Brightness measurement of an electron impact gas ion source for proton beam writing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, N.; Santhana Raman, P.; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness thatmore » is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.« less
Brightness measurement of an electron impact gas ion source for proton beam writing applications.
Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A
2016-02-01
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.
Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A
2018-03-01
We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.
Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa
2015-07-13
We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, F.; Filippetto, D.; Johnson, M.
The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less
Sannibale, F.; Filippetto, D.; Johnson, M.; ...
2017-11-27
The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less
Analysis of a high brightness photo electron beam with self field and wake field effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsa, Z.
High brightness sources are the basic ingredients in the new accelerator developments such as Free-Electron Laser experiments. The effects of the interactions between the highly charged particles and the fields in the accelerating structure, e.g. R.F., Space charge and Wake fields can be detrimental to the beam and the experiments. We present and discuss the formulation used, some simulation and results for the Brookhaven National Laboratory high brightness beam that illustrates effects of the accelerating field, space charge forces (e.g. due to self field of the bunch), and the wake field (e.g. arising from the interaction of the cavity surfacemore » and the self field of the bunch).« less
Technology to Establish a Factory for High QE Alkali Antimonide Photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheiss, Thomas
2015-11-16
Intense electron beams are key to a large number of scientific endeavors, including electron cooling of hadron beams, electron-positron colliders, secondary-particle beams such as photons and positrons, sub-picosecond ultrafast electron diffraction (UED), and new high gradient accelerators that use electron-driven plasmas. The last decade has seen a considerable interest in pursuit and realization of novel light sources such as Free Electron Lasers [1] and Energy Recovery Linacs [2] that promise to deliver unprecedented quality x-ray beams. Many applications for high-intensity electron beams have arisen in recent years in high-energy physics, nuclear physics and energy sciences, such as recent designs formore » an electron-hadron collider at CERN (LHeC) [3], and beam coolers for hadron beams at LHC and eRHIC [4,5]. Photoinjectors are used at the majority of high-brightness electron linacs today, due to their efficiency, timing structure flexibility and ability to produce high power, high brightness beams. The performance of light source machines is strongly related to the brightness of the electron beam used for generating the x-rays. The brightness of the electron beam itself is mainly limited by the physical processes by which electrons are generated. For laser based photoemission sources this limit is ultimately related to the properties of photocathodes [6]. Most facilities are required to expend significant manpower and money to achieve a workable, albeit often non-ideal, compromise photocathode solution. If entirely fabricated in-house, the photocathode growth process itself is laborious and not always reproducible: it involves the human element while requiring close adherence to recipes and extremely strict control of deposition parameters. Lack of growth reliability and as a consequence, slow adoption of viable photoemitter types, can be partly attributed to the absence of any centralized facility or commercial entity to routinely provide high peak current capable, low emittance, visible-light sensitive photocathodes to the myriad of source systems in use and under development. Successful adoption of photocathodes requires strict adherence to proper fabrication, operation, and maintenance methodologies, necessitating specialized knowledge and skills. Key issues include the choice of photoemitter material, development of a more streamlined growth process to minimize human operator uncertainties, accommodation of varying photoemitter substrate materials and geometries, efficient transport and insertion mechanisms preserving the photo-yield, and properly conveyed photoemitter operational and maintenance methodologies. AES, in collaboration with Cornell University in a Phase I STTR, developed an on-demand industrialized growth and centralized delivery system for high-brightness photocathodes focused upon the alkali antimonide photoemitters. To the end user, future photoemitter sourcing will become as simple as other readily available consumables, rather than a research project requiring large investments in time and personnel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostampooran, Shabnam; Dorranian, Davoud, E-mail: doran@srbiau.ac.ir
A system of nonlinear one-dimensional equations of the electron hydrodynamics with Maxwell's equations was developed to describe electromagnetic (EM) solitons in plasma with nonthermal electrons. Equation of vector potential was derived in relativistic regime by implementing the multiple scales technique, and their solitonic answers were introduced. The allowed regions for bright and dark electromagnetic solitons were discussed in detail. Roles of number density of nonthermal electrons, temperature of electrons, and frequency of fast participate of vector potential on the Sagdeev potential and properties of EM soliton were investigated. Results show that with increasing the number of nonthermal electrons, the amplitudemore » of vector potential of bright solitons increases. By increasing the number of nonthermal electrons, dark EM solitons may be changed to bright solitons. Increasing the energy of nonthermal electrons leads to generation of high amplitude solitons.« less
First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu
2012-07-31
Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that themore » LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.« less
Ultrashort high-brightness pulses from storage rings
NASA Astrophysics Data System (ADS)
Khan, Shaukat
2017-09-01
The brightness of short-wavelength radiation from accelerator-based sources can be increased by coherent emission in which the radiation intensity scales with the number of contributing electrons squared. This requires a microbunched longitudinal electron distribution, which is the case in free-electron lasers. The brightness of light sources based on electron storage rings was steadily improved, but could profit further from coherent emission. The modulation of the electron energy by a continuous-wave laser field may provide steady-state microbunching in the infrared regime. For shorter wavelengths, the energy modulation can be converted into a temporary density modulation by a dispersive chicane. One particular goal is coherent emission from a very short "slice" within an electron bunch in order to produce ultrashort radiation pulses with high brightness.
Design and construction of a DC high-brightness laser driven electron gun
NASA Astrophysics Data System (ADS)
Zhao, K.; Geng, R. L.; Wang, L. F.; Zhang, B. C.; Yu, J.; Wang, T.; Wu, G. F.; Song, J. H.; Chen, J. E.
1996-02-01
A DC high-brightness laser driven photoemissive electron gun is being developed at Peking University, in order to produce 50-100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathodes, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. The laser system is a mode-locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelengths (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is also discussed in this paper.
Ultra-bright pulsed electron beam with low longitudinal emittance
Zolotorev, Max
2010-07-13
A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.
PLEIADES: High Peak Brightness, Subpicosecond Thomson Hard-X-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuba, J; Anderson, S G; Barty, C J
2003-12-15
The Picosecond Laser-Electron Inter-Action for the Dynamic Evaluation of Structures (PLEIADES) facility, is a unique, novel, tunable (10-200 keV), ultrafast (ps-fs), hard x-ray source that greatly extends the parameter range reached by existing 3rd generation sources, both in terms of x-ray energy range, pulse duration, and peak brightness at high energies. First light was observed at 70 keV early in 2003, and the experimental data agrees with 3D codes developed at LLNL. The x-rays are generated by the interaction of a 50 fs Fourier-transform-limited laser pulse produced by the TW-class FALCON CPA laser and a highly focused, relativistic (20-100 MeV),more » high brightness (1 nC, 0.3-5 ps, 5 mm.mrad, 0.2% energy spread) photo-electron bunch. The resulting x-ray brightness is expected to exceed 10{sup 20} ph/mm{sup 2}/s/mrad{sup 2}/0.1% BW. The beam is well-collimated (10 mrad divergence over the full spectrum, 1 mrad for a single color), and the source is a unique tool for time-resolved dynamic measurements in matter, including high-Z materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandlakunta, P; Pham, R; Zhang, T
Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source controlmore » and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.« less
NASA Astrophysics Data System (ADS)
Zakharov, S. V.; Zakharov, V. S.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Solomyannaya, A. D.; Berezin, A. V.; Vorontsov, A. S.; Markov, M. B.; Parot'kin, S. V.
2011-04-01
In the specifications for EUV sources, high EUV power at IF for lithography HVM and very high brightness for actinic mask and in-situ inspections are required. In practice, the non-equilibrium plasma dynamics and self-absorption of radiation limit the in-band radiance of the plasma and the usable radiation power of a conventional single unit EUV source. A new generation of the computational code Z* is currently developed under international collaboration in the frames of FP7 IAPP project FIRE for modelling of multi-physics phenomena in radiation plasma sources, particularly for EUVL. The radiation plasma dynamics, the spectral effects of self-absorption in LPP and DPP and resulting Conversion Efficiencies are considered. The generation of fast electrons, ions and neutrals is discussed. Conditions for the enhanced radiance of highly ionized plasma in the presence of fast electrons are evaluated. The modelling results are guiding a new generation of EUV sources being developed at Nano-UV, based on spatial/temporal multiplexing of individual high brightness units, to deliver the requisite brightness and power for both lithography HVM and actinic metrology applications.
He, Penghui; Jiang, Congbiao; Lan, Linfeng; Sun, Sheng; Li, Yizhi; Gao, Peixiong; Zhang, Peng; Dai, Xingqiang; Wang, Jian; Peng, Junbiao; Cao, Yong
2018-05-22
Light-emitting field-effect transistors (LEFETs) have attained great attention due to their special characteristics of both the switching capacity and the electroluminescence capacity. However, high-performance LEFETs with high mobility, high brightness, and high efficiency have not been realized due to the difficulty in developing high electron and hole mobility materials with suitable band structures. In this paper, quantum dot hybrid LEFETs (QD-HLEFETs) combining high-luminous-efficiency quantum dots (QDs) and a solution-processed scandium-incorporated indium oxide (Sc:In 2 O 3 ) semiconductor were demonstrated. The red QD-HLEFET showed high electrical and optical performance with an electron mobility of 0.8 cm 2 V -1 s -1 , a maximum brightness of 13 400 cd/m 2 , and a maximum external quantum efficiency of 8.7%. The high performance of the QD-HLEFET is attributed to the good energy band matching between Sc:In 2 O 3 and QDs and the balanced hole and electron injection (less exciton nonradiative recombination). In addition, incorporation of Sc into In 2 O 3 can suppress the oxygen vacancy and free carrier generation and brings about excellent current and optical modulation (the on/off current ratio is 10 5 and the on/off brightness ratio is 10 6 ).
Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenzweig, James; Andonian, Gerard; Fukasawa, Atsushi
2012-06-22
Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This use of very low Q beams may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the LCLS have produced {approx}2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments in cryogenic undulator technology, to create compact accelerator-undulator systems that can lase belowmore » 0.15 {angstrom}, or be used to permit 1.5 {angstrom} operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.« less
The Physics and Applications of High Brightness Electron Beams
NASA Astrophysics Data System (ADS)
Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca
2007-09-01
Plenary sessions. RF deflector based sub-Ps beam diagnostics: application to FEL and advanced accelerators / D. Alesini. Production of fermtosecond pulses and micron beam spots for high brightness electron beam applications / S.G. Anderson ... [et al.]. Wakefields of sub-picosecond electron bunches / K.L.F. Bane. Diamond secondary emitter / I. Ben-Zvi ... [et al.]. Parametric optimization for an X-ray free electron laser with a laser wiggler / R. Bonifacio, N. Piovella and M.M. Cola. Needle cathodes for high-brightness beams / C.H. Boulware ... [et al.]. Non linear evolution of short pulses in FEL cascaded undulators and the FEL harmonic cascade / L. Giannessi and P. Musumeci. High brightness laser induced multi-meV electron/proton sources / D. Giulietti ... [et al.]. Emittance limitation of a conditioned beam in a strong focusing FEL undulator / Z. Huang, G. Stupakov and S. Reiche. Scaled models: space-charge dominated electron storage rings / R.A. Kishek ... [et al.]. High brightness beam applications: energy recovered linacs / G.A. Krafft. Maximizing brightness in photoinjectors / C. Limborg-Deprey and H. Tomizawa. Ultracold electron sources / O.J. Luiten ... [et al.]. Scaling laws of structure-based optical accelerators / A. Mizrahi, V. Karagodsky and L. Schächter. High brightness beams-applications to free-electron lasers / S. Reiche. Conception of photo-injectors for the CTF3 experiment / R. Roux. Superconducting RF photoinjectors: an overview / J. Sekutowicz. Status and perspectives of photo injector developments for high brightness beams / F. Stephan. Results from the UCLA/FNLP underdense plasma lens experiment / M.C. Thompson ... [et al.]. Medical application of multi-beam compton scattering monochromatic tunable hard X-ray source / M. Uesaka ... [et al.]. Design of a 2 kA, 30 fs RF-photoinjector for waterbag compression / S.B. Van Der Geer, O.J. Luiten and M.J. De Loos. Proposal for a high-brightness pulsed electron source / M. Zolotorev ... [et al.]. -- Working Group 1. Summary of working group 1 on electron sources / M. Ferrario and G. Gatti. Design and RF measurements of an X-band accelerating structure for the SPARC project / D. Alesini ... [et al.]. Mitigation of RF gun breakdown by removal of tuning rods in high field regions / A.M. Cook... [et al.]. Measurements of quantum efficiency of Mg films produced by pulsed laser ablation deposition for application to bright electron sources / G. Gatti ... [et al.]. The S-band 1.6 cell RF gun correlated energy spread dependence on Pi and 0 mode relative amplitude / F. Schmerge ... [et al.]. RF gun photo-emission model for metal cathodes including time dependent emission / J.F. Schmerge ... [et al.]. Superconducting photocathodes / J. Smedley ... [et al.]. -- Working Group 2. Summary of Working Group 2: diagnostics and beam manipulation / G. Travish. Observation of coherent edge radiation emitted by a 100 Femtosecond compressed electron beam / G. Andonian, M, Dunning, E. Hemsing, J. B. Rosenzweig ... [et al.]. PARMELA simulations for PITZ: first machine studies and interpretation of measurements / M. Boscolo ... [et al.]. The LCLS single-shot relative bunch length monitor system / M.P. Dunning ... [et al.]. Beam shaping and permanent magnet quadrupole focusing with applications to the plasma wakefield accelerator / R.J. England ... [et al.]. Commissioning of the SPARC movable emittance meter and its first operation at PITZ / D. Filippetto... [et al.]. Experimental testing of dynamically optimized photoelectron beams / J.B. Rosenzweig ... [et al.]. Synchronization between the laser and electron beam in a photocathode RF gun / A. Sakumi ... [et al.]. Method of bunch radiation photochronography with 10 Femtosecond and less resolution / A. Tron and I. Merinov -- Working Group 3. New challenges in theory and modeling-summary for working group 3. L. Giannessi. Resonant modes in a 1.6 cells RF gun / M. Ferrario and C. Ronsivalle. Emittance degradation due to wake fields in a high brightness photoinjector / M. Ferrario, V. Fusco, M. Migliorati and L. Palumbo. Simulations of coherent synchroton radiation effects in electron machines / M. Migliorati, A, Schiavi and G. Dattoli. QFEL: A numerical code for multi-dimensional simulation of free electron lasers in the quantum regime / A. Schiavi ... [et al.]. First simulations results on laser pulse jitter and microbunching instability at Saprxino / M. Boscolo ... [et al.]. -- Working Group 4. Working group 4 summary: applications of high brightness beams to advanced accelerators and light sources / M. Uesaka and A. Rossi. Study of transverse effects in the production of X-rays with free-electron laser based on an optical ondulator / A. Bacci ... [et al.]. Channeling projects at LNF: from crystal undulators to capillary waveguides / S.B. Dabagov ... [et al.]. Mono-Energetic electron generation and plasma diagnosis experiments in a laser plasma cathode / K. Kinoshita ... [et al.]. A high-density electron beam and quad-scan measurements at Pleiades Thompson X-ray source / J.K. Lim ... [et al.]. Laser pulse circulation system for compact monochromatic tunable hard X-ray source / H. Ogino ... [et al.]. Limits on production of narrow band photons from inverse compton scattering / J. Rosenzweig and O. Williams. Preliminary results from the UCLA/SLAC ultra-high gradient Cerenkov wakefield accelerator experiment / M.C. Thompson ... [et al.]. Status of the polarized nonlinear inverse compton scattering experiment at UCLA / O. Williams... [et al.]. Coupling laser power into a slab-symmetric accelerator structure / R.B. Yoder and J.B. Rosenzweig.
Space charge effects in ultrafast electron diffraction and imaging
NASA Astrophysics Data System (ADS)
Tao, Zhensheng; Zhang, He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu
2012-02-01
Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.
Theoretical and Computational Investigation of High-Brightness Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chiping
Theoretical and computational investigations of adiabatic thermal beams have been carried out in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research and for various applications such as light sources. Most accelerator applications require high-brightness beams. This is true for high-energy accelerators such as linear colliders. It is also true for energy recovery linacs (ERLs) and free electron lasers (FELs) such as x-ray free electron lasers (XFELs). The breakthroughs and highlights in our research in the period from February 1, 2013 to November 30, 2013 were: a) Completion of a preliminary theoretical and computationalmore » study of adiabatic thermal Child-Langmuir flow (Mok, 2013); and b) Presentation of an invited paper entitled ?Adiabatic Thermal Beams in a Periodic Focusing Field? at Space Charge 2013 Workshop, CERN, April 16-19, 2013 (Chen, 2013). In this report, an introductory background for the research project is provided. Basic theory of adiabatic thermal Child-Langmuir flow is reviewed. Results of simulation studies of adiabatic thermal Child-Langmuir flows are discussed.« less
OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, F V; Albert, F; Anderson, G G
2010-05-18
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less
A compact high brightness laser synchrotron light source for medical applications
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhisa
1999-07-01
The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.
Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya
2017-10-01
We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.
Improvement in reduced-mode (REM) diodes enable 315 W from 105-μm 0.15-NA fiber-coupled modules
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2018-02-01
High-power, high-brightness diode lasers have been pursued for many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - and 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. As a result, there have been many technical thrusts for driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, nLIGHT element®. In the past decade, the power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brightness and the development of techniques for efficiently coupling multiple emitters. In this paper, we demonstrate further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new chip technology using x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report record 315 W output from a 2×12 nLIGHT element with 105 μm diameter fiber using x-REM diodes and these diodes will allow next generation of fiber-coupled product capable of 250W output power from 105 μm/0.15 NA beam at 915 nm.
Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Anderson, S G; Barty, C P J
2003-05-28
The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less
Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source
NASA Astrophysics Data System (ADS)
Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.
2016-09-01
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamps, T; Barday, R; Jankowiak, A
In preparation for a high brightness, high average current electron source for the energy-recovery linac BERLinPro an all superconducting radio-frequency photoinjector is now in operation at Helmholtz-Zentrum Berlin. The aim of this experiment is beam demonstration with a high brightness electron source able to generate sub-ps pulse length electron bunches from a superconducting (SC) cathode film made of Pb coated on the backwall of a Nb SRF cavity. This paper describes the setup of the experiment and first results from beam measurements.
Arbitrarily shaped high-coherence electron bunches from cold atoms
NASA Astrophysics Data System (ADS)
McCulloch, A. J.; Sheludko, D. V.; Saliba, S. D.; Bell, S. C.; Junker, M.; Nugent, K. A.; Scholten, R. E.
2011-10-01
Ultrafast electron diffractive imaging of nanoscale objects such as biological molecules and defects in solid-state devices provides crucial information on structure and dynamic processes: for example, determination of the form and function of membrane proteins, vital for many key goals in modern biological science, including rational drug design. High brightness and high coherence are required to achieve the necessary spatial and temporal resolution, but have been limited by the thermal nature of conventional electron sources and by divergence due to repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that, if the electrons are shaped into ellipsoidal bunches with uniform density, the Coulomb explosion can be reversed using conventional optics, to deliver the maximum possible brightness at the target. Here we demonstrate arbitrary and real-time control of the shape of cold electron bunches extracted from laser-cooled atoms. The ability to dynamically shape the electron source itself and to observe this shape in the propagated electron bunch provides a remarkable experimental demonstration of the intrinsically high spatial coherence of a cold-atom electron source, and the potential for alleviation of electron-source brightness limitations due to Coulomb explosion.
Overview of Mono-Energetic Gamma-Ray Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, Fred; /LLNL, Livermore; Albert, Felicie
2012-06-25
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less
Experimental realization of underdense plasma photocathode wakefield acceleration at FACET
NASA Astrophysics Data System (ADS)
Scherkl, Paul
2017-10-01
Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.
Calculation of gyrosynchrotron radiation brightness temperature for outer bright loop of ICME
NASA Astrophysics Data System (ADS)
Sun, Weiying; Wu, Ji; Wang, C. B.; Wang, S.
:Solar polar orbit radio telescope (SPORT) is proposed to detect the high density plasma clouds of outer bright loop of ICMEs from solar orbit with large inclination. Of particular interest is following the propagation of the plasma clouds with remote sensor in radio wavelength band. Gyrosynchrotron emission is a main radio radiation mechanism of the plasma clouds and can provide information of interplanetary magnetic field. In this paper, we statistically analyze the electron density, electron temperature and magnetic field of background solar wind in time of quiet sun and ICMEs propagation. We also estimate the fluctuation range of the electron density, electron temperature and magnetic field of outer bright loop of ICMEs. Moreover, we calculate and analyze the emission brightness temperature and degree of polarization on the basis of the study of gyrosynchrotron emission, absorption and polarization characteristics as the optical depth is less than or equal to 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F.; Hartemann, F. V.; Anderson, S. G.
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less
Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2017-02-01
High-power, high-brightness diode lasers from 8xx nm to 9xx nm have been pursued in many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. Thus, there have been many technical efforts on driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, elementTM. In the past decade, the amount of power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brilliance and the development of techniques for efficiently coupling multiple emitters into a single fiber. In this paper, we demonstrate the further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report the record 272W from a 2×9 elementTM with 105 μm/0.15 NA beam using x-REM diodes and a new product introduction at 200W output power from 105 μm/0.15 NA beam at 915 nm.
NASA Astrophysics Data System (ADS)
Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
NASA Astrophysics Data System (ADS)
Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.
2015-05-01
Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.
Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun, J.; Piot, P.; Sen, T.
2018-04-12
This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. We discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less
Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun, J.; Piot, P.; Sen, T.
This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. Here, we discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less
Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation
Hyun, J.; Piot, P.; Sen, T.
2018-06-14
This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. Here, we discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less
Silicon coupled with plasmon nanocavities generates bright visible hot luminescence
NASA Astrophysics Data System (ADS)
Cho, Chang-Hee; Aspetti, Carlos O.; Park, Joohee; Agarwal, Ritesh
2013-04-01
To address the limitations in device speed and performance in silicon-based electronics, there have been extensive studies on silicon optoelectronics with a view to achieving ultrafast optical data processing. The biggest challenge has been to develop an efficient silicon-based light source, because the indirect bandgap of silicon gives rise to extremely low emission efficiencies. Although light emission in quantum-confined silicon at sub-10 nm length scales has been demonstrated, there are difficulties in integrating quantum structures with conventional electronics. It is desirable to develop new concepts to obtain emission from silicon at length scales compatible with current electronic devices (20-100 nm), which therefore do not utilize quantum-confinement effects. Here, we demonstrate an entirely new method to achieve bright visible light emission in `bulk-sized' silicon coupled with plasmon nanocavities at room temperature, from non-thermalized carrier recombination. The highly enhanced emission (internal quantum efficiency of >1%) in plasmonic silicon, together with its size compatibility with current silicon electronics, provides new avenues for developing monolithically integrated light sources on conventional microchips.
Possibilities for Nuclear Photo-Science with Intense Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C J; Hartemann, F V; McNabb, D P
2006-06-26
The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging ofmore » materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear materials. With TREX it is possible to use NRF to provide high spatial resolution (micron scale) images of the isotopic distribution of all materials in a given object. Because of the high energy of the photons, imaging through dense and/or thick objects is possible. This technology will have applicability in many arenas including the survey of cargo for the presence of clandestine nuclear materials. It is also possible to address the more general radiographic challenge of imaging low-density objects that are shielded or placed behind high density objects. In this case, it is the NRF cross section and not the electron density of the material that provides contrast. Extensions of T-REX technology will be dependent upon the evolution of short pulse laser technology to high average powers. Concepts for sources that would produce 10's of kWs of gamma-rays by utilizing MW-class average-power, diode-pumped, short pulse lasers and energy recovery LINAC technology have been developed.« less
Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source
Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; ...
2016-09-01
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. Lastly, the gun utilizes a quarter-wave resonator (QWR) geometrymore » for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.« less
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; ...
2017-08-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. In this paper, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimalmore » compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ~100 fs and ~1 eV resolutions with 10 6 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches.« less
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; Tao, Z.; Chang, K.; Makino, K.; Berz, M.; Duxbury, P. M.; Ruan, C.-Y.
2017-01-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. Here, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimal compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ∼100 fs and ∼1 eV resolutions with 106 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches. PMID:28868325
NASA Astrophysics Data System (ADS)
Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.
1997-07-01
Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.
High brightness electron accelerator
Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.
1994-01-01
A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.
Femtosecond laser-electron x-ray source
Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard
2004-04-20
A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.
Performance of an electron gun for a high-brightness X-ray generator
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-01-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153
A brightness exceeding simulated Langmuir limit
NASA Astrophysics Data System (ADS)
Nakasuji, Mamoru
2013-08-01
When an excitation of the first lens determines a beam is parallel beam, a brightness that is 100 times higher than Langmuir limit is measured experimentally, where Langmuir limits are estimated using a simulated axial cathode current density which is simulated based on a measured emission current. The measured brightness is comparable to Langmuir limit, when the lens excitation is such that an image position is slightly shorter than a lens position. Previously measured values of brightness for cathode apical radii of curvature 20, 60, 120, 240, and 480 μm were 8.7, 5.3, 3.3, 2.4, and 3.9 times higher than their corresponding Langmuir limits, respectively, in this experiment, the lens excitation was such that the lens and the image positions were 180 mm and 400 mm, respectively. From these measured brightness for three different lens excitation conditions, it is concluded that the brightness depends on the first lens excitation. For the electron gun operated in a space charge limited condition, some of the electrons emitted from the cathode are returned to the cathode without having crossed a virtual cathode. Therefore, method that assumes a Langmuir limit defining method using a Maxwellian distribution of electron velocities may need to be revised. For the condition in which the values of the exceeding the Langmuir limit are measured, the simulated trajectories of electrons that are emitted from the cathode do not cross the optical axis at the crossover, thus the law of sines may not be valid for high brightness electron beam systems.
NASA Astrophysics Data System (ADS)
Korolev, A. M.; Shulga, V. M.; Turutanov, O. G.; Shnyrkov, V. I.
2016-07-01
A technically simple and physically clear method is suggested for direct measurement of the brightness temperature of two-dimensional electron gas (2DEG) in the channel of a high electron mobility transistor (HEMT). The usage of the method was demonstrated with the pseudomorphic HEMT as a specimen. The optimal HEMT dc regime, from the point of view of the "back action" problem, was found to belong to the unsaturated area of the static characteristics possibly corresponding to the ballistic electron transport mode. The proposed method is believed to be a convenient tool to explore the ballistic transport, electron diffusion, 2DEG properties and other electrophysical processes in heterostructures.
Fourth Generation Light Sources
NASA Astrophysics Data System (ADS)
Winick, Herman
1997-05-01
Concepts and designs are now being developed at laboratories around the world for light sources with performance levels that exceed present sources, including the very powerful and successful third generation synchrotron radiation sources that have come on line in the past few years. Workshops (M. Cornacchia and H. Winick (eds), Workshop on Fourth Generation Light Sources, Feb. 24-27, 1992, SSRL Report 92/02) (J.-L. Laclare (ed), ICFA Workshop on Fourth Generation Light Sources, Jan. 22-25, 1996, ESRF Report) have been held to review directions for future sources. A main thrust is to increase the brightness and coherence of the radiation using storage rings with lower electron-beam emittance or free-electron lasers (FELs). In the infra-red part of the spectrum very high brightness and coherence is already provided by FEL user facilities driven by linacs and storage rings. It now appears possible to extend FEL operation to the VUV, soft X-ray and even hard X-ray spectral range, to wavelengths down to the angstrom range, using high energy linacs equipped with high-brightness rf photoinjectors and bunch-length compressors. R&D to develop such sources is in progress at BNL, DESY, KEK, SLAC and other laboratories. In the absence of mirrors to form optical cavities, short wavelengths are reached in FEL systems in which a high peak current, low-emittance electron beam becomes bunch-density modulated at the optical wavelength in a single pass through a long undulator by self-amplified spontaneous emission (SASE); i.e.; startup from noise. A proposal to use the last kilometer of the three kilometer SLAC linac (the first two kilometers will be used for injection to the PEP II B-Factory) to provide 15 GeV electron beams to reach 1.5 Angstroms by SASE in a 100 m long undulator is in preparation.
Plasma production for electron acceleration by resonant plasma wave
NASA Astrophysics Data System (ADS)
Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk
2010-02-01
We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.
Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu
2017-09-04
We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
Electronic imaging system and technique
Bolstad, J.O.
1984-06-12
A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.
Electronic imaging system and technique
Bolstad, Jon O.
1987-01-01
A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.
Adapting High Brightness Relativistic Electron Beams for Ultrafast Science
NASA Astrophysics Data System (ADS)
Scoby, Cheyne Matthew
This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the “blow-out regime.” When the beam charge is maintained low, ultrashort electron bunches can be obtained enabling novel applications such as single shot Femtosecond Relativistic Electron Diffraction (FRED). High precision temporal diagnostic and synchronization techniques are integral to the use of femtosecond electron bunches for ultrafast science. An x-band rf streak camera provides measurements of the longitudinal profiles of sub-ps electron bunches. Spatial encoded electro-optic timestamping is developed to overcome the inherent rf-laser synchronization errors in rf photoinjectors. The ultrafast electron beams generated with the RF photoenjector are employed in pump-probe experiments wherein a target is illuminated with an intense pump laser to induce a transient behavior in the sample. FRED is used to study the melting of gold after heating with an intense femtosecond laser pulse. In a first experiment we study the process by taking different single-shot diffraction patterns at varying delays between the pump an probe beams. In a second experiment a variation of the technique is employed using the rf streak camera to time-stretch the beam after it has diffraction from the sample in order to capture the full melting dynamics in a single shot. Finally, relativistic ultrashort electron bunches are used as a probe of plasma dynamics in electron radiography/shadowgraphy experiments. This technique is used to study photoemission with intense laser pulses and the evolution of electromagnetic fields in a photoinduced dense plasma. This experiment is also performed in two different modes: one where different pictures are acquired at different time delays, and the other where a single streak image is used to obtain visualization of the propagation electromagnetic fields with an unprecedented 35 femtosecond resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, F.; Bohler, D.; Ding, Y.
2015-12-07
Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less
A history of scanning electron microscopy developments: towards "wet-STEM" imaging.
Bogner, A; Jouneau, P-H; Thollet, G; Basset, D; Gauthier, C
2007-01-01
A recently developed imaging mode called "wet-STEM" and new developments in environmental scanning electron microscopy (ESEM) allows the observation of nano-objects suspended in a liquid phase, with a few manometers resolution and a good signal to noise ratio. The idea behind this technique is simply to perform STEM-in-SEM, that is SEM in transmission mode, in an environmental SEM. The purpose of the present contribution is to highlight the main advances that contributed to development of the wet-STEM technique. Although simple in principle, the wet-STEM imaging mode would have been limited before high brightness electron sources became available, and needed some progresses and improvements in ESEM. This new technique extends the scope of SEM as a high-resolution microscope, relatively cheap and widely available imaging tool, for a wider variety of samples.
a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source
NASA Astrophysics Data System (ADS)
Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.
2007-09-01
A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.
a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source
NASA Astrophysics Data System (ADS)
Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.
A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.
NASA Astrophysics Data System (ADS)
Cruz Inclán, Carlos M.; González Lazo, Eduardo; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
The present work deals with the numerical simulation of gamma and electron radiation damage processes under high brightness and radiation particle fluency on regard to two new radiation induced atom displacement processes, which concern with both, the Monte Carlo Method based numerical simulation of the occurrence of atom displacement process as a result of gamma and electron interactions and transport in a solid matrix and the atom displacement threshold energies calculated by Molecular Dynamic methodologies. The two new radiation damage processes here considered in the framework of high brightness and particle fluency irradiation conditions are: 1) The radiation induced atom displacement processes due to a single primary knockout atom excitation in a defective target crystal matrix increasing its defect concentrations (vacancies, interstitials and Frenkel pairs) as a result of a severe and progressive material radiation damage and 2) The occurrence of atom displacements related to multiple primary knockout atom excitations for the same or different atomic species in an perfect target crystal matrix due to subsequent electron elastic atomic scattering in the same atomic neighborhood during a crystal lattice relaxation time. In the present work a review numeral simulation attempts of these two new radiation damage processes are presented, starting from the former developed algorithms and codes for Monte Carlo simulation of atom displacements induced by electron and gamma in
Superconducting energy recovery linacs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.
Superconducting energy recovery linacs
Ben-Zvi, Ilan
2016-09-01
High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.
Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U
2013-09-13
Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.
Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weathersby, S. P.; Brown, G.; Chase, T. F.
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less
Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.
Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J
2015-07-01
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.
Diagnostic for a high-repetition rate electron photo-gun and first measurements
NASA Astrophysics Data System (ADS)
Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.
2015-05-01
The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.
RF design for the TOPGUN photogun: A cryogenic normal conducting copper electron gun
Cahill, A. D.; Fukasawa, A.; Pakter, R.; ...
2016-08-31
Some recent studies of rf breakdown physics in cryogenic copper X-band accelerating structures have shown a dramatic increase in the operating gradient while maintaining low breakdown rates. The TOPGUN project, a collaboration between UCLA, SLAC, and INFN, will use this improvement in gradient to create an ultra-high brightness cryogenic normal conducting photoinjector [16]. The brightness is expected to be higher by a factor of 25 relative to the LCLS photogun [9]. This improvement in the brightness will lead to increased performance of X-Ray free electron lasers (FELs) and ultrafast electron diffraction devices [16]. Here, we present the rf design formore » this S-band photogun, which will be a drop-in replacement for the current LCLS photogun.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratner, D.; Behrens, C.; Ding, Y.
The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete amore » comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. As a result, detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.« less
Advanced Compton scattering light source R&D at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F; Anderson, S G; Anderson, G
2010-02-16
We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. L. Bohn
2008-05-31
According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on thosemore » that can be regarded as specific to this project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. K. Sinclair; P. A. Adderley; B. M. Dunham
Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and havemore » often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.« less
A new evaluation method of electron optical performance of high beam current probe forming systems.
Fujita, Shin; Shimoyama, Hiroshi
2005-10-01
A new numerical simulation method is presented for the electron optical property analysis of probe forming systems with point cathode guns such as cold field emitters and the Schottky emitters. It has long been recognized that the gun aberrations are important parameters to be considered since the intrinsically high brightness of the point cathode gun is reduced due to its spherical aberration. The simulation method can evaluate the 'threshold beam current I(th)' above which the apparent brightness starts to decrease from the intrinsic value. It is found that the threshold depends on the 'electron gun focal length' as well as on the spherical aberration of the gun. Formulas are presented to estimate the brightness reduction as a function of the beam current. The gun brightness reduction must be included when the probe property (the relation between the beam current l(b) and the probe size on the sample, d) of the entire electron optical column is evaluated. Formulas that explicitly consider the gun aberrations into account are presented. It is shown that the probe property curve consists of three segments in the order of increasing beam current: (i) the constant probe size region, (ii) the brightness limited region where the probe size increases as d approximately I(b)(3/8), and (iii) the angular current intensity limited region in which the beam size increases rapidly as d approximately I(b)(3/2). Some strategies are suggested to increase the threshold beam current and to extend the effective beam current range of the point cathode gun into micro ampere regime.
