel cell system for naval surface ship applications

    SciTech Connect

    Schmal, D.; Kluiters, C.E.; Barendregt, I.P.

    1996-12-31

    In the framework of the development of new generations of surface ships, the Royal Netherlands Navy is studying the option of the all-electric ship concept. Background is the growing demand of electric power on board of naval ships for various services (including weapons and sensors). Important features of such an all-electric ship concept are decentralized electric energy generation and storage. In such an all-electric ship concept, fuel cells are expected to play an important role in the future, not only for reasons of energy efficiency and low emissions, but also because of their potential military advantages. Especially polymer electrolyte fuel cell systems appear to be very interesting for this application.

  20. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2006-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.

  1. Development and evaluation of portable and wearable fuel cells for soldier use

    NASA Astrophysics Data System (ADS)

    Thampan, T.; Shah, D.; Cook, C.; Novoa, J.; Shah, S.

    2014-08-01

    A number of fuel cell systems have been recently developed to meet the U.S. Army's soldier power requirements. The operation and performance of these systems are discussed based on laboratory results and limited soldier evaluation. The systems reviewed are primarily intended for soldier use in an austere environment with minimum access to resupply and vehicular transportation. These applications require high power and energy density sources that are portable (300 W) and wearable (20 W) to minimize the soldier's load burden. Based on soldier field evaluations of portable fuel cell systems, improvements in power density and compatibility with logistical fuels are required to be successfully deployed. For soldier worn applications, a novel chemical hydride system has shown significant advances in power and energy density while maintaining a small form factor. The use of a high energy dense fuel cartridge (800 Wh kg-1) based on AlH3 (Alane) thermolysis, allows a power density of (28 W kg-1) which offers promising weight savings compared to the standard military batteries.

  2. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    SciTech Connect

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well

  3. Advanced fuel cell development. Progress Report, April-June 1980. [LiAlO/sub 2/

    SciTech Connect

    Pierce, R.D.; Arons, R.M.; Dusek, J.T.; Fraioli, A.V.; Kucera, G.H.; Poeppel, R.B.; Sim, J.W.; Smith, J.L.

    1980-11-01

    Advanced fuel cell research and development activities at Argonne National Laboratory (ANL) during the period April-June 1980 are described. These efforts have been directed toward understanding and improving components of molten carbonate fuel cells and have included operation of a 10-cm square cell. Studies have continued on the development of electrolyte structures (LiAlO/sub 2/ and Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/). This effort is being concentrated on the preparation of sintered LiAl0/sub 2/ as electrolyte support. Tape casting is presently under investigation as a method for producing green bodies to be sintered; this technique may be an improvement over cold pressing, which was used in the past to produce green bodies. The transition temperature for the ..beta..- to ..gamma..-LiAlO/sub 2/ allotropic transformation is being determined using differential thermal analysis. Work is continuing on the development of preoxidized, prelithiated NiO cathodes. Two techniques, one of which is simpler than the other, have been developed to fabricate plates of Li/sub 0/ /sub 05/Ni/sub 0/ /sub 95/O. In addition, electroless nickel plating is being investigated as a means of providing corrosion protection to structural hardware. To improve its cell testing capability, ANL has constructed a device for improved resistance measurements by the current-interruption technique.

  4. Fuel cell generator

    DOEpatents

    Isenberg, Arnold O.

    1983-01-01

    High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

  5. Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems

    SciTech Connect

    Lukas, Michael

    2014-03-24

    This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and

  6. RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint

    SciTech Connect

    Telias, G.; Day, K.; Dietrich, P.

    2011-01-01

    Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

  7. Advanced-fuel-cell development. Progress report, October-December 1980

    SciTech Connect

    Pierce, R D; Arons, R M; Dusek, J T; Fraioli, A V; Kucera, G H; Sim, J W; Smith, J L

    1982-06-01

    This report describes the fuel cell research and development activities at Argonne National Laboratory (ANL) during the period October through December 1980. These efforts have been directed toward (1) developing alternative concepts for components of molten carbonate fuel cells, and (2) improving understanding of component behavior. The principal focus has been on development of ..gamma..-LiAlO/sub 2/ sinters as electrolyte structures. Green bodies were prepared by tape casting and then sintering ..beta..-LiAlO/sub 2/; this has produced ..gamma..-LiAlO/sub 2/ sinters of 69% porosity. In addition, a cathode prepared by sintering lithiated nickel oxide was tested in a 10-cm square cell. Although the bimodal pore distribution in the cathode successfully provided agglomerates flooded with electrolyte and open pores for gas passage, the cathode dimensional variations prevented good contact with the tile, which was stiffer than normal. The tile was prepared using an improved synthesis procedure, which resulted in high-surface-area ..gamma..-LiAlO/sub 2/ particles; but, because the carbonate content was the same as used in previous tests, the tile was less compliant. The cell had excellent seals because dimensional changes associated with in situ cathode reactions were eliminated.

  8. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  9. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  10. Zirconia fuel cells and electrolyzers

    SciTech Connect

    Isaacs, H.S.

    1980-01-01

    A review of the historical development, operation, and problems of solid oxide electrolyte fuel cells and electrolyzers is given. The thermodynamic principles of operation are reviewed, and the overvoltage losses during operation of fuel cells and steam electrolyzers are discussed including physical factors and electrochemical factors. (WHK)

  11. A general approach to develop reduced order models for simulation of solid oxide fuel cell stacks

    SciTech Connect

    Pan, Wenxiao; Bao, Jie; Lo, Chaomei; Lai, Canhai; Agarwal, Khushbu; Koeppel, Brian J.; Khaleel, Mohammad A.

    2013-06-15

    A reduced order modeling approach based on response surface techniques was developed for solid oxide fuel cell stacks. This approach creates a numerical model that can quickly compute desired performance variables of interest for a stack based on its input parameter set. The approach carefully samples the multidimensional design space based on the input parameter ranges, evaluates a detailed stack model at each of the sampled points, and performs regression for selected performance variables of interest to determine the responsive surfaces. After error analysis to ensure that sufficient accuracy is established for the response surfaces, they are then implemented in a calculator module for system-level studies. The benefit of this modeling approach is that it is sufficiently fast for integration with system modeling software and simulation of fuel cell-based power systems while still providing high fidelity information about the internal distributions of key variables. This paper describes the sampling, regression, sensitivity, error, and principal component analyses to identify the applicable methods for simulating a planar fuel cell stack.

  12. Development of novel proton exchange membrane fuel cells using stamped metallic bipolar plates

    NASA Astrophysics Data System (ADS)

    Jung, Shiauh-Ping; Lee, Chun-I.; Chen, Chi-Chang; Chang, Wen-Sheng; Yang, Chang-Chung

    2015-06-01

    This study presents the development of novel proton exchange membrane fuel cells using stamped metallic bipolar plates. To achieve uniformly distributed and low pressure-drop flow fields within fuel cells, a novel bipolar plate with straight channels is designed and verification of a fuel-cell short stack using this bipolar plate is performed. In the experiments, low-temperature and low-humidity operations and high-temperature and high-humidity operations are adopted to evaluate effects of stack temperature and inlet relative humidity on performance at various outlet pressures. Experimental results show that under low-temperature and low-humidity operations, increasing the outlet pressure enhances stack performance and reduces performance differences between various stack temperatures. Under high-temperature and high-humidity operations, stack performance increases with increasing outlet pressures, while the extent of their increase becomes smaller. Compared to low-temperature and low-humidity operations, high-temperature and high-humidity operations have better electrochemical reactions and membrane hydration and, thus, better stack performance. In this study, the operation with a stack temperature of 80 °C and outlet pressure of 4 atm produces the best performance of 1100 mA cm-2 at 0.646 V.

  13. Center for Fuel Cell Research and Applications development phase. Final report

    SciTech Connect

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

  14. 2009 Fuel Cell Market Report, November 2010

    SciTech Connect

    Not Available

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  15. Development of an advanced bond coat for solid oxide fuel cell interconnector applications

    NASA Astrophysics Data System (ADS)

    Yeh, An-Chou; Chen, Yu-Ming; Liu, Chien-Kuo; Shong, Wei-Ja

    2015-11-01

    An advanced bond coat has been developed for solid oxide fuel cell interconnector applications; a low thermal expansion superalloy has been selected as the substrate, and the newly developed bond coat is applied between the substrate and the LSM top coat. The bond coat composition is designed to be near thermodynamic equilibrium with the substrate to minimize interdiffusion with the substrate while providing oxidation protection for the substrate. The bond coat exhibits good oxidation resistance, a low area specific resistance, and a low thermal expansion coefficient at 800 °C; experimental results indicate that interdiffusion between the bond coat and the substrate can be hindered.

  16. Status of commercial phosphoric acid fuel cell power plant system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1987-01-01

    A technology development and commercial feasibility evaluation is presented for phosphoric acid fuel cells (PAFCs) applicable to electric utility operations. The correction of identified design deficiencies in the control card and water treatment subsystems is projected to be able to substantially increase average powerplant availability from the 63 percent achieved in recent field tests of a PAFC system. Current development work is proceeding under NASA research contracts at the output levels of a multimegawatt facility for electric utility use, a multikilowatt on-site integrated energy generation facility, and advanced electrocatalysts applicable to PAFCs.

  17. Molten carbonate fuel cell product development test. Annual report, October 1992--September 1993

    SciTech Connect

    Not Available

    1993-12-01

    Advanced fuel cell active components have been developed and scaled up from laboratory scale to commercial scale. Full width components of both the stabilized nickel cathodes and the low chrome anodes have been successfully cast on M-C Power`s production tape caster. An improved design for a fuel cell separator plate has been developed. The improved design meets the goals of lower cost and manufacturing simplicity, and addresses performance issues of the current commercial area plate. The engineering that the Bechtel Corporation has completed for the MCFC power plant includes a site design, a preliminary site layout, a Process Flow Diagram, and specification for the procurement of some of the major equipment items. Raw materials for anode and cathode components were ordered and received during the first half of 1993. Tape casting of anodes was started in late summer and continued through August. In addition to the technical progress mentioned above, an environment assessment was prepared in compliance with the National Environmental Policy Act of 1969 (NEPA). As a result, the PDT has received a categorical exclusion from the Air Pollution Control District permit requirements. The PDT is configured to demonstrate the viability of natural gas-fueled MCFC for the production of electricity and thermal energy in an environmentally benign manner for use in commercial and industrial applications.

  18. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2006-01-01

    NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.

  19. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in fuel cell membrane electrode assembly research and development. Work was performed by the Hydrogen Technologies and Systems Center and the National Center for Photovoltaics.

  20. Development of a Space-Rated Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Power systems for human spacecraft have historically included fuel cells due to the superior energy density they offer over battery systems depending on mission length and power consumption. As space exploration focuses on the evolution of reusable spacecraft and also considers planetary exploration power system requirements, fuel cells continue to be a factor in the potential system solutions.

  1. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of a solid polymer electrolyte fuel cell development program are summarized. A base line design was defined, and materials and components of the base line configuration were fabricated and tested. Concepts representing base line capability extensions in the areas of life, power, specific weight and volume, versatility of operation, field maintenance, and thermal control were identified and evaluated. Liaison and coordination with space shuttle contractors resulted in the exchange of engineering data.

  2. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    PubMed

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  3. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    PubMed Central

    Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432

  4. Molten carbonate fuel cell

    DOEpatents

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  5. Molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Smith, James L.

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  6. Commercializing fuel cells: managing risks

    NASA Astrophysics Data System (ADS)

    Bos, Peter B.

    Commercialization of fuel cells, like any other product, entails both financial and technical risks. Most of the fuel cell literature has focussed upon technical risks, however, the most significant risks during commercialization may well be associated with the financial funding requirements of this process. Successful commercialization requires an integrated management of these risks. Like any developing technology, fuel cells face the typical 'Catch-22' of commercialization: "to enter the market, the production costs must come down, however, to lower these costs, the cumulative production must be greatly increased, i.e. significant market penetration must occur". Unless explicit steps are taken to address this dilemma, fuel cell commercialization will remain slow and require large subsidies for market entry. To successfully address this commercialization dilemma, it is necessary to follow a market-driven commercialization strategy that identifies high-value entry markets while minimizing the financial and technical risks of market entry. The financial and technical risks of fuel cell commercialization are minimized, both for vendors and end-users, with the initial market entry of small-scale systems into high-value stationary applications. Small-scale systems, in the order of 1-40 kW, benefit from economies of production — as opposed to economies to scale — to attain rapid cost reductions from production learning and continuous technological innovation. These capital costs reductions will accelerate their commercialization through market pull as the fuel cell systems become progressively more viable, starting with various high-value stationary and, eventually, for high-volume mobile applications. To facilitate market penetration via market pull, fuel cell systems must meet market-derived economic and technical specifications and be compatible with existing market and fuels infrastructures. Compatibility with the fuels infrastructure is facilitated by a

  7. The Role of Innovation Regimes and Policy for Creating Radical Innovations: Comparing Some Aspects of Fuel Cells and Hydrogen Technology Development with the Development of Internet and GSM

    ERIC Educational Resources Information Center

    Godoe, Helge

    2006-01-01

    Telegraphy, the distant ancestor of Internet and GSM (Global System for Mobile Communications), was invented by Samuel Morse in 1838. One year later, William Grove invented the fuel cell. Although numerous highly successful innovations stemming from telegraphy may be observed, the development of fuel cells has been insignificant, slow, and erratic…

  8. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  9. An update of ERC`s carbonate fuel cell development program

    SciTech Connect

    Farooque, M.; Bernard, R.; Doyon, J.; Paetsch, L.; Patel, P.; Skok, A.; Yuh, C.; Steinfield, G.; O`Shea, T.

    1992-09-01

    Energy Research Corporation`s molten carbonate fuel goals are commericalization of the MW-class natural gas units and 100 MW-class coal gas/natural gas dual fuel units (long-term). Accomplishments have been made in stack height scale-up, issues relevant to attaining a long useful life for the carbonate fuel cell have been resolved, and organizational and financial aspects of power plant demonstration have been addressed. 10 figs, 7 refs. (DLC)

  10. Fuel Cell Seminar, 1992: Program and abstracts

    SciTech Connect

    Not Available

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  11. Fuel Cell Seminar, 1992: Program and abstracts

    NASA Astrophysics Data System (ADS)

    1992-03-01

    This year's theme, 'Fuel Cells: Realizing the Potential,' focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  12. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  13. Operando fuel cell spectroscopy

    NASA Astrophysics Data System (ADS)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  14. World wide IFC phosphoric acid fuel cell implementation

    SciTech Connect

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  15. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  16. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A. Michael; Draper, Robert

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  17. Unitized Regenerative Fuel Cell System Dryer-Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2003-01-01

    A Unitized Regenerative Fuel Cell (URFC) Energy Storage System is being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses regenerative gas dryers/humidifiers that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the URFC system. As the gas storage tanks cool down during URFC charging the regenerative gas dryers/humidifiers dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFC discharging, the regenerative gas dryers/humidifiers humidify the hydrogen and oxygen gases used by fuel cell. An analytical model was developed to simulate the URFC system's regenerative gas dryers/humidifiers. The model is in the form of an EXCEL@ worksheet that allows the investigation of the regenerative gas dryers/humidifier performance as a function of time and position within the regenerative gas dryers/humidifiers, as well as other key system variables. Finite Element Analysis (FEA) modeling of the regenerative gas dryers/humidifier and gas storage tank wall was also done to analyze spatial temperature distribution within the regenerative gas dryers/humidifiers and the localized tank wall. Test results obtained from the testing of the regenerative gas dryers/humidifiers in a thermal vacuum environment were used to corroborate the analyses.

  18. Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)

    SciTech Connect

    Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

    2005-05-01

    Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

  19. Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions

    NASA Astrophysics Data System (ADS)

    Hoberecht, Mark A.; Pham, Nang T.

