Genomic resources in fruit plants: an assessment of current status.
Rai, Manoj K; Shekhawat, N S
2015-01-01
The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.
Ensembl genomes 2016: more genomes, more complexity
USDA-ARS?s Scientific Manuscript database
Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...
Ensembl Genomes 2016: more genomes, more complexity.
Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M
2016-01-04
Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ensembl Genomes 2016: more genomes, more complexity
Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.
2016-01-01
Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574
Iquebal, M A; Jaiswal, Sarika; Mahato, Ajay Kumar; Jayaswal, Pawan K; Angadi, U B; Kumar, Neeraj; Sharma, Nimisha; Singh, Anand K; Srivastav, Manish; Prakash, Jai; Singh, S K; Khan, Kasim; Mishra, Rupesh K; Rajan, Shailendra; Bajpai, Anju; Sandhya, B S; Nischita, Puttaraju; Ravishankar, K V; Dinesh, M R; Rai, Anil; Kumar, Dinesh; Sharma, Tilak R; Singh, Nagendra K
2017-11-02
Mango is one of the most important fruits of tropical ecological region of the world, well known for its nutritive value, aroma and taste. Its world production is >45MT worth >200 billion US dollars. Genomic resources are required for improvement in productivity and management of mango germplasm. There is no web-based genomic resources available for mango. Hence rapid and cost-effective high throughput putative marker discovery is required to develop such resources. RAD-based marker discovery can cater this urgent need till whole genome sequence of mango becomes available. Using a panel of 84 mango varieties, a total of 28.6 Gb data was generated by ddRAD-Seq approach on Illumina HiSeq 2000 platform. A total of 1.25 million SNPs were discovered. Phylogenetic tree using 749 common SNPs across these varieties revealed three major lineages which was compared with geographical locations. A web genomic resources MiSNPDb, available at http://webtom.cabgrid.res.in/mangosnps/ is based on 3-tier architecture, developed using PHP, MySQL and Javascript. This web genomic resources can be of immense use in the development of high density linkage map, QTL discovery, varietal differentiation, traceability, genome finishing and SNP chip development for future GWAS in genomic selection program. We report here world's first web-based genomic resources for genetic improvement and germplasm management of mango.
Genomics Community Resources | Informatics Technology for Cancer Research (ITCR)
To facilitate genomic research and the dissemination of its products, National Human Genome Research Institute (NHGRI) supports genomic resources that are crucial for basic research, disease studies, model organism studies, and other biomedical research. Awards under this FOA will support the development and distribution of genomic resources that will be valuable for the broad research community, using cost-effective approaches. Such resources include (but are not limited to) databases and informatics resources (such as human and model organism databases, ontologies, and analysi
WheatGenome.info: A Resource for Wheat Genomics Resource.
Lai, Kaitao
2016-01-01
An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .
2011-01-01
Background Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models. PMID:21542930
Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron
2011-05-04
Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models.
Ensembl Genomes 2013: scaling up access to genome-wide data.
Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael
2014-01-01
Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.
Mitropoulos, Konstantinos; Cooper, David N; Mitropoulou, Christina; Agathos, Spiros; Reichardt, Jürgen K V; Al-Maskari, Fatima; Chantratita, Wasun; Wonkam, Ambroise; Dandara, Collet; Katsila, Theodora; Lopez-Correa, Catalina; Ali, Bassam R; Patrinos, George P
2017-11-01
Genomic medicine has greatly matured in terms of its technical capabilities, but the diffusion of genomic innovations worldwide faces significant barriers beyond mere access to technology. New global development strategies are sorely needed for biotechnologies such as genomics and their applications toward precision medicine without borders. Moreover, diffusion of genomic medicine globally cannot adhere to a "one-size-fits-all-countries" development strategy, in the same way that drug treatments should be customized. This begs a timely, difficult but crucial question: How should developing countries, and the resource-limited regions of developed countries, invest in genomic medicine? Although a full-scale investment in infrastructure from discovery to the translational implementation of genomic science is ideal, this may not always be feasible in all countries at all times. A simple "transplantation of genomics" from developed to developing countries is unlikely to be feasible. Nor should developing countries be seen as simple recipients and beneficiaries of genomic medicine developed elsewhere because important advances in genomic medicine have materialized in developing countries as well. There are several noteworthy examples of genomic medicine success stories involving resource-limited settings that are contextualized and described in this global genomic medicine innovation analysis. In addition, we outline here a new long-term development strategy for global genomic medicine in a way that recognizes the individual country's pressing public health priorities and disease burdens. We term this approach the "Fast-Second Winner" model of innovation that supports innovation commencing not only "upstream" of discovery science but also "mid-stream," building on emerging highly promising biomarker and diagnostic candidates from the global science discovery pipeline, based on the unique needs of each country. A mid-stream entry into innovation can enhance collective learning from other innovators' mistakes upstream in discovery science and boost the probability of success for translation and implementation when resources are limited. This à la carte model of global innovation and development strategy offers multiple entry points into the global genomics innovation ecosystem for developing countries, whether or not extensive and expensive discovery infrastructures are already in place. Ultimately, broadening our thinking beyond the linear model of innovation will help us to enable the vision and practice of genomics without borders in both developed and resource-limited settings.
An Integrated Molecular Database on Indian Insects.
Pratheepa, Maria; Venkatesan, Thiruvengadam; Gracy, Gandhi; Jalali, Sushil Kumar; Rangheswaran, Rajagopal; Antony, Jomin Cruz; Rai, Anil
2018-01-01
MOlecular Database on Indian Insects (MODII) is an online database linking several databases like Insect Pest Info, Insect Barcode Information System (IBIn), Insect Whole Genome sequence, Other Genomic Resources of National Bureau of Agricultural Insect Resources (NBAIR), Whole Genome sequencing of Honey bee viruses, Insecticide resistance gene database and Genomic tools. This database was developed with a holistic approach for collecting information about phenomic and genomic information of agriculturally important insects. This insect resource database is available online for free at http://cib.res.in. http://cib.res.in/.
Rat Genome and Model Resources.
Shimoyama, Mary; Smith, Jennifer R; Bryda, Elizabeth; Kuramoto, Takashi; Saba, Laura; Dwinell, Melinda
2017-07-01
Rats remain a major model for studying disease mechanisms and discovery, validation, and testing of new compounds to improve human health. The rat's value continues to grow as indicated by the more than 1.4 million publications (second to human) at PubMed documenting important discoveries using this model. Advanced sequencing technologies, genome modification techniques, and the development of embryonic stem cell protocols ensure the rat remains an important mammalian model for disease studies. The 2004 release of the reference genome has been followed by the production of complete genomes for more than two dozen individual strains utilizing NextGen sequencing technologies; their analyses have identified over 80 million variants. This explosion in genomic data has been accompanied by the ability to selectively edit the rat genome, leading to hundreds of new strains through multiple technologies. A number of resources have been developed to provide investigators with access to precision rat models, comprehensive datasets, and sophisticated software tools necessary for their research. Those profiled here include the Rat Genome Database, PhenoGen, Gene Editing Rat Resource Center, Rat Resource and Research Center, and the National BioResource Project for the Rat in Japan. © The Author 2017. Published by Oxford University Press.
AmphiBase: A new genomic resource for non-model amphibian species.
Kwon, Taejoon
2017-01-01
More than five thousand genes annotated in the recently published Xenopus laevis and Xenopus tropicalis genomes do not have a candidate orthologous counterpart in other vertebrate species. To determine whether these sequences represent genuine amphibian-specific genes or annotation errors, it is necessary to analyze them alongside sequences from other amphibian species. However, due to large genome sizes and an abundance of repeat sequences, there are limited numbers of gene sequences available from amphibian species other than Xenopus. AmphiBase is a new genomic resource covering non-model amphibian species, based on public domain transcriptome data and computational methods developed during the X. laevis genome project. Here, I review the current status of AmphiBase, including amphibian species with available transcriptome data or biological samples, and describe the challenges of building a comprehensive amphibian genomic resource in the absence of genomes. This mini-review will be informative for researchers interested in functional genomic experiments using amphibian model organisms, such as Xenopus and axolotl, and will assist in interpretation of results implicating "orphan genes." Additionally, this study highlights an opportunity for researchers working on non-model amphibian species to collaborate in their future efforts and develop amphibian genomic resources as a community. © 2017 Wiley Periodicals, Inc.
HopBase: a unified resource for Humulus genomics
Hill, Steven T.; Sudarsanam, Ramcharan
2017-01-01
Abstract Hop (Humulus lupulus L. var lupulus) is a dioecious plant of worldwide significance, used primarily for bittering and flavoring in brewing beer. Studies on the medicinal properties of several unique compounds produced by hop have led to additional interest from pharmacy and healthcare industries as well as livestock production as a natural antibiotic. Genomic research in hop has resulted a published draft genome and transcriptome assemblies. As research into the genomics of hop has gained interest, there is a critical need for centralized online genomic resources. To support the growing research community, we report the development of an online resource "HopBase.org." In addition to providing a gene annotation to the existing Shinsuwase draft genome, HopBase makes available genome assemblies and annotations for both the cultivar “Teamaker” and male hop accession number USDA 21422M. These genome assemblies, gene annotations, along with other common data, coupled with a genome browser and BLAST database enable the hop community to enter the genomic age. The HopBase genomic resource is accessible at http://hopbase.org and http://hopbase.cgrb.oregonstate.edu. PMID:28415075
CucCAP - Developing genomic resources for the cucurbit community
USDA-ARS?s Scientific Manuscript database
The U.S. cucurbit community has initiated a USDA-SCRI funded cucurbit genomics project, CucCAP: Leveraging applied genomics to increase disease resistance in cucurbit crops. Our primary objectives are: develop genomic and bioinformatic breeding tool kits for accelerated crop improvement across the...
USDA-ARS?s Scientific Manuscript database
The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...
Shannon C.K. Straub; Mark Fishbein; Tatyana Livshult; Zachary Foster; Matthew Parks; Kevin Weitemier; Richard C. Cronn; Aaron Liston
2011-01-01
Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in...
Standards of Practice: Applying Genetics and Genomics Resources to Oncology .
Kerber, Alice S; Ledbetter, Nancy J
2017-04-01
Knowledge about genetics and genomics and its application to oncology care is rapidly expanding and evolving. As a result, oncology nurses at all levels must develop and maintain their knowledge of genetics and genomics, as well as be aware of resources to guide practice. This article focuses on implementation of the standards described in the updated Genetics/Genomics Nursing: Scope and Standards of Practice by the basic practitioner. .
Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan)
Pazhamala, Lekha; Saxena, Rachit K.; Singh, Vikas K.; Sameerkumar, C. V.; Kumar, Vinay; Sinha, Pallavi; Patel, Kishan; Obala, Jimmy; Kaoneka, Seleman R.; Tongoona, P.; Shimelis, Hussein A.; Gangarao, N. V. P. R.; Odeny, Damaris; Rathore, Abhishek; Dharmaraj, P. S.; Yamini, K. N.; Varshney, Rajeev K.
2015-01-01
Pigeonpea is an important pulse crop grown predominantly in the tropical and sub-tropical regions of the world. Although pigeonpea growing area has considerably increased, yield has remained stagnant for the last six decades mainly due to the exposure of the crop to various biotic and abiotic constraints. In addition, low level of genetic variability and limited genomic resources have been serious impediments to pigeonpea crop improvement through modern breeding approaches. In recent years, however, due to the availability of next generation sequencing and high-throughput genotyping technologies, the scenario has changed tremendously. The reduced sequencing costs resulting in the decoding of the pigeonpea genome has led to the development of various genomic resources including molecular markers, transcript sequences and comprehensive genetic maps. Mapping of some important traits including resistance to Fusarium wilt and sterility mosaic disease, fertility restoration, determinacy with other agronomically important traits have paved the way for applying genomics-assisted breeding (GAB) through marker assisted selection as well as genomic selection (GS). This would accelerate the development and improvement of both varieties and hybrids in pigeonpea. Particularly for hybrid breeding programme, mitochondrial genomes of cytoplasmic male sterile (CMS) lines, maintainers and hybrids have been sequenced to identify genes responsible for cytoplasmic male sterility. Furthermore, several diagnostic molecular markers have been developed to assess the purity of commercial hybrids. In summary, pigeonpea has become a genomic resources-rich crop and efforts have already been initiated to integrate these resources in pigeonpea breeding. PMID:25741349
Gardner, Elliot M.; Johnson, Matthew G.; Ragone, Diane; Wickett, Norman J.; Zerega, Nyree J. C.
2016-01-01
Premise of the study: We used moderately low-coverage (17×) whole-genome sequencing of Artocarpus camansi (Moraceae) to develop genomic resources for Artocarpus and Moraceae. Methods and Results: A de novo assembly of Illumina short reads (251,378,536 pairs, 2 × 100 bp) accounted for 93% of the predicted genome size. Predicted coding regions were used in a three-way orthology search with published genomes of Morus notabilis and Cannabis sativa. Phylogenetic markers for Moraceae were developed from 333 inferred single-copy exons. Ninety-eight putative MADS-box genes were identified. Analysis of all predicted coding regions resulted in preliminary annotation of 49,089 genes. An analysis of synonymous substitutions for pairs of orthologs (Ks analysis) in M. notabilis and A. camansi strongly suggested a lineage-specific whole-genome duplication in Artocarpus. Conclusions: This study substantially increases the genomic resources available for Artocarpus and Moraceae and demonstrates the value of low-coverage de novo assemblies for nonmodel organisms with moderately large genomes. PMID:27437173
Lessons learned from the dog genome.
Wayne, Robert K; Ostrander, Elaine A
2007-11-01
Extensive genetic resources and a high-quality genome sequence position the dog as an important model species for understanding genome evolution, population genetics and genes underlying complex phenotypic traits. Newly developed genomic resources have expanded our understanding of canine evolutionary history and dog origins. Domestication involved genetic contributions from multiple populations of gray wolves probably through backcrossing. More recently, the advent of controlled breeding practices has segregated genetic variability into distinct dog breeds that possess specific phenotypic traits. Consequently, genome-wide association and selective sweep scans now allow the discovery of genes underlying breed-specific characteristics. The dog is finally emerging as a novel resource for studying the genetic basis of complex traits, including behavior.
2011-01-01
Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp. PMID:21492448
Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul
2017-01-01
The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data—previously only browseable through our FTP site—by focusing on particular samples, populations or data sets of interest. PMID:27638885
The coffee genome hub: a resource for coffee genomes
Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan
2015-01-01
The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413
Practical Considerations for Implementing Genomic Information Resources
Overby, Casey L.; Connolly, John; Chute, Christopher G.; Denny, Joshua C.; Freimuth, Robert R.; Hartzler, Andrea L.; Holm, Ingrid A.; Manzi, Shannon; Pathak, Jyotishman; Peissig, Peggy L.; Smith, Maureen; Williams, Marc S.; Shirts, Brian H.; Stoffel, Elena M.; Tarczy-Hornoch, Peter; Vitek, Carolyn R. Rohrer; Wolf, Wendy A.; Starren, Justin
2016-01-01
Summary Objectives To understand opinions and perceptions on the state of information resources specifically targeted to genomics, and approaches to delivery in clinical practice. Methods We conducted a survey of genomic content use and its clinical delivery from representatives across eight institutions in the electronic Medical Records and Genomics (eMERGE) network and two institutions in the Clinical Sequencing Exploratory Research (CSER) consortium in 2014. Results Eleven responses representing distinct projects across ten sites showed heterogeneity in how content is being delivered, with provider-facing content primarily delivered via the electronic health record (EHR) (n=10), and paper/pamphlets as the leading mode for patient-facing content (n=9). There was general agreement (91%) that new content is needed for patients and providers specific to genomics, and that while aspects of this content could be shared across institutions there remain site-specific needs (73% in agreement). Conclusion This work identifies a need for the improved access to and expansion of information resources to support genomic medicine, and opportunities for content developers and EHR vendors to partner with institutions to develop needed resources, and streamline their use – such as a central content site in multiple modalities while implementing approaches to allow for site-specific customization. PMID:27652374
This proposal develops scalable R / Bioconductor software infrastructure and data resources to integrate complex, heterogeneous, and large cancer genomic experiments. The falling cost of genomic assays facilitates collection of multiple data types (e.g., gene and transcript expression, structural variation, copy number, methylation, and microRNA data) from a set of clinical specimens. Furthermore, substantial resources are now available from large consortium activities like The Cancer Genome Atlas (TCGA).
Varshney, Rajeev K; Mohan, S Murali; Gaur, Pooran M; Gangarao, N V P R; Pandey, Manish K; Bohra, Abhishek; Sawargaonkar, Shrikant L; Chitikineni, Annapurna; Kimurto, Paul K; Janila, Pasupuleti; Saxena, K B; Fikre, Asnake; Sharma, Mamta; Rathore, Abhishek; Pratap, Aditya; Tripathi, Shailesh; Datta, Subhojit; Chaturvedi, S K; Mallikarjuna, Nalini; Anuradha, G; Babbar, Anita; Choudhary, Arbind K; Mhase, M B; Bharadwaj, Ch; Mannur, D M; Harer, P N; Guo, Baozhu; Liang, Xuanqiang; Nadarajan, N; Gowda, C L L
2013-12-01
Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries. Copyright © 2012 Elsevier Inc. All rights reserved.
Ensembl Genomes 2013: scaling up access to genome-wide data
USDA-ARS?s Scientific Manuscript database
Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provi...
Genome Resource Banking of Biomedically Important Laboratory Animals
Agca, Yuksel
2014-01-01
Genome resource banking (GRB) is the systematic collection, storage, and re-distribution of biomaterials in an organized, logistical, and secure manner. Genome cyrobanks usually contain biomaterials and associated genomic information essential for progression of biomedicine, human health, and research. In that regard, appropriate genome cryobanks could provide essential biomaterials for both current and future research projects in the form of various cell types and tissues, including sperm, oocytes, embryos, embryonic or adult stem cells, induced pluripotent stem cells, and gonadal tissues. In addition to cryobanked germplasm, cryobanking of DNA, serum, blood products, and tissues from scientifically, economically and ecologically important species has become a common practice. For revitalization of the whole organism, cryopreserved germplasm in conjunction with assisted reproductive technologies (ART), offer a powerful approach for research model management, as well as assisting in animal production for agriculture, conservation, and human reproductive medicine. Recently, many developed and developing countries have allocated substantial resources to establish genome resources banks which are responsible for safeguarding scientifically, economically and ecologically important wild type, mutant and transgenic plants, fish, and local livestock breeds, as well as wildlife species. This review is dedicated to the memory of Dr. John K. Critser, who had made profound contributions to the science of cryobiology and establishment of genome research and resources centers for mice, rats and swine. Emphasis will be given to application of GRBs to species with substantial contributions to the advancement of biomedicine and human health. PMID:22981880
Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025
Bruford, Michael W.; Ginja, Catarina; Hoffmann, Irene; Joost, Stéphane; Orozco-terWengel, Pablo; Alberto, Florian J.; Amaral, Andreia J.; Barbato, Mario; Biscarini, Filippo; Colli, Licia; Costa, Mafalda; Curik, Ino; Duruz, Solange; Ferenčaković, Maja; Fischer, Daniel; Fitak, Robert; Groeneveld, Linn F.; Hall, Stephen J. G.; Hanotte, Olivier; Hassan, Faiz-ul; Helsen, Philippe; Iacolina, Laura; Kantanen, Juha; Leempoel, Kevin; Lenstra, Johannes A.; Ajmone-Marsan, Paolo; Masembe, Charles; Megens, Hendrik-Jan; Miele, Mara; Neuditschko, Markus; Nicolazzi, Ezequiel L.; Pompanon, François; Roosen, Jutta; Sevane, Natalia; Smetko, Anamarija; Štambuk, Anamaria; Streeter, Ian; Stucki, Sylvie; Supakorn, China; Telo Da Gama, Luis; Tixier-Boichard, Michèle; Wegmann, Daniel; Zhan, Xiangjiang
2015-01-01
Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that “…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity.” However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are societal in origin and are predicated on the value (e.g., socio-economic and cultural) of these resources to farmers, rural communities and society as a whole. The overall conclusion is that despite the fact that the livestock sector has been relatively well-organized in the application of genetic methodologies to date, there is still a large gap between the current state-of-the-art in the use of tools to characterize genomic resources and its application to many non-commercial and local breeds, hampering the consistent utilization of genetic and genomic data as indicators of genetic erosion and diversity. The livestock genomic sector therefore needs to make a concerted effort in the coming decade to enable to the democratization of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development. PMID:26539210
Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025.
Bruford, Michael W; Ginja, Catarina; Hoffmann, Irene; Joost, Stéphane; Orozco-terWengel, Pablo; Alberto, Florian J; Amaral, Andreia J; Barbato, Mario; Biscarini, Filippo; Colli, Licia; Costa, Mafalda; Curik, Ino; Duruz, Solange; Ferenčaković, Maja; Fischer, Daniel; Fitak, Robert; Groeneveld, Linn F; Hall, Stephen J G; Hanotte, Olivier; Hassan, Faiz-Ul; Helsen, Philippe; Iacolina, Laura; Kantanen, Juha; Leempoel, Kevin; Lenstra, Johannes A; Ajmone-Marsan, Paolo; Masembe, Charles; Megens, Hendrik-Jan; Miele, Mara; Neuditschko, Markus; Nicolazzi, Ezequiel L; Pompanon, François; Roosen, Jutta; Sevane, Natalia; Smetko, Anamarija; Štambuk, Anamaria; Streeter, Ian; Stucki, Sylvie; Supakorn, China; Telo Da Gama, Luis; Tixier-Boichard, Michèle; Wegmann, Daniel; Zhan, Xiangjiang
2015-01-01
Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that "…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity." However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are societal in origin and are predicated on the value (e.g., socio-economic and cultural) of these resources to farmers, rural communities and society as a whole. The overall conclusion is that despite the fact that the livestock sector has been relatively well-organized in the application of genetic methodologies to date, there is still a large gap between the current state-of-the-art in the use of tools to characterize genomic resources and its application to many non-commercial and local breeds, hampering the consistent utilization of genetic and genomic data as indicators of genetic erosion and diversity. The livestock genomic sector therefore needs to make a concerted effort in the coming decade to enable to the democratization of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.
Development of resources and tools for mapping genetic sources of phenotypic variation
USDA-ARS?s Scientific Manuscript database
Commercial and experimental genetic resources were established and investigated for a range of reproductive and disease susceptibility phenotypes. The phenotyping efforts were accompanied with RNA and whole genome sequencing and novel assemblies of the swine genome. The efforts were complemented wit...
Pediatric Genomic Data Inventory (PGDI) Overview
About Pediatric cancer is a genetic disease that can largely differ from similar malignancies in an adult population. To fuel new discoveries and treatments specific to pediatric oncologies, the NCI Office of Cancer Genomics has developed a dynamic resource known as the Pediatric Genomic Data Inventory to allow investigators to more easily locate genomic datasets. This resource lists known ongoing and completed sequencing projects of pediatric cancer cohorts from the United States and other countries, along with some basic details and reference metadata.
Eimeria genomics: Where are we now and where are we going?
Blake, Damer P
2015-08-15
The evolution of sequencing technologies, from Sanger to next generation (NGS) and now the emerging third generation, has prompted a radical frameshift moving genomics from the specialist to the mainstream. For parasitology, genomics has moved fastest for the protozoa with sequence assemblies becoming available for multiple genera including Babesia, Cryptosporidium, Eimeria, Giardia, Leishmania, Neospora, Plasmodium, Theileria, Toxoplasma and Trypanosoma. Progress has commonly been slower for parasites of animals which lack zoonotic potential, but the deficit is now being redressed with impact likely in the areas of drug and vaccine development, molecular diagnostics and population biology. Genomics studies with the apicomplexan Eimeria species clearly illustrate the approaches and opportunities available. Specifically, more than ten years after initiation of a genome sequencing project a sequence assembly was published for Eimeria tenella in 2014, complemented by assemblies for all other Eimeria species which infect the chicken and Eimeria falciformis, a parasite of the mouse. Public access to these and other coccidian genome assemblies through resources such as GeneDB and ToxoDB now promotes comparative analysis, encouraging better use of shared resources and enhancing opportunities for development of novel diagnostic and control strategies. In the short term genomics resources support development of targeted and genome-wide genetic markers such as single nucleotide polymorphisms (SNPs), with whole genome re-sequencing becoming viable in the near future. Experimental power will develop rapidly as additional species, strains and isolates are sampled with particular emphasis on population structure and allelic diversity. Copyright © 2015 Elsevier B.V. All rights reserved.
Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul
2017-01-04
The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.
Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X
2016-01-01
PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.
Resources for Biological Annotation of the Drosophila Genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald M. Rubin
2005-08-08
This project supported seed money for the development of cDNA and genetic resources to support studies of the Drosophila melanogaster genome. Key publications supported by this work that provide additional detail: (1) ''The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes''; and (2) ''The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes''.
Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species.
Kersey, Paul J; Staines, Daniel M; Lawson, Daniel; Kulesha, Eugene; Derwent, Paul; Humphrey, Jay C; Hughes, Daniel S T; Keenan, Stephan; Kerhornou, Arnaud; Koscielny, Gautier; Langridge, Nicholas; McDowall, Mark D; Megy, Karine; Maheswari, Uma; Nuhn, Michael; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Wilson, Derek; Yates, Andrew; Birney, Ewan
2012-01-01
Ensembl Genomes (http://www.ensemblgenomes.org) is an integrative resource for genome-scale data from non-vertebrate species. The project exploits and extends technology (for genome annotation, analysis and dissemination) developed in the context of the (vertebrate-focused) Ensembl project and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. Since its launch in 2009, Ensembl Genomes has undergone rapid expansion, with the goal of providing coverage of all major experimental organisms, and additionally including taxonomic reference points to provide the evolutionary context in which genes can be understood. Against the backdrop of a continuing increase in genome sequencing activities in all parts of the tree of life, we seek to work, wherever possible, with the communities actively generating and using data, and are participants in a growing range of collaborations involved in the annotation and analysis of genomes.
A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy
Brenton, Zachary W.; Cooper, Elizabeth A.; Myers, Mathew T.; Boyles, Richard E.; Shakoor, Nadia; Zielinski, Kelsey J.; Rauh, Bradley L.; Bridges, William C.; Morris, Geoffrey P.; Kresovich, Stephen
2016-01-01
With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production. PMID:27356613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korenberg, J.R.
The ultimate goal of this research is to generate and apply novel technologies to speed completion and integration of the human genome map and sequence with biomedical problems. To do this, techniques were developed and genome-wide resources generated. This includes a genome-wide Mapped and Integrated BAC/PAC Resource that has been used for gene finding, map completion and anchoring, breakpoint definition and sequencing. In the last period of the grant, the Human Mapped BAC/PAC Resource was also applied to determine regions of human variation and to develop a novel paradigm of primate evolution through to humans. Further, in order to moremore » rapidly evaluate animal models of human disease, a BAC Map of the mouse was generated in collaboration with the MTI Genome Center, Dr. Bruce Birren.« less
Genome-scale resources for Thermoanaerobacterium saccharolyticum
Currie, Devin H.; Raman, Babu; Gowen, Christopher M.; ...
2015-06-26
Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. For this research, a major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation.
McNeil, Leslie Klis; Reich, Claudia; Aziz, Ramy K; Bartels, Daniela; Cohoon, Matthew; Disz, Terry; Edwards, Robert A; Gerdes, Svetlana; Hwang, Kaitlyn; Kubal, Michael; Margaryan, Gohar Rem; Meyer, Folker; Mihalo, William; Olsen, Gary J; Olson, Robert; Osterman, Andrei; Paarmann, Daniel; Paczian, Tobias; Parrello, Bruce; Pusch, Gordon D; Rodionov, Dmitry A; Shi, Xinghua; Vassieva, Olga; Vonstein, Veronika; Zagnitko, Olga; Xia, Fangfang; Zinner, Jenifer; Overbeek, Ross; Stevens, Rick
2007-01-01
The National Microbial Pathogen Data Resource (NMPDR) (http://www.nmpdr.org) is a National Institute of Allergy and Infections Disease (NIAID)-funded Bioinformatics Resource Center that supports research in selected Category B pathogens. NMPDR contains the complete genomes of approximately 50 strains of pathogenic bacteria that are the focus of our curators, as well as >400 other genomes that provide a broad context for comparative analysis across the three phylogenetic Domains. NMPDR integrates complete, public genomes with expertly curated biological subsystems to provide the most consistent genome annotations. Subsystems are sets of functional roles related by a biologically meaningful organizing principle, which are built over large collections of genomes; they provide researchers with consistent functional assignments in a biologically structured context. Investigators can browse subsystems and reactions to develop accurate reconstructions of the metabolic networks of any sequenced organism. NMPDR provides a comprehensive bioinformatics platform, with tools and viewers for genome analysis. Results of precomputed gene clustering analyses can be retrieved in tabular or graphic format with one-click tools. NMPDR tools include Signature Genes, which finds the set of genes in common or that differentiates two groups of organisms. Essentiality data collated from genome-wide studies have been curated. Drug target identification and high-throughput, in silico, compound screening are in development.
Genomic Target Database (GTD): A database of potential targets in human pathogenic bacteria
Barh, Debmalya; Kumar, Anil; Misra, Amarendra Narayana
2009-01-01
A Genomic Target Database (GTD) has been developed having putative genomic drug targets for human bacterial pathogens. The selected pathogens are either drug resistant or vaccines are yet to be developed against them. The drug targets have been identified using subtractive genomics approaches and these are subsequently classified into Drug targets in pathogen specific unique metabolic pathways,Drug targets in host-pathogen common metabolic pathways, andMembrane localized drug targets. HTML code is used to link each target to its various properties and other available public resources. Essential resources and tools for subtractive genomic analysis, sub-cellular localization, vaccine and drug designing are also mentioned. To the best of authors knowledge, no such database (DB) is presently available that has listed metabolic pathways and membrane specific genomic drug targets based on subtractive genomics. Listed targets in GTD are readily available resource in developing drug and vaccine against the respective pathogen, its subtypes, and other family members. Currently GTD contains 58 drug targets for four pathogens. Shortly, drug targets for six more pathogens will be listed. Availability GTD is available at IIOAB website http://www.iioab.webs.com/GTD.htm. It can also be accessed at http://www.iioabdgd.webs.com.GTD is free for academic research and non-commercial use only. Commercial use is strictly prohibited without prior permission from IIOAB. PMID:20011153
Integrated Approach to Reconstruction of Microbial Regulatory Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodionov, Dmitry A; Novichkov, Pavel S
2013-11-04
This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated inmore » RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.« less
Genome resources for climate-resilient cowpea, an essential crop for food security
USDA-ARS?s Scientific Manuscript database
Cowpea is a legume crop that is resilient in hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind those of most other major crop plants. Here we describe foundational g...
Genome resources for climate-resilient cowpea, an essential crop for food security.
Muñoz-Amatriaín, María; Mirebrahim, Hamid; Xu, Pei; Wanamaker, Steve I; Luo, MingCheng; Alhakami, Hind; Alpert, Matthew; Atokple, Ibrahim; Batieno, Benoit J; Boukar, Ousmane; Bozdag, Serdar; Cisse, Ndiaga; Drabo, Issa; Ehlers, Jeffrey D; Farmer, Andrew; Fatokun, Christian; Gu, Yong Q; Guo, Yi-Ning; Huynh, Bao-Lam; Jackson, Scott A; Kusi, Francis; Lawley, Cynthia T; Lucas, Mitchell R; Ma, Yaqin; Timko, Michael P; Wu, Jiajie; You, Frank; Barkley, Noelle A; Roberts, Philip A; Lonardi, Stefano; Close, Timothy J
2017-03-01
Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
The eastern oyster genome: A resource for comparative genomics in shellfish aquaculture species
USDA-ARS?s Scientific Manuscript database
Oyster aquaculture is an important sector of world food production. As such, it is imperative to develop a high quality reference genome for the eastern oyster, Crassostrea virginica, to assist in the elucidation of the genomic basis of commercially important traits. All genetic, gene expression and...
NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data.
Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug
2016-01-01
The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data.
Long-read sequencing of chicken transcripts and identification of new transcript isoforms.
Thomas, Sean; Underwood, Jason G; Tseng, Elizabeth; Holloway, Alisha K
2014-01-01
The chicken has long served as an important model organism in many fields, and continues to aid our understanding of animal development. Functional genomics studies aimed at probing the mechanisms that regulate development require high-quality genomes and transcript annotations. The quality of these resources has improved dramatically over the last several years, but many isoforms and genes have yet to be identified. We hope to contribute to the process of improving these resources with the data presented here: a set of long cDNA sequencing reads, and a curated set of new genes and transcript isoforms not currently represented in the most up-to-date genome annotation currently available to the community of researchers who rely on the chicken genome.
A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.
Brenton, Zachary W; Cooper, Elizabeth A; Myers, Mathew T; Boyles, Richard E; Shakoor, Nadia; Zielinski, Kelsey J; Rauh, Bradley L; Bridges, William C; Morris, Geoffrey P; Kresovich, Stephen
2016-09-01
With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production. Copyright © 2016 by the Genetics Society of America.
The BIG Data Center: from deposition to integration to translation
2017-01-01
Biological data are generated at unprecedentedly exponential rates, posing considerable challenges in big data deposition, integration and translation. The BIG Data Center, established at Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, provides a suite of database resources, including (i) Genome Sequence Archive, a data repository specialized for archiving raw sequence reads, (ii) Gene Expression Nebulas, a data portal of gene expression profiles based entirely on RNA-Seq data, (iii) Genome Variation Map, a comprehensive collection of genome variations for featured species, (iv) Genome Warehouse, a centralized resource housing genome-scale data with particular focus on economically important animals and plants, (v) Methylation Bank, an integrated database of whole-genome single-base resolution methylomes and (vi) Science Wikis, a central access point for biological wikis developed for community annotations. The BIG Data Center is dedicated to constructing and maintaining biological databases through big data integration and value-added curation, conducting basic research to translate big data into big knowledge and providing freely open access to a variety of data resources in support of worldwide research activities in both academia and industry. All of these resources are publicly available and can be found at http://bigd.big.ac.cn. PMID:27899658
Genome-scale resources for Thermoanaerobacterium saccharolyticum.
Currie, Devin H; Raman, Babu; Gowen, Christopher M; Tschaplinski, Timothy J; Land, Miriam L; Brown, Steven D; Covalla, Sean F; Klingeman, Dawn M; Yang, Zamin K; Engle, Nancy L; Johnson, Courtney M; Rodriguez, Miguel; Shaw, A Joe; Kenealy, William R; Lynd, Lee R; Fong, Stephen S; Mielenz, Jonathan R; Davison, Brian H; Hogsett, David A; Herring, Christopher D
2015-06-26
Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. A major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation. Here we present a set of genome-scale resources to enable the systems level investigation and development of this potentially important industrial organism. Resources include a complete genome sequence for strain JW/SL-YS485, a genome-scale reconstruction of metabolism, tiled microarray data showing transcription units, mRNA expression data from 71 different growth conditions or timepoints and GC/MS-based metabolite analysis data from 42 different conditions or timepoints. Growth conditions include hemicellulose hydrolysate, the inhibitors HMF, furfural, diamide, and ethanol, as well as high levels of cellulose, xylose, cellobiose or maltodextrin. The genome consists of a 2.7 Mbp chromosome and a 110 Kbp megaplasmid. An active prophage was also detected, and the expression levels of CRISPR genes were observed to increase in association with those of the phage. Hemicellulose hydrolysate elicited a response of carbohydrate transport and catabolism genes, as well as poorly characterized genes suggesting a redox challenge. In some conditions, a time series of combined transcription and metabolite measurements were made to allow careful study of microbial physiology under process conditions. As a demonstration of the potential utility of the metabolic reconstruction, the OptKnock algorithm was used to predict a set of gene knockouts that maximize growth-coupled ethanol production. The predictions validated intuitive strain designs and matched previous experimental results. These data will be a useful asset for efforts to develop T. saccharolyticum for efficient industrial production of biofuels. The resources presented herein may also be useful on a comparative basis for development of other lignocellulose degrading microbes, such as Clostridium thermocellum.
Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine
Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson
2011-01-01
Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...
Eppig, Janan T
2017-07-01
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.
Eppig, Janan T.
2017-01-01
Abstract The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. PMID:28838066
VectorBase: a data resource for invertebrate vector genomics
Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Hammond, Martin; Hill, Catherine A.; Konopinski, Nathan; Lobo, Neil F.; MacCallum, Robert M.; Madey, Greg; Megy, Karine; Meyer, Jason; Redmond, Seth; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.
2009-01-01
VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data. PMID:19028744
Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P
2012-06-15
The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.
Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P
2012-01-01
The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961
AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome
Legeai, Fabrice; Shigenobu, Shuji; Gauthier, Jean-Pierre; Colbourne, John; Rispe, Claude; Collin, Olivier; Richards, Stephen; Wilson, Alex C. C.; Tagu, Denis
2015-01-01
AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at http://www.aphidbase.com. PMID:20482635
NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data
Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug
2016-01-01
The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data. PMID:26848255
Public data and open source tools for multi-assay genomic investigation of disease.
Kannan, Lavanya; Ramos, Marcel; Re, Angela; El-Hachem, Nehme; Safikhani, Zhaleh; Gendoo, Deena M A; Davis, Sean; Gomez-Cabrero, David; Castelo, Robert; Hansen, Kasper D; Carey, Vincent J; Morgan, Martin; Culhane, Aedín C; Haibe-Kains, Benjamin; Waldron, Levi
2016-07-01
Molecular interrogation of a biological sample through DNA sequencing, RNA and microRNA profiling, proteomics and other assays, has the potential to provide a systems level approach to predicting treatment response and disease progression, and to developing precision therapies. Large publicly funded projects have generated extensive and freely available multi-assay data resources; however, bioinformatic and statistical methods for the analysis of such experiments are still nascent. We review multi-assay genomic data resources in the areas of clinical oncology, pharmacogenomics and other perturbation experiments, population genomics and regulatory genomics and other areas, and tools for data acquisition. Finally, we review bioinformatic tools that are explicitly geared toward integrative genomic data visualization and analysis. This review provides starting points for accessing publicly available data and tools to support development of needed integrative methods. © The Author 2015. Published by Oxford University Press.
Brachypodium distachyon genomics for sustainable food and fuel production.
Bevan, Michael W; Garvin, David F; Vogel, John P
2010-04-01
Grass crops are the most important sources of human nutrition, and their improvement is centrally important for meeting the challenges of sustainable agriculture, for feeding the world's population and for developing renewable supplies of fuel and industrial products. We describe the complete sequence of the compact genome of Brachypodium distachyon (Brachypodium) the first pooid grass to be sequenced. We demonstrate the many favorable characteristics of Brachypodium as an experimental system and show how it can be used to navigate the large and complex genomes of closely related grasses. The functional genomics and other experimental resources that are being developed will provide a key resource for improving food and forage crops, in particular wheat, barley and forage grasses, and for establishing new grass crops for sustainable energy production. Copyright 2010 Elsevier Ltd. All rights reserved.
Design and implementation of the cacao genome database
USDA-ARS?s Scientific Manuscript database
The Cacao Genome Database (CGD, www.cacaogenomedb.org) is being developed to provide a comprehensive data mining resource of genomic, genetic and breeding data for Theobroma cacao. Designed using Chado and a collection of Drupal modules, known as Tripal, CGD currently contains the genetically anchor...
Childs, Kevin L; Konganti, Kranti; Buell, C Robin
2012-01-01
Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources. Database URL: http://bfgr.plantbiology.msu.edu.
Development of a consent resource for genomic data sharing in the clinical setting.
Riggs, Erin Rooney; Azzariti, Danielle R; Niehaus, Annie; Goehringer, Scott R; Ramos, Erin M; Rodriguez, Laura Lyman; Knoppers, Bartha; Rehm, Heidi L; Martin, Christa Lese
2018-06-13
Data sharing between clinicians, laboratories, and patients is essential for improvements in genomic medicine, but obtaining consent for individual-level data sharing is often hindered by a lack of time and resources. To address this issue, the Clinical Genome Resource (ClinGen) developed tools to facilitate consent, including a one-page consent form and online supplemental video with information on key topics, such as risks and benefits of data sharing. To determine whether the consent form and video accurately conveyed key data sharing concepts, we surveyed 5,162 members of the general public. We measured comprehension at baseline, after reading the form and watching the video. Additionally, we assessed participants' attitudes toward genomic data sharing. Participants' performance on comprehension questions significantly improved over baseline after reading the form and continued to improve after watching the video. Results suggest reading the form alone provided participants with important knowledge regarding broad data sharing, and watching the video allowed for broader comprehension. These materials are now available at http://www.clinicalgenome.org/share . These resources will provide patients a straightforward way to share their genetic and health information, and improve the scientific community's access to data generated through routine healthcare.
Multiple Models for Rosaceae Genomics[OA
Shulaev, Vladimir; Korban, Schuyler S.; Sosinski, Bryon; Abbott, Albert G.; Aldwinckle, Herb S.; Folta, Kevin M.; Iezzoni, Amy; Main, Dorrie; Arús, Pere; Dandekar, Abhaya M.; Lewers, Kim; Brown, Susan K.; Davis, Thomas M.; Gardiner, Susan E.; Potter, Daniel; Veilleux, Richard E.
2008-01-01
The plant family Rosaceae consists of over 100 genera and 3,000 species that include many important fruit, nut, ornamental, and wood crops. Members of this family provide high-value nutritional foods and contribute desirable aesthetic and industrial products. Most rosaceous crops have been enhanced by human intervention through sexual hybridization, asexual propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Modern breeding programs have contributed to the selection and release of numerous cultivars having significant economic impact on the U.S. and world markets. In recent years, the Rosaceae community, both in the United States and internationally, has benefited from newfound organization and collaboration that have hastened progress in developing genetic and genomic resources for representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry (Fragaria spp.). These resources, including expressed sequence tags, bacterial artificial chromosome libraries, physical and genetic maps, and molecular markers, combined with genetic transformation protocols and bioinformatics tools, have rendered various rosaceous crops highly amenable to comparative and functional genomics studies. This report serves as a synopsis of the resources and initiatives of the Rosaceae community, recent developments in Rosaceae genomics, and plans to apply newly accumulated knowledge and resources toward breeding and crop improvement. PMID:18487361
The BIG Data Center: from deposition to integration to translation.
2017-01-04
Biological data are generated at unprecedentedly exponential rates, posing considerable challenges in big data deposition, integration and translation. The BIG Data Center, established at Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, provides a suite of database resources, including (i) Genome Sequence Archive, a data repository specialized for archiving raw sequence reads, (ii) Gene Expression Nebulas, a data portal of gene expression profiles based entirely on RNA-Seq data, (iii) Genome Variation Map, a comprehensive collection of genome variations for featured species, (iv) Genome Warehouse, a centralized resource housing genome-scale data with particular focus on economically important animals and plants, (v) Methylation Bank, an integrated database of whole-genome single-base resolution methylomes and (vi) Science Wikis, a central access point for biological wikis developed for community annotations. The BIG Data Center is dedicated to constructing and maintaining biological databases through big data integration and value-added curation, conducting basic research to translate big data into big knowledge and providing freely open access to a variety of data resources in support of worldwide research activities in both academia and industry. All of these resources are publicly available and can be found at http://bigd.big.ac.cn. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Orlando, Lori A.; Sperber, Nina R.; Voils, Corrine; Nichols, Marshall; Myers, Rachel A.; Wu, R. Ryanne; Rakhra-Burris, Tejinder; Levy, Kenneth D.; Levy, Mia; Pollin, Toni I.; Guan, Yue; Horowitz, Carol R.; Ramos, Michelle; Kimmel, Stephen E.; McDonough, Caitrin W.; Madden, Ebony B.; Damschroder, Laura J.