NASA Astrophysics Data System (ADS)
Cesar, D.; Maxson, J.; Musumeci, P.; Sun, Y.; Harrison, J.; Frigola, P.; O'Shea, F. H.; To, H.; Alesini, D.; Li, R. K.
2016-07-01
We present the results of an experiment where a short focal length (˜1.3 cm ), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30 × were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T /m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
NASA Astrophysics Data System (ADS)
Olowinsky, A.; Boglea, A.
2011-03-01
Plastics play an important role in almost every facet of our lives and constitute a wide variety of products, from everyday products such as food and beverage packaging, over furniture and building materials to high tech products in the automotive, electronics, aerospace, white goods, medical and other sectors [1]. The objective of PolyBright, the European Research project on laser polymer welding, is to provide high speed and flexible laser manufacturing technology and expand the limits of current plastic part assembly. New laser polymer joining processes for optimized thermal management in combination with adapted wavelengths will provide higher quality, high processing speed up to 1 m/s and robust manufacturing processes at lower costs. Key innovations of the PolyBright project are fibre lasers with high powers up to 500 W, high speed scanning and flexible beam manipulation systems for simultaneous welding and high-resolution welding, such as dynamic masks and multi kHz scanning heads. With this initial step, PolyBright will break new paths in processing of advanced plastic products overcoming the quality and speed limitations of conventional plastic part assembly. Completely new concepts for high speed processing, flexibility and quality need to be established in combination with high brilliance lasers and related equipment. PolyBright will thus open new markets for laser systems with a short term potential of over several 100 laser installations per year and a future much larger market share in the still growing plastic market. PolyBright will hence establish a comprehensive and sustainable development activity on new high brilliance lasers that will strengthen the laser system industry.
Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver
NASA Astrophysics Data System (ADS)
Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.
2016-10-01
Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.
NASA Astrophysics Data System (ADS)
Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi
2018-03-01
A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.
Börrnert, Felix; Renner, Julian; Kaiser, Ute
2018-05-21
The electron source brightness is an important parameter in an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a simple measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).
NASA Astrophysics Data System (ADS)
Aryal, Saurav; Finn, Susanna C.; Hewawasam, Kuravi; Maguire, Ryan; Geddes, George; Cook, Timothy; Martel, Jason; Baumgardner, Jeffrey L.; Chakrabarti, Supriya
2018-05-01
Energies and fluxes of precipitating electrons in an aurora over Lowell, MA on 22-23 June 2015 were derived based on simultaneous, high-resolution (≈ 0.02 nm) brightness measurements of N2+ (427.8 nm, blue line), OI (557.7 nm, green line), and OI (630.0 nm, red line) emissions. The electron energies and energy fluxes as a function of time and look direction were derived by nonlinear minimization of model predictions with respect to the measurements. Three different methods were compared; in the first two methods, we constrained the modeled brightnesses and brightness ratios, respectively, with measurements to simultaneously derive energies and fluxes. Then we used a hybrid method where we constrained the individual modeled brightness ratios with measurements to derive energies and then constrained modeled brightnesses with measurements to derive fluxes. Derived energy, assuming Maxwellian distribution, during this storm ranged from 109 to 262 eV and the total energy flux ranged from 0.8 to 2.2 ergs·cm-2·s-1. This approach provides a way to estimate energies and energy fluxes of the precipitating electrons using simultaneous multispectral measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwahara, Makoto, E-mail: kuwahara@esi.nagoya-u.ac.jp; Saitoh, Koh; Tanaka, Nobuo
2014-11-10
The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 10{sup 7 }A cm{sup −2 }sr{sup −1} for a 30-keV beam energy with the polarization of 82%, which corresponds to 3.1 × 10{sup 8 }A cm{sup −2 }sr{sup −1} for a 200-keV beam energy. The resulting electron beam exhibited a long coherence length at the specimen position due to the high parallelism of (1.7 ± 0.3) × 10{sup −5 }rad, which generated interference fringes representative of a first-order correlation using an electron biprism. The beam also had amore » high degeneracy of electron wavepacket of 4 × 10{sup −6}. Due to the high polarization, the high degeneracy and the long coherence length, the spin-polarized electron beam can enhance the antibunching effect.« less
The ETA-II induction linac as a high-average-power FEL driver
NASA Astrophysics Data System (ADS)
Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.
1990-10-01
The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.
Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone
Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.
2015-01-01
A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308
A high brightness probe of polymer nanoparticles for biological imaging
NASA Astrophysics Data System (ADS)
Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng
2018-03-01
Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.
Performance of a first generation X-band photoelectron rf gun
Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; ...
2016-05-04
Building more compact accelerators to deliver high brightness electron beams for the generation of high flux, highly coherent radiation is a priority for the photon science community. A relatively straightforward reduction in footprint can be achieved by using high-gradient X-band (11.4 GHz) rf technology. To this end, an X-band injector consisting of a 5.5 cell rf gun and a 1-m long linac has been commissioned at SLAC. It delivers an 85 MeV electron beam with peak brightness somewhat better than that achieved in S-band photoinjectors, such as the one developed for the Linac Coherent Light Source (LCLS). The X-band rfmore » gun operates with up to a 200 MV/m peak field on the cathode, and has been used to produce bunches of a few pC to 1.2 nC in charge. Notably, bunch lengths as short as 120 fs rms have been measured for charges of 5 pC (~3×10 7 electrons), and normalized transverse emittances as small as 0.22 mm-mrad have been measured for this same charge level. Bunch lengths as short as 400 (250) fs rms have been achieved for electron bunches of 100 (20) pC with transverse normalized emittances of 0.7 (0.35) mm-mrad. As a result, we report on the performance and the lessons learned from the operation and optimization of this first generation X-band gun.« less
Performance of a first generation X-band photoelectron rf gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.
Building more compact accelerators to deliver high brightness electron beams for the generation of high flux, highly coherent radiation is a priority for the photon science community. A relatively straightforward reduction in footprint can be achieved by using high-gradient X-band (11.4 GHz) rf technology. To this end, an X-band injector consisting of a 5.5 cell rf gun and a 1-m long linac has been commissioned at SLAC. It delivers an 85 MeV electron beam with peak brightness somewhat better than that achieved in S-band photoinjectors, such as the one developed for the Linac Coherent Light Source (LCLS). The X-band rfmore » gun operates with up to a 200 MV/m peak field on the cathode, and has been used to produce bunches of a few pC to 1.2 nC in charge. Notably, bunch lengths as short as 120 fs rms have been measured for charges of 5 pC (~3×10 7 electrons), and normalized transverse emittances as small as 0.22 mm-mrad have been measured for this same charge level. Bunch lengths as short as 400 (250) fs rms have been achieved for electron bunches of 100 (20) pC with transverse normalized emittances of 0.7 (0.35) mm-mrad. As a result, we report on the performance and the lessons learned from the operation and optimization of this first generation X-band gun.« less
Cesar, D; Maxson, J; Musumeci, P; Sun, Y; Harrison, J; Frigola, P; O'Shea, F H; To, H; Alesini, D; Li, R K
2016-07-08
We present the results of an experiment where a short focal length (∼1.3 cm), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30× were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P
2013-02-15
We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.
Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Tomai, Takaaki; Honma, Itaru
2013-10-23
LiCoPO4 cathode materials have been synthesized by a sol-gel route. X-ray diffraction analysis confirmed that LiCoPO4 was well-crystallized in an orthorhombic structure in the Pmna space group. From the high-resolution transmission electron microscopy (HR-TEM) image, the lattice fringes of {001} and {100} are well-resolved. The HR-TEM image and selected area electron diffraction pattern reveal the highly crystalline nature of LiCoPO4 having an ordered olivine structure. The atom-by-atom structure of LiCoPO4 olivine has been observed, for the first time, using high-angle annular dark-field (HAADF) and annual bright-field scanning transmission electron microscopy. We observed the bright contrast in Li columns in the HAADF images and strong contrast in the ABF images, directly indicating the antisite exchange defects in which Co atoms partly occupy the Li sites. The LiCoPO4 cathode materials delivered an initial discharge capacity of 117 mAh/g at a C/10 rate with moderate cyclic performance. The discharge profile of LiCoPO4 shows a plateau at 4.75 V, revealing its importance as a potentially high-voltage cathode. The direct visualization of atom-by-atom structure in this work represents important information for the understanding of the structure of the active cathode materials for Li-ion batteries.
S-band 1.4 cell photoinjector design for high brightness beam generation
NASA Astrophysics Data System (ADS)
Pirez, E.; Musumeci, P.; Maxson, J.; Alesini, D.
2017-09-01
In this paper we study in detail the design of a novel S-band radiofrequency photogun structure to maximize the accelerating field experienced by the particles at injection. This is a critical quantity for electron sources as it has a direct impact on the maximum brightness achievable. The proposed design is based on a modification of the latest generation of S-band RF photoinjectors to include novel fabrication approaches. The gun is designed to operate at a 120 MV/m gradient and at an optimal injection phase of 70° providing the beam quality required to enable novel electron beam applications such as single shot time-resolved transmission electron microscopy and ultrafast electron nanodiffraction.
Multiscale three-dimensional simulations of charge gain and transport in diamond
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Busby, R.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Chang, X.; Keister, J. W.; Wu, Q.; Muller, E.
2010-10-01
A promising new concept of a diamond-amplified photocathode for generation of high-current, high-brightness, and low thermal emittance electron beams was recently proposed and is currently under active development. Detailed understanding of physical processes with multiple energy and time scales is required to design reliable and efficient diamond-amplifier cathodes. We have implemented models, within the VORPAL computational framework, to simulate secondary electron generation and charge transport in diamond in order to facilitate the investigation of the relevant effects involved. The models include inelastic scattering of electrons and holes for generation of electron-hole pairs, elastic, phonon, and charge impurity scattering. We describe the integrated modeling capabilities we developed and present results on charge gain and collection efficiency as a function of primary electron energy and applied electric field. We compare simulation results with available experimental data. The simulations show an overall qualitative agreement with the observed charge gain from transmission mode experiments and have enabled better understanding of the collection efficiency measurements.
Energy Recovery Linacs for Light Source Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Neil
2011-04-01
Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the statusmore » of worldwide programs and discuss the technology challenges to provide such beams for photon production.« less
Patel, Binay; Watanabe, Masashi
2014-02-01
Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.
rf traveling-wave electron gun for photoinjectors
NASA Astrophysics Data System (ADS)
Schaer, Mattia; Citterio, Alessandro; Craievich, Paolo; Reiche, Sven; Stingelin, Lukas; Zennaro, Riccardo
2016-07-01
The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL) machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least) double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, M.E.; Adams, R.G.; Armijo, J.
The light ion fusion program is pursuing the development of a high brightness lithium ion beam on the SABRE accelerator at Sandia (6 MV, 0.25 MA). This will require the integration of at least three conditions: (1) an active, pre-formed, uniform lithium plasma ion source, (2) modification of the electron sheath distribution in the AK gap, and (3) mitigation of undesired electrode plasmas. These experiments represent the first attempt to combine these three conditions in a lithium ion diode. The primary goal is the production of a lithium beam with a micro-divergence at peak ion power of {le} 20 mrad,more » about half the previous value achieved on SABRE. A secondary goal is reduction of the impedance collapse rate. The primary approach is a laser-produced lithium plasma generated with 10 ns YAG laser illumination of LiAg films. Laser fluences of 0.5--1.0 J/cm{sup 2} appear to be satisfactory to generate a dense, highly ionized, low temperature plasma. An ohmically-generally, thin-film ion source is also being developed as a backup, longer term approach. Small-scale experiments are performed to study each ion source in detail, prior to fielding on the accelerator. Pre-formed anode plasmas allow the use of high magnetic fields (Vcrit/V {ge} 2) and limiters which slow the onset of a high beam divergence electromagnetic instability and slow impedance collapse. High magnetic fields will be achieved with 1.8 MJ capacitor banks. An extensive array of in-situ electrode cleaning techniques have been developed to limit parasitic ion loads and impedance collapse from electrode contaminant plasma formation. Advanced ion beam, electron sheath and spectroscopic AK gap diagnostics have also been developed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremaine, A M; Anderson, S G; Betts, S
2005-05-19
PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10{sup 7} photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 {micro}m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verifiedmore » the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials.« less
High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, Daniel; Jacobson, B.; Murokh, A.
Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less
Chen, Zi-Yu; Pukhov, Alexander
2016-01-01
Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047
High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility
Mihalcea, Daniel; Jacobson, B.; Murokh, A.; ...
2017-03-01
Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less
Luminosity Limitations of Linear Colliders Based on Plasma Acceleration
Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei
2016-01-01
Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.
Timur Shaftan
2017-12-09
The NSLS-II project will establish a third-generation light source at Brookhaven Lab, increasing beam-line brightness by 10,000. Achieving and maintaining this will involve tightly focusing the electron beam, providing the most efficient insertion devices, and achieving and maintaining a high electron current. In this talk, the various sub-systems of NSLS-II will be reviewed, and the requirements and key elements of their design will be discussed. In addition, the a small prototype of a light source of a different kind that was developed by the NSLS will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav
2016-07-27
A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.
Evaluations of carbon nanotube field emitters for electron microscopy
NASA Astrophysics Data System (ADS)
Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi
2009-11-01
Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.
The appearance of highly relativistic, spherically symmetric stellar winds
NASA Technical Reports Server (NTRS)
Abramowicz, Marek A.; Novikov, Igor D.; Paczynski, Bohdan
1991-01-01
A nonluminous, steady state, spherically symmetric, relativistic wind, with the opacity dominated by electron scattering appears against a bright background as a dark circle with the radius rd. A luminous wind would appear as a bright spot with a radius rl = rd/2 pi gamma exp 3, where gamma is the Lorentz factor of the wind. The bright wind photosphere is convex for v equal to or less than 2c/3, and appears concave for higher outflow velocities.
Li, F; Hua, J F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q
2013-07-05
The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.
Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru
2013-01-01
Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.
Advanced Laser Technologies for High-brightness Photocathode Electron Gun
NASA Astrophysics Data System (ADS)
Tomizawa, Hiromitsu
A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 π mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.
Ratner, D.; Behrens, C.; Ding, Y.; ...
2015-03-09
The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete amore » comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. As a result, detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.« less
NASA Astrophysics Data System (ADS)
Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan
2017-05-01
One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the betatron radiation via manipulating the e-beam transverse oscillation in the wakefield. Very brilliant quasi-monochromatic betatron x-rays in tens of keV with significant enhancement both in photon yield and peak energy have been generated. Besides, by employing a self-synchronized all-optical Compton scattering scheme, in which the electron beam collided with the intense driving laser pulse via the reflection of a plasma mirror, we produced tunable quasi-monochromatic MeV γ-rays ( 33% full-width at half-maximum) with a peak brilliance of 3.1×1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV, which is one order of magnitude higher than ever reported value in MeV regime to the best of our knowledge. 1. J. S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011). 2. X. Wang, et al., Nat. Commun. 4, 1988 (2013). 3. W. P. Leemans, et al., Phys. Rev. Lett. 113, 245002 (2014) 4. W. T. Wang et al., Phys. Rev. Lett. 117, 124801 (2016). 5. Z. J. Zhang et al., Phys. Plasmas 23, 053106 (2016). 6. C. H. Yu et al., Sci. Rep. 6, 29518 (2016).
Giant collimated gamma-ray flashes
NASA Astrophysics Data System (ADS)
Benedetti, Alberto; Tamburini, Matteo; Keitel, Christoph H.
2018-06-01
Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to3 20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm-3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107-108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s-1 mrad-2 mm-2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (≲30 fs), collimated (milliradian) and high-flux (>1012 photons s-1) gamma-ray pulses.
The ETA-2 induction linac as a high average power FEL driver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.
1989-10-16
The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less
Advanced photoinjector experiment photogun commissioning results
NASA Astrophysics Data System (ADS)
Sannibale, F.; Filippetto, D.; Papadopoulos, C. F.; Staples, J.; Wells, R.; Bailey, B.; Baptiste, K.; Corlett, J.; Cork, C.; De Santis, S.; Dimaggio, S.; Doolittle, L.; Doyle, J.; Feng, J.; Garcia Quintas, D.; Huang, G.; Huang, H.; Kramasz, T.; Kwiatkowski, S.; Lellinger, R.; Moroz, V.; Norum, W. E.; Padmore, H.; Pappas, C.; Portmann, G.; Vecchione, T.; Vinco, M.; Zolotorev, M.; Zucca, F.
2012-10-01
The Advanced Photoinjector Experiment (APEX) at the Lawrence Berkeley National Laboratory is dedicated to the development of a high-brightness high-repetition rate (MHz-class) electron injector for x-ray free-electron laser (FEL) and other applications where high repetition rates and high brightness are simultaneously required. The injector is based on a new concept rf gun utilizing a normal-conducting (NC) cavity resonating in the VHF band at 186 MHz, and operating in continuous wave (cw) mode in conjunction with high quantum efficiency photocathodes capable of delivering the required charge at MHz repetition rates with available laser technology. The APEX activities are staged in three phases. In phase 0, the NC cw gun is built and tested to demonstrate the major milestones to validate the gun design and performance. Also, starting in phase 0 and continuing in phase I, different photocathodes are tested at the gun energy and at full repetition rate for validating candidate materials to operate in a high-repetition rate FEL. In phase II, a room-temperature pulsed linac is added for accelerating the beam at several tens of MeV to reduce space charge effects and allow the measurement of the brightness of the beam from the gun when integrated in an injector scheme. The installation of the phase 0 beam line and the commissioning of the VHF gun are completed, phase I components are under fabrication, and initial design and specification of components and layout for phase II are under way. This paper presents the phase 0 commissioning results with emphasis on the experimental milestones that have successfully demonstrated the APEX gun capability of operating at the required performance.
Low Emittance, High Brilliance Relativistic Electron Beams from a Laser-Plasma Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetti, E.; Shanks, R. P.; Manahan, G. G.
2010-11-19
Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1{pi} mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1{+-}0.1{pi} mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5x10{sup 15} A m{sup -1} rad{sup -1} makes it suitable for compact XUVmore » FELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, Lyle; Manin, Julien; Eagle, Ethan
A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.
A bright attosecond x-ray pulse train generation in a double-laser-driven cone target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu
By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 10{sup 20 }W/cm{sup 2} irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 10{sup 17 }W/cm{sup 2} interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon fluxmore » rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV) to 6.0 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.« less
Electron-phonon interaction in efficient perovskite blue emitters
NASA Astrophysics Data System (ADS)
Gong, Xiwen; Voznyy, Oleksandr; Jain, Ankit; Liu, Wenjia; Sabatini, Randy; Piontkowski, Zachary; Walters, Grant; Bappi, Golam; Nokhrin, Sergiy; Bushuyev, Oleksandr; Yuan, Mingjian; Comin, Riccardo; McCamant, David; Kelley, Shana O.; Sargent, Edward H.
2018-06-01
Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.
Ultrabright continuously tunable terahertz-wave generation at room temperature
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-01-01
The hottest frequency region in terms of research currently lies in the ‘frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm2, brightness temperature of ~1018 K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~1016 K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269
Ultrabright continuously tunable terahertz-wave generation at room temperature.
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-06-05
The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.
Effect of pre-strain on precipitation and exfoliation corrosion resistance in an Al-Zn-Mg alloy
NASA Astrophysics Data System (ADS)
Lu, Xianghan; Du, Zhiwei; Han, Xiaolei; Li, Ting; Wang, Guojun; Lu, Liying; Bai, Xiaoxia; Zhou, Tietao
2017-12-01
To investigate the effect of pre-strain on behaviors in a specially developed Al-4.5Zn-1.2Mg alloy, transmission electron microscopy (TEM) bright field (BF) imaging combined with select area electron diffraction (SAED), Vickers-hardness tests and electrical conductivity tests was conducted for insight into precipitation in aluminum (Al) matrix during two step ageing, and standard exfoliation corrosion (EXCO) test combined with high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning electron microscopy (SEM) was carried out for corrosion behavior. Results showed that pre-strain accelerated precipitation during two step ageing as the sequence of: (i) supersaturated solid solution (SSS), GPI zones precipitations, GPI dissolution; (ii) SSS, fcc precipitates, η’ phases or η phases. And the precipitation hardening of the fcc precipitates was not effective as GPI zones. Pre-strain also accelerated EXCO developing, which was mainly attributed to the coverage ratio of η phases on high-angle grain boundaries (HAGBs) increasing as pre-strain increase.
Heralded ions via ionization coincidence
NASA Astrophysics Data System (ADS)
McCulloch, A. J.; Speirs, R. W.; Wissenberg, S. H.; Tielen, R. P. M.; Sparkes, B. M.; Scholten, R. E.
2018-04-01
We demonstrate a method for the deterministic production of single ions by exploiting the correlation between an electron and associated ion following ionization. Coincident detection and feedback in combination with Coulomb-driven particle selection allows for high-fidelity heralding of ions at a high repetition rate. Extension of the scheme beyond time-correlated feedback to position- and momentum-correlated feedback will provide a general and powerful means to optimize the ion beam brightness for the development of next-generation focused ion beam technologies.
High duty cycle inverse Compton scattering X-ray source
Ovodenko, A.; Agustsson, R.; Babzien, M.; ...
2016-12-22
Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this article reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO 2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized atmore » 5- and 15- pulses per train and compared to a single pulse operation under the same operating conditions. Lastly, with the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.« less
Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel
Zhang, Zhenyu; Guo, Liangchao; Cui, Junfeng; Wang, Bo; Kang, Renke; Guo, Dongming
2016-01-01
Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 μm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding. PMID:27734934
Cocco, Daniele; Idir, Mourad; Morton, Daniel; ...
2018-03-20
Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocco, Daniele; Idir, Mourad; Morton, Daniel
Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less
Current development and patents on high-brightness white LED for illumination.
Pang, Wen-Yuan; Lo, Ikai; Hsieh, Chia-Ho; Hsu, Yu-Chi; Chou, Ming-Chi; Shih, Cheng-Hung
2010-01-01
In this paper, we reviewed the current development and patents for the application of high-brightness and high-efficiency white light-emitting diode (LED). The high-efficiency GaN nanostructures, such as disk, pyramid, and rod were grown on LiAlO(2) substrate by plasma-assisted molecular-beam epitaxy, and a model was developed to demonstrate the growth of the GaN nanostructures. Based on the results, the GaN disk p-n junction was designed for the application of high brightness and high efficiency white LED.
Model Development for MODIS Thermal Band Electronic Crosstalk
NASA Technical Reports Server (NTRS)
Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghonh; Brinkman, Jake; Keller, Graziela; Xiong, Xiaoxiong
2016-01-01
MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 m. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands developed substantial issues that cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 m and band 29 at 8.5 m increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk effect is evident in the near-monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. The development of an alternative approach is very helpful for independent verification.In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically to correct the Earth brightness temperature measurements. In the model development, the detectors nonlinear response is considered. The impact of the electronic crosstalk is assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detectors nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector non-linearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic cross talk can be implemented empirically from the processed bias at different brightness temperature. The implementation can be done through two approaches. As routine calibration assessment for thermal infrared bands, the trending over select Earth scenes is processed for all the detectors in a band and the band averaged bias is derived at a certain time. In this case, the correction of an affected band can be made using the regression of the model with band averaged bias and then corrections of detector differences are applied. The second approach requires the trending for individual detectors and the bias for each detector is used for regression with the model. A test using the first approach was made for Terra MODIS band 29 with the biases derived from long-term trending of brightness temperature over ocean and Dome-C.
Harnessing AIA Diffraction Patterns to Determine Flare Footpoint Temperatures
NASA Astrophysics Data System (ADS)
Bain, H. M.; Schwartz, R. A.; Torre, G.; Krucker, S.; Raftery, C. L.
2014-12-01
In the "Standard Flare Model" energy from accelerated electrons is deposited at the footpoints of newly reconnected flare loops, heating the surrounding plasma. Understanding the relation between the multi-thermal nature of the footpoints and the energy flux from accelerated electrons is therefore fundamental to flare physics. Extreme ultraviolet (EUV) images of bright flare kernels, obtained from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory, are often saturated despite the implementation of automatic exposure control. These kernels produce diffraction patterns often seen in AIA images during the most energetic flares. We implement an automated image reconstruction procedure, which utilizes diffraction pattern artifacts, to de-saturate AIA images and reconstruct the flare brightness in saturated pixels. Applying this technique to recover the footpoint brightness in each of the AIA EUV passbands, we investigate the footpoint temperature distribution. Using observations from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we will characterize the footpoint accelerated electron distribution of the flare. By combining these techniques, we investigate the relation between the nonthermal electron energy flux and the temperature response of the flare footpoints.
NASA Astrophysics Data System (ADS)
Marocchino, A.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Giribono, A.; Lollo, V.; Marongiu, M.; Mostacci, A.; Di Pirro, G.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2017-10-01
We report on the experimental characterization of the effect that a passive plasma lens in the overdense regime has on high-brightness bunch quality by means of 6D phase-space analysis. The passive lens is generated by confining hydrogen gas with a capillary tube pre-ionized with a high-voltage discharge. We observed that the optimum condition is retrieved at the end of the overdense regime with almost no effect on bunch brightness. The presence of gas jets, leaking from the hollow capillary end-points, extends the lens effects also outside of the capillary, resulting in longer focusing channels. Experimental results are supported with numerical simulations of the complete accelerator line together with the plasma channel section.
X-ray free-electron laser studies of dense plasmas
NASA Astrophysics Data System (ADS)
Vinko, Sam M.
2015-10-01
> The high peak brightness of X-ray free-electron lasers (FELs), coupled with X-ray optics enabling the focusing of pulses down to sub-micron spot sizes, provides an attractive route to generating high energy-density systems on femtosecond time scales, via the isochoric heating of solid samples. Once created, the fundamental properties of these plasmas can be studied with unprecedented accuracy and control, providing essential experimental data needed to test and benchmark commonly used theoretical models and assumptions in the study of matter in extreme conditions, as well as to develop new predictive capabilities. Current advances in isochoric heating and spectroscopic plasma studies on X-ray FELs are reviewed and future research directions and opportunities discussed.
Xie, Huamu; Ben-Zvi, Ilan; Rao, Triveni; ...
2016-10-19
High-average-current, high-brightness electron sources have important applications, such as in high-repetition-rate free-electron lasers, or in the electron cooling of hadrons. Bialkali photocathodes are promising high-quantum-efficiency (QE) cathode materials, while superconducting rf (SRF) electron guns offer continuous-mode operation at high acceleration, as is needed for high-brightness electron sources. Thus, we must have a comprehensive understanding of the performance of bialkali photocathode at cryogenic temperatures when they are to be used in SRF guns. To remove the heat produced by the radio-frequency field in these guns, the cathode should be cooled to cryogenic temperatures.We recorded an 80% reduction of the QE uponmore » cooling the K 2CsSb cathode from room temperature down to the temperature of liquid nitrogen in Brookhaven National Laboratory (BNL)’s 704 MHz SRF gun.We conducted several experiments to identify the underlying mechanism in this reduction. The change in the spectral response of the bialkali photocathode, when cooled from room temperature (300 K) to 166 K, suggests that a change in the ionization energy (defined as the energy gap from the top of the valence band to vacuum level) is the main reason for this reduction.We developed an analytical model of the process, based on Spicer’s three-step model. The change in ionization energy, with falling temperature, gives a simplified description of the QE’s temperature dependence.We also developed a 2D Monte Carlo code to simulate photoemission that accounts for the wavelength-dependent photon absorption in the first step, the scattering and diffusion in the second step, and the momentum conservation in the emission step. From this simulation, we established a correlation between ionization energy and reduction in the QE. The simulation yielded results comparable to those from the analytical model. The simulation offers us additional capabilities such as calculation of the intrinsic emittance, the temporal response, and the thickness dependence of the QE for the K 2CsSb photocathode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Huamu; Ben-Zvi, Ilan; Rao, Triveni
High-average-current, high-brightness electron sources have important applications, such as in high-repetition-rate free-electron lasers, or in the electron cooling of hadrons. Bialkali photocathodes are promising high-quantum-efficiency (QE) cathode materials, while superconducting rf (SRF) electron guns offer continuous-mode operation at high acceleration, as is needed for high-brightness electron sources. Thus, we must have a comprehensive understanding of the performance of bialkali photocathode at cryogenic temperatures when they are to be used in SRF guns. To remove the heat produced by the radio-frequency field in these guns, the cathode should be cooled to cryogenic temperatures.We recorded an 80% reduction of the QE uponmore » cooling the K 2CsSb cathode from room temperature down to the temperature of liquid nitrogen in Brookhaven National Laboratory (BNL)’s 704 MHz SRF gun.We conducted several experiments to identify the underlying mechanism in this reduction. The change in the spectral response of the bialkali photocathode, when cooled from room temperature (300 K) to 166 K, suggests that a change in the ionization energy (defined as the energy gap from the top of the valence band to vacuum level) is the main reason for this reduction.We developed an analytical model of the process, based on Spicer’s three-step model. The change in ionization energy, with falling temperature, gives a simplified description of the QE’s temperature dependence.We also developed a 2D Monte Carlo code to simulate photoemission that accounts for the wavelength-dependent photon absorption in the first step, the scattering and diffusion in the second step, and the momentum conservation in the emission step. From this simulation, we established a correlation between ionization energy and reduction in the QE. The simulation yielded results comparable to those from the analytical model. The simulation offers us additional capabilities such as calculation of the intrinsic emittance, the temporal response, and the thickness dependence of the QE for the K 2CsSb photocathode.« less
2017-01-01
Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources. PMID:28670600
Status of the Northrop Grumman Compact Infrared Free-Electron Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehrman, I.S.; Krishnaswamy, J.; Hartley, R.A.
1995-12-31
The Compact Infrared Free Electron Laser (CIRFEL) was built as part of a joint collaboration between the Northrop Grumman Corporation and Princeton University to develop FEL`s for use by researchers in the materials, medical and physical sciences. The CIRFEL was designed to lase in the Mid-IR and Far-IR regimes with picosecond pulses, megawatt level peak powers and an average power of a few watts. The micropulse separation is 7 nsec which allows a number of relaxation phenomenon to be observed. The CIRFEL utilizes an RF photocathode gun to produce high-brightness time synchronized electron bunches. The operational status and experimental resultsmore » of the CERFEL will be presented.« less
NASA Astrophysics Data System (ADS)
Sukkabot, Worasak; Pinsook, Udomsilp
2017-01-01
Using the atomistic tight-binding theory (TB) and a configuration interaction description (CI), we numerically compute the excitonic splitting of CdX(X = Se, S and Te)/ZnS core/shell nanocrystals with the objective to explain how types of the core materials and growth shell thickness can provide the detailed manipulation of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting, beneficial for the active application of quantum information. To analyze the splitting of the excitonic states, the optical band gaps, ground-state wave function overlaps and atomistic electron-hole interactions tend to be numerically demonstrated. Based on the atomistic computations, the single-particle and excitonic gaps are mainly reduced with the increasing ZnS shell thickness owing to the quantum confinement. In the range of the higher to lower energies, the order of the single-particle gaps is CdSe/ZnS, CdS/ZnS and CdTe/ZnS core/shell nanocrystals, while one of the excitonic gaps is CdS/ZnS, CdSe/ZnS and CdTe/ZnS core/shell nanocrystals because of the atomistic electron-hole interaction. The strongest electron-hole interactions are mainly observed in CdSe/ZnS core/shell nanocrystals. In addition, the computational results underline that the energies of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting are generally reduced with the increasing ZnS growth shell thickness as described by the trend of the electron-hole exchange interaction. The high-to-low splitting of the excitonic states is demonstrated in CdSe/ZnS, CdTe/ZnS and CdS/ZnS core/shell nanocrystals because of the fashion in the electron-hole exchange interaction and overlaps of the electron-hole wave functions. As the resulting calculations, it is expected that CdS/ZnS core/shell nanocrystals are the best candidates to be the source of entangled photons. Finally, the comprehensive information on the excitonic splitting can enable the use of suitable core/shell nanocrystals for the entangled photons in the application of quantum information.
Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
Zhou, Weihang; Nakamura, Daisuke; Liu, Huaping; Kataura, Hiromichi; Takeyama, Shojiro
2014-11-11
The ordering and relative energy splitting between bright and dark excitons are critical to the optical properties of single-walled carbon nanotubes (SWNTs), as they eventually determine the radiative and non-radiative recombination processes of generated carriers. In this work, we report systematic high-field magneto-optical study on the relative ordering between bright and dark excitons in SWNTs. We identified the relative energy position of the dark exciton unambiguously by brightening it in ultra-high magnetic field. The bright-dark excitonic ordering was found to depend not only on the tube structure, but also on the type of transitions. For the 1(st) sub-band transition, the bright exciton appears to be higher in energy than its dark counterpart for any chiral species and is robust against environmental effect. While for the 2(nd) sub-band, their relative ordering was found to be chirality-sensitive: the bright exciton can be either higher or lower than the dark one, depending on the specific nanotube structures. These findings provide new clues for engineering the optical and electronic properties of SWNTs.
Generating High-Brightness Ion Beams for Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Cuneo, M. E.
1997-11-01
The generation of high current density ion beams with applied-B ion diodes showed promise in the late-1980's as an efficient, rep-rate, focusable driver for inertial confinement fusion. These devices use several Tesla insulating magnetic fields to restrict electron motion across anode-cathode gaps of order 1-2 cm, while accelerating ions to generate ≈ 1 kA/cm^2, 5 - 15 MeV beams. These beams have been used to heat hohlraums to about 65 eV. However, meeting the ICF driver requirements for low-divergence and high-brightness lithium ion beams has been more technically challenging than initially thought. Experimental and theoretical work over the last 5 years shows that high-brightness beams meeting the requirements for inertial confinement fusion are possible. The production of these beams requires the simultaneous integration of at least four conditions: 1) rigorous vacuum cleaning techniques for control of undesired anode, cathode, ion source and limiter plasma formation from electrode contaminants to control impurity ions and impedance collapse; 2) carefully tailored insulating magnetic field geometry for uniform beam generation; 3) high magnetic fields (V_crit/V > 2) and other techniques to control the electron sheath and the onset of a high divergence electromagnetic instability that couples strongly to the ion beam; and 4) an active, pre-formed, uniform lithium plasma for low source divergence which is compatible with the above electron-sheath control techniques. These four conditions have never been simultaneously present in any lithium beam experiment, but simulations and experimental tests of individual conditions have been done. The integration of these conditions is a goal of the present ion beam generation program at Sandia. This talk will focus on the vacuum cleaning techniques for ion diodes and pulsed power devices in general, including experimental results obtained on the SABRE and PBFA-II accelerators over the last 3 years. The current status of integration of the other key physics and technologies required to demonstrate high-brightness ion beams will also be presented.