    2005-06-01

    Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch

  20. Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Pham, Nang T.

    2005-01-01

    Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch

  1. Fuel cells: Operating flexibly

    NASA Astrophysics Data System (ADS)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  2. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  3. Tilted fuel cell apparatus

    DOEpatents

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  4. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6

  5. Navy fuel cell demonstration project.

    SciTech Connect

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  6. Advanced water-cooled phosphoric acid fuel cell development. Final report

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  7. Development and design of experiments optimization of a high temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor

    NASA Astrophysics Data System (ADS)

    Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan

    In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.

  8. Fuel economy of hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.; Kumar, R.

    On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5-2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor-expander module) are critical.

  9. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    PubMed

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells.

  10. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    PubMed

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells. PMID:23987340

  11. Fuel cell stack arrangements

    DOEpatents

    Kothmann, Richard E.; Somers, Edward V.

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  12. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed

    Chouler, Jon; Di Lorenzo, Mirella

    2015-07-16

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.

  13. Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications

    SciTech Connect

    McTaggart, Paul

    2004-12-31

    In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

  14. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed Central

    Chouler, Jon; Di Lorenzo, Mirella

    2015-01-01

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries. PMID:26193327

  15. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.

    2005-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.

  16. Fuel cell water transport

    DOEpatents

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  17. Rejuvenation of automotive fuel cells

    DOEpatents

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  18. Micro-Tubular Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.

    2004-01-01

    Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.

  19. Fuel cell technology for prototype logistic fuel cell mobile systems

    SciTech Connect

    Sederquist, R.A.; Garow, J.

    1995-08-01

    Under the aegis of the Advanced Research Project Agency`s family of programs to develop advanced technology for dual use applications, International Fuel Cells Corporation (IFC) is conducting a 39 month program to develop an innovative system concept for DoD Mobile Electric Power (MEP) applications. The concept is to integrate two technologies, the phosphoric acid fuel cell (PAFC) with an auto-thermal reformer (ATR), into an efficient fuel cell power plant of nominally 100-kilowatt rating which operates on logistic fuels (JP-8). The ATR fuel processor is the key to meeting requirements for MEP (including weight, volume, reliability, maintainability, efficiency, and especially operation on logistic fuels); most of the effort is devoted to ATR development. An integrated demonstration test unit culminates the program and displays the benefits of the fuel cell system, relative to the standard 100-kilowatt MEP diesel engine generator set. A successful test provides the basis for proceeding toward deployment. This paper describes the results of the first twelve months of activity during which specific program aims have remained firm.

  20. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  1. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    SciTech Connect

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  2. Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob

    2004-01-01

    Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS

  3. Fuel Cell Research at NASA GRC

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    An overview of NASA GRC (Glenn Research Center) initiatives and challenges in fuel cell technology. The research and development of fuel cells and regenerative fuel cell systems for a wide variety of applications, including earth-based and planetary aircraft, spacecraft, planetary surface power, and terrestrial use are discussed.

  4. In situ PEM fuel cell water measurements

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Davey, John R; Spendalow, Jacob S

    2008-01-01

    Efficient PEM fuel cell performance requires effective water management. The materials used, their durability, and the operating conditions under which fuel cells run, make efficient water management within a practical fuel cell system a primary challenge in developing commercially viable systems. We present experimental measurements of water content within operating fuel cells. in response to operational conditions, including transients and freezing conditions. To help understand the effect of components and operations, we examine water transport in operating fuel cells, measure the fuel cell water in situ and model the water transport within the fuel cell. High Frequency Resistance (HFR), AC Impedance and Neutron imaging (using NIST's facilities) were used to measure water content in operating fuel cells with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable GDL properties. Ice formation in freezing cells was also monitored both during operation and shut-down conditions.

  5. Molten carbonate fuel cell (MCFC) product development test. Annual report, September 1993--September 1994

    SciTech Connect

    1995-02-01

    M-C Power Corporation will design, fabricate, install, test and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location at the Naval Air Station Miramar, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: Inverter, Reformer, Desulfurization Vessels, Hot Gas Recycle Blower, Heat Recovery Steam Generator, and Recycle Gas Cooler. SDG and E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  6. High-temperature solid oxide fuel cell (SOFC) generator development project: Environmental Assessment

    SciTech Connect

    Not Available

    1991-08-01

    The proposed project involves research, development, fabrication, and testing of solid oxide fuel cells/generators. All of the work, with the exception of various SOFC generator tests, would be conducted at two existing permitted Westinghouse facilities in the greater metropolitan Pittsburgh, Pennsylvania area. The DOE has prepared this Environmental Assessment (EA). This site-specific analysis addresses the two existing permitted Westinghouse facilities. The sources of information for this EA include the following: the technical proposal submitted as part of the assistance application by the Westinghouse Electric Corporation; discussions with the Westinghouse staff and information provided on the sites to be utilized; and site visits during work conducted under the prior Westinghouse effort with DOE.

  7. DEVELOPMENT OF A COMPLIANT SEAL FOR USE IN PLANAR SOLID OXIDE FUEL CELLS

    SciTech Connect

    Weil, K. Scott; Hardy, John S.

    2004-01-05

    We have developed a deformable seal for planar solid oxide fuel cells (pSOFCs) that can accommodate significant thermal mismatch between the adjoining components and still remain hermetic. Essentially composed of a thin stamped metal foil bonded to both sealing surfaces, the seal offers a quasi-dynamic mechanical response to thermally generated stresses. It remains well adhered to both faying surfaces, i.e. non-sliding, but readily yields or deforms under modest thermo-mechanical loading, thereby mitigating the transfer of these stresses to the adjacent ceramic and metal components. Initial thermal testing demonstrates that the seal retains its original hermeticity and strength after a number of rapid cycles between {approx}75 C and 750 C.

  8. Development of bipolar plates with different flow channel configurations for fuel cells

    NASA Astrophysics Data System (ADS)

    Boddu, Rajesh; Marupakula, Uday Kumar; Summers, Benjamin; Majumdar, Pradip

    Bipolar plates include separate gas flow channels for anode and cathode electrodes of a fuel cell. These gases flow channels supply reactant gasses as well as remove products from the cathode side of the fuel cell. Fluid flow, heat and mass transport processes in these channels have significant effect on fuel cell performance, particularly to the mass transport losses. The design of the bipolar plates should minimize plate thickness for low volume and mass. Additionally, contact faces should provide a high degree of surface uniformity for low thermal and electrical contact resistances. Finally, the flow fields should provide for efficient heat and mass transport processes with reduced pressure drops. In this study, bipolar plates with different serpentine flow channel configurations are analyzed using computational fluid dynamics modeling. Flow characteristics including variation of pressure in the flow channel across the bipolar plate are presented. Pressure drop characteristics for different flow channel designs are compared. Results show that with increased number of parallel channels and smaller sizes, a more effective contact surface area along with decreased pressured drop can be achieved. Correlations of such entrance region coefficients will be useful for the PEM fuel cell simulation model to evaluate the affects of the bipolar plate design on mass transfer loss and hence on the total current and power density of the fuel cell.

  9. Fuel Cells: Reshaping the Future

    ERIC Educational Resources Information Center

    Toay, Leo

    2004-01-01

    In conjunction with the FreedomCAR (Cooperative Automotive Research) and Fuel Initiative, President George W. Bush has pledged nearly two billion dollars for fuel cell research. Chrysler, Ford, and General Motors have unveiled fuel cell demonstration vehicles, and all three of these companies have invested heavily in fuel cell research. Fuel cell…

  10. Fuel cell generator energy dissipator

    DOEpatents

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  11. General Motors automotive fuel cell program

    SciTech Connect

    Fronk, M.H.

    1995-08-01

    The objectives of the second phase of the GM/DOE fuel cell program is to develop and test a 30 kW fuel cell powerplant. This powerplant will be based on a methanol fuel processor and a proton exchange membrane PM fuel cell stack. In addition, the 10 kW system developed during phase I will be used as a {open_quotes}mule{close_quotes} to test automotive components and other ancillaries, needed for transient operation.

  12. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Liu, C.; Liang, J. S.; Wu, C. B.; Xu, Z.

    2006-10-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC.

  13. Fuel Cell Animation

    NASA Video Gallery

    Oxygen (O2) and hydrogen (H2) migrate into the fuel cell. The oxygen molecules migrate to the catalyst where the anode strips some of their electrons. This allows them to move through the cathode a...

  14. Develop and test fuel cell powered on-site integrated total energy system

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Feigenbaum, H.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1983-01-01

    Test results are presented for a 24 cell, two sq ft (4kW) stack. This stack is a precursor to a 25kW stack that is a key milestone. Results are discussed in terms of cell performance, electrolyte management, thermal management, and reactant gas manifolding. The results obtained in preliminary testing of a 50kW methanol processing subsystem are discussed. Subcontracting activities involving application analysis for fuel cell on site integrated energy systems are updated.

  15. Rapidly refuelable fuel cell

    DOEpatents

    Joy, Richard W.

    1983-01-01

    This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

  16. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  17. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  18. Compliant fuel cell system

    DOEpatents

    Bourgeois, Richard Scott; Gudlavalleti, Sauri

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  19. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  20. Development of improved cathodes for solid oxide fuel cells. Final report

    SciTech Connect

    Anderson, H.U.

    1991-03-01

    The University of Missouri-Rolla conducted a 17 month research program focused on the development and evaluation of improved cathode materials for solid oxide fuel cells (SOFC). The objectives of this program were: (1) the development of cathode materials of improved stability in reducing environments; and (2) the development of cathode materials with improved electrical conductivity. The program was successful in identifying some potential candidate materials: Air sinterable (La,Ca)(Cr,Co)O{sub 3} compositions were developed and found to be more stable than La{sub .8}Sr{sub .2}MnO{sub 3} towards reduction. Their conductivity at 1000{degrees}C ranged between 30 to 60 S/cm. Compositions within the (Y,Ca)(Cr,Co,Mn)O{sub 3} system were developed and found to have higher electrical conductivity than La{sub .8}Sr{sub .2}MnO{sub 3} and preliminary results suggest that their stability towards reduction is superior.

  1. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  2. Characterization of thermal and mechanical properties of polypropylene-based composites for fuel cell bipolar plates and development of educational tools in hydrogen and fuel cell technologies

    NASA Astrophysics Data System (ADS)

    Lopez Gaxiola, Daniel

    In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbons' Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International's FIBRIL(TM) multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through-plane and in-plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in-plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in-plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural

  3. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.

    PubMed

    Zhuang, Li; Zhou, Shungui; Yuan, Yong; Liu, Tinglin; Wu, Zhifeng; Cheng, Jiong

    2011-01-01

    This study described an Enterobacter aerogenes-catalyzed microbial fuel cell (MFC) with a carbon-based anode that exhibited a maximum power density of 2.51 W/m(3) in the absence of artificial electron mediators. The MFC was started up rapidly, within hours, and the current generation in the early stage was demonstrated to result from in situ oxidation of biohydrogen produced by E. aerogenes during glucose fermentation. Over periodic replacement of substrate, both planktonic biomass in the culture liquid and hydrogen productivity decreased, while increased power density and coulombic efficiency and decreased internal resistance were unexpectedly observed. Using scanning electron microscopy and cyclic voltammetry, it was found that the enhanced MFC performance was associated with the development of electroactive biofilm on the anodic surface, proposed to involve an acclimation and selection process of E. aerogenes cells under electrochemical tension. The significant advantage of rapid start-up and the ability to develop an electroactive biofilm identifies E. aerogenes as a suitable biocatalyst for MFC applications.

  4. Development of sulfur-tolerant components for the molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Sammells, A. F.; Nicholson, S. B.; Ang, P. G. P.

    1980-02-01

    The sulfur tolerance of candidate anode and anode current collector materials for the molten carbonate fuel cell were evaluated in an electrochemical half-cell using both steady-state and transient potentiostatic techniques. Hydrogen sulfide was introduced into the fuel at concentrations of 50 and 1000 ppm; at the higher sulfur concentration nickel and cobalt underwent a negative shift in their open-circuit potentials, and high anodic and cathodic currents were observed compared with clean fuels. Exchange currents were not greatly affected by 50 ppm H2S; but, at higher sulfur concentrations, higher apparent exchange currents were observed, indicating a probable sulfidation reaction. New anode materials including TiC showed good stability in the anodic region. Of the anode current collector materials evaluated, high stabilities were found for 410 and 310 stainless steels.

  5. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  6. Material synthesis and fabrication method development for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ding, Hanping

    Solid oxide fuel cells (SOFCs) are operated in high temperature conditions (750-1000 °C). The high operating temperature in turn may lead to very complicated material degradation issues, significantly increasing the cost and reducing the durability of SOFC material systems. In order to widen material selections, reduce cost, and increase durability of SOFCs, there is a growing interest to develop intermediate temperature SOFCs (500-750 °C). However, lowering operating temperature will cause substantial increases of ohmic resistance of electrolyte and polarization resistance of electrodes. This dissertation aimed at developing high-performance intermediate-temperature SOFCs through the employment of a series of layered perovskite oxides as novel cathode materials to minimize the potential electrode polarization on oxygen reduction reaction resulting from the unique crystal structure. The high performance of such perovskites under lower temperatures lies in the fact that a simple cubic perovskite with randomly occupied A-sites transforming into a layered compound with ordered lanthanide and alkali-earth cations may reduce the oxygen bonding strength and provide disorder-free channels for oxygen ion migrations. In order to compromise the cell performance and chemical and mechanical stability, the substitution of Fe in B site was comprehensively investigated to explore the effects of Fe doping on the crystal structure, thermal and electrical properties, as well as electrochemical performance. Furthermore, a platinum nanowire network was successfully developed as an ultrathin electrochemically efficient current collector for SOFCs. The unique platinum network on cathode surface can connect the oxygen reduction reaction (ORR) sites at the nano-scale to the external circuit while being able to substantially avoid blocking the open pores of the cathode. The superior electrochemical performance was exhibited, including the highly reduced electrode polarization resistance

  7. Development of new fabrication methods for solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Jung, Suk-Won

    Solid oxide fuel cells (SOFC) have gained a great deal of attention in recent years since they have the potential to be high efficiency devices for the generation of electricity. The ability to use hydrocarbon fuels however requires the development of alternatives to conventional Ni/YSZ anodes that are prone to coking when exposed to hydrocarbons. The optimization of electrode microstructure and composition is also needed in order to maximize the electrode catalytic activity and thermal stability. In this thesis these issues were addressed through the development of new methods for anode fabrication that allowed for the incorporation of a wide range of materials and better control of electrode microstructure. The specific methods that were studied include (1) Impregnation with urea and (2) Electrochemical Deposition. First, how impregnation using Cu(NO3)2 and urea affect the microstructure of the Cu component in Cu/CeO2/YSZ (yittria-stabilized zirconia) composite anodes and how this influences anode performance were examined. This method produced a more homogeneous distribution of Cu throughout the anode than impregnation with only Cu(NO3)2. Second, Cu electrodeposition into 0.12 cm thick, highly porous Ni/YSZ cermets was investigated for the initial study to evaluate electrodeposition for the electrode fabrication method. An electrochemical cell in which the electrolyte solution was allowed to flow through the porous Ni/YSZ substrate was constructed in order to eliminate mass transfer limitations and determine conditions for which the potential drop in the electrolyte solution was minimized for the deposition of uniform Cu layer in the cermet. Finally it was demonstrated how the anodes for SOFCs could be prepared by electrodeposition. After the addition of CeO2, a 60 mum thin porous layer of YSZ was made conductive by the deposition of a conductive carbon layer with exposing the porous layer to C4H10 at 1123 K and either Ni or Co was then electrodeposited on the

  8. Development and operation of gold and cobalt oxide nanoparticles containing polypropylene based enzymatic fuel cell for renewable fuels.