2017-01-01
Purpose Implementation research provides a structure for evaluating the clinical integration of genomic medicine interventions. This paper describes the Implementing GeNomics In PracTicE (IGNITE) Network’s efforts to promote: 1) a broader understanding of genomic medicine implementation research; and 2) the sharing of knowledge generated in the network. Methods To facilitate this goal the IGNITE Network Common Measures Working Group (CMG) members adopted the Consolidated Framework for Implementation Research (CFIR) to guide their approach to: identifying constructs and measures relevant to evaluating genomic medicine as a whole, standardizing data collection across projects, and combining data in a centralized resource for cross network analyses. Results CMG identified ten high-priority CFIR constructs as important for genomic medicine. Of those, eight didn’t have standardized measurement instruments. Therefore, we developed four survey tools to address this gap. In addition, we identified seven high-priority constructs related to patients, families, and communities that did not map to CFIR constructs. Both sets of constructs were combined to create a draft genomic medicine implementation model. Conclusion We developed processes to identify constructs deemed valuable for genomic medicine implementation and codified them in a model. These resources are freely available to facilitate knowledge generation and sharing across the field. PMID:28914267
Orlando, Lori A; Sperber, Nina R; Voils, Corrine; Nichols, Marshall; Myers, Rachel A; Wu, R Ryanne; Rakhra-Burris, Tejinder; Levy, Kenneth D; Levy, Mia; Pollin, Toni I; Guan, Yue; Horowitz, Carol R; Ramos, Michelle; Kimmel, Stephen E; McDonough, Caitrin W; Madden, Ebony B; Damschroder, Laura J
2018-06-01
PurposeImplementation research provides a structure for evaluating the clinical integration of genomic medicine interventions. This paper describes the Implementing Genomics in Practice (IGNITE) Network's efforts to promote (i) a broader understanding of genomic medicine implementation research and (ii) the sharing of knowledge generated in the network.MethodsTo facilitate this goal, the IGNITE Network Common Measures Working Group (CMG) members adopted the Consolidated Framework for Implementation Research (CFIR) to guide its approach to identifying constructs and measures relevant to evaluating genomic medicine as a whole, standardizing data collection across projects, and combining data in a centralized resource for cross-network analyses.ResultsCMG identified 10 high-priority CFIR constructs as important for genomic medicine. Of those, eight did not have standardized measurement instruments. Therefore, we developed four survey tools to address this gap. In addition, we identified seven high-priority constructs related to patients, families, and communities that did not map to CFIR constructs. Both sets of constructs were combined to create a draft genomic medicine implementation model.ConclusionWe developed processes to identify constructs deemed valuable for genomic medicine implementation and codified them in a model. These resources are freely available to facilitate knowledge generation and sharing across the field.
Superior cross-species reference genes: a blueberry case study
USDA-ARS?s Scientific Manuscript database
The advent of affordable Next Generation Sequencing technologies has had major impact on studies of many crop species, where access to genomic technologies and genome-scale data sets has been extremely limited until now. The recent development of genomic resources in blueberry will enable the applic...
How resilient is the soybean genome? Insights from fast neutron mutagenesis
USDA-ARS?s Scientific Manuscript database
Previously, we described the development of a fast neutron mutant population resource in soybean and identified mutations of interest through phenotypic screening. Here, we consider the resiliency of the soybean genome by examining genomic rearrangements and mutations that arise from fast neutron ra...
Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T; van Oven, Mannis; Wallace, Douglas C; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F; Attimonelli, Marcella; Zuchner, Stephan; Falk, Marni J; Gai, Xiaowu
2016-06-01
MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources. © 2016 WILEY PERIODICALS, INC.
Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno
2013-02-01
Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.
Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F.X.; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno
2013-01-01
Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species. PMID:23184232
Genomics of compositae weeds: EST libraries, microarrays, and evidence of introgression
USDA-ARS?s Scientific Manuscript database
• Premise of Study: Weeds cause considerable environmental and economic damage. However, genomic characterization of weeds has lagged behind that of model plants and crop species. Here we report on the development of genomic tools and resources for 11 weeds from the Compositae family that can serve ...
Black raspberry genomic and genetic resource development to enable cultivar improvement
USDA-ARS?s Scientific Manuscript database
This project incorporates use of phenotypic, genotypic and genomic data to advance and streamline identification of traits of economic interest and to develop molecular markers for marker assisted breeding of black raspberry (Rubus occidentalis L.). A lack of adapted, disease resistant cultivars has...
Resources for Functional Genomics Studies in Drosophila melanogaster
Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert
2014-01-01
Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003
USDA-ARS?s Scientific Manuscript database
Sorghum is the second cereal crop to have a full genome completely sequenced (Nature (2009), 457:551). This achievement is widely recognized as a scientific milestone for grass genetics and genomics in general. However, the true worth of genetic information lies in translating the sequence informa...
National Plant Genome Initiative
2004-01-01
trials have also identified new objectives for vegetable breeding programs, expedited by knowledge and tools from crop genomics and farmer demand...The same tools and resources are being applied to develop improved crops and new breeding strategies, as well. With the sequencing of the rice genome...marker-assisted breeding strategies for wheat • Establishment of a comparative cereal genomics database, Gramene, which uses the complete rice
Médigue, Claudine; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Gautreau, Guillaume; Josso, Adrien; Lajus, Aurélie; Langlois, Jordan; Pereira, Hugo; Planel, Rémi; Roche, David; Rollin, Johan; Rouy, Zoe; Vallenet, David
2017-09-12
The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources. © The Author 2017. Published by Oxford University Press.
Perelman, Polina L; Pichler, Rudolf; Gaggl, Anna; Larkin, Denis M; Raudsepp, Terje; Alshanbari, Fahad; Holl, Heather M; Brooks, Samantha A; Burger, Pamela A; Periasamy, Kathiravan
2018-01-31
The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000 RAD and 15000 RAD ) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000 RAD panel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000 RAD panel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000 RAD panel is an important high-resolution complement to the main 5000 RAD panel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools.
A gene-based SNP resource and linkage map for the copepod Tigriopus californicus
2011-01-01
Background As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. Tigriopus californicus is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for T. californicus--a first for copepods. Results One hundred and ninety Single Nucleotide Polymorphisms (SNPs) were used to genotype our mapping population of 250 F2 larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of T. californicus. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of T. californicus. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between T. californicus and the honeybee Apis mellifera, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda. Conclusions Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of T. californicus, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are currently under development. PMID:22103327
Li, XiaoChing; Wang, Xiu-Jie; Tannenhauser, Jonathan; Podell, Sheila; Mukherjee, Piali; Hertel, Moritz; Biane, Jeremy; Masuda, Shoko; Nottebohm, Fernando; Gaasterland, Terry
2007-01-01
Vocal learning and neuronal replacement have been studied extensively in songbirds, but until recently, few molecular and genomic tools for songbird research existed. Here we describe new molecular/genomic resources developed in our laboratory. We made cDNA libraries from zebra finch (Taeniopygia guttata) brains at different developmental stages. A total of 11,000 cDNA clones from these libraries, representing 5,866 unique gene transcripts, were randomly picked and sequenced from the 3′ ends. A web-based database was established for clone tracking, sequence analysis, and functional annotations. Our cDNA libraries were not normalized. Sequencing ESTs without normalization produced many developmental stage-specific sequences, yielding insights into patterns of gene expression at different stages of brain development. In particular, the cDNA library made from brains at posthatching day 30–50, corresponding to the period of rapid song system development and song learning, has the most diverse and richest set of genes expressed. We also identified five microRNAs whose sequences are highly conserved between zebra finch and other species. We printed cDNA microarrays and profiled gene expression in the high vocal center of both adult male zebra finches and canaries (Serinus canaria). Genes differentially expressed in the high vocal center were identified from the microarray hybridization results. Selected genes were validated by in situ hybridization. Networks among the regulated genes were also identified. These resources provide songbird biologists with tools for genome annotation, comparative genomics, and microarray gene expression analysis. PMID:17426146
The integrated microbial genome resource of analysis.
Checcucci, Alice; Mengoni, Alessio
2015-01-01
Integrated Microbial Genomes and Metagenomes (IMG) is a biocomputational system that allows to provide information and support for annotation and comparative analysis of microbial genomes and metagenomes. IMG has been developed by the US Department of Energy (DOE)-Joint Genome Institute (JGI). IMG platform contains both draft and complete genomes, sequenced by Joint Genome Institute and other public and available genomes. Genomes of strains belonging to Archaea, Bacteria, and Eukarya domains are present as well as those of viruses and plasmids. Here, we provide some essential features of IMG system and case study for pangenome analysis.
Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T.; van Oven, Mannis; Wallace, Douglas C.; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F.; Attimonelli, Marcella; Zuchner, Stephan
2016-01-01
MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and disease. MSeqDR-LSDB is a locus specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar-compliant variant annotations. PhenoTips is used for phenotypic data submission on de-identified patients using human phenotype ontology terminology. Development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources. PMID:26919060
Ruffier, Magali; Kähäri, Andreas; Komorowska, Monika; Keenan, Stephen; Laird, Matthew; Longden, Ian; Proctor, Glenn; Searle, Steve; Staines, Daniel; Taylor, Kieron; Vullo, Alessandro; Yates, Andrew; Zerbino, Daniel; Flicek, Paul
2017-01-01
The Ensembl software resources are a stable infrastructure to store, access and manipulate genome assemblies and their functional annotations. The Ensembl 'Core' database and Application Programming Interface (API) was our first major piece of software infrastructure and remains at the centre of all of our genome resources. Since its initial design more than fifteen years ago, the number of publicly available genomic, transcriptomic and proteomic datasets has grown enormously, accelerated by continuous advances in DNA-sequencing technology. Initially intended to provide annotation for the reference human genome, we have extended our framework to support the genomes of all species as well as richer assembly models. Cross-referenced links to other informatics resources facilitate searching our database with a variety of popular identifiers such as UniProt and RefSeq. Our comprehensive and robust framework storing a large diversity of genome annotations in one location serves as a platform for other groups to generate and maintain their own tailored annotation. We welcome reuse and contributions: our databases and APIs are publicly available, all of our source code is released with a permissive Apache v2.0 licence at http://github.com/Ensembl and we have an active developer mailing list ( http://www.ensembl.org/info/about/contact/index.html ). http://www.ensembl.org. © The Author(s) 2017. Published by Oxford University Press.
The Metamorphosis of Amphibian Toxicogenomics
Helbing, Caren C.
2012-01-01
Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana) tropicalis, and transcript information (and ongoing genome sequencing project) of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders) and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics) and the challenges inherent therein. PMID:22435070
Winsor, Geoffrey L; Van Rossum, Thea; Lo, Raymond; Khaira, Bhavjinder; Whiteside, Matthew D; Hancock, Robert E W; Brinkman, Fiona S L
2009-01-01
Pseudomonas aeruginosa is a well-studied opportunistic pathogen that is particularly known for its intrinsic antimicrobial resistance, diverse metabolic capacity, and its ability to cause life threatening infections in cystic fibrosis patients. The Pseudomonas Genome Database (http://www.pseudomonas.com) was originally developed as a resource for peer-reviewed, continually updated annotation for the Pseudomonas aeruginosa PAO1 reference strain genome. In order to facilitate cross-strain and cross-species genome comparisons with other Pseudomonas species of importance, we have now expanded the database capabilities to include all Pseudomonas species, and have developed or incorporated methods to facilitate high quality comparative genomics. The database contains robust assessment of orthologs, a novel ortholog clustering method, and incorporates five views of the data at the sequence and annotation levels (Gbrowse, Mauve and custom views) to facilitate genome comparisons. A choice of simple and more flexible user-friendly Boolean search features allows researchers to search and compare annotations or sequences within or between genomes. Other features include more accurate protein subcellular localization predictions and a user-friendly, Boolean searchable log file of updates for the reference strain PAO1. This database aims to continue to provide a high quality, annotated genome resource for the research community and is available under an open source license.
2011-01-01
Background Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. Results A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. Conclusions The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species. PMID:22014081
The minimum information about a genome sequence (MIGS) specification
Field, Dawn; Garrity, George; Gray, Tanya; Morrison, Norman; Selengut, Jeremy; Sterk, Peter; Tatusova, Tatiana; Thomson, Nicholas; Allen, Michael J; Angiuoli, Samuel V; Ashburner, Michael; Axelrod, Nelson; Baldauf, Sandra; Ballard, Stuart; Boore, Jeffrey; Cochrane, Guy; Cole, James; Dawyndt, Peter; De Vos, Paul; dePamphilis, Claude; Edwards, Robert; Faruque, Nadeem; Feldman, Robert; Gilbert, Jack; Gilna, Paul; Glöckner, Frank Oliver; Goldstein, Philip; Guralnick, Robert; Haft, Dan; Hancock, David; Hermjakob, Henning; Hertz-Fowler, Christiane; Hugenholtz, Phil; Joint, Ian; Kagan, Leonid; Kane, Matthew; Kennedy, Jessie; Kowalchuk, George; Kottmann, Renzo; Kolker, Eugene; Kravitz, Saul; Kyrpides, Nikos; Leebens-Mack, Jim; Lewis, Suzanna E; Li, Kelvin; Lister, Allyson L; Lord, Phillip; Maltsev, Natalia; Markowitz, Victor; Martiny, Jennifer; Methe, Barbara; Mizrachi, Ilene; Moxon, Richard; Nelson, Karen; Parkhill, Julian; Proctor, Lita; White, Owen; Sansone, Susanna-Assunta; Spiers, Andrew; Stevens, Robert; Swift, Paul; Taylor, Chris; Tateno, Yoshio; Tett, Adrian; Turner, Sarah; Ussery, David; Vaughan, Bob; Ward, Naomi; Whetzel, Trish; Gil, Ingio San; Wilson, Gareth; Wipat, Anil
2008-01-01
With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the ‘transparency’ of the information contained in existing genomic databases. PMID:18464787
Purification of high molecular weight genomic DNA from powdery mildew for long-read sequencing
USDA-ARS?s Scientific Manuscript database
The powdery mildew fungi are a group of economically important fungal plant pathogens. Relatively little is known about the molecular biology and genetics of these pathogens, in part due to a lack of well-developed genetic and genomic resources. These organisms have large, repetitive genomes, which ...
Insertional mutagenesis in Populus: relevance and feasibility
Victor Busov; Matthias Fladung; Andrew Groover; Steven Strauss
2005-01-01
The recent sequencing of the first tree genome, that of the black cottonwood (Populus trichocarpa), opens a new chapter in tree functional genomics. While the completion of the genome is a milestone, mobilizing this significant resource for better understanding the growth and development of woody perennials will be an even greater undertaking in the...
Sequencing of 15,622 gene-bearing BACs clarifies the gene-dense regions of the barley genome
USDA-ARS?s Scientific Manuscript database
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework....
Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants
Unamba, Chibuikem I. N.; Nag, Akshay; Sharma, Ram K.
2015-01-01
Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping. PMID:26734016
Development of FuGO: An Ontology for Functional Genomics Investigations
Whetzel, Patricia L.; Brinkman, Ryan R.; Causton, Helen C.; Fan, Liju; Field, Dawn; Fostel, Jennifer; Fragoso, Gilberto; Gray, Tanya; Heiskanen, Mervi; Hernandez-Boussard, Tina; Morrison, Norman; Parkinson, Helen; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Schober, Daniel; Smith, Barry; Stevens, Robert; Stoeckert, Christian J.; Taylor, Chris; White, Joe; Wood, Andrew
2009-01-01
The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the “semantic glue” to provide a common understanding of data from across these disparate data sources. In addition, FuGO will reference out to existing mature ontologies to avoid the need to duplicate these resources, and will do so in such a way as to enable their ease of use in annotation. This project is in the early stages of development; the paper will describe efforts to initiate the project, the scope and organization of the project, the work accomplished to date, and the challenges encountered, as well as future plans. PMID:16901226
Genome resource banking for wildlife research, management, and conservation.
Wildt, D E
2000-01-01
Cryobiology offers an important opportunity to assist in the management and study of wildlife, including endangered species. The benefits of developing genome resource banks for wildlife are profound, perhaps more so than for traditional uses in terms of livestock and human fertility. In addition to preserving heterozygosity and assisting in the genetic management of rare populations held in captivity, frozen repositories help insure wild populations against natural and human-induced catastrophes. Such banks also are an invaluable source of new knowledge (for basic and applied research) from thousands of species that have yet to be studied. However, it is crucial that genome resource banks for wildlife species be developed in a coordinated fashion that first benefits the conservation of biodiversity. Spurious collections will be of no advantage to genuine conservation. The Conservation Breeding Specialist Group (CBSG; of the International Union for the Conservation of Nature and Natural Resources' Species Survival Commission) has promoted international dialogue on this topic. CBSG working groups have recognized that such repositories be developed according to specific, scientific guidelines consistent with an international standard that ensures practicality, high-quality ethics, and cost-effectiveness. Areas requiring priority attention also are reviewed, including the need for more basic research, advocacy, and support for developing organized repositories of biomaterials representing the world's diverse biota.
Phylogenomic Insights into Mouse Evolution Using a Pseudoreference Approach
Sarver, Brice A.J.; Keeble, Sara; Cosart, Ted; Tucker, Priscilla K.; Dean, Matthew D.
2017-01-01
Comparative genomic studies are now possible across a broad range of evolutionary timescales, but the generation and analysis of genomic data across many different species still present a number of challenges. The most sophisticated genotyping and down-stream analytical frameworks are still predominantly based on comparisons to high-quality reference genomes. However, established genomic resources are often limited within a given group of species, necessitating comparisons to divergent reference genomes that could restrict or bias comparisons across a phylogenetic sample. Here, we develop a scalable pseudoreference approach to iteratively incorporate sample-specific variation into a genome reference and reduce the effects of systematic mapping bias in downstream analyses. To characterize this framework, we used targeted capture to sequence whole exomes (∼54 Mbp) in 12 lineages (ten species) of mice spanning the Mus radiation. We generated whole exome pseudoreferences for all species and show that this iterative reference-based approach improved basic genomic analyses that depend on mapping accuracy while preserving the associated annotations of the mouse reference genome. We then use these pseudoreferences to resolve evolutionary relationships among these lineages while accounting for phylogenetic discordance across the genome, contributing an important resource for comparative studies in the mouse system. We also describe patterns of genomic introgression among lineages and compare our results to previous studies. Our general approach can be applied to whole or partitioned genomic data and is easily portable to any system with sufficient genomic resources, providing a useful framework for phylogenomic studies in mice and other taxa. PMID:28338821
Vicente-Dólera, Nelly; Troadec, Christelle; Moya, Manuel; del Río-Celestino, Mercedes; Pomares-Viciana, Teresa; Bendahmane, Abdelhafid; Picó, Belén; Román, Belén; Gómez, Pedro
2014-01-01
Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding. PMID:25386735
2010-01-01
Background The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. Description The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. Conclusions Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org. PMID:20459805
MycoCosm, an Integrated Fungal Genomics Resource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabalov, Igor; Grigoriev, Igor
2012-03-16
MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/monthmore » or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.« less
Khan, Mohd Shoaib; Gupta, Amit Kumar; Kumar, Manoj
2016-01-01
To develop a computational resource for viral epigenomic methylation profiles from diverse diseases. Methylation patterns of Epstein-Barr virus and hepatitis B virus genomic regions are provided as web platform developed using open source Linux-Apache-MySQL-PHP (LAMP) bundle: programming and scripting languages, that is, HTML, JavaScript and PERL. A comprehensive and integrated web resource ViralEpi v1.0 is developed providing well-organized compendium of methylation events and statistical analysis associated with several diseases. Additionally, it also facilitates 'Viral EpiGenome Browser' for user-affable browsing experience using JavaScript-based JBrowse. This web resource would be helpful for research community engaged in studying epigenetic biomarkers for appropriate prognosis and diagnosis of diseases and its various stages.
Gramene 2013: comparative plant genomics resources.
Monaco, Marcela K; Stein, Joshua; Naithani, Sushma; Wei, Sharon; Dharmawardhana, Palitha; Kumari, Sunita; Amarasinghe, Vindhya; Youens-Clark, Ken; Thomason, James; Preece, Justin; Pasternak, Shiran; Olson, Andrew; Jiao, Yinping; Lu, Zhenyuan; Bolser, Dan; Kerhornou, Arnaud; Staines, Dan; Walts, Brandon; Wu, Guanming; D'Eustachio, Peter; Haw, Robin; Croft, David; Kersey, Paul J; Stein, Lincoln; Jaiswal, Pankaj; Ware, Doreen
2014-01-01
Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.
Draft genome of the Peruvian scallop Argopecten purpuratus.
Li, Chao; Liu, Xiao; Liu, Bo; Ma, Bin; Liu, Fengqiao; Liu, Guilong; Shi, Qiong; Wang, Chunde
2018-04-01
The Peruvian scallop, Argopecten purpuratus, is mainly cultured in southern Chile and Peru was introduced into China in the last century. Unlike other Argopecten scallops, the Peruvian scallop normally has a long life span of up to 7 to 10 years. Therefore, researchers have been using it to develop hybrid vigor. Here, we performed whole genome sequencing, assembly, and gene annotation of the Peruvian scallop, with an important aim to develop genomic resources for genetic breeding in scallops. A total of 463.19-Gb raw DNA reads were sequenced. A draft genome assembly of 724.78 Mb was generated (accounting for 81.87% of the estimated genome size of 885.29 Mb), with a contig N50 size of 80.11 kb and a scaffold N50 size of 1.02 Mb. Repeat sequences were calculated to reach 33.74% of the whole genome, and 26,256 protein-coding genes and 3,057 noncoding RNAs were predicted from the assembly. We generated a high-quality draft genome assembly of the Peruvian scallop, which will provide a solid resource for further genetic breeding and for the analysis of the evolutionary history of this economically important scallop.
CROPPER: a metagene creator resource for cross-platform and cross-species compendium studies.
Paananen, Jussi; Storvik, Markus; Wong, Garry
2006-09-22
Current genomic research methods provide researchers with enormous amounts of data. Combining data from different high-throughput research technologies commonly available in biological databases can lead to novel findings and increase research efficiency. However, combining data from different heterogeneous sources is often a very arduous task. These sources can be different microarray technology platforms, genomic databases, or experiments performed on various species. Our aim was to develop a software program that could facilitate the combining of data from heterogeneous sources, and thus allow researchers to perform genomic cross-platform/cross-species studies and to use existing experimental data for compendium studies. We have developed a web-based software resource, called CROPPER that uses the latest genomic information concerning different data identifiers and orthologous genes from the Ensembl database. CROPPER can be used to combine genomic data from different heterogeneous sources, allowing researchers to perform cross-platform/cross-species compendium studies without the need for complex computational tools or the requirement of setting up one's own in-house database. We also present an example of a simple cross-platform/cross-species compendium study based on publicly available Parkinson's disease data derived from different sources. CROPPER is a user-friendly and freely available web-based software resource that can be successfully used for cross-species/cross-platform compendium studies.
A gene expression atlas of developing oat seeds for enhancing nutritional composition
USDA-ARS?s Scientific Manuscript database
Oat (Avena sativa L.) genome resources are less abundant than for wheat and barley, but next generation sequencing (NGS) technologies have great potential to accelerate new genome information for oat in a cost-effective manner. We are employing RNA-Seq to develop a gene expression atlas of developin...
Vallenet, David; Belda, Eugeni; Calteau, Alexandra; Cruveiller, Stéphane; Engelen, Stefan; Lajus, Aurélie; Le Fèvre, François; Longin, Cyrille; Mornico, Damien; Roche, David; Rouy, Zoé; Salvignol, Gregory; Scarpelli, Claude; Thil Smith, Adam Alexander; Weiman, Marion; Médigue, Claudine
2013-01-01
MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest. PMID:23193269
Kim, Changkug; Park, Dongsuk; Seol, Youngjoo; Hahn, Jangho
2011-01-01
The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage.
Introduction to the fathead minnow genome browser and ...
Ab initio gene prediction and evidence alignment were used to produce the first annotations for the fathead minnow SOAPdenovo genome assembly. Additionally, a genome browser hosted at genome.setac.org provides simplified access to the annotation data in context with fathead minnow genomic sequence. This work is meant to extend the utility of fathead minnow genome as a resource and enable the continued development of this species as a model organism. The fathead minnow (Pimephales promelas) is a laboratory model organism widely used in regulatory toxicity testing and ecotoxicology research. Despite, the wealth of toxicological data for this organism, until recently genome scale information was lacking for the species, which limited the utility of the species for pathway-based toxicity testing and research. As part of a EPA Pathfinder Innovation Project, next generation sequencing was applied to generate a draft genome assembly, which was published in 2016. However, application of those genome-scale sequencing resources was still limited by the lack of available gene annotations for fathead minnow. Here we report on development of a first generation genome annotation for fathead minnow and the dissemination of that information through a web-based browser that makes it easy to search for genes of interest, extract the corresponding sequence, identify intron and exon boundaries and regulatory regions, and align the computationally predicted genes with other supporti
USDA-ARS?s Scientific Manuscript database
The development of resources for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here a first step in developing such resources, our identification of thousands una...
Thanh, Nguyen Minh; Jung, Hyungtaek; Lyons, Russell E; Njaci, Isaac; Yoon, Byoung-Ha; Chand, Vincent; Tuan, Nguyen Viet; Thu, Vo Thi Minh; Mather, Peter
2015-10-01
Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species. Copyright © 2015 Elsevier B.V. All rights reserved.
Gao, Yangchun; Li, Shiguo; Zhan, Aibin
2018-04-01
Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.
IMG ER: a system for microbial genome annotation expert review and curation.
Markowitz, Victor M; Mavromatis, Konstantinos; Ivanova, Natalia N; Chen, I-Min A; Chu, Ken; Kyrpides, Nikos C
2009-09-01
A rapidly increasing number of microbial genomes are sequenced by organizations worldwide and are eventually included into various public genome data resources. The quality of the annotations depends largely on the original dataset providers, with erroneous or incomplete annotations often carried over into the public resources and difficult to correct. We have developed an Expert Review (ER) version of the Integrated Microbial Genomes (IMG) system, with the goal of supporting systematic and efficient revision of microbial genome annotations. IMG ER provides tools for the review and curation of annotations of both new and publicly available microbial genomes within IMG's rich integrated genome framework. New genome datasets are included into IMG ER prior to their public release either with their native annotations or with annotations generated by IMG ER's annotation pipeline. IMG ER tools allow addressing annotation problems detected with IMG's comparative analysis tools, such as genes missed by gene prediction pipelines or genes without an associated function. Over the past year, IMG ER was used for improving the annotations of about 150 microbial genomes.
Why Assembling Plant Genome Sequences Is So Challenging
Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé
2012-01-01
In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233
GenColors-based comparative genome databases for small eukaryotic genomes.
Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot
2013-01-01
Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.
proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes.
Mende, Daniel R; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer
2017-01-04
The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo
2011-01-01
The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015
Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine
2017-01-01
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. PMID:27899624
Periwal, Vinita
2017-07-01
Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2011-01-01
Background Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. Results A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. Conclusions The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1 orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy. PMID:21767393
Saski, Christopher A; Li, Zhigang; Feltus, Frank A; Luo, Hong
2011-07-18
Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1 orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy.
Precision Editing of Large Animal Genomes
Tan, Wenfang (Spring); Carlson, Daniel F.; Walton, Mark W.; Fahrenkrug, Scott C.; Hackett, Perry B.
2013-01-01
Transgenic animals are an important source of protein and nutrition for most humans and will play key roles in satisfying the increasing demand for food in an ever-increasing world population. The past decade has experienced a revolution in the development of methods that permit the introduction of specific alterations to complex genomes. This precision will enhance genome-based improvement of farm animals for food production. Precision genetics also will enhance the development of therapeutic biomaterials and models of human disease as resources for the development of advanced patient therapies. PMID:23084873
Seto, Jason; Walsh, Michael P.; Mahadevan, Padmanabhan; Zhang, Qiwei; Seto, Donald
2010-01-01
Technological advances and increasingly cost-effect methodologies in DNA sequencing and computational analysis are providing genome and proteome data for human adenovirus research. Applying these tools, data and derived knowledge to the development of vaccines against these pathogens will provide effective prophylactics. The same data and approaches can be applied to vector development for gene delivery in gene therapy and vaccine delivery protocols. Examination of several field strain genomes and their analyses provide examples of data that are available using these approaches. An example of the development of HAdV-B3 both as a vaccine and also as a vector is presented. PMID:21994597
Beldade, P; McMillan, W O; Papanicolaou, A
2008-02-01
Technological and conceptual advances of the last decade have led to an explosion of genomic data and the emergence of new research avenues. Evolutionary and ecological functional genomics, with its focus on the genes that affect ecological success and adaptation in natural populations, benefits immensely from a phylogenetically widespread sampling of biological patterns and processes. Among those organisms outside established model systems, butterflies offer exceptional opportunities for multidisciplinary research on the processes generating and maintaining variation in ecologically relevant traits. Here we highlight research on wing color pattern variation in two groups of Nymphalid butterflies, the African species Bicyclus anynana (subfamily Satyrinae) and species of the South American genus Heliconius (subfamily Heliconiinae), which are emerging as important systems for studying the nature and origins of functional diversity. Growing genomic resources including genomic and cDNA libraries, dense genetic maps, high-density gene arrays, and genetic transformation techniques are extending current gene mapping and expression profiling analysis and enabling the next generation of research questions linking genes, development, form, and fitness. Efforts to develop such resources in Bicyclus and Heliconius underscore the general challenges facing the larger research community and highlight the need for a community-wide effort to extend ongoing functional genomic research on butterflies.
Gujaria-Verma, Neha; Ramsay, Larissa; Sharpe, Andrew G; Sanderson, Lacey-Anne; Debouck, Daniel G; Tar'an, Bunyamin; Bett, Kirstin E
2016-03-15
Common bean (Phaseolus vulgaris) is an important grain legume and there has been a recent resurgence in interest in its relative, tepary bean (P. acutifolius), owing to this species' ability to better withstand abiotic stresses. Genomic resources are scarce for this minor crop species and a better knowledge of the genome-level relationship between these two species would facilitate improvement in both. High-throughput genotyping has facilitated large-scale single nucleotide polymorphism (SNP) identification leading to the development of molecular markers with associated sequence information that can be used to place them in the context of a full genome assembly. Transcript-based SNPs were identified from six common bean and two tepary bean accessions and a subset were used to generate a 768-SNP Illumina GoldenGate assay for each species. The tepary bean assay was used to assess diversity in wild and cultivated tepary bean and to generate the first gene-based map of the tepary bean genome. Genotypic analyses of the diversity panel showed a clear separation between domesticated and cultivated tepary beans, two distinct groups within the domesticated types, and P. parvifolius was confirmed to be distinct. The genetic map of tepary bean was compared to the common bean genome assembly to demonstrate high levels of collinearity between the two species with differences limited to a few intra-chromosomal rearrangements. The development of the first set of genomic resources specifically for tepary bean has allowed for greater insight into the structure of this species and its relationship to its agriculturally more prominent relative, common bean. These resources will be helpful in the development of efficient breeding strategies for both species and will facilitate the introgression of agriculturally important traits from one crop into the other.
Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J
2007-06-01
As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.
Chaudhary, Sakshi; Mishra, Bharat Kumar; Vivek, Thiruvettai; Magadum, Santoshkumar; Yasin, Jeshima Khan
2016-01-01
Simple Sequence Repeats or microsatellites are resourceful molecular genetic markers. There are only few reports of SSR identification and development in pineapple. Complete genome sequence of pineapple available in the public domain can be used to develop numerous novel SSRs. Therefore, an attempt was made to identify SSRs from genomic, chloroplast, mitochondrial and EST sequences of pineapple which will help in deciphering genetic makeup of its germplasm resources. A total of 359511 SSRs were identified in pineapple (356385 from genome sequence, 45 from chloroplast sequence, 249 in mitochondrial sequence and 2832 from EST sequences). The list of EST-SSR markers and their details are available in the database. PineElm_SSRdb is an open source database available for non-commercial academic purpose at http://app.bioelm.com/ with a mapping tool which can develop circular maps of selected marker set. This database will be of immense use to breeders, researchers and graduates working on Ananas spp. and to others working on cross-species transferability of markers, investigating diversity, mapping and DNA fingerprinting.
Genomics of pear and other Rosaceae fruit trees
Yamamoto, Toshiya; Terakami, Shingo
2016-01-01
The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry. PMID:27069399
Genomics of pear and other Rosaceae fruit trees.
Yamamoto, Toshiya; Terakami, Shingo
2016-01-01
The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry.
Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives
Longhi, Sara; Giongo, Lara; Buti, Matteo; Surbanovski, Nada; Viola, Roberto; Velasco, Riccardo; Ward, Judson A; Sargent, Daniel J
2014-01-01
The Rosoideae is a subfamily of the Rosaceae that contains a number of species of economic importance, including the soft fruit species strawberry (Fragaria ×ananassa), red (Rubus idaeus) and black (Rubus occidentalis) raspberries, blackberries (Rubus spp.) and one of the most economically important cut flower genera, the roses (Rosa spp.). Molecular genetics and genomics resources for the Rosoideae have developed rapidly over the past two decades, beginning with the development and application of a number of molecular marker types including restriction fragment length polymorphisms, amplified fragment length polymorphisms and microsatellites, and culminating in the recent publication of the genome sequence of the woodland strawberry, Fragaria vesca, and the development of high throughput single nucleotide polymorphism (SNP)-genotyping resources for Fragaria, Rosa and Rubus. These tools have been used to identify genes and other functional elements that control traits of economic importance, to study the evolution of plant genome structure within the subfamily, and are beginning to facilitate genomic-assisted breeding through the development and deployment of markers linked to traits such as aspects of fruit quality, disease resistance and the timing of flowering. In this review, we report on the developments that have been made over the last 20 years in the field of molecular genetics and structural genomics within the Rosoideae, comment on how the knowledge gained will improve the efficiency of cultivar development and discuss how these advances will enhance our understanding of the biological processes determining agronomically important traits in all Rosoideae species. PMID:26504527
Recent advance in carrot genomics
USDA-ARS?s Scientific Manuscript database
In recent years there has been an effort towards the development of genomic resources in carrot. The number of available sequences for carrot in public databases has increased recently. This has allowed the design of SSRs markers, COS markers and a high-throughput SNP assay for genotyping. Additiona...
Sequencing, assembly, and annotation of Maize B104 : A maize transformation resource
USDA-ARS?s Scientific Manuscript database
Maize transformation is complicated. Most lines are not readily cultured and transformed, making the germplasm available for genome engineering extremely limited. Developing a better understanding of the genomic regions responsible for differences in culturability and transformability would be a goo...
Abdelrahman, Hisham; ElHady, Mohamed; Alcivar-Warren, Acacia; Allen, Standish; Al-Tobasei, Rafet; Bao, Lisui; Beck, Ben; Blackburn, Harvey; Bosworth, Brian; Buchanan, John; Chappell, Jesse; Daniels, William; Dong, Sheng; Dunham, Rex; Durland, Evan; Elaswad, Ahmed; Gomez-Chiarri, Marta; Gosh, Kamal; Guo, Ximing; Hackett, Perry; Hanson, Terry; Hedgecock, Dennis; Howard, Tiffany; Holland, Leigh; Jackson, Molly; Jin, Yulin; Khalil, Karim; Kocher, Thomas; Leeds, Tim; Li, Ning; Lindsey, Lauren; Liu, Shikai; Liu, Zhanjiang; Martin, Kyle; Novriadi, Romi; Odin, Ramjie; Palti, Yniv; Peatman, Eric; Proestou, Dina; Qin, Guyu; Reading, Benjamin; Rexroad, Caird; Roberts, Steven; Salem, Mohamed; Severin, Andrew; Shi, Huitong; Shoemaker, Craig; Stiles, Sheila; Tan, Suxu; Tang, Kathy F J; Thongda, Wilawan; Tiersch, Terrence; Tomasso, Joseph; Prabowo, Wendy Tri; Vallejo, Roger; van der Steen, Hein; Vo, Khoi; Waldbieser, Geoff; Wang, Hanping; Wang, Xiaozhu; Xiang, Jianhai; Yang, Yujia; Yant, Roger; Yuan, Zihao; Zeng, Qifan; Zhou, Tao
2017-02-20
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
Comparative genome analysis in the integrated microbial genomes (IMG) system.
Markowitz, Victor M; Kyrpides, Nikos C
2007-01-01
Comparative genome analysis is critical for the effective exploration of a rapidly growing number of complete and draft sequences for microbial genomes. The Integrated Microbial Genomes (IMG) system (img.jgi.doe.gov) has been developed as a community resource that provides support for comparative analysis of microbial genomes in an integrated context. IMG allows users to navigate the multidimensional microbial genome data space and focus their analysis on a subset of genes, genomes, and functions of interest. IMG provides graphical viewers, summaries, and occurrence profile tools for comparing genes, pathways, and functions (terms) across specific genomes. Genes can be further examined using gene neighborhoods and compared with sequence alignment tools.
Olsson, Sanna; Seoane-Zonjic, Pedro; Bautista, Rocío; Claros, M Gonzalo; González-Martínez, Santiago C; Scotti, Ivan; Scotti-Saintagne, Caroline; Hardy, Olivier J; Heuertz, Myriam
2017-07-01
Population genetic studies in tropical plants are often challenging because of limited information on taxonomy, phylogenetic relationships and distribution ranges, scarce genomic information and logistic challenges in sampling. We describe a strategy to develop robust and widely applicable genetic markers based on a modest development of genomic resources in the ancient tropical tree species Symphonia globulifera L.f. (Clusiaceae), a keystone species in African and Neotropical rainforests. We provide the first low-coverage (11X) fragmented draft genome sequenced on an individual from Cameroon, covering 1.027 Gbp or 67.5% of the estimated genome size. Annotation of 565 scaffolds (7.57 Mbp) resulted in the prediction of 1046 putative genes (231 of them containing a complete open reading frame) and 1523 exact simple sequence repeats (SSRs, microsatellites). Aligning a published transcriptome of a French Guiana population against this draft genome produced 923 high-quality single nucleotide polymorphisms. We also preselected genic SSRs in silico that were conserved and polymorphic across a wide geographical range, thus reducing marker development tests on rare DNA samples. Of 23 SSRs tested, 19 amplified and 18 were successfully genotyped in four S. globulifera populations from South America (Brazil and French Guiana) and Africa (Cameroon and São Tomé island, F ST = 0.34). Most loci showed only population-specific deviations from Hardy-Weinberg proportions, pointing to local population effects (e.g. null alleles). The described genomic resources are valuable for evolutionary studies in Symphonia and for comparative studies in plants. The methods are especially interesting for widespread tropical or endangered taxa with limited DNA availability. © 2016 John Wiley & Sons Ltd.
Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine
2017-01-04
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gabbard, Joseph L.; Shukla, Maulik; Sobral, Bruno
2010-01-01
Systems biology and infectious disease (host-pathogen-environment) research and development is becoming increasingly dependent on integrating data from diverse and dynamic sources. Maintaining integrated resources over long periods of time presents distinct challenges. This paper describes experiences and lessons learned from integrating data in two five-year projects focused on pathosystems biology: the Pathosystems Resource Integration Center (PATRIC, http://patric.vbi.vt.edu/), with a goal of developing bioinformatics resources for the research and countermeasures development communities based on genomics data, and the Resource Center for Biodefense Proteomics Research (RCBPR, http://www.proteomicsresource.org/), with a goal of developing resources based on the experiment data such as microarray and proteomics data from diverse sources and technologies. Some challenges include integrating genomic sequence and experiment data, data synchronization, data quality control, and usability engineering. We present examples of a variety of data integration problems drawn from our experiences with PATRIC and RBPRC, as well as open research questions related to long term sustainability, and describe the next steps to meeting these challenges. Novel contributions of this work include (1) an approach for addressing discrepancies between experiment results and interpreted results and (2) expanding the range of data integration techniques to include usability engineering at the presentation level. PMID:20491070
Towards uncovering the roles of switchgrass peroxidases in plant processes
USDA-ARS?s Scientific Manuscript database
Herbaceous perennial plants selected as potential biofuel feedstocks had been understudied at the genomic and functional genomic levels. Recent investments, primarily by the U.S. Department of Energy, have led to the development of a number of molecular resources for bioenergy grasses and related di...
USDA-ARS?s Scientific Manuscript database
This is an update of the 2010 version of Cucumber Gene List. Since the release of the cucumber draft genome in 2009, significant progress has been made in developing cucumber genetic and genomics resources. A number of genes or QTLs have been tagged with molecular markers, which provides us a better...
PeanutBase and other bioinformatic resources for peanut
USDA-ARS?s Scientific Manuscript database
Large-scale genomic data for peanut have only become available in the last few years, with the advent of low-cost sequencing technologies. To make the data accessible to researchers and to integrate across diverse types of data, the International Peanut Genomics Consortium funded the development of ...
Poland, Jesse
2015-04-01
The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tollis, Marc; DeNardo, Dale F.; Cornelius, John A.; Dolby, Greer A.; Edwards, Taylor; Henen, Brian T.; Karl, Alice E.; Murphy, Robert W.
2017-01-01
Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex. PMID:28562605
Tollis, Marc; DeNardo, Dale F; Cornelius, John A; Dolby, Greer A; Edwards, Taylor; Henen, Brian T; Karl, Alice E; Murphy, Robert W; Kusumi, Kenro
2017-01-01
Agassiz's desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.
Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P
2004-05-01
We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.
Genomic analyses of the CAM plant pineapple.
Zhang, Jisen; Liu, Juan; Ming, Ray
2014-07-01
The innovation of crassulacean acid metabolism (CAM) photosynthesis in arid and/or low CO2 conditions is a remarkable case of adaptation in flowering plants. As the most important crop that utilizes CAM photosynthesis, the genetic and genomic resources of pineapple have been developed over many years. Genetic diversity studies using various types of DNA markers led to the reclassification of the two genera Ananas and Pseudananas and nine species into one genus Ananas and two species, A. comosus and A. macrodontes with five botanical varieties in A. comosus. Five genetic maps have been constructed using F1 or F2 populations, and high-density genetic maps generated by genotype sequencing are essential resources for sequencing and assembling the pineapple genome and for marker-assisted selection. There are abundant expression sequence tag resources but limited genomic sequences in pineapple. Genes involved in the CAM pathway has been analysed in several CAM plants but only a few of them are from pineapple. A reference genome of pineapple is being generated and will accelerate genetic and genomic research in this major CAM crop. This reference genome of pineapple provides the foundation for studying the origin and regulatory mechanism of CAM photosynthesis, and the opportunity to evaluate the classification of Ananas species and botanical cultivars. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Personal genomes in progress: from the human genome project to the personal genome project.
Lunshof, Jeantine E; Bobe, Jason; Aach, John; Angrist, Misha; Thakuria, Joseph V; Vorhaus, Daniel B; Hoehe, Margret R; Church, George M
2010-01-01
The cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007--even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polylmorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly. Sharing such integrated GET datasets and their interpretations with a diversity of researchers and research subjects highlights the need for informed-consent models capable of addressing novel privacy and other issues, as well as for flexible data-sharing resources that make materials and data available with minimum restrictions on use. This article examines the Personal Genome Project's effort to develop a GET database as a public genomics resource broadly accessible to both researchers and research participants, while pursuing the highest standards in research ethics.
Bohra, Abhishek; Pandey, Manish K; Jha, Uday C; Singh, Balwant; Singh, Indra P; Datta, Dibendu; Chaturvedi, Sushil K; Nadarajan, N; Varshney, Rajeev K
2014-06-01
Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.
Integrating Genomic Resources with Electronic Health Records using the HL7 Infobutton Standard
Overby, Casey Lynnette; Del Fiol, Guilherme; Rubinstein, Wendy S.; Maglott, Donna R.; Nelson, Tristan H.; Milosavljevic, Aleksandar; Martin, Christa L.; Goehringer, Scott R.; Freimuth, Robert R.; Williams, Marc S.