Pickett, Lyle; Manin, Julien; Eagle, Ethan
2018-06-12
A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, F V; Albert, F; Anderson, S G
Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabledmore » by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).« less
Optimization of Compton Source Performance through Electron Beam Shaping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyzhenkov, Alexander; Yampolsky, Nikolai
2016-09-26
We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a waymore » so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.« less
Brightness analysis of an electron beam with a complex profile
NASA Astrophysics Data System (ADS)
Maesaka, Hirokazu; Hara, Toru; Togawa, Kazuaki; Inagaki, Takahiro; Tanaka, Hitoshi
2018-05-01
We propose a novel analysis method to obtain the core bright part of an electron beam with a complex phase-space profile. This method is beneficial to evaluate the performance of simulation data of a linear accelerator (linac), such as an x-ray free electron laser (XFEL) machine, since the phase-space distribution of a linac electron beam is not simple, compared to a Gaussian beam in a synchrotron. In this analysis, the brightness of undulator radiation is calculated and the core of an electron beam is determined by maximizing the brightness. We successfully extracted core electrons from a complex beam profile of XFEL simulation data, which was not expressed by a set of slice parameters. FEL simulations showed that the FEL intensity was well remained even after extracting the core part. Consequently, the FEL performance can be estimated by this analysis without time-consuming FEL simulations.
High flux, narrow bandwidth compton light sources via extended laser-electron interactions
Barty, V P
2015-01-13
New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.
X-ray diagnostic development for measurement of electron deposition to the SABRE anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lash, J.S.; Derzon, M.S.; Cuneo, M.E.
Extraction applied-B ion diodes are under development on the SABRE (6 MV, 250 kA) accelerator at Sandia. The authors are assessing this technology for the production of high brightness lithium ion beams for inertial confinement fusion. Electron loss physics is a focus of effort since electron sheath physics affects ion beam divergence, ion beam purity, and diode impedance. An x-ray slit-imaging diagnostic is under development for detection of x-rays produced during electron deposition to the anode. This diagnostic will aid in the correlation of electron deposition to ion production to better understand the ion diode physics. The x-ray detector consistsmore » of a filter pack, scintillator and optical fiber array that is streaked onto a CCD camera. Current orientation of the diagnostic provides spatial information across the anode radius at three different azimuths or at three different x-ray energy cuts. The observed x-ray emission spectrum can then be compared to current modeling efforts examining electron deposition to the anode.« less
Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.
2012-12-21
We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less
Investigation of fundamental limits to beam brightness available from photoinjectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazarov, Ivan
2015-07-09
The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces inmore » the immediate vicinity to the cathode via 3D laser pulse shaping.« less
Practical use of a plastic scintillator for quality assurance of electron beam therapy.
Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige
2017-06-07
Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Min; Pennycook, Stephen J.; Borisevich, Albina Y.
Octahedral tilt behavior is increasingly recognized as an important contributing factor to the physical behavior of perovskite oxide materials and especially their interfaces, necessitating the development of high-resolution methods of tilt mapping. There are currently two major approaches for quantitative imaging of tilts in scanning transmission electron microscopy (STEM), bright field (BF) and annular bright field (ABF). In this study, we show that BF STEM can be reliably used for measurements of oxygen octahedral tilts. While optimal conditions for BF imaging are more restricted with respect to sample thickness and defocus, we find that BF imaging with an aberration-corrected microscopemore » with the accelerating voltage of 300 kV gives us the most accurate quantitative measurement of the oxygen column positions. Using the tilted perovskite structure of BiFeO 3 (BFO) as our test sample, we simulate BF and ABF images in a wide range of conditions, identifying the optimal imaging conditions for each mode. Finally, we show that unlike ABF imaging, BF imaging remains directly quantitatively interpretable for a wide range of the specimen mistilt, suggesting that it should be preferable to the ABF STEM imaging for quantitative structure determination.« less
Kim, Young-Min; Pennycook, Stephen J.; Borisevich, Albina Y.
2017-04-29
Octahedral tilt behavior is increasingly recognized as an important contributing factor to the physical behavior of perovskite oxide materials and especially their interfaces, necessitating the development of high-resolution methods of tilt mapping. There are currently two major approaches for quantitative imaging of tilts in scanning transmission electron microscopy (STEM), bright field (BF) and annular bright field (ABF). In this study, we show that BF STEM can be reliably used for measurements of oxygen octahedral tilts. While optimal conditions for BF imaging are more restricted with respect to sample thickness and defocus, we find that BF imaging with an aberration-corrected microscopemore » with the accelerating voltage of 300 kV gives us the most accurate quantitative measurement of the oxygen column positions. Using the tilted perovskite structure of BiFeO 3 (BFO) as our test sample, we simulate BF and ABF images in a wide range of conditions, identifying the optimal imaging conditions for each mode. Finally, we show that unlike ABF imaging, BF imaging remains directly quantitatively interpretable for a wide range of the specimen mistilt, suggesting that it should be preferable to the ABF STEM imaging for quantitative structure determination.« less
Long-term, correlated emittance decrease in intense, high-brightness induction linacs
NASA Astrophysics Data System (ADS)
Carlsten, Bruce E.
1999-09-01
Simulations of high-brightness induction linacs often show a slow, long-term emittance decrease as the beam is matched from the electron gun into the linac. Superimposed on this long-term decrease are rapid emittance oscillations. These effects can be described in terms of correlations in the beam's radial phase space. The rapid emittance oscillations are due to transverse plasma oscillations, which stay nearly in phase for different radial positions within the beam. The initial emittance, just after the electron gun, is dominated by nonlinear focusing within the gun introduced by the anode exit hole. Due to the large space-charge force of an intense electron beam, the focusing of the beam through the matching section introduces an effective nonlinear force (from the change in the particles' potential energies) which counteracts the nonlinearities from the electron gun, leading to an average, long-term emittance decrease. Not all of the initial nonlinearity is removed by the matching procedure, and there are important consequences both for emittance measurements using solenoid focal length scans and for focusing the electron beam to a target.
Ultrahigh 6D-brightness electron beams for the light sources of the next generation
NASA Astrophysics Data System (ADS)
Habib, Fahim; Manahan, Grace G.; Scherkl, Paul; Heinemann, Thomas; Sheng, Z. M.; Bruhwiler, D. L.; Cary, J. R.; Rosenzweig, J. B.; Hidding, Bernhard
2017-10-01
The plasma photocathode mechanism (aka Trojan Horse) enables a path towards electron beams with nm-level normalized emittance and kA range peak currents, hence ultrahigh 5D-brightness. This ultrahigh 5D-brightness beams hold great prospects to realize laboratory scale free-electron-lasers. However, the GV/m-accelerating gradient in plasma accelerators leads to substantial energy chirp and spread. The large energy spread is a major show-stopper towards key application such as the free-electron-laser. Here we present a novel method for energy chirp compensation which takes advantage of tailored beam loading due to a second ``escort'' bunch released via plasma photocathode. The escort bunch reverses the accelerating field locally at the trapping position of the ultrahigh 5D-brightness beam. This induces a counter-clockwise rotation within the longitudinal phase space and allows to compensate the chirp completely. Analytical scaling predicts energy spread values below 0.01 percentage level. Ultrahigh 5D-brightness combined with minimized energy spread opens a path towards witness beams with unprecedented ultrahigh 6D-brightness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ``Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,`` (P.I., M. Reiser); TASK B, ``Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,`` (Co-P.I.`s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ``Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,`` (Co-P.I.`s, V.L. Granatstein, W. Lawson, M.more » Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M.more » Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C. -Y.; Derbenev, Ya. S.; Douglas, D.
For a high-brightness electron beam with low energy and high bunch charge traversing a recirculation beamline, coherent synchrotron radiation and space charge effect may result in the microbunching instability (MBI). Both tracking simulation and Vlasov analysis for an early design of Circulator Cooler Ring for the Jefferson Lab Electron Ion Collider reveal significant MBI. It is envisioned these could be substantially suppressed by using a magnetized beam. In this work, we extend the existing Vlasov analysis, originally developed for a non-magnetized beam, to the description of transport of a magnetized beam including relevant collective effects. As a result, the newmore » formulation will be further employed to confirm prediction of microbunching suppression for a magnetized beam transport in a recirculating machine design.« less
Murata, Kazuyoshi; Esaki, Masatoshi; Ogura, Teru; Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo
2014-11-01
Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ~3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. Copyright © 2014 Elsevier B.V. All rights reserved.
Possible Cause of Extremely Bright Aurora Witnessed in East Asia on 17 September 1770
NASA Astrophysics Data System (ADS)
Ebihara, Yusuke; Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Kawamura, Akito Davis; Isobe, Hiroaki
2017-10-01
Extremely bright aurora was witnessed in East Asia on 17 September 1770, according to historical documents. The aurora was described as "as bright as a night with full moon" at magnetic latitude of 25°. The aurora was dominated by red color extending from near the horizon up beyond the polar star (corresponding to elevation angle of 35°). We performed a two-stream electron transport code to calculate the volume emission rates at 557.7 nm (OI) and 630.0 nm (OI). Two types of distribution of precipitating electrons were assumed. The first one is based on the unusually intense electron flux measured by the DMSP satellite in the March 1989 storm. The distribution consists of hot (peaking at 3 keV) and cold (peaking at 71 eV) components. The second one is the same as the first one, but the hot component is removed. We call this high-intensity low-energy electrons (HILEEs). The first spectrum results in an auroral display with a bright, lower green border. The second one results in red-dominated aurora extending up to the elevation angle of 35° when the equatorward boundary of the electron precipitation is located at 32° invariant latitude. The poleward boundary of the precipitation would be 42° invariant latitude or greater to explain the auroral display extending from near the horizon. The origin of the HILEEs is probably the plasma sheet or the plasmasphere that is transported earthward to L 1.39 due to enhanced magnetospheric convection. Local heating or acceleration is also plausible.
RF Photoelectric injectors using needle cathodes
NASA Astrophysics Data System (ADS)
Lewellen, J. W.; Brau, C. A.
2003-07-01
Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.
For Brighter Electron Sources: A Cryogenically Cooled Photocathode and DC Photogun
NASA Astrophysics Data System (ADS)
Lee, Hyeri
Electron beams produced by photoinjectors have a wide range of applications including colliders for high energy and nuclear physics experiments, Free Electron Lasers (FEL), Energy Recovery Linacs (ERL), and Ultrafast Electron Diffraction (UED) with a variety of uses. These applications have been made possible by recent advancement in photocathode and photoinjector research. The key factor is building a compact high-brightness electron source with high voltage and electric field at the photocathode to maximize the electron emission and minimize emittance growth due to space-charge effect. Achieving high brightness from a compact source is a challenging task because it involves an often-conflicting interplay between various requirements imposed by photoemission, acceleration, and beam dynamics. This thesis presents three important results; (i) cryogenically cooled photocathode. From 300K to 90 K, the MTE reduction has been measured from 38 +/- meV to 22 +/- 1meV. (ii) transmission photocathode. MTEs generated from the photocathode operated in transmission mode is smaller by 20% in comparison with the reflection mode operation, which is accompanied by a corresponding QE decrease of about a factor of 2. (iii) a new design of a DC photoemission gun and beamline constructed at Cornell University, along with demonstration of a cryogenically cooled photocathode and transmission photocathode. This photoemission gun can operate at 200kV at both room temperature (RT) and cryogenic temperature (low T) with a corresponding electric field of 10MV/m.
Miyata, Tomohiro; Mizoguchi, Teruyasu
2018-03-01
Understanding structures and spatial distributions of molecules in liquid phases is crucial for the control of liquid properties and to develop efficient liquid-phase processes. Here, real-space mapping of molecular distributions in a liquid was performed. Specifically, the ionic liquid 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C2mimTFSI) was imaged using atomic-resolution scanning transmission electron microscopy. Simulations revealed network-like bright regions in the images that were attributed to the TFSI- anion, with minimal contributions from the C2mim+ cation. Simple visualization of the TFSI- distribution in the liquid sample was achieved by binarizing the experimental image.
Quantum Phenomena in High Energy Density Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murnane, Margaret; Kapteyn, Henry
The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV
NASA Astrophysics Data System (ADS)
Jin, Sung-Ho
2009-08-01
Highly efficient light-emitting materials based on phenylquinoline-carbazole derivative has been synthesized for organic-light emitting diodes (OLEDs). The materials form high quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron donating and electron withdrawing groups on carbazoylphenylquinoline. Non-doped deep-blue OLEDs using Et-CVz-PhQ as the emitter show bright emission (CIE coordinates, x=0.156, y=0.093) with an external quantum efficiency of 2.45 %. Furthermore, the material works as an excellent host material for BCzVBi to get high-performance OLEDs with excellent deep-blue CIE coordinates (x=0.155, y=0.157), high power efficiency (5.98 lm/W), and high external quantum efficiency (5.22 %). Cyclometalated Ir(III) μ-chloride bridged dimers were synthesized by iridium trichloride hydrate with an excess of our developed deep-blue emitter, Et-CVz-PhQ. The Ir(III) complexes were prepared by the dimers with the corresponding ancillary ligands. The chloride bridged diiridium complexes can be easily converted to mononuclear Ir(III) complexes by replacing the two bridging chlorides with bidentate monoanionic ancillary ligands. Among the various types of ancillary ligands, we firstly used picolinic acid N-oxide, including picolinic acid and acetylacetone as an ancillary ligands for Ir(III) complexes. The PhOLEDs also shows reasonably high brightness and good luminance efficiency of 20,000 cd/m2 and 12 cd/A, respectively.
Bright Electroluminescence from Single Graphene Nanoribbon Junctions
NASA Astrophysics Data System (ADS)
Chong, Michael C.; Afshar-Imani, Nasima; Scheurer, Fabrice; Cardoso, Claudia; Ferretti, Andrea; Prezzi, Deborah; Schull, Guillaume
2018-01-01
Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to integrate them in an electronic-like circuit. Here we report on the electroluminescence of individual GNRs suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate, constituting thus a realistic opto-electronic circuit. Emission spectra of such GNR junctions reveal a bright and narrow band emission of red light, whose energy can be tuned with the bias voltage applied to the junction, but always lying below the gap of infinite GNRs. Comparison with {\\it ab initio} calculations indicate that the emission involves electronic states localized at the GNR termini. Our results shed light on unpredicted optical transitions in GNRs and provide a promising route for the realization of bright, robust and controllable graphene-based light emitting devices.
NASA Astrophysics Data System (ADS)
Du, Zhidong; Chen, Chen; Pan, Liang
2017-04-01
Maskless lithography using parallel electron beamlets is a promising solution for next generation scalable maskless nanolithography. Researchers have focused on this goal but have been unable to find a robust technology to generate and control high-quality electron beamlets with satisfactory brightness and uniformity. In this work, we will aim to address this challenge by developing a revolutionary surface-plasmon-enhanced-photoemission (SPEP) technology to generate massively-parallel electron beamlets for maskless nanolithography. The new technology is built upon our recent breakthroughs in plasmonic lenses, which will be used to excite and focus surface plasmons to generate massively-parallel electron beamlets through photoemission. Specifically, the proposed SPEP device consists of an array of plasmonic lens and electrostatic micro-lens pairs, each pair independently producing an electron beamlet. During lithography, a spatial optical modulator will dynamically project light onto individual plasmonic lenses to control the switching and brightness of electron beamlets. The photons incident onto each plasmonic lens are concentrated into a diffraction-unlimited spot as localized surface plasmons to excite the local electrons to near their vacuum levels. Meanwhile, the electrostatic micro-lens extracts the excited electrons to form a focused beamlet, which can be rastered across a wafer to perform lithography. Studies showed that surface plasmons can enhance the photoemission by orders of magnitudes. This SPEP technology can scale up the maskless lithography process to write at wafers per hour. In this talk, we will report the mechanism of the strong electron-photon couplings and the locally enhanced photoexcitation, design of a SPEP device, overview of our proof-of-concept study, and demonstrated parallel lithography of 20-50 nm features.
High brightness--multiple beamlets source for patterned X-ray production
Leung, Ka-Ngo [Hercules, CA; Ji, Qing [Albany, CA; Barletta, William A [Oakland, CA; Jiang, Ximan [El Cerrito, CA; Ji, Lili [Albany, CA
2009-10-27
Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.
Electron Source based on Superconducting RF
NASA Astrophysics Data System (ADS)
Xin, Tianmu
High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, Jeffrey; Kondakova, Marina; Boroson, Michael
2016-05-25
In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.
Experimental Development of Low-emittance Field-emission Electron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lueangaranwong, A.; Buzzard, C.; Divan, R.
2016-10-10
Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.
Mix-and-diffuse serial synchrotron crystallography
Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio; ...
2017-10-09
Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less
Mix-and-diffuse serial synchrotron crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio
Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less
A Bright Future for Serial Femtosecond Crystallography with XFELs.
Johansson, Linda C; Stauch, Benjamin; Ishchenko, Andrii; Cherezov, Vadim
2017-09-01
X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle. Intense fs XFEL pulses enable high-resolution room-temperature structure determination of difficult-to-crystallize biological macromolecules, while simultaneously opening a new era of time-resolved structural studies. Here, we review the latest developments in instrumentation, sample delivery, data analysis, crystallization methods, and applications of SFX to important biological questions, and conclude with brief insights into the bright future of structural biology using XFELs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cancellation of coherent synchrotron radiation kicks with optics balance.
Di Mitri, S; Cornacchia, M; Spampinati, S
2013-01-04
Minimizing transverse emittance is essential in linear accelerators designed to deliver very high brightness electron beams. Emission of coherent synchrotron radiation (CSR), as a contributing factor to emittance degradation, is an important phenomenon to this respect. A manner in which to cancel this perturbation by imposing certain symmetric conditions on the electron transport system has been suggested.We first expand on this idea by quantitatively relating the beam Courant-Snyder parameters to the emittance growth and by providing a general scheme of CSR suppression with asymmetric optics, provided it is properly balanced along the line. We present the first experimental evidence of this cancellation with the resultant optics balance of multiple CSR kicks: the transverse emittance of a 500 pC, sub-picosecond, high brightness electron beam is being preserved after the passage through the achromatic transfer line of the FERMI@Elettra free electron laser, and emittance growth is observed when the optics balance is intentionally broken. We finally show the agreement between the theoretical model and the experimental results. This study holds the promise of compact dispersive lines with relatively large bending angles, thus reducing costs for future electron facilities.
Permanent magnet focused X-band photoinjector
Yu, David U. L.; Rosenzweig, James
2002-09-10
A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.
Multispectral Visible/Infrared Sensors Based on Polymer-Metal Nanocomposites
2010-01-06
transport in the dielectric zone is governed by an activated tunneling process, while the electron transport in the metallic zone can be described by...electrical pathway has formed at this stage, and thermally activated tunneling dominates the charge transport. At very high metal concentration, metallic...25 -20 -15 -10 -5 0 5 10 Cu rre nt , m A Bias Voltage, V Dark Bright Bright >850 nm Figure 12a. Optical absorption spectrum of Blackberry dye
Vlasov analysis of microbunching instability for magnetized beams
Tsai, C. -Y.; Derbenev, Ya. S.; Douglas, D.; ...
2017-05-19
For a high-brightness electron beam with low energy and high bunch charge traversing a recirculation beamline, coherent synchrotron radiation and space charge effect may result in the microbunching instability (MBI). Both tracking simulation and Vlasov analysis for an early design of Circulator Cooler Ring for the Jefferson Lab Electron Ion Collider reveal significant MBI. It is envisioned these could be substantially suppressed by using a magnetized beam. In this work, we extend the existing Vlasov analysis, originally developed for a non-magnetized beam, to the description of transport of a magnetized beam including relevant collective effects. As a result, the newmore » formulation will be further employed to confirm prediction of microbunching suppression for a magnetized beam transport in a recirculating machine design.« less
Bright and durable field emission source derived from refractory taylor cones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Gregory
A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less
High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source.
Cole, Jason M; Symes, Daniel R; Lopes, Nelson C; Wood, Jonathan C; Poder, Kristjan; Alatabi, Saleh; Botchway, Stanley W; Foster, Peta S; Gratton, Sarah; Johnson, Sara; Kamperidis, Christos; Kononenko, Olena; De Lazzari, Michael; Palmer, Charlotte A J; Rusby, Dean; Sanderson, Jeremy; Sandholzer, Michael; Sarri, Gianluca; Szoke-Kovacs, Zsombor; Teboul, Lydia; Thompson, James M; Warwick, Jonathan R; Westerberg, Henrik; Hill, Mark A; Norris, Dominic P; Mangles, Stuart P D; Najmudin, Zulfikar
2018-06-19
In the field of X-ray microcomputed tomography (μCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray μCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>10 10 photons per pulse), small (diameter <1 μm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the μCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution μCT scans in minutes. Copyright © 2018 the Author(s). Published by PNAS.
Performance of the K+ ion diode in the 2 MV injector for heavy ion fusion
NASA Astrophysics Data System (ADS)
Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.
2002-02-01
Heavy ion beam inertial fusion driver concepts depend on the availability and performance of high-brightness high-current ion sources. Surface ionization sources have relatively low current density but high brightness because of the low temperature of the emitted ions. We have measured the beam profiles at the exit of the injector diode, and compared the measured profiles with EGUN and WARP-3D predictions. Spherical aberrations are significant in this large aspect ratio diode. We discuss the measured and calculated beam size and beam profiles, the effect of aberrations, quality of vacuum, and secondary electron distributions on the beam profile.
NASA Astrophysics Data System (ADS)
Dalichaouch, Thamine; Davidson, Asher; Xu, Xinlu; Yu, Peicheng; Tsung, Frank; Mori, Warren; Li, Fei; Zhang, Chaojie; Lu, Wei; Vieira, Jorge; Fonseca, Ricardo
2016-10-01
In the past few decades, there has been much progress in theory, simulation, and experiment towards using Laser wakefield acceleration (LWFA) as the basis for designing and building compact x-ray free-electron-lasers (XFEL) as well as a next generation linear collider. Recently, ionization injection and density downramp injection have been proposed and demonstrated as a controllable injection scheme for creating higher quality and ultra-bright relativistic electron beams using LWFA. However, full-3D simulations of plasma-based accelerators are computationally intensive, sometimes taking 100 millions of core-hours on today's computers. A more efficient quasi-3D algorithm was developed and implemented into OSIRIS using a particle-in-cell description with a charge conserving current deposition scheme in r - z and a gridless Fourier expansion in ϕ. Due to the azimuthal symmetry in LWFA, quasi-3D simulations are computationally more efficient than 3D cartesian simulations since only the first few harmonics in are needed ϕ to capture the 3D physics of LWFA. Using the quasi-3D approach, we present preliminary results of ionization and down ramp triggered injection and compare the results against 3D LWFA simulations. This work was supported by DOE and NSF.
Tunable electromagnetically induced absorption based on graphene
NASA Astrophysics Data System (ADS)
Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping
2018-04-01
In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.
Time-resolved brightness measurements by streaking
NASA Astrophysics Data System (ADS)
Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.
2018-03-01
Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.
RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Hartemann, F V; Tremaine, A M
2002-10-16
We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.
NASA Astrophysics Data System (ADS)
Soman, Anjaly; M, Manuraj; Unni, K. N. Narayanan
2018-05-01
Organic light emitting diodes (OLEDs) often face the issue of decreasing power efficiency with increasing brightness. Loss of charge carrier balance is one of the factors contributing to the efficiency roll-off. We demonstrate that by using a combination of doped electron transport layer (ETL) and a specially chosen electron blocking layer (EBL) having high hole mobility, this efficiency roll-off can be effectively suppressed. A tris-(8-hydroxyquinoline) aluminium (Alq3) based OLED has been fabricated with 2,3,6,7-Tetrahydro-1,1,7,7,-tetramethyl-1H, 5H,11H-10-(2-benzothiazolyl) quinolizino-[9,9a, 1n gh]coumarin (C545T) as the emissive dopant. Bulk doping of the ETL with lithium fluoride (LiF) was optimized to increase the luminous intensity as well as the current efficiency. An EBL with high hole mobility introduced between the EML and the hole transport layer (HTL) improved the performance drastically, and the device brightness at 9 V got improved by a factor of 2.5 compared to that of the control device. While increasing the brightness from 100 cd/m2 to 1000 cd/m2, the power efficiency drop was 47% for the control device whereas only a drop of 15% was observed for the modified device. The possible mechanisms for the enhanced performance are discussed.
Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Kaji, Hironori; Duan, Lian
2018-02-01
Maintaining high efficiency at high brightness levels is an exigent challenge for real-world applications of thermally activated delayed fluorescent organic light-emitting diodes (TADF-OLEDs). Here, versatile indolocarbazole-isomer derivatives are developed as highly emissive emitters and ideal hosts for TADF-OLEDs to alleviate efficiency roll-off. It is observed that photophysical and electronic properties of these compounds can be well modulated by varying the indolocarbazole isomers. A photoluminescence quantum yield (η PL ) approaching unity and a maximum external quantum efficiency (EQE max ) of 25.1% are obtained for the emitter with indolo[3,2-a]carbazolyl subunit. Remarkably, record-high EQE/power efficiency of 26.2%/69.7 lm W -1 at the brightness level of 5000 cd m -2 with a voltage of only 3.74 V are also obtained using the same isomer as the host in a green TADF-OLED. It is evident that TADF hosts with high η PL values, fast reverse intersystem crossing processes, and balanced charge transport properties may open the path toward roll-off-free TADF-OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
X-Ray generation by the laser-plasma interaction in the regime of relativistic electronic spring
NASA Astrophysics Data System (ADS)
Gonoskov, Arkady; Blackburn, Thomas; Blanco, Manuel; Flores-Arias, M. T.; Wettervik, Benjamin; Marklund, Mattias
2017-10-01
Inducing and controlling relativistic motion of surface electrons in overdense plasmas with high-intensity lasers is a promising way to produce X-rays with unique properties, including high brightness, ultra-short duration and tunable polarization. Although the well-studied relativistic oscillating mirror (ROM) regime provides robust generation of high harmonics, the amplitude of the outgoing light in this regime is always equal to that of the incident radiation because the conversion takes place continuously without energy accumulation. This restriction can be overcome by increasing the laser intensity and/or decreasing the plasma density such that n / a < 10 . In this case the plasma acts as a spring, first accumulating up to 60% of the energy of one laser cycle, then re-emitting it in the form of a burst of high harmonics. Under optimal conditions this burst can be both 100 times shorter in duration and 100 times higher in intensity. The theory of relativistic electronic spring (RES) describes a wide variety of interaction scenarios in this regime and provides insight into the underlying physics. The talk will concern the prospects of creating and controlling XUV bursts of exceptional brightness in the RES regime.
Compton interaction of free electrons with intense low frequency radiation
NASA Technical Reports Server (NTRS)
Illarionov, A. F.; Kompaneyets, D. A.
1978-01-01
Electron behavior in an intense low frequency radiation field, with induced Compton scattering as the primary mechanism of interaction, is investigated. Evolution of the electron energy spectrum is studied, and the equilibrium spectrum of relativistic electrons in a radiation field with high brightness temperature is found. The induced radiation pressure and heating rate of an electron gas are calculated. The direction of the induced pressure depends on the radiation spectrum. The form of spectrum, under the induced force can accelerate electrons to superrelativistic energies is found.
Microwaves and particle accelerators: a fundamental link
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, Swapan
2011-07-01
John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of themore » twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society. (author)« less
Proposal for Research on High-Brightness Cathodes for High-Power Free-Electron Lasers (FEL)
2013-05-09
recent experiments involving single crystal diamond amplifier cathodes (DAC) at Brookhaven National Laboratory ( BNL ). While the emission surface of our...diamond grain in the entire structure, both surface and interior, is passivated with hydrogen. The aforementioned studies at BNL found that
UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.
to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision.more » The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.« less
Development of an EMCCD for lidar applications
NASA Astrophysics Data System (ADS)
De Monte, B.; Bell, R. T.
2017-11-01
A novel detector, incorporating e2v's L3 CCD (L3Vision™) [1] technology for use in LIDAR (Light Detection And Ranging) applications has been designed, manufactured and characterised. The most critical performance aspect was the requirement to collect charge from a 120μm square detection area for a 667ns temporal sampling window, with low crosstalk between successive samples, followed by signal readout with sub-electron effective noise. Additional requirements included low dark signal, high quantum efficiency at the 355nm laser wavelength and the ability to handle bright laser echoes, without corruption of the much fainter useful signals. The detector architecture used high speed charge binning to combine signal from each sampling window into a single charge packet. This was then passed through a multiplication register (Electron Multiplying Charge Coupled Device) operating with a typical gain of 100X to a conventional charge detection circuit. The detector achieved a typical quantum efficiency of 80% and a total noise in darkness of < 0.5 electrons rms. Development of the detector was supported by ESA (European Space Agency).
Inductive voltage adder advanced hydrodynamic radiographic technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen
This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, T. J.; Behrens, C.; Ding, Y.
2013-10-28
Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation ( ~ 20 pC ), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecondmore » scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.« less
Advanced prior modeling for 3D bright field electron tomography
NASA Astrophysics Data System (ADS)
Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.
2015-03-01
Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.
Summary of the 2014 Beam-Halo Monitoring Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Alan
2015-09-25
Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurementsmore » with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.« less
Parametric emittance measurements of electron beams produced by a laser plasma accelerator
NASA Astrophysics Data System (ADS)
Barber, S. K.; van Tilborg, J.; Schroeder, C. B.; Lehe, R.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Nakamura, K.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.
2018-05-01
Laser plasma accelerators (LPA) offer an exciting possibility to deliver high energy, high brightness electrons beams in drastically smaller distance scales than is typical for conventional accelerators. As such, LPAs draw considerable attention as potential drivers for next generation light sources and for a compact linear collider. In order to asses the viability of an LPA source for a particular application, the brightness of the source should be properly characterized. In this paper, we present charge dependent transverse emittance measurements of LPA sources using both ionization injection and shock induced density down ramp injection, with the latter delivering smaller transverse emittances by a factor of two when controlling for charge density. The single shot emittance method is described in detail with a discussion on limitations related to second order transport effects. The direct role of space charge is explored through a series of simulations and found to be consistent with experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C J
A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-raymore » sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects around the world as well some of the exciting applications that these machines will enable. The optimized interaction of short-duration, pulsed lasers with relativistic electron beams (inverse laser-Compton scattering) is the key to unrivaled MeV-scale photon source monochromaticity, pulse brightness and flux. In the MeV spectral range, such Mono-Energetic Gamma-ray (MEGa-ray) sources can have many orders of magnitude higher peak brilliance than even the world's largest synchrotrons. They can efficiently perturb and excite the isotope-specific resonant structure of the nucleus in a manner similar to resonant laser excitation of the valence electron structure of the atom.« less
Development of multi-pixel x-ray source using oxide-coated cathodes.
Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi
2017-07-07
Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro
We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreasedmore » below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.« less
X-ray Generation in Strongly Nonlinear Plasma Waves
NASA Astrophysics Data System (ADS)
Kiselev, S.; Pukhov, A.; Kostyukov, I.
2004-09-01
We show that a laser wake field in the “bubble” regime [
NASA Astrophysics Data System (ADS)
Bacci, A.; Maroli, C.; Petrillo, V.; Serafini, L.
2006-08-01
Collective effects in the radiation emission via Thomson back-scattering of an intense optical laser pulse by high brightness electron beams are analyzed. The micro-bunching of the electron beam on the scale of the wavelength of the emitted radiation and the consequent free-electron-laser instability may significantly enhance the number of photons emitted. Scaling-laws of the radiation properties, both in the collective and incoherent spontaneous regimes versus laser and electron beam parameters are discussed in the framework of the one-dimensional model.
Model development for MODIS thermal band electronic cross-talk
NASA Astrophysics Data System (ADS)
Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghong; Brinkmann, Jake; Keller, Graziela; Xiong, Xiaoxiong (Jack)
2016-10-01
MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 μm. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands develop substantial issues which cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 μm and band 29 at 8.5 μm increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk issue can be observed from nearly monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. Most of MODIS thermal bands are saturated at moon surface temperatures and the development of an alternative approach is very helpful for verification. In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically for correction of Earth brightness temperature measurements. In the model development, the detector nonlinear response is considered. The impacts of the electronic crosstalk are assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detector nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The crosstalk impact on calibration coefficients was calculated. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector nonlinearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic crosstalk can be implemented empirically from the processed bias at different brightness temperature. The implementation can be done through two approaches. As routine calibration assessment for thermal infrared bands, the trending over select Earth scenes is processed for all the detectors in a band and the band averaged bias is derived for certain time. In this case, the correction of an affected band can be made using the regression of the model with band averaged bias and then corrections of detector differences are applied. The second approach requires the trending for individual detectors and the bias for each detector is used for regression with the model. A test using the first approach was made for Terra MODIS band 29 with the biases derived from long-term trending of sea surface temperature and Dome-C surface temperature.
X-Ray generation in strongly nonlinear plasma waves.
NASA Astrophysics Data System (ADS)
Kiselev, Sergey; Pukhov, Alexander; Kostyukov, Igor
2004-11-01
Using three-dimensional particle-in-cell simulations we show that a strongly nonlinear plasma wave excited by an ultrahigh intensity laser pulse works as a compact high-brightness source of Xray radiation. It has been recently suggested by A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002), that in a strongly nonlinear regime the plasma wave transforms to a ``bubble'', which is almost free from background electrons. Inside the bubble, a dense bunch of relativistic electrons is produced. These accelerated electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband X-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of X-ray generation by an external 28.5-GeV electron bunch injected into the bubble. Gamma-quanta with up to GeV energies are observed in the simulation in a good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.
Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.
den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack
2015-10-01
Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Zhibin; Cheng, Tai; Wang, Fuzhi; Bai, Yiming; Bian, Xingming; Zhang, Bing; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao
2018-05-31
Stable and efficient red (R), green (G), and blue (B) light sources based on solution-processed quantum dots (QDs) play important roles in next-generation displays and solid-state lighting technologies. The brightness and efficiency of blue QDs-based light-emitting diodes (LEDs) remain inferior to their red and green counterparts, due to the inherently unfavorable energy levels of different colors of light. To solve these problems, a device structure should be designed to balance the injection holes and electrons into the emissive QD layer. Herein, through a simple autoxidation strategy, pure blue QD-LEDs which are highly bright and efficient are demonstrated, with a structure of ITO/PEDOT:PSS/Poly-TPD/QDs/Al:Al2O3. The autoxidized Al:Al2O3 cathode can effectively balance the injected charges and enhance radiative recombination without introducing an additional electron transport layer (ETL). As a result, high color-saturated blue QD-LEDs are achieved with a maximum luminance over 13,000 cd m -2 , and a maximum current efficiency of 1.15 cd A -1 . The easily controlled autoxidation procedure paves the way for achieving high-performance blue QD-LEDs.
Charged excitons in a dilute two-dimensional electron gas in a high magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojs, Arkadiusz; Institute of Physics, Wroclaw University of Technology, Wroclaw 50-370,; Quinn, John J.
2000-08-15
A theory of charged excitons X{sup -} in a dilute two-dimensional (2D) electron gas in a high-magnetic field is presented. In contrast to previous calculations, three bound X{sup -} states (one singlet and two triplets) are found in a narrow and symmetric GaAs quantum well. The singlet and a ''bright'' triplet are the two optically active states observed in experiments. The bright triplet has the binding energy of about 1 meV, smaller than the singlet and a ''dark'' triplet. The interaction of bound X{sup -}'s with a dilute 2D electron gas is investigated using exact diagonalization techniques. It is foundmore » that the short-range character of the e-X{sup -} interactions effectively isolates bound X{sup -} states from a dilute e-h plasma. This results in the insensitivity of the photoluminescence spectrum to the filling factor {nu}, and a rapid decrease of the oscillator strength of the dark triplet X{sup -} as a function of {nu}{sup -1}. (c) 2000 The American Physical Society.« less
Fateminia, S M Ali; Mao, Zhu; Xu, Shidang; Yang, Zhiyong; Chi, Zhenguo; Liu, Bin
2017-09-25
Persistent room-temperature phosphorescence (RTP) in pure organic materials has attracted great attention because of their unique optical properties. The design of organic materials with bright red persistent RTP remains challenging. Herein, we report a new design strategy for realizing high brightness and long lifetime of red-emissive RTP molecules, which is based on introducing an alkoxy spacer between the hybrid units in the molecule. The spacer offers easy Br-H bond formation during crystallization, which also facilitates intermolecular electron coupling to favor persistent RTP. As the majority of RTP compounds have to be confined in a rigid environment to quench nonradiative relaxation pathways for bright phosphorescence emission, nanocrystallization is used to not only rigidify the molecules but also offer the desirable size and water-dispersity for biomedical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji
2016-03-01
Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.
Microchannel plate for high-efficiency field emission display
NASA Astrophysics Data System (ADS)
Yi, Whikun; Jin, Sunghwan; Jeong, Taewon; Lee, Jeonghee; Yu, SeGi; Choi, Yongsoo; Kim, J. M.
2000-09-01
The efficiency of a field emission display was improved significantly with a newly developed microchannel plate. The key features of this unit and its fabrication are summarized as follows: (a) bulk alumina is used as a substrate material, (b) channel location is defined by a programed-hole puncher, and (c) thin film deposition is conducted by electroless plating followed by a sol-gel process. With the microchannel plate between the cathode and the anode of a field emission display, the brightness of luminescent light increases three- to fourfold by electron multiplication through an array of pores in the device. In addition, the fabricated microchannel plate prevents spreading of electrons emitted from the cathode tips, thus improving both display resolution and picture quality.
Development of an EMCCD for LIDAR applications
NASA Astrophysics Data System (ADS)
De Monte, B.; Bell, R. T.
2017-11-01
A novel detector, incorporating e2v's EMCCD (L3VisionTM) [1] technology for use in LIDAR (Light Detection And Ranging) applications has been designed, manufactured and characterised. The most critical performance aspect was the requirement to collect charge from a 120μm square detection area for a 667ns temporal sampling window, with low crosstalk between successive samples, followed by signal readout with sub-electron effective noise. Additional requirements included low dark signal, high quantum efficiency at the 355nm laser wavelength and the ability to handle bright laser echoes, without corruption of the much fainter useful signals. The detector architecture used high speed charge binning to combine signal from each sampling window into a single charge packet. This was then passed through a multiplication register (EMCCD) operating with a typical gain of 100X to a conventional charge detection circuit. The detector achieved a typical quantum efficiency of 80% and a total noise in darkness of < 0.5 electrons rms. Development of the detector was supported by ESA.
Gartzia-Rivero, Leire; Sánchez-Carnerero, Esther M; Jiménez, Josue; Bañuelos, Jorge; Moreno, Florencio; Maroto, Beatriz L; López-Arbeloa, Iñigo; de la Moya, Santiago
2017-09-12
We report the synthesis, and spectroscopic and electrochemical properties of a selected library of novel spiranic O-BODIPYs bearing a phenol-based bi(polyarene) unit tethered to the boron center through oxygen atoms. These dyes constitute an interesting family of arene-BODIPY dyads useful for the development of photonic applications due to their synthetic accessibility and tunable photonic properties. It is demonstrated that the electron-donor capability of the involved arene moiety switches on a non-emissive intramolecular charge transfer (ICT) state, which restricts the fluorescence efficiency of the dyad. Interestingly, the influence of this non-radiative deactivation channel can be efficiently modulated by the substitution pattern, either at the dipyrrin ligand or at the polyarene moiety. Thus, dyads featuring electron-rich dipyrrin and electron-poor polyarene show lower or almost negligible ICT probability, and hence display bright fluorescence upon dual excitation at far-away spectral regions. This synthetic approach has allowed the easy development of low-cost efficient ultraviolet-absorbing visible-emitting cassettes by selecting properly the substitution pattern of the involved key units, dipyrrin and bi(polyarene), to modulate not only absorption and emission wavelengths, but also fluorescence efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, C. F.; Zhao, T. Z.; Behm, K.
Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less
NASA Astrophysics Data System (ADS)
Dong, C. F.; Zhao, T. Z.; Behm, K.; Cummings, P. G.; Nees, J.; Maksimchuk, A.; Yanovsky, V.; Krushelnick, K.; Thomas, A. G. R.
2018-04-01
Bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail, which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.
Dong, C. F.; Zhao, T. Z.; Behm, K.; ...
2018-04-24
Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less
Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring
NASA Astrophysics Data System (ADS)
Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.
1995-09-01
We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.
Experimental Analysis of Pseudospark Sourced Electron Beam
NASA Astrophysics Data System (ADS)
Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.
2011-12-01
The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.
Prospects for compact high-intensity laser synchrotron x-ray and gamma sources
NASA Astrophysics Data System (ADS)
Pogorelsky, I. V.
1997-03-01
A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.
Scanning Transmission Electron Microscopy at High Resolution
Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.
1974-01-01
We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050
High brightness diode laser module development at nLIGHT Photonics
NASA Astrophysics Data System (ADS)
Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob
2009-05-01
We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.
Analytical study of beam handling and emittance control
NASA Astrophysics Data System (ADS)
Thompson, James R.; Sloan, M. L.
1993-12-01
The thrust of our research on beam handling and emittance control was to explore how one might design high current electron accelerators, with the preservation of high beam quality designed as the primary design consideration. We considered high current, induction linacs in the parameter class of the ETA/ATA accelerators at LLNL, but with improvements to the accelerator gap design and other features to permit a significant increase in the deliverable beam brightness. Our approach for beam quality control centered on the use of solenoidal magnetic focusing through such induction accelerators, together with gently-shaped (adiabatic) acceleration gaps. This approach offers several tools for the control of beam quality. The strength and axial variation in the solenoidal magnetic field may be designed, as may the length and shape of the acceleration gaps, the loading of the gaps, and the axial spacing from gap to gap. This research showed that each of these design features may individually be optimized to contribute to improved beam quality control, and by exploiting these features, it appears feasible to produce high current, high energy electron beams possessing breakthrough beam quality and brightness. Applications which have been technologically unachievable may for the first time become possible. One such application is the production of high performance free electron lasers at very short wavelengths, extending down to the optical (less than 1 micron) regime.
Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble
Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A. M.; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie
2014-01-01
Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 1018 cm−3). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron–photon source can be ideal for pump–probe applications with femtosecond time resolution. PMID:24711405
Present and future experiments using bright low-energy positron beams
NASA Astrophysics Data System (ADS)
Hugenschmidt, Christoph
2017-01-01
Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.
NASA Astrophysics Data System (ADS)
Reginald, Nelson Leslie; Gopalswamy, Natchimuthuk; Guhathakurta, Madhulika; Yashiro, Seiji
2016-05-01
Experiments that require polarized brightness measurements, traditionally have done so by taking three successive images through a polarizer that is rotated through three well-defined angles. With the advent of the polarization camera, the polarized brightness can be measured from a single image. This also eliminates the need for a polarizer and the associated rotator mechanisms and can contribute towards less weight, size, less power requirements, and importantly higher temporal resolution. We intend to demonstrate the capabilities of the polarization camera by conducting a field experiment in conjunction with the total solar eclipse of 21 August 2017 using the Imaging Spectrograph of Coronal Electrons (ISCORE) instrument (Reginald et. al., solar physics, 2009, 260, 347-361). In this instrumental concept four K-coronal images of the corona through four filters centered at 385.0, 398.7, 410.0, 423.3 nm with a bandpass of 4 nm are expected to allow us to determine the coronal electron temperature and electron speed all around the corona. In order to determine the K-coronal brightness through each filter, we would have to take three images by rotating a polarizer through three angles for each of the filters, and it is not feasible owing to the short durations of total solar eclipses. Therefore, in the past we have assumed the total brightness (F + K) measured by each of the four filters to represent K-coronal brightness, which is true in low solar corona. However, with the advent of the polarization camera we can now measure the Stokes Polarization Parameters on a pixel by pixel basis for every image taken by the polarization camera. This allows us to independently quantify the total brightness (K+F) and polarized brightness (K). Also in addition to the four filter images that allow us to measure the electron temperature and electron speed, taking an additional image without a filter will give us enough information to determine the electron density. This instrumental concept was first tried in conjunction with the total solar eclipse of 9 March 2016 in Maba, Indonesia, but was unfortunately clouded out.
NASA Astrophysics Data System (ADS)
Almatroushi, H. R.; Lootah, F. H.; Deighan, J.; Fillingim, M. O.; Jain, S.; Bougher, S. W.; England, S.; Schneider, N. M.
2017-12-01
This research focuses on developing empirical and theoretical models for OI 135.6 nm and CO 4PG band system FUV dayglow emissions in the Martian thermosphere as predicted to be seen from the Emirates Mars Ultraviolet Spectrometer (EMUS), one of the three scientific instruments aboard the Emirates Mars Mission (EMM) to be launched in 2020. These models will aid in simulating accurate disk radiances which will be utilized as an input to an EMUS instrument simulator. The developed zonally averaged empirical models are based on FUV data from the IUVS instrument onboard the MAVEN mission, while the theoretical models are based on a basic Chapman profile. The models calculate the brightness (B) of those emissions taking into consideration observation geometry parameters such as emission angle (EA), solar zenith angle (SZA) and planet distance from the sun (Ds). Specifically, the empirical models takes a general form of Bn=A*cos(SZA)n/cos(EA)m , where Bn is the normalized brightness value of an emission feature, and A, n, and m are positive constant values. The model form shows that the brightness has a positive correlation with EA and a negative correlation with SZA. A comparison of both models are explained in this research while examining full Mars and half Mars disk images generated using geometry code specially developed for the EMUS instrument. Sensitivity analyses have also been conducted for the theoretical modeling to observe the contributions of electron impact on atomic oxygen and CO2 to the brightness of OI 135.6nm, in addition to the effect of electron temperature on the CO2± dissociative recombination contribution to the CO 4PG band system.
A 3D tomographic reconstruction method to analyze Jupiter's electron-belt emission observations
NASA Astrophysics Data System (ADS)
Santos-Costa, Daniel; Girard, Julien; Tasse, Cyril; Zarka, Philippe; Kita, Hajime; Tsuchiya, Fuminori; Misawa, Hiroaki; Clark, George; Bagenal, Fran; Imai, Masafumi; Becker, Heidi N.; Janssen, Michael A.; Bolton, Scott J.; Levin, Steve M.; Connerney, John E. P.
2017-04-01
Multi-dimensional reconstruction techniques of Jupiter's synchrotron radiation from radio-interferometric observations were first developed by Sault et al. [Astron. Astrophys., 324, 1190-1196, 1997]. The tomographic-like technique introduced 20 years ago had permitted the first 3-dimensional mapping of the brightness distribution around the planet. This technique has demonstrated the advantage to be weakly dependent on planetary field models. It also does not require any knowledge on the energy and spatial distributions of the radiating electrons. On the downside, it is assumed that the volume emissivity of any punctual point source around the planet is isotropic. This assumption becomes incorrect when mapping the brightness distribution for non-equatorial point sources or any point sources from Juno's perspective. In this paper, we present our modeling effort to bypass the isotropy issue. Our approach is to use radio-interferometric observations and determine the 3-D brightness distribution in a cylindrical coordinate system. For each set (z, r), we constrain the longitudinal distribution with a Fourier series and the anisotropy is addressed with a simple periodic function when possible. We develop this new method over a wide range of frequencies using past VLA and LOFAR observations of Jupiter. We plan to test this reconstruction method with observations of Jupiter that are currently being carried out with LOFAR and GMRT in support to the Juno mission. We describe how this new 3D tomographic reconstruction method provides new model constraints on the energy and spatial distributions of Jupiter's ultra-relativistic electrons close to the planet and be used to interpret Juno MWR observations of Jupiter's electron-belt emission and assist in evaluating the background noise from the radiation environment in the atmospheric measurements.
Technological Challenges to X-Ray FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter
1999-09-16
There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less
Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Design of a low emittance and high repetition rate S-band photoinjector
NASA Astrophysics Data System (ADS)
Han, Jang-Hui
2014-09-01
As an electron beam injector of X-ray free-electron lasers (FELs), photoinjectors have been developed for the past few decades. Such an injector starting with a photocathode RF gun provides high brightness beams and therefore it is being adopted as an injector of X-ray FELs. In this paper we show how to improve photoinjector performance in terms of emittance and repetition rates by means of injector components optimization, especially with the gun. Transverse emittance at the end of an injector is reduced by optimizing the gun design, gun solenoid position, and accelerating section position. The repetition rate of an injector mainly depends on the gun. It is discussed that a repetition rate of 1 kHz at a normal-conducting S-band photoinjector is feasible by adopting a coaxial RF coupler and improving cooling-water channels surrounding the gun.
NASA Astrophysics Data System (ADS)
Murokh, Alex
2002-01-01
In this work, the main results of the VISA experiment (Visible to Infrared SASE Amplifier) are presented and analyzed. The purpose of the experiment was to build a state-of-the-art single pass self-amplified spontaneous emission (SASE) free electron laser (FEL) based on a high brightness electron beam, and characterize its operation, including saturation, in the near infrared spectral region. This experiment was hosted by Accelerator Test Facility (ATF) at Brookhaven National Laboratory, which is a users facility that provides high brightness relativistic electron beams generated with the photoinjector. During the experiment, SASE FEL performance was studied in two regimes: a long bunch, lower gain operation; and a short bunch high gain regime. The transition between the two conditions was possible due to a novel bunch compression mechanism, which was discovered in the course of the experiment. This compression allowed the variation of peak current in the electron beam before it was launched into the 4-m VISA undulator. In the long bunch regime, a SASE FEL power gain length of 29 cm was obtained, and the generated radiation spectral and statistical properties were characterized. In the short bunch regime, a power gain length of under 18 cm was achieved at 842 nm, which is at least a factor of two shorter than ever previously achieved in this spectral range. Further, FEL saturation was obtained before the undulator exit. The FEL system's performance was measured along the length of the VISA undulator, and in the final state. Statistical, spectral and angular properties of the short bunch SASE radiation have been measured in the exponential gain regime, and at saturation. One of the most important aspects of the data analysis presented in this thesis was the development and use of start-to-end numerical simulations of the experiment. The dynamics of the ATF electron beam was modeled starting from the photocathode, through acceleration, transport, and inside the VISA undulator. The model allowed simulation of SASE process for different beam conditions, including the effects of the novel bunch compression mechanism on the electron beam 6-D phase space distribution. The numerical simulations displayed an excellent agreement with the experimental data, and became key to understanding complex dynamics of the SASE FEL process at VISA.
Control of energy sweep and transverse beam motion in induction linacs
NASA Astrophysics Data System (ADS)
Turner, W. C.
1991-05-01
Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.
Holographic free-electron light source
Li, Guanhai; Clarke, Brendan P.; So, Jin-Kyu; MacDonald, Kevin F.; Zheludev, Nikolay I.
2016-01-01
Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing. PMID:27910853
Spatial Light Modulator Would Serve As Electronic Iris
NASA Technical Reports Server (NTRS)
Gutow, David A.
1991-01-01
In proposed technique for controlling brightness of image formed by lens, spatial light modulator serves as segmented, electronically variable aperture. Offers several advantages: spatial light modulator controlled remotely and responds faster than motorized iris or other remotely controlled mechanical iris. Unlike iris, modulator also configured so as not to vary depth of field appreciably. Unlike lead lanthanum zirconate titanate crystal, spatial light modulator does not require high voltage.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
1999-01-01
A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.
Source brightness and useful beam current of carbon nanotubes and other very small emitters
NASA Astrophysics Data System (ADS)
Kruit, P.; Bezuijen, M.; Barth, J. E.
2006-01-01
The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.
Li, Junqiang; Shan, Xin; Bade, Sri Ganesh R; Geske, Thomas; Jiang, Qinglong; Yang, Xin; Yu, Zhibin
2016-10-03
Charge-carrier injection into an emissive semiconductor thin film can result in electroluminescence and is generally achieved by using a multilayer device structure, which requires an electron-injection layer (EIL) between the cathode and the emissive layer and a hole-injection layer (HIL) between the anode and the emissive layer. The recent advancement of halide perovskite semiconductors opens up a new path to electroluminescent devices with a greatly simplified device structure. We report cesium lead tribromide light-emitting diodes (LEDs) without the aid of an EIL or HIL. These so-called single-layer LEDs have exhibited a sub-band gap turn-on voltage. The devices obtained a brightness of 591 197 cd m -2 at 4.8 V, with an external quantum efficiency of 5.7% and a power efficiency of 14.1 lm W -1 . Such an advancement demonstrates that very high efficiency of electron and hole injection can be obtained in perovskite LEDs even without using an EIL or HIL.
Bright betatron X-ray radiation from a laser-driven-clustering gas target
Chen, L. M.; Yan, W. C.; Li, D. Z.; Hu, Z. D.; Zhang, L.; Wang, W. M.; Hafz, N.; Mao, J. Y.; Huang, K.; Ma, Y.; Zhao, J. R.; Ma, J. L.; Li, Y. T.; Lu, X.; Sheng, Z. M.; Wei, Z. Y.; Gao, J.; Zhang, J.
2013-01-01
Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications. PMID:23715033
NASA Astrophysics Data System (ADS)
Di Mitri, S.; Cornacchia, M.
2015-03-01
Bunch length magnetic compression is used in high-brightness linacs driving free-electron lasers (FELs) and particle colliders to increase the peak current of the injected beam. To date, it is performed in dedicated insertions made of few degrees bending magnets and the compression factor is limited by the degradation of the beam transverse emittance owing to emission of coherent synchrotron radiation (CSR). We reformulate the known concept of CSR-driven optics balance for the general case of varying bunch length and demonstrate, through analytical and numerical results, that a 500 pC charge beam can be time-compressed in a periodic 180 deg arc at 2.4 GeV beam energy and lower, by a factor of up to 45, reaching peak currents of up to 2 kA and with a normalized emittance growth at the 0.1 μ \\text{m} rad level. The proposed solution offers new schemes of beam longitudinal gymnastics; an application to an energy recovery linac driving FEL is discussed.
RELATIVISTIC THOMSON SCATTERING EXPERIMENT AT BNL - STATUS REPORT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
POGORELSKY,I.V.; BEN ZVI,I.; KUSCHE,K.
2001-12-03
1.7 x 10{sup 8} x-ray photons per 3.5 ps pulse have been produced in Thomson scattering by focusing CO{sub 2} laser pulse on counter-propagating relativistic electron beam. We explore a possibility of further enhancement of process efficiency by propagating both beams in a plasma capillary. Conventional synchrotron light sources based on using giga-electron-volt electron synchrotron accelerators and magnetic wigglers generate x-ray radiation for versatile application in multi-disciplinary research. An intense laser beam causes relativistic electron oscillations similar to a wiggler. However, because the laser wavelength is thousand times shorter than a wiggler period, very moderate electron energy is needed tomore » produce hard x-rays via Thomson scattering. This allows using relatively compact mega-electron-volt linear accelerators instead of giga-electron-volt synchrotrons. Another important advantage of Thomson sources is a possibility to generate femtosecond x-ray pulses whereas conventional synchrotron sources have typically {approx}300 ps pulse duration. This promises to revolutionize x-ray research in chemistry, physics, and biology expanding it to ultra-fast processes. Thomson sources do not compete in repetition rate and average intensity with conventional light sources that operate at the megahertz frequency. However, Thomson sources have a potential to produce much higher photon numbers per pulse. This may allow developing a single shot exposure important for structural analysis of live biological objects. The BNL Thomson source is a user's experiment conducted at the Accelerator Test Facility since 1998 by an international collaboration in High Energy Physics. Since inception, the ATF source produces the record peak x-ray yield, intensity and brightness among other similar proof-of-principle demonstrations attempted elsewhere. Note that this result is achieved with a moderate laser power of 15 GW. A key to this achievement is in choosing right apparatus and efficient interaction geometry. We use a CO{sub 2} laser that delivers 10 times more photons per unit energy than the 1-{micro}m laser, a high-brightness linac, and the most energy-efficient backscattering interaction geometry. The purpose of this report is to give an update on new results obtained during this year and our near-term plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, M.; Rykovanov, S.; Bierbach, J.
2016-12-05
Energy coupling during relativistically intense laser–matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma–vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light–matter interaction phenomena, including those at the forefront of extreme laser–plasma science such as laser-driven ion acceleration, bright attosecond pulse generation and efficient energy coupling for the generation and study of warm dense matter. Here in this paper, we experimentally demonstrate that by precisely adjusting the relative phase of an additional laser beam operating at the second harmonic of themore » driving laser it is possible to control the trajectories of relativistic electron bunches formed during the interaction with a solid target at the attosecond scale. Finally, we observe significant enhancements in the resulting high-harmonic yield, suggesting potential applications for sources of ultra-bright, extreme ultraviolet attosecond radiation to be used in atomic and molecular pump–probe experiments« less
NASA Astrophysics Data System (ADS)
van Tilborg, Jeroen
2017-10-01
The success of laser plasma accelerator (LPA) based applications, such as a compact x-ray free electron laser (FEL), relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot energy-dispersed emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock-induced density down-ramp injection. Both injection mechanisms have gained in popularity in recent years due to their demonstrated stable LPA performance. For the down-ramp injection configuration, normalized emittances a factor of two lower were recorded: less than 1 micron at spectral charge densities up to 2 pC/MeV. For both injection mechanisms, a contributing correlation of space charge to the emittance was identified. This measurement technique in general, and these results specifically, are critical to the evaluation of LPA injection methods and development of high-quality LPA beam lines worldwide. This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the U.S. DOE NNSA, DNN R&D (NA22), by the National Science Foundation under Grant No. PHY-1415596, and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.
NASA Astrophysics Data System (ADS)
Rajak, Karunamoy; Ghosh, Arpita; Mahapatra, S.
2018-02-01
We report multimode vibronic coupling of the energetically low-lying electronic states of phenol and pentafluorophenol in this article. First principles nuclear dynamics calculations are carried out to elucidate the optical absorption spectrum of both of the molecules. This is motivated by the recent experimental measurements [S. Karmakar et al., J. Chem. Phys. 142, 184303 (2015)] on these systems. Diabatic vibronic coupling models are developed with the aid of adiabatic electronic energies calculated ab initio by the equation of motion coupled cluster quantum chemistry method. A nuclear dynamics study on the constructed electronic states is carried out by both the time-independent and time-dependent quantum mechanical methods. It is found that the nature of low-energy πσ* transition changes, and in pentafluorophenol the energy of the first two 1πσ* states, is lowered by about half an eV (vertically, relative to those in phenol), and they become energetically close to the optically bright first excited 1ππ* (S1) state. This results in strong vibronic coupling and multiple multi-state conical intersections among the ππ* and πσ* electronic states of pentafluorophenol. The impact of associated nonadiabatic effects on the vibronic structure and dynamics of the 1ππ* state is examined at length. The structured vibronic band of phenol becomes structureless in pentafluorophenol. The theoretical results are found to be in good accord with the experimental finding at both high energy resolution and low energy resolution.
Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins
Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong
2016-01-01
The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.
Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-12-15
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction
NASA Astrophysics Data System (ADS)
Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-12-01
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction
Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-01-01
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms. PMID:25501385
Maximum current density and beam brightness achievable by laser-driven electron sources
NASA Astrophysics Data System (ADS)
Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.
2014-02-01
This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.
Femtosecond time-resolved MeV electron diffraction
Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...
2015-06-02
We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS 2 are obtained utilizing a 5 fC (~3 × 10 4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated bymore » observing the evolution of Bragg and superlattice peaks of 1T-TaS 2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less
Color Helmet-Mounted Display System for In-Flight Simulation on the RASCAL Research Helicopter
NASA Technical Reports Server (NTRS)
Edwards, Tim; Barnhart, Warren; Sawyer, Kevin; Aiken, Edwin W. (Technical Monitor)
1995-01-01
A high performance color helmet mounted display (HMD) system for in-flight simulation and research has been developed for the Rotorcraft Aircrew Systems Concepts Laboratory (RASCAL). The display system consists of a programmable display generator, a display electronics unit, a head tracker, and the helmet with display optics. The system provides a maximum of 1024 x 1280 resolution, a 4:1 contrast ratio, and a brightness of 1100fL utilizing currently available technologies. This paper describes the major features and components of the system. Also discussed are the measured performance of the system and the design techniques that allowed the development of a full color HMD.
Echo-Enabled X-Ray Vortex Generation
NASA Astrophysics Data System (ADS)
Hemsing, E.; Marinelli, A.
2012-11-01
A technique to generate high-brightness electromagnetic vortices with tunable topological charge at extreme ultraviolet and x-ray wavelengths is described. Based on a modified version of echo-enabled harmonic generation for free-electron lasers, the technique uses two lasers and two chicanes to produce high-harmonic microbunching of a relativistic electron beam with a corkscrew distribution that matches the instantaneous helical phase structure of the x-ray vortex. The strongly correlated electron distribution emerges from an efficient three-dimensional recoherence effect in the echo-enabled harmonic generation transport line and can emit fully coherent vortices in a downstream radiator for access to new research in x-ray science.
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.
2015-01-01
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...
2015-10-06
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less
MITHRA 1.0: A full-wave simulation tool for free electron lasers
NASA Astrophysics Data System (ADS)
Fallahi, Arya; Yahaghi, Alireza; Kärtner, Franz X.
2018-07-01
Free Electron Lasers (FELs) are a solution for providing intense, coherent and bright radiation in the hard X-ray regime. Due to the low wall-plug efficiency of FEL facilities, it is crucial and additionally very useful to develop complete and accurate simulation tools for better optimizing a FEL interaction. The highly sophisticated dynamics involved in a FEL process was the main obstacle hindering the development of general simulation tools for this problem. We present a numerical algorithm based on finite difference time domain/Particle in cell (FDTD/PIC) in a Lorentz boosted coordinate system which is able to fulfill a full-wave simulation of a FEL process. The developed software offers a suitable tool for the analysis of FEL interactions without considering any of the usual approximations. A coordinate transformation to bunch rest frame makes the very different length scales of bunch size, optical wavelengths and the undulator period transform to values with the same order. Consequently, FDTD/PIC simulations in conjunction with efficient parallelization techniques make the full-wave simulation feasible using the available computational resources. Several examples of free electron lasers are analyzed using the developed software, the results are benchmarked based on standard FEL codes and discussed in detail.
Image degradation by glare in radiologic display devices
NASA Astrophysics Data System (ADS)
Badano, Aldo; Flynn, Michael J.
1997-05-01
No electronic devices are currently available that can display digital radiographs without loss of visual information compared to traditional transilluminated film. Light scattering within the glass faceplate of cathode-ray tube (CRT) devices causes excessive glare that reduces image contrast. This glare, along with ambient light reflection, has been recognized as a significant limitation for radiologic applications. Efforts to control the effect of glare and ambient light reflection in CRTs include the use of absorptive glass and thin film coatings. In the near future, flat panel displays (FPD) with thin emissive structures should provide very low glare, high performance devices. We have used an optical Monte Carlo simulation to evaluate the effect of glare on image quality for typical CRT and flat panel display devices. The trade-off between display brightness and image contrast is described. For CRT systems, achieving good glare ratio requires a reduction of brightness to 30-40 percent of the maximum potential brightness. For FPD systems, similar glare performance can be achieved while maintaining 80 percent of the maximum potential brightness.
Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki
2011-06-01
Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.
Walther, Paul; Schmid, Eberhard; Höhn, Katharina
2013-01-01
Using an electron microscope's scanning transmission mode (STEM) for collection of tomographic datasets is advantageous compared to bright field transmission electron microscopic (TEM). For image formation, inelastic scattering does not cause chromatic aberration, since in STEM mode no image forming lenses are used after the beam has passed the sample, in contrast to regular TEM. Therefore, thicker samples can be imaged. It has been experimentally demonstrated that STEM is superior to TEM and energy filtered TEM for tomography of samples as thick as 1 μm. Even when using the best electron microscope, adequate sample preparation is the key for interpretable results. We adapted protocols for high-pressure freezing of cultivated cells from a physiological state. In this chapter, we describe optimized high-pressure freezing and freeze substitution protocols for STEM tomography in order to obtain high membrane contrast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C P; Hartemann, F V
2004-09-21
The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer-spatial-resolution, MeV, flash radiography of dense, energetic systems (NIF, JASPER), precision, photo-nuclear absorption spectroscopy (DNT, PAT), non-destructive, resonant nuclear fluorescent imaging of special nuclear materials (NAI, DHS), dynamic, micro-crack failure analysis (aerospace industry, SSP) etc. Concepts are presented for new Thomson-Radiated Extreme X-ray (T-REX) sources at LLNL. These leverage LLNL's world-leading expertise in high-intensity lasers, high average power lasers, diffractive optics, Thomson-based x-ray source development, and advanced photoguns to produce tunable, quasi-monochromatic radiation from 50-keV to several MeV. Above {approx}100 keV, T-REX would be unique in the world with respect to BOTH peak x-ray brilliance AND average x-ray brilliance. This capability would naturally compliment the x-ray capability of large-scale, synchrotron facilities currently within the DoE complex by significantly extending the x-ray energy range over which, tunable, high-brightness applications could be pursued. It would do so at a small fraction of the cost of the purely, accelerator-based facilities. It is anticipated that T-REX could provide new opportunities for interaction of LLNL with the DoE Office of Science, DARPA, DHS etc. and would place LLNL clearly at the forefront of laser-based, x-ray generation world-wide.« less
A 20-liter test stand with gas purification for liquid argon research
Li, Y.; Thorn, C.; Tang, W.; ...
2016-06-06
Here, we describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). Moreover, this system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. Finally, a gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.
A 20-liter test stand with gas purification for liquid argon research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Thorn, C.; Tang, W.
Here, we describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). Moreover, this system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. Finally, a gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.
Blue laser diode (450 nm) systems for welding copper
NASA Astrophysics Data System (ADS)
Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.
2018-02-01
This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi I.; Kuczewski A.; Altinbas, Z.
2012-07-01
The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL featuresmore » a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.« less
Morphologic examination of CD3-CD4(bright) cells in rat liver.
Yamamoto, Satoshi; Sato, Yosinobu; Abo, Toru; Hatakeyama, Katsuyosi
2002-01-01
Recently, we found CD3-CD4(bright) cells with comparative specificity for normal rat liver. In the current study, we investigated the type and form of both CD3-CD4(bright) cells and CD3-CD4(dull) cells in the rat liver. The surface phenotype of hepatic mononuclear cells in Lewis rats was identified by using monoclonal antibodies including anti-CD4, anti-CD3, and antimacrophage in conjunction with two- or three-color immunofluorescence analysis. CD3-CD4(bright) cells and CD3-CD4(dull) cells were examined morphologically using May-Giemsa staining and scanning electron microscopy. The distribution of CD3-CD4(bright) cells and CD3-CD4(dull) cells 48 hours after intravenous administration of liposome-encapsulated dichloromethylene diphosphate was also investigated. In comparison to CD3-CD4(dull) cells, CD3-CD4(bright) cells were slightly larger macrophages with abundant cytoplasmic granules, being present with comparative specificity for normal rat liver and showing negligible effects by intravenous liposome-encapsulated dichloromethylene diphosphate administration. These data suggest that in normal young rat liver these CD3-CD4(dull) and CD3-CD4(bright) cells may be dendritic cells and Kupffer cells that shift from the liver to the spleen or vice versa. These cells may also be able to locally proliferate in liver or spleen due to changes in the developing liver.
High-intensity polarized H- ion source for the RHIC SPIN physics
NASA Astrophysics Data System (ADS)
Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.
2017-08-01
A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.
Recent progress in nanostructured next-generation field emission devices
NASA Astrophysics Data System (ADS)
Mittal, Gaurav; Lahiri, Indranil
2014-08-01
Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.
Final Technical Report: "New Tools for Physics with Low-energy Antimatter"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surko, Clifford M.
2013-10-02
The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap frommore » the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.« less
Compact X-ray sources: X-rays from self-reflection
NASA Astrophysics Data System (ADS)
Mangles, Stuart P. D.
2012-05-01
Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.
Electron beam emission from a diamond-amplifier cathode.
Chang, Xiangyun; Wu, Qiong; Ben-Zvi, Ilan; Burrill, Andrew; Kewisch, Jorg; Rao, Triveni; Smedley, John; Wang, Erdong; Muller, Erik M; Busby, Richard; Dimitrov, Dimitre
2010-10-15
The diamond amplifier (DA) is a new device for generating high-current, high-brightness electron beams. Our transmission-mode tests show that, with single-crystal, high-purity diamonds, the peak current density is greater than 400 mA/mm², while its average density can be more than 100 mA/mm². The gain of the primary electrons easily exceeds 200, and is independent of their density within the practical range of DA applications. We observed the electron emission. The maximum emission gain measured was 40, and the bunch charge was 50 pC/0.5 mm². There was a 35% probability of the emission of an electron from the hydrogenated surface in our tests. We identified a mechanism of slow charging of the diamond due to thermal ionization of surface states that cancels the applied field within it. We also demonstrated that a hydrogenated diamond is extremely robust.