    PubMed

    Kilic, Muhammet Samet; Korkut, Seyda; Hazer, Baki; Erhan, Elif

    2014-11-15

    Newly synthesized gold and cobalt oxide nanoparticle embedded Polypropylene-g-Polyethylene glycol was used for a compartment-less enzymatic fuel cell. Glucose oxidase and bilirubin oxidase were selected as anodic and cathodic enzymes, respectively. Electrode fabrication and EFC operation parameters were optimized to achieve high power output. Maximum power density of 23.5 µW cm(-2) was generated at a cell voltage of +560 mV vs Ag/AgCl, in 100mM PBS pH 7.4 with the addition of 20mM of synthetic glucose solution. 20 µg of polymer amount with 185 µg of glucose oxidase and 356 µg of bilirubin oxidase was sufficient to get maximum performance. The working electrodes could harvest glucose, produced during photosynthesis reaction of Carpobrotus Acinaciformis plant, and readily found in real domestic wastewater of Zonguldak City in Turkey.

  9. Mixed oxide fuel development

    SciTech Connect

    Leggett, R.D.; Omberg, R.P.

    1987-05-08

    This paper describes the success of the ongoing mixed-oxide fuel development program in the United States aimed at qualifying an economical fuel system for liquid metal cooled reactors. This development has been the cornerstone of the US program for the past 20 years and has proceeded in a deliberate and highly disciplined fashion with high emphasis on fuel reliability and operational safety as major features of an economical fuel system. The program progresses from feature testing in EBR-II to qualifying full size components in FFTF under fully prototypic conditions to establish a basis for extending allowable lifetimes. The development program started with the one year (300 EFPD) core, which is the FFTF driver fuel, continued with the demonstration of a two year (600 EFPD) core and is presently evaluating a three year (900 EFPD) fuel system. All three of these systems, consistent with other LMR fuel programs around the world, use fuel pellets gas bonded to a cladding tube that is assembled into a bundle and fitted into a wrapper tube or duct for ease of insertion into a core. The materials of construction progressed from austenitic CW 316 SS to lower swelling austenitic D9 to non swelling ferritic/martensitic HT9. 6 figs., 2 tabs.

  10. Development and validation of a slurry model for chemical hydrogen storage in fuel cell vehicle applications

    NASA Astrophysics Data System (ADS)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-12-01

    The U.S. Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE's Technical Targets and a set of four drive cycles. PNNL developed models to simulate the performance and suitability of slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and an endothermic system based on alane were developed and modeled in Simulink®. Once complete, the reactor and radiator components of the model were validated with experimental data. The system design parameters were adjusted to allow the model to successfully meet a highway cycle, an aggressive cycle, a cold-start cycle, and a hot drive cycle. Finally, a sensitivity analysis was performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction >11 kJ mol-1 H2 generated and a slurry hydrogen capacity of >11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  11. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Once complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  12. Fuel Cell-Powered Go-Kart: Project Mimics Real-World Product Development

    ERIC Educational Resources Information Center

    Fuller, Amanda

    2010-01-01

    Five years ago, Leon Strecker's technology education class at Darien High School came up with the idea of building a fuel cell-powered go-kart. In previous years, the class had worked on other creations, such as electric cars that competed in a state-sponsored race and a full-size hovercraft. But students had not taken on anything anywhere near…

  13. Hybrid Power Management Program Evaluated Fuel Cell/Ultracapacitor Combinations and Developed Other New Applications

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2004-01-01

    In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.

  14. Fuel cell system

    DOEpatents

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  15. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    SciTech Connect

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  16. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  17. Fuel cell system combustor

    DOEpatents

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  18. Fuel cell system configurations

    DOEpatents

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  19. Technology development goals for automotive fuel cell power systems. Final report

    SciTech Connect

    James, B.D.; Baum, G.N.; Kuhn, I.F. Jr.

    1994-08-01

    This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

  20. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, August 1, 1982-October 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Browall, K.W.; Marianowski, L.G.

    1983-02-24

    Work proceeded this quarter under three program tasks. Under Task 1.0, work was completed on the reference power plant design description. Under Task 2.0, work continued on the development of materials, anode, cathode and electrolyte, and on stack design and analysis. Long term corrosion tests of current collector alloy specimens continued, with 310SS, GE2541 and Aggalloy showing adherent scale formation in the cathode gas atmosphere after 7000 hours. A number of alternate cathode materials were fabricated and tested for conductivity, solubility and stability. A new conductivity measurement device has been partially constructed. Under Task 4.0, testing of the effects of hydrocarbons in the fuel on the operation of carbonate fuel cells was completed. This series of tests has shown that small amounts of organic compounds do not adversely affect fuel cell operation. Testing of a cell with H/sub 2/S contamination in the fuel has proceeded for over 1700 hours. Cell performance decreased with increasing concentrations of H/sub 2/S, as would be expected, but also recovered substantially when clean fuel gas was introduced for a period of 378 hours. (WHK)

  1. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  2. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  3. Research and development of Proton-Exchange Membrane (PEM) fuel cell system for transportation applications: Initial conceptual design report

    NASA Astrophysics Data System (ADS)

    1993-11-01

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  4. Research and Development of Proton-Exchange Membrane (PEM) Fuel Cell System for Transportation Applications: Initial Conceptual Design Report

    SciTech Connect

    Not Available

    1993-11-30

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source, and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  5. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks

    SciTech Connect

    Dhar, H.P.; Lee, J.H.; Lewinski, K.A.

    1996-12-31

    The PEM fuel cell is promising as the power source for use in mobile and stationary applications primarily because of its high power density, all solid components, and simplicity of operation. For wide acceptability of this power source, its cost has to be competitive with the presently available energy sources. The fuel cell requires continuous humidification during operation as a power source. The humidification unit however, increases fuel cell volume, weight, and therefore decreases its overall power density. Great advantages in terms of further fuel cell simplification can be achieved if the humidification process can be eliminated or minimized. In addition, cost reductions are associated with the case of manufacturing and operation. At BCS Technology we have developed a technology of self-humidified operation of PEM fuel cells based on the mass balance of the reactants and products and the ability of membrane electrode assembly (MEA) to retain water necessary for humidification under the cell operating conditions. The reactants enter the fuel cell chambers without carrying any form of water, whether in liquid or vapor form. Basic principles of self-humidified operation of fuel cells as practiced by BCS Technology, Inc. have been presented previously in literature. Here, we report the operation of larger self-humidified single cells and fuel cell stacks. Fuel cells of areas Up to 100 cm{sup 2} have been operated. We also show the self-humidified operation of fuel cell stacks of 50 and 100 cm{sup 2} electrode areas.

  6. Miniaturized biological and electrochemical fuel cells: challenges and applications.

    PubMed

    Yang, Jie; Ghobadian, Sasan; Goodrich, Payton J; Montazami, Reza; Hashemi, Nastaran

    2013-09-14

    This paper discusses the fundamentals and developments of miniaturized fuel cells, both biological and electrochemical. An overview of microfluidic fuel cells, miniaturized microbial fuel cells, enzymatic biofuel cells, and implanted biofuel cells in an attempt to provide green energy and to power implanted microdevices is provided. Also, the challenges and applications of each type of fuel cell are discussed in detail. Most recent developments in fuel cell technologies such as novel catalysts, compact designs, and fabrication methods are reviewed.

  7. Ansaldo programs on fuel cell vehicles

    SciTech Connect

    Marcenaro, B.G.; Federici, F.

    1996-12-31

    The growth in traffic and the importance of maintaining a stable ecology at the global scale, particularly with regard to atmospheric pollution, raises the necessity to realize a new generation of vehicles which are more efficient, more economical and compatible with the environment. At European level, the Car of Tomorrow task force has identified fuel cells as a promising alternative propulsion system. Ansaldo Ricerche has been involved in the development of fuel cell vehicles since the early nineties. Current ongoing programs relates to: (1) Fuel cell bus demonstrator (EQHEPP BUS) Test in 1996 (2) Fuel cell boat demonstrator (EQHHPP BOAT) Test in 1997 (3) Fuel cell passenger car prototype (FEVER) Test in 1997 (4) 2nd generation Fuel cell bus (FCBUS) 1996-1999 (5) 2nd generation Fuel cell passenger car (HYDRO-GEN) 1996-1999.

  8. European Fuel Cells R&D Review

    NASA Astrophysics Data System (ADS)

    Michael, P. D.; Maguire, J.

    1994-09-01

    A review is presented on the status of fuel cell development in Europe, addressing the research, development, and demonstration (RD&D) and commercialization activities being undertaken, identifying key European organizations active in development and commercialization of fuel cells, and detailing their future plans. This document describes the RD&D activities in Europe on alkaline, phosphoric acid, polymer electrolyte, direct methanol, solid oxide, and molten carbonate fuel cell types. It describes the European Commission's activities, its role in the European development of fuel cells, and its interaction with the national programs. It then presents a country-by-country breakdown. For each country, an overview is given, presented by fuel cell type. Scandinavian countries are covered in less detail. American organizations active in Europe, either in supplying fuel cell components, or in collaboration, are identified. Applications include transportation and cogeneration.

  9. Development of a UBFC biocatalyst fuel cell to generate power and treat industrial wastewaters.

    PubMed

    Sukkasem, Chontisa; Laehlah, Sunee

    2013-10-01

    Agro-industry wastewaters normally contain high levels of organic matter and require suitable treatment before discharge. The use of Microbial fuel cells, a novel wastewater treatment, can provide advantages over existing treatment methods. In this study, an up-flow bio-filter circuit (UBFC) for treating wastewaters without chemical treatment or nutrient supplement, was developed to solve a clogging problem. The optimal conditions included an organic loading rate of 30.0 g COD/L-d, hydraulic retention time of 1.04 day, pH level of 5.6-6.5 and aeration at 2.0 L/min. External resistance of the circuit was tested. COD removal levels of 8.08, 20.1 and 26.67 g COD/L-d were obtained, while fed with sea food, biodiesel and palm oil mill wastewater, respectively. These rates are higher than for conventional technologies. The carbon fiber brush immobilized base increased the performance of the new UBFC by 17.54% over that obtained in a previous study, while the cost was slightly decreased about 4.48%. PMID:23932287

  10. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development

    NASA Astrophysics Data System (ADS)

    Jalan, V.

    1983-10-01

    A high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 pp to 1 ppm was investigated to provide for the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppm. Results obtained with packed-bed and fluidized-bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerble and capable of lowering the sulfur content (as H2s and COS) from 200 ppm in simulated hot coal-derived gases to below 1 ppm level at 600 to 650 C. A comprecipitated CuO/ZnO was elected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfide components (Cu2S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppm can be achieved in the temperature range of 500 to 650 C. The ability of CuO/ZnO to remove COS, CS2 and CH3SH at these conditions was demonstrated. A previously proposed pore-plugging model was further developed with good success for data treatment of both packed-bed and fluidized-bed reactors.

  11. Development of biogas reforming Ni-La-Al catalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Benito, M.; García, S.; Ferreira-Aparicio, P.; Serrano, L. García; Daza, L.

    In this work, the results obtained for Ni-La-Al catalysts developed in our laboratory for biogas reforming are presented. The catalyst 5% Ni/5% La 2O 3-γ-Al 2O 3 has operated under kinetic control conditions for more than 40 h at 700 °C and feeding CH 4/CO 2 ratio 1/1, similar to the composition presented in biogas streams, being observed a stable behaviour. Reaction parameters studied to evaluate the catalyst activity were H 2/CO and CH 4/CO 2 conversion ratio obtained. On the basis of a CH 4 conversion of 6.5%, CH 4/CO 2 conversion ratio achieved 0.48 and H 2/CO ratio obtained was 0.43. By comparison of experimental results to equilibrium prediction for such conditions, is detectable a lower progress of reverse water gas shift reaction. This fact increases the H 2/CO ratio obtained and therefore the hydrogen production. The higher H 2/CO and a CH 4/CO 2 conversion ratio in comparison to CH 4 one close to equilibrium is due to the carbon deposits gasification which avoids catalyst deactivation. A thermodynamic analysis about the application of dry and combined methane reforming to hydrogen production for fuel cells application is presented. Data obtained by process simulation considering a Peng-Robinson thermodynamic model, allows optimizing process conditions depending on biogas composition.

  12. Development of a UBFC biocatalyst fuel cell to generate power and treat industrial wastewaters.

    PubMed

    Sukkasem, Chontisa; Laehlah, Sunee

    2013-10-01

    Agro-industry wastewaters normally contain high levels of organic matter and require suitable treatment before discharge. The use of Microbial fuel cells, a novel wastewater treatment, can provide advantages over existing treatment methods. In this study, an up-flow bio-filter circuit (UBFC) for treating wastewaters without chemical treatment or nutrient supplement, was developed to solve a clogging problem. The optimal conditions included an organic loading rate of 30.0 g COD/L-d, hydraulic retention time of 1.04 day, pH level of 5.6-6.5 and aeration at 2.0 L/min. External resistance of the circuit was tested. COD removal levels of 8.08, 20.1 and 26.67 g COD/L-d were obtained, while fed with sea food, biodiesel and palm oil mill wastewater, respectively. These rates are higher than for conventional technologies. The carbon fiber brush immobilized base increased the performance of the new UBFC by 17.54% over that obtained in a previous study, while the cost was slightly decreased about 4.48%.

  13. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode

    NASA Astrophysics Data System (ADS)

    Kim, Jung Rae; Premier, Giuliano C.; Hawkes, Freda R.; Dinsdale, Richard M.; Guwy, Alan J.

    Tubular microbial fuel cells (MFC) with air cathode might be amenable to scale-up but with increasing volume a mechanically robust, cost-effective cathode structure is required. Membrane electrode assemblies (MEA) are investigated in a tubular MFC using cost-effective cation (CEM) or anion (AEM) exchange membrane. The MEA fabrication mechanically combines a cathode electrode with the membrane between a perforated cylindrical polypropylene shell and tube. Hydrogel application between membrane and cathode increases cathode potential by ∼100 mV over a 0-5.5 mA range in a CEM-MEA. Consequently, 6.1 W m -3 based on reactor liquid volume (200 cm 3) are generated compared with 5 W m -3 without hydrogel. Cathode potential is also improved in AEM-MEA using hydrogel. Electrochemical Impedance Spectroscopy (EIS) to compare MEA's performance suggests reduced impedance and enhanced membrane-cathode contact area when using hydrogel. The maximum coulombic efficiency observed with CEM-MEA is 71% and 63% with AEM-MEA. Water loss through the membrane varies with external load resistance, indicating that total charge transfer in the MFC is related to electro-osmotic drag of water through the membrane. The MEA developed here has been shown to be mechanically robust, operating for more than six month at this scale without problem.

  14. DEVELOPMENT OF OTM SYNGAS PROCESS AND TESTING OF SYNGAS-DERIVED ULTRA-CLEAN FUELS IN DIESEL ENGINES AND FUEL CELLS

    SciTech Connect

    E.T. Robinson; James P. Meagher; Ravi Prasad

    2001-10-31

    This topical report summarizes work accomplished for the Program from January 1 through September 15, 2001 in the following task areas: Task 1--materials development; Task 2--composite element development; Task 3--tube fabrication; Task 4--reactor design and process optimization; Task 5--catalyst development; Task 6--P-1 operation; Task 8--fuels and engine testing; and Task 10--project management. OTM benchmark material, LCM1, exceeds the commercial oxygen flux target and was determined to be sufficiently robust to carry on process development activities. Work will continue on second-generation OTM materials that will satisfy commercial life targets. Three fabrication techniques for composite elements were determined to be technically feasible. These techniques will be studied and a lead manufacturing process for both small and large-scale elements will be selected in the next Budget Period. Experiments in six P-0 reactors, the long tube tester (LTT) and the P-1 pilot plant were conducted. Significant progress in process optimization was made through both the experimental program and modeling studies of alternate reactor designs and process configurations. Three tailored catalyst candidates for use in OTM process reactors were identified. Fuels for the International diesel engine and Nuvera fuel cell tests were ordered and delivered. Fuels testing and engine development work is now underway.