2016-01-01
Summary Background The Clinical Genome Resource (ClinGen) Electronic Health Record (EHR) Workgroup aims to integrate ClinGen resources with EHRs. A promising option to enable this integration is through the Health Level Seven (HL7) Infobutton Standard. EHR systems that are certified according to the US Meaningful Use program provide HL7-compliant infobutton capabilities, which can be leveraged to support clinical decision-making in genomics. Objectives To integrate genomic knowledge resources using the HL7 infobutton standard. Two tactics to achieve this objective were: (1) creating an HL7-compliant search interface for ClinGen, and (2) proposing guidance for genomic resources on achieving HL7 Infobutton standard accessibility and compliance. Methods We built a search interface utilizing OpenInfobutton, an open source reference implementation of the HL7 Infobutton standard. ClinGen resources were assessed for readiness towards HL7 compliance. Finally, based upon our experiences we provide recommendations for publishers seeking to achieve HL7 compliance. Results Eight genomic resources and two sub-resources were integrated with the ClinGen search engine via OpenInfobutton and the HL7 infobutton standard. Resources we assessed have varying levels of readiness towards HL7-compliance. Furthermore, we found that adoption of standard terminologies used by EHR systems is the main gap to achieve compliance. Conclusion Genomic resources can be integrated with EHR systems via the HL7 Infobutton standard using OpenInfobutton. Full compliance of genomic resources with the Infobutton standard would further enhance interoperability with EHR systems. PMID:27579472
Exome-wide DNA capture and next generation sequencing in domestic and wild species.
Cosart, Ted; Beja-Pereira, Albano; Chen, Shanyuan; Ng, Sarah B; Shendure, Jay; Luikart, Gordon
2011-07-05
Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.
Rice functional genomics research in China.
Han, Bin; Xue, Yongbiao; Li, Jiayang; Deng, Xing-Wang; Zhang, Qifa
2007-06-29
Rice functional genomics is a scientific approach that seeks to identify and define the function of rice genes, and uncover when and how genes work together to produce phenotypic traits. Rapid progress in rice genome sequencing has facilitated research in rice functional genomics in China. The Ministry of Science and Technology of China has funded two major rice functional genomics research programmes for building up the infrastructures of the functional genomics study such as developing rice functional genomics tools and resources. The programmes were also aimed at cloning and functional analyses of a number of genes controlling important agronomic traits from rice. National and international collaborations on rice functional genomics study are accelerating rice gene discovery and application.
Improving draft genome contiguity with reference-derived in silico mate-pair libraries.
Grau, José Horacio; Hackl, Thomas; Koepfli, Klaus-Peter; Hofreiter, Michael
2018-05-01
Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. In order to improve genome contiguity, we have developed Cross-Species Scaffolding-a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data.
MIPSPlantsDB—plant database resource for integrative and comparative plant genome research
Spannagl, Manuel; Noubibou, Octave; Haase, Dirk; Yang, Li; Gundlach, Heidrun; Hindemitt, Tobias; Klee, Kathrin; Haberer, Georg; Schoof, Heiko; Mayer, Klaus F. X.
2007-01-01
Genome-oriented plant research delivers rapidly increasing amount of plant genome data. Comprehensive and structured information resources are required to structure and communicate genome and associated analytical data for model organisms as well as for crops. The increase in available plant genomic data enables powerful comparative analysis and integrative approaches. PlantsDB aims to provide data and information resources for individual plant species and in addition to build a platform for integrative and comparative plant genome research. PlantsDB is constituted from genome databases for Arabidopsis, Medicago, Lotus, rice, maize and tomato. Complementary data resources for cis elements, repetive elements and extensive cross-species comparisons are implemented. The PlantsDB portal can be reached at . PMID:17202173
Development of a D genome specific marker resource for diploid and hexaploid wheat
USDA-ARS?s Scientific Manuscript database
Mapping and map-based cloning of genes that control agriculturally and economically important traits remain great challenges for plants with complex highly repetitive genomes such as those of the grass tribe, Triticeae. Mapping limitations in the Triticeae are primarily due to low frequencies of po...
Sequencing and De novo Draft Assemblies of the Fathead Minnow (Pimphales promelas)Reference Genome
This study was undertaken to develop genome-scale resources for the fathead minnow (Pimphales promelas) an important model organism widely used in both aquatic ecotoxicology research and in regulatory toxicity testing. We report on the first sequencing and two draft assemblies fo...
USDA-ARS?s Scientific Manuscript database
The use of swine in biomedical research has increased dramatically in the last decade. Diverse genomic- and proteomic databases have been developed to facilitate research using human and rodent models. Current porcine gene databases, however, lack the robust annotation to study pig models that are...
Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.
ERIC Educational Resources Information Center
Haury, David L.
This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…
Danley, Patrick D; Mullen, Sean P; Liu, Fenglong; Nene, Vishvanath; Quackenbush, John; Shaw, Kerry L
2007-01-01
Background As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. Results We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page Conclusion Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will provide much needed genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and molecular evolution. PMID:17459168
A comprehensive and quantitative exploration of thousands of viral genomes
Mahmoudabadi, Gita
2018-01-01
The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends – such as gene density, noncoding percentage, and abundances of functional gene categories – across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. PMID:29624169
A comprehensive and quantitative exploration of thousands of viral genomes.
Mahmoudabadi, Gita; Phillips, Rob
2018-04-19
The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends - such as gene density, noncoding percentage, and abundances of functional gene categories - across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. © 2018, Mahmoudabadi et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muchero, Wellington; Labbe, Jessy L; Priya, Ranjan
2014-01-01
To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel andmore » fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.« less
MIPS bacterial genomes functional annotation benchmark dataset.
Tetko, Igor V; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Fobo, Gisela; Ruepp, Andreas; Antonov, Alexey V; Surmeli, Dimitrij; Mewes, Hans-Wernen
2005-05-15
Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. BFAB is available at http://mips.gsf.de/proj/bfab
Resources, challenges and way forward in rare mitochondrial diseases research.
Rajput, Neeraj Kumar; Singh, Vipin; Bhardwaj, Anshu
2015-01-01
Over 300 million people are affected by about 7000 rare diseases globally. There are tremendous resource limitations and challenges in driving research and drug development for rare diseases. Hence, innovative approaches are needed to identify potential solutions. This review focuses on the resources developed over the past years for analysis of genome data towards understanding disease biology especially in the context of mitochondrial diseases, given that mitochondria are central to major cellular pathways and their dysfunction leads to a broad spectrum of diseases. Platforms for collaboration of research groups, clinicians and patients and the advantages of community collaborative efforts in addressing rare diseases are also discussed. The review also describes crowdsourcing and crowdfunding efforts in rare diseases research and how the upcoming initiatives for understanding disease biology including analyses of large number of genomes are also applicable to rare diseases.
Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie
2013-01-01
Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967
A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era.
Grabowski, Jeffrey M; Hill, Catherine A
2017-01-01
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis , the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, "omic" studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the "omics era," and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.
A Roadmap for Tick-Borne Flavivirus Research in the “Omics” Era
Grabowski, Jeffrey M.; Hill, Catherine A.
2017-01-01
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030. PMID:29312896
Lima, Jakelyne; Cerdeira, Louise Teixeira; Bol, Erick; Schneider, Maria Paula Cruz; Silva, Artur; Azevedo, Vasco; Abelém, Antônio Jorge Gomes
2012-01-01
Improvements in genome sequencing techniques have resulted in generation of huge volumes of data. As a consequence of this progress, the genome assembly stage demands even more computational power, since the incoming sequence files contain large amounts of data. To speed up the process, it is often necessary to distribute the workload among a group of machines. However, this requires hardware and software solutions specially configured for this purpose. Grid computing try to simplify this process of aggregate resources, but do not always offer the best performance possible due to heterogeneity and decentralized management of its resources. Thus, it is necessary to develop software that takes into account these peculiarities. In order to achieve this purpose, we developed an algorithm aimed to optimize the functionality of de novo assembly software ABySS in order to optimize its operation in grids. We run ABySS with and without the algorithm we developed in the grid simulator SimGrid. Tests showed that our algorithm is viable, flexible, and scalable even on a heterogeneous environment, which improved the genome assembly time in computational grids without changing its quality. PMID:22461785
flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection
Stanley, Craig E.; Kulathinal, Rob J.
2016-01-01
With arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster’s breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource. However, since its inception, these datasets for evolutionary inference and biological discovery have become increasingly outdated, outmoded, and inaccessible. Here, we provide an updated and upgradable comparative genomics resource of Drosophila divergence and selection, flyDIVaS, based on the latest genomic assemblies, curated FlyBase annotations, and recent OrthoDB orthology calls. flyDIVaS is an online database containing D. melanogaster-centric orthologous gene sets, CDS and protein alignments, divergence statistics (% gaps, dN, dS, dN/dS), and codon-based tests of positive Darwinian selection. Out of 13,920 protein-coding D. melanogaster genes, ∼80% have one aligned ortholog in the closely related species, D. simulans, and ∼50% have 1–1 12-way alignments in the original 12 sequenced species that span over 80 million yr of divergence. Genes and their orthologs can be chosen from four different taxonomic datasets differing in phylogenetic depth and coverage density, and visualized via interactive alignments and phylogenetic trees. Users can also batch download entire comparative datasets. A functional survey finds conserved mitotic and neural genes, highly diverged immune and reproduction-related genes, more conspicuous signals of divergence across tissue-specific genes, and an enrichment of positive selection among highly diverged genes. flyDIVaS will be regularly updated and can be freely accessed at www.flydivas.info. We encourage researchers to regularly use this resource as a tool for biological inference and discovery, and in their classrooms to help train the next generation of biologists to creatively use such genomic big data resources in an integrative manner. PMID:27226167
flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection.
Stanley, Craig E; Kulathinal, Rob J
2016-08-09
With arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster's breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource. However, since its inception, these datasets for evolutionary inference and biological discovery have become increasingly outdated, outmoded, and inaccessible. Here, we provide an updated and upgradable comparative genomics resource of Drosophila divergence and selection, flyDIVaS, based on the latest genomic assemblies, curated FlyBase annotations, and recent OrthoDB orthology calls. flyDIVaS is an online database containing D. melanogaster-centric orthologous gene sets, CDS and protein alignments, divergence statistics (% gaps, dN, dS, dN/dS), and codon-based tests of positive Darwinian selection. Out of 13,920 protein-coding D. melanogaster genes, ∼80% have one aligned ortholog in the closely related species, D. simulans, and ∼50% have 1-1 12-way alignments in the original 12 sequenced species that span over 80 million yr of divergence. Genes and their orthologs can be chosen from four different taxonomic datasets differing in phylogenetic depth and coverage density, and visualized via interactive alignments and phylogenetic trees. Users can also batch download entire comparative datasets. A functional survey finds conserved mitotic and neural genes, highly diverged immune and reproduction-related genes, more conspicuous signals of divergence across tissue-specific genes, and an enrichment of positive selection among highly diverged genes. flyDIVaS will be regularly updated and can be freely accessed at www.flydivas.info We encourage researchers to regularly use this resource as a tool for biological inference and discovery, and in their classrooms to help train the next generation of biologists to creatively use such genomic big data resources in an integrative manner. Copyright © 2016 Stanley and Kulathinal.
Draft genome of the lined seahorse, Hippocampus erectus.
Lin, Qiang; Qiu, Ying; Gu, Ruobo; Xu, Meng; Li, Jia; Bian, Chao; Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Luo, Wei; Chen, Jieming; You, Xinxin; Fan, Mingjun; Sun, Min; Xu, Pao; Venkatesh, Byrappa; Xu, Junming; Fu, Hongtuo; Shi, Qiong
2017-06-01
The lined seahorse, Hippocampus erectus , is an Atlantic species and mainly inhabits shallow sea beds or coral reefs. It has become very popular in China for its wide use in traditional Chinese medicine. In order to improve the aquaculture yield of this valuable fish species, we are trying to develop genomic resources for assistant selection in genetic breeding. Here, we provide whole genome sequencing, assembly, and gene annotation of the lined seahorse, which can enrich genome resource and further application for its molecular breeding. A total of 174.6 Gb (Gigabase) raw DNA sequences were generated by the Illumina Hiseq2500 platform. The final assembly of the lined seahorse genome is around 458 Mb, representing 94% of the estimated genome size (489 Mb by k-mer analysis). The contig N50 and scaffold N50 reached 14.57 kb and 1.97 Mb, respectively. Quality of the assembled genome was assessed by BUSCO with prediction of 85% of the known vertebrate genes and evaluated using the de novo assembled RNA-seq transcripts to prove a high mapping ratio (more than 99% transcripts could be mapped to the assembly). Using homology-based, de novo and transcriptome-based prediction methods, we predicted 20 788 protein-coding genes in the generated assembly, which is less than our previously reported gene number (23 458) of the tiger tail seahorse ( H. comes ). We report a draft genome of the lined seahorse. These generated genomic data are going to enrich genome resource of this economically important fish, and also provide insights into the genetic mechanisms of its iconic morphology and male pregnancy behavior. © The Authors 2017. Published by Oxford University Press.
Draft genome of the lined seahorse, Hippocampus erectus
Lin, Qiang; Qiu, Ying; Gu, Ruobo; Xu, Meng; Li, Jia; Bian, Chao; Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Luo, Wei; Chen, Jieming; You, Xinxin; Fan, Mingjun; Sun, Min; Xu, Pao; Venkatesh, Byrappa
2017-01-01
Abstract Background: The lined seahorse, Hippocampus erectus, is an Atlantic species and mainly inhabits shallow sea beds or coral reefs. It has become very popular in China for its wide use in traditional Chinese medicine. In order to improve the aquaculture yield of this valuable fish species, we are trying to develop genomic resources for assistant selection in genetic breeding. Here, we provide whole genome sequencing, assembly, and gene annotation of the lined seahorse, which can enrich genome resource and further application for its molecular breeding. Findings: A total of 174.6 Gb (Gigabase) raw DNA sequences were generated by the Illumina Hiseq2500 platform. The final assembly of the lined seahorse genome is around 458 Mb, representing 94% of the estimated genome size (489 Mb by k-mer analysis). The contig N50 and scaffold N50 reached 14.57 kb and 1.97 Mb, respectively. Quality of the assembled genome was assessed by BUSCO with prediction of 85% of the known vertebrate genes and evaluated using the de novo assembled RNA-seq transcripts to prove a high mapping ratio (more than 99% transcripts could be mapped to the assembly). Using homology-based, de novo and transcriptome-based prediction methods, we predicted 20 788 protein-coding genes in the generated assembly, which is less than our previously reported gene number (23 458) of the tiger tail seahorse (H. comes). Conclusion: We report a draft genome of the lined seahorse. These generated genomic data are going to enrich genome resource of this economically important fish, and also provide insights into the genetic mechanisms of its iconic morphology and male pregnancy behavior. PMID:28444302
Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii
Ramage, Elizabeth; Weiss, Eli J.; Radey, Matthew; Hayden, Hillary S.; Held, Kiara G.; Huse, Holly K.; Zurawski, Daniel V.; Brittnacher, Mitchell J.; Manoil, Colin
2015-01-01
ABSTRACT Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains. PMID:25845845
INDIGO – INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles
Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B.
2013-01-01
Background The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo. PMID:24324765
Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba Alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B
2013-01-01
The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.
The Emerging Oilseed Crop Sesamum indicum Enters the “Omics” Era
Dossa, Komivi; Diouf, Diaga; Wang, Linhai; Wei, Xin; Zhang, Yanxin; Niang, Mareme; Fonceka, Daniel; Yu, Jingyin; Mmadi, Marie A.; Yehouessi, Louis W.; Liao, Boshou; Zhang, Xiurong; Cisse, Ndiaga
2017-01-01
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops widely grown in Africa and Asia for its high-quality nutritional seeds. It is well adapted to harsh environments and constitutes an alternative cash crop for smallholders in developing countries. Despite its economic and nutritional importance, sesame is considered as an orphan crop because it has received very little attention from science. As a consequence, it lags behind the other major oil crops as far as genetic improvement is concerned. In recent years, the scenario has considerably changed with the decoding of the sesame nuclear genome leading to the development of various genomic resources including molecular markers, comprehensive genetic maps, high-quality transcriptome assemblies, web-based functional databases and diverse daft genome sequences. The availability of these tools in association with the discovery of candidate genes and quantitative trait locis for key agronomic traits including high oil content and quality, waterlogging and drought tolerance, disease resistance, cytoplasmic male sterility, high yield, pave the way to the development of some new strategies for sesame genetic improvement. As a result, sesame has graduated from an “orphan crop” to a “genomic resource-rich crop.” With the limited research teams working on sesame worldwide, more synergic efforts are needed to integrate these resources in sesame breeding for productivity upsurge, ensuring food security and improved livelihood in developing countries. This review retraces the evolution of sesame research by highlighting the recent advances in the “Omics” area and also critically discusses the future prospects for a further genetic improvement and a better expansion of this crop. PMID:28713412
The Emerging Oilseed Crop Sesamum indicum Enters the "Omics" Era.
Dossa, Komivi; Diouf, Diaga; Wang, Linhai; Wei, Xin; Zhang, Yanxin; Niang, Mareme; Fonceka, Daniel; Yu, Jingyin; Mmadi, Marie A; Yehouessi, Louis W; Liao, Boshou; Zhang, Xiurong; Cisse, Ndiaga
2017-01-01
Sesame ( Sesamum indicum L.) is one of the oldest oilseed crops widely grown in Africa and Asia for its high-quality nutritional seeds. It is well adapted to harsh environments and constitutes an alternative cash crop for smallholders in developing countries. Despite its economic and nutritional importance, sesame is considered as an orphan crop because it has received very little attention from science. As a consequence, it lags behind the other major oil crops as far as genetic improvement is concerned. In recent years, the scenario has considerably changed with the decoding of the sesame nuclear genome leading to the development of various genomic resources including molecular markers, comprehensive genetic maps, high-quality transcriptome assemblies, web-based functional databases and diverse daft genome sequences. The availability of these tools in association with the discovery of candidate genes and quantitative trait locis for key agronomic traits including high oil content and quality, waterlogging and drought tolerance, disease resistance, cytoplasmic male sterility, high yield, pave the way to the development of some new strategies for sesame genetic improvement. As a result, sesame has graduated from an "orphan crop" to a "genomic resource-rich crop." With the limited research teams working on sesame worldwide, more synergic efforts are needed to integrate these resources in sesame breeding for productivity upsurge, ensuring food security and improved livelihood in developing countries. This review retraces the evolution of sesame research by highlighting the recent advances in the "Omics" area and also critically discusses the future prospects for a further genetic improvement and a better expansion of this crop.
Chen, Wei-Hua; van Noort, Vera; Lluch-Senar, Maria; Hennrich, Marco L.; H. Wodke, Judith A.; Yus, Eva; Alibés, Andreu; Roma, Guglielmo; Mende, Daniel R.; Pesavento, Christina; Typas, Athanasios; Gavin, Anne-Claude; Serrano, Luis; Bork, Peer
2016-01-01
We developed a comprehensive resource for the genome-reduced bacterium Mycoplasma pneumoniae comprising 1748 consistently generated ‘-omics’ data sets, and used it to quantify the power of antisense non-coding RNAs (ncRNAs), lysine acetylation, and protein phosphorylation in predicting protein abundance (11%, 24% and 8%, respectively). These factors taken together are four times more predictive of the proteome abundance than of mRNA abundance. In bacteria, post-translational modifications (PTMs) and ncRNA transcription were both found to increase with decreasing genomic GC-content and genome size. Thus, the evolutionary forces constraining genome size and GC-content modify the relative contributions of the different regulatory layers to proteome homeostasis, and impact more genomic and genetic features than previously appreciated. Indeed, these scaling principles will enable us to develop more informed approaches when engineering minimal synthetic genomes. PMID:26773059
Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong
2016-01-01
Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455
Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K
2013-12-01
The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.
Taylor, Christina M.; Mitreva, Makedonka
2011-01-01
A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html. PMID:21760913
ADAPTmap: International coordinated data resource for improving goat production effiency
USDA-ARS?s Scientific Manuscript database
Goats provide vital food and economic security, particularly in developing countries. We created a database that is a nexus for all performance, type, geographic information system (GIS), production environment, and genome information on goats. This resource provides a platform for meta-analysis tha...
RATT: Rapid Annotation Transfer Tool
Otto, Thomas D.; Dillon, Gary P.; Degrave, Wim S.; Berriman, Matthew
2011-01-01
Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net. PMID:21306991
MIPS plant genome information resources.
Spannagl, Manuel; Haberer, Georg; Ernst, Rebecca; Schoof, Heiko; Mayer, Klaus F X
2007-01-01
The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement
USDA-ARS?s Scientific Manuscript database
Chickpea (Cicer arietinum) is the world’s second most important grain legume crop, accounting for a significant proportion of human dietary protein and playing a critical role in food security in developing countries. We report the sequence of the ~738 Mb kabuli (CDC Frontier) chickpea genome, which...
Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens
Sosa, Ezequiel J; Burguener, Germán; Lanzarotti, Esteban; Radusky, Leandro; Pardo, Agustín M; Marti, Marcelo
2018-01-01
Abstract Available genomic data for pathogens has created new opportunities for drug discovery and development to fight them, including new resistant and multiresistant strains. In particular structural data must be integrated with both, gene information and experimental results. In this sense, there is a lack of an online resource that allows genome wide-based data consolidation from diverse sources together with thorough bioinformatic analysis that allows easy filtering and scoring for fast target selection for drug discovery. Here, we present Target-Pathogen database (http://target.sbg.qb.fcen.uba.ar/patho), designed and developed as an online resource that allows the integration and weighting of protein information such as: function, metabolic role, off-targeting, structural properties including druggability, essentiality and omic experiments, to facilitate the identification and prioritization of candidate drug targets in pathogens. We include in the database 10 genomes of some of the most relevant microorganisms for human health (Mycobacterium tuberculosis, Mycobacterium leprae, Klebsiella pneumoniae, Plasmodium vivax, Toxoplasma gondii, Leishmania major, Wolbachia bancrofti, Trypanosoma brucei, Shigella dysenteriae and Schistosoma Smanosoni) and show its applicability. New genomes can be uploaded upon request. PMID:29106651
PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.
Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X
2017-01-01
Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.
Manipulation of the mouse genome: a multiple impact resource for drug discovery and development.
Prosser, Haydn; Rastan, Sohaila
2003-05-01
Few would deny that the pharmaceutical industry's investment in genomics throughout the 1990s has yet to deliver in terms of drugs on the market. The reasons are complex and beyond the scope of this review. The unique ability to manipulate the mouse genome, however, has already had a positive impact on all stages of the drug discovery process and, increasingly, on the drug development process too. We give an overview of some recent applications of so-called 'transgenic' mouse technology in pharmaceutical research and development. We show how genetic manipulation in the mouse can be employed at multiple points in the drug discovery and development process, providing new solutions to old problems.
Bohra, Abhishek; Singh, Narendra P
2015-08-01
Unprecedented developments in legume genomics over the last decade have resulted in the acquisition of a wide range of modern genomic resources to underpin genetic improvement of grain legumes. The genome enabled insights direct investigators in various ways that primarily include unearthing novel structural variations, retrieving the lost genetic diversity, introducing novel/exotic alleles from wider gene pools, finely resolving the complex quantitative traits and so forth. To this end, ready availability of cost-efficient and high-density genotyping assays allows genome wide prediction to be increasingly recognized as the key selection criterion in crop breeding. Further, the high-dimensional measurements of agronomically significant phenotypes obtained by using new-generation screening techniques will empower reference based resequencing as well as allele mining and trait mapping methods to comprehensively associate genome diversity with the phenome scale variation. Besides stimulating the forward genetic systems, accessibility to precisely delineated genomic segments reveals novel candidates for reverse genetic techniques like targeted genome editing. The shifting paradigm in plant genomics in turn necessitates optimization of crop breeding strategies to enable the most efficient integration of advanced omics knowledge and tools. We anticipate that the crop improvement schemes will be bolstered remarkably with rational deployment of these genome-guided approaches, ultimately resulting in expanded plant breeding capacities and improved crop performance.
Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomic Data.
Bolser, Dan M; Staines, Daniel M; Perry, Emily; Kersey, Paul J
2017-01-01
Ensembl Plants ( http://plants.ensembl.org ) is an integrative resource presenting genome-scale information for 39 sequenced plant species. Available data includes genome sequence, gene models, functional annotation, and polymorphic loci; for the latter, additional information including population structure, individual genotypes, linkage, and phenotype data is available for some species. Comparative data is also available, including genomic alignments and "gene trees," which show the inferred evolutionary history of each gene family represented in the resource. Access to the data is provided through a genome browser, which incorporates many specialist interfaces for different data types, through a variety of programmatic interfaces, and via a specialist data mining tool supporting rapid filtering and retrieval of bulk data. Genomic data from many non-plant species, including those of plant pathogens, pests, and pollinators, is also available via the same interfaces through other divisions of Ensembl.Ensembl Plants is updated 4-6 times a year and is developed in collaboration with our international partners in the Gramene ( http://www.gramene.org ) and transPLANT projects ( http://www.transplantdb.eu ).
Sundin, George W; Wang, Nian; Charkowski, Amy O; Castiblanco, Luisa F; Jia, Hongge; Zhao, Youfu
2016-10-01
The advent of genomics has advanced science into a new era, providing a plethora of "toys" for researchers in many related and disparate fields. Genomics has also spawned many new fields, including proteomics and metabolomics, furthering our ability to gain a more comprehensive view of individual organisms and of interacting organisms. Genomic information of both bacterial pathogens and their hosts has provided the critical starting point in understanding the molecular bases of how pathogens disrupt host cells to cause disease. In addition, knowledge of the complete genome sequence of the pathogen provides a potentially broad slate of targets for the development of novel virulence inhibitors that are desperately needed for disease management. Regarding plant bacterial pathogens and disease management, the potential for utilizing genomics resources in the development of durable resistance is enhanced because of developing technologies that enable targeted modification of the host. Here, we summarize the role of genomics studies in furthering efforts to manage bacterial plant diseases and highlight novel genomics-enabled strategies heading down this path.
Kukekova, Anna V; Johnson, Jennifer L; Teiling, Clotilde; Li, Lewyn; Oskina, Irina N; Kharlamova, Anastasiya V; Gulevich, Rimma G; Padte, Ravee; Dubreuil, Michael M; Vladimirova, Anastasiya V; Shepeleva, Darya V; Shikhevich, Svetlana G; Sun, Qi; Ponnala, Lalit; Temnykh, Svetlana V; Trut, Lyudmila N; Acland, Gregory M
2011-10-03
Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.
2011-01-01
Background Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. Results cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. Conclusions Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information. PMID:21967120
Cardi, Teodoro; D’Agostino, Nunzio; Tripodi, Pasquale
2017-01-01
In the frame of modern agriculture facing the predicted increase of population and general environmental changes, the securement of high quality food remains a major challenge to deal with. Vegetable crops include a large number of species, characterized by multiple geographical origins, large genetic variability and diverse reproductive features. Due to their nutritional value, they have an important place in human diet. In recent years, many crop genomes have been sequenced permitting the identification of genes and superior alleles associated with desirable traits. Furthermore, innovative biotechnological approaches allow to take a step forward towards the development of new improved cultivars harboring precise genome modifications. Sequence-based knowledge coupled with advanced biotechnologies is supporting the widespread application of new plant breeding techniques to enhance the success in modification and transfer of useful alleles into target varieties. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system, zinc-finger nucleases, and transcription activator-like effector nucleases represent the main methods available for plant genome engineering through targeted modifications. Such technologies, however, require efficient transformation protocols as well as extensive genomic resources and accurate knowledge before they can be efficiently exploited in practical breeding programs. In this review, we revise the state of the art in relation to availability of such scientific and technological resources in various groups of vegetables, describe genome editing results obtained so far and discuss the implications for future applications. PMID:28275380
Cancer Genomic Resources and Present Needs in the Latin American Region.
Torres, Ángela; Oliver, Javier; Frecha, Cecilia; Montealegre, Ana Lorena; Quezada-Urbán, Rosalía; Díaz-Velásquez, Clara Estela; Vaca-Paniagua, Felipe; Perdomo, Sandra
2017-01-01
In Latin America (LA), cancer is the second leading cause of death, and little is known about the capacities and needs for the development of research in the field of cancer genomics. In order to evaluate the current capacity for and development of cancer genomics in LA, we collected the available information on genomics, including the number of next-generation sequencing (NGS) platforms, the number of cancer research institutions and research groups, publications in the last 10 years, educational programs, and related national cancer control policies. Currently, there are 221 NGS platforms and 118 research groups in LA developing cancer genomics projects. A total of 272 articles in the field of cancer genetics/genomics were published by authors affiliated to Latin American institutions. Educational programs in genomics are scarce, almost exclusive of graduate programs, and only few are concerning cancer. Only 14 countries have national cancer control plans, but all of them consider secondary prevention strategies for early diagnosis, opportune treatment, and decreasing mortality, where genomic analyses could be implemented. Despite recent advances in introducing knowledge about cancer genomics and its application to LA, the region lacks development of integrated genomic research projects, improved use of NGS platforms, implementation of associated educational programs, and health policies that could have an impact on cancer care. © 2017 S. Karger AG, Basel.
EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS)and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeve, Wayne
2013-03-01
Wayne Reeve of Murdoch University on "Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.
SEED Servers: High-Performance Access to the SEED Genomes, Annotations, and Metabolic Models
Aziz, Ramy K.; Devoid, Scott; Disz, Terrence; Edwards, Robert A.; Henry, Christopher S.; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Stevens, Rick L.; Vonstein, Veronika; Xia, Fangfang
2012-01-01
The remarkable advance in sequencing technology and the rising interest in medical and environmental microbiology, biotechnology, and synthetic biology resulted in a deluge of published microbial genomes. Yet, genome annotation, comparison, and modeling remain a major bottleneck to the translation of sequence information into biological knowledge, hence computational analysis tools are continuously being developed for rapid genome annotation and interpretation. Among the earliest, most comprehensive resources for prokaryotic genome analysis, the SEED project, initiated in 2003 as an integration of genomic data and analysis tools, now contains >5,000 complete genomes, a constantly updated set of curated annotations embodied in a large and growing collection of encoded subsystems, a derived set of protein families, and hundreds of genome-scale metabolic models. Until recently, however, maintaining current copies of the SEED code and data at remote locations has been a pressing issue. To allow high-performance remote access to the SEED database, we developed the SEED Servers (http://www.theseed.org/servers): four network-based servers intended to expose the data in the underlying relational database, support basic annotation services, offer programmatic access to the capabilities of the RAST annotation server, and provide access to a growing collection of metabolic models that support flux balance analysis. The SEED servers offer open access to regularly updated data, the ability to annotate prokaryotic genomes, the ability to create metabolic reconstructions and detailed models of metabolism, and access to hundreds of existing metabolic models. This work offers and supports a framework upon which other groups can build independent research efforts. Large integrations of genomic data represent one of the major intellectual resources driving research in biology, and programmatic access to the SEED data will provide significant utility to a broad collection of potential users. PMID:23110173
The genome of herpesvirus papio 2 is closely related to the genomes of human herpes simplex viruses.
Bigger, John E; Martin, David W
2003-06-01
Infection of baboons (Papio species) with herpesvirus papio 2 (HVP-2) produces a disease that is clinically similar to herpes simplex virus (HSV-1 and HSV-2) infection of humans. The development of a primate model of simplexvirus infection based on HVP-2 would provide a powerful resource to study virus biology and test vaccine strategies. In order to characterize the molecular biology of HVP-2 and justify further development of this model system we have constructed a physical map of the HVP-2 genome. The results of these studies have identified the presence of 26 reading frames that closely resemble HSV homologues. Furthermore, the HVP-2 genome shares a collinear arrangement with the genome of HSV. These studies further validate the development of the HVP-2 model as a surrogate system to study the biology of HSV infections.
Expanding Omics Resources for Improvement of Soybean Seed Composition Traits
Chaudhary, Juhi; Patil, Gunvant B.; Sonah, Humira; Deshmukh, Rupesh K.; Vuong, Tri D.; Valliyodan, Babu; Nguyen, Henry T.
2015-01-01
Food resources of the modern world are strained due to the increasing population. There is an urgent need for innovative methods and approaches to augment food production. Legume seeds are major resources of human food and animal feed with their unique nutrient compositions including oil, protein, carbohydrates, and other beneficial nutrients. Recent advances in next-generation sequencing (NGS) together with “omics” technologies have considerably strengthened soybean research. The availability of well annotated soybean genome sequence along with hundreds of identified quantitative trait loci (QTL) associated with different seed traits can be used for gene discovery and molecular marker development for breeding applications. Despite the remarkable progress in these technologies, the analysis and mining of existing seed genomics data are still challenging due to the complexity of genetic inheritance, metabolic partitioning, and developmental regulations. Integration of “omics tools” is an effective strategy to discover key regulators of various seed traits. In this review, recent advances in “omics” approaches and their use in soybean seed trait investigations are presented along with the available databases and technological platforms and their applicability in the improvement of soybean. This article also highlights the use of modern breeding approaches, such as genome-wide association studies (GWAS), genomic selection (GS), and marker-assisted recurrent selection (MARS) for developing superior cultivars. A catalog of available important resources for major seed composition traits, such as seed oil, protein, carbohydrates, and yield traits are provided to improve the knowledge base and future utilization of this information in the soybean crop improvement programs. PMID:26635846
Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary
2014-10-01
The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.
Keinath, Melissa C.; Timoshevskiy, Vladimir A.; Timoshevskaya, Nataliya Y.; Tsonis, Panagiotis A.; Voss, S. Randal; Smith, Jeramiah J.
2015-01-01
Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes. PMID:26553646
Keinath, Melissa C; Timoshevskiy, Vladimir A; Timoshevskaya, Nataliya Y; Tsonis, Panagiotis A; Voss, S Randal; Smith, Jeramiah J
2015-11-10
Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes.
Resources, challenges and way forward in rare mitochondrial diseases research
Rajput, Neeraj Kumar; Singh, Vipin; Bhardwaj, Anshu
2015-01-01
Over 300 million people are affected by about 7000 rare diseases globally. There are tremendous resource limitations and challenges in driving research and drug development for rare diseases. Hence, innovative approaches are needed to identify potential solutions. This review focuses on the resources developed over the past years for analysis of genome data towards understanding disease biology especially in the context of mitochondrial diseases, given that mitochondria are central to major cellular pathways and their dysfunction leads to a broad spectrum of diseases. Platforms for collaboration of research groups, clinicians and patients and the advantages of community collaborative efforts in addressing rare diseases are also discussed. The review also describes crowdsourcing and crowdfunding efforts in rare diseases research and how the upcoming initiatives for understanding disease biology including analyses of large number of genomes are also applicable to rare diseases. PMID:26180633
USDA-ARS?s Scientific Manuscript database
The Rhipicephalus microplus genome is large and complex in structure, making a genome sequence difficult to assemble and costly to resource the required bioinformatics. In light of this, a consortium of international collaborators was formed to pool resources to begin sequencing this genome. We have...
COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buell, Carol Robin; Childs, Kevin L
2013-05-07
While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essentialmore » to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).« less
Paterson, Trevor; Law, Andy
2009-08-14
Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. We have developed a simple generic XML schema (GenomicMappingData.xsd - GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data.
Paterson, Trevor; Law, Andy
2009-01-01
Background Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. Results We have developed a simple generic XML schema (GenomicMappingData.xsd – GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. Conclusion The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data. PMID:19682365
2013-01-01
Background Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. Result We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species into distinct clusters. Conclusion We report a total of 188 genomic and genic SSR markers in Morus alba L. A large proportion of these markers (164) were polymorphic both among mulberry species and genotypes. A substantial number of these markers (149) were also transferable to other related species like Ficus, Fig and Jackfruit. The extent of polymorphism revealed and the ability to detect heterozygosity among the cross pollinated mulberry species and genotypes render these markers an invaluable genomic resource that can be utilized in assessing molecular diversity as well as in QTL mapping and subsequently mulberry crop improvement through MAS. PMID:24289047
Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem
2008-11-27
The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.
Yuan, Zhaohe; Fang, Yanming; Zhang, Taikui; Fei, Zhangjun; Han, Fengming; Liu, Cuiyu; Liu, Min; Xiao, Wei; Zhang, Wenjing; Wu, Shan; Zhang, Mengwei; Ju, Youhui; Xu, Huili; Dai, He; Liu, Yujun; Chen, Yanhui; Wang, Lili; Zhou, Jianqing; Guan, Dian; Yan, Ming; Xia, Yanhua; Huang, Xianbin; Liu, Dongyuan; Wei, Hongmin; Zheng, Hongkun
2017-12-22
Pomegranate (Punica granatum L.) has an ancient cultivation history and has become an emerging profitable fruit crop due to its attractive features such as the bright red appearance and the high abundance of medicinally valuable ellagitannin-based compounds in its peel and aril. However, the limited genomic resources have restricted further elucidation of genetics and evolution of these interesting traits. Here, we report a 274-Mb high-quality draft pomegranate genome sequence, which covers approximately 81.5% of the estimated 336-Mb genome, consists of 2177 scaffolds with an N50 size of 1.7 Mb and contains 30 903 genes. Phylogenomic analysis supported that pomegranate belongs to the Lythraceae family rather than the monogeneric Punicaceae family, and comparative analyses showed that pomegranate and Eucalyptus grandis share the paleotetraploidy event. Integrated genomic and transcriptomic analyses provided insights into the molecular mechanisms underlying the biosynthesis of ellagitannin-based compounds, the colour formation in both peels and arils during pomegranate fruit development, and the unique ovule development processes that are characteristic of pomegranate. This genome sequence provides an important resource to expand our understanding of some unique biological processes and to facilitate both comparative biology studies and crop breeding. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Biesecker, Leslie G
2012-04-01
The debate surrounding the return of results from high-throughput genomic interrogation encompasses many important issues including ethics, law, economics, and social policy. As well, the debate is also informed by the molecular, genetic, and clinical foundations of the emerging field of clinical genomics, which is based on this new technology. This article outlines the main biomedical considerations of sequencing technologies and demonstrates some of the early clinical experiences with the technology to enable the debate to stay focused on real-world practicalities. These experiences are based on early data from the ClinSeq project, which is a project to pilot the use of massively parallel sequencing in a clinical research context with a major aim to develop modes of returning results to individual subjects. The study has enrolled >900 subjects and generated exome sequence data on 572 subjects. These data are beginning to be interpreted and returned to the subjects, which provides examples of the potential usefulness and pitfalls of clinical genomics. There are numerous genetic results that can be readily derived from a genome including rare, high-penetrance traits, and carrier states. However, much work needs to be done to develop the tools and resources for genomic interpretation. The main lesson learned is that a genome sequence may be better considered as a health-care resource, rather than a test, one that can be interpreted and used over the lifetime of the patient.
Orphan legume crops enter the genomics era!
Varshney, Rajeev K; Close, Timothy J; Singh, Nagendra K; Hoisington, David A; Cook, Douglas R
2009-04-01
Many of the world's most important food legumes are grown in arid and semi-arid regions of Africa and Asia, where crop productivity is hampered by biotic and abiotic stresses. Until recently, these crops have also suffered from a dearth of genomic and molecular-genetic resources and thus were 'orphans' of the genome revolution. However, the community of legume researchers has begun a concerted effort to change this situation. The driving force is a series of international collaborations that benefit from recent advances in genome sequencing and genotyping technologies. The focus of these activities is the development of genome-scale data sets that can be used in high-throughput approaches to facilitate genomics-assisted breeding in these legumes.
2011-01-01
Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a plant model system. The genes characterized will be useful for future research not only in the species included in the present study, but also in related species for which no genomic resources are yet available. Our results demonstrate the efficiency of massively parallel transcriptome sequencing in a comparative framework as an approach for developing genomic resources in diverse groups of non-model organisms. PMID:21791039
Mathew, Lisa S; Spannagl, Manuel; Al-Malki, Ameena; George, Binu; Torres, Maria F; Al-Dous, Eman K; Al-Azwani, Eman K; Hussein, Emad; Mathew, Sweety; Mayer, Klaus F X; Mohamoud, Yasmin Ali; Suhre, Karsten; Malek, Joel A
2014-04-15
The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified. Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed ~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately ~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome. Based on a modified genotyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms.
Hamilton, John P; Neeno-Eckwall, Eric C; Adhikari, Bishwo N; Perna, Nicole T; Tisserat, Ned; Leach, Jan E; Lévesque, C André; Buell, C Robin
2011-01-01
The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu.
Microbial Genome Analysis and Comparisons: Web-based Protocols and Resources
USDA-ARS?s Scientific Manuscript database
Fully annotated genome sequences of many microorganisms are publicly available as a resource. However, in-depth analysis of these genomes using specialized tools is required to derive meaningful information. We describe here the utility of three powerful publicly available genome databases and ana...
USDA-ARS?s Scientific Manuscript database
High-throughput genotyping arrays provide a standardized resource for crop research communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), candidate marker and quantitative trait loci (QTL) ide...
USDA-ARS?s Scientific Manuscript database
Carrot is one of the most economically important vegetables worldwide, however, genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to devel...
Triticeae Resources in Ensembl Plants
Bolser, Dan M.; Kerhornou, Arnaud; Walts, Brandon; Kersey, Paul
2015-01-01
Recent developments in DNA sequencing have enabled the large and complex genomes of many crop species to be determined for the first time, even those previously intractable due to their polyploid nature. Indeed, over the course of the last 2 years, the genome sequences of several commercially important cereals, notably barley and bread wheat, have become available, as well as those of related wild species. While still incomplete, comparison with other, more completely assembled species suggests that coverage of genic regions is likely to be high. Ensembl Plants (http://plants.ensembl.org) is an integrative resource organizing, analyzing and visualizing genome-scale information for important crop and model plants. Available data include reference genome sequence, variant loci, gene models and functional annotation. For variant loci, individual and population genotypes, linkage information and, where available, phenotypic information are shown. Comparative analyses are performed on DNA and protein sequence alignments. The resulting genome alignments and gene trees, representing the implied evolutionary history of the gene family, are made available for visualization and analysis. Driven by the case of bread wheat, specific extensions to the analysis pipelines and web interface have recently been developed to support polyploid genomes. Data in Ensembl Plants is accessible through a genome browser incorporating various specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These interfaces are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests and pollinators, facilitating the study of the plant in its environment. PMID:25432969
Gu, Cuihua; Tembrock, Luke R.; Johnson, Nels G.; Simmons, Mark P.; Wu, Zhiqiang
2016-01-01
Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications. PMID:26950701
... Informed Consent for Genomics Research Intellectual Property Online Bioethics Resources Privacy in Genomics Regulation of Genetic Tests ... Research Intellectual Property Issues in Genetics Archive Online Bioethics Resources Privacy in Genomics Regulation of Genetic Tests ...
Unexplored therapeutic opportunities in the human genome.
Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren; Campbell, Allen; Gan, Gregory N; Gaulton, Anna; Gomez, Shawn M; Guha, Rajarshi; Hersey, Anne; Holmes, Jayme; Jadhav, Ajit; Jensen, Lars Juhl; Johnson, Gary L; Karlson, Anneli; Leach, Andrew R; Ma'ayan, Avi; Malovannaya, Anna; Mani, Subramani; Mathias, Stephen L; McManus, Michael T; Meehan, Terrence F; von Mering, Christian; Muthas, Daniel; Nguyen, Dac-Trung; Overington, John P; Papadatos, George; Qin, Jun; Reich, Christian; Roth, Bryan L; Schürer, Stephan C; Simeonov, Anton; Sklar, Larry A; Southall, Noel; Tomita, Susumu; Tudose, Ilinca; Ursu, Oleg; Vidovic, Dušica; Waller, Anna; Westergaard, David; Yang, Jeremy J; Zahoránszky-Köhalmi, Gergely
2018-05-01
A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.
De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A
2002-06-01
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.
Learning about Huntington's Disease
... Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers ... Education Kit Online Genetics Education Resources Smithsonian NHGRI Genome ... Subjects Research Informed Consent for Genomics Research Intellectual ...
Learning about Myotonic Dystrophy
... Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers ... Education Kit Online Genetics Education Resources Smithsonian NHGRI Genome ... Subjects Research Informed Consent for Genomics Research Intellectual ...
Development of an Expressed Sequence Tag (EST) Resource for Wheat (Triticum aestivum L.)