Phase space manipulation in high-brightness electron beams
NASA Astrophysics Data System (ADS)
Rihaoui, Marwan M.
Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.
Time Projection Chamber Polarimeters for X-ray Astrophysics
NASA Astrophysics Data System (ADS)
Hill, Joanne; Black, Kevin; Jahoda, Keith
2015-04-01
Time Projection Chamber (TPC) based X-ray polarimeters achieve the sensitivity required for practical and scientifically significant astronomical observations, both galactic and extragalactic, with a combination of high analyzing power and good quantum efficiency. TPC polarimeters at the focus of an X-ray telescope have low background and large collecting areas providing the ability to measure the polarization properties of faint persistent sources. TPCs based on drifting negative ions rather than electrons permit large detector collecting areas with minimal readout electronics enabling wide field of view polarimeters for observing unpredictable, bright transient sources such as gamma-ray bursts. We described here the design and expected performance of two different TPC polarimeters proposed for small explorer missions: The PRAXyS (Polarimetry of Relativistic X-ray Sources) X-ray Polarimeter Instrument, optimized for observations of faint persistent sources and the POET (Polarimetry of Energetic Transients) Low Energy Polarimeter, designed to detect and measure bright transients. also NASA/GSFC.
Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John
2005-10-01
Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.
Zad, Zeinab Rezayati; Davarani, Saied Saeed Hosseiny; Taheri, Ali Reza; Bide, Yasamin
2016-12-15
In this paper, AuNPs@Polyethyleneimine-derived carbon hollow spheres were synthesized by a versatile and facile method in three steps and successfully developed and validated as Amitriptyline sensor using cyclic voltammetry (CV), chronoamperometry (CA) and differential pulse voltammetry (DPV) methods. The characterization of the electrode surface has been carried out by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray photo-electron spectrum (XPS), electrochemical impedance spectroscopy (EIS) and chronocoulometry (CC). The obtained negatively charged modified electrode was highly selective to Amitriptyline and it was shown a wide linear range from 0.1 to 700μmolL(-1), with a lower detection limit of 0.034μmolL(-1) (n=5, S/N=3), revealing the high-sensitivity properties. The modified electrode is used to achieve the real-time quantitative detection of AMT for biological applications, and satisfactory results are obtained. Due to the advantages of the sensor, its selectivity, sensitivity and stability, it will have a bright future in the field of medical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Isakozawa, Shigeto; Nagaoki, Isao; Watabe, Akira; Nagakubo, Yasuhira; Saito, Nobuhiro; Matsumoto, Hiroaki; Zhang, Xiao Feng; Taniguchi, Yoshifumi; Baba, Norio
2016-08-01
A new in situ environmental transmission electron microscope (ETEM) was developed based on a 300 kV TEM with a cold field emission gun (CFEG). Particular caution was taken in the ETEM design to assure uncompromised imaging and analytical performance of the TEM. Because of the improved pumping system between the gun and column, the vacuum of CFEG was largely improved and the probe current was sufficiently stabilized to operate without tip flashing for 2-3 h or longer. A high brightness of 2.5 × 10(9) A/cm(2) sr was measured at 300 kV, verifying the high quality of the CFEG electron beam. A specially designed gas injection-heating holder was used in the in situ TEM study at elevated temperatures with or without gas around the TEM specimen. Using this holder in a 10 Pa gas atmosphere and specimen temperatures up to 1000°C, high-resolution ETEM performance and analysis were achieved. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Liu, Jianpeng; Shao, Jinhai; Zhang, Sichao; Ma, Yaqi; Taksatorn, Nit; Mao, Chengwen; Chen, Yifang; Deng, Biao; Xiao, Tiqiao
2015-11-10
For acquiring high-contrast and high-brightness images in hard-x-ray optics, Fresnel zone plates with high aspect ratios (zone height/zone width) have been constantly pursued. However, knowledge of aspect ratio limits remains limited. This work explores the achievable aspect ratio limit in polymethyl methacrylate (PMMA) by electron-beam lithography (EBL) under 100 keV, and investigates the lithographic factors for this limitation. Both Monte Carlo simulation and EBL on thick PMMA are applied to investigate the profile evolution with exposure doses over 100 nm wide dense zones. A high-resolution scanning electron microscope at low acceleration mode for charging free is applied to characterize the resultant zone profiles. It was discovered for what we believe is the first time that the primary electron-beam spreading in PMMA and the proximity effect due to extra exposure from neighboring areas could be the major causes of limiting the aspect ratio. Using the optimized lithography condition, a 100 nm zone plate with aspect ratio of 15/1 was fabricated and its focusing property was characterized at the Shanghai Synchrotron Radiation Facility. The aspect ratio limit found in this work should be extremely useful for guiding further technical development in nanofabrication of high-quality Fresnel zone plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flacco, A.; Fairchild, M.; Reiche, S.
2004-12-07
The coherent radiation emitted by electrons in high brightness beam-based experiments is important from the viewpoints of both radiation source development, and the understanding and diagnosing the basic physical processes important in beam manipulations at high intensity. While much theoretical work has been developed to aid in calculating aspects of this class of radiation, these methods do not often produce accurate information concerning the experimentally relevant aspects of the radiation. At UCLA, we are particularly interested in coherent synchrotron radiation and the related phenomena of coherent edge radiation, in the context of a fs-beam chicane compression experiment at the BNLmore » ATF. To analyze this and related problems, we have developed a program that acts as an extension to the Lienard-Wiechert-based 3D simulation code TREDI, termed FieldEye. This program allows the evaluation of electromagnetic fields in the time and frequency domain in an arbitrary 2D detector planar area. We discuss here the implementation of the FieldEye code, and give examples of results relevant to the case of the ATF chicane compressor experiment.« less
Bibliography of short wavelength chemical laser research
NASA Astrophysics Data System (ADS)
Perram, Glen P.
1993-05-01
High power short wavelength chemical laser (SWCL) systems offer great advantages for strategic and tactical military applications, including both weapons and imaging missions. The promise of very high brightness, high mass efficiency, and wavelength agility has justified a modest basic research program for more than a decade. Significant progress towards the demonstration of a visible chemical laser has been made during the past few years. Highly efficient methods of chemically producing metastable electronic states at concentrations exceeding 3 x 10(exp 16) molecules/cu cm have been developed. Energy transfer from these metastables to suitable lasant species has been used to demonstrate gain in the visible. Chemically generated gain of 0.029 %/cm on the (A-X) electronic transition in bismuth fluoride has been demonstrated using pulsed thermolysis of fluorine azide and trimethyl bismuth mixtures. Recently, a table-top shock facility has been used to achieve unsaturated lasing in the same system. During the past ten years, over 400 articles and reports have resulted from this research program. This bibliography summarizes this Department of Defense sponsored research on short wavelength chemical lasers since 1980.
Transmission Electron Microscopy | Materials Science | NREL
bright-field images and bright in dark-field images. It is particularly useful for imaging non , because when an experimental image is recorded one loses phase information, and this means one cannot
Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.
2017-01-01
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams. PMID:28580954
NASA Astrophysics Data System (ADS)
Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.
2017-06-01
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m-1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread--an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.
Large Area Microencapsulated Reflective Guest-Host Liquid Crystal Displays and Their Applications
NASA Astrophysics Data System (ADS)
Nakai, Yutaka; Tanaka, Masao; Enomoto, Shintaro; Iwanaga, Hiroki; Hotta, Aira; Kobayashi, Hitoshi; Oka, Toshiyuki; Kizaki, Yukio; Kidzu, Yuko; Naito, Katsuyuki
2002-07-01
We have developed reflective liquid crystal displays using microencapsulated guest-host liquid crystals, whose size was sufficiently large for viewing documents. A high-brightness image can be realized because there is no need for polarizers. Easy fabrication processes, consisting of screen-printing of microencapsulated liquid crystal and film adhesion, have enabled the realization of thinner and lighter cell structures. It has been confirmed that the display is tolerant of the pressures to which it would be subject in actual use. The optimization of fabrication processes has enabled the realization of reflectance uniformity in the display area and reduction of the driving voltage. Our developed display is suitable for portable information systems, such as electronic book applications.
NASA Astrophysics Data System (ADS)
Serkez, S.; Geloni, G.; Tomin, S.; Feng, G.; Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Meyer, M.
2018-02-01
The generation of attosecond, highbrightness x-ray pulses is a matter of great interest given their applications in the study of ultra-fast processes. In recent years, the production of x-ray pulses of high brightness, both in the soft and in the hard x-ray range, has been enabled by x-ray free-electron lasers (XFELs). In contrast to conventional quantum lasers, XFELs are based on the use of an ultra-relativistic electron beam as gain medium. They often work in the self-amplified spontaneous emission (SASE) regime, which provides pulses of duration down to a few femtoseconds, composed of several longitudinal modes. In order to further decrease the duration of these pulses, special methods need to be implemented. In this paper we review available methods, with particular focus on the x-ray laser-enhanced attosecond pulse generation, which is one of the most promising techniques. We illustrate the method using the SASE3 soft x-ray undulator of the European XFEL facility as a case study, emphasizing the importance of high-repetition rate attosecond x-ray pulses. The expected attosecond-level radiation output is used for simulations of sequential ionization processes in atoms in the case of ionization in the soft x-ray regime, demonstrating the importance of this opportunity for the user community.
A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute
NASA Astrophysics Data System (ADS)
Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.
2014-08-01
Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.
Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang
2014-06-02
All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.
Electric potential of the moon in the magnetosheath and in the geomagnetic tail
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, A.M.
1995-03-01
A layer of charged particles near the lunar surface is investigated. It is shown that in the magnetosheath and in the tail lobes, where secondary electronic emission of lunar soil in the plasma sheet is low, the electrostatic potential as a function of the height over the subsolar region of the surface is nonmonotone. As the terminator is approached, the potential becomes a negative monotone function. For most temperatures of the primary electrons that exist in the plasma sheet, secondary electron emission is high. In the case of high secondary electron emission, the electric potential is nonmonotone, and the variationmore » of the potential in the double layer is determined by the secondary electron emission and varies weakly in the passage from the dark side to the bright side.« less
TEM characterization of nanodiamond thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, L.-C.; Zhou, D.; Krauss, A. R.
The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found inmore » PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.« less
Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidding, B.; Rosenzweig, J. B.; Xi, Y.
2012-12-21
An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojanmore » Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.« less
Ultrathin Quantum Dot Display Integrated with Wearable Electronics.
Kim, Jaemin; Shim, Hyung Joon; Yang, Jiwoong; Choi, Moon Kee; Kim, Dong Chan; Kim, Junhee; Hyeon, Taeghwan; Kim, Dae-Hyeong
2017-10-01
An ultrathin skin-attachable display is a critical component for an information output port in next-generation wearable electronics. In this regard, quantum dot (QD) light-emitting diodes (QLEDs) offer unique and attractive characteristics for future displays, including high color purity with narrow bandwidths, high electroluminescence (EL) brightness at low operating voltages, and easy processability. Here, ultrathin QLED displays that utilize a passive matrix to address individual pixels are reported. The ultrathin thickness (≈5.5 µm) of the QLED display enables its conformal contact with the wearer's skin and prevents its failure under vigorous mechanical deformation. QDs with relatively thick shells are employed to improve EL characteristics (brightness up to 44 719 cd m -2 at 9 V, which is the record highest among wearable LEDs reported to date) by suppressing the nonradiative recombination. Various patterns, including letters, numbers, and symbols can be successfully visualized on the skin-mounted QLED display. Furthermore, the combination of the ultrathin QLED display with flexible driving circuits and wearable sensors results in a fully integrated QLED display that can directly show sensor data. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The plasma filling factor of coronal bright points. II. Combined EIS and TRACE results
NASA Astrophysics Data System (ADS)
Dere, K. P.
2009-04-01
Aims: In a previous paper, the volumetric plasma filling factor of coronal bright points was determined from spectra obtained with the Extreme ultraviolet Imaging Spectrometer (EIS). The analysis of these data showed that the median plasma filling factor was 0.015. One interpretation of this result was that the small filling factor was consistent with a single coronal loop with a width of 1-2´´, somewhat below the apparent width. In this paper, higher spatial resolution observations with the Transition Region and Corona Explorer (TRACE) are used to test this interpretation. Methods: Rastered spectra of regions of the quiet Sun were recorded by the EIS during operations with the Hinode satellite. Many of these regions were simultaneously observed with TRACE. Calibrated intensities of Fe xii lines were obtained and images of the quiet corona were constructed from the EIS measurements. Emission measures were determined from the EIS spectra and geometrical widths of coronal bright points were obtained from the TRACE images. Electron densities were determined from density-sensitive line ratios measured with EIS. A comparison of the emission measure and bright point widths with the electron densities yielded the plasma filling factor. Results: The median electron density of coronal bright points is 3 × 109 cm-3 at a temperature of 1.6 × 106 K. The volumetric plasma filling factor of coronal bright points was found to vary from 3 × 10-3 to 0.3 with a median value of 0.04. Conclusions: The current set of EIS and TRACE coronal bright-point observations indicate the median value of their plasma filling factor is 0.04. This can be interpreted as evidence of a considerable subresolution structure in coronal bright points or as the result of a single completely filled plasma loop with widths on the order of 0.2-1.5´´ that has not been spatially resolved in these measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldhaus, J.; /DESY; Arthur, J.
In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, andmore » can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.« less
Atmospheric Propagation and Combining of High-Power Lasers
2015-09-08
Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when
Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.
Yamanaka, Takamitsu
2005-09-01
The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.
NASA Astrophysics Data System (ADS)
Li, Kai; Deng, Haixiao
2018-07-01
The Shanghai Coherent Light Facility (SCLF) is a quasi-continuous wave hard X-ray free electron laser facility, which is currently under construction. Due to the high repetition rate and high-quality electron beams, it is straightforward to consider X-ray free electron laser oscillator (XFELO) operation for the SCLF. In this paper, the main processes for XFELO design, and parameter optimization of the undulator, X-ray cavity, and electron beam are described. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, was introduced for the first time, which can be combined with the GENESIS and OPC codes for the numerical simulations of the XFELO. The performance of the XFELO of the SCLF is investigated and optimized by theoretical analysis and numerical simulation.
Fu, Yan; Jiang, Wei; Kim, Daekyoung; Lee, Woosuk; Chae, Heeyeop
2018-05-23
In this work, we developed a charge control sandwich structure around QD layers for the inverted QLEDs, the performance of which is shown to exceed that of the conventional QLEDs in terms of the external quantum efficiency (EQE) and the current efficiency (CE). The QD light-emitting layer (EML) is sandwiched with two ultrathin interfacial layers: one is a poly(9-vinlycarbazole) (PVK) layer to prevent excess electrons, and the other is a polyethylenimine ethoxylated (PEIE) layer to reduce the hole injection barrier. The sandwich structure resolves the imbalance between injected holes and electrons and brings the level of balanced charge carriers to a maximum. We demonstrated the highly improved performance of 89.8 cd/A of current efficiency, 22.4% of external quantum efficiency, and 72 814 cd m -2 of maximum brightness with the solution-processed inverted QLED. This sandwich structure (PVK/QD/PEIE), as a framework, can be applied to various QLED devices for enhancing performance.
Ullah, Mujeeb; Armin, Ardalan; Tandy, Kristen; Yambem, Soniya D.; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.
2015-01-01
Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture. The dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area - a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350 cd/m2, ON/OFF ratio > 104 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (fcut-off = 2.6 kHz) compared to single layer LEFETs. The results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications. PMID:25743444
Field-Sequential Electronic Stereoscopic Projector
NASA Astrophysics Data System (ADS)
Lipton, Lenny
1989-07-01
Culminating a research and development project spanning many years, StereoGraphics Corporation has succeeded in bringing to market the first field-sequential electronic stereoscopic projector. The product is based on a modification of Electrohome and Barco projectors. Our design goal was to produce a projector capable of displaying an image on a six-foot (or larger) diagonal screen for an audience of 50 or 60 people, or for an individual using a simulator. A second goal was to produce an image that required only passive polarizing glasses rather than powered, tethered visors. Two major design challenges posed themselves. First, it was necessary to create an electro-optical modulator which could switch the characteristic of polarized light at field rate, and second, it was necessary to produce a bright green CRT with short persistence to prevent crosstalk between left and right fields. To solve the first problem, development was undertaken to produce the required electro-optical modulator. The second problem was solved with the help of a vendor specializing in high performance CRT's.
Advances in Structural Biology and the Application to Biological Filament Systems.
Popp, David; Koh, Fujiet; Scipion, Clement P M; Ghoshdastider, Umesh; Narita, Akihiro; Holmes, Kenneth C; Robinson, Robert C
2018-04-01
Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin-actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Jupiter's hydrogen bulge: A Cassini perspective
NASA Astrophysics Data System (ADS)
Melin, Henrik; Stallard, T. S.
2016-11-01
We present observations of H Ly-α and H2 emissions on the body of Jupiter obtained during the Cassini flyby in late 2000 and early 2001. The H Ly-α emission is highly organised by System III longitude and latitude, peaking at a brightness of 22 kR between 90 and 120° longitude. This is known as the H Ly-α 'bulge'. These observations add to a number of previous studies, showing that the feature is very long-lived, present over several decades. We show that there is a strong correlation between the prevailing solar H Ly-α flux (measured at Earth) and the peak brightness of the H Ly-α bulge at Jupiter, which supports the notion that it is primarily driven by solar resonance scatter. The H Ly-α brightness distribution is not aligned with the jovigraphic equator, but is approximately aligned with the particle drift equator of some, but not all, major Jupiter magnetic field models. On the time scale of days, the bulge region appears twice as variable as the non-bulge region. We propose that the electron recombination of H3+ is an important reaction for the generation of the H Ly-α bulge, which requires an enhancement of soft electrons at the location of the bulge. We derive an equatorial H3+ lifetime of 1.6 ± 0.4 h and a corresponding column averaged electron density of 1.7 × 109 m-3.
Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterhoff, J.; Nakamura, K.; Bakeman, M.
The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.
Nonlinear Brightness Optimization in Compton Scattering
Hartemann, Fred V.; Wu, Sheldon S. Q.
2013-07-26
In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. We discuss these effects, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.
Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.
Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D
2016-04-19
The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.
Novel fabrication method of microchannel plates
NASA Astrophysics Data System (ADS)
Yi, Whikun; Jeong, Taewon; Jin, Sunghwan; Yu, SeGi; Lee, Jeonghee; Kim, J. M.
2000-11-01
We have developed a novel microchannel plate (MCP) by introducing new materials and process technologies. The key features of our MCP are summarized as follows: (i) bulk alumina as a substrate, (ii) the channel location defined by a programmed-hole puncher, (iii) thin film deposition by electroless plating and/or sol-gel process, and (iv) an easy fabrication process suitable for mass production and a large-sized MCP. The characteristics of the resulting MCP have been evaluated with a high input current source such as a continuous electron beam from an electron gun and Spindt-type field emitters to obtain information on electron multiplication. In the case of a 0.28 μA incident beam, the output current enhances ˜170 times, which is equal to 1% of the total bias current of the MCP at a given bias voltage of 2600 V. When we insert a MCP between the cathode and the anode of a field emission display panel, the brightness of luminescent light increases 3-4 times by multiplying the emitted electrons through pore arrays of a MCP.
Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging
Golovin, G.; Banerjee, S.; Liu, C.; ...
2016-04-19
Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less
Numerical simulations of novel high-power high-brightness diode laser structures
NASA Astrophysics Data System (ADS)
Boucke, Konstantin; Rogg, Joseph; Kelemen, Marc T.; Poprawe, Reinhart; Weimann, Guenter
2001-07-01
One of the key topics in today's semiconductor laser development activities is to increase the brightness of high-power diode lasers. Although structures showing an increased brightness have been developed specific draw-backs of these structures lead to a still strong demand for investigation of alternative concepts. Especially for the investigation of basically novel structures easy-to-use and fast simulation tools are essential to avoid unnecessary, cost and time consuming experiments. A diode laser simulation tool based on finite difference representations of the Helmholtz equation in 'wide-angle' approximation and the carrier diffusion equation has been developed. An optimized numerical algorithm leads to short execution times of a few seconds per resonator round-trip on a standard PC. After each round-trip characteristics like optical output power, beam profile and beam parameters are calculated. A graphical user interface allows online monitoring of the simulation results. The simulation tool is used to investigate a novel high-power, high-brightness diode laser structure, the so-called 'Z-Structure'. In this structure an increased brightness is achieved by reducing the divergency angle of the beam by angular filtering: The round trip path of the beam is two times folded using internal total reflection at surfaces defined by a small index step in the semiconductor material, forming a stretched 'Z'. The sharp decrease of the reflectivity for angles of incidence above the angle of total reflection leads to a narrowing of the angular spectrum of the beam. The simulations of the 'Z-Structure' indicate an increase of the beam quality by a factor of five to ten compared to standard broad-area lasers.
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
NASA Astrophysics Data System (ADS)
DeSanto, Leonard
1998-09-01
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMDTM) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMDTM divorced from the light engine and the interfacing of the DMDTM board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junbino Zhu; Mingchang Wang; Zhijiang Wang
1995-12-31
A high power (200KV), intense current density, low emittance (71mmmrad), high brightness (8x10{sup 10}A/m rad) electron beam was generated in the 10cm long, high-voltage-resistive multi-gap hollow cathode pseudospark chamber filled with 15pa nitrogen and driven by an improved pulse line accelerator. The beam was ejected with the 1mm diameter, the 2.2KA beam current, and the 400ns pulse length, and could propagated 20cm in the drift tube. At a distance of 5cm from the anode it penetrated consecutively an acid-sensitive discoloring film and a 0.05mm-thick copper foil both stuck closely, left 0.6mm and 0.3mm holes on them, respectively. That 10 shotsmore » on an acid-sensitive film produced a hole of 1.6mm at 7cm downstream of anode showed its good repeatability. After 60 shots the pseudospark discharge chamber was disassembled and observed that almost no destructive damage traces left on the surfaces of its various electrodes and insulators. But on almost all the surfaces of changeable central hole parts installed on intermediate electrodes there are traces of electron emission from the sides facing the anode and of bombardment on the sides facing the cathode, in contrast with which on the front- and back-surfaces of hollow cathode no visible traces of electron emission from then was observed. In addition, there were different tints, strip-like regions on the side of anode facing the cathode. Another interesting phenomenon was that there were a set of concentric circular or elliptical ring pattern on the acid-sensitive discoloring film got at 5cm from the anode and observed tinder a metallograph. It seems that the pseudospark electron beam is Laminar beam i.e, being possessed of a multi-layer structure, at least in the case of multi-gap pseudospark discharge chamber. It was found experimentally that the quality of pseudospark electron beam is much better than that of the cold-cathode electron beam.« less
Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.
Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie
2015-10-01
An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.
Exotic X-ray Sources from Intermediate Energy Electron Beams
NASA Astrophysics Data System (ADS)
Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.
2003-08-01
High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).
14 CFR 23.1311 - Electronic display instrument systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electronic display instrument systems. 23... Equipment Instruments: Installation § 23.1311 Electronic display instrument systems. (a) Electronic display..., considering the expected electronic display brightness level at the end of an electronic display indictor's...
14 CFR 23.1311 - Electronic display instrument systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electronic display instrument systems. 23... Equipment Instruments: Installation § 23.1311 Electronic display instrument systems. (a) Electronic display..., considering the expected electronic display brightness level at the end of an electronic display indictor's...
14 CFR 23.1311 - Electronic display instrument systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electronic display instrument systems. 23... Equipment Instruments: Installation § 23.1311 Electronic display instrument systems. (a) Electronic display..., considering the expected electronic display brightness level at the end of an electronic display indictor's...
An automated extinction and sky brightness monitor for the Indian Astronomical Observatory, Hanle
NASA Astrophysics Data System (ADS)
Sharma, Tarun Kumar; Parihar, Padmakar; Banyal, R. K.; Dar, Ajaz Ahmad; Kemkar, P. M. M.; Stanzin, Urgain; Anupama, G. C.
2017-09-01
We have developed a simple and portable device that makes precise and automated measurements of night sky extinction. Our instrument uses a commercially available telephoto lens for light collection, which is retrofitted to a custom-built telescope mount, a thermoelectrically cooled CCD for imaging, and a compact enclosure with electronic control to facilitate remote observations. The instrument is also capable of measuring the sky brightness and detecting the presence of thin clouds that otherwise would remain unnoticed. The measurements of sky brightness made by our simple device are more accurate than those made using a large telescope. Another capability of the device is that it can provide an instantaneous measurement of atmospheric extinction, which is extremely useful for exploring the nature of short-term extinction variation. The instrument was designed and developed primarily in order to characterize and investigate thoroughly the Indian Astronomical Observatory (IAO), Hanle for the establishment of India's future large-telescope project. The device was installed at the IAO, Hanle in 2014 May. In this paper, we present the instrument details and discuss the results of extinction data collected for about 250 nights.
Muramoto, Hideyuki; Shimamoto, Kazuhiro; Ikeda, Mitsuru; Koyama, Kazuyuki; Fukushima, Hiromichi; Ishigaki, Takeo
2006-06-01
The influence of monitor brightness and room illumination on soft-copy diagnosis by both cathode-ray tube (CRT) monitor and liquid crystal display (LCD) was evaluated and compared using a contrast-detail phantom. Nine observers (7 radiologists and 2 radiological technicians) interpreted six types of electronically generated contrast-detail phantom images using a 21-inch CRT (2,048x2,560) and a 21-inch LCD (2,048x2,560) under 6 kinds of viewing conditions, i.e. monitor brightness of 330 cd/m2 or 450 cd/m2, and room illumination of 20, 100 or 420 lux at the center of the display. Observers were requested to determine the visible borderline of the objects. Between 330 cd/m2 and 450 cd/m2, no significant difference in the visible area was found under any of the three lighting conditions. However, in two low-contrast phantom images, the visible area on the LCD was significantly larger than that on the CRT, independent of both monitor brightness and room illumination. (p<0.05). The effect of room illumination was not significant, suggesting that the use of LCD at high room illumination is acceptable.
Extreme Magnetosphere-Ionosphere Coupling at the Plasmapause: a - In-A Bright SAR Arc
NASA Astrophysics Data System (ADS)
Baumgardner, J.; Wroten, J.; Semeter, J.; Mendillo, M.; Kozyra, J.
2007-05-01
Heat conduction from the ring current - plasmapause interaction region generates high electron temperature within the ionosphere that drive stable auroral red (SAR) arc emission at 6300 A. On the night of 29 October 1991, a SAR arc was observed using an all-sky imager and meridional imaging spectrograph at Millstone Hill. At xxxx UT, the SAR arc was south of Millstone at approximate L = 2 and reached emission levels of 13,000 rayleighs (R). Over two solar cycle of imaging observations have been made at Millstone Hill, and SAR arc brightness levels (excluding this event) averaged ~ 500 R. Simultaneous observations using the incoherent scatter radar (ISR), a DMSP satellite pass, the MSIS neutral atmosphere and SAR arc modeling using the Rees and Roble formalism succeeded in simulations of the observed emission. The reason for the unusual brightness was not the extreme temperatures achieved (and therefore heat conduction input), but the fact that the end of the plasmapause field line where the elevated Te values were measured did not occur in the ionospheric trough, but equatorward of it, thereby having far more ambient electrons to heat and subsequently collide with atomic oxygen. This unusual spatial geometry probably resulted from unusual convection patterns early in a superstorm scenario.
Brightness and magnetic evolution of solar coronal bright points
NASA Astrophysics Data System (ADS)
Ugarte Urra, Ignacio
This thesis presents a study of the brightness and magnetic evolution of several Extreme ultraviolet (EUV) coronal bright points (hereafter BPs). The study was carried out using several instruments on board the Solar and Heliospheric Observatory, supported by the high resolution imaging from the Transition Region And Coronal Explorer. The results confirm that, down to 1" resolution, BPs are made of small loops with lengths of [approximate]6 Mm and cross-sections of ≈2 Mm. The loops are very dynamic, evolving in time scales as short as 1 - 2 minutes. This is reflected in a highly variable EUV response with fluctuations highly correlated in spectral lines at transition region temperatures, but not always at coronal temperatures. A wavelet analysis of the intensity variations reveals the existence of quasi-periodic oscillations with periods ranging 400--1000s, in the range of periods characteristic of the chromospheric network. The link between BPs and network bright points is discussed, as well as the interpretation of the oscillations in terms of global acoustic modes of closed magnetic structures. A comparison of the magnetic flux evolution of the magnetic polarities to the EUV flux changes is also presented. Throughout their lifetime, the intrinsic EUV emission of BPs is found to be dependent on the total magnetic flux of the polarities. In short time scales, co-spatial and co-temporal coronal images and magnetograms, reveal the signature of heating events that produce sudden EUV brightenings simultaneous to magnetic flux cancellations. This is interpreted in terms of magnetic reconnection events. Finally, a electron density study of six coronal bright points produces values of ≈1.6×10 9 cm -3 , closer to active region plasma than to quiet Sun. The analysis of a large coronal loop (half length of 72 Mm) introduces the discussion on the prospects of future plasma diagnostics of BPs with forthcoming solar missions.
A high gain free electron laser amplifier design for the Alcator-C tokamak. [FRED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong, R.A.
1987-02-01
We describe an improved wiggler tapering algorithm and the resulting wiggler design for a high-gain free electron laser amplifier to be used for plasma heating and current drive experiments in the Alcator-C tokamak. Unlike the original, this new design limits the growth of the shot noise to insignificant levels. The design goal of at least 8 GW of peak power in the TE/sub 01/ mode was achieved with a 3 kA electron beam with energies in the 7 to 9 MeV range and a beam brightness of 10/sup 5/ A/(rad-cm)/sup 2/. The wiggler was 5 m long with a wigglermore » wavelength of 8 cm.« less
Xing, Yun; Smith, Andrew M; Agrawal, Amit; Ruan, Gang; Nie, Shuming
2006-01-01
Semiconductor quantum dots (QDs) are a new class of fluorescent labels with broad applications in biomedical imaging, disease diagnostics, and molecular and cell biology. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in vitro and in vivo conditions. New designs involve encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. These improved QDs have opened new possibilities for real-time imaging and tracking of molecular targets in living cells, for multiplexed analysis of biomolecular markers in clinical tissue specimens, and for ultrasensitive imaging of malignant tumors in living animal models. In this article, we briefly discuss recent developments in bioaffinity QD probes and their applications in molecular profiling of individual cancer cells and clinical tissue specimens. PMID:17722280
Andreu, Glòria; Vidal, Teresa
2014-01-01
Enzymatic delignification with laccase from Trametes villosa used in combination with chemical mediators (acetosyringone, acetovanillone and 1-hydroxybenzotriazole) to improve the totally chlorine-free (TCF) bleaching of kenaf pulp was studied. The best final pulp properties were obtained by using an LHBTQPo sequence developed by incorporating a laccase-mediator stage into an industrial bleaching sequence involving chelation and peroxide stages. The new sequence resulted in increased kenaf pulp delignification (90.4%) and brightness (77.2%ISO) relative to a conventional TCF chemical sequence (74.5% delignification and 74.5% brightness). Also, the sequence provided bleached kenaf fibers with high cellulose content (pulp viscosity of 890 g·mL(-1) vs 660 g·mL(-1)). Scanning electron micrographs revealed that xylanase altered fiber surfaces and facilitated reagent access as a result. However, the LHBTX (xylanase) stage removed 21% of hexenuronic acids in kenaf pulp. These recalcitrant compounds spent additional bleaching reagents and affected pulp properties after peroxide stage. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.
Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C
2015-11-17
We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.
Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism
Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.
2015-01-01
We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992
Inductive voltage adder (IVA) for submillimeter radius electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.
The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experimentsmore » are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway.« less
[The use of learning computers in the general educational system: hygienic aspects].
Teksheva, L M; El'ksnina, E V; Perminov, M A
2007-01-01
The use of learning computers (LCs) in a present-day academic process poses for hygienists and physiologists new problems, such as to evaluate the influence of LCs on schoolchildren's health and to substantiate and to develop the ways of drawing up and presenting the materials in terms of their readability and regulation of learning regimens. Analysis of the currently available LCs has established the factors contributing to the accelerated development of visual and overall fatigue, its accumulation: the brightness characteristics of electronic pages, including both the violation of the allowable brightness levels and the irregularity of intensity distribution; a significant inadequacy of type sizes; a great variety of lettering and coloring. The recent LCs for general education are the visual aggressive medium for schoolchildren, which is certain to require their hygienic evaluation on the basis of specially developed hygienic requirements for LCs.
NASA Astrophysics Data System (ADS)
Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan
2018-03-01
Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in photocatalytic HER.
Woehl, Taylor; Keller, Robert
2016-12-01
An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150mrad) and on thick substrates (>50nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. Copyright © 2016. Published by Elsevier B.V.
Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi; Chung, Kyung Yoon; Choi, Wonchang; Kim, Seung Min; Chang, Wonyoung
2017-06-07
Here, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na x CoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3 O 4 , CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction of Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na x CoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na x CoO 2 . The observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi
In this paper, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na xCoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3O 4, CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction ofmore » Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na xCoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na xCoO 2. Finally, the observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.« less
Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi; ...
2017-05-11
In this paper, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na xCoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3O 4, CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction ofmore » Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na xCoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na xCoO 2. Finally, the observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.« less
NASA Astrophysics Data System (ADS)
Hugenschmidt, Christoph
2016-12-01
Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.
NASA Astrophysics Data System (ADS)
Booske, John H.
2008-05-01
Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave (mmw) to terahertz (THz) regime electromagnetic radiation, from 0.1 to 10THz. While vacuum electronic sources are a natural choice for high power, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, high resolution radar, next generation acceleration drivers, and analysis of fluids and condensed matter. The compact size requirements for many of these high frequency sources require miniscule, microfabricated slow wave circuits. This necessitates electron beams with tiny transverse dimensions and potentially very high current densities for adequate gain. Thus, an emerging family of microfabricated, vacuum electronic devices share many of the same plasma physics challenges that are currently confronting "classic" high power microwave (HPM) generators including long-life bright electron beam sources, intense beam transport, parasitic mode excitation, energetic electron interaction with surfaces, and rf air breakdown at output windows. The contemporary plasma physics and other related issues of compact, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future research challenges and opportunities are discussed.
Manahan, Grace G.; Habib, A. F.; Scherkl, P.; ...