  15. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells.

    PubMed

    Li, Dongguo; Lv, Haifeng; Kang, Yijin; Markovic, Nenad M; Stamenkovic, Vojislav R

    2016-06-01

    We present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important role in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts.

  16. Molten carbonate fuel cell product development test. Final report, September 30, 1992--March 31, 1997

    SciTech Connect

    1997-12-31

    This report summarizes the work performed for manufacturing and demonstrating the performance of its 250-kW molten carbonate fuel cell (MCFC) stack in an integrated system at the Naval Air Station Miramar (NAS Miramar) located in San Diego, California. The stack constructed for the demonstration test at the NAS Miramar consisted of 250 cells. It was manufactured using M-C Power`s patented Internally Manifolded Heat Exchanger (IMHEX{reg_sign}) stack design. The demonstration test at NAS Miramar was designed to operate the 250-kW MCFC stack in a cogeneration mode. This test represented the first attempt to thermally integrate an MCFC stack in a cogeneration system. The test was started on January 10, 1997, and voluntarily terminated on May 12, 1997, after 2,350 hours of operation at temperatures above 1,100 F and at a pressure of three atmospheres. It produced 160 MWh of d.c. power and 346,000 lbs of 110 psig steam for export during 1,566 hours of on-load operations. The test demonstrated a d.c. power output of 206 kW. Most of the balance of the plant (BOP) equipment operated satisfactorily. However, the off-the-shelf automotive turbocharger used for supplying air to the plant failed on numerous occasions and the hot gas blower developed seal leakage problems which impacted continuous plant operations. Overall the demonstration test at NAS Miramar was successful in demonstrating many critical features of the IMHEX technology. Lessons learned from this test will be very useful for improving designs and operations for future MCFC power plants.

  17. The design of alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Strasser, K.

    1990-01-01

    Alkaline fuel cells recently developed have yielded satisfactory operation even in the cases of their use of mobile and matrix-type electrolytes; the advantages of realistic operation have been demonstrated by a major West German manufacturer's 100 kW alkaline fuel cell apparatus, which was operated in the role of an air-independent propulsion system. Development has begun for a spacecraft alkaline fuel cell of the matrix-electrolyte configuration.

  18. The use of low-energy SIMS (LE-SIMS) for nanoscale fuel cell material development

    SciTech Connect

    Morris, R. J. H.; Fearn, Sarah; Perkins, James; Kilner, John; Dowsett, M. G.; Biegalski, Michael D; Rouleau, Christopher M

    2011-01-01

    Low-energy secondary ion mass spectrometry has been used to investigate the matrix structure and interface attributes of a novel Ce0.85Sm0.15O2/CeO2 multilayer fuel cell material. Nanoscale oxide systems have shown enhanced ionic conductivities when produced to form highly oriented epitaxial structures. The Sm-doped CeO2 material system is of particular interest for fuel cell technology because of its inherently high ionic conductivity at low operating temperatures (600-800 C). For this study, a nanometer-scale Ce0.85Sm0.15O2/CeO2 multilayer was grown by pulsed laser deposition. The sample was annealed at 700 C in an oxygen ambience. High-resolution, low-energy depth profiling using Cs revealed some diffusion of the multilayer structure after annealing, along with a possible volume change for the Sm-doped layers. Changes in layer volume will lead to an increase in the mechanical strain and may cause the material to crack. The findings presented here suggest that the Ce0.85Sm0.15O2/CeO2 multilayer structure in its current form may not possess the level of thermal stability required for use within a fuel cell environment.

  19. Evaluation of fuel cell system efficiency and degradation at development and during commercialization

    NASA Astrophysics Data System (ADS)

    Gemmen, R. S.; Johnson, C. D.

    Two primary parameters stand out for characterizing fuel cell system performance. The first and most important parameter is system efficiency. This parameter is relatively easy to define, and protocols for its assessment are already available. Another important parameter yet to be fully considered is system degradation. Degradation is important because customers desire to know how long their purchased fuel cell unit will last. The measure of degradation describes this performance factor by quantifying, for example, how the efficiency of the unit degrades over time. While both efficiency and degradation concepts are readily understood, the coupling between these two parameters must also be understood so that proper testing and evaluation of fuel cell systems is achieved. Tests not properly performed, and results not properly understood, may result in improper use of the evaluation data, producing improper R&D planning decisions and financial investments. This paper presents an analysis of system degradation, recommends an approach to its measurement, and shows how these two parameters are related and how one can be "traded-off" for the other.

  20. Comparative analysis of selected fuel cell vehicles

    SciTech Connect

    1993-05-07

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  1. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, May 1-July 31, 1980

    SciTech Connect

    Peterson, J. R.

    1980-09-04

    The major objective of this program for development of a molten carbonate fuel cell power plant is to establish and demonstrate readiness for fabrication and test of full-scale prototype stacks. This will be accomplished by a heavy emphasis upon resolution of remaining technology problems, including materials, processes and contaminant effects research, development and testing of cell components to 10,000 hours endurance life and scaleup of laboratory hardware to commercial size. A detailed design for a prototype stack will be defined and a tenth-size of full-scale cells will be tested. Component and manufacturing processes will be developed based upon commercial cost goals. Coal-fired utility central station and industrial cogeneration power plant requirements will be defined and plant options evaluated, leading to selection of a single reference design. Cell and stack design and development will be guided by requirements based upon the reference plant design. The specific program objectives derived from the contract work statement are as follows: (1) to define a reference power plant design for a coal-fired molten carbonate power plant; (2) to develop and verify cell and stack design based upon the requirements of the reference power plant design; (3) to establish and demonstrate readiness to fabricate and test full-length stacks of full-scale cells, hereafter called prototype stacks; and (4) to quantify contaminant effects and establish a program to verify performance of molten carbonate fuel cells operating on products of coal gasification. Progress is reported.

  2. Compact fuel cell

    DOEpatents

    Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  3. Fuel Cell Applied Research Project

    SciTech Connect

    Lee Richardson

    2006-09-15

    Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

  4. Analysis of regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1982-01-01

    The concept of a rechargeable fuel cell (RFC) system is considered. A newer type of rechargeable battery, the nickel hydrogen (Ni-H2) battery, is also evaluated. A review was made of past studies which showed large variations in weight, cost, and efficiency. Hydrogen-bromine and hydrogen-chlorine regenerable fuel cells were studied, and were found to have a potential for higher energy storage efficiency then the hydrogen-oxygen system. A reduction of up to 15 percent in solar array size may be possible as a result. These systems are not yet developed, but further study of them is recommended.

  5. Fuel-Cell Drivers Wanted

    ERIC Educational Resources Information Center

    Clark, Todd; Jones, Rick

    2004-01-01

    While the political climate seems favorable for the development of fuel-cell vehicles for personal transportation, the market's demand may not be so favorable. Nonetheless, middle level students will be the next generation of drivers and voters, and they need to be able to make informed decisions regarding the nation's energy and transportation…

  6. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  7. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  8. Fuel cell generator

    DOEpatents

    Makiel, Joseph M.

    1985-01-01

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.

  9. Development of LSM-based cathodes for solid oxide fuel cells based on YSZ films

    NASA Astrophysics Data System (ADS)

    Chen, Kongfa; Lü, Zhe; Chen, Xiangjun; Ai, Na; Huang, Xiqiang; Du, Xiaobo; Su, Wenhui

    In an attempt to achieve desirable cell performance, the effects of La 0.7Sr 0.3MnO 3 (LSM)-based cathodes on the anode-supported solid oxide fuel cells (SOFCs) were investigated in the present study. Three types of cathodes were fabricated on the anode-supported yttria-stabilized zirconia (YSZ) thin films to constitute several single cells, i.e., pure LSM cathode, LSM/YSZ composite by solid mixing, LSM/Sm 0.2Ce 0.8O 1.9 (SDC) composite by the ion-impregnation process. Among the three single cells, the highest cell output performance 1.25 W cm -2 at 800 °C, was achieved by the cell using LSM/SDC cathode when the cathode was exposed to the stationary air. Whereas, the most considerable cell performance of 2.32 W cm -2 was derived from the cell with LSM/YSZ cathode, using 100 ml min -1 oxygen flow as the oxidant. At reduced temperatures down to 700 °C, the LSM/SDC cathode was the most suitable cathode for zirconia-based electrolyte SOFC in the present study. The variation in the cell performances was attributed to the mutual effects between the gas diffusing rate and three-phase boundary length of the cathode.

  10. Organic fuel cells and fuel cell conducting sheets

    DOEpatents

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  11. PEM fuel cell durability studies

    SciTech Connect

    Borup, Rodney L; Davey, John R; Ofstad, Axel B; Xu, Hui

    2008-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization for stationary and transportation power applications. For transportation applications, the durability target for fuel cell power systems is a 5,000 hour lifespan and able to function over a range of vehicle operating conditions (-40{sup o} to +40{sup o}C). However, durability is difficult to quantify and improve because of the quantity and duration of testing required, and also because the fuel cell stack contains many components, for which the degradation mechanisms, component interactions and effects of operating conditions are not fully understood. These requirements have led to the development of accelerated testing protocols for PEM fuel cells. The need for accelerated testing methodology is exemplified by the times required for standard testing to reach their required targets: automotive 5,000 hrs = {approx} 7 months; stationary systems 40,000 hrs = {approx} 4.6 years. As new materials continue to be developed, the need for relevant accelerated testing increases. In this investigation, we examine the durability of various cell components, examine the effect of transportation operating conditions (potential cycling, variable RH, shut-down/start-up, freeze/thaw) and evaluate durability by accelerated durability protocols. PEM fuel cell durability testing is performed on single cells, with tests being conducted with steady-state conditions and with dynamic conditions using power cycling to simulate a vehicle drive cycle. Component and single-cell characterization during and after testing was conducted to identify changes in material properties and related failure mechanisms. Accelerated-testing experiments were applied to further examine material degradation.

  12. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  13. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    SciTech Connect

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  14. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A fuel cell technology program was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Program tasks are described consisting of baseline cell design and stack testing, hydrogen pump design and testing, and DM-2 powerplant testing and technology extension efforts. A baseline cell configuration capable of a minimum of 2000 hours of life was defined. A 6-cell prototype stack, incorporating most of the scheme cell features, was tested for a total of 10,497 hours. A 6-cell stack incorporating all of the design features was tested. The DM-2 powerplant with a 34 cell stack, an accessory section packaged in the basic configuration anticipated for the space shuttle powerplant and a powerplant control unit, was defined, assembled, and tested. Cells were used in the stack and a drag-type hydrogen pump was installed in the accessory section. A test program was established, in conjunction with NASA/JSC, based on space shuttle orbiter mission. A 2000-hour minimum endurance test and a 5000-hour goal were set and the test started on August 8, 1972. The 2000-hour milestone was completed on November 3, 1972. On 13 March 1973, at the end of the thirty-first simulated seven-day mission and 5072 load hours, the test was concluded, all goals having been met. At this time, the DM-2 was in excellent condition and capable of additional endurance.

  15. High temperature PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven

    There are several compelling technological and commercial reasons for operating H 2/air PEM fuel cells at temperatures above 100 °C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for ∼90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation.

  16. 2008 Fuel Cell Technologies Market Report

    SciTech Connect

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  17. 2008 Fuel Cell Technologies Market Report

    SciTech Connect

    Vincent, B.

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  18. Advanced development: Fuels

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1981-01-01

    The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.

  19. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    NASA Astrophysics Data System (ADS)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  20. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  1. Fuel cell sub-assembly

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  2. Fuel cell report to congress

    SciTech Connect

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  3. Fuel Cell Handbook, Fourth Edition

    SciTech Connect

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  4. Research development and demonstration of a fuel cell/battery powered bus system. Interim report, August 1, 1991--April 30, 1992

    SciTech Connect

    Romano, S.; Wimmer, R.

    1992-04-30

    This report describes the progress in the Georgetown University research, development and demonstration project of a fuel cell/battery powered bus system. The topics addressed in the report include vehicle design and application analysis, technology transfer activities, coordination and monitoring of system design and integration contractor, application of fuel cells to other vehicles, current problems, work planned, and manpower, cost and schedule reports.

  5. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    SciTech Connect

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  6. Fuel-cell-powered golf cart

    SciTech Connect

    Bobbett, R.E.; McCormick, J.B.; Lynn, D.K.; Kerwin, W.J.; Derouin, C.R.; Salazar, P.H.

    1980-01-01

    The implementation of a battery/fuel-cell-powered golf cart test bed designed to verify computer simulations and to gain operational experience with a fuel cell in a vehicular environment is described. A technically untrained driver can easily operate the golf cart because the motor and fuel cell controllers automatically sense and execute the appropriate on/off sequencing. A voltage imbalance circuit and a throttle compress circuit were developed that are directly applicable to electric vehicles in general.

  7. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  8. Develop and test fuel cell powered on-site integrated total energy system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Test results are given for a 5 kW stack and initial results for an integrated, grid connected system operating from methanol fuel. Site selection criteria are presented for future demonstration of a 50 or 100 kW OS/IES. Preliminary results are also given with approximate internal rates of return to the building owner. Progress in development and construction of a 50 kW modular methanol/steam reformer is reported.

  9. Molten carbonate fuel cell product development test at SDG&E

    SciTech Connect

    Scroppo, J.A.; Laurens, R.M.; Petraglia, V.J.

    1995-12-31

    Design goals of a fuel cell power plant are described. The PDT design objectives will include improved performance at reduced cost compared with the UNOCAL demonstration project. Several specific objectives that differentiate the San Diego Gas & Electric PDT project from the UNOCAL demonstration are the following: packaging designs are more compact in the PDT program; it will also have longer unattended operation and increased reliability. Additionally, the experience gained during the design, construction and start-up of the UNOCAL power plant will be incorporated into the SDG&E design. This power plant is. being designed for compatibility with the SDG&E electrical distribution grid.

  10. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer

    NASA Astrophysics Data System (ADS)

    Höhlein, B.; Boe, M.; Bøgild-Hansen, J.; Bröckerhoff, P.; Colsman, G.; Emonts, B.; Menzer, R.; Riedel, E.

    On-board generation of hydrogen from methanol with a reformer in connection with the use of a proton-exchange membrane fuel cell (PEMFC) is an attractive option for a passenger car drive. Special considerations are required to obtain low weight and volume. Furthermore, the PEMFC of today cannot tolerate more than 10 ppm of carbon monoxide in the fuel. Therefore a gas conditioning step is needed after the methanol reformer. Our main research activities focus on the conceptual design of a drive system for a passenger car with methanol reformer and PEMFC: engineering studies with regard to different aspects of this design including reformer, catalytic burner, gas conditioning, balances of the fuel cycles and basic design of a compact methanol reformer. The work described here was carried out within the framework of a JOULE II project of the European Union (1993-1995). Extensive experimental studies have been carried out at the Forschungszentrum Jülich GmbH (KFA) in Germany and at Haldor Topsøe A/S in Denmark.

  11. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, November 1, 1981-January 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Mazandarany, F.N.; Marianowski, L.G.