Lazo, G. R.; Chao, S.; Hummel, D. D.; Edwards, H.; Crossman, C. C.; Lui, N.; Matthews, D. E.; Carollo, V. L.; Hane, D. L.; You, F. M.; Butler, G. E.; Miller, R. E.; Close, T. J.; Peng, J. H.; Lapitan, N. L. V.; Gustafson, J. P.; Qi, L. L.; Echalier, B.; Gill, B. S.; Dilbirligi, M.; Randhawa, H. S.; Gill, K. S.; Greene, R. A.; Sorrells, M. E.; Akhunov, E. D.; Dvořák, J.; Linkiewicz, A. M.; Dubcovsky, J.; Hossain, K. G.; Kalavacharla, V.; Kianian, S. F.; Mahmoud, A. A.; Miftahudin; Ma, X.-F.; Conley, E. J.; Anderson, J. A.; Pathan, M. S.; Nguyen, H. T.; McGuire, P. E.; Qualset, C. O.; Anderson, O. D.
2004-01-01
This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5′ and 3′ sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics. PMID:15514037
Phytozome Comparative Plant Genomics Portal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodstein, David; Batra, Sajeev; Carlson, Joseph
2014-09-09
The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement.
Varshney, Rajeev K; Song, Chi; Saxena, Rachit K; Azam, Sarwar; Yu, Sheng; Sharpe, Andrew G; Cannon, Steven; Baek, Jongmin; Rosen, Benjamin D; Tar'an, Bunyamin; Millan, Teresa; Zhang, Xudong; Ramsay, Larissa D; Iwata, Aiko; Wang, Ying; Nelson, William; Farmer, Andrew D; Gaur, Pooran M; Soderlund, Carol; Penmetsa, R Varma; Xu, Chunyan; Bharti, Arvind K; He, Weiming; Winter, Peter; Zhao, Shancen; Hane, James K; Carrasquilla-Garcia, Noelia; Condie, Janet A; Upadhyaya, Hari D; Luo, Ming-Cheng; Thudi, Mahendar; Gowda, C L L; Singh, Narendra P; Lichtenzveig, Judith; Gali, Krishna K; Rubio, Josefa; Nadarajan, N; Dolezel, Jaroslav; Bansal, Kailash C; Xu, Xun; Edwards, David; Zhang, Gengyun; Kahl, Guenter; Gil, Juan; Singh, Karam B; Datta, Swapan K; Jackson, Scott A; Wang, Jun; Cook, Douglas R
2013-03-01
Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea--desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.
KEGG Bioinformatics Resource for Plant Genomics and Metabolomics.
Kanehisa, Minoru
2016-01-01
In the era of high-throughput biology it is necessary to develop not only elaborate computational methods but also well-curated databases that can be used as reference for data interpretation. KEGG ( http://www.kegg.jp/ ) is such a reference knowledge base with two specific aims. One is to compile knowledge on high-level functions of the cell and the organism in terms of the molecular interaction and reaction networks, which is implemented in KEGG pathway maps, BRITE functional hierarchies, and KEGG modules. The other is to expand knowledge on genes and proteins involved in the molecular networks from experimentally observed organisms to other organisms using the concept of orthologs, which is implemented in the KEGG Orthology (KO) system. Thus, KEGG is a generic resource applicable to all organisms and enables interpretation of high-level functions from genomic and molecular data. Here we first present a brief overview of the entire KEGG resource, and then give an introduction of how to use KEGG in plant genomics and metabolomics research.
Malmberg, M Michelle; Shi, Fan; Spangenberg, German C; Daetwyler, Hans D; Cogan, Noel O I
2018-01-01
Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD). Complexity reduction genotyping-by-sequencing (GBS) methods, including GBS-transcriptomics (GBS-t), enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR) delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs), and identify structural variants (SVs). Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.
Learning about Charcot-Marie-Tooth Disease
... Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers ... Education Kit Online Genetics Education Resources Smithsonian NHGRI Genome ... Subjects Research Informed Consent for Genomics Research Intellectual ...
Whole genome amplification of DNA extracted from FFPE tissues.
Bosso, Mira; Al-Mulla, Fahd
2011-01-01
Whole genome amplification systems were developed to meet the increasing research demands on DNA resources and to avoid DNA shortage. The technology enables amplification of nanogram amounts of DNA into microgram quantities and is increasingly used in the amplification of DNA from multiple origins such as blood, fresh frozen tissue, formalin-fixed paraffin-embedded tissues, saliva, buccal swabs, bacteria, and plant and animal sources. This chapter focuses on the use of GenomePlex(®) tissue Whole Genome Amplification Kit, to amplify DNA directly from archived tissue. In addition, this chapter documents our unique experience with the utilization of GenomePlex(®) amplified DNA using several molecular techniques including metaphase Comparative Genomic Hybridization, array Comparative Genomic Hybridization, and real-time quantitative polymerase chain reaction assays. GenomePlex(®) is a registered trademark of Rubicon Genomics Incorporation.
A Platform for Designing Genome-Based Personalized Immunotherapy or Vaccine against Cancer
Gupta, Sudheer; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Kumar, Rahul; Kumar, Shailesh; Sehgal, Manika; Nagpal, Gandharva
2016-01-01
Due to advancement in sequencing technology, genomes of thousands of cancer tissues or cell-lines have been sequenced. Identification of cancer-specific epitopes or neoepitopes from cancer genomes is one of the major challenges in the field of immunotherapy or vaccine development. This paper describes a platform Cancertope, developed for designing genome-based immunotherapy or vaccine against a cancer cell. Broadly, the integrated resources on this platform are apportioned into three precise sections. First section explains a cancer-specific database of neoepitopes generated from genome of 905 cancer cell lines. This database harbors wide range of epitopes (e.g., B-cell, CD8+ T-cell, HLA class I, HLA class II) against 60 cancer-specific vaccine antigens. Second section describes a partially personalized module developed for predicting potential neoepitopes against a user-specific cancer genome. Finally, we describe a fully personalized module developed for identification of neoepitopes from genomes of cancerous and healthy cells of a cancer-patient. In order to assist the scientific community, wide range of tools are incorporated in this platform that includes screening of epitopes against human reference proteome (http://www.imtech.res.in/raghava/cancertope/). PMID:27832200
Gschloessl, B; Dorkeld, F; Berges, H; Beydon, G; Bouchez, O; Branco, M; Bretaudeau, A; Burban, C; Dubois, E; Gauthier, P; Lhuillier, E; Nichols, J; Nidelet, S; Rocha, S; Sauné, L; Streiff, R; Gautier, M; Kerdelhué, C
2018-05-01
The pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Notodontidae) is the main pine defoliator in the Mediterranean region. Its urticating larvae cause severe human and animal health concerns in the invaded areas. This species shows a high phenotypic variability for various traits, such as phenology, fecundity and tolerance to extreme temperatures. This study presents the construction and analysis of extensive genomic and transcriptomic resources, which are an obligate prerequisite to understand their underlying genetic architecture. Using a well-studied population from Portugal with peculiar phenological characteristics, the karyotype was first determined and a first draft genome of 537 Mb total length was assembled into 68,292 scaffolds (N50 = 164 kb). From this genome assembly, 29,415 coding genes were predicted. To circumvent some limitations for fine-scale physical mapping of genomic regions of interest, a 3X coverage BAC library was also developed. In particular, 11 BACs from this library were individually sequenced to assess the assembly quality. Additionally, de novo transcriptomic resources were generated from various developmental stages sequenced with HiSeq and MiSeq Illumina technologies. The reads were de novo assembled into 62,376 and 63,175 transcripts, respectively. Then, a robust subset of the genome-predicted coding genes, the de novo transcriptome assemblies and previously published 454/Sanger data were clustered to obtain a high-quality and comprehensive reference transcriptome consisting of 29,701 bona fide unigenes. These sequences covered 99% of the cegma and 88% of the busco highly conserved eukaryotic genes and 84% of the busco arthropod gene set. Moreover, 90% of these transcripts could be localized on the draft genome. The described information is available via a genome annotation portal (http://bipaa.genouest.org/sp/thaumetopoea_pityocampa/). © 2018 John Wiley & Sons Ltd.
Observing copepods through a genomic lens
2011-01-01
Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for copepods. Summary Genomics research on copepods is needed to extend our exploration and characterization of their fundamental biological traits, so that we can better understand how copepods function and interact in diverse environments. Availability of large scale genomics resources will also open doors to a wide range of systems biology type studies that view the organism as the fundamental system in which to address key questions in ecology and evolution. PMID:21933388
[Essentials of pharmacophylogeny: knowledge pedigree, epistemology and paradigm shift].
Hao, Da-cheng; Xiao, Pei-gen; Liu, Li-wei; Peng, Yong; He, Chun-nian
2015-09-01
Chinese materia medica resource (CMM resource) is the foundation of the development of traditional Chinese medicine. In the study of sustainable utilization of CMM resource, adopting innovative theory and method to find new CMM resource is one of hotspots and always highlighted. Pharmacophylogeny interrogates the phylogenetic relationship of medicinal organisms (especially medicinal plants), as well as the intrinsic correlation of morphological taxonomy, molecular phylogeny, chemical constituents, and therapeutic efficacy (ethnopharmacology and pharmacological activity). This new discipline may have the power to change the way we utilize medicinal plant resources and develop plant-based drugs. Phylogenomics is the crossing of evolutionary biology and genomics, in which genome data are utilized for evolutionary reconstructions. Phylogenomics can be integrated into the flow chart of drug discovery and development, and extends the field of pharmacophylogeny at the omic level, thus the concept of pharmacophylogenomics could be redefined in the context of plant pharmaceutical resources. This contribution gives a brief discourse of knowledge pedigree of pharmacophylogeny, epistemology and paradigm shift, highlighting the theoretical and practical values of pharmacophylogenomics. Many medicinally important tribes and genera, such as Clematis, Pulsatilla, Anemone, Cimicifugeae, Nigella, Delphinieae, Adonideae, Aquilegia, Thalictrum, and Coptis, belong to Ranunculaceae family. Compared to other plant families, Ranunculaceae has the most species that are recorded in China Pharmacopoeia (CP) 2010. However, many Ranunculaceae species, e. g., those that are closely related to CP species, as well as those endemic to China, have not been investigated in depth, and their phylogenetic relationship and potential in medicinal use remain elusive. As such, it is proposed to select Ranunculaceae to exemplify the utility of pharmacophylogenomics and to elaborate the new concept empirically. It is argued that phylogenetic and evolutionary relationship of medicinally important tribes and genera within Ranunculaceae could be elucidated at the genomic, transcriptomic, and metabolomic levels, from which the intrinsic correlation between medicinal plant genotype and metabolic phenotype, and between genetic diversity and chemodivesity of closely related taxa, could be revealed. This proof-of-concept study regards pharmacophylogenomics as the updated version of pharmacophylogeny and would enrich the intension and spread the extension of pharmacophylogeny. The interdisciplinary knowledge and techniques will be integrated in the proposed study to promote development of CMM resource discipline and to boost sustainable development of Chinese medicinal plant resources.
The Mitochondrial Genome Sequence and Molecular Phylogeny of the Turkey, Meleagris gallopavo
Guan, Xiaojing; Silva, Pradeepa; Gyenai, Kwaku B.; Xu, Jun; Geng, Tuoyu; Tu, Zhijian; Samuels, David C.; Smith, Edward J.
2009-01-01
Summary The mitochondrial genome (mtGenome) has been very little studied in the turkey (Meleagris gallopavo), for which there is no publicly available whole genome mitochondrial sequence. Here, we used PCR-based methods with 19 pairs of primers designed from the chicken and other species to develop a complete turkey mtGenome sequence. A total length of 16, 717 bp of the whole turkey mtGenome was obtained, with 85% similarity to chicken mtGenome. There were 13 genes and 24 RNA (22 tRNA and 2 rRNA) annotated. The mtGenome-based phylogenetic analysis suggests that the turkey is most closely related to the chicken, Gallus gallus, and quail, Corturnix japonica. Given the importance of the mitochondria genome, the present work adds to the growing genomic resources needed to define the genetic mechanisms that underlie some economic traits in the turkey. PMID:19067672
Improving amphibian genomic resources: a multitissue reference transcriptome of an iconic invader.
Richardson, Mark F; Sequeira, Fernando; Selechnik, Daniel; Carneiro, Miguel; Vallinoto, Marcelo; Reid, Jack G; West, Andrea J; Crossland, Michael R; Shine, Richard; Rollins, Lee A
2018-01-01
Cane toads (Rhinella marina) are an iconic invasive species introduced to 4 continents and well utilized for studies of rapid evolution in introduced environments. Despite the long introduction history of this species, its profound ecological impacts, and its utility for demonstrating evolutionary principles, genetic information is sparse. Here we produce a de novo transcriptome spanning multiple tissues and life stages to enable investigation of the genetic basis of previously identified rapid phenotypic change over the introduced range. Using approximately 1.9 billion reads from developing tadpoles and 6 adult tissue-specific cDNA libraries, as well as a transcriptome assembly pipeline encompassing 100 separate de novo assemblies, we constructed 62 202 transcripts, of which we functionally annotated ∼50%. Our transcriptome assembly exhibits 90% full-length completeness of the Benchmarking Universal Single-Copy Orthologs data set. Robust assembly metrics and comparisons with several available anuran transcriptomes and genomes indicate that our cane toad assembly is one of the most complete anuran genomic resources available. This comprehensive anuran transcriptome will provide a valuable resource for investigation of genes under selection during invasion in cane toads, but will also greatly expand our general knowledge of anuran genomes, which are underrepresented in the literature. The data set is publically available in NCBI and GigaDB to serve as a resource for other researchers. © The Authors 2017. Published by Oxford University Press.
Improving amphibian genomic resources: a multitissue reference transcriptome of an iconic invader
Reid, Jack G; Crossland, Michael R
2018-01-01
Abstract Background Cane toads (Rhinella marina) are an iconic invasive species introduced to 4 continents and well utilized for studies of rapid evolution in introduced environments. Despite the long introduction history of this species, its profound ecological impacts, and its utility for demonstrating evolutionary principles, genetic information is sparse. Here we produce a de novo transcriptome spanning multiple tissues and life stages to enable investigation of the genetic basis of previously identified rapid phenotypic change over the introduced range. Findings Using approximately 1.9 billion reads from developing tadpoles and 6 adult tissue-specific cDNA libraries, as well as a transcriptome assembly pipeline encompassing 100 separate de novo assemblies, we constructed 62 202 transcripts, of which we functionally annotated ∼50%. Our transcriptome assembly exhibits 90% full-length completeness of the Benchmarking Universal Single-Copy Orthologs data set. Robust assembly metrics and comparisons with several available anuran transcriptomes and genomes indicate that our cane toad assembly is one of the most complete anuran genomic resources available. Conclusions This comprehensive anuran transcriptome will provide a valuable resource for investigation of genes under selection during invasion in cane toads, but will also greatly expand our general knowledge of anuran genomes, which are underrepresented in the literature. The data set is publically available in NCBI and GigaDB to serve as a resource for other researchers. PMID:29186423
ERIC Educational Resources Information Center
Pollack, Miriam
The "Mapping the Human Genome" project demonstrated that librarians can help whomever they serve in accessing information resources in the areas of biological and health information, whether it is the scientists who are developing the information or a member of the public who is using the information. Public libraries can guide library…
Charles H. Michler; Michael J. Bosela; Paula M. Pijut; Keith E. Woeste
2003-01-01
A regional center for hardwood tree improvement, genomics, and regeneration research, development and technology transfer will focus on black walnut, black cherry, northern red oak and, in the future, on other fine hardwoods as the effort is expanded. The Hardwood Tree Improvement and Regeneration Center (HTIRC) will use molecular genetics and genomics along with...
Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens.
Sosa, Ezequiel J; Burguener, Germán; Lanzarotti, Esteban; Defelipe, Lucas; Radusky, Leandro; Pardo, Agustín M; Marti, Marcelo; Turjanski, Adrián G; Fernández Do Porto, Darío
2018-01-04
Available genomic data for pathogens has created new opportunities for drug discovery and development to fight them, including new resistant and multiresistant strains. In particular structural data must be integrated with both, gene information and experimental results. In this sense, there is a lack of an online resource that allows genome wide-based data consolidation from diverse sources together with thorough bioinformatic analysis that allows easy filtering and scoring for fast target selection for drug discovery. Here, we present Target-Pathogen database (http://target.sbg.qb.fcen.uba.ar/patho), designed and developed as an online resource that allows the integration and weighting of protein information such as: function, metabolic role, off-targeting, structural properties including druggability, essentiality and omic experiments, to facilitate the identification and prioritization of candidate drug targets in pathogens. We include in the database 10 genomes of some of the most relevant microorganisms for human health (Mycobacterium tuberculosis, Mycobacterium leprae, Klebsiella pneumoniae, Plasmodium vivax, Toxoplasma gondii, Leishmania major, Wolbachia bancrofti, Trypanosoma brucei, Shigella dysenteriae and Schistosoma Smanosoni) and show its applicability. New genomes can be uploaded upon request. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Perennial plants for biofuel production: bridging genomics and field research.
Alves, Alexandre Alonso; Laviola, Bruno G; Formighieri, Eduardo F; Carels, Nicolas
2015-04-01
Development of dedicated perennial crops has been indicated as a strategic action to meet the growing demand for biofuels. Breeding of perennial crops,however, is often time- and resource-consuming. As genomics offers a platform from which to learn more about the relationships of genes and phenotypes,its operational use in the context of breeding programs through strategies such as genomic selection promises to foster the development of perennial crops dedicated to biodiesel production by increasing the efficiency of breeding programs and by shortening the length of the breeding cycles. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lehner, Thomas; Senthil, Geetha; Addington, Anjené M
2015-01-01
After many years of unfilled promise, psychiatric genetics has seen an unprecedented number of successes in recent years. We hypothesize that the field has reached an inflection point through a confluence of four key developments: advances in genomics; the orientation of the scientific community around large collaborative team science projects; the development of sample and data repositories; and a policy framework for sharing and accessing these resources. We discuss these domains and their effect on scientific progress and provide a perspective on why we think this is only the beginning of a new era in scientific discovery. Published by Elsevier Inc.
Design and implementation of a CORBA-based genome mapping system prototype.
Hu, J; Mungall, C; Nicholson, D; Archibald, A L
1998-01-01
CORBA (Common Object Request Broker Architecture), as an open standard, is considered to be a good solution for the development and deployment of applications in distributed heterogeneous environments. This technology can be applied in the bioinformatics area to enhance utilization, management and interoperation between biological resources. This paper investigates issues in developing CORBA applications for genome mapping information systems in the Internet environment with emphasis on database connectivity and graphical user interfaces. The design and implementation of a CORBA prototype for an animal genome mapping database are described. The prototype demonstration is available via: http://www.ri.bbsrc.ac.uk/ark_corba/. jian.hu@bbsrc.ac.uk
Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F. X.
2004-01-01
Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db. PMID:14681437
Domestication to Crop Improvement: Genetic Resources for Sorghum and Saccharum (Andropogoneae)
Dillon, Sally L.; Shapter, Frances M.; Henry, Robert J.; Cordeiro, Giovanni; Izquierdo, Liz; Lee, L. Slade
2007-01-01
Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes. PMID:17766842
Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina
2017-02-02
Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.
Kong, Lingna; Song, Xinying; Xiao, Jin; Sun, Haojie; Dai, Keli; Lan, Caixia; Singh, Pawan; Yuan, Chunxia; Zhang, Shouzhong; Singh, Ravi; Wang, Haiyan; Wang, Xiue
2018-05-31
A complete set wheat-R. ciliaris disomic addition lines (DALs) were characterized and the homoeologous groups and genome affinities of R. ciliaris chromosomes were determined. Wild relatives are rich gene resources for cultivated wheat. The development of alien addition chromosome lines not only greatly broadens the genetic diversity, but also provides genetic stocks for comparative genomics studies. Roegneria ciliaris (genome S c S c Y c Y c ), a tetraploid wild relative of wheat, is tolerant or resistant to many abiotic and biotic stresses. To develop a complete set of wheat-R. ciliaris disomic addition lines (DALs), we undertook a euplasmic backcrossing program to overcome allocytoplasmic effects and preferential chromosome transmission. To improve the efficiency of identifying chromosomes from S c and Y c , we established techniques including sequential genomic in situ hybridization/fluorescence in situ hybridization (FISH) and molecular marker analysis. Fourteen DALs of wheat, each containing one pair of R. ciliaris chromosomes pairs, were characterized by FISH using four repetitive sequences [pTa794, pTa71, RcAfa and (GAA) 10 ] as probes. One hundred and sixty-two R. ciliaris-specific markers were developed. FISH and marker analysis enabled us to assign the homoeologous groups and genome affinities of R. ciliaris chromosomes. FHB resistance evaluation in successive five growth seasons showed that the amphiploid, DA2Y c , DA5Y c and DA6S c had improved FHB resistance, indicating their potential value in wheat improvement. The 14 DALs are likely new gene resources and will be phenotyped for more agronomic performances traits.
Zhou, Weiqiang; Sherwood, Ben; Ji, Hongkai
2017-01-01
Technological advances have led to an explosive growth of high-throughput functional genomic data. Exploiting the correlation among different data types, it is possible to predict one functional genomic data type from other data types. Prediction tools are valuable in understanding the relationship among different functional genomic signals. They also provide a cost-efficient solution to inferring the unknown functional genomic profiles when experimental data are unavailable due to resource or technological constraints. The predicted data may be used for generating hypotheses, prioritizing targets, interpreting disease variants, facilitating data integration, quality control, and many other purposes. This article reviews various applications of prediction methods in functional genomics, discusses analytical challenges, and highlights some common and effective strategies used to develop prediction methods for functional genomic data. PMID:28076869
Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine
2013-01-01
Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).
Krishnakumar, Vivek; Choi, Yongwook; Beck, Erin; Wu, Qingyu; Luo, Anding; Sylvester, Anne; Jackson, David; Chan, Agnes P
2015-01-01
Maize is a global crop and a powerful system among grain crops for genetic and genomic studies. However, the development of novel biological tools and resources to aid in the functional identification of gene sequences is greatly needed. Towards this goal, we have developed a collection of maize marker lines for studying native gene expression in specific cell types and subcellular compartments using fluorescent proteins (FPs). To catalog FP expression, we have developed a public repository, the Maize Cell Genomics (MCG) Database, (http://maize.jcvi.org/cellgenomics), to organize a large data set of confocal images generated from the maize marker lines. To date, the collection represents major subcellular structures and also developmentally important progenitor cell populations. The resource is available to the research community, for example to study protein localization or interactions under various experimental conditions or mutant backgrounds. A subset of the marker lines can also be used to induce misexpression of target genes through a transactivation system. For future directions, the image repository can be expanded to accept new image submissions from the research community, and to perform customized large-scale computational image analysis. This community resource will provide a suite of new tools for gaining biological insights by following the dynamics of protein expression at the subcellular, cellular and tissue levels. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil.
Sharpe, Andrew G; Ramsay, Larissa; Sanderson, Lacey-Anne; Fedoruk, Michael J; Clarke, Wayne E; Li, Rong; Kagale, Sateesh; Vijayan, Perumal; Vandenberg, Albert; Bett, Kirstin E
2013-03-18
The genus Lens comprises a range of closely related species within the galegoid clade of the Papilionoideae family. The clade includes other important crops (e.g. chickpea and pea) as well as a sequenced model legume (Medicago truncatula). Lentil is a global food crop increasing in importance in the Indian sub-continent and elsewhere due to its nutritional value and quick cooking time. Despite this importance there has been a dearth of genetic and genomic resources for the crop and this has limited the application of marker-assisted selection strategies in breeding. We describe here the development of a deep and diverse transcriptome resource for lentil using next generation sequencing technology. The generation of data in multiple cultivated (L. culinaris) and wild (L. ervoides) genotypes together with the utilization of a bioinformatics workflow enabled the identification of a large collection of SNPs and the subsequent development of a genotyping platform that was used to establish the first comprehensive genetic map of the L. culinaris genome. Extensive collinearity with M. truncatula was evident on the basis of sequence homology between mapped markers and the model genome and large translocations and inversions relative to M. truncatula were identified. An estimate for the time divergence of L. culinaris from L. ervoides and of both from M. truncatula was also calculated. The availability of the genomic and derived molecular marker resources presented here will help change lentil breeding strategies and lead to increased genetic gain in the future.
Interoperability of GADU in using heterogeneous Grid resources for bioinformatics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulakhe, D.; Rodriguez, A.; Wilde, M.
2008-03-01
Bioinformatics tools used for efficient and computationally intensive analysis of genetic sequences require large-scale computational resources to accommodate the growing data. Grid computational resources such as the Open Science Grid and TeraGrid have proved useful for scientific discovery. The genome analysis and database update system (GADU) is a high-throughput computational system developed to automate the steps involved in accessing the Grid resources for running bioinformatics applications. This paper describes the requirements for building an automated scalable system such as GADU that can run jobs on different Grids. The paper describes the resource-independent configuration of GADU using the Pegasus-based virtual datamore » system that makes high-throughput computational tools interoperable on heterogeneous Grid resources. The paper also highlights the features implemented to make GADU a gateway to computationally intensive bioinformatics applications on the Grid. The paper will not go into the details of problems involved or the lessons learned in using individual Grid resources as it has already been published in our paper on genome analysis research environment (GNARE) and will focus primarily on the architecture that makes GADU resource independent and interoperable across heterogeneous Grid resources.« less
Translational Genomics in Low and Middle Income Countries: Opportunities and Challenges
Tekola-Ayele, Fasil; Rotimi, Charles N.
2015-01-01
Translation of genomic discoveries into patient care is slowly becoming a reality in developed economies around the world. In contrast, low and middle income countries (LMIC) have participated minimally in genomic research for several reasons including lack of coherent national policies, limited number of well-trained genomic scientists, poor research infrastructure, and local economic and cultural challenges. Recent initiatives such as the Human Heredity and Health in Africa (H3Africa), the Qatar Genome Project and the Mexico National Institute of Genomic Medicine (INMEGEN) that aim to address these problems through capacity building and empowerment of local researchers have sparked a paradigm shift. In this short communication, we describe experiences of small-scale medical genetics and translational genomics research programs in LMIC. The lessons drawn from these programs drive home the importance of addressing resource, policy, and socio-cultural dynamics to realize the promise of precision medicine driven by genomic science globally. By echoing lessons from a bench-to-community translational genomics research, we advocate that large-scale genomics research projects can be successfully linked with health care programs. To harness the benefits of genomics-led health care, LMIC governments should begin to develop national genomics policies that will address human and technology capacity development within the context of their national economic and socio-cultural uniqueness. These policies should encourage international collaboration and promote link between the public health program and genomics researchers. Finally, we highlight the potential catalytic roles of the global community to foster translational genomics in LMIC. PMID:26138992
Tacutu, Robi; Craig, Thomas; Budovsky, Arie; Wuttke, Daniel; Lehmann, Gilad; Taranukha, Dmitri; Costa, Joana; Fraifeld, Vadim E.; de Magalhães, João Pedro
2013-01-01
The Human Ageing Genomic Resources (HAGR, http://genomics.senescence.info) is a freely available online collection of research databases and tools for the biology and genetics of ageing. HAGR features now several databases with high-quality manually curated data: (i) GenAge, a database of genes associated with ageing in humans and model organisms; (ii) AnAge, an extensive collection of longevity records and complementary traits for >4000 vertebrate species; and (iii) GenDR, a newly incorporated database, containing both gene mutations that interfere with dietary restriction-mediated lifespan extension and consistent gene expression changes induced by dietary restriction. Since its creation about 10 years ago, major efforts have been undertaken to maintain the quality of data in HAGR, while further continuing to develop, improve and extend it. This article briefly describes the content of HAGR and details the major updates since its previous publications, in terms of both structure and content. The completely redesigned interface, more intuitive and more integrative of HAGR resources, is also presented. Altogether, we hope that through its improvements, the current version of HAGR will continue to provide users with the most comprehensive and accessible resources available today in the field of biogerontology. PMID:23193293
Gramene database: navigating plant comparative genomics resources
USDA-ARS?s Scientific Manuscript database
Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...
The NIH Roadmap Epigenomics Program data resource
Chadwick, Lisa Helbling
2012-01-01
The NIH Roadmap Reference Epigenome Mapping Consortium is developing a community resource of genome-wide epigenetic maps in a broad range of human primary cells and tissues. There are large amounts of data already available, and a number of different options for viewing and analyzing the data. This report will describe key features of the websites where users will find data, protocols and analysis tools developed by the consortium, and provide a perspective on how this unique resource will facilitate and inform human disease research, both immediately and in the future. PMID:22690667
The NIH Roadmap Epigenomics Program data resource.
Chadwick, Lisa Helbling
2012-06-01
The NIH Roadmap Reference Epigenome Mapping Consortium is developing a community resource of genome-wide epigenetic maps in a broad range of human primary cells and tissues. There are large amounts of data already available, and a number of different options for viewing and analyzing the data. This report will describe key features of the websites where users will find data, protocols and analysis tools developed by the consortium, and provide a perspective on how this unique resource will facilitate and inform human disease research, both immediately and in the future.
Applications of the pipeline environment for visual informatics and genomics computations
2011-01-01
Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102
2014-01-01
Background The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified. Results Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed ~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately ~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome. Conclusions Based on a modified gentoyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms. PMID:24735434
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catfish Genome Consortium; Wang, Shaolin; Peatman, Eric
2010-03-23
Background-Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results-A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35percent of the unique sequences had significant similarities tomore » known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions-This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies.« less
Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects
Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.
2016-01-01
Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998
Horizon scanning for new genomic tests.
Gwinn, Marta; Grossniklaus, Daurice A; Yu, Wei; Melillo, Stephanie; Wulf, Anja; Flome, Jennifer; Dotson, W David; Khoury, Muin J
2011-02-01
The development of health-related genomic tests is decentralized and dynamic, involving government, academic, and commercial entities. Consequently, it is not easy to determine which tests are in development, currently available, or discontinued. We developed and assessed the usefulness of a systematic approach to identifying new genomic tests on the Internet. We devised targeted queries of Web pages, newspaper articles, and blogs (Google Alerts) to identify new genomic tests. We finalized search and review procedures during a pilot phase that ended in March 2010. Queries continue to run daily and are compiled weekly; selected data are indexed in an online database, the Genomic Applications in Practice and Prevention Finder. After the pilot phase, our scan detected approximately two to three new genomic tests per week. Nearly two thirds of all tests (122/188, 65%) were related to cancer; only 6% were related to hereditary disorders. Although 88 (47%) of the tests, including 2 marketed directly to consumers, were commercially available, only 12 (6%) claimed United States Food and Drug Administration licensure. Systematic surveillance of the Internet provides information about genomic tests that can be used in combination with other resources to evaluate genomic tests. The Genomic Applications in Practice and Prevention Finder makes this information accessible to a wide group of stakeholders.
GénoPlante-Info (GPI): a collection of databases and bioinformatics resources for plant genomics
Samson, Delphine; Legeai, Fabrice; Karsenty, Emmanuelle; Reboux, Sébastien; Veyrieras, Jean-Baptiste; Just, Jeremy; Barillot, Emmanuel
2003-01-01
Génoplante is a partnership program between public French institutes (INRA, CIRAD, IRD and CNRS) and private companies (Biogemma, Bayer CropScience and Bioplante) that aims at developing genome analysis programs for crop species (corn, wheat, rapeseed, sunflower and pea) and model plants (Arabidopsis and rice). The outputs of these programs form a wealth of information (genomic sequence, transcriptome, proteome, allelic variability, mapping and synteny, and mutation data) and tools (databases, interfaces, analysis software), that are being integrated and made public at the public bioinformatics resource centre of Génoplante: GénoPlante-Info (GPI). This continuous flood of data and tools is regularly updated and will grow continuously during the coming two years. Access to the GPI databases and tools is available at http://genoplante-info.infobiogen.fr/. PMID:12519976
Implementation of genomics research in Africa: challenges and recommendations
Adebamowo, Sally N.; Francis, Veronica; Tambo, Ernest; Diallo, Seybou H.; Landouré, Guida; Nembaware, Victoria; Dareng, Eileen; Muhamed, Babu; Odutola, Michael; Akeredolu, Teniola; Nerima, Barbara; Ozumba, Petronilla J.; Mbhele, Slee; Ghanash, Anita; Wachinou, Ablo P.; Ngomi, Nicholas
2018-01-01
ABSTRACT Background: There is exponential growth in the interest and implementation of genomics research in Africa. This growth has been facilitated by the Human Hereditary and Health in Africa (H3Africa) initiative, which aims to promote a contemporary research approach to the study of genomics and environmental determinants of common diseases in African populations. Objective: The purpose of this article is to describe important challenges affecting genomics research implementation in Africa. Methods: The observations, challenges and recommendations presented in this article were obtained through discussions by African scientists at teleconferences and face-to-face meetings, seminars at consortium conferences and in-depth individual discussions. Results: Challenges affecting genomics research implementation in Africa, which are related to limited resources include ill-equipped facilities, poor accessibility to research centers, lack of expertise and an enabling environment for research activities in local hospitals. Challenges related to the research study include delayed funding, extensive procedures and interventions requiring multiple visits, delays setting up research teams and insufficient staff training, language barriers and an underappreciation of cultural norms. While many African countries are struggling to initiate genomics projects, others have set up genomics research facilities that meet international standards. Conclusions: The lessons learned in implementing successful genomics projects in Africa are recommended as strategies to overcome these challenges. These recommendations may guide the development and application of new research programs in low-resource settings. PMID:29336236
Implementation of genomics research in Africa: challenges and recommendations.
Adebamowo, Sally N; Francis, Veronica; Tambo, Ernest; Diallo, Seybou H; Landouré, Guida; Nembaware, Victoria; Dareng, Eileen; Muhamed, Babu; Odutola, Michael; Akeredolu, Teniola; Nerima, Barbara; Ozumba, Petronilla J; Mbhele, Slee; Ghanash, Anita; Wachinou, Ablo P; Ngomi, Nicholas
2018-01-01
There is exponential growth in the interest and implementation of genomics research in Africa. This growth has been facilitated by the Human Hereditary and Health in Africa (H3Africa) initiative, which aims to promote a contemporary research approach to the study of genomics and environmental determinants of common diseases in African populations. The purpose of this article is to describe important challenges affecting genomics research implementation in Africa. The observations, challenges and recommendations presented in this article were obtained through discussions by African scientists at teleconferences and face-to-face meetings, seminars at consortium conferences and in-depth individual discussions. Challenges affecting genomics research implementation in Africa, which are related to limited resources include ill-equipped facilities, poor accessibility to research centers, lack of expertise and an enabling environment for research activities in local hospitals. Challenges related to the research study include delayed funding, extensive procedures and interventions requiring multiple visits, delays setting up research teams and insufficient staff training, language barriers and an underappreciation of cultural norms. While many African countries are struggling to initiate genomics projects, others have set up genomics research facilities that meet international standards. The lessons learned in implementing successful genomics projects in Africa are recommended as strategies to overcome these challenges. These recommendations may guide the development and application of new research programs in low-resource settings.
Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond
Mascher, Martin; Richmond, Todd A; Gerhardt, Daniel J; Himmelbach, Axel; Clissold, Leah; Sampath, Dharanya; Ayling, Sarah; Steuernagel, Burkhard; Pfeifer, Matthias; D'Ascenzo, Mark; Akhunov, Eduard D; Hedley, Pete E; Gonzales, Ana M; Morrell, Peter L; Kilian, Benjamin; Blattner, Frank R; Scholz, Uwe; Mayer, Klaus FX; Flavell, Andrew J; Muehlbauer, Gary J; Waugh, Robbie; Jeddeloh, Jeffrey A; Stein, Nils
2013-01-01
Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes. PMID:23889683
USDA-ARS?s Scientific Manuscript database
The Cool Season Food Legume Genome database (CSFL, www.coolseasonfoodlegume.org) is an online resource for genomics, genetics, and breeding research for chickpea, lentil,pea, and faba bean. The user-friendly and curated website allows for all publicly available map,marker,trait, gene,transcript, ger...
SOBA: sequence ontology bioinformatics analysis.
Moore, Barry; Fan, Guozhen; Eilbeck, Karen
2010-07-01
The advent of cheaper, faster sequencing technologies has pushed the task of sequence annotation from the exclusive domain of large-scale multi-national sequencing projects to that of research laboratories and small consortia. The bioinformatics burden placed on these laboratories, some with very little programming experience can be daunting. Fortunately, there exist software libraries and pipelines designed with these groups in mind, to ease the transition from an assembled genome to an annotated and accessible genome resource. We have developed the Sequence Ontology Bioinformatics Analysis (SOBA) tool to provide a simple statistical and graphical summary of an annotated genome. We envisage its use during annotation jamborees, genome comparison and for use by developers for rapid feedback during annotation software development and testing. SOBA also provides annotation consistency feedback to ensure correct use of terminology within annotations, and guides users to add new terms to the Sequence Ontology when required. SOBA is available at http://www.sequenceontology.org/cgi-bin/soba.cgi.
An integrative computational approach for prioritization of genomic variants
Dubchak, Inna; Balasubramanian, Sandhya; Wang, Sheng; ...
2014-12-15
An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidatemore » genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. This study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.« less
Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong
2014-01-01
Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species. PMID:24130371
Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong
2014-02-01
Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.
Seasonal Preservation Success of the Marine Dinoflagellate Coral Symbiont, Symbiodinium sp.
Hagedorn, Mary; Carter, Virginia L.
2015-01-01
Coral reefs are some of the most diverse and productive ecosystems on the planet, but are threatened by global and local stressors, mandating the need for incorporating ex situ conservation practices. One approach that is highly protective is the development of genome resource banks that preserve the species and its genetic diversity. A critical component of the reef are the endosymbiotic algae, Symbiodinium sp., living within most coral that transfer energy-rich sugars to their hosts. Although Symbiodinium are maintained alive in culture collections around the world, the cryopreservation of these algae to prevent loss and genetic drift is not well-defined. This study examined the quantum yield physiology and freezing protocols that resulted in survival of Symbiodinium at 24 h post-thawing. Only the ultra-rapid procedure called vitrification resulted in success whereas conventional slow freezing protocols did not. We determined that success also depended on using a thin film of agar with embedded Symbiodinium on Cryotops, a process that yielded a post-thaw viability of >50% in extracted and vitrified Symbiodinium from Fungia scutaria, Pocillopora damicornis and Porites compressa. Additionally, there also was a seasonal influence on vitrification success as the best post-thaw survival of F. scutaria occurred in winter and spring compared to summer and fall (P < 0.05). These findings lay the foundation for developing a viable genome resource bank for the world’s Symbiodinium that, in turn, will not only protect this critical element of coral functionality but serve as a resource for understanding the complexities of symbiosis, support selective breeding experiments to develop more thermally resilient strains of coral, and provide a ‘gold-standard’ genomics collection, allowing for full genomic sequencing of unique Symbiodinium strains. PMID:26422237
Accessing the SEED genome databases via Web services API: tools for programmers.
Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A
2010-06-14
The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.
Hittalmani, Shailaja; Mahesh, H B; Shirke, Meghana Deepak; Biradar, Hanamareddy; Uday, Govindareddy; Aruna, Y R; Lohithaswa, H C; Mohanrao, A
2017-06-15
Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic resources for genetic improvement of this crop is immensely useful. Experimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding. This genome sequencing effort will strengthen plant breeders for allele discovery, genetic mapping, and identification of candidate genes for agronomically important traits. Availability of genomic resources of finger millet will enhance the novel breeding possibilities to address potential challenges of finger millet improvement.
Human Cancer Models Initiative | Office of Cancer Genomics
The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer and other research.
Human Cancer Models Initiative | Office of Cancer Genomics
The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.
Research resources for Drosophila: the expanding universe.
Matthews, Kathleen A; Kaufman, Thomas C; Gelbart, William M
2005-03-01
Drosophila melanogaster has been the subject of research into central questions about biological mechanisms for almost a century. The experimental tools and resources that are available or under development for D. melanogaster and its related species, particularly those for genomic analysis, are truly outstanding. Here we review three types of resource that have been developed for D. melanogaster research: databases and other sources of information, biological materials and experimental services. These resources are there to be exploited and we hope that this guide will encourage new uses for D. melanogaster information, materials and services, both by those new to flies and by experienced D. melanogaster researchers.
Genomic-based-breeding tools for tropical maize improvement.
Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar
2017-12-01
Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail.
Clasen, Frederick Johannes; Pierneef, Rian Ewald; Slippers, Bernard; Reva, Oleg
2018-05-03
Genomic islands (GIs) are inserts of foreign DNA that have potentially arisen through horizontal gene transfer (HGT). There are evidences that GIs can contribute significantly to the evolution of prokaryotes. The acquisition of GIs through HGT in eukaryotes has, however, been largely unexplored. In this study, the previously developed GI prediction tool, SeqWord Gene Island Sniffer (SWGIS), is modified to predict GIs in eukaryotic chromosomes. Artificial simulations are used to estimate ratios of predicting false positive and false negative GIs by inserting GIs into different test chromosomes and performing the SWGIS v2.0 algorithm. Using SWGIS v2.0, GIs are then identified in 36 fungal, 22 protozoan and 8 invertebrate genomes. SWGIS v2.0 predicts GIs in large eukaryotic chromosomes based on the atypical nucleotide composition of these regions. Averages for predicting false negative and false positive GIs were 20.1% and 11.01% respectively. A total of 10,550 GIs were identified in 66 eukaryotic species with 5299 of these GIs coding for at least one functional protein. The EuGI web-resource, freely accessible at http://eugi.bi.up.ac.za , was developed that allows browsing the database created from identified GIs and genes within GIs through an interactive and visual interface. SWGIS v2.0 along with the EuGI database, which houses GIs identified in 66 different eukaryotic species, and the EuGI web-resource, provide the first comprehensive resource for studying HGT in eukaryotes.
Leisner, Courtney P; Hamilton, John P; Crisovan, Emily; Manrique-Carpintero, Norma C; Marand, Alexandre P; Newton, Linsey; Pham, Gina M; Jiang, Jiming; Douches, David S; Jansky, Shelley H; Buell, C Robin
2018-05-01
Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Payen, Thibaut; Murat, Claude; Gigant, Anaïs; Morin, Emmanuelle; De Mita, Stéphane; Martin, Francis
2015-09-01
The Périgord black truffle (Tuber melanosporum Vittad.), considered a gastronomic delicacy worldwide, is an ectomycorrhizal filamentous fungus that is ecologically important in Mediterranean French, Italian and Spanish woodlands. In this study, we developed a novel resource of single nucleotide polymorphisms (SNPs) for T. melanosporum using Illumina high-throughput resequencing. The genome from six T. melanosporum geographical accessions was sequenced to a depth of approximately 20×. These geographical accessions were selected from different populations within the northern and southern regions of the geographical species distribution. Approximately 80% of the reads for each of the six resequenced geographical accessions mapped against the reference T. melanosporum genome assembly, estimating the core genome size of this organism to be approximately 110 Mbp. A total of 442 326 SNPs corresponding to 3540 SNPs/Mbps were identified as being included in all seven genomes. The SNPs occurred more frequently in repeated sequences (85%), although 4501 SNPs were also identified in the coding regions of 2587 genes. Using the ratio of nonsynonymous mutations per nonsynonymous site (pN) to synonymous mutations per synonymous site (pS) and Tajima's D index scanning the whole genome, we were able to identify genomic regions and genes potentially subjected to positive or purifying selection. The SNPs identified represent a valuable resource for future population genetics and genomics studies. © 2015 John Wiley & Sons Ltd.
Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding
Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.
2009-01-01
Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107
YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.
Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh
2015-01-16
Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the preliminary results showed differences in virulence genes found in Yersinia pestis and Yersinia pseudotuberculosis compared to other Yersinia species, and differences between Yersinia enterocolitica subsp. enterocolitica and Yersinia enterocolitica subsp. palearctica. YersiniaBase offers free access to wide range of genomic data and analysis tools for the analysis of Yersinia. YersiniaBase can be accessed at http://yersinia.um.edu.my .
Brizuela, Leonardo; Richardson, Aaron; Marsischky, Gerald; Labaer, Joshua
2002-01-01
Thanks to the results of the multiple completed and ongoing genome sequencing projects and to the newly available recombination-based cloning techniques, it is now possible to build gene repositories with no precedent in their composition, formatting, and potential. This new type of gene repository is necessary to address the challenges imposed by the post-genomic era, i.e., experimentation on a genome-wide scale. We are building the FLEXGene (Full Length EXpression-ready) repository. This unique resource will contain clones representing the complete ORFeome of different organisms, including Homo sapiens as well as several pathogens and model organisms. It will consist of a comprehensive, characterized (sequence-verified), and arrayed gene repository. This resource will allow full exploitation of the genomic information by enabling genome-wide scale experimentation at the level of functional/phenotypic assays as well as at the level of protein expression, purification, and analysis. Here we describe the rationale and construction of this resource and focus on the data obtained from the Saccharomyces cerevisiae project.