2017-06-05
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m –1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wavemore » can be locally overloaded without compromising the witness bunch normalized emittance. Here, this reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.« less
Generation of neutral and high-density electron-positron pair plasmas in the laboratory.
Sarri, G; Poder, K; Cole, J M; Schumaker, W; Di Piazza, A; Reville, B; Dzelzainis, T; Doria, D; Gizzi, L A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kuschel, S; Mangles, S P D; Najmudin, Z; Shukla, N; Silva, L O; Symes, D; Thomas, A G R; Vargas, M; Vieira, J; Zepf, M
2015-04-23
Electron-positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter-antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron-positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron-positron plasmas in controlled laboratory experiments.
Recent development on high-power tandem-pumped fiber laser
NASA Astrophysics Data System (ADS)
Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian
2016-11-01
High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.
Bunching phase and constraints on echo enabled harmonic generation
NASA Astrophysics Data System (ADS)
Hemsing, E.
2018-05-01
A simple mathematical description is developed for the bunching spectrum in echo enabled harmonic generation (EEHG) that incorporates the effect of additional electron beam energy modulations. Under common assumptions, they are shown to contribute purely through the phase of the longitudinal bunching factor, which allows the spectral moments of the bunching to be calculated directly from the known energy modulations. In particular, the second moment (spectral bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain a transform-limited seed. We show that, in general, the impact on the spectrum of energy distortions that develop between the EEHG chicanes scales like the harmonic number compared to distortions that occur upstream. This may limit the parameters that will allow EEHG to reach short wavelengths in high brightness FELs.
NASA Technical Reports Server (NTRS)
Lippmann, S.; Finkenthal, M.; Huang, L. K.; Moos, H. W.; Stratton, B. C.; Yu, T. L.; Bhatia, A. K.
1987-01-01
Calcium was introduced into the TEXT tokamak, and its spectral emission was recorded in the 50-360 A range by an absolutely calibrated grazing incidence spectrometer. These observations of highly ionized species of calcium at known conditions of plasma electron temperature and density allow testing of line brightness ratio predictions based on theoretical values of temperature-dependent electron excitation rates. The confirmation of the expected ratios in Be I-like to O I-like calcium allows more confident use of these ratios as a density diagnostic of remote astrophysical sources such as solar flares.
Nonintrusive Measurements for High-Speed, Supersonic, and Hypersonic Flows
NASA Astrophysics Data System (ADS)
Bonnet, J. P.; Grésillon, D.; Taran, J. P.
The need to develop new diagnostics for turbulent flows at supersonic and hypersonic regimes is discussed. New experimental results can be obtained in supersonic flows by using the collective light scattering method. Typical results obtained by this method in a supersonic mixing layer are illustrated. The collective light scattering method is a directional densitometer (with a new type of spectral analysis of density fluctuations), a nonparticle anemometer, a Mach-meter (or thermometer), and a directional remote microphone. Various other optical techniques that can be applied for point, line-of-sight, or imaging measurements are reviewed. For point measurements, light-scattering methods such as Raman, Rayleigh, or electron beam fluorescence are discussed, but only briefly, since they are of little use, especially when enthalpy is very high and flow naturally bright. Emphasis is placed instead on nonlinear laser spectroscopy such as coherent anti-Stokes Raman scattering, which has recently been successful in determining temperature and density in high-enthalpy shocks. A description of diode laser absorption spectroscopy follows. A high data-rate instrument now routinely gives the static temperature and the velocity of the stream in the hot shot facility F4 of ONERA, at stagnation enthalpies in excess of 15 MJ/kg. Finally, electron beam fluorescence imaging in the same facility has made it possible to perform measurements of velocity across the external boundary layer into the flow core using a high-energy-pulsed electron gun.
Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.
2017-01-01
We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686
Bright Beginnings. WWC Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
Bright Beginnings is an early childhood curriculum, based in part on High/Scope[R] and Creative Curriculum[R], with an additional emphasis on literacy skills. The curriculum consists of nine thematic units designed to enhance children's cognitive, social, emotional, and physical development, and each unit includes concept maps, literacy lessons,…
Miniaturized, High-Speed, Modulated X-Ray Source
NASA Technical Reports Server (NTRS)
Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick
2013-01-01
A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum(TradeMark) multiplier. This system yields an extremely robust photon-driven electron source that can tolerate long, weeks or more, exposure to air with negligible degradation. The package is also small. When combined with the electron target, necessary vacuum fittings, and supporting components (but not including LED electronics or high-voltage sources), the entire modulated x-ray source weighs as little as 158 grams.
A New Electron Source for Laboratory Simulation of the Space Environment
NASA Technical Reports Server (NTRS)
Krause, Linda Habash; Everding, Daniel; Bonner, Mathew; Swan, Brian
2012-01-01
We have developed a new collimated electron source called the Photoelectron Beam Generator (PEBG) for laboratory and spaceflight applications. This technology is needed to replace traditional cathodes because of serious fundamental weaknesses with the present state of the art. Filament cathodes suffer from numerous practical problems, even if expertly designed, including the dependence of electron emission on filament temperature, short lifetimes (approx 100 hours), and relatively high power (approx 10s of W). Other types of cathodes have solved some of these problems, but they are plagued with other difficult problems, such as the Spindt cathode's extreme sensitivity to molecular oxygen. None to date have been able to meet the demand of long lifetime, robust packaging, and precision energy and flux control. This new cathode design avoids many common pitfalls of traditional cathodes. Specifically, there are no fragile parts, no sensitivity to oxygen, no intrinsic emission dependencies on device temperature, and no vacuum requirements for protecting the source from contamination or damage. Recent advances in high-brightness Light Emitting Diodes (LEDs) have provided the key enabling technology for this new electron source. The LEDs are used to photoeject electrons off a target material of a low work-function, and these photoelectrons are subsequently focused into a laminar beam using electrostatic lenses. The PEBG works by illuminating a target material and steering photoelectrons into a laminar beam using electrostatic lenses
``Making the Molecular Movie'': First Frames
NASA Astrophysics Data System (ADS)
Miller, R. J. Dwayne
2011-03-01
Femtosecond Electron Diffraction has enabled atomic resolution to structural changes as they occur, essentially watching atoms move in real time--directly observe transition states. This experiment has been referred to as ``making the molecular movie'' and has been previously discussed in the context of a gedanken experiment. With the recent development of femtosecond electron pulses with sufficient number density to execute single shot structure determinations, this experiment has been finally realized. A new concept in electron pulse generation was developed based on a solution to the N-body electron propagation problem involving up to 10,000 interacting electrons that has led to a new generation of extremely bright electron pulsed sources that minimizes space charge broadening effects. Previously thought intractable problems of determining t=0 and fully characterizing electron pulses on the femtosecond time scale have now been solved through the use of the laser pondermotive potential to provide a time dependent scattering source. Synchronization of electron probe and laser excitation pulses is now possible with an accuracy of 10 femtoseconds to follow even the fastest nuclear motions. The camera for the ``molecular movie'' is well in hand based on high bunch charge electron sources. Several movies depicting atomic motions during passage through structural transitions will be shown. Atomic level views of the simplest possible structural transition, melting, will be presented for a number of systems in which both thermal and purely electronically driven atomic displacements can be correlated to the degree of directional bonding. Optical manipulation of charge distributions and effects on interatomic forces/bonding can be directly observed through the ensuing atomic motions. New phenomena involving strongly correlated electron systems will be presented in which an exceptionally cooperative phase transitions has been observed. The primitive origin of molecular cooperativity has also been discovered in recent studies of molecular crystals. These new developments will be discussed in the context of developing the necessary technology to directly observe the structure-function correlation in biomolecules--the fundamental molecular basis of biological systems.
Bright half-cycle optical radiation from relativistic wavebreaking
NASA Astrophysics Data System (ADS)
Miao, Bo; Goers, Andy; Hine, George; Feder, Linus; Salehi, Fatholah; Wahlstrand, Jared; Milchberg, Howard
2015-11-01
Wavebreaking injection of electrons into relativistic plasma wakes generated in near-critical density hydrogen plasmas by sub-terawatt laser pulses is observed to generate an extremely energetic and ultra-broadband radiation flash. The flash is coherent, with a bandwidth of Δλ / λ ~ 0 . 7 consistent with half-cycle optical emission of duration ~ 1 fs from violent unidirectional acceleration of electrons to light speed from rest over a distance much less than the radiated wavelength. We studied the temporal duration and coherence of the flash by interfering it in the frequency domain with a well-characterized Xe supercontinuum pulse. Fringes across the full flash spectrum were observed with high visibility, and the extracted flash spectral phase supports it being a nearly transform-limited pulse. To our knowledge, this is the first evidence of bright half-cycle optical emission. This research is supported by the Defense Threat Reduction Agency, the US Department of Energy, and the Air Force Office of Scientific Research.
Brightness-enhanced high-efficiency single emitters for fiber laser pumping
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe
2013-02-01
Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.
NASA Astrophysics Data System (ADS)
Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland
2016-10-01
Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.
NASA Astrophysics Data System (ADS)
Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.
2018-01-01
The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.
High brightness electrodeless Z-Pinch EUV source for mask inspection tools
NASA Astrophysics Data System (ADS)
Horne, Stephen F.; Partlow, Matthew J.; Gustafson, Deborah S.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2012-03-01
Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 1995. The source is currently being used for metrology, mask inspection, and resist development. Energetiq's higher brightness source has been selected as the source for pre-production actinic mask inspection tools. This improved source enables the mask inspection tool suppliers to build prototype tools with capabilities of defect detection and review down to 16nm design rules. In this presentation we will present new source technology being developed at Energetiq to address the critical source brightness issue. The new technology will be shown to be capable of delivering brightness levels sufficient to meet the HVM requirements of AIMS and ABI and potentially API tools. The basis of the source technology is to use the stable pinch of the electrodeless light source and have a brightness of up to 100W/mm(carat)2-sr. We will explain the source design concepts, discuss the expected performance and present the modeling results for the new design.
Marinelli, A; Dunning, M; Weathersby, S; Hemsing, E; Xiang, D; Andonian, G; O'Shea, F; Miao, Jianwei; Hast, C; Rosenzweig, J B
2013-03-01
With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.
Segmented cold cathode display panel
NASA Technical Reports Server (NTRS)
Payne, Leslie (Inventor)
1998-01-01
The present invention is a video display device that utilizes the novel concept of generating an electronically controlled pattern of electron emission at the output of a segmented photocathode. This pattern of electron emission is amplified via a channel plate. The result is that an intense electronic image can be accelerated toward a phosphor thus creating a bright video image. This novel arrangement allows for one to provide a full color flat video display capable of implementation in large formats. In an alternate arrangement, the present invention is provided without the channel plate and a porous conducting surface is provided instead. In this alternate arrangement, the brightness of the image is reduced but the cost of the overall device is significantly lowered because fabrication complexity is significantly decreased.
High β effects on cosmic ray streaming in galaxy clusters
NASA Astrophysics Data System (ADS)
Wiener, Joshua; Zweibel, Ellen G.; Oh, S. Peng
2018-01-01
Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high β plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of β1/2. This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high β damping. Future work is required to study this effect in more realistic simulations.
Evaluation of brightness temperature from a forward model of ground-based microwave radiometer
NASA Astrophysics Data System (ADS)
Rambabu, S.; Pillai, J. S.; Agarwal, A.; Pandithurai, G.
2014-06-01
Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature ( T B ) includes the inversion algorithm, which uses the back ground information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of T B for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated T B s and radiometer measured T B s at Mahabaleshwar (73.66 ∘E and 17.93∘N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.
Algorithm to illustrate context using dynamic lighting effects
NASA Astrophysics Data System (ADS)
John, Roshy M.; Balasubramanian, T.
2007-09-01
With the invention of Ultra-Bright LED, solid state lighting has come to something which is much more efficient and energy saving when compared to conventional incandescent or fluorescent lighting. With the use of proper driver electronics now a days it is possible to install solid state lighting systems with the cost same as that of any other lighting technology. This paper is a part of the research project we are doing in our lab, which deals with using ultra bright LEDs of different colors for lighting applications. The driver electronics are made in such a way that, the color and brightness of the lights will change according to context. For instance, if one of the users is reading a story or listening to music in a Personal Computer or in a hand held device such as a PDA, the lighting systems and the HVAC (Heating Ventilation Air-conditioning) systems will change dramatically according to the content of the story or the music. The vulnerability of solid-state lighting helps to accomplish such an effect. Such a type of system will help the reader to feel the story mentally and physically as well. We developed complete driver electronics for the system using multiple microcomputers and a full software suite which uses complex algorithms to decode the context from text or music and synchronize it to lighting and HVAC information. The paper also presents some case-study statistics which shows the advantage of using the system to teach kindergarten children, deaf and dumb children and for language learning classes.
Analysis of ERTS imagery using special electronic viewing/measuring equipment
NASA Technical Reports Server (NTRS)
Evans, W. E.; Serebreny, S. M.
1973-01-01
An electronic satellite image analysis console (ESIAC) is being employed to process imagery for use by USGS investigators in several different disciplines studying dynamic hydrologic conditions. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. Quantitative measurements of distances, areas, and brightness profiles can be extracted digitally under operator supervision. Initial results are presented for the display and measurement of snowfield extent, glacier development, sediment plumes from estuary discharge, playa inventory, phreatophyte and other vegetative changes.
Tutorial on X-Ray Free-Electron Lasers
Carlsten, Bruce E.
2018-05-02
This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less
Tutorial on X-Ray Free-Electron Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsten, Bruce E.
This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less
NASA Astrophysics Data System (ADS)
Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Chai, Jun
2015-05-01
In a magnetized e-p-i plasma with two-electron temperatures, the (3+1)-dimensional nonlinear Schrödinger equation for the ion-acoustic envelope solitons is hereby investigated. Bright and dark soliton solutions are both obtained. It is found that the soliton amplitude is inversely related to P, Q and R, with P, Q and R respectively as the coefficients of the dispersive term, nonlinear term and combined effect of the transverse perturbation and magnetic field. Head-on interactions are displayed, and with Q and R decreasing, can be transferred into the overtaking ones. Bright bound-state solitons are obtained, and the interaction period decreases with Q increasing. Both the head-on and overtaking interactions between the two dark solitons are displayed, and such a head-on interaction can be transformed into the overtaking one with R increasing. Upon the introduction of the external perturbation, the developed and weak chaos are observed. Phase projections and power spectra are presented. Difference between the two chaotic motions roots in the inequality between the nonlinear and perturbed terms. Developed chaos can be weakened with Q decreasing, or with the frequency of external perturbation increasing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Dennis; Padmore, Howard; Lessner, Eliane
Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. Withmore » ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of nanolithographic techniques for improved spatial resolution and efficiency of zone plates. Development of large, perfect single crystals of materials other than silicon for use as beam splitters, seeding monochromators, and high-resolution analyzers. Development of improved thin-film deposition methods for fabrication of multilayer Laue lenses and high-spectral-resolution multilayer gratings. Development of supports, actuator technologies, algorithms, and controls to provide fully integrated and robust adaptive X-ray optic systems. Development of fabrication processes for refractive lenses in materials other than silicon. The workshop participants also addressed two important nontechnical areas: our relationship with industry and organization of optics within the light source facilities. Optimization of activities within these two areas could have an important effect on the effectiveness and efficiency of our overall endeavor. These are crosscutting managerial issues that we identified as areas that needed further in-depth study, but they need to be coordinated above the individual facilities. Finally, an issue that cuts across many of the optics improvements listed above is routine access to beamlines that ideally are fully dedicated to optics research and/or development. The success of the BES X-ray user facilities in serving a rapidly increasing user community has led to a squeezing of beam time for vital instrumentation activities. Dedicated development beamlines could be shared with other R&D activities, such as detector programs and novel instrument development. In summary, to meet the challenges of providing the highest-quality X-ray beams for users and to fully utilize the high-brightness sources of today and those that are on the horizon, it will be critical to make strategic investments in X-ray optics R&D. This report can provide guidance and direction for effective use of investments in the field of X-ray optics and potential approaches to develop a better-coordinated program of X-ray optics development within the suite of BES synchrotron radiation facilities. Due to the importance and complexity of the field, the need for tight coordination between BES light source facilities and with industry, as well as the rapid evolution of light source capabilities, the workshop participants recommend holding similar workshops at least biannually.« less
A Robust High Current Density Electron Gun
NASA Astrophysics Data System (ADS)
Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.
1996-11-01
Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.
Pencil-like mm-size electron beams produced with linear inductive voltage adders
NASA Astrophysics Data System (ADS)
Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.
1997-02-01
We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.
Causes of cine image quality deterioration in cardiac catheterization laboratories.
Levin, D C; Dunham, L R; Stueve, R
1983-10-01
Deterioration of cineangiographic image quality can result from malfunctions or technical errors at a number of points along the cine imaging chain: generator and automatic brightness control, x-ray tube, x-ray beam geometry, image intensifier, optics, cine camera, cine film, film processing, and cine projector. Such malfunctions or errors can result in loss of image contrast, loss of spatial resolution, improper control of film optical density (brightness), or some combination thereof. While the electronic and photographic technology involved is complex, physicians who perform cardiac catheterization should be conversant with the problems and what can be done to solve them. Catheterization laboratory personnel have control over a number of factors that directly affect image quality, including radiation dose rate per cine frame, kilovoltage or pulse width (depending on type of automatic brightness control), cine run time, selection of small or large focal spot, proper object-intensifier distance and beam collimation, aperture of the cine camera lens, selection of cine film, processing temperature, processing immersion time, and selection of developer.
Beam test of a superconducting cavity for the Fermilab high-brightness electron photo-injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Hartung, J.P. Carneiro, M. Champion, H. Edwards, J. Fuest, K. Koepke and M. Kuchnir
1999-05-04
An electron photo-injector facility has been constructed at Fermilab for the purpose of providing a 14�18 MeV elec-tron beam with high charge per bunch (8 nC), short bunch length (1 mm RMS), and small transverse emittance [1]. The facility was used to commission a second-generation photo-cathode RF gun for the TeSLA Test Facility (TTF) Linac at DESY [2, 3]; in the future, the Fermilab electron beam will be used for R & D in bunch length compres-sion, beam diagnostics, and new acceleration techniques. Acceleration beyond 4 MeV is provided by a 9-cell super-conducting cavity (see Figure 1). The cavity alsomore » provides a longitudinal position-momentum correlation for subse-quent bunch length compression. We report on the RF tests and a first beam test of this cavity.« less
Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method
NASA Astrophysics Data System (ADS)
Ha, J.; Kim, J.; Kwak, M.; Ha, K.
2007-12-01
A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian
2017-02-10
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramatymore » High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.« less
NASA Technical Reports Server (NTRS)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian N.; Cauzzi, Gianna; Carlsson, Mats
2017-01-01
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe II chromospheric emission line profiles observed in the impulsive phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Mark
Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiationmore » techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes, and experimental area and infrastructure.« less
NASA Astrophysics Data System (ADS)
Canning, Andrew
2013-03-01
Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.
Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, Daniel; Faillace, Luigi; Panuganti, Harsha
2015-06-01
Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with themore » time-dependent Particle In Cell (PIC) code WARP.« less
NASA Astrophysics Data System (ADS)
Carvalho, P.; Borges, J.; Rodrigues, M. S.; Barradas, N. P.; Alves, E.; Espinós, J. P.; González-Elipe, A. R.; Cunha, L.; Marques, L.; Vasilevskiy, M. I.; Vaz, F.
2015-12-01
This work is devoted to the investigation of zirconium oxynitride (ZrOxNy) films with varied optical responses prompted by the variations in their compositional and structural properties. The films were prepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N2 + O2 (17:3). The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gas flows to red-brownish for intermediate gas flows. Associated to this colour change there was a significant decrease of brightness. With further increase of the reactive gas flow, the colour of the samples changed from red-brownish to dark blue or even to interference colourations. The variations in composition disclosed the existence of four different zones, which were found to be closely related with the variations in the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirconium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallized over-stoichiometric nitride phase, which may be similar to that of Zr3N4 with some probable oxygen inclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For high reactive gas flows, the films developed an oxynitride-type phase, similar to that of γ-Zr2ON2 with some oxygen atoms occupying some of the nitrogen positions, evolving to a ZrO2 monoclinic type structure within the zone where films were prepared with relatively high reactive gas flows. The analysis carried out by reflected electron energy loss spectroscopy (REELS) revealed a continuous depopulation of the d-band and an opening of an energy gap between the valence band (2p) and the Fermi level close to 5 eV. The ZrN-based coatings (zone I and II) presented intrinsic colourations, with a decrease in brightness and a colour change from bright yellow to golden yellow, red brownish and dark blue. Associated to these changes, there was also a shift of the reflectivity minimum to lower energies, with the increase of the non-metallic content. The samples lying in the two last zones (zone III, oxynitride and zone IV, oxide films) revealed a typical semi-transparent-optical behaviour showing interference-like colourations only due to the complete depopulation of the d band at the Fermi level. The samples lying in these zones presented also an increase of the optical bandgap from 2 to 3.6 eV.
Development of a High-Average-Power Compton Gamma Source for Lepton Colliders
NASA Astrophysics Data System (ADS)
Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.
2009-01-01
Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.
Temperature relaxation in supernova remnants, revisited
NASA Technical Reports Server (NTRS)
Itoh, H.
1984-01-01
Some supernova remnants are expanding into a partially neutral medium. The neutral atoms which are engulfed by the fast blast shock are collisionally ionized to eject low-energy secondary electrons. Calculations are conducted of the temperature relaxation through Coulomb collisions among the secondary electrons, the shocked electrons, and the ions, assuming that the three species have Maxwellian velocity distributions. The results are applied to a self-similar blast wave. If the efficiency of collisionless electron heating at the shock front is high in young remnants such as Tycho, the secondary electrons may be much cooler than both the shocked electrons and the ions. In this case, the emergent X-ray continuum spectrum will have a two-temperature, or a power-law, appearance. This effect may have been observed in the bright rim of the remnant of SN 1006.
Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes
Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi
2017-01-01
Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m−2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date. PMID:28589960
Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi
2017-06-01
Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, L.
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.« less
Positron Beam Characteristics at NEPOMUC Upgrade
NASA Astrophysics Data System (ADS)
Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.
2014-04-01
In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.
Ultra-high resolution and high-brightness AMOLED
NASA Astrophysics Data System (ADS)
Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave
2012-06-01
As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.
Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism
Fan, Tingting; Grychtol, Patrik; Knut, Ronny; ...
2015-11-03
Here, we demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantummore » trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N 4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.« less
NASA Astrophysics Data System (ADS)
Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten
2015-07-01
Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.
Advances/applications of MAGIC and SOS
NASA Astrophysics Data System (ADS)
Warren, Gary; Ludeking, Larry; Nguyen, Khanh; Smithe, David; Goplen, Bruce
1993-12-01
MAGIC and SOS have been applied to investigate a variety of accelerator-related devices. Examples include high brightness electron guns, beam-RF interactions in klystrons, cold-test modes in an RFQ and in RF sources, and a high-quality, flexible, electron gun with operating modes appropriate for gyrotrons, peniotrons, and other RF sources. Algorithmic improvements for PIC have been developed and added to MAGIC and SOS to facilitate these modeling efforts. Two new field algorithms allow improved control of computational numerical noise and selective control of harmonic modes in RF cavities. An axial filter in SOS accelerates simulations in cylindrical coordinates. The recent addition of an export/import feature now allows long devices to be modeled in sections. Interfaces have been added to receive electromagnetic field information from the Poisson group of codes and from EGUN and to send beam information to PARMELA for subsequent tracing of bunches through beam optics. Post-processors compute and display beam properties including geometric, normalized, and slice emittances, and phase-space parameters, and video. VMS, UNIX, and DOS versions are supported, with migration underway toward windows environments.
Electron effects in the Neutralized Transport Experiment (NTX)
NASA Astrophysics Data System (ADS)
Eylon, S.; Henestroza, E.; Roy, P. K.; Yu, S. S.
2005-05-01
The Neutralized Transport Experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high-perveance heavy ion beams. To focus a high-intensity beam to a small spot requires a high-brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce-type diode. At the diode exit, an aperture with variable opening provides the capability to vary the beam perveance. The beam is transported through four quadrupole magnets to a distance of 2.5 m. The beam can be neutralized and focused using a MEVVA plasma plug and a RF plasma source. We shall report on the measurement of the electron effects and the ways to mitigate the effects. Furthermore, we shall present the results of EGUN calculations consistent with the measurements effects of the electrons.
Sourty, Erwan; van Bavel, Svetlana; Lu, Kangbo; Guerra, Ralph; Bar, Georg; Loos, Joachim
2009-06-01
Two purely carbon-based functional polymer systems were investigated by bright-field conventional transmission electron microscopy (CTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). For a carbon black (CB) filled polymer system, HAADF-STEM provides high contrast between the CB agglomerates and the polymer matrix so that details of the interface organization easily can be revealed and assignment of the CB phase is straightforward. For a second system, the functional polymer blend representing the photoactive layer of a polymer solar cell, details of its nanoscale organization could be observed that were not accessible with CTEM. By varying the camera length in HAADF-STEM imaging, the contrast can be enhanced between crystalline and amorphous compounds due to diffraction contrast so that nanoscale interconnections between domains are identified. In general, due to its incoherent imaging characteristics HAADF-STEM allows for reliable interpretation of the data obtained.
Construction and commissioning of the compact energy-recovery linac at KEK
NASA Astrophysics Data System (ADS)
Akemoto, Mitsuo; Arakawa, Dai; Asaoka, Seiji; Cenni, Enrico; Egi, Masato; Enami, Kazuhiro; Endo, Kuninori; Fukuda, Shigeki; Furuya, Takaaki; Haga, Kaiichi; Hajima, Ryoichi; Hara, Kazufumi; Harada, Kentaro; Honda, Tohru; Honda, Yosuke; Honma, Teruya; Hosoyama, Kenji; Kako, Eiji; Katagiri, Hiroaki; Kawata, Hiroshi; Kobayashi, Yukinori; Kojima, Yuuji; Kondou, Yoshinari; Tanaka, Olga; Kume, Tatsuya; Kuriki, Masao; Matsumura, Hiroshi; Matsushita, Hideki; Michizono, Shinichiro; Miura, Takako; Miyajima, Tsukasa; Nagahashi, Shinya; Nagai, Ryoji; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Norio; Nakanishi, Kota; Nigorikawa, Kazuyuki; Nishimori, Nobuyuki; Nogami, Takashi; Noguchi, Shuichi; Obina, Takashi; Qiu, Feng; Sagehashi, Hidenori; Sakai, Hiroshi; Sakanaka, Shogo; Sasaki, Shinichi; Satoh, Kotaro; Sawamura, Masaru; Shimada, Miho; Shinoe, Kenji; Shishido, Toshio; Tadano, Mikito; Takahashi, Takeshi; Takai, Ryota; Takenaka, Tateru; Tanimoto, Yasunori; Uchiyama, Takashi; Ueda, Akira; Umemori, Kensei; Watanabe, Ken; Yamamoto, Masahiro
2018-01-01
Energy-recovery linacs (ERLs) are promising for advanced synchrotron light sources, high-power free electron lasers (FELs), high-brightness gamma-ray sources, and electron-ion colliders. To demonstrate the critical technology of ERL-based light sources, we have designed and constructed a test accelerator, the compact ERL (cERL). Using advanced technology that includes a photocathode direct current (DC) electron gun and two types of 1.3-GHz-frequency superconducting cavities, the cERL was designed to be capable of recirculating low emittance (≤1 mm ṡ mrad) and high average-current (≥10 mA) electron beams while recovering the beam energy. During initial commissioning, the cERL demonstrated successful recirculation of high-quality beams with normalized transverse emittance of ∼0.14 mm ṡ mrad and momentum spread of ∼1.2 × 10-4 (rms) at a beam energy of 20 MeV and bunch charge below 100 fC. Energy recovery in the superconducting main linac was also demonstrated for high-average-current continuous-wave beams. These results constitute an important milestone toward realizing ERL-based light sources.
Design, fabrication and characterization of rugged, high-performance quantum dot photocathodes
NASA Astrophysics Data System (ADS)
Pietryga, Jeffrey; Robel, Istvan; Makarov, Nikolay; Lim, Jaehoon; Lin, Qianglu; Lewellen, John; Moody, Nathan
Semiconductor nanocrystal quantum dots (QDs) are bright, tunable fluorophores used as, e.g., biolabels and downcoverting phosphors. Such applications make use of over three decades in advances in techniques for overcoming the natural tendency of these materials toward losing photoexcited carriers to surface defect states or to ionization. Ironically, QDs first gained attention as a material class for use in photocatalysis, which uses QD photoionization to drive redox reactions. Here, we explore the use of QDs in an alternative application that also exploits photoionization, namely within photocathodes for the electron guns that will enable next-generation light sources. We evaluate the efficiency of electron photoemission of conductive, solution-cast QD films of a variety of compositions in a typical electron gun configuration. By quantifying photocurrent as a function of excitation photon energy, excitation intensity and pulse duration, we demonstrate efficiencies superior to standard copper cathodes in films that are more robust against oxidation. Finally, we establish the dominant mechanism responsible for electron emission in the multi-photon excitation regime, which suggests numerous pathways for further enhancements. We gratefully acknowledge the support of the Los Alamos National Laboratory Directed Research and Development (LDRD) program.
NASA Astrophysics Data System (ADS)
Broell, Markus; Sundgren, Petrus; Rudolph, Andreas; Schmid, Wolfgang; Vogl, Anton; Behringer, Martin
2014-02-01
We present our latest results on developments of infrared and red light emitting diodes. Both chiptypes are based on the Thinfilm technology. For infrared the brightness has been raised by 25% with respect to former products in a package with standard silicon casting, corresponding to a brightness increase of 33% for the bare chip. In a lab package a wallplug efficiency of more than 72% at a wavelength of 850nm could be reached. For red InGaAlP LEDs we could demonstrate a light output in excess of 200lm/W and a brightness of 133lm at a typical operating current of 350mA.
Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-09-01
Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.
Progress in extremely high brightness LED-based light sources
NASA Astrophysics Data System (ADS)
Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick
2017-09-01
Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.
Bright luminescence from pure DNA-curcumin-based phosphors for bio hybrid light-emitting diodes
NASA Astrophysics Data System (ADS)
Reddy, M. Siva Pratap; Park, Chinho
2016-08-01
Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s-1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign.
An optical storage cavity-based, Compton-backscatter x-ray source using the MKV free electron laser
NASA Astrophysics Data System (ADS)
Hadmack, Michael R.
A compact, high-brightness x-ray source is presently under development at the University of Hawai`i Free Electron Laser Laboratory. This source utilizes Compton backscattering of an infrared laser from a relativistic electron beam to produce a narrow beam of monochromatic x-rays. The scattering efficiency is greatly increased by tightly focusing the two beams at an interaction point within a near-concentric optical storage cavity, designed with high finesse to coherently stack the incident laser pulses and greatly enhance the number of photons available for scattering with the electron beam. This dissertation describes the effort and progress to integrate and characterize the most important and challenging aspects of the design of this system. A low-power, near-concentric, visible-light storage cavity has been constructed as a tool for the exploration of the performance, alignment procedures, and diagnostics required for the operation of a high power infrared storage cavity. The use of off-axis reflective focussing elements is essential to the design of the optical storage cavity, but requires exquisite alignment to minimize astigmatism and other optical aberrations. Experiments using a stabilized HeNe laser have revealed important performance characteristics, and allowed the development of critical alignment and calibration procedures, which can be directly applied to the high power infrared storage cavity. Integration of the optical and electron beams is similarly challenging. A scanning-wire beam profiler has been constructed and tested, which allows for high resolution measurement of the size and position of the laser and electron beams at the interaction point. This apparatus has demonstrated that the electron and laser beams can be co-aligned with a precision of less than 10 microm, as required to maximize the x-ray production rate. Equally important is the stabilization of the phase of the GHz repetition rate electron pulses arriving at the interaction point and driving the FEL. A feed-forward amplitude and phase compensation system has been built and demonstrated to substantially improve the uniformity of the electron bunch phase, thus enhancing both the laser performance and the beam stability required for efficient x-ray production. Results of all of these efforts are presented, together with a summary of future work.
Advanced Concepts Theory Annual Report 1983.
1984-05-18
variety of theoretical models, tools, and computational strategies to understand, guide, and predict the behavior of high brightness, laboratory x-ray... theoretical models must treat hard and soft x-ray emission from different electron configurations with K, L, and M shells, and they must include... theoretical effort has basis for comprehending the trends which appear in the been devoted to elucidating the effects of opacity on the numerical results
Research and development of an electron beam focusing system for a high-brightness X-ray generator.
Sakai, Takeshi; Ohsawa, Satoshi; Sakabe, Noriyoshi; Sugimura, Takashi; Ikeda, Mitsuo
2011-01-01
A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm(-2) (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm(-2) on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments.
The Wavelength-Dispersive Spectrometer and Its Proposed Use in the Analytical Electron Microscope
NASA Technical Reports Server (NTRS)
Goldstein, Joseph I.; Lyman, Charles E.; Williams, David B.
1989-01-01
The Analytical Electron Microscope (AEM) equipped with a wavelength-dispersive spectrometer (WDS) should have the ability to resolve peaks which normally overlap in the spectra from an energy-dispersive spectrometer (EDS). With a WDS it should also be possible to measure lower concentrations of elements in thin foils due to the increased peak-to-background ratio compared with EDS. The WDS will measure X-ray from the light elements (4 less than Z less than 1O) more effectively. This paper addresses the possibility of interfacing a compact WDS with a focussing circle of approximately 4 cm to a modem AEM with a high-brightness (field emission) source of electrons.
NASA Astrophysics Data System (ADS)
Schindhelm, Eric; Noonan, John; Keeney, Brian A.; Broiles, Thomas; Bieler, Andre; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm.; Steffl, Andrew Joseph; Stern, S. Alan; Weaver, Harold A.
2016-10-01
The Alice Far-Ultraviolet (FUV) Spectrograph onboard ESA's Rosetta spacecraft has observed the coma of comet 67P/Churyumov-Gerasimenko from far approach in summer 2014 until the end of mission in September 2016. We present an overall perspective of the bright FUV emission lines (HI 1026 Å, OI 1302/1305/1306 Å multiplet, OI] 1356 Å, CO 1510 (1-0) Å, and CI 1657 Å) above the sunward hemisphere, detailing their spatial extent and brightness as a function of time and the heliocentric distance of the comet. We compare our observed gas column densities derived using electron temperatures and densities from the Ion Electron Sensor (IES) with those derived using the Inner Coma Environment Simulator (ICES) models in periods when electron-impact excited emission dominates over solar fluorescence emission. The electron population is characterized with 2 three-dimensional kappa functions, one dense and warm, one rarefied and hot.
Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility
NASA Astrophysics Data System (ADS)
Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.
2018-04-01
The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less
AMOLED (active matrix OLED) functionality and usable lifetime at temperature
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Prache, Olivier; Jones, Susan
2005-05-01
Active Matrix Organic Light Emitting Diode (AMOLED) displays are known to exhibit high levels of performance, and these levels of performance have continually been improved over time with new materials and electronics design. eMagin Corporation developed a manually adjustable temperature compensation circuit with brightness control to allow for excellent performance over a wide temperature range. Night Vision and Electronic Sensors Directorate (US Army) tested the performance and survivability of a number of AMOLED displays in a temperature chamber over a range from -55°C to +85°C. Although device performance of AMOLEDs has always been its strong suit, the issue of usable display lifetimes for military applications continues to be an area of discussion and research. eMagin has made improvements in OLED materials and worked towards the development of a better understanding of usable lifetime for operation in a military system. NVESD ran luminance degradation tests of AMOLED panels at 50°C and at ambient to characterize the lifetime of AMOLED devices. The result is a better understanding of the applicability of AMOLEDs in military systems: where good fits are made, and where further development is needed.
NASA Astrophysics Data System (ADS)
Cho, K.-S.; Bong, S.-C.; Choi, S.; Yang, H.; Kim, J.; Baek, J.-H.; Park, J.; Lim, E.-K.; Kim, R.-S.; Kim, S.; Kim, Y.-H.; Park, Y.-D.; Clarke, S. W.; Davila, J. M.; Gopalswamy, N.; Nakariakov, V. M.; Li, B.; Pinto, R. F.
2017-10-01
The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) and to install it on the International Space Station (ISS). The coronagraph is an externally occulted one-stage coronagraph with a field of view from 3 to 15 solar radii. The observation wavelength is approximately 400 nm, where strong Fraunhofer absorption lines from the photosphere experience thermal broadening and Doppler shift through scattering by coronal electrons. Photometric filter observations around this band enable the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with a high time cadence (<12 min) of corona images used to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in August 2017 with the filter system and to perform a stratospheric balloon experiment in 2019 with the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g., coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.
MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A
2004-11-01
At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.
NASA Astrophysics Data System (ADS)
Paterson, James M.
2000-04-01
The Linac Coherent Light Source (LCLS) is a linac driven FEL which uses a 1km electron linac (the last third of the SLAC linac) and a 100m long undulator to produce 1.5 angstrom X-rays of extremely high peak brightness. This radiation is fully tranversely coherent and is in sub-picosecond long pulses. The LCLS Project is a four year R&D program to solidify the design, to develop required technologies, to optimize the cost and performance and to study the potential experimental programs using these unique beam characteristics. The program is conducted by a multi-institutional collaboration consisting of SLAC as the lead laboratory, along with ANL, BNL, LLNL, LANL and UCLA.The LCLS design and the R&D programs are described.
NASA Astrophysics Data System (ADS)
Tucci, M.; Toffolatti, L.; de Zotti, G.; Martínez-González, E.
2011-09-01
We present models to predict high-frequency counts of extragalactic radio sources using physically grounded recipes to describe the complex spectral behaviour of blazars that dominate the mm-wave counts at bright flux densities. We show that simple power-law spectra are ruled out by high-frequency (ν ≥ 100 GHz) data. These data also strongly constrain models featuring the spectral breaks predicted by classical physical models for the synchrotron emission produced in jets of blazars. A model dealing with blazars as a single population is, at best, only marginally consistent with data coming from current surveys at high radio frequencies. Our most successful model assumes different distributions of break frequencies, νM, for BL Lacs and flat-spectrum radio quasars (FSRQs). The former objects have substantially higher values of νM, implying that the synchrotron emission comes from more compact regions; therefore, a substantial increase of the BL Lac fraction at high radio frequencies and at bright flux densities is predicted. Remarkably, our best model is able to give a very good fit to all the observed data on number counts and on distributions of spectral indices of extragalactic radio sources at frequencies above 5 and up to 220 GHz. Predictions for the forthcoming sub-mm blazar counts from Planck, at the highest HFI frequencies, and from Herschel surveys are also presented. Appendices are available in electronic form at http://www.aanda.org
A review of passive thermal management of LED module
NASA Astrophysics Data System (ADS)
Huaiyu, Ye; Koh, Sau; van Zeijl, Henk; Gielen, A. W. J.; Guoqi, Zhang
2011-01-01
Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light output, quality, reliability and life time. In this review, only passive thermal solutions used on LED module will be studied. Moreover, new thermal interface materials and passive thermal solutions applied on electronic equipments are discussed which have high potential to enhance the thermal performance of LED Module.
2012-12-01
arrays. 3. Thermal and Active Illumination Power It is useful to note that a passive imager with 10 GHz band - width and a diffraction-limited 100 × 100...practical by the high brightness temperatures (1014–1018 K) that can be attained with narrow- band electronic illuminators. (4) Because of this high ...091604 (2012). 21. K. B. Cooper, R. J. Denglera, N. Llombartb, A. Talukdera, A. V. Panangadana, C. S . Peaya, I. Mehdia, and P. H. Siegel, “Fast, high
A high brightness source for nano-probe secondary ion mass spectrometry
NASA Astrophysics Data System (ADS)
Smith, N. S.; Tesch, P. P.; Martin, N. P.; Kinion, D. E.
2008-12-01
The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [ S.K. Guharay, J. Orloff, M. Wada, IEEE Trans. Plasma Sci. 33 (6) (2005) 1911; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.
On the application of quantum transport theory to electron sources.
Jensen, Kevin L
2003-01-01
Electron sources (e.g., field emitter arrays, wide band-gap (WBG) semiconductor materials and coatings, carbon nanotubes, etc.) seek to exploit ballistic transport within the vacuum after emission from microfabricated structures. Regardless of kind, all sources strive to minimize the barrier to electron emission by engineering material properties (work function/electron affinity) or physical geometry (field enhancement) of the cathode. The unique capabilities of cold cathodes, such as instant ON/OFF performance, high brightness, high current density, large transconductance to capacitance ratio, cold emission, small size and/or low voltage operation characteristics, commend their use in several advanced devices when physical size, weight, power consumption, beam current, and pulse repletion frequency are important, e.g., RF power amplifier such as traveling wave tubes (TWTs) for radar and communications, electrodynamic tethers for satellite deboost/reboost, and electric propulsion systems such as Hall thrusters for small satellites. The theoretical program described herein is directed towards models to evaluate emission current from electron sources (in particular, emission from WBG and Spindt-type field emitter) in order to assess their utility, capabilities and performance characteristics. Modeling efforts particularly include: band bending, non-linear and resonant (Poole-Frenkel) potentials, the extension of one-dimensional theory to multi-dimensional structures, and emission site statistics due to variations in geometry and the presence of adsorbates. Two particular methodologies, namely, the modified Airy approach and metal-semiconductor statistical hyperbolic/ellipsoidal model, are described in detail in their present stage of development.
Do Low Surface Brightness Galaxies Host Stellar Bars?
NASA Astrophysics Data System (ADS)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo
2017-09-01
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
Do Low Surface Brightness Galaxies Host Stellar Bars?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less
Evidence for Field-parallel Electron Acceleration in Solar Flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haerendel, G.
It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of the order of 10{sup 4} A m{sup −2}. A consequence of this is the concentration of the currents in sheets with widths of the order of 1 m. The high current density suggests that the field-parallel potential drops are maintained by current-driven anomalous resistivity. The origin of these currents remains a strong challenge for theorists.
Park, In Seob; Komiyama, Hideaki; Yasuda, Takuma
2017-02-01
Deep-blue emitters that can harvest both singlet and triplet excited states to give high electron-to-photon conversion efficiencies are highly desired for applications in full-color displays and white lighting devices based on organic light-emitting diodes (OLEDs). Thermally activated delayed fluorescence (TADF) molecules based on highly twisted donor-acceptor (D-A) configurations are promising emitting dopants for the construction of efficient deep-blue OLEDs. In this study, a simple and versatile D-A system combining acridan-based donors and pyrimidine-based acceptors has been developed as a new platform for high-efficiency deep-blue TADF emitters. The designed pre-twisted acridan-pyrimidine D-A molecules exhibit small singlet-triplet energy splitting and high photoluminescence quantum yields, functioning as efficient deep-blue TADF emitters. The OLEDs utilizing these TADF emitters display bright blue electroluminescence with external quantum efficiencies of up to 20.4%, maximum current efficiencies of 41.7 cd A -1 , maximum power efficiencies of 37.2 lm W -1 , and color coordinates of (0.16, 0.23). The design strategy featuring such acridan-pyrimidine D-A motifs can offer great prospects for further developing high-performance deep-blue TADF emitters and TADF-OLEDs.
Theory of bright-field scanning transmission electron microscopy for tomography
NASA Astrophysics Data System (ADS)
Levine, Zachary H.
2005-02-01
Radiation transport theory is applied to electron microscopy of samples composed of one or more materials. The theory, originally due to Goudsmit and Saunderson, assumes only elastic scattering and an amorphous medium dominated by atomic interactions. For samples composed of a single material, the theory yields reasonable parameter-free agreement with experimental data taken from the literature for the multiple scattering of 300-keV electrons through aluminum foils up to 25μm thick. For thin films, the theory gives a validity condition for Beer's law. For thick films, a variant of Molière's theory [V. G. Molière, Z. Naturforschg. 3a, 78 (1948)] of multiple scattering leads to a form for the bright-field signal for foils in the multiple-scattering regime. The signal varies as [tln(e1-2γt/τ)]-1 where t is the path length of the beam, τ is the mean free path for elastic scattering, and γ is Euler's constant. The Goudsmit-Saunderson solution interpolates numerically between these two limits. For samples with multiple materials, elemental sensitivity is developed through the angular dependence of the scattering. From the elastic scattering cross sections of the first 92 elements, a singular-value decomposition of a vector space spanned by the elastic scattering cross sections minus a delta function shows that there is a dominant common mode, with composition-dependent corrections of about 2%. A mathematically correct reconstruction procedure beyond 2% accuracy requires the acquisition of the bright-field signal as a function of the scattering angle. Tomographic reconstructions are carried out for three singular vectors of a sample problem with four elements Cr, Cu, Zr, and Te. The three reconstructions are presented jointly as a color image; all four elements are clearly identifiable throughout the image.
Flare parameters inferred from a 3D loop model data base
NASA Astrophysics Data System (ADS)
Cuambe, Valente A.; Costa, J. E. R.; Simões, P. J. A.
2018-06-01
We developed a data base of pre-calculated flare images and spectra exploring a set of parameters which describe the physical characteristics of coronal loops and accelerated electron distribution. Due to the large number of parameters involved in describing the geometry and the flaring atmosphere in the model used, we built a large data base of models (˜250 000) to facilitate the flare analysis. The geometry and characteristics of non-thermal electrons are defined on a discrete grid with spatial resolution greater than 4 arcsec. The data base was constructed based on general properties of known solar flares and convolved with instrumental resolution to replicate the observations from the Nobeyama radio polarimeter spectra and Nobeyama radioheliograph (NoRH) brightness maps. Observed spectra and brightness distribution maps are easily compared with the modelled spectra and images in the data base, indicating a possible range of solutions. The parameter search efficiency in this finite data base is discussed. 8 out of 10 parameters analysed for 1000 simulated flare searches were recovered with a relative error of less than 20 per cent on average. In addition, from the analysis of the observed correlation between NoRH flare sizes and intensities at 17 GHz, some statistical properties were derived. From these statistics, the energy spectral index was found to be δ ˜ 3, with non-thermal electron densities showing a peak distribution ⪅107 cm-3, and Bphotosphere ⪆ 2000 G. Some bias for larger loops with heights as great as ˜2.6 × 109 cm, and looptop events were noted. An excellent match of the spectrum and the brightness distribution at 17 and 34 GHz of the 2002 May 31 flare is presented as well.
Blank, Holger; Schneider, Reinhard; Gerthsen, Dagmar; Gehrke, Helge; Jarolim, Katharina; Marko, Doris
2014-06-01
High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) in a scanning electron microscope facilitates the acquisition of images with high chemical sensitivity and high resolution. HAADF STEM at low electron energies is particularly suited to image nanoparticles (NPs) in thin cell sections which are not subjected to poststaining procedures as demonstrated by comparison with bright-field TEM. High membrane contrast is achieved and distinction of NPs with different chemical composition is possible at first sight. Low-energy HAADF STEM was applied to systematically study the uptake of Pt-NPs with a broad size distribution in HT29 colon carcinoma cells as a function of incubation time and incubation temperature. The cellular dose was quantified, that is, the amount and number density of NPs taken up by the cells, as well as the particle-size distribution. The results show a strong dependence of the amount of incubated NPs on the exposure time which can be understood by considering size-dependent diffusion and gravitational settling of the NPs in the cell culture medium.
Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B
2014-12-29
Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.
Duan, Junxia; Yu, Jie; Feng, Suling; Su, Li
2016-06-01
A ultrafast one-step microwave-assisted method was developed for the synthesis of nitrogen-sulfur co-doped carbon nanodots (N,S-CDs) by using ethylenediamine as the carbon source and sulfamic acid as the surface passivation reagent. The morphology and the properties of N,S-CDs were explored by a series of techniques, such as high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis absorption and fluorescence spectroscopy. The prepared N,S-CDs exhibit bright blue photoluminescence with a high fluorescence quantum yield (FLQY) up to 28%, and high stability and excellent water solubility. A N,S-CDs-based fluorescent probe was developed for sensitive detection ascorbic acid (AA) in the presence of Cu(2+), based on the mechanism that AA reduces Cu(2+) to Cu(+), then Cu(+) quenches the fluorescence of N,S-CDs through electron or energy transfer due to the interaction between Cu(+) and thiol ligand on the N,S-CDs surface. The observed linear response concentration range was from 0.057 to 4.0μM to AA with a detection limit as low as 18nM. The probe exhibited a highly selective response toward AA even in the presence of possible interfering substances, such as uric acid and citric acid. Moreover, these promising features made the sensing system used for the analysis of human serum and urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia
NASA Astrophysics Data System (ADS)
Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd
2017-03-01
Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.
Moore, Diane E.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.
2016-09-23
IntroductionMelting occurred during stick-slip faulting of granite blocks sheared at room-dry, room-temperature conditions in a triaxial apparatus at 200–400 megapascals (MPa) confining pressure. Petrographic examinations of melt textures focused largely on the 400-MPa run products. This report presents an overview of the petrographic data collected on those samples, followed by brief descriptions of annotated versions of all the images.Scanning electron microscope (SEM) images of the starting materials and the three examined 400-MPa samples are presented in this report. Secondary-electron (SE) and backscattered-electron (BSE) imaging techniques were used on different samples. The SE images look down on the sawcut surfaces, yielding topographic and three-dimensional textural information. The BSE imaging was done on samples cut to provide cross-sectional views of the glass-filled shear band (or zone) that developed along the sawcut. Brightness in the BSE images increases with increasing mean atomic number of the material. Additional chemical information about the quenched melt and adjoining minerals was obtained using the energy dispersive system of the SEM during BSE examinations. However, the very narrow shear-band thicknesses and common occurrence of very fine lamellar compositional layering limited the usefulness of this technique for estimating melt chemistry.
Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO
NASA Astrophysics Data System (ADS)
Padhi, S. K.; Gottapu, S. N.; Krishna, M. Ghanashyam
2016-05-01
The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated.The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02572b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panuganti, SriHarsha
Production of quality electron bunches using e cient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and eld emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Speci cally, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs 2Te) semiconductor photocathode, and eld emission from carbon based cathodes including diamond eld emission array (DFEA) and carbon nanotube (CNT) cathodes locatedmore » in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly lled ellipsoidal bunches and temporally shaped electron beams from the Cs 2Te photocathode.« less
Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, E.; Ben-Zvi, I.; Kewisch, J.
2010-05-23
RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in themore » preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is expected to improve further. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper.« less
Thin film studies toward improving the performance of accelerator electron sources
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al
Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identical 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(+/-0.05) x 10--13 Torr L s--1 cm--2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(+/-0.05) x 10--13 Torr L s--1 cm--2 following an initial 90 °C bake and 2(+/-20) x 10--16 Torr L s --1 cm--2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify the task of implementing photocathode cooling, which is required for future high current electron beam applications. The best performing TiN-coated aluminum electrode demonstrated less than 15 pA of field emission current at --175 kV for a 10 mm cathode/anode gap, which corresponds to a field strength of 22.5 MV/m. Third, the effect of antimony thickness on the performance of bialkali-antimonide photocathodes was studied. The high-capacity effusion source enabled us to successfully manufacture photocathodes having a maximum QE around 10% and extended low voltage 1/e lifetime (> 90 days) at 532 nm via the co-deposition method, with relatively thick layers of antimony (≥ 300 nm). We speculate that alkali co-deposition provides optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali. In summary, this research examined the effectiveness of thin films applied on photogun chamber components to achieve an extremely high vacuum, to eliminate high voltage induced field emission from electrodes, and to generate photocurrent with high quantum yield with an extended operational lifetime. Simultaneous implementation of these findings can meet the challenges of future ultra-bright photoguns.
Thin film studies toward improving the performance of accelerator electron sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, Md Abdullah
Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identicalmore » 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(±0.05) x 10- 13 Torr L s -1 cm -2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(±0.05) x 10 -13 Torr L s -1 cm -2 following an initial 90 °C bake and 2(±20) x 10 -16 Torr L s -1 cm -2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify the task of implementing photocathode cooling, which is required for future high current electron beam applications. The best performing TiN-coated aluminum electrode demonstrated less than 15 pA of field emission current at -- 175 kV for a 10 mm cathode/anode gap, which corresponds to a field strength of 22.5 MV/m. Third, the effect of antimony thickness on the performance of bialkali-antimonide photocathodes was studied. The high-capacity effusion source enabled us to successfully manufacture photocathodes having a maximum QE around 10% and extended low voltage 1/e lifetime (> 90 days) at 532 nm via the co-deposition method, with relatively thick layers of antimony (≥ 300 nm). We speculate that alkali co-deposition provides optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali. In summary, this research examined the effectiveness of thin films applied on photogun chamber components to achieve an extremely high vacuum, to eliminate high voltage induced field emission from electrodes, and to generate photocurrent with high quantum yield with an extended operational lifetime. Simultaneous implementation of these findings can meet the challenges of future ultra-bright photoguns.« less
Echo 2 - Observations at Fort Churchill of a 4-keV peak in low-level electron precipitation
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.; Hendrickson, R. A.; Winckler, J. R.
1975-01-01
The Echo 2 rocket flight launched from Fort Churchill, Manitoba, offered the opportunity to observe high-latitude low-level electron precipitation during quiet magnetic conditions. Although no visual aurora was evident at the time of the flight, an auroral spectrum sharply peaked at a few keV was observed to have intensities from 1 to 2 orders of magnitude lower than peaked spectra typically associated with bright auroral forms. There is a growing body of evidence that relates peaked electron spectra to discrete aurora. The Echo 2 observations show that whatever the mechanism for peaking the electron spectrum in and above discrete forms, it operates over a range of precipitation intensities covering nearly 3 orders of magnitude down to subvisual or near subvisual events.
Theoretical and material studies of thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.
1989-01-01
Thin-film electroluminescent (TFEL) devices are studied for a possible means of achieving a high resolution, light weight, compact video display panel for computer terminals or television screens. The performance of TFEL devices depends upon the probability of an electron impact exciting a luminescent center which in turn depends upon the density of centers present in the semiconductor layer, the possibility of an electron achieving the impact excitation threshold energy, and the collision cross section itself. Efficiency of such a device is presently very poor. It can best be improved by increasing the number of hot electrons capable of impact exciting a center. Hot electron distributions and a method for increasing the efficiency and brightness of TFEL devices (with the additional advantage of low voltage direct current operation) are investigated.
Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning
Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.; ...
2017-06-05
Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy,more » we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.« less
Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.
Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy,more » we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.« less
Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus
2016-02-01
We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (t<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.
Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.
2011-03-01
The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods includingmore » multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.« less
Findlay, Scott David; Huang, Rong; Ishikawa, Ryo; Shibata, Naoya; Ikuhara, Yuichi
2017-02-08
Annular bright field (ABF) scanning transmission electron microscopy has proven able to directly image lithium columns within crystalline environments, offering much insight into the structure and properties of lithium-ion battery materials. We summarize the image formation mechanisms underpinning ABF imaging, review the experimental application of this technique to imaging lithium in materials and overview the conditions that help maximize the visibility of lithium columns. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni.
Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G H; Beloborodov, Andrei M; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W; Zhang, Xiaoling
2016-03-17
Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.
Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas
Zhu, Xing-Long; Yu, Tong-Pu; Sheng, Zheng-Ming; Yin, Yan; Turcu, Ion Cristian Edmond; Pukhov, Alexander
2016-01-01
Pair production can be triggered by high-intensity lasers via the Breit–Wheeler process. However, the straightforward laser–laser colliding for copious numbers of pair creation requires light intensities several orders of magnitude higher than possible with the ongoing laser facilities. Despite the numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still challenging. Here we present an all-optical scheme for overdense pair production by two counter-propagating lasers irradiating near-critical-density plasmas at only ∼1022 W cm−2. In this scheme, bright γ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The dense γ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon Breit–Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield (1.05 × 1011) overdense (4 × 1022 cm−3) GeV positron beam using 10 PW scale lasers. Such a bright pair source has many practical applications and could be basis for future compact high-luminosity electron–positron colliders. PMID:27966530
NASA Technical Reports Server (NTRS)
Parish, H. F.; Gladstone, G. R.; Chakrabarti, S.
1994-01-01
The University of California, Berkeley, extreme ultraviolet spectrometer aboard the U.S. Air Force STP 78-1 satellite measured emission features in the Earth's dayglow due to neutral and ionized species in the atmosphere, in the 35 to 140-nm range. The spectrometer was operating between March 1979 and March 1980, including the period of the magnetic storm on March 22, 1979. Some of these measurements are interpreted using the predictions of the three-dimensional time-dependent coupled ionosphere-thermosphere model developed at University College, London. The observations show a reduction in the atomic oxygen 130.4-nm airglow emission at high northern latitudes following the storm. Model simulations show that this reduction in 130.4-nm emission is associated with an increase in the O2/O ratio. Analysis of model results using electron transport and radiative transport codes show that the brightness of 130.4-nm emission at high latitudes due to resonantly scattered sunlight is approximately twice that due to photoelectron impact excitation. However, the observed decrease in the brightness at high northern latitudes is mainly due to a change in the photoelectron impact source, which contributes approximately 75% of the total, as well as its multiple scattering component; for the photoelectron impact source at 70 deg latitude and 200 km altitude, the reduction in multiple scattering is 1.5 times greater than the reduction in the initial excitation. The reduction in the airglow emission is visible only in the norther n hemisphere because the south pole was not sunlit over the storm period. The comparison of model results with observations suggests that 130.4-nm emission may be useful as a tracer for global changes in the concentration of atomic energy.
ELECTRON BEAM SHAPING AND ITS APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, Aliaksei
Transverse and longitudinal electron beam shaping is a crucial part of high-brightness electron accelerator operations. In this dissertation, we report on the corresponding beam dynamics research conducted at Fermilab Accelerator Science and Technology facility (FAST) and Argonne Wakeeld Accelerator (AWA). We demonstrate an experimental method for spatial laser and electron beam shaping using microlens arrays (MLAs) at a photoinjector facility. Such a setup was built at AWA and resulted in transverse emittance reduction by a factor of 2. We present transverse emittance partitioning methods that were recently employed at FAST facility. A strongly coupled electron beam was generated in anmore » axial magnetic eld and accelerated in 1.3 GHz SRF cavities to 34 MeV. It was then decoupled in Round-To-Flat beam transformer and beams with emittance asymmetry ratio of 100 were generated. We introduce the new methods of measuring electron beam canonical angular momentum, beam transformer optimization and beam image analysis. We also describe a potential longitudinal space-charge amplier setup for FAST high-energy beamline. As an outcome, a broadband partially coherent radiation in the UV range could be generated.« less
NASA Astrophysics Data System (ADS)
Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.
2018-03-01
The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.
Magnetic field strength of a neutron-star-powered ultraluminous X-ray source
NASA Astrophysics Data System (ADS)
Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.
2018-04-01
Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.
Hickey, William J; Shetty, Ameesha R; Massey, Randall J; Toso, Daniel B; Austin, Jotham
2017-01-01
Bacterial biofilms play key roles in environmental and biomedical processes, and understanding their activities requires comprehension of their nanoarchitectural characteristics. Electron microscopy (EM) is an essential tool for nanostructural analysis, but conventional EM methods are limited in that they either provide topographical information alone, or are suitable for imaging only relatively thin (<300 nm) sample volumes. For biofilm investigations, these are significant restrictions. Understanding structural relations between cells requires imaging of a sample volume sufficiently large to encompass multiple cells and the capture of both external and internal details of cell structure. An emerging EM technique with such capabilities is bright-field scanning transmission electron microscopy (BF-STEM) and in the present report BF-STEM was coupled with tomography to elucidate nanostructure in biofilms formed by the polycyclic aromatic hydrocarbon-degrading soil bacterium, Delftia acidovorans Cs1-4. Dual-axis BF-STEM enabled high-resolution 3-D tomographic recontructions (6-10 nm) visualization of thick (1250 and 1500 nm) sections. The 3-D data revealed that novel extracellular structures, termed nanopods, were polymorphic and formed complex networks within cell clusters. BF-STEM tomography enabled visualization of conduits formed by nanopods that could enable intercellular movement of outer membrane vesicles, and thereby enable direct communication between cells. This report is the first to document application of dual-axis BF-STEM tomography to obtain high-resolution 3-D images of novel nanostructures in bacterial biofilms. Future work with dual-axis BF-STEM tomography combined with correlative light electron microscopy may provide deeper insights into physiological functions associated with nanopods as well as other nanostructures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance
NASA Astrophysics Data System (ADS)
Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven; Weber, William J.
2015-10-01
Nano-engineered 3C-SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. The resultant strain field probably contributes to the enhancement of radiation tolerance of this material.
Another Shock for the Bullet Cluster, and the Source of Seed Electrons for Radio Relics
NASA Technical Reports Server (NTRS)
Shimwell, Timothy W,; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav
2015-01-01
With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2:30:11025 WHz(exp -1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94% of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re- )acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.
Design of a backlighting structure for very large-area luminaries
NASA Astrophysics Data System (ADS)
Carraro, L.; Mäyrä, A.; Simonetta, M.; Benetti, G.; Tramonte, A.; Benedetti, M.; Randone, E. M.; Ylisaukko-Oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.
2017-02-01
A novel approach for RGB semiconductor LED-based backlighting system is developed to satisfy the requirements of the Project LUMENTILE funded by the European Commission, whose scope is to develop a luminous electronic tile that is foreseen to be manufactured in millions of square meters each year. This unconventionally large-area surface of uniform, high-brightness illumination requires a specific optical design to keep a low production cost, while maintaining high optical extraction efficiency and a reduced thickness of the structure, as imposed by architectural design constraints. The proposed solution is based on a light-guiding layer to be illuminated by LEDs in edge configuration, or in a planar arrangement. The light guiding slab is finished with a reflective top interface and a diffusive or reflective bottom interface/layer. Patterning is used for both the top interface (punctual removal of reflection and generation of a light scattering centers) and for the bottom layer (using dark/bright printed pattern). Computer-based optimization algorithms based on ray-tracing are used to find optimal solutions in terms of uniformity of illumination of the top surface and overall light extraction efficiency. Through a closed-loop optimization process, that assesses the illumination uniformity of the top surface, the algorithm generates the desired optimized top and bottom patterns, depending on the number of LED sources used, their geometry, and the thickness of the guiding layer. Specific low-cost technologies to realize the patterning are discussed, with the goal of keeping the production cost of these very large-area luminaries below the value of 100$/sqm.
Augmenting reality in Direct View Optical (DVO) overlay applications
NASA Astrophysics Data System (ADS)
Hogan, Tim; Edwards, Tim
2014-06-01
The integration of overlay displays into rifle scopes can transform precision Direct View Optical (DVO) sights into intelligent interactive fire-control systems. Overlay displays can provide ballistic solutions within the sight for dramatically improved targeting, can fuse sensor video to extend targeting into nighttime or dirty battlefield conditions, and can overlay complex situational awareness information over the real-world scene. High brightness overlay solutions for dismounted soldier applications have previously been hindered by excessive power consumption, weight and bulk making them unsuitable for man-portable, battery powered applications. This paper describes the advancements and capabilities of a high brightness, ultra-low power text and graphics overlay display module developed specifically for integration into DVO weapon sight applications. Central to the overlay display module was the development of a new general purpose low power graphics controller and dual-path display driver electronics. The graphics controller interface is a simple 2-wire RS-232 serial interface compatible with existing weapon systems such as the IBEAM ballistic computer and the RULR and STORM laser rangefinders (LRF). The module features include multiple graphics layers, user configurable fonts and icons, and parameterized vector rendering, making it suitable for general purpose DVO overlay applications. The module is configured for graphics-only operation for daytime use and overlays graphics with video for nighttime applications. The miniature footprint and ultra-low power consumption of the module enables a new generation of intelligent DVO systems and has been implemented for resolutions from VGA to SXGA, in monochrome and color, and in graphics applications with and without sensor video.
Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne
2015-01-01
The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic Exploration (REGAE) are given that show the significantly reduced multiple electron scattering problem in this regime, which opens up micron scale systems, notably solution phase chemistry, to atomically resolved structural dynamics.
Bright Retinal Lesions Detection using Colour Fundus Images Containing Reflective Features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giancardo, Luca; Karnowski, Thomas Paul; Chaum, Edward
2009-01-01
In the last years the research community has developed many techniques to detect and diagnose diabetic retinopathy with retinal fundus images. This is a necessary step for the implementation of a large scale screening effort in rural areas where ophthalmologists are not available. In the United States of America, the incidence of diabetes is worryingly increasing among the young population. Retina fundus images of patients younger than 20 years old present a high amount of reflection due to the Nerve Fibre Layer (NFL), the younger the patient the more these reflections are visible. To our knowledge we are not awaremore » of algorithms able to explicitly deal with this type of reflection artefact. This paper presents a technique to detect bright lesions also in patients with a high degree of reflective NFL. First, the candidate bright lesions are detected using image equalization and relatively simple histogram analysis. Then, a classifier is trained using texture descriptor (Multi-scale Local Binary Patterns) and other features in order to remove the false positives in the lesion detection. Finally, the area of the lesions is used to diagnose diabetic retinopathy. Our database consists of 33 images from a telemedicine network currently developed. When determining moderate to high diabetic retinopathy using the bright lesions detected the algorithm achieves a sensitivity of 100% at a specificity of 100% using hold-one-out testing.« less
Quantum dots in imaging, drug delivery and sensor applications
Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Pop, Teodora; Mosteanu, Ofelia; Puia, Cosmin; Iancu, Cornel; Mocan, Lucian
2017-01-01
Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications. PMID:28814860
Quantum dots in imaging, drug delivery and sensor applications.
Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Pop, Teodora; Mosteanu, Ofelia; Puia, Cosmin; Iancu, Cornel; Mocan, Lucian
2017-01-01
Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications.
Brown, H G; Ishikawa, R; Sánchez-Santolino, G; Lugg, N R; Ikuhara, Y; Allen, L J; Shibata, N
2017-02-01
Important properties of functional materials, such as ferroelectric shifts and octahedral distortions, are associated with displacements of the positions of lighter atoms in the unit cell. Annular bright-field scanning transmission electron microscopy is a good experimental method for investigating such phenomena due to its ability to image light and heavy atoms simultaneously. To map atomic positions at the required accuracy precise angular alignment of the sample with the microscope optical axis is necessary, since misalignment (tilt) of the specimen contributes to errors in position measurements of lighter elements in annular bright-field imaging. In this paper it is shown that it is possible to detect tilt with the aid of images recorded using a central bright-field detector placed within the inner radius of the annular bright-field detector. For a probe focus near the middle of the specimen the central bright-field image becomes especially sensitive to tilt and we demonstrate experimentally that misalignment can be detected with a precision of less than a milliradian, as we also confirm in simulation. Coma in the probe, an aberration that can be misidentified as tilt of the specimen, is also investigated and it is shown how the effects of coma and tilt can be differentiated. The effects of tilt may be offset to a large extent by shifting the diffraction plane detector an amount equivalent to the specimen tilt and we provide an experimental proof of principle of this using a segmented detector system. Copyright © 2016 Elsevier B.V. All rights reserved.
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne
2016-01-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
NASA Astrophysics Data System (ADS)
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne
2016-12-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.
NASA Astrophysics Data System (ADS)
Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping
2017-02-01
Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.
Snowpack monitoring in North America and Eurasia using passive microwave satellite data
NASA Technical Reports Server (NTRS)
Foster, J. L.; Rango, A.; Hall, D. K.; Chang, A. T. C.; Allison, L. J.; Diesen, B. C., III
1980-01-01
Areas of the Canadian high plains, the Montana and North Dakota high plains, and the steppes of central Russia have been studied in an effort to determine the utility of spaceborne microwave radiometers for monitoring snow depths in different geographic areas. Significant regression relationships between snow depth and microwave brightness temperatures were developed for each of these homogeneous areas. In each of the study areas investigated in this paper, Nimbus-6 (0.81 cm) ESMR data produced higher correlations than Nimbus-5 (1.55 cm) ESMR data in relating microwave brightness temperature to snow depth. It is difficult to extrapolate relationships between microwave brightness temperature and snow depth from one area to another because different geographic areas are likely to have different snowpack conditions.
Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D
2015-07-24
We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.
Electron microscopy approach for the visualization of the epithelial and endothelial glycocalyx.
Chevalier, L; Selim, J; Genty, D; Baste, J M; Piton, N; Boukhalfa, I; Hamzaoui, M; Pareige, P; Richard, V
2017-06-01
This study presents a methodological approach for the visualization of the glycocalyx by electron microscopy. The glycocalyx is a three dimensional network mainly composed of glycolipids, glycoproteins and proteoglycans associated with the plasma membrane. Since less than a decade, the epithelial and endothelial glycocalyx proved to play an important role in physiology and pathology, increasing its research interest especially in vascular functions. Therefore, visualization of the glycocalyx requires reliable techniques and its preservation remains challenging due to its fragile and dynamic organization, which is highly sensitive to the different process steps for electron microscopy sampling. In this study, chemical fixation was performed by perfusion as a good alternative to conventional fixation. Additional lanthanum nitrate in the fixative enhances staining of the glycocalyx in transmission electron microscopy bright field and improves its visualization by detecting the elastic scattered electrons, thus providing a chemical contrast. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
REX, a 5-MV pulsed-power source for driving high-brightness electron beam diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, R.L.; Kauppila, T.J.; Ridlon, R.N.