    1982-02-26

    Work proceeded this quarter mainly under three program tasks. Under Task 1.0, the four candidate power plant configurations were ranked and the Steam Injection System was recommended as the reference plant design. The Steam Injection System was chosen based on its overall simplicity, high performance level, balance of plant state-of-technology readiness and economic attractiveness. Work was initiated on refinement of fuel cell piping costs. Under Task 2.0, work continued on cell component (anode, cathode, current collector and electrolyte) development and stack design and analysis. Corrosion test results after 1000 hours in fuel gas and 3000 hours in cathode gas are reported for 310SS, 316SS, 446SS, chromium, IN690, and GE2541. In the cathode environment, 310SS and GE2541 show good thermal cycling properties, whereas the other alloys show scale spalling during thermal cycling. Examination of a Ni-clad 316SS anode current collector tested in a cell for 2000 hours shows second phase precipitates along the grain boundaries of the nickel. Experiments with different grades of nickel in an anode atmosphere were started in order to evaluate the effects of impurities present in the metals. Under Task 4.0, work continued on installation of the bench scale single cell test facilities, one atmospheric and one pressurized (up to 10 atm), which will be used in cell testing with contaminants in the fuel and oxidant. (WHK)

  12. Fuel Cell Research

    SciTech Connect

    Weber, Peter M.

    2014-03-30

    Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. They should be scientifically exciting and sound. They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

  13. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  14. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  15. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  16. Proton exchange membrane fuel cells for space and electric vehicle applications: From basic research to technology development

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James

    1994-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.

  17. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 2, January 1-March 31, 1980

    SciTech Connect

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, Jr., J. L.; Louis, G. A.; Abrams, M. L.; Bushnell, C. L.; Nickols, R. C.; Gelting, R. L.; Katz, M.; Stewart, R. C.; Kunz, H. R.; Gruver, G. A.; Bregoli, L. J.; Steuernagel, W. H.; Smith, R.; Smith, S. W.; Szymanski, S. T.

    1980-08-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, effort was continued in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - developing the capability for operation of stacks on coal-derived gas. In the system study activity of Task 1, preliminary module and cell stack design requirements were completed. Fuel processor characterization has been completed by Bechtel National, Inc. Work under Task 2 defined design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication has been made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated under Task 3. In Task 4, theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects. Components for the mobile test facility are being ordered.

  18. Fuel cell CO sensor

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  19. Fuel cell CO sensor

    SciTech Connect

    Grot, S.A.; Meltser, M.A.; Gutowski, S.; Neutzler, J.K.; Borup, R.L.; Weisbrod, K.

    1999-12-14

    The CO concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H{sub 2} fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  20. Proceedings of the fuel cells `95 review meeting

    SciTech Connect

    George, T.J.

    1995-08-01

    This document contains papers presented at the Fuel Cells `95` Review Meeting. Topics included solid oxide fuel cells; DOE`s transportation program; ARPA advanced fuel cell development; molten carbonate fuel cells; and papers presented at a poster session. Individual papers have been processed separately for the U.S. DOE databases.

  1. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  2. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  3. Fuel cell oxygen electrode

    DOEpatents

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  4. Fuel cell oxygen electrode

    DOEpatents

    Shanks, Howard R.; Bevolo, Albert J.; Danielson, Gordon C.; Weber, Michael F.

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  5. Fuel cell current collector

    DOEpatents

    Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin

    1991-01-01

    A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.

  6. Fuel utilization and fuel sensitivity of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Kevin

    2011-03-01

    Fuel utilization and fuel sensitivity are two important process variables widely used in operation of SOFC cells, stacks, and generators. To illustrate the technical values, the definitions of these two variables as well as practical examples are particularly given in this paper. It is explicitly shown that the oxygen-leakage has a substantial effect on the actual fuel utilization, fuel sensitivity and V-I characteristics. An underestimation of the leakage flux could potentially results in overly consuming fuel and oxidizing Ni-based anode. A fuel sensitivity model is also proposed to help extract the leakage flux information from a fuel sensitivity curve. Finally, the "bending-over" phenomenon observed in the low-current range of a V-I curve measured at constant fuel-utilization is quantitatively coupled with leakage flux.

  7. Development of a Solid Oxide Fuel Cell for the utilization of coal mine gas

    NASA Astrophysics Data System (ADS)

    Groß, B.; Blum, L.; de Haart, L. G. J.; Dengel, A.

    Apart from natural gas there is another important natural source of methane. The so-called coal mine gas is a by-product of the geochemical process of the carbonization of sediments from marsh woods of the Earth's Carboniferous Period. Methane evaporates from the coal and has to be removed out of the active mines where it represents one of the main safety risks. Methane also evaporates in abandoned coal mines. In the federal state Saarland in Germany exists above ground a more than 110 km pipeline for the drained coal mine gas from 12 different sources. The content of methane varies between 25 and 90%, the oxygen content (from air) is in the range up to 10%. This wide range or variation, respectively, of fuel and oxygen content, causes a lot of problems for the use in conventional engines. Therefore the company Evonik New Energies GmbH is interested in using SOFC with coal mine gas as efficient as possible to produce electric power. For that purpose at Forschungszentrum Jülich the available SOFC technology was adapted to the use with coal mine gas and a test facility was designed to operate an SOFC stack (approximately 2 kW electrical power output) together with a pre-reformer. This paper presents the results of the coal mine gas analysis and the effect on the pre-reformer and the fuel cell. The composition of the coal mine gas was determined by means of micro-gas chromatography. The results obtained from preliminary tests using synthetic and real coal mine gas on the pre-reformer and on the fuel cell are discussed.

  8. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  9. SOFC cells and stacks for complex fuels

    SciTech Connect

    Edward M. Sabolsky; Matthew Seabaugh; Katarzyna Sabolsky; Sergio A. Ibanez; Zhimin Zhong

    2007-07-01

    Reformed hydrocarbon and coal (syngas) fuels present an opportunity to integrate solid oxide fuel cells into the existing fuel infrastructure. However, these fuels often contain impurities or additives that may lead to cell degradation through sulfur poisoning or coking. Achieving high performance and sulfur tolerance in SOFCs operating on these fuels would simplify system balance of plant and sequestration of anode tail gas. NexTech Materials, Ltd., has developed a suite of materials and components (cells, seals, interconnects) designed for operation in sulfur-containing syngas fuels. These materials and component technologies have been integrated into an SOFC stack for testing on simulated propane, logistic fuel reformates and coal syngas. Details of the technical approach, cell and stack performance is reported.

  10. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  11. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, May 1, 1982-July 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Browall, K.W.; Marianowski, L.G.

    1982-12-17

    Work proceeded this quarter under three program tasks. Under Task 1.0, work continued on the preparation of the reference power plant design description with Pacific Gas and Electric being one of the major contributors to the effort. Work also continued to further define the power conditioning equipment. Under Task 2.0, work continued on alternate cathode material identification, anode, cathode and electrolyte tile development, and stack design and analysis. A number of candidate cathode materials were fabricated and preliminary conductivity, solubility and stability tests performed. The chemistry of the degradation process of state-of-the-art NiO cathodes was also addressed. Under Task 4.0, studies continued to identify chemical reactions that might occur between fuel cell anode material and a number of organic compounds which could occur in fuel gases. The addition of several substances showed little effect on catalytic activity in a tube furnace or cell performance except for carbon plugging of a fuel line following ethanol addition. In addition, two cells were run this period to determine the effects of H/sub 2/S contamination on cell performance. Both tests were terminated (after 480 hours and 1450 hours of testing) due to test equipment operational problems. (WHK)

  12. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    NASA Astrophysics Data System (ADS)

    Pine, G. D.; Christian, J. E.; Mixon, W. R.; Jackson, W. L.

    1980-07-01

    The procedures and data sources used to develop an energy consumption and system cost data base for use in predicting the market penetration of phosphoric acid fuel cell total energy systems in the nonindustrial building market are described. A computer program was used to simulate the hourly energy requirements of six types of buildings; office buildings; retail stores; hotels and motels; schools; hospitals; and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system.

  13. Fuel Cell/Electrochemical Cell Voltage Monitor

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  14. Development and characterization of novel cathode materials for molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Giorgi, L.; Carewska, M.; Patriarca, M.; Scaccia, S.; Simonetti, E.; Dibartolomeo, A.

    1994-04-01

    In the development of molten carbonate fuel cell (MCFC) technology, the corrosion of materials is a serious problem for long-term operation. Indeed, slow dissolution of lithiated-NiO cathode in molten carbonates is the main obstacle for the commercialization of MCFCs. In the search of new, more stable, cathode materials, alternative compounds such as LiFeO2, Li2MnO3, and La(1-x)Sr(x)CoO3 are presently under investigation to replace the currently used lithiated-NiO. The aim of the present work was to investigate the possibility to produce electrode based on LiCoO2, a promising cathode material. At first, Li(x)CoO2 powder samples (0.8 less than x less than 1.1) were made by thermal decomposition of carbonate precursors in air. The synthesis processes were monitored by thermal analysis (TGA, DTA). The calcined and sintered powder samples were characterized by x ray diffraction (XRD) andatomic absorption spectrophotometry (F-AAS). A single phase was detected in all the samples, without any change in crystal structure as a function of lithium content. Porous sintered electrodes were prepared starting from lithium cobaltite powders mixed with different pore-formers by cold pressing and sintering. A bimodal pore-size distribution with a mean pore diameter in the range of 0.15 to 8 micron, a surface area of 2 to 12 sq m/g and a porosity of 10 to 65%, determined by the Hg-intrusion technique, were observed in all the materials. Conductivity measurements were carried out in the temperature range of 500-700 C, in air. The influence of the deviations from stoichiometry on the electronic properties was determined, the conductivity value of the stoichiometric compound being the lowest. A linear relationship between the electronic conductivity and the sample porosity was found. Solubility testing of the materials was carried out to evaluate their chemical stability in the electrolyte. The sampling method (F-AAS) and square wave voltammetry (SWV) were used to determine the

  15. Internet public information for fuel cells

    SciTech Connect

    Sudhoff, F.A.

    1995-08-01

    The rapid development and integration of the Internet into the mainstream of professional life provide the fuel cell industry with the opportunity to share new ideas with unprecedented capabilities. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has undertaken the task to provide a service where current fuel cell descriptions and information are available to customers, manufactures, academia, and the general public. METC has developed a Fuel Cell Forum where members can exchange ideas and information pertaining to fuel cell technologies using the Internet. Forum membership is encouraged from utilities, industry, universities, and Government. Because of the public nature of the Internet, business sensitive, confidential, or proprietary information should not be placed on this system. The views and opinions of authors expressed in the forum do not necessarily state or reflect those of the U.S. Government or METC. METC, has endeavored to develop a World Wide Web (WWW) location committed to the description and development of the fuel cell. Netscape or compatible software provides access to the METC Homepage. The user then selects Advanced Power Systems, then Fuel Cells. Fuel cell overview and description is followed by a presentation of the fuel cell system characteristics and advantages. Descriptions of major fuel cell projects are provided in the FACTS section. Finally, as a service to METC customers, the homepage provides a calendar and points of contact. Updates to the WWW location are occasionally made revealing current technical advances in fuel cells. In the continuing effort to further improve public knowledge and perception of fuel cell power generation, METC has created two new modes of communication using the Internet.

  16. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3, full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1985-01-01

    Two 25 cell stacks of the 13 inch x 23 inch cell size (about 4kW) remain on test after 4000 hours and 2900 hours, respectively, using simulated reformate fuel. These tests are focusing on the durability of fuel cell stack components developed through the end of 1983. Also, these stacks are serving as forerunners of a 25kW stack that will contain 175 cells of the same size and will employ the same technology base. The stack technology development program has focused on a new, low cost bipolar plate edge seal technique and evaluation of advanced cathode catalysts, an electrolyte replenishment system, and nonmetallic cooling plates in small stacks.

  17. Water balance in fuel cells systems.

    SciTech Connect

    Kopasz, J.; Ahmed, S.; Kumar, R.; Krumpelt, M.

    2002-01-10

    Fuel cell systems are attractive for their high efficiency (i.e., electric power generated per weight/volume of fuel,) and lower emissions. These systems are being developed for applications that include transportation (propulsion and auxiliary), remote stationary, and portable. Where these systems use on-board fuel processing of available fuels, the fuel processor requires high-purity water. For utility applications, this water may be available on-site, but for most applications, the process water must be recovered from the fuel cell system exhaust gas. For such applications, it is critically important that the fuel cell system be a net water-producing device. A variety of environmental conditions (e.g., ambient temperature, pressure), fuel cell system design, and operating conditions determine whether the fuel cell system is water-producing or water-consuming. This paper will review and discuss the conditions that determine the net-water balance of a generic fuel cell system and identify some options that will help meet the water needs of the fuel processor.

  18. An Overview of Stationary Fuel Cell Technology

    SciTech Connect

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  19. Fuel cell systems program plan, Fiscal year 1994

    SciTech Connect

    Not Available

    1994-07-01

    Goal of the fuel cell program is to increase energy efficiency and economic effectiveness through development and commercialization of fuel cell systems which operate on fossil fuels in multiple end use sectors. DOE is participating with the private sector in sponsoring development of molten carbonate fuel cells and solid oxide fuel cells for application in the utility, commercial, and industrial sectors. Commercialization of phosphoric acid fuel cells is well underway. Besides the introduction, this document is divided into: goal/objectives, program strategy, technology description, technical status, program description/implementation, coordinated fuel cell activities, and international activities.

  20. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  1. Project proposals on the creation of Russian-American joint enterprise for investigation, development and manufacture of power plants on the basis of solid oxide fuel cells

    SciTech Connect

    Smotrov, N.V.; Kleschev, Yu.N.

    1996-04-01

    This paper describes a proposal for a joint Russian-American enterprise for performing scientific investigations, development, and manufacture of fuel cell power plants on the basis of the solid oxide fuel cell. RASOFCo. Russian-American Solid Oxide Fuel Cells Company. RASOFCo will provide the series output of the electrochemical generator (ECG) of 1kW power, then of 5kW and 10kW as well as the development and the output of 10kW power plant with the subsequent output of a power plant of greater power. An ECG based on solid oxide fuel cells uses methane as a fuel. Predicted technical characteristics, market analysis, assessment of potential demands for power plants of low power for Tyumentransgas, participants of the joint enterprise and their founding contributions, strategy for manufacture and financing, and management of RASOFCo are discussed.

  2. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  3. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    SciTech Connect

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  4. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells.

    PubMed

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  5. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells.

    PubMed

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609

  6. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells

    PubMed Central

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Palma, Luca Di; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609

  7. Development of a polymer electrolyte membrane fuel cell stack for an underwater vehicle

    NASA Astrophysics Data System (ADS)

    Han, In-Su; Kho, Back-Kyun; Cho, Sungbaek

    2016-02-01

    This paper presents a polymer electrolyte membrane (PEM) fuel cell stack that is specifically designed for the propulsion of an underwater vehicle (UV). The stack for a UV must be continuously operated in a closed space using hydrogen and pure oxygen; it should meet various performance requirements such as high hydrogen and oxygen utilizations, low hydrogen and oxygen consumptions, a high ramp-up rate, and a long lifetime. To this end, a cascade-type stack design is employed and the cell components, including the membrane electrode assembly and bipolar plate, are evaluated using long-term performance tests. The feasibility of a fabricated 4-kW-class stack was confirmed through various performance evaluations. The proposed cascade-type stack exhibited a high efficiency of 65% and high hydrogen and oxygen utilizations of 99.89% and 99.68%, respectively, resulting in significantly lesser purge-gas emissions to the outside of the stack. The load-following test was successfully performed at a high ramp-up rate. The lifetime of the stack was confirmed by a 3500-h performance test, from which the degradation rate of the cell voltage was obtained. The advantages of the cascade-type stack were also confirmed by comparing its performance with that of a single-stage stack operating in dead-end mode.

  8. Development of materials for solid state electrochemical sensors and fuel cell applications. Final report, September 30, 1995--December 30, 1995

    SciTech Connect

    Bobba, R.; Hormes, J.; Young, V.; Baker, J.A.