Developing eThread pipeline using SAGA-pilot abstraction for large-scale structural bioinformatics.
Ragothaman, Anjani; Boddu, Sairam Chowdary; Kim, Nayong; Feinstein, Wei; Brylinski, Michal; Jha, Shantenu; Kim, Joohyun
2014-01-01
While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread--a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.
Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics
Ragothaman, Anjani; Feinstein, Wei; Jha, Shantenu; Kim, Joohyun
2014-01-01
While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure. PMID:24995285
Catalan, Pilar; Chalhoub, Boulos; Chochois, Vincent; Garvin, David F; Hasterok, Robert; Manzaneda, Antonio J; Mur, Luis A J; Pecchioni, Nicola; Rasmussen, Søren K; Vogel, John P; Voxeur, Aline
2014-07-01
The scientific presentations at the First International Brachypodium Conference (abstracts available at http://www.brachy2013.unimore.it) are evidence of the widespread adoption of Brachypodium distachyon as a model system. Furthermore, the wide range of topics presented (genome evolution, roots, abiotic and biotic stress, comparative genomics, natural diversity, and cell walls) demonstrates that the Brachypodium research community has achieved a critical mass of tools and has transitioned from resource development to addressing biological questions, particularly those unique to grasses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Black raspberry genetic and genomic resources development
USDA-ARS?s Scientific Manuscript database
This study incorporates field and laboratory components to advance and streamline identification of a variety of traits of economic interest and to develop molecular markers for marker assisted breeding of black raspberry (Rubus occidentalis). A lack of adapted, disease resistant cultivars has led t...
Developing black raspberry genetic and genomic resources
USDA-ARS?s Scientific Manuscript database
This study incorporates field and laboratory components to advance and streamline identification of a variety of traits of economic interest and to develop molecular markers for marker assisted breeding of black raspberry (Rubus occidentalis). A lack of adapted, disease resistant cultivars has led t...
Gramene 2013: Comparative plant genomics resources
USDA-ARS?s Scientific Manuscript database
Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework fo...
Harvesting Legume Genomes: Plant Genetic Resources
USDA-ARS?s Scientific Manuscript database
Genomics and high through-put phenotyping are ushering in a new era of accessing genetic diversity held in plant genetic resources, the cornerstone of both traditional and genomics-assisted breeding efforts of food legume crops. Acknowledged or not, yield plateaus must be broken given the daunting ...
Phenotypic and genomic analysis of a fast neutron mutant population resource in soybean
USDA-ARS?s Scientific Manuscript database
Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. We utilized fast neutron radiation to induce deletion mutations in the soybean genome and phenotypically screened the resulting population. We exposed approxim...
GFam: a platform for automatic annotation of gene families.
Sasidharan, Rajkumar; Nepusz, Tamás; Swarbreck, David; Huala, Eva; Paccanaro, Alberto
2012-10-01
We have developed GFam, a platform for automatic annotation of gene/protein families. GFam provides a framework for genome initiatives and model organism resources to build domain-based families, derive meaningful functional labels and offers a seamless approach to propagate functional annotation across periodic genome updates. GFam is a hybrid approach that uses a greedy algorithm to chain component domains from InterPro annotation provided by its 12 member resources followed by a sequence-based connected component analysis of un-annotated sequence regions to derive consensus domain architecture for each sequence and subsequently generate families based on common architectures. Our integrated approach increases sequence coverage by 7.2 percentage points and residue coverage by 14.6 percentage points higher than the coverage relative to the best single-constituent database within InterPro for the proteome of Arabidopsis. The true power of GFam lies in maximizing annotation provided by the different InterPro data sources that offer resource-specific coverage for different regions of a sequence. GFam's capability to capture higher sequence and residue coverage can be useful for genome annotation, comparative genomics and functional studies. GFam is a general-purpose software and can be used for any collection of protein sequences. The software is open source and can be obtained from http://www.paccanarolab.org/software/gfam/.
MIPS: curated databases and comprehensive secondary data resources in 2010.
Mewes, H Werner; Ruepp, Andreas; Theis, Fabian; Rattei, Thomas; Walter, Mathias; Frishman, Dmitrij; Suhre, Karsten; Spannagl, Manuel; Mayer, Klaus F X; Stümpflen, Volker; Antonov, Alexey
2011-01-01
The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38,000,000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de).
MIPS: curated databases and comprehensive secondary data resources in 2010
Mewes, H. Werner; Ruepp, Andreas; Theis, Fabian; Rattei, Thomas; Walter, Mathias; Frishman, Dmitrij; Suhre, Karsten; Spannagl, Manuel; Mayer, Klaus F.X.; Stümpflen, Volker; Antonov, Alexey
2011-01-01
The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38 000 000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de). PMID:21109531
Charalambous, Marika; da Rocha, Simão Teixeira; Ferguson-Smith, Anne C
2007-02-01
Genes subject to genomic imprinting are predominantly expressed from one of the two parental chromosomes, are often clustered in the genome, and their activity and repression are epigenetically regulated. The role of imprinted genes in growth control has been apparent since the discovery of imprinting in the early 1980s. Drawing from studies in the mouse, we propose three distinct classes of imprinted genes - those expressed, imprinted and acting predominantly within the placenta, those with no associated foetal growth effects that act postnatally to regulate metabolic processes, and those expressed in the embryo and placenta that programme the development of organs participating in metabolic processes. Members of this latter class may interact in functional networks regulating the interaction between the mother and the foetus, affecting generalized foetal well-being, growth and organ development; they may also coordinately regulate the development of particular organ systems. The mono-allelic behaviour and sensitivity to changes in regional epigenetic states renders imprinted genes adaptable and vulnerable; in all cases, their perturbed dosage can compromise prenatal and/or postnatal control of nutritional resources. This finding has implications for understanding the relationships between prenatal events and diseases later in life.
Penmetsa, R. V.; Dutta, S.; Kulwal, P. L.; Saxena, R. K.; Datta, S.; Sharma, T. R.; Rosen, B.; Carrasquilla-Garcia, N.; Farmer, A. D.; Dubey, A.; Saxena, K. B.; Gao, J.; Fakrudin, B.; Singh, M. N.; Singh, B. P.; Wanjari, K. B.; Yuan, M.; Srivastava, R. K.; Kilian, A.; Upadhyaya, H. D.; Mallikarjuna, N.; Town, C. D.; Bruening, G. E.; He, G.; May, G. D.; McCombie, R.; Jackson, S. A.; Singh, N. K.; Cook, D. R.
2009-01-01
Pigeonpea (Cajanus cajan), an important food legume crop in the semi-arid regions of the world and the second most important pulse crop in India, has an average crop productivity of 780 kg/ha. The relatively low crop yields may be attributed to non-availability of improved cultivars, poor crop husbandry and exposure to a number of biotic and abiotic stresses in pigeonpea growing regions. Narrow genetic diversity in cultivated germplasm has further hampered the effective utilization of conventional breeding as well as development and utilization of genomic tools, resulting in pigeonpea being often referred to as an ‘orphan crop legume’. To enable genomics-assisted breeding in this crop, the pigeonpea genomics initiative (PGI) was initiated in late 2006 with funding from Indian Council of Agricultural Research under the umbrella of Indo-US agricultural knowledge initiative, which was further expanded with financial support from the US National Science Foundation’s Plant Genome Research Program and the Generation Challenge Program. As a result of the PGI, the last 3 years have witnessed significant progress in development of both genetic as well as genomic resources in this crop through effective collaborations and coordination of genomics activities across several institutes and countries. For instance, 25 mapping populations segregating for a number of biotic and abiotic stresses have been developed or are under development. An 11X-genome coverage bacterial artificial chromosome (BAC) library comprising of 69,120 clones have been developed of which 50,000 clones were end sequenced to generate 87,590 BAC-end sequences (BESs). About 10,000 expressed sequence tags (ESTs) from Sanger sequencing and ca. 2 million short ESTs by 454/FLX sequencing have been generated. A variety of molecular markers have been developed from BESs, microsatellite or simple sequence repeat (SSR)-enriched libraries and mining of ESTs and genomic amplicon sequencing. Of about 21,000 SSRs identified, 6,698 SSRs are under analysis along with 670 orthologous genes using a GoldenGate SNP (single nucleotide polymorphism) genotyping platform, with large scale SNP discovery using Solexa, a next generation sequencing technology, is in progress. Similarly a diversity array technology array comprising of ca. 15,000 features has been developed. In addition, >600 unique nucleotide binding site (NBS) domain containing members of the NBS-leucine rich repeat disease resistance homologs were cloned in pigeonpea; 960 BACs containing these sequences were identified by filter hybridization, BES physical maps developed using high information content fingerprinting. To enrich the genomic resources further, sequenced soybean genome is being analyzed to establish the anchor points between pigeonpea and soybean genomes. In addition, Solexa sequencing is being used to explore the feasibility of generating whole genome sequence. In summary, the collaborative efforts of several research groups under the umbrella of PGI are making significant progress in improving molecular tools in pigeonpea and should significantly benefit pigeonpea genetics and breeding. As these efforts come to fruition, and expanded (depending on funding), pigeonpea would move from an ‘orphan legume crop’ to one where genomics-assisted breeding approaches for a sustainable crop improvement are routine. PMID:20976284
Uprobe: a genome-wide universal probe resource for comparative physical mapping in vertebrates.
Kellner, Wendy A; Sullivan, Robert T; Carlson, Brian H; Thomas, James W
2005-01-01
Interspecies comparisons are important for deciphering the functional content and evolution of genomes. The expansive array of >70 public vertebrate genomic bacterial artificial chromosome (BAC) libraries can provide a means of comparative mapping, sequencing, and functional analysis of targeted chromosomal segments that is independent and complementary to whole-genome sequencing. However, at the present time, no complementary resource exists for the efficient targeted physical mapping of the majority of these BAC libraries. Universal overgo-hybridization probes, designed from regions of sequenced genomes that are highly conserved between species, have been demonstrated to be an effective resource for the isolation of orthologous regions from multiple BAC libraries in parallel. Here we report the application of the universal probe design principal across entire genomes, and the subsequent creation of a complementary probe resource, Uprobe, for screening vertebrate BAC libraries. Uprobe currently consists of whole-genome sets of universal overgo-hybridization probes designed for screening mammalian or avian/reptilian libraries. Retrospective analysis, experimental validation of the probe design process on a panel of representative BAC libraries, and estimates of probe coverage across the genome indicate that the majority of all eutherian and avian/reptilian genes or regions of interest can be isolated using Uprobe. Future implementation of the universal probe design strategy will be used to create an expanded number of whole-genome probe sets that will encompass all vertebrate genomes.
2012-01-01
Background The feline genome is valuable to the veterinary and model organism genomics communities because the cat is an obligate carnivore and a model for endangered felids. The initial public release of the Felis catus genome assembly provided a framework for investigating the genomic basis of feline biology. However, the entire set of protein coding genes has not been elucidated. Results We identified and characterized 1227 protein coding feline sequences, of which 913 map to public sequences and 314 are novel. These sequences have been deposited into NCBI's genbank database and complement public genomic resources by providing additional protein coding sequences that fill in some of the gaps in the feline genome assembly. Through functional and comparative genomic analyses, we gained an understanding of the role of these sequences in feline development, nutrition and health. Specifically, we identified 104 orthologs of human genes associated with Mendelian disorders. We detected negative selection within sequences with gene ontology annotations associated with intracellular trafficking, cytoskeleton and muscle functions. We detected relatively less negative selection on protein sequences encoding extracellular networks, apoptotic pathways and mitochondrial gene ontology annotations. Additionally, we characterized feline cDNA sequences that have mouse orthologs associated with clinical, nutritional and developmental phenotypes. Together, this analysis provides an overview of the value of our cDNA sequences and enhances our understanding of how the feline genome is similar to, and different from other mammalian genomes. Conclusions The cDNA sequences reported here expand existing feline genomic resources by providing high-quality sequences annotated with comparative genomic information providing functional, clinical, nutritional and orthologous gene information. PMID:22257742
Translational Genomics in Low- and Middle-Income Countries: Opportunities and Challenges.
Tekola-Ayele, Fasil; Rotimi, Charles N
2015-01-01
Translation of genomic discoveries into patient care is slowly becoming a reality in developed economies around the world. In contrast, low- and middle-income countries (LMIC) have participated minimally in genomic research for several reasons including the lack of coherent national policies, the limited number of well-trained genomic scientists, poor research infrastructure, and local economic and cultural challenges. Recent initiatives such as the Human Heredity and Health in Africa (H3Africa), the Qatar Genome Project, and the Mexico National Institute of Genomic Medicine (INMEGEN) that aim to address these problems through capacity building and empowerment of local researchers have sparked a paradigm shift. In this short communication, we describe experiences of small-scale medical genetics and translational genomic research programs in LMIC. The lessons drawn from these programs drive home the importance of addressing resource, policy, and sociocultural dynamics to realize the promise of precision medicine driven by genomic science globally. By echoing lessons from a bench-to-community translational genomic research, we advocate that large-scale genomic research projects can be successfully linked with health care programs. To harness the benefits of genomics-led health care, LMIC governments should begin to develop national genomics policies that will address human and technology capacity development within the context of their national economic and sociocultural uniqueness. These policies should encourage international collaboration and promote the link between the public health program and genomics researchers. Finally, we highlight the potential catalytic roles of the global community to foster translational genomics in LMIC. © 2015 S. Karger AG, Basel.
Swetha, Rayapadi G; Kala Sekar, Dinesh Kumar; Ramaiah, Sudha; Anbarasu, Anand; Sekar, Kanagaraj
2014-12-01
Haemophilus influenzae (H. Influenzae) is the causative agent of pneumonia, bacteraemia and meningitis. The organism is responsible for large number of deaths in both developed and developing countries. Even-though the first bacterial genome to be sequenced was that of H. Influenzae, there is no exclusive database dedicated for H. Influenzae. This prompted us to develop the Haemophilus influenzae Genome Database (HIGDB). All data of HIGDB are stored and managed in MySQL database. The HIGDB is hosted on Solaris server and developed using PERL modules. Ajax and JavaScript are used for the interface development. The HIGDB contains detailed information on 42,741 proteins, 18,077 genes including 10 whole genome sequences and also 284 three dimensional structures of proteins of H. influenzae. In addition, the database provides "Motif search" and "GBrowse". The HIGDB is freely accessible through the URL: http://bioserver1.physics.iisc.ernet.in/HIGDB/. The HIGDB will be a single point access for bacteriological, clinical, genomic and proteomic information of H. influenzae. The database can also be used to identify DNA motifs within H. influenzae genomes and to compare gene or protein sequences of a particular strain with other strains of H. influenzae. Copyright © 2014 Elsevier Ltd. All rights reserved.
A public resource facilitating clinical use of genomes
Ball, Madeleine P.; Thakuria, Joseph V.; Zaranek, Alexander Wait; Clegg, Tom; Rosenbaum, Abraham M.; Wu, Xiaodi; Angrist, Misha; Bhak, Jong; Bobe, Jason; Callow, Matthew J.; Cano, Carlos; Chou, Michael F.; Chung, Wendy K.; Douglas, Shawn M.; Estep, Preston W.; Gore, Athurva; Hulick, Peter; Labarga, Alberto; Lee, Je-Hyuk; Lunshof, Jeantine E.; Kim, Byung Chul; Kim, Jong-Il; Li, Zhe; Murray, Michael F.; Nilsen, Geoffrey B.; Peters, Brock A.; Raman, Anugraha M.; Rienhoff, Hugh Y.; Robasky, Kimberly; Wheeler, Matthew T.; Vandewege, Ward; Vorhaus, Daniel B.; Yang, Joyce L.; Yang, Luhan; Aach, John; Ashley, Euan A.; Drmanac, Radoje; Kim, Seong-Jin; Li, Jin Billy; Peshkin, Leonid; Seidman, Christine E.; Seo, Jeong-Sun; Zhang, Kun; Rehm, Heidi L.; Church, George M.
2012-01-01
Rapid advances in DNA sequencing promise to enable new diagnostics and individualized therapies. Achieving personalized medicine, however, will require extensive research on highly reidentifiable, integrated datasets of genomic and health information. To assist with this, participants in the Personal Genome Project choose to forgo privacy via our institutional review board- approved “open consent” process. The contribution of public data and samples facilitates both scientific discovery and standardization of methods. We present our findings after enrollment of more than 1,800 participants, including whole-genome sequencing of 10 pilot participant genomes (the PGP-10). We introduce the Genome-Environment-Trait Evidence (GET-Evidence) system. This tool automatically processes genomes and prioritizes both published and novel variants for interpretation. In the process of reviewing the presumed healthy PGP-10 genomes, we find numerous literature references implying serious disease. Although it is sometimes impossible to rule out a late-onset effect, stringent evidence requirements can address the high rate of incidental findings. To that end we develop a peer production system for recording and organizing variant evaluations according to standard evidence guidelines, creating a public forum for reaching consensus on interpretation of clinically relevant variants. Genome analysis becomes a two-step process: using a prioritized list to record variant evaluations, then automatically sorting reviewed variants using these annotations. Genome data, health and trait information, participant samples, and variant interpretations are all shared in the public domain—we invite others to review our results using our participant samples and contribute to our interpretations. We offer our public resource and methods to further personalized medical research. PMID:22797899
Gramene 2016: comparative plant genomics and pathway resources
USDA-ARS?s Scientific Manuscript database
Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the data...
Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean
USDA-ARS?s Scientific Manuscript database
Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. In this study, fast neutron (FN) radiation was used to induce deletion mutations in the soybean (Glycine max (L.) Merrill) genome. Approximately 120,000 soybea...
Liu, Jianfang; Lichtenberg, Tara; Hoadley, Katherine A; Poisson, Laila M; Lazar, Alexander J; Cherniack, Andrew D; Kovatich, Albert J; Benz, Christopher C; Levine, Douglas A; Lee, Adrian V; Omberg, Larsson; Wolf, Denise M; Shriver, Craig D; Thorsson, Vesteinn; Hu, Hai
2018-04-05
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Copyright © 2018 Elsevier Inc. All rights reserved.
TDR Targets: a chemogenomics resource for neglected diseases.
Magariños, María P; Carmona, Santiago J; Crowther, Gregory J; Ralph, Stuart A; Roos, David S; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C; Agüero, Fernán
2012-01-01
The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context.
TDR Targets: a chemogenomics resource for neglected diseases
Magariños, María P.; Carmona, Santiago J.; Crowther, Gregory J.; Ralph, Stuart A.; Roos, David S.; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C.; Agüero, Fernán
2012-01-01
The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context. PMID:22116064
RoBuST: an integrated genomics resource for the root and bulb crop families Apiaceae and Alliaceae
2010-01-01
Background Root and bulb vegetables (RBV) include carrots, celeriac (root celery), parsnips (Apiaceae), onions, garlic, and leek (Alliaceae)—food crops grown globally and consumed worldwide. Few data analysis platforms are currently available where data collection, annotation and integration initiatives are focused on RBV plant groups. Scientists working on RBV include breeders, geneticists, taxonomists, plant pathologists, and plant physiologists who use genomic data for a wide range of activities including the development of molecular genetic maps, delineation of taxonomic relationships, and investigation of molecular aspects of gene expression in biochemical pathways and disease responses. With genomic data coming from such diverse areas of plant science, availability of a community resource focused on these RBV data types would be of great interest to this scientific community. Description The RoBuST database has been developed to initiate a platform for collecting and organizing genomic information useful for RBV researchers. The current release of RoBuST contains genomics data for 294 Alliaceae and 816 Apiaceae plant species and has the following features: (1) comprehensive sequence annotations of 3663 genes 5959 RNAs, 22,723 ESTs and 11,438 regulatory sequence elements from Apiaceae and Alliaceae plant families; (2) graphical tools for visualization and analysis of sequence data; (3) access to traits, biosynthetic pathways, genetic linkage maps and molecular taxonomy data associated with Alliaceae and Apiaceae plants; and (4) comprehensive plant splice signal repository of 659,369 splice signals collected from 6015 plant species for comparative analysis of plant splicing patterns. Conclusions RoBuST, available at http://robust.genome.com, provides an integrated platform for researchers to effortlessly explore and analyze genomic data associated with root and bulb vegetables. PMID:20691054
Blast2GO goes grid: developing a grid-enabled prototype for functional genomics analysis.
Aparicio, G; Götz, S; Conesa, A; Segrelles, D; Blanquer, I; García, J M; Hernandez, V; Robles, M; Talon, M
2006-01-01
The vast amount in complexity of data generated in Genomic Research implies that new dedicated and powerful computational tools need to be developed to meet their analysis requirements. Blast2GO (B2G) is a bioinformatics tool for Gene Ontology-based DNA or protein sequence annotation and function-based data mining. The application has been developed with the aim of affering an easy-to-use tool for functional genomics research. Typical B2G users are middle size genomics labs carrying out sequencing, ETS and microarray projects, handling datasets up to several thousand sequences. In the current version of B2G. The power and analytical potential of both annotation and function data-mining is somehow restricted to the computational power behind each particular installation. In order to be able to offer the possibility of an enhanced computational capacity within this bioinformatics application, a Grid component is being developed. A prototype has been conceived for the particular problem of speeding up the Blast searches to obtain fast results for large datasets. Many efforts have been done in the literature concerning the speeding up of Blast searches, but few of them deal with the use of large heterogeneous production Grid Infrastructures. These are the infrastructures that could reach the largest number of resources and the best load balancing for data access. The Grid Service under development will analyse requests based on the number of sequences, splitting them accordingly to the available resources. Lower-level computation will be performed through MPIBLAST. The software architecture is based on the WSRF standard.
Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui
2016-01-01
The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.
... is a national and international resource for molecular biology information. It creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and ...
The impact of computer science in molecular medicine: enabling high-throughput research.
de la Iglesia, Diana; García-Remesal, Miguel; de la Calle, Guillermo; Kulikowski, Casimir; Sanz, Ferran; Maojo, Víctor
2013-01-01
The Human Genome Project and the explosion of high-throughput data have transformed the areas of molecular and personalized medicine, which are producing a wide range of studies and experimental results and providing new insights for developing medical applications. Research in many interdisciplinary fields is resulting in data repositories and computational tools that support a wide diversity of tasks: genome sequencing, genome-wide association studies, analysis of genotype-phenotype interactions, drug toxicity and side effects assessment, prediction of protein interactions and diseases, development of computational models, biomarker discovery, and many others. The authors of the present paper have developed several inventories covering tools, initiatives and studies in different computational fields related to molecular medicine: medical informatics, bioinformatics, clinical informatics and nanoinformatics. With these inventories, created by mining the scientific literature, we have carried out several reviews of these fields, providing researchers with a useful framework to locate, discover, search and integrate resources. In this paper we present an analysis of the state-of-the-art as it relates to computational resources for molecular medicine, based on results compiled in our inventories, as well as results extracted from a systematic review of the literature and other scientific media. The present review is based on the impact of their related publications and the available data and software resources for molecular medicine. It aims to provide information that can be useful to support ongoing research and work to improve diagnostics and therapeutics based on molecular-level insights.
CottonDB: A resource for cotton genome research
USDA-ARS?s Scientific Manuscript database
CottonDB (http://cottondb.org/) is a database and web resource for cotton genomic and genetic research. Created in 1995, CottonDB was among the first plant genome databases established by the USDA-ARS. Accessed through a website interface, the database aims to be a convenient, inclusive medium of ...
2014-01-01
Background Recent advancements in next-generation sequencing technology have enabled cost-effective sequencing of whole or partial genomes, permitting the discovery and characterization of molecular polymorphisms. Double-digest restriction-site associated DNA sequencing (ddRAD-seq) is a powerful and inexpensive approach to developing numerous single nucleotide polymorphism (SNP) markers and constructing a high-density genetic map. To enrich genomic resources for Japanese eel (Anguilla japonica), we constructed a ddRAD-based genetic map using an Ion Torrent Personal Genome Machine and anchored scaffolds of the current genome assembly to 19 linkage groups of the Japanese eel. Furthermore, we compared the Japanese eel genome with genomes of model fishes to infer the history of genome evolution after the teleost-specific genome duplication. Results We generated the ddRAD-based linkage map of the Japanese eel, where the maps for female and male spanned 1748.8 cM and 1294.5 cM, respectively, and were arranged into 19 linkage groups. A total of 2,672 SNP markers and 115 Simple Sequence Repeat markers provide anchor points to 1,252 scaffolds covering 151 Mb (13%) of the current genome assembly of the Japanese eel. Comparisons among the Japanese eel, medaka, zebrafish and spotted gar genomes showed highly conserved synteny among teleosts and revealed part of the eight major chromosomal rearrangement events that occurred soon after the teleost-specific genome duplication. Conclusions The ddRAD-seq approach combined with the Ion Torrent Personal Genome Machine sequencing allowed us to conduct efficient and flexible SNP genotyping. The integration of the genetic map and the assembled sequence provides a valuable resource for fine mapping and positional cloning of quantitative trait loci associated with economically important traits and for investigating comparative genomics of the Japanese eel. PMID:24669946
Kai, Wataru; Nomura, Kazuharu; Fujiwara, Atushi; Nakamura, Yoji; Yasuike, Motoshige; Ojima, Nobuhiko; Masaoka, Tetsuji; Ozaki, Akiyuki; Kazeto, Yukinori; Gen, Koichiro; Nagao, Jiro; Tanaka, Hideki; Kobayashi, Takanori; Ototake, Mitsuru
2014-03-26
Recent advancements in next-generation sequencing technology have enabled cost-effective sequencing of whole or partial genomes, permitting the discovery and characterization of molecular polymorphisms. Double-digest restriction-site associated DNA sequencing (ddRAD-seq) is a powerful and inexpensive approach to developing numerous single nucleotide polymorphism (SNP) markers and constructing a high-density genetic map. To enrich genomic resources for Japanese eel (Anguilla japonica), we constructed a ddRAD-based genetic map using an Ion Torrent Personal Genome Machine and anchored scaffolds of the current genome assembly to 19 linkage groups of the Japanese eel. Furthermore, we compared the Japanese eel genome with genomes of model fishes to infer the history of genome evolution after the teleost-specific genome duplication. We generated the ddRAD-based linkage map of the Japanese eel, where the maps for female and male spanned 1748.8 cM and 1294.5 cM, respectively, and were arranged into 19 linkage groups. A total of 2,672 SNP markers and 115 Simple Sequence Repeat markers provide anchor points to 1,252 scaffolds covering 151 Mb (13%) of the current genome assembly of the Japanese eel. Comparisons among the Japanese eel, medaka, zebrafish and spotted gar genomes showed highly conserved synteny among teleosts and revealed part of the eight major chromosomal rearrangement events that occurred soon after the teleost-specific genome duplication. The ddRAD-seq approach combined with the Ion Torrent Personal Genome Machine sequencing allowed us to conduct efficient and flexible SNP genotyping. The integration of the genetic map and the assembled sequence provides a valuable resource for fine mapping and positional cloning of quantitative trait loci associated with economically important traits and for investigating comparative genomics of the Japanese eel.
Moretto, Marco; Barghini, Elena; Mascagni, Flavia; Natali, Lucia; Brilli, Matteo; Lomsadze, Alexandre; Sonego, Paolo; Giongo, Lara; Alonge, Michael; Velasco, Riccardo; Varotto, Claudio; Šurbanovski, Nada; Borodovsky, Mark; Ward, Judson A; Engelen, Kristof; Cavallini, Andrea; Cestaro, Alessandro
2018-01-01
Abstract Background The genus Potentilla is closely related to that of Fragaria, the economically important strawberry genus. Potentilla micrantha is a species that does not develop berries but shares numerous morphological and ecological characteristics with Fragaria vesca. These similarities make P. micrantha an attractive choice for comparative genomics studies with F. vesca. Findings In this study, the P. micrantha genome was sequenced and annotated, and RNA-Seq data from the different developmental stages of flowering and fruiting were used to develop a set of gene predictions. A 327 Mbp sequence and annotation of the genome of P. micrantha, spanning 2674 sequence contigs, with an N50 size of 335,712, estimated to cover 80% of the total genome size of the species was developed. The genus Potentilla has a characteristically larger genome size than Fragaria, but the recovered sequence scaffolds were remarkably collinear at the micro-syntenic level with the genome of F. vesca, its closest sequenced relative. A total of 33,602 genes were predicted, and 95.1% of bench-marking universal single-copy orthologous genes were complete within the presented sequence. Thus, we argue that the majority of the gene-rich regions of the genome have been sequenced. Conclusions Comparisons of RNA-Seq data from the stages of floral and fruit development revealed genes differentially expressed between P. micrantha and F. vesca.The data presented are a valuable resource for future studies of berry development in Fragaria and the Rosaceae and they also shed light on the evolution of genome size and organization in this family. PMID:29659812
Buti, Matteo; Moretto, Marco; Barghini, Elena; Mascagni, Flavia; Natali, Lucia; Brilli, Matteo; Lomsadze, Alexandre; Sonego, Paolo; Giongo, Lara; Alonge, Michael; Velasco, Riccardo; Varotto, Claudio; Šurbanovski, Nada; Borodovsky, Mark; Ward, Judson A; Engelen, Kristof; Cavallini, Andrea; Cestaro, Alessandro; Sargent, Daniel James
2018-04-01
The genus Potentilla is closely related to that of Fragaria, the economically important strawberry genus. Potentilla micrantha is a species that does not develop berries but shares numerous morphological and ecological characteristics with Fragaria vesca. These similarities make P. micrantha an attractive choice for comparative genomics studies with F. vesca. In this study, the P. micrantha genome was sequenced and annotated, and RNA-Seq data from the different developmental stages of flowering and fruiting were used to develop a set of gene predictions. A 327 Mbp sequence and annotation of the genome of P. micrantha, spanning 2674 sequence contigs, with an N50 size of 335,712, estimated to cover 80% of the total genome size of the species was developed. The genus Potentilla has a characteristically larger genome size than Fragaria, but the recovered sequence scaffolds were remarkably collinear at the micro-syntenic level with the genome of F. vesca, its closest sequenced relative. A total of 33,602 genes were predicted, and 95.1% of bench-marking universal single-copy orthologous genes were complete within the presented sequence. Thus, we argue that the majority of the gene-rich regions of the genome have been sequenced. Comparisons of RNA-Seq data from the stages of floral and fruit development revealed genes differentially expressed between P. micrantha and F. vesca.The data presented are a valuable resource for future studies of berry development in Fragaria and the Rosaceae and they also shed light on the evolution of genome size and organization in this family.
Deep Sequencing-Based Analysis of the Cymbidium ensifolium Floral Transcriptome
Li, Xiaobai; Luo, Jie; Yan, Tianlian; Xiang, Lin; Jin, Feng; Qin, Dehui; Sun, Chongbo; Xie, Ming
2013-01-01
Cymbidium ensifolium is a Chinese Cymbidium with an elegant shape, beautiful appearance, and a fragrant aroma. C. ensifolium has a long history of cultivation in China and it has excellent commercial value as a potted plant and cut flower. The development of C. ensifolium genomic resources has been delayed because of its large genome size. Taking advantage of technical and cost improvement of RNA-Seq, we extracted total mRNA from flower buds and mature flowers and obtained a total of 9.52 Gb of filtered nucleotides comprising 98,819,349 filtered reads. The filtered reads were assembled into 101,423 isotigs, representing 51,696 genes. Of the 101,423 isotigs, 41,873 were putative homologs of annotated sequences in the public databases, of which 158 were associated with floral development and 119 were associated with flowering. The isotigs were categorized according to their putative functions. In total, 10,212 of the isotigs were assigned into 25 eukaryotic orthologous groups (KOGs), 41,690 into 58 gene ontology (GO) terms, and 9,830 into 126 Arabidopsis Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 9,539 isotigs into 123 rice pathways. Comparison of the isotigs with those of the two related orchid species P. equestris and C. sinense showed that 17,906 isotigs are unique to C. ensifolium. In addition, a total of 7,936 SSRs and 16,676 putative SNPs were identified. To our knowledge, this transcriptome database is the first major genomic resource for C. ensifolium and the most comprehensive transcriptomic resource for genus Cymbidium. These sequences provide valuable information for understanding the molecular mechanisms of floral development and flowering. Sequences predicted to be unique to C. ensifolium would provide more insights into C. ensifolium gene diversity. The numerous SNPs and SSRs identified in the present study will contribute to marker development for C. ensifolium. PMID:24392013
Geib, Scott M.; Liang, Guang Hong; Murphy, Terence D.; Sim, Sheina B.
2017-01-01
The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies, including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis). The goal of this study was to develop foundational genomic resources for this species to provide tools that can be used to answer questions exploring the multitrophic interactions between the host and parasitoid in this important research system. Here, we present a whole genome assembly of F. arisanus, derived from a pool of haploid offspring from a single unmated female. The genome is ∼154 Mb in size, with a N50 contig and scaffold size of 51,867 bp and 0.98 Mb, respectively. Utilizing existing RNA-Seq data for this species, as well as publicly available peptide sequences from related Hymenoptera, a high quality gene annotation set, which includes 10,991 protein coding genes, was generated. Prior to this assembly submission, no RefSeq proteins were present for this species. Parasitic wasps play an important role in a diverse ecosystem as well as a role in biological control of agricultural pests. This whole genome assembly and annotation data represents the first genome-scale assembly for this species or any closely related Opiine, and are publicly available in the National Center for Biotechnology Information Genome and RefSeq databases, providing a much needed genomic resource for this hymenopteran group. PMID:28584080
Boussaha, Mekki; Michot, Pauline; Letaief, Rabia; Hozé, Chris; Fritz, Sébastien; Grohs, Cécile; Esquerré, Diane; Duchesne, Amandine; Philippe, Romain; Blanquet, Véronique; Phocas, Florence; Floriot, Sandrine; Rocha, Dominique; Klopp, Christophe; Capitan, Aurélien; Boichard, Didier
2016-11-15
In recent years, several bovine genome sequencing projects were carried out with the aim of developing genomic tools to improve dairy and beef production efficiency and sustainability. In this study, we describe the first French cattle genome variation dataset obtained by sequencing 274 whole genomes representing several major dairy and beef breeds. This dataset contains over 28 million single nucleotide polymorphisms (SNPs) and small insertions and deletions. Comparisons between sequencing results and SNP array genotypes revealed a very high genotype concordance rate, which indicates the good quality of our data. To our knowledge, this is the first large-scale catalog of small genomic variations in French dairy and beef cattle. This resource will contribute to the study of gene functions and population structure and also help to improve traits through genotype-guided selection.
BrucellaBase: Genome information resource.
Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Khader, L K M Abdul; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash
2016-09-01
Brucella sp. causes a major zoonotic disease, brucellosis. Brucella belongs to the family Brucellaceae under the order Rhizobiales of Alphaproteobacteria. We present BrucellaBase, a web-based platform, providing features of a genome database together with unique analysis tools. We have developed a web version of the multilocus sequence typing (MLST) (Whatmore et al., 2007) and phylogenetic analysis of Brucella spp. BrucellaBase currently contains genome data of 510 Brucella strains along with the user interfaces for BLAST, VFDB, CARD, pairwise genome alignment and MLST typing. Availability of these tools will enable the researchers interested in Brucella to get meaningful information from Brucella genome sequences. BrucellaBase will regularly be updated with new genome sequences, new features along with improvements in genome annotations. BrucellaBase is available online at http://www.dbtbrucellosis.in/brucellabase.html or http://59.99.226.203/brucellabase/homepage.html. Copyright © 2016 Elsevier B.V. All rights reserved.
Plant genome and transcriptome annotations: from misconceptions to simple solutions
Bolger, Marie E; Arsova, Borjana; Usadel, Björn
2018-01-01
Abstract Next-generation sequencing has triggered an explosion of available genomic and transcriptomic resources in the plant sciences. Although genome and transcriptome sequencing has become orders of magnitudes cheaper and more efficient, often the functional annotation process is lagging behind. This might be hampered by the lack of a comprehensive enumeration of simple-to-use tools available to the plant researcher. In this comprehensive review, we present (i) typical ontologies to be used in the plant sciences, (ii) useful databases and resources used for functional annotation, (iii) what to expect from an annotated plant genome, (iv) an automated annotation pipeline and (v) a recipe and reference chart outlining typical steps used to annotate plant genomes/transcriptomes using publicly available resources. PMID:28062412
Eppig, Janan T; Smith, Cynthia L; Blake, Judith A; Ringwald, Martin; Kadin, James A; Richardson, Joel E; Bult, Carol J
2017-01-01
The Mouse Genome Informatics (MGI), resource ( www.informatics.jax.org ) has existed for over 25 years, and over this time its data content, informatics infrastructure, and user interfaces and tools have undergone dramatic changes (Eppig et al., Mamm Genome 26:272-284, 2015). Change has been driven by scientific methodological advances, rapid improvements in computational software, growth in computer hardware capacity, and the ongoing collaborative nature of the mouse genomics community in building resources and sharing data. Here we present an overview of the current data content of MGI, describe its general organization, and provide examples using simple and complex searches, and tools for mining and retrieving sets of data.
Role of genomics in promoting the utilization of plant genetic resources in genebanks
Wambugu, Peterson W; Ndjiondjop, Marie-Noelle
2018-01-01
Abstract Global efforts have seen the world’s plant genetic resources (PGRs) conserved in about 1625 germ plasm repositories. Utility of these resources is important in increasing the resilience and productivity of agricultural production systems. However, despite their importance, utility of these resources has been poor. This article reviews the real and potential application of the current advances in genomic technologies in improving the utilization of these resources. The actual and potential application of these genomic approaches in plant identification, phylogenetic analysis, analysing the genetic value of germ plasm, facilitating germ plasm selection in genebanks as well as instilling confidence in international germ plasm exchange system is discussed. We note that if genebanks are to benefit from this genomic revolution, there is need for fundamental changes in the way genebanks are managed, perceived, organized and funded. Increased collaboration between genebank managers and the user community is also recommended PMID:29688255
Spriggs, Andrew; Henderson, Steven T.; Hand, Melanie L.; Johnson, Susan D.; Taylor, Jennifer M.; Koltunow, Anna
2018-01-01
Cowpea ( Vigna unguiculata (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance. An integrated cowpea genomic and gene expression data resource has the potential to greatly accelerate breeding and the delivery of novel genetic traits for cowpea. Extensive genomic resources for cowpea have been absent from the public domain; however, a recent early release reference genome for IT97K-499-35 ( Vigna unguiculata v1.0, NSF, UCR, USAID, DOE-JGI, http://phytozome.jgi.doe.gov/) has now been established in a collaboration between the Joint Genome Institute (JGI) and University California (UC) Riverside. Here we release supporting genomic and transcriptomic data for IT97K-499-35 and a second transformable cowpea variety, IT86D-1010. The transcriptome resource includes six tissue-specific datasets for each variety, with particular emphasis on reproductive tissues that extend and support the V. unguiculata v1.0 reference. Annotations have been included in our resource to allow direct mapping to the v1.0 cowpea reference. Access to this resource provided here is supported by raw and assembled data downloads. PMID:29528046
Spriggs, Andrew; Henderson, Steven T; Hand, Melanie L; Johnson, Susan D; Taylor, Jennifer M; Koltunow, Anna
2018-02-09
Cowpea ( Vigna unguiculata (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance. An integrated cowpea genomic and gene expression data resource has the potential to greatly accelerate breeding and the delivery of novel genetic traits for cowpea. Extensive genomic resources for cowpea have been absent from the public domain; however, a recent early release reference genome for IT97K-499-35 ( Vigna unguiculata v1.0, NSF, UCR, USAID, DOE-JGI, http://phytozome.jgi.doe.gov/) has now been established in a collaboration between the Joint Genome Institute (JGI) and University California (UC) Riverside. Here we release supporting genomic and transcriptomic data for IT97K-499-35 and a second transformable cowpea variety, IT86D-1010. The transcriptome resource includes six tissue-specific datasets for each variety, with particular emphasis on reproductive tissues that extend and support the V. unguiculata v1.0 reference. Annotations have been included in our resource to allow direct mapping to the v1.0 cowpea reference. Access to this resource provided here is supported by raw and assembled data downloads.
Genomic Resources for Cancer Epidemiology
This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.
The Human Genome Initiative of the Department of Energy
DOE R&D Accomplishments Database
1988-01-01
The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.
Databases and Web Tools for Cancer Genomics Study
Yang, Yadong; Dong, Xunong; Xie, Bingbing; Ding, Nan; Chen, Juan; Li, Yongjun; Zhang, Qian; Qu, Hongzhu; Fang, Xiangdong
2015-01-01
Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community. PMID:25707591
Enabling large-scale next-generation sequence assembly with Blacklight
Couger, M. Brian; Pipes, Lenore; Squina, Fabio; Prade, Rolf; Siepel, Adam; Palermo, Robert; Katze, Michael G.; Mason, Christopher E.; Blood, Philip D.
2014-01-01
Summary A variety of extremely challenging biological sequence analyses were conducted on the XSEDE large shared memory resource Blacklight, using current bioinformatics tools and encompassing a wide range of scientific applications. These include genomic sequence assembly, very large metagenomic sequence assembly, transcriptome assembly, and sequencing error correction. The data sets used in these analyses included uncategorized fungal species, reference microbial data, very large soil and human gut microbiome sequence data, and primate transcriptomes, composed of both short-read and long-read sequence data. A new parallel command execution program was developed on the Blacklight resource to handle some of these analyses. These results, initially reported previously at XSEDE13 and expanded here, represent significant advances for their respective scientific communities. The breadth and depth of the results achieved demonstrate the ease of use, versatility, and unique capabilities of the Blacklight XSEDE resource for scientific analysis of genomic and transcriptomic sequence data, and the power of these resources, together with XSEDE support, in meeting the most challenging scientific problems. PMID:25294974
CyanoClust: comparative genome resources of cyanobacteria and plastids.
Sasaki, Naobumi V; Sato, Naoki
2010-01-01
Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Proteins (COG). CyanoClust is a database of homolog groups in cyanobacteria and plastids that are produced by the program Gclust. We have developed a web-server system for the protein homology database featuring cyanobacteria and plastids. Database URL: http://cyanoclust.c.u-tokyo.ac.jp/.
Evans, Tyler G; Padilla-Gamiño, Jacqueline L; Kelly, Morgan W; Pespeni, Melissa H; Chan, Francis; Menge, Bruce A; Gaylord, Brian; Hill, Tessa M; Russell, Ann D; Palumbi, Stephen R; Sanford, Eric; Hofmann, Gretchen E
2015-07-01
Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species. Copyright © 2015 Elsevier Inc. All rights reserved.
Huser, Vojtech; Sincan, Murat; Cimino, James J
2014-01-01
Personalized medicine, the ability to tailor diagnostic and treatment decisions for individual patients, is seen as the evolution of modern medicine. We characterize here the informatics resources available today or envisioned in the near future that can support clinical interpretation of genomic test results. We assume a clinical sequencing scenario (germline whole-exome sequencing) in which a clinical specialist, such as an endocrinologist, needs to tailor patient management decisions within his or her specialty (targeted findings) but relies on a genetic counselor to interpret off-target incidental findings. We characterize the genomic input data and list various types of knowledge bases that provide genomic knowledge for generating clinical decision support. We highlight the need for patient-level databases with detailed lifelong phenotype content in addition to genotype data and provide a list of recommendations for personalized medicine knowledge bases and databases. We conclude that no single knowledge base can currently support all aspects of personalized recommendations and that consolidation of several current resources into larger, more dynamic and collaborative knowledge bases may offer a future path forward.