1991-01-01
The Relativistic Electron-beam Experiment, or REX accelerator, is a pulsed-power source capable of driving a 100-ohm load at 5 MV, 50 kA, 45 ns (FWHM) with less than a 10-ns rise and 15-ns fall time. This paper describes the pulsed-power modifications, modelling, and extensive measurements on REX to allow it to drive high impedance (100s of ohms) diode loads with a shaped voltage pulse. A major component of REX is the 1.83-m-diam {times} 25.4-cm-thick Lucite insulator with embedded grading rings that separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. Amore » radially tailored, liquid-based resistor provides a stiff voltage source that is insensitive to small variations of the diode current and, in addition, optimizes the electric field stress across the vacuum side of the insulator. The high-current operation of REX employs both multichannel peaking and point-plane diverter switches. This mode reduces the prepulse to less than 2 kV and the postpulse to less than 5% of the energy delivered to the load. Pulse shaping for the present diode load is done through two L-C transmission line filters and a tapered, glycol-based line adjacent to the water PFL and output switch. This has allowed REX to drive a diode producing a 4-MV, 4.5-kA, 55-ns flat-top electron beam with a normalized Lapostolle emittance of 0.96 mm-rad corresponding to a beam brightness in excess of 4.4 {times} 10{sup 8} A/m{sup 2} {minus}rad{sup 2}. 6 refs., 13 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.
1995-05-01
The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations.
Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils.
Li, Han-Zhen; Yu, Tong-Pu; Liu, Jin-Jin; Yin, Yan; Zhu, Xing-Long; Capdessus, Remi; Pegoraro, Francesco; Sheng, Zheng-Ming; McKenna, Paul; Shao, Fu-Qiu
2017-12-11
Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e - e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ~10 24 Wcm -2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 10 22-23 Wcm -2 . By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ~10 25 photons/s/mm 2 /mrad 2 /0.1%BW at 15 MeV and intensity of 5 × 10 23 Wcm -2 . Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5 × 10 22 cm -3 and flux of 1.6 × 10 10 /shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities.
Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.
2016-01-01
Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170
Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice
NASA Astrophysics Data System (ADS)
Li, X. J.; Yu, J. H.; Luo, K.; Wu, Z. H.; Yang, W.
2018-04-01
We investigate theoretically the effects of modulated periodic perpendicular magnetic fields on the electronic states and optical absorption spectrum in monolayer black phosphorus (phosphorene). We demonstrate that different phosphorene magnetic superlattice (PMS) orientations can give rise to distinct energy spectra, i.e. tuning the intrinsic electronic anisotropy. Rashba spin-orbit coupling (RSOC) develops a spin-splitting energy dispersion in this phosphorene magnetic superlattice. Anisotropic momentum-dependent carrier distributions along/perpendicular to the magnetic strips are demonstrated. The manipulations of these exotic electronic properties by tuning superlattice geometry, magnetic field and the RSOC term are addressed systematically. Accordingly, we find bright-to-dark transitions in the ground-state electron-hole pair transition rate spectrum and the PMS orientation-dependent anisotropic optical absorption spectrum. This feature offers us a practical way of modulating the electronic anisotropy in phosphorene by magnetic superlattice configurations and detecting this modulation capability by using an optical technique.
Lightning leader models of terrestrial gamma-ray flashes
NASA Astrophysics Data System (ADS)
Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.
2017-12-01
Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because lightning leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the high-field regions near the leader tips, models of TGFs have been developed by several groups that assume a similar production mechanism of runaway electrons from lightning leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since lightning propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from lightning near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from lightning and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the lightning leader models of TGFs.
Experimental characterization of active plasma lensing for electron beams
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Giribono, A.; Lollo, V.; Marocchino, A.; Marongiu, M.; Mostacci, A.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2017-03-01
The active plasma lens represents a compact and affordable tool with radially symmetric focusing and field gradients up to several kT/m. In order to be used as a focusing device, its effects on the particle beam distribution must be well characterized. Here, we present the experimental results obtained by focusing an high-brightness electron beam by means of a 3 cm-long discharge-capillary pre-filled with Hydrogen gas. We achieved minimum spot sizes of 24 μ m (rms) showing that, during plasma lensing, the beam emittance increases due to nonlinearities in the focusing field. The results have been cross-checked with numerical simulations, showing an excellent agreement.
Microstructure characterization of the non-modulated martensite in Ni-Mn-Ga alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, M.; Bennett, J.C.; Gharghouri, M.A.
2008-06-15
The microstructure of the non-modulated martensite in a Ni-Mn-Ga alloy has been characterized in detail by conventional transmission electron microscopy. Bright field images show that the martensite exhibits an internal substructure consisting of a high density of narrow twins. Using electron diffraction, it is found that the martensite has a tetragonal crystal structure. The lattice correspondence between the parent phase and the non-modulated martensite is investigated. Furthermore, the four twinning elements describing the microtwinning have been graphically and quantitatively determined. The results indicate that the microtwinning within the non-modulated martensite belongs to the compound type.
Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
He, Kai; Zhang, Sen; Li, Jing; ...
2016-05-09
In this study, spinel transition metal oxides are an important class of materials that are being considered as electrodes for lithium-ion batteries, due to their low cost and high theoretical capacity. The lithiation of these compounds is known to undergo a two-step reaction, whereby intercalation and conversion occur in a sequential fashion. These two reactions are known to have distinct reaction dynamics, but it is unclear how the kinetics of these processes affect the overall electrochemical response. Here, we explore the lithiation of nanosized magnetite (F e3O 4) by employing a new strain-sensitive, bright-field scanning transmission electron microscopy approach.
Codoped direct-gap semiconductor scintillators
Derenzo, Stephen Edward [Pinole, CA; Bourret-Courchesne, Edith [Berkeley, CA; Weber, Marvin J [Danville, CA; Klintenberg, Mattias K [Berkeley, CA
2008-07-29
Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.
Codoped direct-gap semiconductor scintillators
Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.
2006-05-23
Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.
Review on high current 2.45 GHz electron cyclotron resonance sources (invited).
Gammino, S; Celona, L; Ciavola, G; Maimone, F; Mascali, D
2010-02-01
The suitable source for the production of intense beams for high power accelerators must obey to the request of high brightness, stability, and reliability. The 2.45 GHz off-resonance microwave discharge sources are the ideal device to generate the requested beams, as they produce multimilliampere beams of protons, deuterons, and monocharged ions, remaining stable for several weeks without maintenance. A description of different technical designs will be given, analyzing their strength, and weakness, with regard to the extraction system and low energy beam transport line, as the presence of beam halo is detrimental for the accelerator.
Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadopoulos, C. F.; Corlett, J.; Emma, P.
2013-05-20
We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.; Tritz, K.; Stutman, D.; Stratton, B.; Efthimion, P.
2016-11-01
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ, ΔZeff, and ne,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, Roger
The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.
None, None
2015-09-28
Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less
NASA Astrophysics Data System (ADS)
Chen, Z. Q.; Huang, P.; Xu, K. W.; Wang, F.; Lu, T. J.
2016-12-01
We report that β-relaxation of amorphous NiW alloy film was effectively enhanced by adding two thin crystalline layers into the amorphous layer. Correspondingly, more bright bands, i.e., nano shear bands, were captured in the amorphous layer, which experienced more pronounced β-relaxations. Based on the potential energy landscape theory, the bright band was proposed to be the localized percolation of flow units corresponding to β-relaxation. Our findings may help connecting experimentally β-relaxation with flow units and shed light on the microstructure origin of β-relaxation.
Swift heavy ion track formation in Gd2Zr2-xTixO7 pyrochlore: Effect of electronic energy loss
NASA Astrophysics Data System (ADS)
Lang, Maik; Toulemonde, Marcel; Zhang, Jiaming; Zhang, Fuxiang; Tracy, Cameron L.; Lian, Jie; Wang, Zhongwu; Weber, William J.; Severin, Daniel; Bender, Markus; Trautmann, Christina; Ewing, Rodney C.
2014-10-01
The morphology of swift heavy ion tracks in the Gd2Zr2-xTixO7 pyrochlore system has been investigated as a function of the variation in chemical composition and electronic energy loss, dE/dx, over a range of energetic ions: 58Ni, 101Ru, 129Xe, 181Ta, 197Au, 208Pb, and 238U of 11.1 MeV/u specific energy. Bright-field transmission electron microscopy, synchrotron X-ray diffraction, and Raman spectroscopy reveal an increasing degree of amorphization with increasing Ti-content and dE/dx. The size and morphology of individual ion tracks in Gd2Ti2O7 were characterized by high-resolution transmission electron microscopy revealing a core-shell structure with an outer defect-fluorite dominated shell at low dE/dx to predominantly amorphous tracks at high dE/dx. Inelastic thermal-spike calculations have been used together with atomic-scale characterization of ion tracks in Gd2Ti2O7 by high resolution transmission electron microscopy to deduce critical energy densities for the complex core-shell morphologies induced by ions of different dE/dx.
Design and realization of an AEC&AGC system for the CCD aerial camera
NASA Astrophysics Data System (ADS)
Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun
2015-08-01
An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.
Sources of Emittance in RF Photocathode Injectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowell, David
2016-12-11
Advances in electron beam technology have been central to creating the current generation of x-ray free electron lasers and ultra-fast electron microscopes. These once exotic devices have become essential tools for basic research and applied science. One important beam technology for both is the electron source which, for many of these instruments, is the photocathode RF gun. The invention of the photocathode gun and the concepts of emittance compensation and beam matching in the presence of space charge and RF forces have made these high-quality beams possible. Achieving even brighter beams requires a taking a finer resolution view of themore » electron dynamics near the cathode during photoemission and the initial acceleration of the beam. In addition, the high brightness beam is more sensitive to degradation by the optical aberrations of the gun’s RF and magnetic lenses. This paper discusses these topics including the beam properties due to fundamental photoemission physics, space charge effects close to the cathode, and optical distortions introduced by the RF and solenoid fields. Analytic relations for these phenomena are derived and compared with numerical simulations.« less
Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; ...
2014-10-15
In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phasemore » contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.« less
Transmission environmental scanning electron microscope with scintillation gaseous detection device.
Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios
2015-03-01
A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.
Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes
Reddy, M. Siva Pratap; Park, Chinho
2016-01-01
Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s−1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign. PMID:27572113
NASA Astrophysics Data System (ADS)
Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg
2011-06-01
The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.
NASA Astrophysics Data System (ADS)
Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.
2016-03-01
Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b
Energy calibration of the fly's eye detector
NASA Technical Reports Server (NTRS)
Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, S.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Steck, D.
1985-01-01
The methods used to calibrate the Fly's eye detector to evaluate the energy of EAS are discussed. The energy of extensive air showers (EAS) as seen by the Fly's Eye detector are obtained from track length integrals of observed shower development curves. The energy of the parent cosmic ray primary is estimated by applying corrections to account for undetected energy in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower.
Brightness and magnetic evolution of solar coronal bright points
NASA Astrophysics Data System (ADS)
Ugarte-Urra, I.
2004-12-01
This thesis presents a study of the brightness and magnetic evolution of several Extreme ultraviolet (EUV) coronal bright points (hereafter BPs). BPs are loop-like features of enhanced emission in the coronal EUV and X-ray images of the Sun, that are associated to the interaction of opposite photospheric magnetic polarities with magnetic fluxes of ≈1018 - 1019 Mx. The study was carried out using several instruments on board the Solar and Heliospheric Observatory (SOHO): the Extreme Ultraviolet Imager (EIT), the Coronal Diagnostic Spectrometer (CDS) and the Michelson Doppler Imager (MDI), supported by the high resolution imaging from the Transition Region And Coronal Explorer (TRACE). The results confirm that, down to 1'' (i.e. ~715 km) resolution, BPs are made of small loops with lengths of ~6 Mm and cross-sections of ~2 Mm. The loops are very dynamic, evolving in time scales as short as 1 - 2 minutes. This is reflected in a highly variable EUV response with fluctuations highly correlated in spectral lines at transition region temperatures (in the range 3.2x10^4 - 3.5x10^5 K), but not always at coronal temperatures. A wavelet analysis of the intensity variations reveals, for the first time, the existence of quasi-periodic oscillations with periods ranging 400 -- 1000 s, in the range of periods characteristic of the chromospheric network. The link between BPs and network bright points is discussed, as well as the interpretation of the oscillations in terms of global acoustic modes of closed magnetic structures. A comparison of the magnetic flux evolution of the magnetic polarities to the EUV flux changes is also presented. Throughout their lifetime, the intrinsic EUV emission of BPs is found to be dependent on the total magnetic flux of the polarities. In short time scales, co-spatial and co-temporal TRACE and MDI images, reveal the signature of heating events that produce sudden EUV brightenings simultaneous to magnetic flux cancellations. This is interpreted in terms of magnetic reconnection events. Finally, a electron density study of six coronal bright points produces values of ~1.6x109 cm-3, closer to active region plasma than to quiet Sun. The analysis of a large coronal loop (half length of 72 Mm) introduces the discussion on the prospects of future plasma diagnostics of BPs with forthcoming solar missions like Solar-B.
The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket, first flight
NASA Astrophysics Data System (ADS)
Christe, Steven; Glesener, L.; Ishikawa, S.; Ramsey, B.; Takahashi, T.; Watanabe, S.; Saito, S.; Lin, R. P.; Krucker, S.
2013-07-01
Understanding electron acceleration in solar flares requires X-ray studies with greater sensitivity and dynamic range than are available with current solar hard X-ray observers (i.e. the RHESSI spacecraft). RHESSI employs an indirect Fourier imaging method that is intrinsically limited in dynamic range and therefore can rarely image faint coronal flare sources in the presence of bright footpoints. With greater sensitivity and dynamic range, electron acceleration sites in the corona could be studied in great detail. Both these capabilities can be advanced by the use of direct focusing optics. The recently flown Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload demonstrates the feasibility and usefulness of hard X-ray focusing optics for observations of solar hard X-rays. FOXSI features grazing-incidence replicated nickel optics made by the NASA Marshall Space Flight Center and fine-pitch silicon strip detectors developed by the Astro-H team at JAXA/ISAS. FOXSI flew successfully on November 2, 2012, producing images and spectra of a microflare and performing a search for nonthermal emission (4-15 keV) from nanoflares in the quiet Sun. Nanoflares are a candidate for providing the required energy to heat the solar corona to its high temperature of a few million degrees. A future satellite version of FOXSI, featuring similar optics and detectors, could make detailed observations of hard X-rays from flare-accelerated electrons, identifying and characterizing particle acceleration sites and mapping out paths of energetic electrons as they leave these sites and propagate throughout the solar corona.Abstract (2,250 Maximum Characters): Understanding electron acceleration in solar flares requires X-ray studies with greater sensitivity and dynamic range than are available with current solar hard X-ray observers (i.e. the RHESSI spacecraft). RHESSI employs an indirect Fourier imaging method that is intrinsically limited in dynamic range and therefore can rarely image faint coronal flare sources in the presence of bright footpoints. With greater sensitivity and dynamic range, electron acceleration sites in the corona could be studied in great detail. Both these capabilities can be advanced by the use of direct focusing optics. The recently flown Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload demonstrates the feasibility and usefulness of hard X-ray focusing optics for observations of solar hard X-rays. FOXSI features grazing-incidence replicated nickel optics made by the NASA Marshall Space Flight Center and fine-pitch silicon strip detectors developed by the Astro-H team at JAXA/ISAS. FOXSI flew successfully on November 2, 2012, producing images and spectra of a microflare and performing a search for nonthermal emission (4-15 keV) from nanoflares in the quiet Sun. Nanoflares are a candidate for providing the required energy to heat the solar corona to its high temperature of a few million degrees. A future satellite version of FOXSI, featuring similar optics and detectors, could make detailed observations of hard X-rays from flare-accelerated electrons, identifying and characterizing particle acceleration sites and mapping out paths of energetic electrons as they leave these sites and propagate throughout the solar corona.
Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance
Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; ...
2015-06-18
In this paper, nano-engineered 3C–SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. Finally, the resultant strain fieldmore » probably contributes to the enhancement of radiation tolerance of this material.« less
Adaptive sigmoid function bihistogram equalization for image contrast enhancement
NASA Astrophysics Data System (ADS)
Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe
2015-09-01
Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.
NASA Astrophysics Data System (ADS)
Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.
2018-02-01
We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.
Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells
Wen, Jianguo; Miller, Dean J.; Chen, Wei; ...
2014-06-20
Here, traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/ PC 61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC 61BM polymeric solar cells at multiple length scales and expands ourmore » understanding of optimal device performance providing insight for the design of even higher performance cells.« less
High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B.; Wojtsekhowski, B.
We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10 }e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +}more » beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Wolfe, Douglas E.; Howard, Robert P.
2013-01-01
Luminescence-based surface temperature measurements from an ultra-bright Cr-doped GdAlO3 perovskite (GAP:Cr) coating were successfully conducted on an air-film-cooled stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing at UTSI was to demonstrate that reliable thermal barrier coating (TBC) surface temperatures based on luminescence decay of a thermographic phosphor could be obtained from the surface of an actual engine component in an aggressive afterburner flame environment and to address the challenges of a highly radiant background and high velocity gases. A high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine was coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick GAP:Cr thermographic phosphor layer was deposited by EB-PVD. The ultra-bright broadband luminescence from the GAP:Cr thermographic phosphor is shown to offer the advantage of over an order-of-magnitude greater emission intensity compared to rare-earth-doped phosphors in the engine test environment. This higher emission intensity was shown to be very desirable for overcoming the necessarily restricted probe light collection solid angle and for achieving high signal-to-background levels. Luminescence-decay-based surface temperature measurements varied from 500 to over 1000C depending on engine operating conditions and level of air film cooling.
Another shock for the Bullet cluster, and the source of seed electrons for radio relics
NASA Astrophysics Data System (ADS)
Shimwell, Timothy W.; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav
2015-05-01
With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2.3 ± 0.1 × 1025 W Hz-1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94 per cent of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail, we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re-)acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.
Chesnick, Ingrid E; Avallone, Francis A; Leapman, Richard D; Landis, William J; Eidelman, Naomi; Potter, Kimberlee
2007-04-01
We present a three-dimensional mineralizing model based on a hollow fiber bioreactor (HFBR) inoculated with primary osteoblasts isolated from embryonic chick calvaria. Using non-invasive magnetic resonance microscopy (MRM), the growth and development of the mineralized tissue around the individual fibers were monitored over a period of 9 weeks. Spatial maps of the water proton MRM properties of the intact tissue, with 78 microm resolution, were used to determine changes in tissue composition with development. Unique changes in the mineral and collagen content of the tissue were detected with high specificity by proton density (PD) and magnetization transfer ratio (MTR) maps, respectively. At the end of the growth period, the presence of a bone-like tissue was verified by histology and the formation of poorly crystalline apatite was verified by selected area electron diffraction and electron probe X-ray microanalysis. FTIR microspectroscopy confirmed the heterogeneous nature of the bone-like tissue formed. FTIR-derived phosphate maps confirmed that those locations with the lowest PD values contained the most mineral, and FTIR-derived collagen maps confirmed that bright pixels on MTR maps corresponded to regions of high collagen content. In conclusion, the spatial mapping of tissue constituents by FTIR microspectroscopy corroborated the findings of non-invasive MRM measurements and supported the role of MRM in monitoring the bone formation process in vitro.
Evaluation of Bioreactor-Cultivated Bone by Magnetic Resonance Microscopy and FTIR Microspectroscopy
Chesnick, Ingrid E.; Avallone, Frank; Leapman, Richard D.; Landis, William J.; Eidelman, Naomi; Potter, Kimberlee
2007-01-01
We present a three-dimensional mineralizing model based on a hollow fiber bioreactor (HFBR) inoculated with primary osteoblasts isolated from embryonic chick calvaria. Using non-invasive magnetic resonance microscopy (MRM), the growth and development of the mineralized tissue around the individual fibers were monitored over a period of nine weeks. Spatial maps of the water proton MRM properties of the intact tissue, with 78 μm resolution, were used to determine changes in tissue composition with development. Unique changes in the mineral and collagen content of the tissue were detected with high specificity by proton density (PD) and magnetization transfer ratio (MTR) maps, respectively. At the end of the growth period, the presence of a bone-like tissue was verified by histology and the formation of poorly crystalline apatite was verified by selected area electron diffraction and electron probe X-ray microanalysis. FTIR microspectroscopy confirmed the heterogeneous nature of the bone-like tissue formed. FTIR-derived phosphate maps confirmed that those locations with the lowest PD values contained the most mineral, and FTIR-derived collagen maps confirmed that bright pixels on MTR maps corresponded to regions of high collagen content. In conclusion, the spatial mapping of tissue constituents by FTIR microspectroscopy corroborated the findings of non-invasive MRM measurements and supported the role of MRM in monitoring the bone formation process in vitro. PMID:17174620
Sun, Yao; Ding, Mingmin; Zeng, Xiaodong; Xiao, Yuling; Wu, Huaping; Zhou, Hui; Ding, Bingbing; Qu, Chunrong; Hou, Wei; Er-bu, AGA; Zhang, Yejun; Cheng, Zhen
2017-01-01
Though high brightness and biocompatible small NIR-II dyes are highly desirable in clinical or translational cancer research, their fluorescent cores are relatively limited and their synthetic processes are somewhat complicated. Herein, we have explored the design and synthesis of novel NIR-II fluorescent materials (H1) without tedious chromatographic isolation with improved fluorescence performance (QY ≈ 2%) by introducing 2-amino 9,9-dialkyl-substituted fluorene as a donor into the backbone. Several types of water-soluble and biocompatible NIR-II probes: SXH, SDH, and H1 NPs were constructed via different chemical strategies based on H1, and then their potential to be used in in vivo tumor imaging and image-guided surgery in the NIR-II region was explored. High levels of uptake were obtained for both passive and active tumor targeting probes SXH and SDH. Furthermore, high resolution imaging of blood vessels on tumors and the whole body of living mice using H1 NPs for the first time has demonstrated precise NIR-II image-guided sentinel lymph node (SLN) surgery. PMID:28507722
Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action.
Miller, R J Dwayne
2014-03-07
With the recent advances in ultrabright electron and x-ray sources, it is now possible to extend crystallography to the femtosecond time domain to literally light up atomic motions involved in the primary processes governing structural transitions. This review chronicles the development of brighter and brighter electron and x-ray sources that have enabled atomic resolution to structural dynamics for increasingly complex systems. The primary focus is on achieving sufficient brightness using pump-probe protocols to resolve the far-from-equilibrium motions directing chemical processes that in general lead to irreversible changes in samples. Given the central importance of structural transitions to conceptualizing chemistry, this emerging field has the potential to significantly improve our understanding of chemistry and its connection to driving biological processes.
NASA Astrophysics Data System (ADS)
Omer, Muhamed F.; Omer, Dilshad; Zebari, Bahroz Gh.
2014-12-01
A combination of high resolution cathodoluminsecnce-spectroscopy (HRS-CL) with spatial electron microprobe analysis and optical microscopy is used to determine paragenesis and history of cementation in the limestones and dolostones of Khurmala Formation which is exposed in many parts of Northern Iraq. Khurmala Formation was subjected to different diagenetic processes such as micritization, compaction, dissolution, neomorphism, pyritization and cementation that occurred during marine to shallow burial stages and culminated during intermediate to deep burial later stages. Five dolomite textures are recognized and classified according to crystal size distribution and crystal-boundary shape. Dolomitization is closely associated with the development of secondary porosity that pre-and postdates dissolution and corrosion; meanwhile such porosity was not noticed in the associated limestones. Microprobe analysis revealed three types of cement, calcite, dolomite and ankerite which range in their luminescence from dull to bright. Cathodoluminescence study indicated four main texture generations. These are (1) unzoned microdolomite of planar and subhedral shape, with syntaxial rim cement of echinoderm that show dull to red luminescence, (2) equant calcite cements filling interparticle pores which shows dull luminescence and weak zonal growth, (3.1) homogenous intrinsic blue stoichiometric calcite with dull luminescence and without activators, (3.2) coarse blocky calcite cement with strong oscillatory zoning and bright orange luminescence which postdates other calcite cements, (4) ankerite cement with red to orange, non-luminescence growth zonation which is the last formed cement.
USSR Report, Electronics and Electrical Engineering.
1985-04-30
References 15: 12 Russian, 3 Western. [147-6900] UDC: 621.316.933.6 WIDE-APERTURE ’ BLACK BOY ’ UHF NOISE EMITTER WITH 104 K BRIGHTNESS TEMPERATURE...Ferromagnetic Semiconductors (F. G. Bass, N. N. Nasonov; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY RADIOFIZIKA, No 11, Nov 84) 19 A Wide-Aperture ’ Black ... Boy ’ UHF Noise Emitter with 10 K Brightness (S. V. Butakova; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY RADIOFIZIKA, No 11, Nov 84) 19 BROADCASTING
NASA Astrophysics Data System (ADS)
Charles, T. K.; Paganin, D. M.; Latina, A.; Boland, M. J.; Dowd, R. T.
2017-03-01
Control of coherent synchrotron radiation (CSR)-induced emittance growth is essential in linear accelerators designed to deliver very high brightness electron beams. Extreme current values at the head and tail of the electron bunch, resulting from strong bunch compression, are responsible for large CSR production leading to significant transverse projected emittance growth. The Linac Coherent Light Source (LCLS) truncates the head and tail current spikes which greatly improves free electron laser (FEL) performance. Here we consider the underlying dynamics that lead to formation of current spikes (also referred to as current horns), which has been identified as caustics forming in electron trajectories. We present a method to analytically determine conditions required to avoid the caustic formation and therefore prevent the current spikes from forming. These required conditions can be easily met, without increasing the transverse slice emittance, through inclusion of an octupole magnet in the middle of a bunch compressor.
High-efficiency high-brightness diode lasers at 1470 nm/1550 nm for medical and defense applications
NASA Astrophysics Data System (ADS)
Gallup, Kendra; Ungar, Jeff; Vaissie, Laurent; Lammert, Rob; Hu, Wentao
2012-03-01
Diode lasers in the 1400 nm to 1600 nm regime are used in a variety of applications including pumping Er:YAG lasers, range finding, materials processing, aesthetic medical treatments and surgery. In addition to the compact size, efficiency, and low cost advantages of traditional diode lasers, high power semiconductor lasers in the eye-safe regime are becoming widely used in an effort to minimize the unintended impact of potentially hazardous scattered optical radiation from the laser source, the optical delivery system, or the target itself. In this article we describe the performance of high efficiency high brightness InP laser bars at 1470nm and 1550nm developed at QPC Lasers for applications ranging from surgery to rangefinding.
A source to deliver mesoscopic particles for laser plasma studies
NASA Astrophysics Data System (ADS)
Gopal, R.; Kumar, R.; Anand, M.; Kulkarni, A.; Singh, D. P.; Krishnan, S. R.; Sharma, V.; Krishnamurthy, M.
2017-02-01
Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.
Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation
NASA Astrophysics Data System (ADS)
Booske, John
2007-11-01
Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).
X-Ray Detector Simulations - Oral Presentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tina, Adrienne
2015-08-20
The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they mustmore » first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.« less
Relationship between large horizontal electric fields and auroral arc elements
NASA Astrophysics Data System (ADS)
Lanchester, B. S.; Kailá, K.; McCrea, I. W.
1996-03-01
High time resolution optical measurements in the magnetic zenith are compared with European Incoherent Scatter (EISCAT) field-aligned measurements of electron density at 0.2-s resolution and with horizontal electric field measurements made at 278 km with resolution of 9 s. In one event, 20 min after a spectacular auroral breakup, a system of narrow and active arc elements moved southward into the magnetic zenith, where it remained for several minutes. During a 30-s interval of activity in a narrow arc element very close to the radar beam, the electric field vectors at 3-s resolution were found to be extremely large (up to 400 mVm-1) and to point toward the bright optical features in the arc, which moved along its length. It is proposed that the large electric fields are short-lived and are directly associated with the particle precipitation that causes the bright features in auroral arc elements.
NASA Astrophysics Data System (ADS)
Abramov, D. V.; Arakelyan, S. M.; Galkin, A. F.; Klimovskii, Ivan I.; Kucherik, A. O.; Prokoshev, V. G.
2006-06-01
The video image of the graphite surface exposed to focused laser radiation is obtained with the help of a laser monitor. A bright ring moving over the heated surface was observed. A method for reconstructing the surface relief from the video image is proposed and realised. The method is based on the measurement of the angular distribution of the light intensity scattered by the graphite sample surface. The surface relief of the graphite sample changing in time is reconstructed. The relative change in the relief height during laser excitation is measured. The statistical characteristics of the reconstructed graphite surface shape and their variation during laser irradiation are studied. It is found that a circular convexity appears within the bright ring. The formation mechanism of this convexity requires further investigations.
Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V
2014-01-01
This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.
100-W 105-μm 0.15NA fiber coupled laser diode module
NASA Astrophysics Data System (ADS)
Karlsen, Scott R.; Price, R. Kirk; Reynolds, Mitch; Brown, Aaron; Mehl, Ron; Patterson, Steve; Martinsen, Robert J.
2009-02-01
We report on the development of a high brightness laser diode module capable of coupling over 100W of optical power into a 105 μm 0.15 NA fiber at 976 nm. This module, based on nLIGHT's Pearl product architecture, utilizes hard soldered single emitters packaged into a compact and passively-cooled package. In this system each diode is individually collimated in the fast and slow axes and free-space coupled into a single fiber. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has an electrical to optical efficiency greater than 40%. Additionally, this module is compatible with high power 7:1 fused fiber combiners, and initial experiments demonstrated 500W coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for higher brightness diode lasers for pumping fiber lasers and direct material processing.
Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee
2013-01-01
The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.
Evolution of separate screening soliton pairs in a biased series photorefractive crystal circuit.
Liu, Jinsong; Hao, Zhonghua
2002-06-01
This paper presents calculations for an idea in photorefractive spatial soliton, namely, screening solitons form in a biased series photorefractive crystal circuit consisting of two photorefractive crystals connected electronically by electrode leads in a chain with a voltage source. A system of two coupled equations is derived under appropriate conditions for two-beam propagation in the crystal circuit. The possibility of obtaining steady-state bright and dark screening soliton solutions is investigated in one dimension and, the existence of dark-dark, bright-dark, and bright-bright separate screening soliton pairs in such a circuit is proved. The numerical results show that the two solitons in a soliton pair can affect each other by the light-induced current and their coupling can affect their spatial profiles, dynamical evolutions, stabilities, and self-deflection. Under the limit in which the optical wave has a spatial extent much less than the width of the crystal, only the dark soliton can affect the other soliton by the light-induced current, but the bright soliton cannot. For a bright-dark or dark-dark soliton pair, the dark soliton in a weak input intensity can be obtained for a larger nonlinearity than for a stronger input intensity. For a bright-dark soliton pair, increasing the input intensity of the dark soliton can increase the bending angle of the bright soliton. Some potential applications are discussed.
Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles
NASA Astrophysics Data System (ADS)
Belomoin, Gennadiy; Therrien, Joel; Nayfeh, Munir
2000-08-01
We dispersed electrochemical etched silicon into a colloid of ultrasmall ultrabright Si nanoparticles. Direct imaging using transmission electron microscopy shows particles of ˜1 nm in diameter, and infrared and electron photospectroscopy show that they are passivated with hydrogen. Under 350 nm excitation, the luminescence is dominated by an extremely strong blue band at 390 nm. We replace hydrogen by a high-quality ultrathin surface oxide cap by self-limiting oxidation in H2O2. Upon capping, the excitation efficiency drops, but only by a factor of 2, to an efficiency still two-fold larger than that of fluorescein. Although of slightly lower brightness, capped Si particles have superior biocompatability, an important property for biosensing applications.
NASA Astrophysics Data System (ADS)
Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.
Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.
NASA Astrophysics Data System (ADS)
Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.
2018-02-01
Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.
LASCO Observations Of The K-Corona From Solar Minimum To Solar Maximum And Beyond
NASA Astrophysics Data System (ADS)
Andrews, Michael D.; Howard, Russell A.
2003-09-01
The LASCO C2 and C3 coronagraphs on SOHO have been recording a regular series of images of the corona since May 1996. This sequence of data covers the period of solar minimum, the increase to solar maximum, and the beginning of the decline toward the next solar minimum. The images have been analyzed to determine the brightness of the K-corona (solar photons Thomson scattered from free electrons). The total brightness of the K-corona is approximately constant from May 1996 through May 1997. The brightness is then seen to increase steadily until early in the year 2000. The structure of the K-corona changes dramatically with solar cycle. The shape as seen in C2 becomes almost circular at solar maximum while the C3 images continue to show equatorial streamers. The magnitude of the solar cycle variation decreases as the height increases. We present data animations (movies) to show the large-scale structure. We have inverted 28-day averages of the white light images to determine radial profiles of electron density. We present these electron profiles, show how they vary as a function of both latitude and time, and compare our observed profiles with other models and observations.
Development and Application of STEM for the Biological Sciences
Sousa, Alioscka A.; Leapman, Richard D.
2012-01-01
The design of the scanning transmission electron microscope (STEM), as conceived originally by Crewe and coworkers, enables the highly efficient and flexible collection of different elastic and inelastic signals resulting from the interaction of a focused probe of incident electrons with a specimen. In the present paper we provide a brief review for how the STEM today can be applied towards a range of different problems in the biological sciences, emphasizing four main areas of application. (1) For three decades, the most widely used STEM technique has been the mass determination of proteins and other macromolecular assemblies. Such measurements can be performed at low electron dose by collecting the high-angle dark-field signal using an annular detector. STEM mass mapping has proven valuable for characterizing large protein assemblies such as filamentous proteins with a well-defined mass per length. (2) The annular dark-field signal can also be used to image ultrasmall, functionalized nanoparticles of heavy atoms for labeling specific aminoacid sequences in protein assemblies. (3) By acquiring electron energy loss spectra (EELS) at each pixel in a hyperspectral image, it is possible to map the distributions of specific bound elements like phosphorus, calcium and iron in isolated macromolecular assemblies or in compartments within sectioned cells. Near single atom sensitivity is feasible provided that the specimen can tolerate a very high incident electron dose. (4) Electron tomography is a new application of STEM that enables three-dimensional reconstruction of micrometer-thick sections of cells. In this technique a probe of small convergence angle gives a large depth of field throughout the thickness of the specimen while maintaining a probe diameter of < 2 nm; and the use of an on-axis bright-field detector reduces the effects of beam broadening and thus improves the spatial resolution compared to that attainable by STEM dark-field tomography. PMID:22749213