    1995-12-31

    The intent of this project was two fold: (1) to develop new ionically conducting materials for solid state gas phase sensors and fuel cells and (2) to train students and create an environment conducive to Solid State Ionics research at Southern University. The authors have investigated the electrode-electrolyte interfacial reactions, defect structure and defect stability in some perovoskite type solid electrolyte materials and the effect of electrocatalyst and electrolyte on direct hydrocarbon and methanol/air fuel cell performance using synchrotron radiation based Extended X-ray Absorption Spectroscopy (EXAFS), surface analytical and Impedance Spectroscopic techniques. They have measured the AC impedance and K edge EXAFS of the entire family of rare earth dopants in Cerium Oxide to understand the effect of dopants on the conductivity and its impact on the structural properties of Cerium Oxide. All of the systems showed an increase in the conductivity over undoped ceria with ceria doped Gd, Sm and Y showing the highest values. The conductivity increased with increasing ionic radius of the dopant cation. The authors have measured the K edge of the EXAFS of these dopants to determine the local structural environment and also to understand the nature of the defect clustering between oxygen vacancies and trivalent ions. The analysis and the data reduction of these complex EXAFS spectra is in progress. Where as in the DOWCs, the authors have attempted to explore the impact of catalyst loadings on the performance of direct oxidation of methanol fuel cells. Their initial measurements on fuel cell performance characteristics and EXAFS are made on commercial membranes Pt/Ru/Nafion 115, 117 and 112.

  9. Stationary power fuel cell commercialization status worldwide

    SciTech Connect

    Williams, M.C.

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  10. Fuel cells for low power applications

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Hebling, C.; Müller, M.; Zedda, M.; Müller, C.

    Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries. The main advantages are the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage, the long lifetime and long service life, the good ecological balance, very low self-discharge. Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are the much higher power density for hydrogen fuel cells, the higher energy density per weight for the liquid fuel, safety aspects and infrastructure for fuel supply for hydride materials. For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.

  11. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  12. Carbonate fuel cell anodes

    DOEpatents

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  13. Carbonate fuel cell anodes

    DOEpatents

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  14. Fuel cell having electrolyte

    DOEpatents

    Wright, Maynard K.

    1989-01-01

    A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.

  15. Mathematical modeling of solid oxide fuel cells

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  16. Fuel cell power system for utility vehicle

    SciTech Connect

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  17. Large stationary fuel cell systems: Status and dynamic requirements

    NASA Astrophysics Data System (ADS)

    Bischoff, Manfred

    Molten carbonate fuel cell demonstrations to-date, have been able to show the highest fuel-to-electricity conversion efficiencies (>50%) of any stand-alone fuel cell type. The primary developer of this type of fuel cell in United States is Fuel Cell Energy Corporation (FCE), the developer and manufacturer of the Direct FuelCell ™ concept. FCE and MTU CFC Solutions in Germany, a licensee of FCE have demonstrated carbonate fuel cells from 10 kW to 2 MW of electrical output on a variety of fuels. IHI in Japan are also developing carbonate fuel cells for stationary power and have recently successfully demonstrated the technology in Kawagoe, Japan. In Italy, Ansaldo fuel cell have demonstrated a 100 kW carbonate fuel cell in Milan. In Korea, the Ministry of Commerce, Industry and Energy has committed to install 300 fuel cell units, sized 250 kW to 1 MW, for distributed power generation by 2012. Carbonate fuel cell technology is more fuel flexible than lower temperature fuel cell technologies and is well suited for on-site stationary CHP applications as well as to marine, military, and traction applications. The present paper gives an overview about the commercialisation efforts for the molten carbonate fuel cell technology.

  18. Fundamental studies of materials, designs, and models development for polymer electrolyte membrane fuel cell flow field distributors

    NASA Astrophysics Data System (ADS)

    Nikam, Vaibhav Vilas

    Fuel cells are becoming a popular source of energy due to their promising performance and availability. However, the high cost of fuel cell stack forbids its deployment to end user. Moreover, bipolar plate is one of the critical components in current polymer electrolyte membrane fuel cell (PEMFC) system, causing severe increase in manufacturing cost. The objective of this research work is to develop new materials, design and manufacturing process for bipolar plates. The materials proposed for use were tested for corrosion resistance in simulated fuel cell conditions. After corrosion studies copper alloy (C17200) and Low Temperature Carburized (LTC) SS 316 were selected as an alternative material for bipolar plate. It was observed that though the copper alloy offered good resistance in corrosive atmosphere, the major advantage of using the alloys was good conductivity even after formation of corrosion layer compared to SS 316. However, LTC SS 316 achieved the best corrosion resistance (ever reported in current open literature at relatively low cost) with decreased contact resistance, as compared to SS 316. Due to the expensive and tedious machining for bipolar plate manufacturing, the conventional machining process was not used. Bipolar plates were manufactured from thin corrugated sheets formed of the alloy. This research also proposed a novel single channel convoluted flow field design which was developed by increasing the tortuosity of conventional serpentine design. The CFD model for novel single channel convoluted design showed uniform distribution of velocity over the entire three dimensional domain. The novel design was further studied using pressure drop and permeability models. These modeling calculations showed substantial benefit in using corrugated sheet design and novel single channel convoluted flow field design. All the concepts of materials (except for LTC SS 316), manufacturing and design are validated using various tests like long term stability

  19. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  20. Integrated regenerative fuel cell experimental evaluation

    NASA Technical Reports Server (NTRS)

    Martin, Ronald E.

    1990-01-01

    An experimental test program was conducted to investigate the performance characteristics of an integrated regenerative fuel cell (IRFC) concept. The IRFC consists of a separate fuel cell unit and electrolysis cell unit in the same structure, with internal storage of fuel cell product water and external storage of electrolysis cell produced hydrogen and oxygen. The fuel cell unit incorporates an enhanced Orbiter-type cell capable of improved performance at reduced weight. The electrolysis cell features a NiCo2O4 catalyst oxygen evolution eletrode with a porous Teflon cover to retard electrolyte loss. Six complete IRFC assemblies were assembled and performance tested at an operating temperature of 200 F (93.3 C) and reactant pressures up to 170 psia (117.2 n/cu cm) on IRFC No. 4. Anomalous pressure charge/discharge characteristics were encountered during performance evaluation. A reversible fuel cell incorporating a proprietary bi-functional oxygen electrode operated satisfactory at 200 F (93.3 C) at reactant pressures up to 50 psia (41.4 n/cu cm) as a regenerative fuel cell for one cycle, before developing an electrical short in the fuel cell mode. Electrolysis cell 300-hour endurance tests demonstrated the electrolyte retention capability of the electrode Teflon cover and the performance stability of the bi-functional oxygen electrode at high potential.

  1. DOE perspective on fuel cells in transportation

    SciTech Connect

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, and cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.

  2. Fuel gas developments

    SciTech Connect

    Wise, D.L.

    1984-01-01

    This volume is devoted to current research and specific developmental programs in the area of fuel gas production from biomass. Anaerobic biological conversion of lignocellulosic residuals to increase methane production by using pretreatment methods such as thermochemical, autohydrolysis, and staged or continuous flow processes are described. Essential considerations for establishing digestion process design criterias are covered. Included in this discussion are the sources and characteristics of municipal solid waste (MSW), MSW preprocessing and pretreatment, and digester control parameters such as nutrient requirements, organic loading rate, retention time, feed slurry concentration, temperature, mixing, and gas quality and quantity. Highlighted are the practical aspects of reactors to promote biomass retention, improving treatment efficiency, product rate, and process stability. Brief summaries are presented on process configuration. Detailed coverage is given to the development and commercialization of anaerobic systems that are now used, such as the Celrobic system and the Biothane process. Problems associated with using biomass digester effluents as soil conditioners and feeds are discussed. The use of commercial manure-to-fuel gas systems at large environmental beef cattle feedlots is also discussed. The volume concludes with a comparative study on the conversion of agricultural crop residues to either gaseous or liquid fuels.

  3. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  4. Improved electrolytes for fuel cells

    SciTech Connect

    Gard, G.L.; Roe, D.K.

    1991-06-01

    Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

  5. Fuel cell design and assembly

    NASA Technical Reports Server (NTRS)

    Myerhoff, Alfred (Inventor)

    1984-01-01

    The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.

  6. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  7. Solid-oxide fuel-cell performance

    SciTech Connect

    Fee, D.C.; Zwick, S.A.; Ackerman, J.P.

    1983-01-01

    Two models have been developed to describe the performance of solid-oxide fuel cells: (1) a cell model which calculates cell performance for various conditions of temperature, current density, and gas composition; and (2) a systems model which performs detailed heat and mass balances around each component in a power plant. The cell model provides insight into the performance tradeoffs in cell design. Further, the cell model provides the basis for predicting fuel cell performance in a power plant environment as necessary for the systems code. Using these two tools, analysis of an atmospheric pressure, natural gas fueled, internally reforming power plant confirms the simplicity and increased efficiency of a solid oxide fuel cell system compared to existing plants.

  8. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1980-01-01

    The computer code for the detailed analytical model of the MK-2 stacks is described. An ERC proprietary matrix is incorporated in the stacks. The mechanical behavior of the stack during thermal cycles under compression was determined. A 5 cell stack of the MK-2 design was fabricated and tested. Designs for the next three stacks were selected and component fabrication initiated. A 3 cell stack which verified the use of wet assembly and a new acid fill procedure were fabricated and tested. Components for the 2 kW test facility were received or fabricated and construction of the facility is underway. The definition of fuel and water is used in a study of the fuel conditioning subsystem. Kinetic data on several catalysts, both crushed and pellets, was obtained in the differential reactor. A preliminary definition of the equipment requirements for treating tap and recovered water was developed.

  9. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect

    Steven A. Gabrielle

    2004-12-03

    This report discusses the first year of operation of a fuel cell power plant located at the Sheraton Edison Hotel, Edison, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with the Starwood Hotels & Resorts Worldwide, Inc. A DFC{reg_sign}300 fuel cell, manufactured by FuelCell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from June 2003 to May 2004. This report discusses the performance of the plant during this period.

  10. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  11. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  12. Technology development for phosphoric acid fuel cell powerplant (phase 2). [on site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    Progress is reported in the development of material, cell components, and reformers for on site integrated energy systems. Internal resistance and contact resistance were improved. Dissolved gases (O2, N2, and CO2) were found to have no effect on the electrochemical corrosion of phenolic composites. Stack performance was increased by 100 mV over the average 1979 level.

  13. Endoreversible modeling of a PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Wagner, Katharina; Hoffmann, Karl Heinz

    2015-12-01

    Fuel cells are known for high efficiencies in converting chemical energy into electrical energy. Nonetheless, the processes taking place in a fuel cell still possess a number of irreversibilities that limit the power output to values below the reversible limit. To analyze these, we developed a model that captures the main irreversibilities occurring inside a proton exchange membrane or polymer electrolyte membrane fuel cell. We used the methods of endoreversible thermodynamics, which enable us to study the entropy production of the different sources of irreversibility in detail. Additionally, performance measures like efficiency and power output can be calculated with such a model, and the influence of different parameters, such as temperature and pressure, can be easily investigated. The comparison of the model predictions with realistic fuel cell data shows that the functional dependencies of the fuel cell characteristics can be captured quite well.

  14. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  15. [Development of a low-cost single chamber microbial fuel cell type BOD sensor].

    PubMed

    Wu, Feng; Liu, Zhi; Zhou, Ben; Zhou, Shun-gui; Rao, Li-qun; Wang, Yue-qiang

    2010-07-01

    The principle of the detector is based on the effect of microbial toxicity of water sample on the electricity generation in microbial fuel cell (MFC). The performance of the MFC-type biotoxicity detector was evaluated with the synthetic water containing heavy metals of Cd2+ and Cu2+. The experimental results demonstrated that: (1) relative to the conventional methods, the MFC-type detector is easy to operate, and suitable for on-line measurements with high sensitivity; (2) it only requires 4 h to complete measurements, and can get ready for next measurement within 4 h; (3) there is a significant linear correlation between the concentration of toxic metal(s) and inhibition ratios in Coulombic yields of MFC. As the IC20 (concentration causing 20% inhibition) of Cd2+, Cu2+ and mixed metals (Cd2+ and Cu2+) were 0.6, 0.8 and 0.25 mg/L, the regression coefficients were shown to be 0.9960, 0.9744 and 0.9907.

  16. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  17. [Development of a low-cost single chamber microbial fuel cell type BOD sensor].

    PubMed

    Wu, Feng; Liu, Zhi; Zhou, Ben; Zhou, Shun-gui; Rao, Li-qun; Wang, Yue-qiang

    2010-07-01

    The principle of the detector is based on the effect of microbial toxicity of water sample on the electricity generation in microbial fuel cell (MFC). The performance of the MFC-type biotoxicity detector was evaluated with the synthetic water containing heavy metals of Cd2+ and Cu2+. The experimental results demonstrated that: (1) relative to the conventional methods, the MFC-type detector is easy to operate, and suitable for on-line measurements with high sensitivity; (2) it only requires 4 h to complete measurements, and can get ready for next measurement within 4 h; (3) there is a significant linear correlation between the concentration of toxic metal(s) and inhibition ratios in Coulombic yields of MFC. As the IC20 (concentration causing 20% inhibition) of Cd2+, Cu2+ and mixed metals (Cd2+ and Cu2+) were 0.6, 0.8 and 0.25 mg/L, the regression coefficients were shown to be 0.9960, 0.9744 and 0.9907. PMID:20825031

  18. Development of Polymer Electrolyte Mambrane (PEM) from Bisphonol S for Direct Methanol Fuel Cell (DMFC)

    NASA Astrophysics Data System (ADS)

    Changkhamchom, Sairung

    2009-03-01

    The currently used Proton Exchange Membrane (PEM) in a Direct Methanol Fuel Cell (DMFC) is Nafion^, an excellent proton conductor in a fully hydrated membrane. However, it has major drawbacks, such as very high cost, and loss of conductivity at elevated temperature and low humidity. In this work, a novel PEM based on sulfonated poly(ether ether ketone) (S-PEEK). Poly(ether ether ketone) (PEEK) was synthesized by the nucleophilic aromatic substitution polycondensation of Bisphonol-S and 4,4'-difluorobenzophenone for system A, and Bisphenol S and 4,4'-dichlorobenzophenone for system B. Bisphenol-S helps to increase the thermal stability due to its high melting point (245^oC). The post-sulfonation reaction was performed by using concentrated sulfuric acid. Sulfonated poly(ether ether ketone) (S-PEEK) samples were characterized by FTIR and ^1H-NMR to confirm the chemical structure of the S-PEEK, and by TGA to investigate the thermal property.

  19. Fuel cells for extraterrestrial and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.

    The fuel cell is a nineteenth century invention and a twentieth century technology development. Due to the high power and energy density, high efficiency, reliability, and production of pure water, hydrogen-oxygen fuel cell systems have no competition as auxiliary power sources for space vehicles. The alkaline fuel cell system is a well developed and proven technology for this application. The solid polymer electrolyte system may be its future competitor. The energy crisis of 1973 stimulated research, development and demonstration of the phosphoric acid, molten carbonate, solid oxide and solid polymer electrolyte fuel cell systems using natural gas, petroleum or coal derived hydrogen (and carbon monoxide for the high temperature systems) for terrestrial applications. The direct methanol-air fuel cell is still an electrochemist's dream. Though considerable technological advances have been made, the present price of crude oil, and the high capital costs and limited lifetime of fuel cell systems impede their terrestrial applications in the developed countries. Conversely, the potential for lower capital costs of labor intensive manufacturing processes and the relatively higher fossil fuel prices make these systems more attractive for such applications in the developing countries.

  20. Fuel cells for extraterrestrial and terrestrial applications

    SciTech Connect

    Srinivasan, S.