Huser, Vojtech; Sincan, Murat; Cimino, James J
2014-01-01
Personalized medicine, the ability to tailor diagnostic and treatment decisions for individual patients, is seen as the evolution of modern medicine. We characterize here the informatics resources available today or envisioned in the near future that can support clinical interpretation of genomic test results. We assume a clinical sequencing scenario (germline whole-exome sequencing) in which a clinical specialist, such as an endocrinologist, needs to tailor patient management decisions within his or her specialty (targeted findings) but relies on a genetic counselor to interpret off-target incidental findings. We characterize the genomic input data and list various types of knowledge bases that provide genomic knowledge for generating clinical decision support. We highlight the need for patient-level databases with detailed lifelong phenotype content in addition to genotype data and provide a list of recommendations for personalized medicine knowledge bases and databases. We conclude that no single knowledge base can currently support all aspects of personalized recommendations and that consolidation of several current resources into larger, more dynamic and collaborative knowledge bases may offer a future path forward. PMID:25276091
Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles.
Kües, Ursula; Nelson, David R; Liu, Chang; Yu, Guo-Jun; Zhang, Jianhui; Li, Jianqin; Wang, Xin-Cun; Sun, Hui
2015-06-01
Ganoderma is a fungal genus belonging to the Ganodermataceae family and Polyporales order. Plant-pathogenic species in this genus can cause severe diseases (stem, butt, and root rot) in economically important trees and perennial crops, especially in tropical countries. Ganoderma species are white rot fungi and have ecological importance in the breakdown of woody plants for nutrient mobilization. They possess effective machineries of lignocellulose-decomposing enzymes useful for bioenergy production and bioremediation. In addition, the genus contains many important species that produce pharmacologically active compounds used in health food and medicine. With the rapid adoption of next-generation DNA sequencing technologies, whole genome sequencing and systematic transcriptome analyses become affordable approaches to identify an organism's genes. In the last few years, numerous projects have been initiated to identify the genetic contents of several Ganoderma species, particularly in different strains of Ganoderma lucidum. In November 2013, eleven whole genome sequencing projects for Ganoderma species were registered in international databases, three of which were already completed with genomes being assembled to high quality. In addition to the nuclear genome, two mitochondrial genomes for Ganoderma species have also been reported. Complementing genome analysis, four transcriptome studies on various developmental stages of Ganoderma species have been performed. Information obtained from these studies has laid the foundation for the identification of genes involved in biological pathways that are critical for understanding the biology of Ganoderma, such as the mechanism of pathogenesis, the biosynthesis of active components, life cycle and cellular development, etc. With abundant genetic information becoming available, a few centralized resources have been established to disseminate the knowledge and integrate relevant data to support comparative genomic analyses of Ganoderma species. The current review carries out a detailed comparison of the nuclear genomes, mitochondrial genomes and transcriptomes from several Ganoderma species. Genes involved in biosynthetic pathways such as CYP450 genes and in cellular development such as matA and matB genes are characterized and compared in detail, as examples to demonstrate the usefulness of comparative genomic analyses for the identification of critical genes. Resources needed for future data integration and exploitation are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
PhytoPath: an integrative resource for plant pathogen genomics.
Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian
2016-01-04
PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids
2011-01-01
Background Orchids are one of the most diversified angiosperms, but few genomic resources are available for these non-model plants. In addition to the ecological significance, Phalaenopsis has been considered as an economically important floriculture industry worldwide. We aimed to use massively parallel 454 pyrosequencing for a global characterization of the Phalaenopsis transcriptome. Results To maximize sequence diversity, we pooled RNA from 10 samples of different tissues, various developmental stages, and biotic- or abiotic-stressed plants. We obtained 206,960 expressed sequence tags (ESTs) with an average read length of 228 bp. These reads were assembled into 8,233 contigs and 34,630 singletons. The unigenes were searched against the NCBI non-redundant (NR) protein database. Based on sequence similarity with known proteins, these analyses identified 22,234 different genes (E-value cutoff, e-7). Assembled sequences were annotated with Gene Ontology, Gene Family and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these annotations, over 780 unigenes encoding putative transcription factors were identified. Conclusion Pyrosequencing was effective in identifying a large set of unigenes from Phalaenopsis. The informative EST dataset we developed constitutes a much-needed resource for discovery of genes involved in various biological processes in Phalaenopsis and other orchid species. These transcribed sequences will narrow the gap between study of model organisms with many genomic resources and species that are important for ecological and evolutionary studies. PMID:21749684
CTD² Publication Guidelines | Office of Cancer Genomics
The Cancer Target Discovery and Development (CTD2) Network is a “community resource project” supported by the National Cancer Institute’s Office of Cancer Genomics. Members of the Network release data to the broader research community by depositing data into NCI-supported or public databases. Data deposition is NOT equivalent to publishing in a peer-reviewed journal. Unless there is a manuscript associated with a dataset, the Network considers data to be formally unpublished.
KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella.
Jouraku, Akiya; Yamamoto, Kimiko; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Narukawa, Junko; Miyamoto, Kazuhisa; Kurita, Kanako; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Noda, Hiroaki
2013-07-09
The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM). KONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers. KONAGAbase provides DBM comprehensive transcriptomic and draft genomic sequences with useful annotation information with easy-to-use web interfaces, which helps researchers to efficiently search for target sequences such as insect resistance-related genes. KONAGAbase will be continuously updated and additional genomic/transcriptomic resources and analysis tools will be provided for further efficient analysis of the mechanism of insecticide resistance and the development of effective insecticides with a novel mode of action for DBM.
Emerging technologies advancing forage and turf grass genomics.
Kopecký, David; Studer, Bruno
2014-01-01
Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities. In this review, we will discuss a selection of technological developments that served as main drivers to generate new insights into the structure and function of nuclear genomes. Many of these technologies were originally developed in human or animal science and are now increasingly applied in plant genomics. Our main goal is to highlight the benefits of using these technologies for forage and turf grass genome research, to discuss their potentials and limitations as well as their relevance for future applications. Copyright © 2013 Elsevier Inc. All rights reserved.
Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers.
Varshney, Rajeev K; Chen, Wenbin; Li, Yupeng; Bharti, Arvind K; Saxena, Rachit K; Schlueter, Jessica A; Donoghue, Mark T A; Azam, Sarwar; Fan, Guangyi; Whaley, Adam M; Farmer, Andrew D; Sheridan, Jaime; Iwata, Aiko; Tuteja, Reetu; Penmetsa, R Varma; Wu, Wei; Upadhyaya, Hari D; Yang, Shiaw-Pyng; Shah, Trushar; Saxena, K B; Michael, Todd; McCombie, W Richard; Yang, Bicheng; Zhang, Gengyun; Yang, Huanming; Wang, Jun; Spillane, Charles; Cook, Douglas R; May, Gregory D; Xu, Xun; Jackson, Scott A
2011-11-06
Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.7% (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis predicted 48,680 genes for pigeonpea and also showed the potential role that certain gene families, for example, drought tolerance-related genes, have played throughout the domestication of pigeonpea and the evolution of its ancestors. Although we found a few segmental duplication events, we did not observe the recent genome-wide duplication events observed in soybean. This reference genome sequence will facilitate the identification of the genetic basis of agronomically important traits, and accelerate the development of improved pigeonpea varieties that could improve food security in many developing countries.
Castrignanò, Tiziana; Canali, Alessandro; Grillo, Giorgio; Liuni, Sabino; Mignone, Flavio; Pesole, Graziano
2004-01-01
The identification and characterization of genome tracts that are highly conserved across species during evolution may contribute significantly to the functional annotation of whole-genome sequences. Indeed, such sequences are likely to correspond to known or unknown coding exons or regulatory motifs. Here, we present a web server implementing a previously developed algorithm that, by comparing user-submitted genome sequences, is able to identify statistically significant conserved blocks and assess their coding or noncoding nature through the measure of a coding potential score. The web tool, available at http://www.caspur.it/CSTminer/, is dynamically interconnected with the Ensembl genome resources and produces a graphical output showing a map of detected conserved sequences and annotated gene features. PMID:15215464
Ciotlos, Serban; Mao, Qing; Zhang, Rebecca Yu; Li, Zhenyu; Chin, Robert; Gulbahce, Natali; Liu, Sophie Jia; Drmanac, Radoje; Peters, Brock A
2016-01-01
The cell line BT-474 is a popular cell line for studying the biology of cancer and developing novel drugs. However, there is no complete, published genome sequence for this highly utilized scientific resource. In this study we sought to provide a comprehensive and useful data set for the scientific community by generating a whole genome sequence for BT-474. Five μg of genomic DNA, isolated from an early passage of the BT-474 cell line, was used to generate a whole genome sequence (114X coverage) using Complete Genomics' standard sequencing process. To provide additional variant phasing and structural variation data we also processed and analyzed two separate libraries of 5 and 6 individual cells to depths of 99X and 87X, respectively, using Complete Genomics' Long Fragment Read (LFR) technology. BT-474 is a highly aneuploid cell line with an extremely complex genome sequence. This ~300X total coverage genome sequence provides a more complete understanding of this highly utilized cell line at the genomic level.
Chery, Joyce G; Sass, Chodon; Specht, Chelsea D
2017-09-01
We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.
Jacquemin, Julie; Bhatia, Dharminder; Singh, Kuldeep; Wing, Rod A
2013-05-01
The wild relatives of rice contain a virtually untapped reservoir of traits that can be used help drive the 21st century green revolution aimed at solving world food security issues by 2050. To better understand and exploit the 23 species of the Oryza genus the rice research community is developing foundational resources composed of: 1) reference genomes and transcriptomes for all 23 species; 2) advanced mapping populations for functional and breeding studies; and 3) in situ conservation sites for ecological, evolutionary and population genomics. To this end, 16 genome sequencing projects are currently underway, and all completed assemblies have been annotated; and several advanced mapping populations have been developed, and more will be generated, mapped, and phenotyped, to uncover useful alleles. As wild Oryza populations are threatened by human activity and climate change, we also discuss the urgent need for sustainable in situ conservation of the genus. Copyright © 2013 Elsevier Ltd. All rights reserved.
Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Akgöl, Batuhan; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann
2017-02-01
Early generation genomic selection is superior to conventional phenotypic selection in line breeding and can be strongly improved by including additional information from preliminary yield trials. The selection of lines that enter resource-demanding multi-environment trials is a crucial decision in every line breeding program as a large amount of resources are allocated for thoroughly testing these potential varietal candidates. We compared conventional phenotypic selection with various genomic selection approaches across multiple years as well as the merit of integrating phenotypic information from preliminary yield trials into the genomic selection framework. The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain yield but could be improved by modeling genetic relationships in unreplicated preliminary yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to conventional phenotypic selection for predicting grain yield performance of lines across years (r = 0.39). We subsequently simplified the problem of predicting untested lines in untested years to predicting tested lines in untested years by combining breeding values from preliminary yield trials and predictions from genomic selection models by a heritability index. This genomic assisted selection led to a 20% increase in prediction accuracy, which could be further enhanced by an appropriate marker selection for both grain yield (r = 0.48) and protein content (r = 0.63). The easy to implement and robust genomic assisted selection gave thus a higher prediction accuracy than either conventional phenotypic or genomic selection alone. The proposed method took the complex inheritance of both low and high heritable traits into account and appears capable to support breeders in their selection decisions to develop enhanced varieties more efficiently.
USDA-ARS?s Scientific Manuscript database
Advances in Next Generation Sequencing (NGS) allow for rapid development of genomics resources needed to generate molecular diagnostics assays for infectious agents. NGS approaches are particularly helpful for organisms that cannot be cultured, such as the downy mildew pathogens, a group of biotrop...
Genome-wide association mapping of provitamin A carotenoid content in cassava
USDA-ARS?s Scientific Manuscript database
Global efforts are underway to develop staple crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency, which is widespread among resource-poor farmers in the developing world. As a staple crop for more than 500 million people in sub-Saharan Africa, cassava ...
Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses.
Muthamilarasan, Mehanathan; Prasad, Manoj
2015-01-01
Recent advances in Setaria genomics appear promising for genetic improvement of cereals and biofuel crops towards providing multiple securities to the steadily increasing global population. The prominent attributes of foxtail millet (Setaria italica, cultivated) and green foxtail (S. viridis, wild) including small genome size, short life-cycle, in-breeding nature, genetic close-relatedness to several cereals, millets and bioenergy grasses, and potential abiotic stress tolerance have accentuated these two Setaria species as novel model system for studying C4 photosynthesis, stress biology and biofuel traits. Considering this, studies have been performed on structural and functional genomics of these plants to develop genetic and genomic resources, and to delineate the physiology and molecular biology of stress tolerance, for the improvement of millets, cereals and bioenergy grasses. The release of foxtail millet genome sequence has provided a new dimension to Setaria genomics, resulting in large-scale development of genetic and genomic tools, construction of informative databases, and genome-wide association and functional genomic studies. In this context, this review discusses the advancements made in Setaria genomics, which have generated a considerable knowledge that could be used for the improvement of millets, cereals and biofuel crops. Further, this review also shows the nutritional potential of foxtail millet in providing health benefits to global population and provides a preliminary information on introgressing the nutritional properties in graminaceous species through molecular breeding and transgene-based approaches.
Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin
2017-06-01
Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.
Nikolouli, Katerina; Mossialos, Dimitris
2012-08-01
Non-ribosomal peptide synthetases (NRPS) and type-I polyketide synthases (PKS-I) are multimodular enzymes involved in biosynthesis of oligopeptide and polyketide secondary metabolites produced by microorganisms such as bacteria and fungi. New findings regarding the mechanisms underlying NRPS and PKS-I evolution illustrate how microorganisms expand their metabolic potential. During the last decade rapid development of bioinformatics tools as well as improved sequencing and annotation of microbial genomes led to discovery of novel bioactive compounds synthesized by NRPS and PKS-I through genome-mining. Taking advantage of these technological developments metagenomics is a fast growing research field which directly studies microbial genomes or specific gene groups and their products. Discovery of novel bioactive compounds synthesized by NRPS and PKS-I will certainly be accelerated through metagenomics, allowing the exploitation of so far untapped microbial resources in biotechnology and medicine.
McGuire, Amy L; Fisher, Rebecca; Cusenza, Paul; Hudson, Kathy; Rothstein, Mark A; McGraw, Deven; Matteson, Stephen; Glaser, John; Henley, Douglas E
2008-07-01
As clinical genetics evolves, and we embark down the path toward more personalized and effective health care, the amount, detail, and complexity of genetic/genomic test information within the electronic health record will increase. This information should be appropriately protected to secure the trust of patients and to support interoperable electronic health information exchange. This article discusses characteristics of genetic/genomic test information, including predictive capability, immutability, and uniqueness, which should be considered when developing policies about information protection. Issues related to "genetic exceptionalism"; i.e., whether genetic/genomic test information should be treated differently from other medical information for purposes of data access and permissible use, are also considered. These discussions can help guide policy that will facilitate the biological and clinical resource development to support the introduction of this information into health care.
The Human Ageing Genomic Resources: online databases and tools for biogerontologists
de Magalhães, João Pedro; Budovsky, Arie; Lehmann, Gilad; Costa, Joana; Li, Yang; Fraifeld, Vadim; Church, George M.
2009-01-01
Summary Ageing is a complex, challenging phenomenon that will require multiple, interdisciplinary approaches to unravel its puzzles. To assist basic research on ageing, we developed the Human Ageing Genomic Resources (HAGR). This work provides an overview of the databases and tools in HAGR and describes how the gerontology research community can employ them. Several recent changes and improvements to HAGR are also presented. The two centrepieces in HAGR are GenAge and AnAge. GenAge is a gene database featuring genes associated with ageing and longevity in model organisms, a curated database of genes potentially associated with human ageing, and a list of genes tested for their association with human longevity. A myriad of biological data and information is included for hundreds of genes, making GenAge a reference for research that reflects our current understanding of the genetic basis of ageing. GenAge can also serve as a platform for the systems biology of ageing, and tools for the visualization of protein-protein interactions are also included. AnAge is a database of ageing in animals, featuring over 4,000 species, primarily assembled as a resource for comparative and evolutionary studies of ageing. Longevity records, developmental and reproductive traits, taxonomic information, basic metabolic characteristics, and key observations related to ageing are included in AnAge. Software is also available to aid researchers in the form of Perl modules to automate numerous tasks and as an SPSS script to analyse demographic mortality data. The Human Ageing Genomic Resources are available online at http://genomics.senescence.info. PMID:18986374
Zhang, Wenli; Fu, Jun; Liu, Jing; Wang, Hailong; Schiwon, Maren; Janz, Sebastian; Schaffarczyk, Lukas; von der Goltz, Lukas; Ehrke-Schulz, Eric; Dörner, Johannes; Solanki, Manish; Boehme, Philip; Bergmann, Thorsten; Lieber, Andre; Lauber, Chris; Dahl, Andreas; Petzold, Andreas; Zhang, Youming; Stewart, A Francis; Ehrhardt, Anja
2017-05-23
Adenoviruses (Ads) are large human-pathogenic double-stranded DNA (dsDNA) viruses presenting an enormous natural diversity associated with a broad variety of diseases. However, only a small fraction of adenoviruses has been explored in basic virology and biomedical research, highlighting the need to develop robust and adaptable methodologies and resources. We developed a method for high-throughput direct cloning and engineering of adenoviral genomes from different sources utilizing advanced linear-linear homologous recombination (LLHR) and linear-circular homologous recombination (LCHR). We describe 34 cloned adenoviral genomes originating from clinical samples, which were characterized by next-generation sequencing (NGS). We anticipate that this recombineering strategy and the engineered adenovirus library will provide an approach to study basic and clinical virology. High-throughput screening (HTS) of the reporter-tagged Ad library in a panel of cell lines including osteosarcoma disease-specific cell lines revealed alternative virus types with enhanced transduction and oncolysis efficiencies. This highlights the usefulness of this resource. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
From genomics to functional markers in the era of next-generation sequencing.
Salgotra, R K; Gupta, B B; Stewart, C N
2014-03-01
The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.
The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.
Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H
2016-04-01
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.
The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons
Braasch, Ingo; Gehrke, Andrew R.; Smith, Jeramiah J.; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M.; Campbell, Michael S.; Barrell, Daniel; Martin, Kyle J.; Mulley, John F.; Ravi, Vydianathan; Lee, Alison P.; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E. G.; Sun, Yi; Hertel, Jana; Beam, Michael J.; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H.; Litman, Gary W.; Litman, Ronda T.; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F.; Wang, Han; Taylor, John S.; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M. J.; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A.; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T.; Venkatesh, Byrappa; Holland, Peter W. H.; Guiguen, Yann; Bobe, Julien; Shubin, Neil H.; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H.
2016-01-01
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences. PMID:26950095
Database Resources of the BIG Data Center in 2018
Xu, Xingjian; Hao, Lili; Zhu, Junwei; Tang, Bixia; Zhou, Qing; Song, Fuhai; Chen, Tingting; Zhang, Sisi; Dong, Lili; Lan, Li; Wang, Yanqing; Sang, Jian; Hao, Lili; Liang, Fang; Cao, Jiabao; Liu, Fang; Liu, Lin; Wang, Fan; Ma, Yingke; Xu, Xingjian; Zhang, Lijuan; Chen, Meili; Tian, Dongmei; Li, Cuiping; Dong, Lili; Du, Zhenglin; Yuan, Na; Zeng, Jingyao; Zhang, Zhewen; Wang, Jinyue; Shi, Shuo; Zhang, Yadong; Pan, Mengyu; Tang, Bixia; Zou, Dong; Song, Shuhui; Sang, Jian; Xia, Lin; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Zhang, Yang; Sheng, Xin; Lu, Mingming; Wang, Qi; Xiao, Jingfa; Zou, Dong; Wang, Fan; Hao, Lili; Liang, Fang; Li, Mengwei; Sun, Shixiang; Zou, Dong; Li, Rujiao; Yu, Chunlei; Wang, Guangyu; Sang, Jian; Liu, Lin; Li, Mengwei; Li, Man; Niu, Guangyi; Cao, Jiabao; Sun, Shixiang; Xia, Lin; Yin, Hongyan; Zou, Dong; Xu, Xingjian; Ma, Lina; Chen, Huanxin; Sun, Yubin; Yu, Lei; Zhai, Shuang; Sun, Mingyuan; Zhang, Zhang; Zhao, Wenming; Xiao, Jingfa; Bao, Yiming; Song, Shuhui; Hao, Lili; Li, Rujiao; Ma, Lina; Sang, Jian; Wang, Yanqing; Tang, Bixia; Zou, Dong; Wang, Fan
2018-01-01
Abstract The BIG Data Center at Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences provides freely open access to a suite of database resources in support of worldwide research activities in both academia and industry. With the vast amounts of omics data generated at ever-greater scales and rates, the BIG Data Center is continually expanding, updating and enriching its core database resources through big-data integration and value-added curation, including BioCode (a repository archiving bioinformatics tool codes), BioProject (a biological project library), BioSample (a biological sample library), Genome Sequence Archive (GSA, a data repository for archiving raw sequence reads), Genome Warehouse (GWH, a centralized resource housing genome-scale data), Genome Variation Map (GVM, a public repository of genome variations), Gene Expression Nebulas (GEN, a database of gene expression profiles based on RNA-Seq data), Methylation Bank (MethBank, an integrated databank of DNA methylomes), and Science Wikis (a series of biological knowledge wikis for community annotations). In addition, three featured web services are provided, viz., BIG Search (search as a service; a scalable inter-domain text search engine), BIG SSO (single sign-on as a service; a user access control system to gain access to multiple independent systems with a single ID and password) and Gsub (submission as a service; a unified submission service for all relevant resources). All of these resources are publicly accessible through the home page of the BIG Data Center at http://bigd.big.ac.cn. PMID:29036542
The Chinchilla Research Resource Database: resource for an otolaryngology disease model
Shimoyama, Mary; Smith, Jennifer R.; De Pons, Jeff; Tutaj, Marek; Khampang, Pawjai; Hong, Wenzhou; Erbe, Christy B.; Ehrlich, Garth D.; Bakaletz, Lauren O.; Kerschner, Joseph E.
2016-01-01
The long-tailed chinchilla (Chinchilla lanigera) is an established animal model for diseases of the inner and middle ear, among others. In particular, chinchilla is commonly used to study diseases involving viral and bacterial pathogens and polymicrobial infections of the upper respiratory tract and the ear, such as otitis media. The value of the chinchilla as a model for human diseases prompted the sequencing of its genome in 2012 and the more recent development of the Chinchilla Research Resource Database (http://crrd.mcw.edu) to provide investigators with easy access to relevant datasets and software tools to enhance their research. The Chinchilla Research Resource Database contains a complete catalog of genes for chinchilla and, for comparative purposes, human. Chinchilla genes can be viewed in the context of their genomic scaffold positions using the JBrowse genome browser. In contrast to the corresponding records at NCBI, individual gene reports at CRRD include functional annotations for Disease, Gene Ontology (GO) Biological Process, GO Molecular Function, GO Cellular Component and Pathway assigned to chinchilla genes based on annotations from the corresponding human orthologs. Data can be retrieved via keyword and gene-specific searches. Lists of genes with similar functional attributes can be assembled by leveraging the hierarchical structure of the Disease, GO and Pathway vocabularies through the Ontology Search and Browser tool. Such lists can then be further analyzed for commonalities using the Gene Annotator (GA) Tool. All data in the Chinchilla Research Resource Database is freely accessible and downloadable via the CRRD FTP site or using the download functions available in the search and analysis tools. The Chinchilla Research Resource Database is a rich resource for researchers using, or considering the use of, chinchilla as a model for human disease. Database URL: http://crrd.mcw.edu PMID:27173523
Reptile genomes open the frontier for comparative analysis of amniote development and regeneration.
Tollis, Marc; Hutchins, Elizabeth D; Kusumi, Kenro
2014-01-01
Developmental genetic studies of vertebrates have focused primarily on zebrafish, frog and mouse models, which have clear application to medicine and well-developed genomic resources. In contrast, reptiles represent the most diverse amniote group, but have only recently begun to gather the attention of genome sequencing efforts. Extant reptilian groups last shared a common ancestor ?280 million years ago and include lepidosaurs, turtles and crocodilians. This phylogenetic diversity is reflected in great morphological and behavioral diversity capturing the attention of biologists interested in mechanisms regulating developmental processes such as somitogenesis and spinal patterning, regeneration, the evolution of "snake-like" morphology, the formation of the unique turtle shell, and the convergent evolution of the four-chambered heart shared by mammals and archosaurs. The complete genome of the first non-avian reptile, the green anole lizard, was published in 2011 and has provided insights into the origin and evolution of amniotes. Since then, the genomes of multiple snakes, turtles, and crocodilians have also been completed. Here we will review the current diversity of available reptile genomes, with an emphasis on their evolutionary relationships, and will highlight how these genomes have and will continue to facilitate research in developmental and regenerative biology.
Ifeonu, Olukemi O.; Simon, Raphael; Tennant, Sharon M.; Sheoran, Abhineet S.; Daly, Maria C.; Felix, Victor; Kissinger, Jessica C.; Widmer, Giovanni; Levine, Myron M.; Tzipori, Saul; Silva, Joana C.
2016-01-01
Human cryptosporidiosis, caused primarily by Cryptosporidium hominis and a subset of Cryptosporidium parvum, is a major cause of moderate-to-severe diarrhea in children under 5 years of age in developing countries and can lead to nutritional stunting and death. Cryptosporidiosis is particularly severe and potentially lethal in immunocompromised hosts. Biological and technical challenges have impeded traditional vaccinology approaches to identify novel targets for the development of vaccines against C. hominis, the predominant species associated with human disease. We deemed that the existence of genomic resources for multiple species in the genus, including a much-improved genome assembly and annotation for C. hominis, makes a reverse vaccinology approach feasible. To this end, we sought to generate a searchable online resource, termed C. hominis gene catalog, which registers all C. hominis genes and their properties relevant for the identification and prioritization of candidate vaccine antigens, including physical attributes, properties related to antigenic potential and expression data. Using bioinformatic approaches, we identified ∼400 C. hominis genes containing properties typical of surface-exposed antigens, such as predicted glycosylphosphatidylinositol (GPI)-anchor motifs, multiple transmembrane motifs and/or signal peptides targeting the encoded protein to the secretory pathway. This set can be narrowed further, e.g. by focusing on potential GPI-anchored proteins lacking homologs in the human genome, but with homologs in the other Cryptosporidium species for which genomic data are available, and with low amino acid polymorphism. Additional selection criteria related to recombinant expression and purification include minimizing predicted post-translation modifications and potential disulfide bonds. Forty proteins satisfying these criteria were selected from 3745 proteins in the updated C. hominis annotation. The immunogenic potential of a few of these is currently being tested. Database URL: http://cryptogc.igs.umaryland.edu PMID:28095366
Comparative Genomics and Host Resistance against Infectious Diseases
Qureshi, Salman T.; Skamene, Emil
1999-01-01
The large size and complexity of the human genome have limited the identification and functional characterization of components of the innate immune system that play a critical role in front-line defense against invading microorganisms. However, advances in genome analysis (including the development of comprehensive sets of informative genetic markers, improved physical mapping methods, and novel techniques for transcript identification) have reduced the obstacles to discovery of novel host resistance genes. Study of the genomic organization and content of widely divergent vertebrate species has shown a remarkable degree of evolutionary conservation and enables meaningful cross-species comparison and analysis of newly discovered genes. Application of comparative genomics to host resistance will rapidly expand our understanding of human immune defense by facilitating the translation of knowledge acquired through the study of model organisms. We review the rationale and resources for comparative genomic analysis and describe three examples of host resistance genes successfully identified by this approach. PMID:10081670
Genetic counselling in the era of genomic medicine
Middleton, Anna
2018-01-01
Abstract Background Genomic technology can now deliver cost effective, targeted diagnosis and treatment for patients. Genetic counselling is a communication process empowering patients and families to make autonomous decisions and effectively use new genetic information. The skills of genetic counselling and expertise of genetic counsellors are integral to the effective implementation of genomic medicine. Sources of data Original papers, reviews, guidelines, policy papers and web-resources. Areas of agreement An international consensus on the definition of genetic counselling. Genetic counselling is necessary for implementation of genomic medicine. Areas of controversy Models of genetic counselling. Growing points Genomic medicine is a growing and strategic priority for many health care systems. Genetic counselling is part of this. Areas timely for developing research An evidence base is necessary, incorporating implementation and outcome research, to enable health care systems, practitioners, patients and families to maximize the utility (medically and psychologically) of the new genomic possibilities. PMID:29617718
Improving Microbial Genome Annotations in an Integrated Database Context
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.
2013-01-01
Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620
Ensembl comparative genomics resources.
Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul
2016-01-01
Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. © The Author(s) 2016. Published by Oxford University Press.
Ensembl comparative genomics resources
Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul
2016-01-01
Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847
Using an online genome resource to identify myostatin variation in U.S. sheep
USDA-ARS?s Scientific Manuscript database
We created a public, searchable DNA sequence resource for sheep that contained approximately 14x whole genome sequence of 96 rams. The animals represent 10 popular U.S. breeds and share minimal pedigree relationships, making the resource suitable for viewing gene variants in the user-friendly Integ...
Gramene 2016: comparative plant genomics and pathway resources
Tello-Ruiz, Marcela K.; Stein, Joshua; Wei, Sharon; Preece, Justin; Olson, Andrew; Naithani, Sushma; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Jiao, Yinping; Mulvaney, Joseph; Kumari, Sunita; Chougule, Kapeel; Elser, Justin; Wang, Bo; Thomason, James; Bolser, Daniel M.; Kerhornou, Arnaud; Walts, Brandon; Fonseca, Nuno A.; Huerta, Laura; Keays, Maria; Tang, Y. Amy; Parkinson, Helen; Fabregat, Antonio; McKay, Sheldon; Weiser, Joel; D'Eustachio, Peter; Stein, Lincoln; Petryszak, Robert; Kersey, Paul J.; Jaiswal, Pankaj; Ware, Doreen
2016-01-01
Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials. PMID:26553803
Gillespie, Joseph J.; Wattam, Alice R.; Cammer, Stephen A.; Gabbard, Joseph L.; Shukla, Maulik P.; Dalay, Oral; Driscoll, Timothy; Hix, Deborah; Mane, Shrinivasrao P.; Mao, Chunhong; Nordberg, Eric K.; Scott, Mark; Schulman, Julie R.; Snyder, Eric E.; Sullivan, Daniel E.; Wang, Chunxia; Warren, Andrew; Williams, Kelly P.; Xue, Tian; Seung Yoo, Hyun; Zhang, Chengdong; Zhang, Yan; Will, Rebecca; Kenyon, Ronald W.; Sobral, Bruno W.
2011-01-01
Funded by the National Institute of Allergy and Infectious Diseases, the Pathosystems Resource Integration Center (PATRIC) is a genomics-centric relational database and bioinformatics resource designed to assist scientists in infectious-disease research. Specifically, PATRIC provides scientists with (i) a comprehensive bacterial genomics database, (ii) a plethora of associated data relevant to genomic analysis, and (iii) an extensive suite of computational tools and platforms for bioinformatics analysis. While the primary aim of PATRIC is to advance the knowledge underlying the biology of human pathogens, all publicly available genome-scale data for bacteria are compiled and continually updated, thereby enabling comparative analyses to reveal the basis for differences between infectious free-living and commensal species. Herein we summarize the major features available at PATRIC, dividing the resources into two major categories: (i) organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data. Additionally, we present two experimental designs typical of bacterial genomics research and report on the execution of both projects using only PATRIC data and tools. These applications encompass a broad range of the data and analysis tools available, illustrating practical uses of PATRIC for the biologist. Finally, a summary of PATRIC's outreach activities, collaborative endeavors, and future research directions is provided. PMID:21896772
Naithani, Sushma; Sullivan, Chris; Preece, Justin; Tiwari, Vijay K.; Elser, Justin; Leonard, Jeffrey M.; Sage, Abigail; Gresham, Cathy; Kerhornou, Arnaud; Bolser, Dan; McCarthy, Fiona; Kersey, Paul; Lazo, Gerard R.; Jaiswal, Pankaj
2014-01-01
Background Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. Principal Findings The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. Conclusions De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers. PMID:24821410
Mining biological databases for candidate disease genes
NASA Astrophysics Data System (ADS)
Braun, Terry A.; Scheetz, Todd; Webster, Gregg L.; Casavant, Thomas L.
2001-07-01
The publicly-funded effort to sequence the complete nucleotide sequence of the human genome, the Human Genome Project (HGP), has currently produced more than 93% of the 3 billion nucleotides of the human genome into a preliminary `draft' format. In addition, several valuable sources of information have been developed as direct and indirect results of the HGP. These include the sequencing of model organisms (rat, mouse, fly, and others), gene discovery projects (ESTs and full-length), and new technologies such as expression analysis and resources (micro-arrays or gene chips). These resources are invaluable for the researchers identifying the functional genes of the genome that transcribe and translate into the transcriptome and proteome, both of which potentially contain orders of magnitude more complexity than the genome itself. Preliminary analyses of this data identified approximately 30,000 - 40,000 human `genes.' However, the bulk of the effort still remains -- to identify the functional and structural elements contained within the transcriptome and proteome, and to associate function in the transcriptome and proteome to genes. A fortuitous consequence of the HGP is the existence of hundreds of databases containing biological information that may contain relevant data pertaining to the identification of disease-causing genes. The task of mining these databases for information on candidate genes is a commercial application of enormous potential. We are developing a system to acquire and mine data from specific databases to aid our efforts to identify disease genes. A high speed cluster of Linux of workstations is used to analyze sequence and perform distributed sequence alignments as part of our data mining and processing. This system has been used to mine GeneMap99 sequences within specific genomic intervals to identify potential candidate disease genes associated with Bardet-Biedle Syndrome (BBS).
Gómez-Chiarri, Marta; Warren, Wesley C; Guo, Ximing; Proestou, Dina
2015-09-01
The eastern oyster, Crassostrea virginica, provides important ecological and economical services, making it the target of restoration projects and supporting a significant fishery/aquaculture industry with landings valued at more than $100 million in 2012 in the United States of America. Due to the impact of infectious diseases on wild, restored, and cultured populations, the eastern oyster has been the focus of studies on host-pathogen interactions and immunity, as well as the target of selective breeding efforts for disease resistant oyster lines. Despite these efforts, relatively little is known about the genetic basis of resistance to diseases or environmental stress, not only in eastern oyster, but also in other molluscan species of commercial interest worldwide. In order to develop tools and resources to assist in the elucidation of the genomic basis of traits of commercial, biological, and ecological interest in oysters, a team of genome and bioinformatics experts, in collaboration with the oyster research community, is sequencing, assembling, and annotating the first reference genome for the eastern oyster and producing an exhaustive transcriptome from a variety of oyster developmental stages and tissues in response to a diverse set of environmentally-relevant stimuli. These transcriptomes and reference genome for the eastern oyster, added to the already available genome and transcriptomes for the Pacific oyster (Crassostrea gigas) and other bivalve species, will be an essential resource for the discovery of candidate genes and markers associated with traits of commercial, biological, and ecologic importance in bivalve molluscs, including those related to host-pathogen interactions and immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gerchen, Jörn F.; Reichert, Samuel J.; Röhr, Johannes T.; Dieterich, Christoph; Kloas, Werner
2016-01-01
Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species. PMID:27232626
Jue, Nathaniel K.; Batta-Lona, Paola G.; Trusiak, Sarah; Obergfell, Craig; Bucklin, Ann; O’Neill, Michael J.; O’Neill, Rachel J.
2016-01-01
A preliminary genome sequence has been assembled for the Southern Ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Despite the ecological importance of this species in Antarctic pelagic food webs and its potential role as an indicator of changing Southern Ocean ecosystems in response to climate change, no genomic resources are available for S. thompsoni or any closely related urochordate species. Using a multiple-platform, multiple-individual approach, we have produced a 318,767,936-bp genome sequence, covering >50% of the estimated 602 Mb (±173 Mb) genome size for S. thompsoni. Using a nonredundant set of predicted proteins, >50% (16,823) of sequences showed significant homology to known proteins and ∼38% (12,151) of the total protein predictions were associated with Gene Ontology functional information. We have generated 109,958 SNP variant and 9,782 indel predictions for this species, serving as a resource for future phylogenomic and population genetic studies. Comparing the salp genome to available assemblies for four other urochordates, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi and Oikopleura dioica, we found that S. thompsoni shares the previously estimated rapid rates of evolution for these species. High mutation rates are thus independent of genome size, suggesting that rates of evolution >1.5 times that observed for vertebrates are a broad taxonomic characteristic of urochordates. Tests for positive selection implemented in PAML revealed a small number of genes with sites undergoing rapid evolution, including genes involved in ribosome biogenesis and metabolic and immune process that may be reflective of both adaptation to polar, planktonic environments as well as the complex life history of the salps. Finally, we performed an initial survey of small RNAs, revealing the presence of known, conserved miRNAs, as well as novel miRNA genes; unique piRNAs; and mature miRNA signatures for varying developmental stages. Collectively, these resources provide a genomic foundation supporting S. thompsoni as a model species for further examination of the exceptional rates and patterns of genomic evolution shown by urochordates. Additionally, genomic data will allow for the development of molecular indicators of key life history events and processes and afford new understandings and predictions of impacts of climate change on this key species of Antarctic pelagic ecosystems. PMID:27624472
Jaiswal, Sarika; Sheoran, Sonia; Arora, Vasu; Angadi, Ulavappa B; Iquebal, Mir A; Raghav, Nishu; Aneja, Bharti; Kumar, Deepender; Singh, Rajender; Sharma, Pradeep; Singh, G P; Rai, Anil; Tiwari, Ratan; Kumar, Dinesh
2017-01-01
Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs) being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database ( TaSSRDb ) is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169) from complex, hexaploid wheat genome (~17 GB) along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb) and lowest (74.57 SSRs/Mb) SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT) lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus) discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability) testing, EDV (Essentially Derived Variety)/IV (Initial Variety) disputes, seed purity and hybrid wheat testing. All these are required in germplasm management as well as also in the endeavor of wheat productivity.
Jaiswal, Sarika; Sheoran, Sonia; Arora, Vasu; Angadi, Ulavappa B.; Iquebal, Mir A.; Raghav, Nishu; Aneja, Bharti; Kumar, Deepender; Singh, Rajender; Sharma, Pradeep; Singh, G. P.; Rai, Anil; Tiwari, Ratan; Kumar, Dinesh
2017-01-01
Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs) being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database (TaSSRDb) is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169) from complex, hexaploid wheat genome (~17 GB) along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb) and lowest (74.57 SSRs/Mb) SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT) lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus) discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability) testing, EDV (Essentially Derived Variety)/IV (Initial Variety) disputes, seed purity and hybrid wheat testing. All these are required in germplasm management as well as also in the endeavor of wheat productivity. PMID:29234333
WheatGenome.info: an integrated database and portal for wheat genome information.
Lai, Kaitao; Berkman, Paul J; Lorenc, Michal Tadeusz; Duran, Chris; Smits, Lars; Manoli, Sahana; Stiller, Jiri; Edwards, David
2012-02-01
Bread wheat (Triticum aestivum) is one of the most important crop plants, globally providing staple food for a large proportion of the human population. However, improvement of this crop has been limited due to its large and complex genome. Advances in genomics are supporting wheat crop improvement. We provide a variety of web-based systems hosting wheat genome and genomic data to support wheat research and crop improvement. WheatGenome.info is an integrated database resource which includes multiple web-based applications. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second-generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This system includes links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/.
Tian, Wenlan; Paudel, Dev
2017-01-01
Jatropha (Jatropha curcas L.) is an economically important species with a great potential for biodiesel production. To enrich the jatropha genomic databases and resources for microgravity studies, we sequenced and annotated the transcriptome of jatropha and developed SSR and SNP markers from the transcriptome sequences. In total 1,714,433 raw reads with an average length of 441.2 nucleotides were generated. De novo assembling and clustering resulted in 115,611 uniquely assembled sequences (UASs) including 21,418 full-length cDNAs and 23,264 new jatropha transcript sequences. The whole set of UASs were fully annotated, out of which 59,903 (51.81%) were assigned with gene ontology (GO) term, 12,584 (10.88%) had orthologs in Eukaryotic Orthologous Groups (KOG), and 8,822 (7.63%) were mapped to 317 pathways in six different categories in Kyoto Encyclopedia of Genes and Genome (KEGG) database, and it contained 3,588 putative transcription factors. From the UASs, 9,798 SSRs were discovered with AG/CT as the most frequent (45.8%) SSR motif type. Further 38,693 SNPs were detected and 7,584 remained after filtering. This UAS set has enriched the current jatropha genomic databases and provided a large number of genetic markers, which can facilitate jatropha genetic improvement and many other genetic and biological studies. PMID:28154822
EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity
Nahum, Laila A; Reynolds, Matthew T; Wang, Zhengyuan O; Faith, Jeremiah J; Jonna, Rahul; Jiang, Zhi J; Meyer, Thomas J; Pollock, David D
2006-01-01
Background Evolutionary genomics requires management and filtering of large numbers of diverse genomic sequences for accurate analysis and inference on evolutionary processes of genomic and functional change. We developed Evolutionary Genomics and Biodiversity (EGenBio; ) to begin to address this. Description EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs. Conclusion EGenBio was designed to serve as a platform for tools and resources to ease combined analysis in evolution, genomics, and biodiversity. PMID:17118150
Mofiz, Ehtesham; Holt, Deborah C; Seemann, Torsten; Currie, Bart J; Fischer, Katja; Papenfuss, Anthony T
2016-06-02
The scabies mite, Sarcoptes scabiei, is a parasitic arachnid and cause of the infectious skin disease scabies in humans and mange in other animal species. Scabies infections are a major health problem, particularly in remote Indigenous communities in Australia, where secondary group A streptococcal and Staphylococcus aureus infections of scabies sores are thought to drive the high rate of rheumatic heart disease and chronic kidney disease. We sequenced the genome of two samples of Sarcoptes scabiei var. hominis obtained from unrelated patients with crusted scabies located in different parts of northern Australia using the Illumina HiSeq. We also sequenced samples of Sarcoptes scabiei var. suis from a pig model. Because of the small size of the scabies mite, these data are derived from pools of thousands of mites and are metagenomic, including host and microbiome DNA. We performed cleaning and de novo assembly and present Sarcoptes scabiei var. hominis and var. suis draft reference genomes. We have constructed a preliminary annotation of this reference comprising 13,226 putative coding sequences based on sequence similarity to known proteins. We have developed extensive genomic resources for the scabies mite, including reference genomes and a preliminary annotation.
EPAs National Center for Computational Toxicology is developing methods that apply computational chemistry, high-throughput screening (HTS) and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.
Takeda, Hiroyuki
2008-06-01
The medaka Oryzias latipes is a small egg-laying freshwater teleost, and has become an excellent model system for developmental genetics and evolutionary biology. The medaka genome is relatively small in size, approximately 800 Mb, and the genome sequencing project was recently completed by Japanese research groups, providing a high-quality draft genome sequence of the inbred Hd-rR strain of medaka. In this review, I present an overview of the medaka genome project including genome resources, followed by specific findings obtained with the medaka draft genome. In particular, I focus on the analysis that was done by taking advantage of the medaka system, such as the sex chromosome differentiation and the regional history of medaka species using single nucleotide polymorphisms as genomic markers.
van der Nest, Magriet A; Beirn, Lisa A; Crouch, Jo Anne; Demers, Jill E; de Beer, Z Wilhelm; De Vos, Lieschen; Gordon, Thomas R; Moncalvo, Jean-Marc; Naidoo, Kershney; Sanchez-Ramirez, Santiago; Roodt, Danielle; Santana, Quentin C; Slinski, Stephanie L; Stata, Matt; Taerum, Stephen J; Wilken, P Markus; Wilson, Andrea M; Wingfield, Michael J; Wingfield, Brenda D
2014-12-01
The genomes of fungi provide an important resource to resolve issues pertaining to their taxonomy, biology, and evolution. The genomes of Amanita jacksonii, Ceratocystis albifundus, a Fusarium circinatum variant, Huntiella omanensis, Leptographium procerum, Sclerotinia echinophila, and Rutstroemia sydowiana are presented in this genome announcement. These seven genomes are from a number of fungal pathogens and economically important species. The genome sizes range from 27 Mb in the case of Ceratocystis albifundus to 51.9 Mb for Rutstroemia sydowiana. The latter also encodes for a predicted 17 350 genes, more than double that of Ceratocystis albifundus. These genomes will add to the growing body of knowledge of these fungi and provide a value resource to researchers studying these fungi.