    1987-01-01

    The fuel cell is a nineteenth century invention and a twentieth century technology development. Due to the high power and energy density, high efficiency, reliability, and production of pure water, hydrogen-oxygen fuel cell systems have no competition as auxiliary power sources for space vehicles. The alkaline fuel cell system is a well developed and proven technology for this application. The solid polymer electrolyte system may be its future competitor. The energy crisis of 1973 stimulated research, development and demonstration of the phosphoric acid, molten carbonate, solid oxide and solid polymer electrolyte fuel cell systems using natural gas, petroleum or coal derived hydrogen (and carbon monoxide for the high temperature systems) for terrestrial applications. The direct methanol-air fuel cell is still an electrochemist's dream. Though considerable technological advances have been made, the present price of crude oil, and the high capital costs and limited lifetime of fuel cell systems impede their terrestrial applications in the developed countries. Conversely, the potential for lower capital costs of labor intensive manufacturing processes and the relatively higher fossil fuel prices make these systems more attractive for such applications in the developing countries. 11 refs.

  1. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  2. Sealant materials for solid oxide fuel cells

    SciTech Connect

    Krumpelt, M.

    1995-08-01

    The objective of this work is to complete the development of soft glass-ceramic sealants for the solid oxide fuel cell (SOFC). Among other requirements, the materials must soften at the operation temperature of the fuel cell (600-1000{degrees}C) to relieve stresses between stack components, and their thermal expansions must be tailored to match those of the stack materials. Specific objectives included addressing the needs of industrial fuel cell developers, based on their evaluation of samples we supply, as well as working with commercial glass producers to achieve scaled-up production of the materials without changing their properties.

  3. Development of a Low-Cost, Durable Membrane and Membrane Electrode Assemby for Stationary and Mobile Fuel Cell Applications

    SciTech Connect

    Michel Foure; Gaboury, Scott; Goldbach, Jim; Mountz, David; Yi, Jung

    2008-01-31

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M31 MEAs was essentially on a par with that of PFSA MEAs at 60ºC under fully humidified conditions. On the other hand, long-term durability studies showed a high decay rate of 45µV/h over a 2100 hr. test. Arkema then designed several families of polyelectrolyte candidates, which, in principle, could not undergo the same failure mechanisms. A new membrane candidate was developed: M41. It offered the same generally good mechanical, ex-situ conductivity and gas barrier properties as M31. In addition, ex-situ accelerated testing suggested a several orders of magnitude improvement in chemical stability. M41 based MEAs showed comparable BOL performance with that of PFSA (80ºC, 100% RH). M41 MEAs were further shown to be able to withstand several hours temperature excursions at 120ºC without apparent damage. Accelerated studies were carried out using the DOE and/or US Fuel Cell Council

  4. Biogas, compost and fuel cells

    SciTech Connect

    Wichert, B.; Wittrup, L.; Robel, R.

    1994-08-01

    A pilot project now under development in Folsom, California, incorporates an anaerobic digestion/aerobic composting process that could eventually supply enough biogas to a fuel cell. The Sacramento Municipal Utility District (SMUD) has two fuel cells in operation and is participating in the research project. Recently, the California Prison Industry Authority (PIA) began operating a processing facility at the Folsom prison, designed for 100 tons/day of mixed waste from the City of Folsom. The 35,000 square foot Correctional Resource Recovery Facility (CRRF) uses minimum security inmates from Folsom`s Return to Custody Facility to manually separate recyclables and compostable materials from the waste stream. The PIA will be using a new technology, high solids anaerobic digestion, to compost the organic fraction (representing approximately 60 to 70 percent of the waste stream). Construction began in June on a 40-foot wide by 120-foot long and 22-foot deep anaerobic digester. Once the vessel is operational in 1995, the composting process and the gradual breakdown of organic material will produce biogas, which SMUD hopes to use to power an adjacent two megawatt fuel cell. The electricity generated will serve SMUD customers, including the waste facility and nearby correctional institutions. 1 fig.

  5. Fuel cell systems for personal and portable power applications

    SciTech Connect

    Fateen, S. A.

    2001-01-01

    Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

  6. Fuel cell electric power production

    DOEpatents

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  7. Hydrogen and Fuel Cell Technical Advisory Committee

    SciTech Connect

    2012-03-21

    The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under Section 807 of the Energy Policy Act of 2005 to provide technical and programmatic advice to the Energy Secretary on DOE's hydrogen research, development, and demonstration efforts.

  8. Solid oxide fuel cell generator

    DOEpatents

    Draper, Robert; George, Raymond A.; Shockling, Larry A.

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  9. Solid oxide fuel cell generator

    DOEpatents

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  10. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3, full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1985-01-01

    A 25 cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 6000 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests were carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. In light of the favorable results obtained, a 25kW stack that will contain 175 cells of the same size is being constructed using the same technology base. The components for the 25kW stack have been completed. A methanol steam reformer with a design output equivalent to 50kW has been constructed to serve as a hydrogen generator for the 25kW stack. This reformer and the balance of the fuel processing sub system are currently being tested and debugged. The stack technology development program focused on cost reduction in bipolar plates, nonmetallic cooling plates, and current collecting plates; more stable cathode catalyst support materials; more corrosion resistant metal hardware; and shutdown/start up tolerance.

  11. Microbial fuel cells

    SciTech Connect

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  12. Reversible (unitized) PEM fuel cell devices

    SciTech Connect

    Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

    1999-06-01

    Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are feasible. Safety

  13. HTR Fuel Development in Europe

    SciTech Connect

    Languille, Alain; Conrad, R.; Haas, D.

    2002-07-01

    In the frame of the European Network HTR-TN and in the 5. EURATOM RTD Framework Programme (FP5) European programmes have been launched to consolidate advanced modular HTR technology in Europe. This paper gives an overall description and first results of this programme. The major tasks covered concern a complete recovery of the past experience on fuel irradiation behaviour in Europe, qualification of HTR fuel by irradiating of fuel elements in the HFR reactor, understanding of fuel behaviour with the development of a fuel particle code and finally a recover of the fuel fabrication capability. (authors)

  14. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1980-01-01

    Stack tests indicate that the discrepancies between calculated and measured temperature profiles are due to reactant cross-over and a lower than expected thermal conductivity of cells. Preliminary results indicate that acceptable contact resistance between cooling plane halves can be achieved without the use of paper. The preliminary design of the enclosure, definition of required labor and equipment for manufacturing repeating components, and the assembly procedures for the benchwork design were developed. Fabrication of components for a second 5-cell stack of the MK-2 design and a second 23-cell stack of the MK-1 design was started. The definition of water and fuel for the reforming subsystem was developed along with a preliminary definition of the control system for the subsystem. The construction and shakedown of the differential catalytic reactor was completed and testing of the first catalyst initiated.

  15. Heated transportable fuel cell cartridges

    DOEpatents

    Lance, Joseph R.; Spurrier, Francis R.

    1985-01-01

    A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

  16. Fuel cells: Hydrogen induced insulation

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Shao, Zongping

    2016-06-01

    Coupling high ionic and low electronic conductivity in the electrolyte of low-temperature solid-oxide fuel cells remains a challenge. Now, the electronic conductivity of a perovskite electrolyte, which has high proton conductivity, is shown to be heavily suppressed when exposed to hydrogen, leading to high fuel cell performance.

  17. Energy 101: Fuel Cell Technology

    ScienceCinema

    None

    2016-07-12

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  18. Bronx Zoo Fuel Cell Project

    SciTech Connect

    Hoang Pham

    2007-09-30

    A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

  19. Bonded polyimide fuel cell package

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  20. Energy 101: Fuel Cell Technology

    SciTech Connect

    2014-03-11

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  1. Market penetration scenarios for fuel cell vehicles

    SciTech Connect

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  2. Fuel cell systems program plan, Fiscal year 1993

    SciTech Connect

    Not Available

    1993-07-01

    DOE Office of Fossil Energy (OoFE) is participating with private sector in developing molten carbon fuel cell (MCFC) and advanced concepts including solid oxide fuel cell for application in utility/commercial/industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by OoFE and is now being commercialized. In 1993 DOD is undertaking use and demonstration of PAFC and other fuel cells. DOE Office of Conservation and Renewable Energy is sponsoring fuel cell development for propulsion. The Conservation program is focused on polymer electrolyte or proton exchange membrane fuel cells, although they also are implementing a demonstration program for PAFC buses. DOE fuel cell research, development and demonstration efforts are also supported by private sector funding. This Plan describes the fuel cell activities of the Office of Fossil Energy.

  3. Fuel cell system with interconnect

    DOEpatents

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  4. Fuel cell system with interconnect

    DOEpatents

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  5. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  6. Hydrodesulfurization and prereforming of logistic fuels for use in fuel cell applications

    SciTech Connect

    Piwetz, M.M.; Larsen, J.S.; Christensen, T.S.

    1996-12-31

    Fuel cell development programs have traditionally emphasized the use of natural gas as the primary fuel. However, to meet strategic requirements for fuel cells in military use, the fuel of choice must be accessible throughout the world, easily transported and stored, and compatible with other military uses. The United States military`s logistic fuels (DF-2 diesel or JP-8 jet fuel) meet these requirements. The objectives of this program were to design and construct a fuel processing system (FPS) and by connecting the FPS with a solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), respectively, to demonstrate that such a system can be used to convert diesel or jet-fuel into a feed stream compatible with the fuel cell.

  7. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    SciTech Connect

    Pine, G.D.; Christian, J.E.; Mixon, W.R.; Jackson, W.L.

    1980-07-01

    This report describes the procedures and data sources used to develop an energy-consumption and system-cost data base for use in predicting the market penetration of phosphoric acid fuel cell total-energy systems in the nonindustrial building market. A computer program was used to simulate the hourly energy requirements of six types of buildings - office buildings, retail stores, hotels and motels, schools, hospitals, and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system. The systems were simulated for a single building size for each building type. Methods were developed to extrapolate the system cost and performance data to other building sizes.

  8. [Development of a low-cost single chamber microbial fuel cell type BOD sensor].

    PubMed

    Wu, Feng; Liu, Zhi; Zhou, Shun-gui; Wang, Yue-qiang; Huang, Sai-hua

    2009-10-15

    The 5-d biochemical oxygen demand (BOD5) test is the most conventional method to determine the concentration of biodegradable organics in wastewater. However, this method is time-consuming and usually requires experience and skill to produce creditable results, which is also not suitable for on-line measurements. This study described a single-chamber mediator-less microbial fuel cell (MFC)-type BOD sensor as an alternative method to BOD5. In such MFC, MnO2 was used as the cathode catalyst instead of Pt and the expensive proton exchange membrane was replaced with the cation exchange membrane. The factors including the external resistance, pH of anolyte, the reaction time and rinse time on BOD sensor were explored, and the results were compared with the values determined by BOD5. The experimental results showed that the optimal conditions are: the external resistance of 12 k omega, pH of 7.0, and the reaction period of 2 h and the rinse time of 2-10 min. The low detection limit is 0.2 mg/L and the precision is 0.33%. This study indicates that MFC-type sensor can be used as a reliable method to determine BOD in wastewater, supported by the good linear correlation between BOD concentration and coulombs generation (regression coefficient, R2 = 0.9992) and the small relative error of 4% between MFC-type sensor and BOD5. Such device provides a low-cost, easy-operated, fast-response, sensitive and reliable method to measure BOD in wastewater, and also is suitable for on-line measurements.

  9. Comparative Metagenomics of Anode-Associated Microbiomes Developed in Rice Paddy-Field Microbial Fuel Cells

    PubMed Central

    Kouzuma, Atsushi; Kasai, Takuya; Nakagawa, Gen; Yamamuro, Ayaka; Abe, Takashi; Watanabe, Kazuya

    2013-01-01

    In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors. PMID:24223712

  10. Climate Change Fuel Cell Program

    SciTech Connect

    Alice M. Gitchell

    2006-09-15

    A 200 kW, natural gas fired fuel cell was installed at the Richard Stockton College of New Jersey. The purpose of this project was to demonstrate the financial and operational suitability of retrofit fuel cell technology at a medium sized college. Target audience was design professionals and the wider community, with emphasis on use in higher education. ''Waste'' heat from the fuel cell was utilized to supplement boiler operations and provide domestic hot water. Instrumentation was installed in order to measure the effectiveness of heat utilization. It was determined that 26% of the available heat was captured during the first year of operation. The economics of the fuel cell is highly dependent on the prices of electricity and natural gas. Considering only fuel consumed and energy produced (adjusted for boiler efficiency), the fuel cell saved $54,000 in its first year of operation. However, taking into account the price of maintenance and the cost of financing over the short five-year life span, the fuel cell operated at a loss, despite generous subsidies. As an educational tool and market stimulus, the fuel cell attracted considerable attention, both from design professionals and the general public.

  11. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  12. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  13. Chrysler Pentastar direct hydrogen fuel cell program

    SciTech Connect

    Kimble, M.; Deloney, D.

    1995-08-01

    The Chrysler Pentastar Electronics, Inc. Direct Hydrogen Fueled PEM Fuel Cell Hybrid Vehicle Program (DPHV) was initiated 1 July, 1994 with the following mission, {open_quotes}Design, fabricate, and test a Direct Hydrogen Fueled Proton Exchange Membrane (PEM) Fuel Cell System including onboard hydrogen storage, an efficient lightweight fuel cell, a gas management system, peak power augmentation and a complete system controls that can be economically mass produced and comply with all safety environmental and consumer requirements for vehicle applications for the 21st century.{close_quotes} The Conceptual Design for the entire system based upon the selection of an applicable vehicle and performance requirements that are consistent with the PNGV goals will be discussed. A Hydrogen Storage system that has been selected, packaged, and partially tested in accordance with perceived Hydrogen Safety and Infrastructure requirements will be discussed in addition to our Fuel Cell approach along with design of the {open_quotes}real{close_quotes} module. The Gas Management System and the Load Leveling System have been designed and the software programs have been developed and will be discussed along with a complete fuel cell test station that has the capability to test up to a 60 kW fuel cell system.

  14. Carbonate fuel cells: Milliwatts to megawatts

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  15. Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2013-03-30

    Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalyst supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.

  16. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, February 1-April 30, 1980

    SciTech Connect

    Peterson, J. R.

    1980-01-01

    Work has been initiated during this first quarter under all four program tasks and by all major participants as described. Task 1.0 activity (establish power plant reference design) concentrated upon definition of user requirements and establishment of power plant subsystem alternatives and characteristics. Task 2.0 work (stack and cell design development and verification) was initiated with a heavy emphasis upon test facilities preparation. A total of 27 laboratory cells were operated during this reporting period and a total of nine cells continued on test at the end of the quarter. Investigation of alternative anode and cathode materials proceeded; a dual-porosity anode was fabricated and tested. Over 10,000 endurance hours on a state-of-the-art cell carried-over from a previous program has been achieved and 1500 hours endurance has been obtained with sheet metal cells. Results presented for electrolyte structure development include comparative data for spray-dried and modified aqueous slurry process powders. Shake-down tests with a rotating disc electrode apparatus for fundamental measurements are described. Concept designs for both prototype and subscale stacks have been identified. Task 3.0 effort (development capability for full-scale stack tests) included preparation of an overall test plan to commercialization for molten carbonate fuel cells and of a functional specification for the tenth-scale stack test facility; drafts of both documents were completed for internal review. Cost-effective manufacturing assessment of available designs and processes was initiated. Task 4.0 work (develop capabilities for operation of stacks on coal-derived gas) included gathering of available contaminants concentration and effects information and preparation of initial projections of contaminant ranges and concentrations. Accomplishments to date and activities planned for the next quarter are described.

  17. Opportunities for portable Ballard Fuel Cells

    SciTech Connect

    Voss, H.H.; Huff, J.R.

    1996-12-31

    With the increasing proliferation and sophistication of portable electronic devices in both commercial and military markets, the need has arisen for small, lightweight power supplies that can provide increased operating life over those presently available. A solution to this power problem is the development of portable Ballard Fuel Cell power systems that operate with a hydrogen fuel source and air. Ballard has developed PEM fuel cell stacks and power systems in the 25 to 100 watt range for both of these markets. For military use, Ballard has teamed with Ball Corporation and Hydrogen Consultants, Inc. and has provided the Ballard Fuel Cell stack for an ambient PEM fuel cell power system for the DoD. The system provides power from idle to I 00 watts and has the capability of delivering overloads of 125 watts for short periods of time. The system is designed to operate over a wide range of temperature, relative humidity and altitude. Hydrogen is supplied as a compressed gas, metal hydride or chemical hydride packaged in a unit that is mated to the power/control unit. The hydrogen sources provide 1.5, 5 and 15 kWh of operation, respectively. The design of the fuel cell power system enables the unit to operate at 12 volts or 24 volts depending upon the equipment being used. For commercial applications, as with the military, fuel cell power sources in the 25 to 500 watt range will be competing with advanced batteries. Ambient PEM fuel cell designs and demonstrators are being developed at 25 watts and other low power levels. Goals are minimum stack volume and weight and greatly enhanced operating life with reasonable system weight and volume. This paper will discuss ambient PEM fuel cell designs and performance and operating parameters for a number of power levels in the multiwatt range.

  18. Development of a fuel cell plug-in hybrid electric vehicle and vehicle simulator for energy management assessment

    NASA Astrophysics Data System (ADS)

    Meintz, Andrew Lee

    This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.

  19. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  20. Proceedings of the Fourth Annual Fuel Cells Contractors Review Meeting

    NASA Astrophysics Data System (ADS)

    Huber, W. J.

    1992-07-01

    The objective of the program was to develop the essential technology for private sector commercialization of various fuel cell electrical generation systems, which promise high fuel efficiencies (40-60 percent), possibilities for cogeneration, modularity, possible urban siting, and low emissions. The purpose of this meeting was to provide the R and D participants in the DOE/Fossil Energy-sponsored Fuel Cells Program with a forum. With the near commercialization of phosphoric acid fuel cells, major emphasis was on molten carbonate and solid oxide fuel cells. Twenty-two papers were given in 3 formal sessions: molten carbonate fuel cells; solid oxide fuel cells; and systems and phosphoric acid. In addition, the proceedings also include a welcome to METC address and comments on the Fuel Cells Program from the viewpoint of EPRI and DOE's Vehicular Fuel Cell Program. Separate abstracts have been prepared.

  1. Applicability of molten carbonate fuel cells to various fuels

    NASA Astrophysics Data System (ADS)

    Watanabe, Takao; Izaki, Yoshiyuki; Mugikura, Yoshihiro; Morita, Hiroshi; Yoshikawa, Masahiro; Kawase, Makoto; Yoshiba, Fumihiko; Asano, Koichi

    MCFCs can utilize CO rich and H 2 lean fuel, such as gasified biomass or gasified waste as a Pt catalyst is not used and Pt poisoning by CO does not occur. This feature has become very important due to the worldwide CO 2 depression requirements. CRIEPI has developed MCFC technologies in line with a governmental program, which mainly focused on natural gas fuel. However, CRIEPI has recently been focussing on technologies for various fuel applications. Single cells and stacks were tested with various gas compositions and showed stable performance even with high CO and high fuel utilization conditions. Gasified biomass or waste can contain many kinds of impurities such as H 2S, HCl, HF, NH 3, etc. The effects of these impurities were taken into account for single cells, and the permissible limits were estimated.

  2. Fuel-Cell Water Separator

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  3. Fuel cell with internal flow control

    SciTech Connect

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  4. Direct formate fuel cells: A review

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  5. The Russian/American Fuel Cell Consortium

    SciTech Connect

    Sylwester, A.; Baker, R.; Krumpelt, M.

    1996-12-31

    The United States and Russia discovered a mutual interest in fuel cell development during a series of workshops designed to teach entrepreneurial skills to Russian nuclear weapon scientists and engineers to aid them in converting their skill to peaceful applications. The proposal for a Russian/American Fuel Cell Consortium was initiated at the third workshop held in Livermore, CA, in May 1994. Representatives from U.S. fuel cell industries, U.S. research institutes, Russian institutes and ministries, and U.S. national laboratories attended, including those from GAZPROM, the Russian natural gas company. GASPROM needs to provide power for telemetry, cathodic corrosion protection of gas lines, and gas line pumping power in remote areas, and estimates that it needs approximately seventy thousand 1.5 to 15 KW plants to do so. Since the workshop, several direct working relationships have developed between the Russian Nuclear Weapon Institutes and the U.S. fuel cell industry.

  6. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  7. Climate Change Fuel Cell Program

    SciTech Connect

    Paul Belard

    2006-09-21

    Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

  8. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  9. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  10. Development of molten carbonate fuel cell technology. Technical progress report, July-September 1983

    SciTech Connect

    1983-01-01

    Component development concentrated on two objectives: development of a creep resistance ribbed anode and development of an internal reforming catalyst for steam-methane reforming in the MCFC anode. Satisfactory anode creep strength has been achieved with Ni + 16 wt % LiAlO composite anodes. Efforts concentrated on fabrication methods to directly produce a ribbed anode from the Ni + LiAlO/sub 2/ powder mixture. Encouraging results were obtained by mold compression in a machined graphite mold followed by in-mold sintering which was promoted by the use of a few percent LiKCO/sub 3/ as a sintering agent. Internal reforming catalyst development focused on preparation techniques for high surface area Ni catalyst supported on ..gamma..-LiAlO/sub 2/. The approach which is being most actively pursued involves first pelletizing the LiAlO/sub 2/ into suitable granule size followed by multiple impregnation in nickel salt solution and heat treatment. Several impregnations are necessary to obtain a nominal Ni loading of 15 wt %. Out-of-cell catalyst testing has been initiated in planar integral reactors as well as differential tube reactors. The LiAlO/sub 2/ supported catalyst granules have demonstrated high activity for the methane-steam reforming reaction and kinetic parameters compare favorably with those for commercially available reforming catalysts. Results are detailed. (WHK)

  11. Model development and analysis of a mid-sized hybrid fuel cell/battery vehicle with a representative driving cycle

    NASA Astrophysics Data System (ADS)

    Abu Mallouh, Mohammed; Abdelhafez, Eman; Salah, Mohammad; Hamdan, Mohammed; Surgenor, Brian; Youssef, Mohamed

    2014-08-01

    Vehicles powered with internal combustion engines (ICEs) are one of the main pollutant sources in large cities. Most of large cities (e.g. Amman, capital of Jordan) suffer from frequent traffic jams. This leads to frequent stops and starts, and hence, an increase in tailpipe emissions. One way to minimize emissions is to use electric motors in the powertrain configuration. In this study, the performance of a hybrid fuel cell (FC)/battery vehicle is investigated utilizing different worldwide driving cycles. Initially, a model of a mid-sized ICE vehicle is developed and validated against experimental tests. The ICE vehicle validated model is then modified to be driven with only an electric motor powered by a hybrid FC/battery system. The effect of driving pattern, which varies from city to city and from region to region, is investigated. A driving cycle that represents the driving patterns in Amman city is developed based on experimental data and then used to evaluate the performance of both ICE and hybrid FC/battery vehicle configurations. It is found that the performance of the hybrid FC/battery configuration is much better than the ICE version in terms of emissions, fuel economy, efficiency, and speed tracking error.

  12. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  14. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H. C. Maru; M. Farooque

    2003-12-19

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC

  16. The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report

    SciTech Connect

    George A. Marchetti

    1999-12-15

    Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

  17. Development and Characterization of a High Performance Thin-Film Planar Solid-Oxide Fuel Cell Stack

    SciTech Connect

    Chung, B W; Chervin, C N; Haslam, J J; Pham, A; Glass, R S

    2004-04-07

    A planar solid oxide fuel cell (SOFC) was fabricated using a tape-cast Ni/yttria-stabilized zirconia (YSZ) anode support, a YSZ thin film electrolyte, and a composite cathode of YSZ and (La{sub 0.85}Sr{sup 0.14}){sub 0.98}MnO{sub 3} (LSM). Using pure hydrogen as the fuel gas, a three cell stack with a cross-flow design and external manifolds produced peak power densities of 0.85 W/cm{sup 2} and 0.41 W/cm{sup 2} at 800 C and 700 C, respectively. Using wet methane as the fuel gas, the stack produced a peak power density of 0.22 W/cm{sup 2} at 700 C. Individual cells in the stack showed identical current-voltage (I -V) characteristics. Stack lifetime was limited because of degradation of the cells from oxidation products coming from the metallic interconnect used.

  18. Advanced Catalysts for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.

    2006-01-01

    This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.

  19. Double interconnection fuel cell array

    DOEpatents

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  20. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  1. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  2. PEM/SPE fuel cell

    DOEpatents

    Grot, Stephen Andreas

    1998-01-01

    A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.

  3. Metrology for Fuel Cell Manufacturing

    SciTech Connect

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  4. PEM/SPE fuel cell

    DOEpatents

    Grot, S.A.

    1998-01-13

    A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.

  5. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  6. Assessment, design and control strategy development of a fuel cell hybrid electric vehicle for CSU's EcoCAR

    NASA Astrophysics Data System (ADS)

    Fox, Matthew D.

    Advanced automotive technology assessment and powertrain design are increasingly performed through modeling, simulation, and optimization. But technology assessments usually target many competing criteria making any individual optimization challenging and arbitrary. Further, independent design simulations and optimizations take considerable time to execute, and design constraints and objectives change throughout the design process. Changes in design considerations usually require re-processing of simulations and more time. In this thesis, these challenges are confronted through CSU's participation in the EcoCAR2 hybrid vehicle design competition. The complexity of the competition's design objectives leveraged development of a decision support system tool to aid in multi-criteria decision making across technologies and to perform powertrain optimization. To make the decision support system interactive, and bypass the problem of long simulation times, a new approach was taken. The result of this research is CSU's architecture selection and component sizing, which optimizes a composite objective function representing the competition score. The selected architecture is an electric vehicle with an onboard range extending hydrogen fuel cell system. The vehicle has a 145kW traction motor, 18.9kWh of lithium ion battery, a 15kW fuel cell system, and 5kg of hydrogen storage capacity. Finally, a control strategy was developed that improves the vehicles performance throughout the driving range under variable driving conditions. In conclusion, the design process used in this research is reviewed and evaluated against other common design methodologies. I conclude, through the highlighted case studies, that the approach is more comprehensive than other popular design methodologies and is likely to lead to a higher quality product. The upfront modeling work and decision support system formulation will pay off in superior and timely knowledge transfer and more informed design

  7. European opportunities for fuel cell commercialisation

    NASA Astrophysics Data System (ADS)

    Gibbs, C. E.; Steel, M. C. F.

    1992-01-01

    The European electricity market is changing. This paper will look at the background to power generation in Europe and highlight the recent factors which have entered the market to promote change. The 1990s seem to offer great possibilities for fuel cell commercialisation. Awareness of environmental problems has never been greater and there is growing belief that fuel cell technology can contribute to solving some of these problems. Issues which have caused the power industry in Europe to re-think its methods of generation include: concern over increasing carbon dioxide emissions and their contribution to the greenhouse effect; increasing SO x and NO x emissions and the damage cause by acid rain; the possibility of adverse effects on health caused by high voltage transmission lines; environmental restrictions to the expansion of hydroelectric schemes; public disenchantment with nuclear power following the Chernobyl accident; avoidance of dependence on imported oil following the Gulf crisis and a desire for fuel flexibility. All these factors are hastening the search for clean, efficient, modular power generators which can be easily sited close to the electricity consumer and operated using a variety of fuels. It is not only the power industry which is changing. A tightening of the legislation concerning emissions from cars is encouraging European auto companies to develop electric vehicles, some of which may be powered by fuel cells. Political changes, such as the opening up of Eastern Europe will also expand the market for low-emission, efficient power plants as attempts are made to develop and clean up that region. Many Europeans organisations are re-awakening their interest, or strengthening their activities, in the area of fuel cells because of the increasing opportunities offered by the European market. While some companies have chosen to buy, test and demonstrate Japanese or American fuel cell stacks with the aim of gaining operational experience and

  8. Variable area fuel cell cooling

    DOEpatents

    Kothmann, Richard E.

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  9. Stationary Fuel Cell Evaluation (Presentation)

    SciTech Connect

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-05-01

    This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

  10. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  11. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  12. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  13. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  14. Integrated Fuel Cell/Coal Gasifier

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1985-01-01

    Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.

  15. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  16. Develop and test fuel cell powered on-site integrated total energy systems

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1984-01-01

    On-going testing of an 11 cell, 10.7 in. x 14 in. stack (about 1 kW) reached 2600 hours on steady load. Nonmetallic cooling plates and an automated electrolyte replenishment system continued to perform well. A 10 cell, 10.7 in. x 14 in. stack was constructed with a modified electrolyte matrix configuration for the purpose of reducing cell IR loss. The desired effect was achieved, but the general cell performance level was irregular. Evaluation is continuing. Preparations for a long term 25 cell, 13 in. x 23 in. test stack (about 4 kW) approached completion. Start up in early May 1984 is expected.

  17. Catalytic autothermal reforming of hydrocarbon fuels for fuel cells.

    SciTech Connect

    Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D.; Ahmed, S.

    2002-01-11

    Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles [1]. The lack of an infrastructure for producing and distributing H{sub 2} has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H{sub 2} [2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines [3]. Existing reforming technology for the production of H{sub 2} from hydrocarbon feedstocks used in large-scale manufacturing processes, such as ammonia synthesis, is cost prohibitive when scaled down to the size of the fuel processor required for transportation applications (50-80 kWe) nor is it designed to meet the varying power demands and frequent shutoffs and restarts that will be experienced during normal drive cycles. To meet the performance targets required of a fuel processor for transportation applications will require new reforming reactor technology developed to meet the volume, weight, cost, and operational characteristics for transportation applications and the development of new reforming catalysts that exhibit a higher activity and better thermal and mechanical stability than reforming catalysts currently used in the production of H{sub 2} for large-scale manufacturing processes.

  18. Fuel cell chemistry and operation

    NASA Astrophysics Data System (ADS)

    Hamrock, Steven J.; Herring, Andrew M.; Zawodzinski, Thomas A.

    The annual fall symposium on Fuel Cell Chemistry and Operation was held at the 232nd National Meeting of the American Chemical Society in San Francisco, CA on September 11-14, 2006. Similar symposia sponsored by the Fuel Division have been held every fall since 1999. Significantly, this symposium was part of an ACS Presidential Event on Hydrogen, and was sponsored by a number of other ACS divisions including, Polymer, Polymeric Materials: Science and Engineering, Petroleum, Industrial and Engineering Chemistry, and the Inorganic divisions. Additional support was provided by the Petroleum Research Fund and the 3M Fuel Cell Components Group.

  19. The Canadian fuel cell R&D program

    SciTech Connect

    Beck, N.R.; Hammerli, M.

    1996-12-31

    This paper gives an overview of the Canadian Fuel Cell R&D Program (CFCP). The program includes both mobile and stationary applications. It is based on Canadian as well as other fuel cell technologies. The Canadian fuel cell technologies comprise the development of the Polymer Electrolyte Fuel Cell (PEFC) of Ballard Power Systems Inc., as well as the Alkaline Fuel Cell of Astris Inc. Materials development issues are an important element of the Program. An outstanding example is the creation of the new BAM3G membrane technology of Ballard Advanced Materials in support of the Canadian PEFC technology. Finally, some system successes will be highlighted.

  20. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.