Jayashree, B; Jagadeesh, V T; Hoisington, D
2008-05-01
The availability of complete, annotated genomic sequence information in model organisms is a rich resource that can be extended to understudied orphan crops through comparative genomic approaches. We report here a software tool (cisprimertool) for the identification of conserved intron scanning regions using expressed sequence tag alignments to a completely sequenced model crop genome. The method used is based on earlier studies reporting the assessment of conserved intron scanning primers (called CISP) within relatively conserved exons located near exon-intron boundaries from onion, banana, sorghum and pearl millet alignments with rice. The tool is freely available to academic users at http://www.icrisat.org/gt-bt/CISPTool.htm. © 2007 ICRISAT.
The Pediatric Cancer Genome Project
Downing, James R; Wilson, Richard K; Zhang, Jinghui; Mardis, Elaine R; Pui, Ching-Hon; Ding, Li; Ley, Timothy J; Evans, William E
2013-01-01
The St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project (PCGP) is participating in the international effort to identify somatic mutations that drive cancer. These cancer genome sequencing efforts will not only yield an unparalleled view of the altered signaling pathways in cancer but should also identify new targets against which novel therapeutics can be developed. Although these projects are still deep in the phase of generating primary DNA sequence data, important results are emerging and valuable community resources are being generated that should catalyze future cancer research. We describe here the rationale for conducting the PCGP, present some of the early results of this project and discuss the major lessons learned and how these will affect the application of genomic sequencing in the clinic. PMID:22641210
Thakur, Shalabh; Guttman, David S
2016-06-30
Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .
Liu, Han; Chen, Chunhai; Gao, Zexia; Min, Jiumeng; Gu, Yongming; Jian, Jianbo; Jiang, Xiewu; Cai, Huimin; Ebersberger, Ingo; Xu, Meng; Zhang, Xinhui; Chen, Jianwei; Luo, Wei; Chen, Boxiang; Chen, Junhui; Liu, Hong; Li, Jiang; Lai, Ruifang; Bai, Mingzhou; Wei, Jin; Yi, Shaokui; Wang, Huanling; Cao, Xiaojuan; Zhou, Xiaoyun; Zhao, Yuhua; Wei, Kaijian; Yang, Ruibin; Liu, Bingnan; Zhao, Shancen; Fang, Xiaodong
2017-01-01
Abstract The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation. PMID:28535200
Farm animal genomics and informatics: an update
Fadiel, Ahmed; Anidi, Ifeanyi; Eichenbaum, Kenneth D.
2005-01-01
Farm animal genomics is of interest to a wide audience of researchers because of the utility derived from understanding how genomics and proteomics function in various organisms. Applications such as xenotransplantation, increased livestock productivity, bioengineering new materials, products and even fabrics are several reasons for thriving farm animal genome activity. Currently mined in rapidly growing data warehouses, completed genomes of chicken, fish and cows are available but are largely stored in decentralized data repositories. In this paper, we provide an informatics primer on farm animal bioinformatics and genome project resources which drive attention to the most recent advances in the field. We hope to provide individuals in biotechnology and in the farming industry with information on resources and updates concerning farm animal genome projects. PMID:16275782
Jeong, Hyeonsoo; Kim, Kwondo; Caetano-Anollés, Kelsey; Kim, Heebal; Kim, Byung-Ki; Yi, Jun-Koo; Ha, Jae-Jung; Cho, Seoae; Oh, Dong Yep
2016-05-24
Chicken, Gallus gallus, is a valuable species both as a food source and as a model organism for scientific research. Here, we sequenced the genome of Gyeongbuk Araucana, a rare chicken breed with unique phenotypic characteristics including flight ability, large body size, and laying blue-shelled eggs, to identify its genomic features. We generated genomes of Gyeongbuk Araucana, Leghorn, and Korean Native Chicken at a total of 33.5, 35.82, and 33.23 coverage depth, respectively. Along with the genomes of 12 Chinese breeds, we identified genomic variants of 16.3 million SNVs and 2.3 million InDels in mapped regions. Additionally, through assembly of unmapped reads and selective sweep, we identified candidate genes that fall into heart, vasculature and muscle development and body growth categories, which provided insight into Gyeongbuk Araucana's phenotypic traits. Finally, genetic variation based on the transposable element insertion pattern was investigated to elucidate the features of transposable elements related to blue egg shell formation. This study presents results of the first genomic study on the Gyeongbuk Araucana breed; it has potential to serve as an invaluable resource for future research on the genomic characteristics of this chicken breed as well as others.
SMART on FHIR Genomics: facilitating standardized clinico-genomic apps.
Alterovitz, Gil; Warner, Jeremy; Zhang, Peijin; Chen, Yishen; Ullman-Cullere, Mollie; Kreda, David; Kohane, Isaac S
2015-11-01
Supporting clinical decision support for personalized medicine will require linking genome and phenome variants to a patient's electronic health record (EHR), at times on a vast scale. Clinico-genomic data standards will be needed to unify how genomic variant data are accessed from different sequencing systems. A specification for the basis of a clinic-genomic standard, building upon the current Health Level Seven International Fast Healthcare Interoperability Resources (FHIR®) standard, was developed. An FHIR application protocol interface (API) layer was attached to proprietary sequencing platforms and EHRs in order to expose gene variant data for presentation to the end-user. Three representative apps based on the SMART platform were built to test end-to-end feasibility, including integration of genomic and clinical data. Successful design, deployment, and use of the API was demonstrated and adopted by HL7 Clinical Genomics Workgroup. Feasibility was shown through development of three apps by various types of users with background levels and locations. This prototyping work suggests that an entirely data (and web) standards-based approach could prove both effective and efficient for advancing personalized medicine. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sserwadda, Ivan; Amujal, Marion; Namatovu, Norah
2018-01-01
HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers. PMID:29755620
Therapeutic genome engineering via CRISPR-Cas systems.
Moreno, Ana M; Mali, Prashant
2017-07-01
Differences in genomes underlie most organismal diversity, and aberrations in genomes underlie many disease states. With the growing knowledge of the genetic and pathogenic basis of human disease, development of safe and efficient platforms for genome and epigenome engineering will transform our ability to therapeutically target human diseases and also potentially engineer disease resistance. In this regard, the recent advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) RNA-guided nuclease systems have transformed our ability to target nucleic acids. Here we review therapeutic genome engineering applications with a specific focus on the CRISPR-Cas toolsets. We summarize past and current work, and also outline key challenges and future directions. WIREs Syst Biol Med 2017, 9:e1380. doi: 10.1002/wsbm.1380 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
The power and promise of applying genomics to honey bee health.
Grozinger, Christina M; Robinson, Gene E
2015-08-01
New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.
A Primer on Infectious Disease Bacterial Genomics
Petkau, Aaron; Knox, Natalie; Graham, Morag; Van Domselaar, Gary
2016-01-01
SUMMARY The number of large-scale genomics projects is increasing due to the availability of affordable high-throughput sequencing (HTS) technologies. The use of HTS for bacterial infectious disease research is attractive because one whole-genome sequencing (WGS) run can replace multiple assays for bacterial typing, molecular epidemiology investigations, and more in-depth pathogenomic studies. The computational resources and bioinformatics expertise required to accommodate and analyze the large amounts of data pose new challenges for researchers embarking on genomics projects for the first time. Here, we present a comprehensive overview of a bacterial genomics projects from beginning to end, with a particular focus on the planning and computational requirements for HTS data, and provide a general understanding of the analytical concepts to develop a workflow that will meet the objectives and goals of HTS projects. PMID:28590251
Ma, Yazhen; Xu, Ting; Wan, Dongshi; Ma, Tao; Shi, Sheng; Liu, Jianquan; Hu, Quanjun
2015-03-17
Soil salinity is a significant factor that impairs plant growth and agricultural productivity, and numerous efforts are underway to enhance salt tolerance of economically important plants. Populus species are widely cultivated for diverse uses. Especially, they grow in different habitats, from salty soil to mesophytic environment, and are therefore used as a model genus for elucidating physiological and molecular mechanisms of stress tolerance in woody plants. The Salinity Tolerant Poplar Database (STPD) is an integrative database for salt-tolerant poplar genome biology. Currently the STPD contains Populus euphratica genome and its related genetic resources. P. euphratica, with a preference of the salty habitats, has become a valuable genetic resource for the exploitation of tolerance characteristics in trees. This database contains curated data including genomic sequence, genes and gene functional information, non-coding RNA sequences, transposable elements, simple sequence repeats and single nucleotide polymorphisms information of P. euphratica, gene expression data between P. euphratica and Populus tomentosa, and whole-genome alignments between Populus trichocarpa, P. euphratica and Salix suchowensis. The STPD provides useful searching and data mining tools, including GBrowse genome browser, BLAST servers and genome alignments viewer, which can be used to browse genome regions, identify similar sequences and visualize genome alignments. Datasets within the STPD can also be downloaded to perform local searches. A new Salinity Tolerant Poplar Database has been developed to assist studies of salt tolerance in trees and poplar genomics. The database will be continuously updated to incorporate new genome-wide data of related poplar species. This database will serve as an infrastructure for researches on the molecular function of genes, comparative genomics, and evolution in closely related species as well as promote advances in molecular breeding within Populus. The STPD can be accessed at http://me.lzu.edu.cn/stpd/ .
A genome-wide resource for the analysis of protein localisation in Drosophila
Sarov, Mihail; Barz, Christiane; Jambor, Helena; Hein, Marco Y; Schmied, Christopher; Suchold, Dana; Stender, Bettina; Janosch, Stephan; KJ, Vinay Vikas; Krishnan, RT; Krishnamoorthy, Aishwarya; Ferreira, Irene RS; Ejsmont, Radoslaw K; Finkl, Katja; Hasse, Susanne; Kämpfer, Philipp; Plewka, Nicole; Vinis, Elisabeth; Schloissnig, Siegfried; Knust, Elisabeth; Hartenstein, Volker; Mann, Matthias; Ramaswami, Mani; VijayRaghavan, K; Tomancak, Pavel; Schnorrer, Frank
2016-01-01
The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI: http://dx.doi.org/10.7554/eLife.12068.001 PMID:26896675
Lepcha, Patrush; Egan, Ashley N; Doyle, Jeff J; Sathyanarayana, N
2017-09-01
Winged bean, Psophocarpus tetragonolobus (L.) DC., is analogous to soybean in yield and nutritional quality, proving a valuable alternative to soybean in tropical regions of the world. The presence of anti-nutritional factors and high costs associated with indeterminate plant habit have been major concerns in this crop. But occurrence of good genetic variability in germplasm collections offers precious resources for winged bean breeding. However, lack of germplasm characterization is hindering such efforts. From a genomic standpoint, winged bean has been little studied despite rapid advancement in legume genomics in the last decade. Exploiting modern genomics/breeding approaches for genetic resource characterization and the breeding of early maturing, high yielding, determinate varieties which are disease resistant and free of anti-nutritional factors along with developing consumer friendly value-added products of local significance are great challenges and opportunities in the future that would boost cultivation of winged bean in the tropics. We review past efforts and future prospects towards winged bean improvement.
Transcriptomic resources for environmental risk assessment: a case study in the Venice lagoon.
Milan, M; Pauletto, M; Boffo, L; Carrer, C; Sorrentino, F; Ferrari, G; Pavan, L; Patarnello, T; Bargelloni, L
2015-02-01
The development of new resources to evaluate the environmental status is becoming increasingly important representing a key challenge for ocean and coastal management. Recently, the employment of transcriptomics in aquatic toxicology has led to increasing initiatives proposing to integrate eco-toxicogenomics in the evaluation of marine ecosystem health. However, several technical issues need to be addressed before introducing genomics as a reliable tool in regulatory ecotoxicology. The Venice lagoon constitutes an excellent case, in which the assessment of environmental risks derived from the nearby industrial activities represents a crucial task. In this context, the potential role of genomics to assist environmental monitoring was investigated through the definition of reliable gene expression markers associated to chemical contamination in Manila clams, and their subsequent employment for the classification of Venice lagoon areas. Overall, the present study addresses key issues to evaluate the future outlooks of genomics in the environmental monitoring and risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Jiaowen; Zhao, Zicheng; Li, Bo; Qin, Cheng; Wu, Zhiming; Trejo-Saavedra, Diana L; Luo, Xirong; Cui, Junjie; Rivera-Bustamante, Rafael F; Li, Shuaicheng; Hu, Kailin
2016-01-07
The sequences of the full set of pepper genomes including nuclear, mitochondrial and chloroplast are now available for use. However, the overall of simple sequence repeats (SSR) distribution in these genomes and their practical implications for molecular marker development in Capsicum have not yet been described. Here, an average of 868,047.50, 45.50 and 30.00 SSR loci were identified in the nuclear, mitochondrial and chloroplast genomes of pepper, respectively. Subsequently, systematic comparisons of various species, genome types, motif lengths, repeat numbers and classified types were executed and discussed. In addition, a local database composed of 113,500 in silico unique SSR primer pairs was built using a homemade bioinformatics workflow. As a pilot study, 65 polymorphic markers were validated among a wide collection of 21 Capsicum genotypes with allele number and polymorphic information content value per marker raging from 2 to 6 and 0.05 to 0.64, respectively. Finally, a comparison of the clustering results with those of a previous study indicated the usability of the newly developed SSR markers. In summary, this first report on the comprehensive characterization of SSR motifs in pepper genomes and the very large set of SSR primer pairs will benefit various genetic studies in Capsicum.
Cheng, Jiaowen; Zhao, Zicheng; Li, Bo; Qin, Cheng; Wu, Zhiming; Trejo-Saavedra, Diana L.; Luo, Xirong; Cui, Junjie; Rivera-Bustamante, Rafael F.; Li, Shuaicheng; Hu, Kailin
2016-01-01
The sequences of the full set of pepper genomes including nuclear, mitochondrial and chloroplast are now available for use. However, the overall of simple sequence repeats (SSR) distribution in these genomes and their practical implications for molecular marker development in Capsicum have not yet been described. Here, an average of 868,047.50, 45.50 and 30.00 SSR loci were identified in the nuclear, mitochondrial and chloroplast genomes of pepper, respectively. Subsequently, systematic comparisons of various species, genome types, motif lengths, repeat numbers and classified types were executed and discussed. In addition, a local database composed of 113,500 in silico unique SSR primer pairs was built using a homemade bioinformatics workflow. As a pilot study, 65 polymorphic markers were validated among a wide collection of 21 Capsicum genotypes with allele number and polymorphic information content value per marker raging from 2 to 6 and 0.05 to 0.64, respectively. Finally, a comparison of the clustering results with those of a previous study indicated the usability of the newly developed SSR markers. In summary, this first report on the comprehensive characterization of SSR motifs in pepper genomes and the very large set of SSR primer pairs will benefit various genetic studies in Capsicum. PMID:26739748
Comparative Genomics as a Foundation for Evo-Devo Studies in Birds.
Grayson, Phil; Sin, Simon Y W; Sackton, Timothy B; Edwards, Scott V
2017-01-01
Developmental genomics is a rapidly growing field, and high-quality genomes are a useful foundation for comparative developmental studies. A high-quality genome forms an essential reference onto which the data from numerous assays and experiments, including ChIP-seq, ATAC-seq, and RNA-seq, can be mapped. A genome also streamlines and simplifies the development of primers used to amplify putative regulatory regions for enhancer screens, cDNA probes for in situ hybridization, microRNAs (miRNAs) or short hairpin RNAs (shRNA) for RNA interference (RNAi) knockdowns, mRNAs for misexpression studies, and even guide RNAs (gRNAs) for CRISPR knockouts. Finally, much can be gleaned from comparative genomics alone, including the identification of highly conserved putative regulatory regions. This chapter provides an overview of laboratory and bioinformatics protocols for DNA extraction, library preparation, library quantification, and genome assembly, from fresh or frozen tissue to a draft avian genome. Generating a high-quality draft genome can provide a developmental research group with excellent resources for their study organism, opening the doors to many additional assays and experiments.
Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant.
Wu, Pingzhi; Zhou, Changpin; Cheng, Shifeng; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Chen, Yanbo; Chen, Yan; Ni, Peixiang; Wang, Ying; Xu, Xun; Huang, Ying; Song, Chi; Wang, Zhiwen; Shi, Nan; Zhang, Xudong; Fang, Xiaohua; Yang, Qing; Jiang, Huawu; Chen, Yaping; Li, Meiru; Wang, Ying; Chen, Fan; Wang, Jun; Wu, Guojiang
2015-03-01
The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh
2014-01-01
Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1–6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ PMID:25380781
Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh
2014-01-01
Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1-6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ © The Author(s) 2014. Published by Oxford University Press.
Vera, Manuel; Bello, Xabier; Álvarez-Dios, Jose-Antonio; Pardo, Belen G; Sánchez, Laura; Carlsson, Jens; Carlsson, Jeanette E L; Bartolomé, Carolina; Maside, Xulio; Martinez, Paulino
2015-12-01
The flat oyster (Ostrea edulis) is one of the most appreciated molluscs in Europe, but its production has been greatly reduced by the parasite Bonamia ostreae. Here, new generation genomic resources were used to analyse the repetitive fraction of the oyster genome, with the aim of developing molecular markers to face this main oyster production challenge. The resulting oyster database, consists of two sets of 10,318 and 7159 unique contigs (4.8 Mbp and 6.8 Mbp in total length) representing the oyster's genome (WG) and haemocyte transcriptome (HT), respectively. A total of 1083 sequences were identified as TE-derived, which corresponded to 4.0% of WG and 1.1% of HT. They were clustered into 142 homology groups, most of which were assigned to the Penelope order of retrotransposons, and to the Helitron and TIR DNA-transposons. Simple repeats and rRNA pseudogenes, also made a significant contribution to the oyster's genome (0.5% and 0.3% of WG and HT, respectively).The most frequent short tandem repeats identified in WG were tetranucleotide motifs while trinucleotide motifs were in HT. Forty identified microsatellite loci, 20 from each database, were selected for technical validation. Success was much lower among WG than HT microsatellites (15% vs 55%), which could reflect higher variation in anonymous regions interfering with primer annealing. All microsatellites developed adjusted to Hardy-Weinberg proportions and represent a useful tool to support future breeding programmes and to manage genetic resources of natural flat oyster beds. Copyright © 2015 Elsevier B.V. All rights reserved.
NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.
Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh
2016-01-01
Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.
NeisseriaBase: a specialised Neisseria genomic resource and analysis platform
Zheng, Wenning; Mutha, Naresh V.R.; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S.; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah
2016-01-01
Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my. PMID:27017950
Smith, Jeramiah J; Kuraku, Shigehiro; Holt, Carson; Sauka-Spengler, Tatjana; Jiang, Ning; Campbell, Michael S; Yandell, Mark D; Manousaki, Tereza; Meyer, Axel; Bloom, Ona E; Morgan, Jennifer R; Buxbaum, Joseph D; Sachidanandam, Ravi; Sims, Carrie; Garruss, Alexander S; Cook, Malcolm; Krumlauf, Robb; Wiedemann, Leanne M; Sower, Stacia A; Decatur, Wayne A; Hall, Jeffrey A; Amemiya, Chris T; Saha, Nil R; Buckley, Katherine M; Rast, Jonathan P; Das, Sabyasachi; Hirano, Masayuki; McCurley, Nathanael; Guo, Peng; Rohner, Nicolas; Tabin, Clifford J; Piccinelli, Paul; Elgar, Greg; Ruffier, Magali; Aken, Bronwen L; Searle, Stephen MJ; Muffato, Matthieu; Pignatelli, Miguel; Herrero, Javier; Jones, Matthew; Brown, C Titus; Chung-Davidson, Yu-Wen; Nanlohy, Kaben G; Libants, Scot V; Yeh, Chu-Yin; McCauley, David W; Langeland, James A; Pancer, Zeev; Fritzsch, Bernd; de Jong, Pieter J; Zhu, Baoli; Fulton, Lucinda L; Theising, Brenda; Flicek, Paul; Bronner, Marianne E; Warren, Wesley C; Clifton, Sandra W; Wilson, Richard K; Li, Weiming
2013-01-01
Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ~500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms. PMID:23435085
Application of Genetic/Genomic Approaches to Allergic Disorders
Baye, Tesfaye M.; Martin, Lisa J.; Khurana Hershey, Gurjit K.
2010-01-01
Completion of the human genome project and rapid progress in genetics and bioinformatics have enabled the development of large public databases, which include genetic and genomic data linked to clinical health data. With the massive amount of information available, clinicians and researchers have the unique opportunity to complement and integrate their daily practice with the existing resources to clarify the underlying etiology of complex phenotypes such as allergic diseases. The genome itself is now often utilized as a starting point for many studies and multiple innovative approaches have emerged applying genetic/genomic strategies to key questions in the field of allergy and immunology. There have been several successes, which have uncovered new insights into the biologic underpinnings of allergic disorders. Herein, we will provide an in depth review of genomic approaches to identifying genes and biologic networks involved in allergic diseases. We will discuss genetic and phenotypic variation, statistical approaches for gene discovery, public databases, functional genomics, clinical implications, and the challenges that remain. PMID:20638111
The genome sequence of the colonial chordate, Botryllus schlosseri
Voskoboynik, Ayelet; Neff, Norma F; Sahoo, Debashis; Newman, Aaron M; Pushkarev, Dmitry; Koh, Winston; Passarelli, Benedetto; Fan, H Christina; Mantalas, Gary L; Palmeri, Karla J; Ishizuka, Katherine J; Gissi, Carmela; Griggio, Francesca; Ben-Shlomo, Rachel; Corey, Daniel M; Penland, Lolita; White, Richard A; Weissman, Irving L; Quake, Stephen R
2013-01-01
Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI: http://dx.doi.org/10.7554/eLife.00569.001 PMID:23840927
Chromosome-scale assembly of the Monopterus genome.
Zhao, Xueya; Luo, Majing; Li, Zhigang; Zhong, Pei; Cheng, Yibin; Lai, Fengling; Wang, Xin; Min, Jiumeng; Bai, Mingzhou; Yang, Yulan; Cheng, Hanhua; Zhou, Rongjia
2018-05-01
The teleost fish Monopterus albus is emerging as a new model for biological studies due to its natural sex transition and small genome, in addition to its enormous economic and potential medical value. However, no genomic information for the Monopterus is currently available. Here, we sequenced and de novo assembled the genome of M. albus and report the de novochromosome assembly by FISH walking assisted by conserved synteny (Cafs). Using Cafs, 328 scaffolds were assembled into 12 chromosomes, which covered genomic sequences of 555 Mb, accounting for 81.3% of the sequences assembled in scaffolds (∼689 Mb). A total of 18 ,660 genes were mapped on the chromosomes and showed a nonrandom distribution along chromosomes. We report the first reference genome of the Monopterus and provide an efficient Cafs strategy for a de novo chromosome-level assembly of the Monopterus genome, which provides a valuable resource, not only for further studies in genetics, evolution, and development, particularly sex determination, but also for breed improvement of the species.
Szczecińska, Monika; Sawicki, Jakub
2015-09-15
The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161-162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatilla vernalis. The determination of complete plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae.
Szczecińska, Monika; Sawicki, Jakub
2015-01-01
Background: The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Methodology/principal findings: Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161–162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatilla vernalis. Conclusions/significance: The determination of complete plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae. PMID:26389887
Genetic blueprint of the zoonotic pathogen Toxocara canis
Zhu, Xing-Quan; Korhonen, Pasi K.; Cai, Huimin; Young, Neil D.; Nejsum, Peter; von Samson-Himmelstjerna, Georg; Boag, Peter R.; Tan, Patrick; Li, Qiye; Min, Jiumeng; Yang, Yulan; Wang, Xiuhua; Fang, Xiaodong; Hall, Ross S.; Hofmann, Andreas; Sternberg, Paul W.; Jex, Aaron R.; Gasser, Robin B.
2015-01-01
Toxocara canis is a zoonotic parasite of major socioeconomic importance worldwide. In humans, this nematode causes disease (toxocariasis) mainly in the under-privileged communities in developed and developing countries. Although relatively well studied from clinical and epidemiological perspectives, to date, there has been no global investigation of the molecular biology of this parasite. Here we use next-generation sequencing to produce a draft genome and transcriptome of T. canis to support future biological and biotechnological investigations. This genome is 317 Mb in size, has a repeat content of 13.5% and encodes at least 18,596 protein-coding genes. We study transcription in a larval, as well as adult female and male stages, characterize the parasite’s gene-silencing machinery, explore molecules involved in development or host–parasite interactions and predict intervention targets. The draft genome of T. canis should provide a useful resource for future molecular studies of this and other, related parasites. PMID:25649139
Database Resources of the BIG Data Center in 2018.
2018-01-04
The BIG Data Center at Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences provides freely open access to a suite of database resources in support of worldwide research activities in both academia and industry. With the vast amounts of omics data generated at ever-greater scales and rates, the BIG Data Center is continually expanding, updating and enriching its core database resources through big-data integration and value-added curation, including BioCode (a repository archiving bioinformatics tool codes), BioProject (a biological project library), BioSample (a biological sample library), Genome Sequence Archive (GSA, a data repository for archiving raw sequence reads), Genome Warehouse (GWH, a centralized resource housing genome-scale data), Genome Variation Map (GVM, a public repository of genome variations), Gene Expression Nebulas (GEN, a database of gene expression profiles based on RNA-Seq data), Methylation Bank (MethBank, an integrated databank of DNA methylomes), and Science Wikis (a series of biological knowledge wikis for community annotations). In addition, three featured web services are provided, viz., BIG Search (search as a service; a scalable inter-domain text search engine), BIG SSO (single sign-on as a service; a user access control system to gain access to multiple independent systems with a single ID and password) and Gsub (submission as a service; a unified submission service for all relevant resources). All of these resources are publicly accessible through the home page of the BIG Data Center at http://bigd.big.ac.cn. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea
2014-01-01
Background Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. Results We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs. We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. Conclusions Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding. PMID:24521263
Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W.; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G.
2013-01-01
Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID:23671567
Solving the Problem: Genome Annotation Standards before the Data Deluge.
Klimke, William; O'Donovan, Claire; White, Owen; Brister, J Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D; Tatusova, Tatiana
2011-10-15
The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries.
Solving the Problem: Genome Annotation Standards before the Data Deluge
Klimke, William; O'Donovan, Claire; White, Owen; Brister, J. Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D.; Tatusova, Tatiana
2011-01-01
The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries. PMID:22180819
Xia, Chongjing; Wang, Meinan; Yin, Chuntao; Cornejo, Omar E; Hulbert, Scot; Chen, Xianming
2018-05-24
Puccinia striiformis f. sp. tritici (Pst) causes devastating stripe (yellow) rust on wheat and P. striiformis f. sp. hordei (Psh) causes stripe rust on barley. Several Pst genomes are available, but no Psh genome is available. More genomes of Pst and Psh are needed to understand the genome evolution and molecular mechanisms of their pathogenicity. We sequenced Pst isolate 93-210 and Psh isolate 93TX-2 using PacBio and Illumina technologies, and RNA sequencing. Their genomic sequences were assembled to contigs with high continuity and showed significant structural differences. The circular mitochondria genomes of both were complete. These genomes provide high-quality resources for deciphering the genomic basis of rapid evolution and host adaptation, identifying genes for avirulence and other important traits, and studying host-pathogen interaction.
Teaching strategies to incorporate genomics education into academic nursing curricula.
Quevedo Garcia, Sylvia P; Greco, Karen E; Loescher, Lois J
2011-11-01
The translation of genomic science into health care has expanded our ability to understand the effects of genomics on human health and disease. As genomic advances continue, nurses are expected to have the knowledge and skills to translate genomic information into improved patient care. This integrative review describes strategies used to teach genomics in academic nursing programs and their facilitators and barriers to inclusion in nursing curricula. The Learning Engagement Model and the Diffusion of Innovations Theory guided the interpretation of findings. CINAHL, Medline, and Web of Science were resources for articles published during the past decade that included strategies for teaching genomics in academic nursing programs. Of 135 articles, 13 met criteria for review. Examples of effective genomics teaching strategies included clinical application through case studies, storytelling, online genomics resources, student self-assessment, guest lecturers, and a genetics focus group. Most strategies were not evaluated for effectiveness. Copyright 2011, SLACK Incorporated.
Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E
2015-04-01
Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.
Schoof, Heiko; Zaccaria, Paolo; Gundlach, Heidrun; Lemcke, Kai; Rudd, Stephen; Kolesov, Grigory; Arnold, Roland; Mewes, H. W.; Mayer, Klaus F. X.
2002-01-01
Arabidopsis thaliana is the first plant for which the complete genome has been sequenced and published. Annotation of complex eukaryotic genomes requires more than the assignment of genetic elements to the sequence. Besides completing the list of genes, we need to discover their cellular roles, their regulation and their interactions in order to understand the workings of the whole plant. The MIPS Arabidopsis thaliana Database (MAtDB; http://mips.gsf.de/proj/thal/db) started out as a repository for genome sequence data in the European Scientists Sequencing Arabidopsis (ESSA) project and the Arabidopsis Genome Initiative. Our aim is to transform MAtDB into an integrated biological knowledge resource by integrating diverse data, tools, query and visualization capabilities and by creating a comprehensive resource for Arabidopsis as a reference model for other species, including crop plants. PMID:11752263
An integrated map of genetic variation from 1,092 human genomes
2012-01-01
Summary Through characterising the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help understand the genetic contribution to disease. We describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methodologies to integrate information across multiple algorithms and diverse data sources we provide a validated haplotype map of 38 million SNPs, 1.4 million indels and over 14 thousand larger deletions. We show that individuals from different populations carry different profiles of rare and common variants and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways and that each individual harbours hundreds of rare non-coding variants at conserved sites, such as transcription-factor-motif disrupting changes. This resource, which captures up to 98% of accessible SNPs at a frequency of 1% in populations of medical genetics focus, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations. PMID:23128226
NCBI Epigenomics: what's new for 2013.
Fingerman, Ian M; Zhang, Xuan; Ratzat, Walter; Husain, Nora; Cohen, Robert F; Schuler, Gregory D
2013-01-01
The Epigenomics resource at the National Center for Biotechnology Information (NCBI) has been created to serve as a comprehensive public repository for whole-genome epigenetic data sets (www.ncbi.nlm.nih.gov/epigenomics). We have constructed this resource by selecting the subset of epigenetics-specific data from the Gene Expression Omnibus (GEO) database and then subjecting them to further review and annotation. Associated data tracks can be viewed using popular genome browsers or downloaded for local analysis. We have performed extensive user testing throughout the development of this resource, and new features and improvements are continuously being implemented based on the results. We have made substantial usability improvements to user interfaces, enhanced functionality, made identification of data tracks of interest easier and created new tools for preliminary data analyses. Additionally, we have made efforts to enhance the integration between the Epigenomics resource and other NCBI databases, including the Gene database and PubMed. Data holdings have also increased dramatically since the initial publication describing the NCBI Epigenomics resource and currently consist of >3700 viewable and downloadable data tracks from 955 biological sources encompassing five well-studied species. This updated manuscript highlights these changes and improvements.
NCBI Epigenomics: What’s new for 2013
Fingerman, Ian M.; Zhang, Xuan; Ratzat, Walter; Husain, Nora; Cohen, Robert F.; Schuler, Gregory D.
2013-01-01
The Epigenomics resource at the National Center for Biotechnology Information (NCBI) has been created to serve as a comprehensive public repository for whole-genome epigenetic data sets (www.ncbi.nlm.nih.gov/epigenomics). We have constructed this resource by selecting the subset of epigenetics-specific data from the Gene Expression Omnibus (GEO) database and then subjecting them to further review and annotation. Associated data tracks can be viewed using popular genome browsers or downloaded for local analysis. We have performed extensive user testing throughout the development of this resource, and new features and improvements are continuously being implemented based on the results. We have made substantial usability improvements to user interfaces, enhanced functionality, made identification of data tracks of interest easier and created new tools for preliminary data analyses. Additionally, we have made efforts to enhance the integration between the Epigenomics resource and other NCBI databases, including the Gene database and PubMed. Data holdings have also increased dramatically since the initial publication describing the NCBI Epigenomics resource and currently consist of >3700 viewable and downloadable data tracks from 955 biological sources encompassing five well-studied species. This updated manuscript highlights these changes and improvements. PMID:23193265
Update on RefSeq microbial genomes resources.
Tatusova, Tatiana; Ciufo, Stacy; Federhen, Scott; Fedorov, Boris; McVeigh, Richard; O'Neill, Kathleen; Tolstoy, Igor; Zaslavsky, Leonid
2015-01-01
NCBI RefSeq genome collection http://www.ncbi.nlm.nih.gov/genome represents all three major domains of life: Eukarya, Bacteria and Archaea as well as Viruses. Prokaryotic genome sequences are the most rapidly growing part of the collection. During the year of 2014 more than 10,000 microbial genome assemblies have been publicly released bringing the total number of prokaryotic genomes close to 30,000. We continue to improve the quality and usability of the microbial genome resources by providing easy access to the data and the results of the pre-computed analysis, and improving analysis and visualization tools. A number of improvements have been incorporated into the Prokaryotic Genome Annotation Pipeline. Several new features have been added to RefSeq prokaryotic genomes data processing pipeline including the calculation of genome groups (clades) and the optimization of protein clusters generation using pan-genome approach. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.
Standardized Metadata for Human Pathogen/Vector Genomic Sequences
Dugan, Vivien G.; Emrich, Scott J.; Giraldo-Calderón, Gloria I.; Harb, Omar S.; Newman, Ruchi M.; Pickett, Brett E.; Schriml, Lynn M.; Stockwell, Timothy B.; Stoeckert, Christian J.; Sullivan, Dan E.; Singh, Indresh; Ward, Doyle V.; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M.; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H.; Cuomo, Christina A.; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W. Florian; Giovanni, Maria; Henn, Matthew R.; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C.; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F.; Murphy, Cheryl I.; Myers, Garry; Neafsey, Daniel E.; Nelson, Karen E.; Nierman, William C.; Puzak, Julia; Rasko, David; Roos, David S.; Sadzewicz, Lisa; Silva, Joana C.; Sobral, Bruno; Squires, R. Burke; Stevens, Rick L.; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H.
2014-01-01
High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium’s minimal information (MIxS) and NCBI’s BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant. PMID:24936976
Standardized metadata for human pathogen/vector genomic sequences.
Dugan, Vivien G; Emrich, Scott J; Giraldo-Calderón, Gloria I; Harb, Omar S; Newman, Ruchi M; Pickett, Brett E; Schriml, Lynn M; Stockwell, Timothy B; Stoeckert, Christian J; Sullivan, Dan E; Singh, Indresh; Ward, Doyle V; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H; Cuomo, Christina A; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W Florian; Giovanni, Maria; Henn, Matthew R; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F; Murphy, Cheryl I; Myers, Garry; Neafsey, Daniel E; Nelson, Karen E; Nierman, William C; Puzak, Julia; Rasko, David; Roos, David S; Sadzewicz, Lisa; Silva, Joana C; Sobral, Bruno; Squires, R Burke; Stevens, Rick L; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H
2014-01-01
High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant.
Ma, Yu; Coyne, Clarice J; Grusak, Michael A; Mazourek, Michael; Cheng, Peng; Main, Dorrie; McGee, Rebecca J
2017-02-13
Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a range of nutritional components, such as protein, mineral nutrients, carbohydrates and several vitamins, pea (Pisum sativum L.), one of the oldest domesticated crops in the world, remains behind many other crops in the availability of genomic and genetic resources. To further improve mineral nutrient levels in pea seeds requires the development of genome-wide tools. The objectives of this research were to develop these tools by: identifying genome-wide single nucleotide polymorphisms (SNPs) using genotyping by sequencing (GBS); constructing a high-density linkage map and comparative maps with other legumes, and identifying quantitative trait loci (QTL) for levels of boron, calcium, iron, potassium, magnesium, manganese, molybdenum, phosphorous, sulfur, and zinc in the seed, as well as for seed weight. In this study, 1609 high quality SNPs were found to be polymorphic between 'Kiflica' and 'Aragorn', two parents of an F 6 -derived recombinant inbred line (RIL) population. Mapping 1683 markers including 75 previously published markers and 1608 SNPs developed from the present study generated a linkage map of size 1310.1 cM. Comparative mapping with other legumes demonstrated that the highest level of synteny was observed between pea and the genome of Medicago truncatula. QTL analysis of the RIL population across two locations revealed at least one QTL for each of the mineral nutrient traits. In total, 46 seed mineral concentration QTLs, 37 seed mineral content QTLs, and 6 seed weight QTLs were discovered. The QTLs explained from 2.4% to 43.3% of the phenotypic variance. The genome-wide SNPs and the genetic linkage map developed in this study permitted QTL identification for pea seed mineral nutrients that will serve as important resources to enable marker-assisted selection (MAS) for nutritional quality traits in pea breeding programs.
Chen, Liang; Huang, Linzhou; Min, Donghong; Phillips, Andy; Wang, Shiqiang; Madgwick, Pippa J; Parry, Martin A J; Hu, Yin-Gang
2012-01-01
Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L.) presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes), a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2) mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2) and M(3) lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ) primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic diversity for wheat improvement and functional genomics.
Aoki, Koh; Yano, Kentaro; Suzuki, Ayako; Kawamura, Shingo; Sakurai, Nozomu; Suda, Kunihiro; Kurabayashi, Atsushi; Suzuki, Tatsuya; Tsugane, Taneaki; Watanabe, Manabu; Ooga, Kazuhide; Torii, Maiko; Narita, Takanori; Shin-I, Tadasu; Kohara, Yuji; Yamamoto, Naoki; Takahashi, Hideki; Watanabe, Yuichiro; Egusa, Mayumi; Kodama, Motoichiro; Ichinose, Yuki; Kikuchi, Mari; Fukushima, Sumire; Okabe, Akiko; Arie, Tsutomu; Sato, Yuko; Yazawa, Katsumi; Satoh, Shinobu; Omura, Toshikazu; Ezura, Hiroshi; Shibata, Daisuke
2010-03-30
The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom http://www.pgb.kazusa.or.jp/kaftom/ via the website of the National Bioresource Project Tomato http://tomato.nbrp.jp.
Nantón, Ana; Ruiz-Ruano, Francisco J.; Camacho, Juan Pedro M.; Méndez, Josefina
2017-01-01
Background Four species of the genus Donax (D. semistriatus, D. trunculus, D. variegatus and D. vittatus) are common on Iberian Peninsula coasts. Nevertheless, despite their economic importance and overexploitation, scarce genetic resources are available. In this work, we newly determined the complete mitochondrial genomes of these four representatives of the family Donacidae, with the aim of contributing to unveil phylogenetic relationships within the Veneroida order, and of developing genetic markers being useful in wedge clam identification and authentication, and aquaculture stock management. Principal findings The complete female mitochondrial genomes of the four species vary in size from 17,044 to 17,365 bp, and encode 13 protein-coding genes (including the atp8 gene), 2 rRNAs and 22 tRNAs, all located on the same strand. A long non-coding region was identified in each of the four Donax species between cob and cox2 genes, presumably corresponding to the Control Region. The Bayesian and Maximum Likelihood phylogenetic analysis of the Veneroida order indicate that all four species of Donax form a single clade as a sister group of other bivalves within the Tellinoidea superfamily. However, although Tellinoidea is actually monophyletic, none of its families are monophyletic. Conclusions Sequencing of complete mitochondrial genomes provides highly valuable information to establish the phylogenetic relationships within the Veneroida order. Furthermore, we provide here significant genetic resources for further research and conservation of this commercially important fishing resource. PMID:28886105
Loftus, Stacie K
2018-05-01
The number of melanocyte- and melanoma-derived next generation sequence genome-scale datasets have rapidly expanded over the past several years. This resource guide provides a summary of publicly available sources of melanocyte cell derived whole genome, exome, mRNA and miRNA transcriptome, chromatin accessibility and epigenetic datasets. Also highlighted are bioinformatic resources and tools for visualization and data queries which allow researchers a genome-scale view of the melanocyte. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Fungal genome resources at NCBI.
Robbertse, B; Tatusova, T
2011-09-01
The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools.
CrisprGE: a central hub of CRISPR/Cas-based genome editing.
Kaur, Karambir; Tandon, Himani; Gupta, Amit Kumar; Kumar, Manoj
2015-01-01
CRISPR system is a powerful defense mechanism in bacteria and archaea to provide immunity against viruses. Recently, this process found a new application in intended targeting of the genomes. CRISPR-mediated genome editing is performed by two main components namely single guide RNA and Cas9 protein. Despite the enormous data generated in this area, there is a dearth of high throughput resource. Therefore, we have developed CrisprGE, a central hub of CRISPR/Cas-based genome editing. Presently, this database holds a total of 4680 entries of 223 unique genes from 32 model and other organisms. It encompasses information about the organism, gene, target gene sequences, genetic modification, modifications length, genome editing efficiency, cell line, assay, etc. This depository is developed using the open source LAMP (Linux Apache MYSQL PHP) server. User-friendly browsing, searching facility is integrated for easy data retrieval. It also includes useful tools like BLAST CrisprGE, BLAST NTdb and CRISPR Mapper. Considering potential utilities of CRISPR in the vast area of biology and therapeutics, we foresee this platform as an assistance to accelerate research in the burgeoning field of genome engineering. © The Author(s) 2015. Published by Oxford University Press.
Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa.
Shahin, Arwa; van Kaauwen, Martijn; Esselink, Danny; Bargsten, Joachim W; van Tuyl, Jaap M; Visser, Richard G F; Arens, Paul
2012-11-20
Bulbous flowers such as lily and tulip (Liliaceae family) are monocot perennial herbs that are economically very important ornamental plants worldwide. However, there are hardly any genetic studies performed and genomic resources are lacking. To build genomic resources and develop tools to speed up the breeding in both crops, next generation sequencing was implemented. We sequenced and assembled transcriptomes of four lily and five tulip genotypes using 454 pyro-sequencing technology. Successfully, we developed the first set of 81,791 contigs with an average length of 514 bp for tulip, and enriched the very limited number of 3,329 available ESTs (Expressed Sequence Tags) for lily with 52,172 contigs with an average length of 555 bp. The contigs together with singletons covered on average 37% of lily and 39% of tulip estimated transcriptome. Mining lily and tulip sequence data for SSRs (Simple Sequence Repeats) showed that di-nucleotide repeats were twice more abundant in UTRs (UnTranslated Regions) compared to coding regions, while tri-nucleotide repeats were equally spread over coding and UTR regions. Two sets of single nucleotide polymorphism (SNP) markers suitable for high throughput genotyping were developed. In the first set, no SNPs flanking the target SNP (50 bp on either side) were allowed. In the second set, one SNP in the flanking regions was allowed, which resulted in a 2 to 3 fold increase in SNP marker numbers compared with the first set. Orthologous groups between the two flower bulbs: lily and tulip (12,017 groups) and among the three monocot species: lily, tulip, and rice (6,900 groups) were determined using OrthoMCL. Orthologous groups were screened for common SNP markers and EST-SSRs to study synteny between lily and tulip, which resulted in 113 common SNP markers and 292 common EST-SSR. Lily and tulip contigs generated were annotated and described according to Gene Ontology terminology. Two transcriptome sets were built that are valuable resources for marker development, comparative genomic studies and candidate gene approaches. Next generation sequencing of leaf transcriptome is very effective; however, deeper sequencing and using more tissues and stages is advisable for extended comparative studies.
Li, Xinguo; Wu, Harry X; Dillon, Shannon K; Southerton, Simon G
2009-01-01
Background Wood is a major renewable natural resource for the timber, fibre and bioenergy industry. Pinus radiata D. Don is the most important commercial plantation tree species in Australia and several other countries; however, genomic resources for this species are very limited in public databases. Our primary objective was to sequence a large number of expressed sequence tags (ESTs) from genes involved in wood formation in radiata pine. Results Six developing xylem cDNA libraries were constructed from earlywood and latewood tissues sampled at juvenile (7 yrs), transition (11 yrs) and mature (30 yrs) ages, respectively. These xylem tissues represent six typical development stages in a rotation period of radiata pine. A total of 6,389 high quality ESTs were collected from 5,952 cDNA clones. Assembly of 5,952 ESTs from 5' end sequences generated 3,304 unigenes including 952 contigs and 2,352 singletons. About 97.0% of the 5,952 ESTs and 96.1% of the unigenes have matches in the UniProt and TIGR databases. Of the 3,174 unigenes with matches, 42.9% were not assigned GO (Gene Ontology) terms and their functions are unknown or unclassified. More than half (52.1%) of the 5,952 ESTs have matches in the Pfam database and represent 772 known protein families. About 18.0% of the 5,952 ESTs matched cell wall related genes in the MAIZEWALL database, representing all 18 categories, 91 of all 174 families and possibly 557 genes. Fifteen cell wall-related genes are ranked in the 30 most abundant genes, including CesA, tubulin, AGP, SAMS, actin, laccase, CCoAMT, MetE, phytocyanin, pectate lyase, cellulase, SuSy, expansin, chitinase and UDP-glucose dehydrogenase. Based on the PlantTFDB database 41 of the 64 transcription factor families in the poplar genome were identified as being involved in radiata pine wood formation. Comparative analysis of GO term abundance revealed a distinct transcriptome in juvenile earlywood formation compared to other stages of wood development. Conclusion The first large scale genomic resource in radiata pine was generated from six developing xylem cDNA libraries. Cell wall-related genes and transcription factors were identified. Juvenile earlywood has a distinct transcriptome, which is likely to contribute to the undesirable properties of juvenile wood in radiata pine. The publicly available resource of radiata pine will also be valuable for gene function studies and comparative genomics in forest trees. PMID:19159482
Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest
2013-01-01
Background The mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests. Results We developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insect's biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle. Conclusions Despite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects. PMID:23537049
Sharma, Rahul; Xia, Xiaojuan; Cano, Liliana M; Evangelisti, Edouard; Kemen, Eric; Judelson, Howard; Oome, Stan; Sambles, Christine; van den Hoogen, D Johan; Kitner, Miloslav; Klein, Joël; Meijer, Harold J G; Spring, Otmar; Win, Joe; Zipper, Reinhard; Bode, Helge B; Govers, Francine; Kamoun, Sophien; Schornack, Sebastian; Studholme, David J; Van den Ackerveken, Guido; Thines, Marco
2015-10-05
Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily. Here a high-quality draft genome of Plasmopara halstedii is reported and analysed with respect to various aspects, including genome organisation, secondary metabolism, effector proteins and comparative genomics with other sequenced oomycetes. Interestingly, the present analyses revealed further variation of the RxLR motif, suggesting an important role of the conservation of the dEER-motif. Orthology analyses revealed the conservation of 28 RxLR-like core effectors among Phytophthora species. Only six putative RxLR-like effectors were shared by the two sequenced downy mildews, highlighting the fast and largely independent evolution of two of the three major downy mildew lineages. This is seemingly supported by phylogenomic results, in which downy mildews did not appear to be monophyletic. The genome resource will be useful for developing markers for monitoring the pathogen population and might provide the basis for new approaches to fight Phytophthora and downy mildew pathogens by targeting core pathogenicity effectors.
Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics
Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna
2016-01-01
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population. PMID:27252584
Manel, S; Perrier, C; Pratlong, M; Abi-Rached, L; Paganini, J; Pontarotti, P; Aurelle, D
2016-01-01
Genome scans represent powerful approaches to investigate the action of natural selection on the genetic variation of natural populations and to better understand local adaptation. This is very useful, for example, in the field of conservation biology and evolutionary biology. Thanks to Next Generation Sequencing, genomic resources are growing exponentially, improving genome scan analyses in non-model species. Thousands of SNPs called using Reduced Representation Sequencing are increasingly used in genome scans. Besides, genome sequences are also becoming increasingly available, allowing better processing of short-read data, offering physical localization of variants, and improving haplotype reconstruction and data imputation. Ultimately, genome sequences are also becoming the raw material for selection inferences. Here, we discuss how the increasing availability of such genomic resources, notably genome sequences, influences the detection of signals of selection. Mainly, increasing data density and having the information of physical linkage data expand genome scans by (i) improving the overall quality of the data, (ii) helping the reconstruction of demographic history for the population studied to decrease false-positive rates and (iii) improving the statistical power of methods to detect the signal of selection. Of particular importance, the availability of a high-quality reference genome can improve the detection of the signal of selection by (i) allowing matching the potential candidate loci to linked coding regions under selection, (ii) rapidly moving the investigation to the gene and function and (iii) ensuring that the highly variable regions of the genomes that include functional genes are also investigated. For all those reasons, using reference genomes in genome scan analyses is highly recommended. © 2015 John Wiley & Sons Ltd.
POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data.
Cannon, Ethalinda K S; Birkett, Scott M; Braun, Bremen L; Kodavali, Sateesh; Jennewein, Douglas M; Yilmaz, Alper; Antonescu, Valentin; Antonescu, Corina; Harper, Lisa C; Gardiner, Jack M; Schaeffer, Mary L; Campbell, Darwin A; Andorf, Carson M; Andorf, Destri; Lisch, Damon; Koch, Karen E; McCarty, Donald R; Quackenbush, John; Grotewold, Erich; Lushbough, Carol M; Sen, Taner Z; Lawrence, Carolyn J
2011-01-01
The purpose of the online resource presented here, POPcorn (Project Portal for corn), is to enhance accessibility of maize genetic and genomic resources for plant biologists. Currently, many online locations are difficult to find, some are best searched independently, and individual project websites often degrade over time-sometimes disappearing entirely. The POPcorn site makes available (1) a centralized, web-accessible resource to search and browse descriptions of ongoing maize genomics projects, (2) a single, stand-alone tool that uses web Services and minimal data warehousing to search for sequence matches in online resources of diverse offsite projects, and (3) a set of tools that enables researchers to migrate their data to the long-term model organism database for maize genetic and genomic information: MaizeGDB. Examples demonstrating POPcorn's utility are provided herein.
POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data
Cannon, Ethalinda K. S.; Birkett, Scott M.; Braun, Bremen L.; Kodavali, Sateesh; Jennewein, Douglas M.; Yilmaz, Alper; Antonescu, Valentin; Antonescu, Corina; Harper, Lisa C.; Gardiner, Jack M.; Schaeffer, Mary L.; Campbell, Darwin A.; Andorf, Carson M.; Andorf, Destri; Lisch, Damon; Koch, Karen E.; McCarty, Donald R.; Quackenbush, John; Grotewold, Erich; Lushbough, Carol M.; Sen, Taner Z.; Lawrence, Carolyn J.
2011-01-01
The purpose of the online resource presented here, POPcorn (Project Portal for corn), is to enhance accessibility of maize genetic and genomic resources for plant biologists. Currently, many online locations are difficult to find, some are best searched independently, and individual project websites often degrade over time—sometimes disappearing entirely. The POPcorn site makes available (1) a centralized, web-accessible resource to search and browse descriptions of ongoing maize genomics projects, (2) a single, stand-alone tool that uses web Services and minimal data warehousing to search for sequence matches in online resources of diverse offsite projects, and (3) a set of tools that enables researchers to migrate their data to the long-term model organism database for maize genetic and genomic information: MaizeGDB. Examples demonstrating POPcorn's utility are provided herein. PMID:22253616
Damoiseaux, Robert
2014-05-01
The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.
Genomics of Tropical Fruit Tree Crops
USDA-ARS?s Scientific Manuscript database
The genetic improvement of tropical fruit trees is limited when compared to progress achieved in temperate fruit trees and annual crops. Tropical fruit tree breeding programs require significant resources to develop new cultivars that are adapted to modern shipping and storage requirements. The use...
Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources
2014-11-01
genomic DNA and then subjected to Illumina high-throughput sequencing . In this analysis, shRNAs lost in the GSC population represent candidate gene...and genomic DNA and then subjected to Illumina high-throughput sequencing . In this analysis, shRNAs lost in the GSC population represent candidate...PRISM 7900 Sequence Detection System ( Genomics Resource, FHCRC). Relative transcript abundance was analyzed using the 2−ΔΔCt method. TRIzol (Invitrogen
Advances in Genetical Genomics of Plants
Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.
2009-01-01
Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differences is of major importance. By combining genetics with large scale expression profiling (i.e. genetical genomics), resulting in expression QTLs (eQTLs), great progress can be made in connecting phenotypic variation to genotypic diversity. In this review we discuss examples from human, mouse, Drosophila, yeast and plant research to illustrate the advances in genetical genomics, with a focus on understanding the regulatory mechanisms underlying natural variation. With their tolerance to inbreeding, short generation time and ease to generate large families, plants are ideal subjects to test new concepts in genetics. The comprehensive resources which are available for Arabidopsis make it a favorite model plant but genetical genomics also found its way to important crop species like rice, barley and wheat. We discuss eQTL profiling with respect to cis and trans regulation and show how combined studies with other ‘omics’ technologies, such as metabolomics and proteomics may further augment current information on transcriptional, translational and metabolomic signaling pathways and enable reconstruction of detailed regulatory networks. The fast developments in the ‘omics’ area will offer great potential for genetical genomics to elucidate the genotype-phenotype relationships for both fundamental and applied research. PMID:20514216
Expanding Access to Large-Scale Genomic Data While Promoting Privacy: A Game Theoretic Approach.
Wan, Zhiyu; Vorobeychik, Yevgeniy; Xia, Weiyi; Clayton, Ellen Wright; Kantarcioglu, Murat; Malin, Bradley
2017-02-02
Emerging scientific endeavors are creating big data repositories of data from millions of individuals. Sharing data in a privacy-respecting manner could lead to important discoveries, but high-profile demonstrations show that links between de-identified genomic data and named persons can sometimes be reestablished. Such re-identification attacks have focused on worst-case scenarios and spurred the adoption of data-sharing practices that unnecessarily impede research. To mitigate concerns, organizations have traditionally relied upon legal deterrents, like data use agreements, and are considering suppressing or adding noise to genomic variants. In this report, we use a game theoretic lens to develop more effective, quantifiable protections for genomic data sharing. This is a fundamentally different approach because it accounts for adversarial behavior and capabilities and tailors protections to anticipated recipients with reasonable resources, not adversaries with unlimited means. We demonstrate this approach via a new public resource with genomic summary data from over 8,000 individuals-the Sequence and Phenotype Integration Exchange (SPHINX)-and show that risks can be balanced against utility more effectively than with traditional approaches. We further show the generalizability of this framework by applying it to other genomic data collection and sharing endeavors. Recognizing that such models are dependent on a variety of parameters, we perform extensive sensitivity analyses to show that our findings are robust to their fluctuations. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6).
Darwish, Omar; Li, Shuxian; May, Zane; Matthews, Benjamin; Alkharouf, Nadim W
2016-01-01
Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe- Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx.
A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6)
May, Zane; Matthews, Benjamin; Alkharouf, Nadim W.
2016-01-01
Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe– Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. Availability: http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx PMID:28197060
Outreach and online training services at the Saccharomyces Genome Database.
MacPherson, Kevin A; Starr, Barry; Wong, Edith D; Dalusag, Kyla S; Hellerstedt, Sage T; Lang, Olivia W; Nash, Robert S; Skrzypek, Marek S; Engel, Stacia R; Cherry, J Michael
2017-01-01
The Saccharomyces Genome Database (SGD; www.yeastgenome.org ), the primary genetics and genomics resource for the budding yeast S. cerevisiae , provides free public access to expertly curated information about the yeast genome and its gene products. As the central hub for the yeast research community, SGD engages in a variety of social outreach efforts to inform our users about new developments, promote collaboration, increase public awareness of the importance of yeast to biomedical research, and facilitate scientific discovery. Here we describe these various outreach methods, from networking at scientific conferences to the use of online media such as blog posts and webinars, and include our perspectives on the benefits provided by outreach activities for model organism databases. http://www.yeastgenome.org. © The Author(s) 2017. Published by Oxford University Press.
The power and promise of applying genomics to honey bee health
Robinson, Gene E.
2015-01-01
New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species. PMID:26273565
Purification of High Molecular Weight Genomic DNA from Powdery Mildew for Long-Read Sequencing.
Feehan, Joanna M; Scheibel, Katherine E; Bourras, Salim; Underwood, William; Keller, Beat; Somerville, Shauna C
2017-03-31
The powdery mildew fungi are a group of economically important fungal plant pathogens. Relatively little is known about the molecular biology and genetics of these pathogens, in part due to a lack of well-developed genetic and genomic resources. These organisms have large, repetitive genomes, which have made genome sequencing and assembly prohibitively difficult. Here, we describe methods for the collection, extraction, purification and quality control assessment of high molecular weight genomic DNA from one powdery mildew species, Golovinomyces cichoracearum. The protocol described includes mechanical disruption of spores followed by an optimized phenol/chloroform genomic DNA extraction. A typical yield was 7 µg DNA per 150 mg conidia. The genomic DNA that is isolated using this procedure is suitable for long-read sequencing (i.e., > 48.5 kbp). Quality control measures to ensure the size, yield, and purity of the genomic DNA are also described in this method. Sequencing of the genomic DNA of the quality described here will allow for the assembly and comparison of multiple powdery mildew genomes, which in turn will lead to a better understanding and improved control of this agricultural pathogen.
Genenames.org: the HGNC and VGNC resources in 2017.
Yates, Bethan; Braschi, Bryony; Gray, Kristian A; Seal, Ruth L; Tweedie, Susan; Bruford, Elspeth A
2017-01-04
The HUGO Gene Nomenclature Committee (HGNC) based at the European Bioinformatics Institute (EMBL-EBI) assigns unique symbols and names to human genes. Currently the HGNC database contains almost 40 000 approved gene symbols, over 19 000 of which represent protein-coding genes. In addition to naming genomic loci we manually curate genes into family sets based on shared characteristics such as homology, function or phenotype. We have recently updated our gene family resources and introduced new improved visualizations which can be seen alongside our gene symbol reports on our primary website http://www.genenames.org In 2016 we expanded our remit and formed the Vertebrate Gene Nomenclature Committee (VGNC) which is responsible for assigning names to vertebrate species lacking a dedicated nomenclature group. Using the chimpanzee genome as a pilot project we have approved symbols and names for over 14 500 protein-coding genes in chimpanzee, and have developed a new website http://vertebrate.genenames.org to distribute these data. Here, we review our online data and resources, focusing particularly on the improvements and new developments made during the last two years. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ricebase - a resource for rice breeding
USDA-ARS?s Scientific Manuscript database
Ricebase combines accessions, traits, markers, and genes with genome-scale datasets to empower rice breeders and geneticists to explore big-data resources. The underlying code and schema are shared with CassavaBase and the Sol Genomics Network (SGN) databases. Ricebase was launched specifically to m...
IMG: the integrated microbial genomes database and comparative analysis system
Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua; Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.
2012-01-01
The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp). PMID:22194640
IMG: the Integrated Microbial Genomes database and comparative analysis system.
Markowitz, Victor M; Chen, I-Min A; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua; Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N; Kyrpides, Nikos C
2012-01-01
The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp).
Human Ageing Genomic Resources: new and updated databases
Tacutu, Robi; Thornton, Daniel; Johnson, Emily; Budovsky, Arie; Barardo, Diogo; Craig, Thomas; Diana, Eugene; Lehmann, Gilad; Toren, Dmitri; Wang, Jingwei; Fraifeld, Vadim E
2018-01-01
Abstract In spite of a growing body of research and data, human ageing remains a poorly understood process. Over 10 years ago we developed the Human Ageing Genomic Resources (HAGR), a collection of databases and tools for studying the biology and genetics of ageing. Here, we present HAGR’s main functionalities, highlighting new additions and improvements. HAGR consists of six core databases: (i) the GenAge database of ageing-related genes, in turn composed of a dataset of >300 human ageing-related genes and a dataset with >2000 genes associated with ageing or longevity in model organisms; (ii) the AnAge database of animal ageing and longevity, featuring >4000 species; (iii) the GenDR database with >200 genes associated with the life-extending effects of dietary restriction; (iv) the LongevityMap database of human genetic association studies of longevity with >500 entries; (v) the DrugAge database with >400 ageing or longevity-associated drugs or compounds; (vi) the CellAge database with >200 genes associated with cell senescence. All our databases are manually curated by experts and regularly updated to ensure a high quality data. Cross-links across our databases and to external resources help researchers locate and integrate relevant information. HAGR is freely available online (http://genomics.senescence.info/). PMID:29121237
Geib, Scott M; Hall, Brian; Derego, Theodore; Bremer, Forest T; Cannoles, Kyle; Sim, Sheina B
2018-04-01
One of the most overlooked, yet critical, components of a whole genome sequencing (WGS) project is the submission and curation of the data to a genomic repository, most commonly the National Center for Biotechnology Information (NCBI). While large genome centers or genome groups have developed software tools for post-annotation assembly filtering, annotation, and conversion into the NCBI's annotation table format, these tools typically require back-end setup and connection to an Structured Query Language (SQL) database and/or some knowledge of programming (Perl, Python) to implement. With WGS becoming commonplace, genome sequencing projects are moving away from the genome centers and into the ecology or biology lab, where fewer resources are present to support the process of genome assembly curation. To fill this gap, we developed software to assess, filter, and transfer annotation and convert a draft genome assembly and annotation set into the NCBI annotation table (.tbl) format, facilitating submission to the NCBI Genome Assembly database. This software has no dependencies, is compatible across platforms, and utilizes a simple command to perform a variety of simple and complex post-analysis, pre-NCBI submission WGS project tasks. The Genome Annotation Generator is a consistent and user-friendly bioinformatics tool that can be used to generate a .tbl file that is consistent with the NCBI submission pipeline. The Genome Annotation Generator achieves the goal of providing a publicly available tool that will facilitate the submission of annotated genome assemblies to the NCBI. It is useful for any individual researcher or research group that wishes to submit a genome assembly of their study system to the NCBI.
Hall, Brian; Derego, Theodore; Bremer, Forest T; Cannoles, Kyle
2018-01-01
Abstract Background One of the most overlooked, yet critical, components of a whole genome sequencing (WGS) project is the submission and curation of the data to a genomic repository, most commonly the National Center for Biotechnology Information (NCBI). While large genome centers or genome groups have developed software tools for post-annotation assembly filtering, annotation, and conversion into the NCBI’s annotation table format, these tools typically require back-end setup and connection to an Structured Query Language (SQL) database and/or some knowledge of programming (Perl, Python) to implement. With WGS becoming commonplace, genome sequencing projects are moving away from the genome centers and into the ecology or biology lab, where fewer resources are present to support the process of genome assembly curation. To fill this gap, we developed software to assess, filter, and transfer annotation and convert a draft genome assembly and annotation set into the NCBI annotation table (.tbl) format, facilitating submission to the NCBI Genome Assembly database. This software has no dependencies, is compatible across platforms, and utilizes a simple command to perform a variety of simple and complex post-analysis, pre-NCBI submission WGS project tasks. Findings The Genome Annotation Generator is a consistent and user-friendly bioinformatics tool that can be used to generate a .tbl file that is consistent with the NCBI submission pipeline Conclusions The Genome Annotation Generator achieves the goal of providing a publicly available tool that will facilitate the submission of annotated genome assemblies to the NCBI. It is useful for any individual researcher or research group that wishes to submit a genome assembly of their study system to the NCBI. PMID:29635297
AGAPE (Automated Genome Analysis PipelinE) for Pan-Genome Analysis of Saccharomyces cerevisiae
Song, Giltae; Dickins, Benjamin J. A.; Demeter, Janos; Engel, Stacia; Dunn, Barbara; Cherry, J. Michael
2015-01-01
The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community. PMID:25781462
First draft genome of an iconic clownfish species (Amphiprion frenatus).
Marcionetti, Anna; Rossier, Victor; Bertrand, Joris A M; Litsios, Glenn; Salamin, Nicolas
2018-02-17
Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies. This resource is valuable for advancing studies of the particular life history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation. © 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
Ho, Wai Kuan; Muchugi, Alice; Muthemba, Samuel; Kariba, Robert; Mavenkeni, Busiso Olga; Hendre, Prasad; Song, Bo; Van Deynze, Allen; Massawe, Festo; Mayes, Sean
2016-06-01
Maximizing the research output from a limited investment is often the major challenge for minor and underutilized crops. However, such crops may be tolerant to biotic and abiotic stresses and are adapted to local, marginal, and low-input environments. Their development through breeding will provide an important resource for future agricultural system resilience and diversification in the context of changing climates and the need to achieve food security. The African Orphan Crops Consortium recognizes the values of genomic resources in facilitating the improvement of such crops. Prior to beginning genome sequencing there is a need for an assessment of line varietal purity and to estimate any residual heterozygosity. Here we present an example from bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized drought tolerant African legume. Two released varieties from Zimbabwe, identified as potential genotypes for whole genome sequencing (WGS), were genotyped with 20 species-specific SSR markers. The results indicate that the cultivars are actually a mix of related inbred genotypes, and the analysis allowed a strategy of single plant selection to be used to generate non-heterogeneous DNA for WGS. The markers also confirmed very low levels of heterozygosity within individual plants. The application of a pre-screen using co-dominant microsatellite markers is expected to substantially improve the genome assembly, compared to a cultivar bulking approach that could have been adopted.
Irizarry, Kristopher J L; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L; Barrett, Gini; Barr, Margaret C
2016-01-01
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.
Irizarry, Kristopher J. L.; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L.; Barrett, Gini; Barr, Margaret C.
2016-01-01
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management. PMID:27376076
Crow, John
2018-01-22
John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crow, John
2012-06-01
John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Genome Improvement at JGI-HAGSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.
Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence.more » For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.« less
The Power and Potential of Genomics in Weed Biology and Management.
Ravet, Karl; Patterson, Eric L; Krähmer, Hansjörg; Hamouzová, Kateřina; Fan, Longjiang; Jasieniuk, Marie; Lawton-Rauh, Amy; Malone, Jenna M; Scott McElroy, J; Merotto, Aldo; Westra, Philip; Preston, Christopher; Vila-Aiub, Martin M; Busi, Roberto; Tranel, Patrick J; Reinhardt, Carl; Saski, Christopher; Beffa, Roland; Neve, Paul; Gaines, Todd A
2018-04-24
There have been previous calls for, and efforts focused on, realizing the power and potential of weed genomics for better understanding of weeds. Sustained advances in genome sequencing and assembly technologies now make it possible for individual research groups to generate reference genomes for multiple weed species at reasonable costs. Here, we present the outcomes from several meetings, discussions, and workshops focused on establishing an International Weed Genomics Consortium (IWGC) for a coordinated international effort in weed genomics. We review the 'state of the art' in genomics and weed genomics, including technologies, applications, and on-going weed genome projects. We also report the outcomes from a workshop and a global survey of the weed science community to identify priority species, key biological questions, and weed management applications that can be addressed through greater availability of, and access to, genomic resources. Major focus areas include the evolution of herbicide resistance and weedy traits, the development of molecular diagnostics, and the identification of novel targets and approaches for weed management. There is increasing interest in, and need for, weed genomics, and the establishment of the IWGC will provide the necessary global platform for communication and coordination of weed genomics research. This article is protected by copyright. All rights reserved.
From genes to genomes: a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae.
Xu, Jin-Rong; Zhao, Xinhua; Dean, Ralph A
2007-01-01
Magnaporthe oryzae is the most destructive fungal pathogen of rice worldwide and because of its amenability to classical and molecular genetic manipulation, availability of a genome sequence, and other resources it has emerged as a leading model system to study host-pathogen interactions. This chapter reviews recent progress toward elucidation of the molecular basis of infection-related morphogenesis, host penetration, invasive growth, and host-pathogen interactions. Related information on genome analysis and genomic studies of plant infection processes is summarized under specific topics where appropriate. Particular emphasis is placed on the role of MAP kinase and cAMP signal transduction pathways and unique features in the genome such as repetitive sequences and expanded gene families. Emerging developments in functional genome analysis through large-scale insertional mutagenesis and gene expression profiling are detailed. The chapter concludes with new prospects in the area of systems biology, such as protein expression profiling, and highlighting remaining crucial information needed to fully appreciate host-pathogen interactions.
Determining mutation density using Restriction Enzyme Sequence Comparative Analysis (RESCAN)
USDA-ARS?s Scientific Manuscript database
The average mutation density of a mutant population is a major consideration when developing resources for the efficient, cost-effective implementation of reverse genetics methods such as Targeting of Induced Local Lesions in Genomes (TILLING). Reliable estimates of mutation density can be achieved ...
Genetic and developing genomic resources in black raspberry
USDA-ARS?s Scientific Manuscript database
Breeding progress in black raspberry (Rubus occidentalis L.) has been limited by a lack of genetic diversity in elite germplasm. Black raspberry cultivars have been noted for showing very few phenotypic differences and seedlings from crosses between cultivars for a lack of segregation for important ...
Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.
Teo, Yik-Ying; Sim, Xueling; Ong, Rick T H; Tan, Adrian K S; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S; Ku, Chee-Seng; Lee, Edmund J D; Seielstad, Mark; Chia, Kee-Seng
2009-11-01
The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.
Singapore Genome Variation Project: A haplotype map of three Southeast Asian populations
Teo, Yik-Ying; Sim, Xueling; Ong, Rick T.H.; Tan, Adrian K.S.; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S.; Ku, Chee-Seng; Lee, Edmund J.D.; Seielstad, Mark; Chia, Kee-Seng
2009-01-01
The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser. PMID:19700652
The Plant Genome Integrative Explorer Resource: PlantGenIE.org.
Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R
2015-12-01
Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
2011-01-01
Background We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. Results The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. Conclusions Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution. PMID:21854559
Renfree, Marilyn B; Papenfuss, Anthony T; Deakin, Janine E; Lindsay, James; Heider, Thomas; Belov, Katherine; Rens, Willem; Waters, Paul D; Pharo, Elizabeth A; Shaw, Geoff; Wong, Emily S W; Lefèvre, Christophe M; Nicholas, Kevin R; Kuroki, Yoko; Wakefield, Matthew J; Zenger, Kyall R; Wang, Chenwei; Ferguson-Smith, Malcolm; Nicholas, Frank W; Hickford, Danielle; Yu, Hongshi; Short, Kirsty R; Siddle, Hannah V; Frankenberg, Stephen R; Chew, Keng Yih; Menzies, Brandon R; Stringer, Jessica M; Suzuki, Shunsuke; Hore, Timothy A; Delbridge, Margaret L; Patel, Hardip R; Mohammadi, Amir; Schneider, Nanette Y; Hu, Yanqiu; O'Hara, William; Al Nadaf, Shafagh; Wu, Chen; Feng, Zhi-Ping; Cocks, Benjamin G; Wang, Jianghui; Flicek, Paul; Searle, Stephen M J; Fairley, Susan; Beal, Kathryn; Herrero, Javier; Carone, Dawn M; Suzuki, Yutaka; Sugano, Sumio; Toyoda, Atsushi; Sakaki, Yoshiyuki; Kondo, Shinji; Nishida, Yuichiro; Tatsumoto, Shoji; Mandiou, Ion; Hsu, Arthur; McColl, Kaighin A; Lansdell, Benjamin; Weinstock, George; Kuczek, Elizabeth; McGrath, Annette; Wilson, Peter; Men, Artem; Hazar-Rethinam, Mehlika; Hall, Allison; Davis, John; Wood, David; Williams, Sarah; Sundaravadanam, Yogi; Muzny, Donna M; Jhangiani, Shalini N; Lewis, Lora R; Morgan, Margaret B; Okwuonu, Geoffrey O; Ruiz, San Juana; Santibanez, Jireh; Nazareth, Lynne; Cree, Andrew; Fowler, Gerald; Kovar, Christie L; Dinh, Huyen H; Joshi, Vandita; Jing, Chyn; Lara, Fremiet; Thornton, Rebecca; Chen, Lei; Deng, Jixin; Liu, Yue; Shen, Joshua Y; Song, Xing-Zhi; Edson, Janette; Troon, Carmen; Thomas, Daniel; Stephens, Amber; Yapa, Lankesha; Levchenko, Tanya; Gibbs, Richard A; Cooper, Desmond W; Speed, Terence P; Fujiyama, Asao; Graves, Jennifer A M; O'Neill, Rachel J; Pask, Andrew J; Forrest, Susan M; Worley, Kim C
2011-08-29
We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.
Jue, Nathaniel K; Batta-Lona, Paola G; Trusiak, Sarah; Obergfell, Craig; Bucklin, Ann; O'Neill, Michael J; O'Neill, Rachel J
2016-10-30
A preliminary genome sequence has been assembled for the Southern Ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Despite the ecological importance of this species in Antarctic pelagic food webs and its potential role as an indicator of changing Southern Ocean ecosystems in response to climate change, no genomic resources are available for S. thompsoni or any closely related urochordate species. Using a multiple-platform, multiple-individual approach, we have produced a 318,767,936-bp genome sequence, covering >50% of the estimated 602 Mb (±173 Mb) genome size for S. thompsoni Using a nonredundant set of predicted proteins, >50% (16,823) of sequences showed significant homology to known proteins and ∼38% (12,151) of the total protein predictions were associated with Gene Ontology functional information. We have generated 109,958 SNP variant and 9,782 indel predictions for this species, serving as a resource for future phylogenomic and population genetic studies. Comparing the salp genome to available assemblies for four other urochordates, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi and Oikopleura dioica, we found that S. thompsoni shares the previously estimated rapid rates of evolution for these species. High mutation rates are thus independent of genome size, suggesting that rates of evolution >1.5 times that observed for vertebrates are a broad taxonomic characteristic of urochordates. Tests for positive selection implemented in PAML revealed a small number of genes with sites undergoing rapid evolution, including genes involved in ribosome biogenesis and metabolic and immune process that may be reflective of both adaptation to polar, planktonic environments as well as the complex life history of the salps. Finally, we performed an initial survey of small RNAs, revealing the presence of known, conserved miRNAs, as well as novel miRNA genes; unique piRNAs; and mature miRNA signatures for varying developmental stages. Collectively, these resources provide a genomic foundation supporting S. thompsoni as a model species for further examination of the exceptional rates and patterns of genomic evolution shown by urochordates. Additionally, genomic data will allow for the development of molecular indicators of key life history events and processes and afford new understandings and predictions of impacts of climate change on this key species of Antarctic pelagic ecosystems. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Gramene 2016: comparative plant genomics and pathway resources.
Tello-Ruiz, Marcela K; Stein, Joshua; Wei, Sharon; Preece, Justin; Olson, Andrew; Naithani, Sushma; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Jiao, Yinping; Mulvaney, Joseph; Kumari, Sunita; Chougule, Kapeel; Elser, Justin; Wang, Bo; Thomason, James; Bolser, Daniel M; Kerhornou, Arnaud; Walts, Brandon; Fonseca, Nuno A; Huerta, Laura; Keays, Maria; Tang, Y Amy; Parkinson, Helen; Fabregat, Antonio; McKay, Sheldon; Weiser, Joel; D'Eustachio, Peter; Stein, Lincoln; Petryszak, Robert; Kersey, Paul J; Jaiswal, Pankaj; Ware, Doreen
2016-01-04
Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼ 200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet
Shivhare, Radha; Lata, Charu
2017-01-01
Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional genes and assist in crop improvement programs through molecular breeding approaches. This review thus summarizes the exploration of pearl millet genetic and genomic resources for improving abiotic and biotic stress resistance and development of cultivars superior in stress tolerance. PMID:28167949
A Protocol for Generating and Exchanging (Genome-Scale) Metabolic Resource Allocation Models.
Reimers, Alexandra-M; Lindhorst, Henning; Waldherr, Steffen
2017-09-06
In this article, we present a protocol for generating a complete (genome-scale) metabolic resource allocation model, as well as a proposal for how to represent such models in the systems biology markup language (SBML). Such models are used to investigate enzyme levels and achievable growth rates in large-scale metabolic networks. Although the idea of metabolic resource allocation studies has been present in the field of systems biology for some years, no guidelines for generating such a model have been published up to now. This paper presents step-by-step instructions for building a (dynamic) resource allocation model, starting with prerequisites such as a genome-scale metabolic reconstruction, through building protein and noncatalytic biomass synthesis reactions and assigning turnover rates for each reaction. In addition, we explain how one can use SBML level 3 in combination with the flux balance constraints and our resource allocation modeling annotation to represent such models.
Martinez, Maria C.; Rayens, Mary Kay; Gokun, Yevgeniya; Meininger, Janet C.
2013-01-01
Background Suboptimal lifestyle factors in combination with genetic susceptibility contribute to cardiovascular disease and type 2 diabetes risk among Latinos. We describe a community–academic collaboration that developed and explored the feasibility of implementing a socioculturally tailored, healthy lifestyle intervention integrating genomics and family history education to reduce risk of cardiovascular disease and type 2 diabetes among Latinos. Community Context The community-based participatory research was conducted with communities in Kentucky, which has a rapidly growing Latino population. This growth underscores the need for socioculturally appropriate health resources. Methods Su Corazon, Su Vida (Your Heart, Your Life) is a Spanish-language, healthy lifestyle educational program to reduce cardiovascular disease and type 2 diabetes risk among Latinos. Twenty natural leaders from an urban Latino community in Kentucky participated in sociocultural tailoring of the program and development of a genomics and family history module. The tailored program was presented to 22 participants to explore implementation feasibility and assess appropriateness for community use. Preintervention and postintervention assessments of genomic knowledge and lifestyle behaviors and qualitative postintervention evaluations were conducted. Outcomes Postintervention improvements in health-promoting lifestyle choices and genomic knowledge specific to cardiovascular disease and type 2 diabetes suggested that the program may be effective in reducing risk. Feedback indicated the program was socioculturally acceptable and responsive to community needs. Interpretation These findings indicated that a tailored healthy lifestyle program integrating genomics and family history education was socioculturally appropriate and may feasibly be implemented to reduce cardiovascular disease and type 2 diabetes risk in a Latino community with limited health care resources. The project highlights contributions of community-based processes in tailoring interventions that are appropriate for community contexts. PMID:24286274
Mudd-Martin, Gia; Martinez, Maria C; Rayens, Mary Kay; Gokun, Yevgeniya; Meininger, Janet C
2013-11-27
Suboptimal lifestyle factors in combination with genetic susceptibility contribute to cardiovascular disease and type 2 diabetes risk among Latinos. We describe a community-academic collaboration that developed and explored the feasibility of implementing a socioculturally tailored, healthy lifestyle intervention integrating genomics and family history education to reduce risk of cardiovascular disease and type 2 diabetes among Latinos. The community-based participatory research was conducted with communities in Kentucky, which has a rapidly growing Latino population. This growth underscores the need for socioculturally appropriate health resources. Su Corazon, Su Vida (Your Heart, Your Life) is a Spanish-language, healthy lifestyle educational program to reduce cardiovascular disease and type 2 diabetes risk among Latinos. Twenty natural leaders from an urban Latino community in Kentucky participated in sociocultural tailoring of the program and development of a genomics and family history module. The tailored program was presented to 22 participants to explore implementation feasibility and assess appropriateness for community use. Preintervention and postintervention assessments of genomic knowledge and lifestyle behaviors and qualitative postintervention evaluations were conducted. Postintervention improvements in health-promoting lifestyle choices and genomic knowledge specific to cardiovascular disease and type 2 diabetes suggested that the program may be effective in reducing risk. Feedback indicated the program was socioculturally acceptable and responsive to community needs. These findings indicated that a tailored healthy lifestyle program integrating genomics and family history education was socioculturally appropriate and may feasibly be implemented to reduce cardiovascular disease and type 2 diabetes risk in a Latino community with limited health care resources. The project highlights contributions of community-based processes in tailoring interventions that are appropriate for community contexts.
Genomes2Drugs: Identifies Target Proteins and Lead Drugs from Proteome Data
Toomey, David; Hoppe, Heinrich C.; Brennan, Marian P.; Nolan, Kevin B.; Chubb, Anthony J.
2009-01-01
Background Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. Methodology/Principal Findings To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. Conclusions/Significance Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under ‘change-of-application’ patents. PMID:19593435
Seaver, Samuel M. D.; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M. T.; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D.; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D.; Henry, Christopher S.
2014-01-01
The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today’s annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed. PMID:24927599
Seaver, Samuel M D; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M T; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D; Henry, Christopher S
2014-07-01
The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed.
Peace, Cameron; Bassil, Nahla; Main, Dorrie; Ficklin, Stephen; Rosyara, Umesh R.; Stegmeir, Travis; Sebolt, Audrey; Gilmore, Barbara; Lawley, Cindy; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Iezzoni, Amy
2012-01-01
High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb) of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome) and P. fruticosa (fruticosa subgenome). Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269) and sour (n = 330) cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery, genome structure investigation, and genetic diversity assessment in this diploid-tetraploid crop group. PMID:23284615
Ginseng Genome Database: an open-access platform for genomics of Panax ginseng.
Jayakodi, Murukarthick; Choi, Beom-Soon; Lee, Sang-Choon; Kim, Nam-Hoon; Park, Jee Young; Jang, Woojong; Lakshmanan, Meiyappan; Mohan, Shobhana V G; Lee, Dong-Yup; Yang, Tae-Jin
2018-04-12
The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb. The first draft genome sequences of P. ginseng cultivar "Chunpoong" were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page. This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.
MIPS PlantsDB: a database framework for comparative plant genome research.
Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel
2013-01-01
The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.
MIPS PlantsDB: a database framework for comparative plant genome research
Nussbaumer, Thomas; Martis, Mihaela M.; Roessner, Stephan K.; Pfeifer, Matthias; Bader, Kai C.; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel
2013-01-01
The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB–plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834–D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB. PMID:23203886
2011-01-01
Background Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea. Results A set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme. Conclusion In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea. PMID:21447154
PGen: large-scale genomic variations analysis workflow and browser in SoyKB.
Liu, Yang; Khan, Saad M; Wang, Juexin; Rynge, Mats; Zhang, Yuanxun; Zeng, Shuai; Chen, Shiyuan; Maldonado Dos Santos, Joao V; Valliyodan, Babu; Calyam, Prasad P; Merchant, Nirav; Nguyen, Henry T; Xu, Dong; Joshi, Trupti
2016-10-06
With the advances in next-generation sequencing (NGS) technology and significant reductions in sequencing costs, it is now possible to sequence large collections of germplasm in crops for detecting genome-scale genetic variations and to apply the knowledge towards improvements in traits. To efficiently facilitate large-scale NGS resequencing data analysis of genomic variations, we have developed "PGen", an integrated and optimized workflow using the Extreme Science and Engineering Discovery Environment (XSEDE) high-performance computing (HPC) virtual system, iPlant cloud data storage resources and Pegasus workflow management system (Pegasus-WMS). The workflow allows users to identify single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), perform SNP annotations and conduct copy number variation analyses on multiple resequencing datasets in a user-friendly and seamless way. We have developed both a Linux version in GitHub ( https://github.com/pegasus-isi/PGen-GenomicVariations-Workflow ) and a web-based implementation of the PGen workflow integrated within the Soybean Knowledge Base (SoyKB), ( http://soykb.org/Pegasus/index.php ). Using PGen, we identified 10,218,140 single-nucleotide polymorphisms (SNPs) and 1,398,982 indels from analysis of 106 soybean lines sequenced at 15X coverage. 297,245 non-synonymous SNPs and 3330 copy number variation (CNV) regions were identified from this analysis. SNPs identified using PGen from additional soybean resequencing projects adding to 500+ soybean germplasm lines in total have been integrated. These SNPs are being utilized for trait improvement using genotype to phenotype prediction approaches developed in-house. In order to browse and access NGS data easily, we have also developed an NGS resequencing data browser ( http://soykb.org/NGS_Resequence/NGS_index.php ) within SoyKB to provide easy access to SNP and downstream analysis results for soybean researchers. PGen workflow has been optimized for the most efficient analysis of soybean data using thorough testing and validation. This research serves as an example of best practices for development of genomics data analysis workflows by integrating remote HPC resources and efficient data management with ease of use for biological users. PGen workflow can also be easily customized for analysis of data in other species.
Pharos: Collating protein information to shed light on the druggable genome.
Nguyen, Dac-Trung; Mathias, Stephen; Bologa, Cristian; Brunak, Soren; Fernandez, Nicolas; Gaulton, Anna; Hersey, Anne; Holmes, Jayme; Jensen, Lars Juhl; Karlsson, Anneli; Liu, Guixia; Ma'ayan, Avi; Mandava, Geetha; Mani, Subramani; Mehta, Saurabh; Overington, John; Patel, Juhee; Rouillard, Andrew D; Schürer, Stephan; Sheils, Timothy; Simeonov, Anton; Sklar, Larry A; Southall, Noel; Ursu, Oleg; Vidovic, Dusica; Waller, Anna; Yang, Jeremy; Jadhav, Ajit; Oprea, Tudor I; Guha, Rajarshi
2017-01-04
The 'druggable genome' encompasses several protein families, but only a subset of targets within them have attracted significant research attention and thus have information about them publicly available. The Illuminating the Druggable Genome (IDG) program was initiated in 2014, has the goal of developing experimental techniques and a Knowledge Management Center (KMC) that would collect and organize information about protein targets from four families, representing the most common druggable targets with an emphasis on understudied proteins. Here, we describe two resources developed by the KMC: the Target Central Resource Database (TCRD) which collates many heterogeneous gene/protein datasets and Pharos (https://pharos.nih.gov), a multimodal web interface that presents the data from TCRD. We briefly describe the types and sources of data considered by the KMC and then highlight features of the Pharos interface designed to enable intuitive access to the IDG knowledgebase. The aim of Pharos is to encourage 'serendipitous browsing', whereby related, relevant information is made easily discoverable. We conclude by describing two use cases that highlight the utility of Pharos and TCRD. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.
Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W
2018-05-31
In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.
Orthology for comparative genomics in the mouse genome database.
Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A
2015-08-01
The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.
Rivera, Yazmin; Zeller, Kurt; Srivastava, Subodh K; Sutherland, Jeremy; Galvez, Marco E; Nakhla, Mark K; Poniatowska, Anna; Schnabel, Guido; Sundin, George W; Abad, Gloria
2018-05-03
Fungi in the genus Monilinia are known to cause devastating brown rot disease of stone and pome fruits. Here, we report the draft genome assemblies of four important phytopathogenic species: Monilinia fructicola, Monilinia fructigena, Monilinia polystroma, and Monilinia laxa. The draft genome assemblies were 39 Mb (M. fructigena), 42 Mb (M. laxa), 43 Mb (M. fructicola), and 45 Mb (M. polystroma) with as few as 550 contigs (M. laxa). These are the first draft genome resources publicly available for M. laxa, M. fructigena, and M. polystroma.
The UCSC genome browser: what every molecular biologist should know.
Mangan, Mary E; Williams, Jennifer M; Kuhn, Robert M; Lathe, Warren C
2009-10-01
Electronic data resources can enable molecular biologists to query and display many useful features that make benchwork more efficient and drive new discoveries. The UCSC Genome Browser provides a wealth of data and tools that advance one's understanding of genomic context for many species, enable detailed understanding of data, and provide the ability to interrogate regions of interest. Researchers can also supplement the standard display with their own data to query and share with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser.
GenomicTools: a computational platform for developing high-throughput analytics in genomics.
Tsirigos, Aristotelis; Haiminen, Niina; Bilal, Erhan; Utro, Filippo
2012-01-15
Recent advances in sequencing technology have resulted in the dramatic increase of sequencing data, which, in turn, requires efficient management of computational resources, such as computing time, memory requirements as well as prototyping of computational pipelines. We present GenomicTools, a flexible computational platform, comprising both a command-line set of tools and a C++ API, for the analysis and manipulation of high-throughput sequencing data such as DNA-seq, RNA-seq, ChIP-seq and MethylC-seq. GenomicTools implements a variety of mathematical operations between sets of genomic regions thereby enabling the prototyping of computational pipelines that can address a wide spectrum of tasks ranging from pre-processing and quality control to meta-analyses. Additionally, the GenomicTools platform is designed to analyze large datasets of any size by minimizing memory requirements. In practical applications, where comparable, GenomicTools outperforms existing tools in terms of both time and memory usage. The GenomicTools platform (version 2.0.0) was implemented in C++. The source code, documentation, user manual, example datasets and scripts are available online at http://code.google.com/p/ibm-cbc-genomic-tools.